
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Legible Grasping with Tele-
operated Learning from
Demonstration
Thesis Report
M.H. van Beem

Legible Grasping with
Teleoperated Learning
from Demonstration

by

M.H. van Beem

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday June 17, 2022 at 14:00.

Student Number: 4354206
Thesis Committee Prof. dr. R. Babuska TU Delft, supervisor

Ir. D. Karageorgos, Heemskerk Innovative Technology, supervisor
Dr. J. Kober, TU Delft

Institution: Delft University of Technology

Preface

In order to relieve the health care sector, Heemskerk Innovative Technology (HIT)1 is developing a Re-
motely Operated Service Robot (ROSE). The robot will reduce the workload of care workers by taking
over Activities of Daily Living (ADLs) within care homes. Picking up objects, cleaning, and clearing a
table are examples of ADLs. To be efficient, the robot should perform such tasks as autonomously as
possible. This can be accomplished by planning safe motions. Although robots move in a safe manner,
humans can still be afraid of the way they move in their environment. My role at Heemskerk Innovative
Technology was to develop grasp movements that are perceived as legible, so that the robot can be
accepted as a daily assistant.

A suitable example of legibility being required in an ADL task would be a human holding a cup and
a robot pouring a liquid into the cup. In order to accomplish this, the robot should pick up a bottle, move
towards the cup, pour a drink into the cup, and place the bottle back. In general, many other ADLs
involve a pick-and-place procedure. Motion planners are generally used in order to execute pick-and-
place tasks. However, after implementing a motion planner we saw that the motions of the robot are
non-intuitive. The presence of a table in the environment causes the robot’s movements to become
even less predictable. The planner uses a completely known environment to generate a collision-free
motion that approaches the goal pose. It is possible to add social constraints to the motion planner
in order to make it more legible and make the human feel more comfortable. However, humans can
still be afraid when an unclear motion, that does not show intent, is executed. Therefore, there are
other ways to make the intention clear through optimizations or reinforcement learning. Nevertheless,
reinforcement learning is not preferred as it is based on trial-and-error. These optimization methods
have limitations when applied to various situations. In this thesis, we will try to make legible grasps
by using Learning from Demonstration (LfD). The robot is equipped with a haptic device that facili-
tates remote control. For that reason, a teleoperated Learning from Demonstration module has been
developed to create legible grasps, and it has been tested both in simulation and on a real TIAGo robot.

I want to thank my supervisor from the TU Delft, Robert Babuska for the confidence he gave me,
as well as his feedback. Furthermore I would like to thank my supervisor Dimitris Karageorgos and
all others at HIT. They gave me valuable feedback, input and energy to finish my work. Having the
Covid restrictions at the beginning of the thesis prevented me from getting to know the company well.
Nevertheless, I enjoyed my time at HIT at the end of my thesis. It was an excellent learning experience
and I am grateful to have had the opportunity to graduate at a company. I wish to express my sincer-
est gratitude to all those who have supported me throughout the years. Specifically, my parents and
girlfriend, who have always been there for me.

M.H. van Beem
Delft, June 2022

1https://heemskerk-innovative.nl/

i

https://heemskerk-innovative.nl/

Contents

Preface i

1 Paper 1

A Demonstrations 15

B Tools 18
B.1 Introduction to MoveIt . 18
B.2 MoveIt Motion Planning . 18

B.2.1 Initializing . 18
B.2.2 Planning Scene. 19
B.2.3 Planning and Execution . 19

B.3 Combining MoveIt with LfD . 21

C Generalization in Simulation 24

D Detection of Object Pose 29
D.1 Texture Detection . 29
D.2 Color Detection . 30
D.3 ArUco Detection . 30

E Additional Results of Experiment 33

F Instructions to Participants of Legibility Experiment 35

ii

1
Paper

1

Legible Grasping with Teleoperated Learning from Demonstration

Marnix van Beem, Robert Babuška, Dimitris Karageorgos

Abstract— State-of-the-art object grasping with 7-DOF robotic
manipulators requires joint configuration planning methods in
order to provide position control of the end-effector. These
motion planners are able to calculate a motion plan to execute a
safe grasp, while taking environmental constraints into account.
In human-robot interaction, a well known problem is that
humans are uneasy with the arm motion the robot executes,
because the motion plan lacks parametrization of variables
which would account for the impression of legibility. In this study
we develop a method which allows for teleoperated learning
from a single demonstration that is perceived more legible by
humans. The operator uses the Geomagic Touch haptic device to
demonstrate a movement of the robot’s end-effector. Modeling
a motion path from a single teleoperated demonstration is
achieved using Dynamic Movement Primitives. The effectiveness
of the teleoperated LfD module has been demonstrated both
in simulation and on a TIAGo robot in a variety of poses.
An experiment is conducted in which a state-of-the-art motion
planner was compared to the proposed LfD method and the
ability of human participants to predict the goal object of the
robot. Using the teleoperated LfD method, the ability to predict
the goal objects increases significantly and the human is more
confident in making the prediction (P = 0.0102 and P < 0.001,
respectively). This means that with the learning method a more
legible grasp was generated than with the state-of-the-art motion
planner.

I. INTRODUCTION

In order to relieve the health care sector, Heemskerk
Innovative Technology (HiT)1 is developing a Remotely
Operated Service Robot (ROSE). It is intended to reduce the
workload of healthcare workers which is partially achieved by
performing Activities of Daily Living (ADLs). For instance,
picking up objects, cleaning, and clearing a table are examples
of ADLs. The robot should be able to carry out these activities
as autonomously as possible. This allows healthcare workers
to devote more time to patient care as a result of the robot
performing these tasks. It is necessary for the robot to be
able to manipulate (and grasp) objects in order to perform the
above-mentioned tasks. The focus of this thesis is to automate
grasping of objects, by remotely teaching the robot on how
to perform the grasp in a human-friendly way.
For several decades, robots have been used in industrial
environments to perform a variety of tasks. Often robots are
physically separated from humans to ensure safety. However,
more recent research has focused on collaboration between
humans and robots. This requires a robot to be safe, reliable,
and legible during operations for a human to accept it as an
assistant [1]. The term ”legible” may also refer to something
that is readable, understandable, or intent-expressive. Dragan
et al.’s [2] definition of legibility is used throughout this paper.
A legible motion is the one that enables the observer (human)

The first author is with the Cognitive Robotics department, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, Netherlands.

1https://heemskerk-innovative.nl/

to confidently and quickly predict the robot’s intention. It
is possible for the robot to use complementary motions in
order to increase legibility. For example, looking at the object
during a hand-over motion or pointing to an object [3], [4],
[5]. However, the end-effector motion for a manipulation task
can also be utilized to demonstrate legibility. Consequently,
the motion fulfills the required task and enables the observer
to predict the robot’s behavior. A more legible robot motion
offers humans a greater sense of safety and comfort [1].
Furthermore, when the robot’s movement indicates its intent,
it will be more acceptable as a personal assistant [6].

Fig. 1: Grasp motion generated by three different motion planners.
The start pose of the end-effector (blue dot) and the object pose
(orange dot) are for all planners the same. The default MoveIt motion
planner (green path) is the Lazy Bi-directional KPIECE planner.
The intention of the robot is probably not that clear for the human
in this situation.

Motion planners are commonly used to produce robot
manipulation tasks. A motion planner takes into account a path
plan as well as what the robot needs to do to complete that
path. However, the intention of the motion is not considered
in this process. Resulting in motions that is non-intuitive for
humans. Figure 1 shows three motions of the end-effector
generated by motion planners using MoveIt. However, the
robot does not provide any indication of what it will do. There
is unpredictability in the movement of the end-effector and
joints (which are not visible in the illustration). To solve this
problem, humans could become familiar with the movements
of robots. This solution, however, is more effective when
the robot moves naturally [7]. In addition, when using not
an optimal planner the robot does not always plan the exact
same movements. Even in a similar situation and using the
same planner, the robot will still have a variety of ways to
grasp the object. Three different end-effector movements are
shown in Figure 2 which are generated using the same planner
and in the exact same situation. It is difficult for humans to
comprehend why the robot moves in such a strange manner.

2

Fig. 2: Result of planning three times a motion for the end-effector in
the same situation (same start pose of the robot, same environment,
and same object pose) and with the same planner. All three motions
are different, which makes it unpredictable what the robot will do.

Another aspect of legible grasping is that the object should
be held in a way that mimics human behavior. An object’s
shape plays a role in grasping it in a human-like manner.
When handling a cereal box, for example, the narrow side
should be grasped, not the wide side. Another example is
that the robot could pick up a coffee mug using its handle.
Illustration 3 shows how the robot could grasp a cereal box.
Thus, the robot should indicate which object it will grasp as
well as where it will grasp it.

Fig. 3: An example of grasping a cereal box. The preferred method
is to grab the box by the narrow side. In the figure, motion 1 is
depicted as the preferred grasp. The robot should understand that
motion 2 will be executed if the box is placed elsewhere.

Hence, there is a need for robots with knowledge of legible
grasping. As humans, we learn to infer intentions from
other humans’ motions [8], [9], [10]. Thus, humans are
capable of recognizing in a given situation what constitutes
a legible trajectory. They can therefore demonstrate a legible
motion to the robot so that it can make an equivalent motion
for another individual. Learning from Demonstration (LfD),
Programming by Demonstration (PbD) or Imitation Learning
is an active area of research which enables robots to encode
the demonstrated trajectories [11], [12], [13]. In LfD, it is
also possible to learn a task, in this case, how to grasp an
object. A non-expert in robotics can program a robot by
demonstrating where to grasp an object. However, by using
a motion planner, it must be programmed in order to grasp
an object. At Heemskerk Innovative Technology, the robot
is equipped with the Geomagic Touch haptic device with 3
DoF force feedback so that an operator can control it after
deployment. Therefore, a teleoperator can provide a legible
demonstration of a grasp. In this paper, the robot learns a

legible grasp via teleoperated Learning from Demonstration.
The approach has been tested both in simulation and on a
TIAGo robot.

II. RELATED WORK

A. Origination
Human perception research originated the concept that

robot motions should convey intent. Humans rely heavily
upon their ability to perceive what others are doing and
to infer from gestures and expressions what they may be
intended to do. According to human perception research,
the brain can detect and extract intent from motions [8].
Throughout childhood, infants acquire the ability to discern
intent from actions of others [14]. In addition, experiments
have demonstrated that they can also extract this information
from humanoid robots [15]. The infant learns to determine
the intent and then use this information to predict what the
human will do in the future. A collaborative task will benefit
from this knowledge, as without verbal communication one
can anticipate the action of the other.

B. Increase Sociability
By taking into account social constraints, human abilities,

and preferences, Sisbot and Alami made a Human-Aware
Manipulation Planner (HAMP) [16], [17], [18], [19], [20].
By reducing velocity and acceleration when moving near the
human and respecting proxemic zones (introduced by Hall
[21]), this planner is able to generate more social motions. The
drawback is that, even if the above constraints are satisfied, an
unclear motion without an indication of intention can cause
humans discomfort.

C. Increase Intent-expressivness by Optimization
Several other techniques are used to produce an intent-

expressive grasp. Dragan et al. have provided an interesting
definition of legibility [2], [22]. Through the observation
of a snippet of the trajectory, one is able to anticipate the
goal. It is assumed that the observer (human) compares the
probability of the possible goals and selects the most likely
based on a portion of the motion [23]. The faster the observer
correctly predicts, the more legible the motion is. At each
time step, the probability of each goal is determined and
placed in a cost function. Function Gradient Optimization is
used to calculate a trajectory that minimizes the cost to reach
the actual goal and maximizes the cost to reach other possible
goals. The robot will exaggerate the motion in order to make
other possible goals less likely than the correct goal. However,
the motion should not be overly exaggerated, otherwise, it
will be less legible. [23]. Additional advances are related
to the viewpoint of the observer [24] and to expressing the
incapabilities of the robot [25].
As an alternative to Functional Gradient Optimization, Bodden
et al. propose a nonlinear optimization method [26], [27].
A legible motion is generated by optimizing the distance
between the goal and the user’s prediction at a given state, the
distance between the end-effector position and the goal, and
the energy. A certain heuristic is assumed in order to model
the user’s prediction. For example, a point position could be
calculated by taking into account the current position of the

3

end-effector and possible goals. As a result, this Nonlinear
Optimization approach generalizes better to a variety of robots
and scenarios than Functional Gradient Optimization.
Lastly, some methods use Reinforcement Learning techniques
[28], [29], [30], [31]. Since Reinforcement Learning involves
trial-and-error, it does not comply with the concept of a
robot in a highly dynamic and vulnerable environment and
is therefore considered out of scope of this study.
In the described methods, objects are grasped without regard
to their shape. In other words, only the motion is legible.
There are, however, many objects which cannot be grasped
from all angles. Thus, when the robot needs to grasp
something at a specific point, the motion will be altered. As
a result of considering the shape of the object, the approach
is more generalizable to various situations. It is still legible
when the object needs to be grasped in a specific manner.
Additionally, some of these methods are not applicable to
other types of robots [32], [26]. For generating a legible
grasp, we recommend using Learning from Demonstration
(LfD) rather than motion planners or optimization techniques.
LfD has the advantage of enabling non-robotic experts
to demonstrate preferred trajectories and tasks to robots.
Additionally, humans are aware of what constitutes a legible
motion. Furthermore, LfD is capable of generalizing to various
situations.

III. METHODOLOGY

Learning from Demonstration can be divided in three
main parts: the method of demonstration, the mathematical
representation and learning of the low-level robot movements,
and a high-level planner. For the demonstration method there
are two main distinctions in Learning from Demonstration.
Namely, kinesthetic teaching (the robot is physically guided
by the operator) and teleoperated teaching [11]. Teleoperation
provides the advantage of the operator not having to be
physically present at the robot. Teleoperated demonstrations
will be used in our approach since the operator will not
necessarily be present in the same room as the robot.
The term ”Movement Primitives” (MPs) is generally used to
refer to a mathematical model for representing and learning
low-level robot movements. The trajectories that are demon-
strated can be encoded by Dynamic Movement Primitives
(DMPs) as a nonlinear oscillator [33]. Another approach is
to use Probabilistic Movement Primitives (ProMPs), which
model trajectory distributions of stochastic demonstrated
movements [34], [35]. The first DMP representation presented
by IJspeert et al. [33] has several issues. First, when the
difference between the goal and initial positions is small, the
system may exhibit unexpected (and undesirable) behavior.
Additionally, the motion is mirrored when the goal position
minus the initial position changes sign from the learned
trajectory to a new one [36]. To address these issues, a
slightly different DMP representation is presented [37], [38].
DMPs have the advantage of being deterministic and are able
to learn a trajectory with a single demonstration. Besides,
encoding a trajectory, DMPs are capable of adapting that
trajectory by updating an interactive term [39], [40]. Another
extension is to plan both in joint space and Cartesian space
[41]. ProMPs on the hand, generalizes better to new situations

than DMPs. However, ProMPs are probabilistic and needs
multiple demonstrations. Therefore, DMPs are preferred and
will be used to encode trajectories.
Most often, the demonstrated data consists of kinematic
coordinates, such as joint angles or Cartesian coordinates
of links. However, the task (grasping the object) must also be
learned. With Probabilistic Movement Primitives (ProMPs),
there are probabilistic operations such as conditioning to
enhance generalization to novel situations [42], [35]. With
this approach, they used an external state variable, which
could represent the grasped object pose. When this variable
is included, the object can be placed elsewhere and still be
grasped at the same position. In this paper a pre-grasp pose
will be calculated from the demonstrated data and saved in a
database. This is accomplished by taking the last demonstrated
end-effector position and the object pose into account.
A high-level planner can be used to connect the learned
motions or to let the robot choose which motion to use. It is
necessary that in order to achieve a legible motion, the robot
can choose a motion based on the situation. For this purpose,
a Finite State Machine (FSM) or a Behaviour Tree (BT) can
be used to select a motion primitive [43], [44], [45]. Since
our scope revolves around the robot motion, these concepts
are not considered in this study. In order to demonstrate how
this works, a simple function is used to select between two
different learned motion primitives. The function selects a
primitive based on the environment. This primitive will be
used for generalization.
In summary, a teleoperator demonstrates a legible and human-
like grasp. The demonstrated data consists of the Cartesian
poses in time of the end-effector and the grasped object pose.
The motion is learned and encoded by DMPs as in [37]
and [38]. Data for a pre-grasp pose and the learned motion
is saved in a database. The result of this is that the end-
effect can also be generalized to new start and end poses. A
preferred grasp pose is calculated based on the demonstration
to generalize the grasp to novel situations. MoveIt is used
to let the robot plan and execute the motions to the new
pre-grasp pose. After that, MoveIt is used to grasp the object.
Figure 4 presents a general overview of the method used in
this research.

A. Demonstration

The Geomagic TouchTM 2 is used as a haptic device to
provide demonstrations. The operator controls with this device
the 7-DOF manipulator of the care robot. The end-effector’s
position and orientation (6-DOF) are controlled. The inverse
kinematics of the robot are taken care of by the Whole Body
Controller (WBC) of the robot. The WBC is an implementa-
tion of the Stack of Tasks [46]. There are three main tasks for
the WBC3: avoid self-collision, avoid approaching any joint
limits, and following the end-effector as demonstrated with the
haptic device. The WBC optimizes the tasks and establishes
the joint positions (7-DOF). As a result, there is a null-space
that is not controlled by the operator. The demonstrated data
for the model are the Cartesian end-effector positions and

2https://www.3dsystems.com/haptics-devices/touch
3https://github.com/pal-robotics/pal_wbc_utils

4

Demonstration

DMPs
Data for

pre-
grasp
pose

Database

A) Learning

Vision

Generate
motion

Execute
motion wih

MoveIt

Grasp
object with

MoveIt
Robot state

B) Generating

Object
pose

End-
effector
pose

Fig. 4: Overview of the framework that is used to learn and generate
a legible grasp. On the left side the learning is visualized which
contains of learning a motion with DMPs and receiving data for the
pre-grasp pose. On the right side is visualized how the robot can
grasp the object on its own. The vision module will give the object
pose and the robot the current end-effector pose. A new motion can
be planned to grasp an object and MoveIt will be used to execute
the motion.

orientations x in time, and the object position and orientation
s at t = 0. Thus, x =

[
x y z qx qy qz qw

]T
ee

and
s =

[
x y z qx qy qz qw

]T
object

at t = 0, with q
the orientation in quaternions. After the demonstration, the
Cartesian poses are manually filtered. Details are provided
in Appendix A.

B. DMPs

It is possible to model both discrete and periodic move-
ments using Dynamic Movement Primitives [33], [36]. In
order to model a legible and human-like grasp, a discrete
DMP model is employed. It is comprised of a system of
second-order Ordinary Differential Equations (one for each
dimension) of a mass-spring-damper type with a forcing
term. The forcing term should be modeled by DMPs in such
a way that it is able to generalize the trajectory to a new
starting position and goal position for the end-effector while
maintaining the shape of the learned trajectory. The following
differential equation can be integrated to produce discrete
movements in one dimension:{

τ v̇ = K(g − x)−Dv −K(g − x0) +Kf(s)

τ ẋ = v
(1)

With x, v ∈ R the position and velocity of the end-effector.
And x0, g ∈ R the start and goal position, respectively. τ
∈ R+ is a temporal scaling factor. The constants K and D
∈ R+ are a spring and damper constant, respectively. D is
chosen to be critically damped which means that D = 2

√
K.

s ∈ (0, 1] is a phase variable, that is a re-parametrization of
time t ∈ [0, T]. The phase is calculated by:

τ ṡ = −αs (2)

With α ∈ R+ a constant that is the exponential decay of
the canonical system. The canonical system is the second
equation in Equation (1). The forcing term f is a nonlinear
function in order to generate complex movements and it is
defined by basis functions as:

f(s) =

∑
i wiψi(s)s∑

i ψi(s)
(3)

With ψi(s) as Gaussian Basis Functions (GBFs) and is
calculated by:

ψi(s) = exp(−hi(s− ci)
2) (4)

with centers ci and widths hi. The Gaussian centers are
defined by:

ci = exp(−αi
T

N
), i = 0, 1, ..., N (5)

This definition enables them to be equally spaced in the time
interval. The widths hi are calculated by:

hi =
h̃

(ci+1 − ci)2
, i = 0, 1, ..., N − 1,

hN = hN−1

(6)

The overlap between the basis function can be controlled
with h̃ , which is usually h̃ set to one [47], [48].
Learning with DMP boils down to computing the weighs wi

∈ R that best approximate the desired forcing term. Thus,
x(t) is recorded as described in the previous section, and the
derivatives are computed for each time step t. The derivatives
are calculated by assuming constant acceleration over a time
period. The backward difference method is used to compute
the derivatives. After that, s(t) is computed for an appropriate
adjusted temporal scaling τ , which is set to one, by:

s(t) = exp(−αt) (7)

The next step is to use equation (1) to calculate ftarget(s).
With x0 is x(0) and g is x(T), with T the last time-step. The
forcing term is calculated as follows:

f(s(t)) =
1

g − x0
(v̇(t)−K(g − x(t)) +Dv) (8)

Lastly, the weight vector w⃗i from equation (3) has to be found.
It should minimize the error criterion J =

∑
s(ftarget(s)−

f(s))2 [49]. This is a linear regression problem solved by
weighted linear regression.
Due to the robot’s end-effector’s six-dimensional movement,
the forcing term f has to be determined for each dimension.
The system is decoupled in six dimensions in order to achieve
this. This requires the creation of six decoupled copies of the
system described in (1). The result is a vector formulation
that is proposed in [39], [38], [50]:{

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s)

τ ẋ = v
(9)

With x, v, g, x0, f(s) ∈ Rd and K, D ∈ Rd×d as diagonal
matrices. The evolution of s is still described by the canonical
system as in (3), and the forcing term f is still written in
terms of the basis functions as in (2).

C. Generalization

The purpose of this section is to explain how generalization
is accomplished to various situations. There is a new situation
when an object is oriented or positioned differently. In
addition, the start pose of the end-effector can be adjusted.
In order to accomplish a grasp in a new situation, the robot
should still grasp the object from the side as demonstrated,
and the trajectory should have the same shape. In order to
know where to plan, a new pre-grasp pose is first calculated.

5

Hereafter, a new trajectory to this pre-grasp pose is planned
and executed. Finally, the object is grasped.

1) Pre-grasp Pose: The robot receives the goal object pose
snew from the vision module in a novel situation. Details
about the vision module are described in Appendix D. It is
assumed that in new situations the object can be translated in
three dimensions and rotated around its yaw axis. The robot
loads from the database the object pose from demonstration
sdemo and the last pose of the demonstration x(T). After that,
x(T) needs the same transformation as the transformation
between snew and sdemo to get the pose xnew. Figure 5 shows
an illustration of the terms used and of the calculation steps.
First, x(T) is translated the same amount as the new object is
translated with respect to the object used in the demonstration.
So the translation is v = snew − sdemo, and therefore the
translation of the pre-grasp pose is xtranslation = x(T) + v.
Next, the rotation of the object must be taken into account.
For that, the yaw angle ψ between the demonstrated object
and the new object is determined. The new pre-grasp pose
is xnew = Rxtranslation. With R the rotation matrix with
angle ψ.

Fig. 5: Calculating a new pre-grasp pose. With sdemo the object
pose as demonstrated and snew the object pose in a new situation.
First, the pre-grasp pose x(T) is translated with the same translation
as between the object poses to xtranslation. The new pre-grasp pose
xnew is calculated by taking into account the rotation of the object.

2) Trajectory: The new pre-grasp pose makes it possible
for the DMPs to generate a new motion with the same shape
as demonstrated. The weight function from the database is
loaded to calculate the forcing terms f, the new goal position
g represents the pre-grasp pose xnew, and x0 represents the
current end-effector pose of the robot. The parameters K
and D are the same as those used in the learning procedure.
The temporal scaling factor τ is the desired length of the
total DMP execution in seconds. Equation (7) and τ are
used to determine s(t). By completing Equation (9), a new
acceleration v̇ is derived. The new positions and velocities
are calculated using Euler Integration: v = v̇dt and x = ẋdt.
A new trajectory with a different goal pose and the same
shape as the previous one is depicted in Figure 6. The blue
dot represents the start pose of the end-effector, the orange
dot represents the pre-grasp pose used by demonstration, the
green trajectory represents the learned motion based on the
demonstration, and the green dot and blue trajectory represent
the new pre-grasp pose and generalized trajectory, respectively.

Fig. 6: Generalization to a different object pose. The position of
the end-effector is the same for both cases (blue dot). An operator
has demonstrated the blue path, and the initial pre-grasp pose was
located at the green dot. Subsequently, the object was positioned
differently. The method was able to calculate a new pre-grasp pose
(orange dot) as well as a new path (green line) that has the same
shape as demonstrated.

IV. DESIGN EVALUATION EXPERIMENT

To demonstrate the effectiveness of the proposed teleop-
erated learning method, the method is initially implemented
in a 3D simulation environment. In addition, how well the
method generalizes to various new object poses and varying
initial poses of the end-effector is tested in simulation. To
validate the designed method, it is compared to an off-the-
shelf motion planner on success-rate, velocity, acceleration
and smoothness.

A. Simulation

In order to demonstrate that the method is valid in
simulation, an object is modelled and placed on a table.
To test the method a cereal box is used as an object and it
is placed on a table. The TIAGo robot is selected as robot
to grasp this object. After demonstrating a grasp, the robot
learns the motion and calculates a pre-grasp pose. The same
cereal box is then placed on the table. In order to grasp the
box the robot has to know the motion primitive, the pre-
grasp pose, the object pose, and the initial end-effector pose.
The robot loads the motion primitive and the pre-grasp pose
from the database. The cereal box’s pose is determined by
the implemented vision module which uses ArUco markers
(Appendix D). In order for the TIAGo robot to grasp a
cereal box on its own, MoveIt is used to execute the learned
grasp. See Appendix B for more details about MoveIt. MoveIt
returns also the initial end-effector pose. In such situations, the
robot should be able to calculate a new pre-grasp pose, move
towards it with the same shape of motion as demonstrated and
grasp the cereal box. Appendix C contains the results of the
simulation involving the grasping of a cereal box. Following
a single teleoperated demonstration and the calculation of
a new pre-grasp pose, the robot was able to generalize the
motion and grasp the cereal box in various poses. Figure
7(a) illustrates how the cereal box was grasped when the
box is placed in the same pose as demonstrated. Figure 7(b)

6

(a) Grasping box without generaliza-
tion

(b) Grasping box with generalization

Fig. 7: Left: Grasping a cereal box in simulation, with the cereal box placed at the same pose as in the demonstration. The robot was able
to learn the motion and grasp the cereal box again. Right: Grasping motion of the cereal box that is placed in a different pose than in the
demonstration. The robot is able to calculate a new pre-grasp pose and generalize the motion towards that pre-grasp pose. Hereafter, the
robot could grasp the box successfully.

illustrates how the robot grasps the cereal box with the same
motion, but with a different orientation and position of the
cereal box.

B. TIAGo Robot

Several expectations will be tested and evaluated with the
real TIAGo robot. The main difference with the simulation
is that there could be more noise (e.g. noise from the
camera). Therefore, the first test will determine if the robot
is capable of automatically grasping objects after having
learned to grasp an object. Next the velocity, acceleration and
smoothness will be evaluated because it is related to legibility
[1]. According to [16], [17], [18], [19], [20] a more social
motion is already better for the human perception. A more
social motion is one that has lower velocities, accelerations
and a better smoothness. Despite MoveIt controlling the
velocity and acceleration of both the LfD method and the
RRTConnect motion planner, the velocity and acceleration
could still differ.
In general, grasping is achieved through motion planners
or machine learning. However, machine learning requires a
large amount of data, whereas motion planners are available
off-the-shelf in MoveIt. Thus, our LfD framework will be
compared to an off-the-shelf motion planner from the MoveIt
library. In [51], they compared all the motion planners
available in MoveIt with the UR5 robot. For different grasp
executions, BKPiece and RRTConnect provided the most
consistent results with this robot, RRTConnect performed
better in terms of path length (shorter path). Therefore, the
method will be compared with the RRTConnect motion
planner.

1) Test Setup: During the tests, an object will be placed
on a table. Again a cereal box will be used to demonstrate
the effectiveness. The experimental setup is illustrated

in Figure 8. The robot (orange oval) will be positioned
near a table (gray rectangle). The same cereal box will be
placed at random on the table (green rectangles). A single
teleoperated demonstration will allow the robot to learn
how to grasp a cereal box (e.g. yellow rectangle). After the
cereal box has been grasped with the teleoperated learning
method, it will be placed in the same poses and grasped
with the RRTConnect motion planner. The start pose of the
end-effector will be the same for both methods.

Fig. 8: Setup for evaluating the designed method. The orange oval
is the robot base, the grey rectangle the table, the yellow rectangle
the object used for the demonstration, and the green rectangles the
same object in different poses. The blue triangle is the place where
the participant will observer the robot.

2) Procedure: First, the operator will demonstrate how
the robot should grasp the object. The robot will then learn
the motion and calculate the pre-grasp pose. Afterwards,
the cereal box will be placed randomly in nine different
poses on a table within the robot’s workspace, and the robot
should be able to pick up the box. The box will be placed at
the same position as in the demonstrated data, to the right
and to the left, rotated by approximately ± 90 degrees and

7

± 45 degrees, and higher and closer to the robot than used
by the demonstration. The robot will grasp the box with the
learned motion and with the RRTConnect motion planner.
Data received from the robot is the pose in time of the
different frames of the robot arm. This data comes from the
implementation of the tf package [52].

3) Expectations: During the first evaluation, it will be
investigated whether teleoperated LfD is suitable for grasping
objects with a real robot. We expect that the robot can learn
to grasp objects by using teleoperated learning from a single
demonstration.
Second, we investigate whether the executed motion is
already more socially constrained. It is expected that
the maximum and mean velocity and acceleration of the
end-effector are lower with the LfD method. Lower speeds
and accelerations make humans feel more comfortable
around the robot [20]. Lastly, we expect that the learned
motion is smoother than the motion from the RRTConnect
motion planner. A smoother motion is perceived as more
comfortable for the human [1].

4) Metrics: The success rate of the grasp will constitute
the primary metric for the first expectation. Thus, it is
determined whether the robot is capable of grasping the
object. Furthermore, it is necessary to determine whether
it collides with the environment (static objects) or with the
object to be grabbed.
Additionally, the maximum and mean velocity and ac-
celeration can be determined by computing the first and
second derivatives of the positional data, respectively. This is
accomplished using the numerical central difference method.
Smoothness is often compared by calculating the jerk which
is the third derivative of the position with respect to time.
A lower jerk is in most cases a smoother motion. However,
noise and path-length can influence the jerk. Therefore, we
want to combine jerk and the zero-crossings of the velocity
to compare smoothness. Less zero-crossings indicate that the
motion is more straightforward for the perception of humans.
It has not to be zero, because when avoiding objects there
are more zero-crossings. However, in the same situation the
zero-crossings should be as low as possible. It is calculated by
first finding the points where the velocity is zero. After that,
the zeros where the velocity are not changing sign are deleted.
The result is that there are only points where the velocity is
going through zero. For the jerk a value is needed to compare
the methods with. Therefore, the integrated square jerk of
the end-effector and of the elbow motion will be calculated.
First, the jerk is squared to ensure a positive outcome. The
result is that by integrating the jerk the negative jerk will not
cancel out the positive jerk. The equation for the integrated
square jerk is:

J =

∫ t2

t1

...
x (t)2 dt (10)

with ...
x (t) the third derivative of position in time. The

motion is in general smoother when the integrated square
jerk is lower.
The RRTConnect motion planner can get different solutions

1 9

8

7

6

2

4

3

5

Fig. 9: The nine different cereal box poses on the table that are
tested. Box 7 has a higher z-coordinate than the rest of the boxes.
The pose of box 5 is the same as when the operator demonstrated
the grasp. The green cereal boxes are grasped with both the LfD
method as with the RRTConnect motion planner. The orange box
could only be grasped with the LfD method. The motion planner
collided with the cereal box. The blue box is only successfully
grasped with the RRTConnect motion planner and the red box could
not be grasped with both methods. The yellow oval is the base of
the robot.

for the same scenario, because it is not an optimal planner.
To account for this, the box will be grasped two times
in each object pose with the MoveIt motion planner. In
simulation we have seen that with the LfD method the
motion is always the same, therefore it is not needed to
account for different motions.

5) Results Grasping: In Figure 9 the results of grasping
the cereal box in nine various poses are illustrated. The green
boxes are the cereal boxes that could be grasped with both
methods. The orange box could only be grasped with the
learning method, while the blue box could only be grasped
with the RRTConnect motion planner. Both methods could
not successfully grasp the red box. From this we can see that
with both the teleoperated LfD method and the RRTConnect
motion planner the robot was able to successfully grasp the
box in seven different poses. The failures are further analyzed
to see what the reason is that the robot could not grasp the
box. With the learning the robot was not able to successfully
grasp the cereal box in pose 8 and 9 (red and blue rectangles
in Figure 9). For pose 8 we visually analysed that the robot
had problems with the configuration of the arm when trying
to follow the path. The start configuration of the arm is shown
in Figure 10. By following the way-points the end-effector
needs to move in such a way that the elbow has to flip to the
other side (left handed). However, the robot is constrained not
to do so. Therefore, the robot gets stuck due to the joint limits
and cannot execute this motion. It is harder for the robot to
move the yaw angle of the end-effector counter clockwise.
Therefore, it is impossible for the robot to execute a motion
when the DMPs generalizes to a motion that plans to let the
end-effector move like this. A solution for this is to start in
a left handed configuration. In that way the robot is able to

8

Fig. 10: Start configuration of the robot arm. The end-effector can
easily rotate the yaw angle counter clockwise. It is hard to rotate it
clockwise.

execute the motion and grasp the cereal box with the learned
motion.

Pose 9 is where the yaw angle of the box is 90 degrees
with respect to the one in the demonstration (blue rectangle
in Figure 9). The problem with grasping this box is the same
as for Pose 8. However, when starting in a different start
configuration there is still a problem that the robot will do
a motion that is exaggerated to one side. Due to this the
end-effector will collide with the cereal box and therefore
the motion cannot be executed. This demonstrates that with
the LfD method it is probably safe to execute motions. An
image of the visualisation of the virtual environment is
shown in Figure 11. By following the learned motion and
getting a good orientation to grasp the box the robot will
collide with the object. A solution for this case could be to
use a different motion. A better solution could be to replace
the base of the robot so it will be easier for the robot to
grasp the box. Another solution could be to grasp from the
topside of the cereal box.

Fig. 11: Top view of the robot in the virtual environment. It shows
that the robot will collide with the box (green rectangle) when
following the motion (green path). Another motion could probably
solve this issue.

The RRTConnect motion planner could not grasp the box
when it was placed in pose 6. The end-effector collided
with the cereal box before grasping. In Figure 12 is shown
how the robot collides with the cereal box in the virtual
environment. Due defining the pre-grasp pose too close to
the cereal box, MoveIt makes a plan that collides with the
box. Apparently, MoveIt does not check collision with the

Fig. 12: Top view of the table and cereal box with marker in a
virtual environment. The left side shows how the end-effector is
approaching the box. The orange circle represents the pre-grasp
pose. In the right figure the end-effector collides with the box.

grasped object when moving to the pre-grasp pose. The
pre-grasp pose should be defined in such a way that the
gripper cannot touch the box.
For pose 8 (red rectangle) MoveIt could not find a plan in
time. Even after giving multiple times the command to find
a solution the robot was not able to find a plan.
Concluding, the robot was able to grasp objects by learning
from a single teleoperated demonstration. The robot was able
to autonomously grasp the cereal box in 7 out of 9 poses
which is the same with the RRTConnect motion planner.
Objects that are clockwise rotated (yaw angle) are harder
or impossible for the robot to grasp with a exaggerated
motion. For that a different start configuration, different
base position or a new learned motion might solve this. A
high-level planner might solve some of those issues.

6) Results Sociability: For calculating the velocities, ac-
celerations and smoothness of the executed motion the same
poses of the boxes and end-effector are used as described in
previous subsection. The boxes that could be grasped with
one method and not with the other are not taken into account.
We will go over the results one by one in this subsection. First,
the results of the velocity will be presented and discussed.
Next, the accelerations of the end-effector. After that, the
smoothness will be elaborated. Due to the noise in the data
an zero-phase digital low-pass filter is used to reduce the
noise and still have zero phase distortion. The reason is that
if there is noise in the data from the robot it will increase
when calculating the derivatives.
In Figure 13(a) and 13(b) the max and mean velocity of both
methods is compared, respectively. The histogram shows

Mean velocity of end-effector

LfD MP
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

V
e
lo

c
it
y
 (

m
/s

)

(a) Mean velocity of end-effector

Max velocity of end-effector

LfD MP
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
e
lo

c
it
y
 (

m
/s

)

(b) Max velocity of end-effector

Fig. 13: The mean and max velocity for both the LfD method as
for the RRTConnect motion planner. The mean of both methods
with the standard deviation is plotted. It shows that in both cases
the velocity is lower with the LfD method.

9

the mean of both methods and the standard deviation. In
both cases the LfD method has a lower mean and a smaller
deviation. An explanation for this could be that by following
the waypoints MoveIt has to control the joints more precisely.
This is easier to accomplish when the velocity is lower. It
seems like the velocity is already constrained with the LfD
method. Adding constraints to the velocity is probably not
necessary, however to ensure that it is always lower in close
proximity it could be added in the implementation.
The mean and max accelerations are plotted in Figure 14(a)
and 14(b). For the accelerations it is the same as with the
velocity. By using a different method in MoveIt the end-
effector is possibly more constrained. With the learning the
robot moves from point to point. It could be that the robot has
not the time to fully accelerate. Which might result in lower
accelerations. MoveIt has an option to manually constrain the
accelerations. It might help to add this when the end-effector
moves closer to humans.

Mean acceleration of end-effector

LfD MP
0

0.1

0.2

0.3

0.4

0.5

0.6

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

(a) Mean acceleration of end-effector

Max acceleration of end-effector

LfD MP
0

5

10

15

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

(b) Max acceleration of end-effector

Fig. 14: The mean and max acceleration for both the LfD method
as for the RRTConnect motion planner. The mean of both methods
with the standard deviation is plotted. It shows that in both cases
the acceleration is lower with the LfD method.

For the smoothness both the zero-crossings of the end-effector
and elbow and are plotted in Figure 15(a) and Figure 15(b),
respectively. Furthermore, Figures 16(a) and 16(b) shows
the integrated square jerk of the end-effector and elbow,
respectively. The end-effector motion has less zero-crossings
and a lower jerk with the LfD method. However, the elbow
motion has a higher mean and standard deviation in the
zero-crossings than the RRTConnect motion planner. The
end-effector motion is only learned and the operator has
probably shown a motion that is more straightforward for
the end-effector. It could be that the null-space of the robot

Amount of zero-crossings of velocity of end-effector

LfD MP
0

5

10

15

Z
e
ro

-c
ro

s
s
in

g
s

(a) Zero-crossings of velocity end-
effector

Amount of zero-crossings of velocity of elbow

LfD MP
0

5

10

15

Z
e
ro

-c
ro

s
s
in

g
s

(b) Zero-crossings of velocity elbow

Fig. 15: Zero-crossings of the velocity of both the end-effector and
elbow. A zero-crossing means that the direction of the frame changes.
Less zero-crossings could mean that the motion is smoother and
that it is more clear for a human what the robot is doing.

Integrated square jerk of end-effector

LfD MP
0

0.5

1

1.5

2

2.5

J
e

rk
 (

m
2
/s

5
)

10
4

(a) Integrated square jerk of the end-
effector

Integrated square jerk of elbow

LfD MP
0

5000

10000

15000

J
e

rk
 (

m
2
/s

5
)

(b) Integrated square jerk of the
elbow

Fig. 16: Integrated square jerk of both end-effector and elbow
frame. The integrated square jerk is a measure for smoothness of
a motion. The lower the jerk, the smoother a motion will be in
general. However, other aspects like path-length could influence this
measure.

should also be considered in generating a legible grasp. From
the combination of both the zero-crossings of the velocity
and the integrated square jerk we can see that the end-effector
motion is probably smoother. However, the null-space motion
of the robot is not necessarily smoother. It could be that the
robot needs to move the elbow more to follow the defined
waypoints. It might be interesting to investigate how the
whole arm of the robot should behave in an environment with
a human close to a robot.
We tried to give some measures that are used for legibility
or aspects that are related to legibility in this subsection.
From all this data we can conclude that the robot was
more constrained with the teleoperated LfD method in these
grasps. The robot moves more social because the velocity and
accelerations are lower. Besides, the end-effector motion is
smoother than with the RRTConnect motion planner in those
cases. Altogether it might suggest that the motion is perceived
more legible for a human. To validate more the legibility of
the designed teleoperated LfD module an experiment with
human participants is designed in the next section.

V. HUMAN FACTOR EXPERIMENT: LEGIBILITY OF THE
EXECUTED MOTION

In the previous section the executed motion was analyzed
from a more technical perspective. The goal of this
experiment is whether the teleoperated LfD method is more
legible than the RRTConnect motion planner in terms of
intent-expressiveness. For this an experiment with humans
observing the robot’s motion will be conducted. The learned
motion will again be compared to the RRTConnect motion
planner from MoveIt.

1) Test Setup: The experimental setup is illustrated in
Figure 17. In this setup two identical cereal boxes are placed
on a table. The robot is positioned near the table and a
video camera is placed at the other side. The robot will start
always in the same start position.

2) Procedure: Initially, the robot will learn two different
motions, one that is more exaggerated to the right and one
that is more exaggerated to the left. Based on the pose of
the other object, the robot will select one of the motion
primitives to indicate the intent. Whenever the goal object

10

Fig. 17: Setup for the experiment, the black and green rectangles
are identical boxes placed randomly on the table. The blue rectangle
is the position of the camera.

is placed to the left of the other object, the robot will
choose a motion that exaggerates to the left. The robot
will exaggerate to the right otherwise. The RRTConnect
motion planner will perform the same task. The motions
are recorded by a camera from the opposite direction (blue
rectangle in Figure 17). The motions are recorded for seven
different combination of poses. After that, participants will
see a movie showing a part of the robot’s motion when
it grasps one of the boxes4. This will be either with the
RRTConnect MoveIt motion planner, or with the LfD
method. The participant, however, will not know which
object the robot will grasp. Only a few seconds of the
robot’s motion are shown in the movie, and participants will
be asked to make a prediction. The time when the video
stops can be different for a different object pose. However,
the time is the same for the RRTConnect motion planner
as for the LfD method when the objects are in the same
poses. Figure 18 illustrates how one video can look like.
The left side shows the start pose of the robot and the poses
of the boxes in this situation. The right image could be the
frame after a few seconds of execution when the video stops.

Fig. 18: The left figure shows the start of a short video. The right
side shows an example of the frame when the video stops. The two
boxes can be positioned both in a different pose.

3) Expectations: The teleoperator should be able to
demonstrate a motion with intent. The robot should be able
to learn that motion and generalize that motion to new

4The video shown to participants can be found here: https://youtu.
be/2m4YLzLJuw0

situations. The RRTConnect motion planner from MoveIt
will probably give not any signs of intent. Therefore, the
expectation is that the human will guess the intention of the
robot. We expect that the intention of the executed motion
can be better inferred by a human with the teleoperated
learning method. Since the correctness and certainty of the
prediction are essential, the main expectation is divided
into two more specific expectations. We expect that humans
are more likely to make a correct prediction with the LfD
method than with the RRTConnect motion planner. When
participants are guessing they will also be less certain of
their prediction. It is expected that they will guess less
with the teleoperated LfD method and therefore are more
certain about the prediction. Therefore, we expect that the
teleoperated LfD method allows the human to make a more
certain prediction.

4) Metrics: The first metric will be a correct prediction
of the goal object. This will be either a correct or incorrect
prediction. The second metric will be the certainty on
a 5-point Likert scale. The questionnaire given to the
participants can be found in Appendix F. After a pilot
recording, it was observed that the executed motion with the
RRTConnect motion planner was more aggressive. Therefore,
the path of the end-effector as well as the path of the elbow
was recorded in time. Analyzing that data might give some
insight to the answers of participants.

5) Results Human Prediction: The experiment was
conducted by nine participants with a technical background.
They have seen 16 different short videos with the robot
executing a part of the motion. In half of the videos the
robot used the RRTConnect motion planner and the other
half the learning method. The robot grasped a cereal box
in 7 various poses with both methods. One extra situation
is created by showing the participant the same video but
with a longer duration, so they saw first a short part of
the motion. Later on they saw the same motion but was
stopped at a later time. The results of the correctness of
both methods is visualized in Figure 19. From this figure
it can be quickly inferred that with the LfD method the
participants could make a correct prediction by seeing a
part of the motion. While with the RRTConnect planner the
participants are probably guessing the answer. The mean
is even under the 50 percent, which might indicate that
the robot gives a wrong impression. Because the data is
discrete, dependent and not necessarily normally distributed
a Friedman test with a post hoc analysis could be utilized
to check the first expectation. With the most conservative
post hoc analysis (Bonferroni) the significance is P=0.0102.
The result is smaller than P<0.05 and therefore we can
conclude that there is a significant difference. Concluding,
that humans are more likely to make a correct prediction
with the teleoperated LfD method than with the RRTConnect
motion planner.
The results of the certainty per method is presented in Figure
20. The difference is again large between the two methods.
The data for the certainty is discrete, categorical (ordinal),

11

Correct predictions of both methods

LfD MP

0

10

20

30

40

50

60

70

80

90

100

110

%
 c

o
rr

e
c
t

Fig. 19: Percentage of correct predictions, with MP representing the
RRTConnect motion planner from MoveIt. With the height of the
bars the mean of both methods and the error bars represents the
mean plus and minus the standard deviation. With the significance
between data sets: ⋆ P<0.05, ⋆⋆ P<0.01, ⋆ ⋆ ⋆ P<0.001.

could be dependent because the participants have seen
both methods, and is not necessarily normally distributed.
Therefore, again a Friedman test is utilized with a post hoc
analysis to calculate the significance. With the post hoc
analysis the result is P=0.0002. The second expectation was
that we expect that the teleoperated LfD method allows the
human to make a more certain prediction. The calculations
show that there is a significant difference between the data.
Therefore, we can conclude that participants are more certain
about their predictions when the robot execute a learned
motion. The data shows a large variance in the certainty
by the RRTConnect motion planner. It could be that it is
different per question or that a more confident participant
gives a higher rating.

Certainty of both methods

LfD MP
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

C
e
rt

a
in

ty

Fig. 20: Certainty on a 5 point Likert scale, with MP representing
the RRTConnect motion planner from MoveIt. With the height of
the bars the mean of both methods and the error bars represents the
mean plus and minus the standard deviation. With the significance
between data sets: ⋆ P<0.05, ⋆⋆ P<0.01, ⋆ ⋆ ⋆ P<0.001.

The RRTConnect motion planner data per question is
presented in Table I. Extra information, like path length,
velocities, acceleration and integrated square jerk of the
end-effector and elbow frame of all the motions can be

found in Appendix E (Table E.1 and Table E.2, respectively).
It is noticeable that question 13 is wrongly answered by
all participants. In video 13 and 5 the same motion was
showed with a different duration. The robot moved with the
RRTConnect motion planner first to the right side of the
robot, stopped, moved towards the boxes, passed one box
and grasped the other. Video 5 was stopped just after the
robot starts moving towards the boxes. Video 13 was stopped
when the robot approached the other object. The robot gave
the wrong impression of what is was doing.
Video 7 has the highest mean certainty and the lowest standard
deviation. By analyzing the video it is observed that the video
stops exactly at the point that the end-effector passed one of
the boxes (not the goal object). This could be the reason that
the certainty increased. Still some participants thought the
robot would grasp the other box. However, they were also
less certain about their prediction.
Something else worth to mention is video 14 were all
participants gave a correct answer. However, they were quite
uncertain about their prediction. Table E.1 from Appendix E
shows that the integrated square jerk of the end-effector was
the lowest from all the motions of the RRTConnect motion
planner. Besides, Table E.2 from Appendix E shows that the
robot moved the elbow different than the other motions from
the RRTConnect motion planner. The mean velocity of the
elbow, the zero-crossings of the velocity and the integrated
square jerk are the lowest with this motion. It might suggest
that not only the end-effector of the robot is expressing intent
but also the null-space of the robot. However, further research
could be done in null-space movement and legibility.
Participants were shown a large portion of the robot’s
movement. By doing so, we wanted to give participants an
opportunity to infer the intent of the robot as it executed a
motion using the RRTConnect motion planner. However, the
videos could also be cut off earlier in order to test whether
the participants were able to deduce the intent by observing
a shorter portion of the movement. It would be interesting to
investigate how fast humans infer intent from other humans
and use that time for robots as well.

VI. CONCLUSION

In this research, we showed how teleoperated Learning
from Demonstration can be utilized to achieve a more legible
grasp than general motion planning with a TIAGo robot. It
consists of modelling a single teleoperated demonstration
using Dynamic Movement Primitives and calculating a
grasping pose for the object. With a single demonstration,
it was demonstrated that the robot is capable of learning
and performing a grasp in various object poses. Moreover,
the executed motions was smoother, and the velocity and
acceleration were more constrained. Thereafter, an experiment
demonstrated that with the learning method humans were
able to better infer the robot’s intent from an observation
of a part of its motion than with a state-of-the-art motion
planner. The results revealed that the operator could convey
intent to the robot and the robot was able to discern it. As a
first step, this research shows that teleoperated LFD can be
used to learn tasks. Besides, it shows that it is more legible
for humans in the robot’s environment when the robot is

12

TABLE I: In this table the data of the motion planner is presented. The correct prediction per questions is shown with the mean certainty
of the participants.

Place video Duration (s) Correct prediction (%) Mean certainty Std. deviation certainty

2 4.0 56 2.56 1.13
3 3.0 33 2.11 1.17
5 5.0 11 2.44 1.01
7 5.0 67 3.00 0.87
8 4.0 22 1.89 0.93
12 3.0 67 2.44 1.33
13 7.0 0 2.56 1.13
14 4.5 100 2.22 0.97

automated to grasp objects.
During this study, the operator was only able to control
the robot’s end-effector position. Possibly further research
could be conducted on controlling the null-space of the
robot and learning in joint and cartesian space. We have
seen that the null-space motion is less smooth and still has
some unpredictability in it. DMPs are used to model the end-
effector path, however, the base position of the robot relative
to the object should also be considered. Lastly, a high-level
planner could be added to solve issues as choosing the start
configuration of the end-effector or choosing different motion
primitives. With those recommendations, it is expected that
the robot will be able to grasp objects in a more legible
manner in even more situations.

REFERENCES

[1] C. Lichtenthäler and A. Kirsch, “Legibility of Robot Behavior
: A Literature Review,” Apr. 2016. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-01306977

[2] A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and
predictability of robot motion,” ACM/IEEE International Conference
on Human-Robot Interaction, pp. 301–308, 2013.

[3] P. Basili, M. Huber, O. Kourakos, T. Lorenz, T. Brandt, S. Hirche, and
S. Glasauer, “Inferring the goal of an approaching agent: A human-
robot study,” Proceedings - IEEE International Workshop on Robot
and Human Interactive Communication, pp. 527–532, 2012.

[4] L. Takayama, D. Dooley, and W. Ju, “Expressing thought: Improving
robot readability with animation principles,” HRI 2011 - Proceedings
of the 6th ACM/IEEE International Conference on Human-Robot
Interaction, no. January 2011, pp. 69–76, 2011.

[5] C. L. Nehaniv, K. Dautenhahn, J. Kubacki, M. Haegele, C. Parlitz, and
R. Alami, “A methodological approach relating the classification of
gesture to identification of human intent in the context of human-robot
interaction,” Proceedings - IEEE International Workshop on Robot and
Human Interactive Communication, vol. 2005, pp. 371–377, 2005.

[6] A. Sciutti, C. Ansuini, C. Becchio, and G. Sandini, “Investigating the
ability to read others’ intentions using humanoid robots,” Frontiers in
Psychology, vol. 6, 9 2015.

[7] A. D. Dragan and S. S. Srinivasa, “Familiarization to robot motion,”
ACM/IEEE International Conference on Human-Robot Interaction, pp.
366–373, 2014.

[8] S. J. Blakemore and J. Decety, “From the perception of action to the
understanding of intention,” Nature Reviews Neuroscience, vol. 2, no. 8,
pp. 561–567, 2001.

[9] L. Sartori, C. Becchio, and U. Castiello, “Cues to intention: The role of
movement information,” Cognition, vol. 119, no. 2, pp. 242–252, 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.cognition.2011.01.014

[10] N. Sebanz, H. Bekkering, and G. Knoblich, “Joint action: Bodies and
minds moving together,” Trends in Cognitive Sciences, vol. 10, no. 2,
pp. 70–76, 2006.

[11] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Robot
Learning from Demonstration: A Review of Recent Advances,” vol. 3,
pp. 1–33, 2020. [Online]. Available: www.annualreviews.org

[12] Z. Zhu and H. Hu, “Robot learning from demonstration in robotic
assembly: A survey,” Robotics, vol. 7, no. 2, 2018.

[13] T. Osa, G. Neumann, J. Pajarinen, J. A. Bagnell, P. Abbeel, and J. Peters,
“An algorithmic perspective on imitation learning,” arXiv, vol. 7, no. 1,
pp. 1–179, 2018.

[14] G. Gergely, Z. Nádasdy, G. Csibra, and S. Bı́ró, “Taking the
intentional stance at 12 months of age,” Cognition, vol. 56, no. 2, pp.
165–193, 1995. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/001002779500661H

[15] K. Kamewari, M. Kato, T. Kanda, H. Ishiguro, and K. Hiraki, “Six-and-
a-half-month-old children positively attribute goals to human action
and to humanoid-robot motion,” Cognitive Development, vol. 20, no. 2,
pp. 303–320, 2005.

[16] E. A. Sisbot, L. F. Marin, R. Alami, and T. Simeon, “A mobile robot that
performs human acceptable motions,” IEEE International Conference
on Intelligent Robots and Systems, pp. 1811–1816, 2006.

[17] E. A. Sisbot, L. F. Marin, and R. Alami, “Spatial reasoning for human
robot interaction,” IEEE International Conference on Intelligent Robots
and Systems, pp. 2281–2287, 2007.

[18] E. A. Sisbot, K. F. Marin-Urias, R. Alami, and T. Siméon, “A human
aware mobile robot motion planner,” IEEE Transactions on Robotics,
vol. 23, no. 5, pp. 874–883, 2007.

[19] R. Alami, A. Clodic, V. Montreuil, E. A. Sisbot, and R. Chatila,
“Toward human-aware robot task planning,” AAAI Spring Symposium -
Technical Report, vol. SS-06-07, pp. 39–46, 2006.

[20] E. A. Sisbot, L. F. Marin-Urias, X. Broquère, D. Sidobre, and R. Alami,
“Synthesizing robot motions adapted to human presence: A planning
and control framework for safe and socially acceptable robot motions,”
International Journal of Social Robotics, vol. 2, no. 3, pp. 329–343,
2010.

[21] E. T. Hall, The hidden dimension. Chicago: Doubleday Company,
1966.

[22] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism for
shared control,” International Journal of Robotics Research, vol. 32,
no. 7, pp. 790–805, 2013.

[23] A. Dragan and S. Srinivasa, “Integrating human observer inferences
into robot motion planning,” Autonomous Robots, vol. 37, no. 4, pp.
351–368, 2014.

[24] A. D. Dragan, K. Muelling, J. Andrew Bagnell, and S. S. Srinivasa,
“Movement primitives via optimization,” Proceedings - IEEE Interna-
tional Conference on Robotics and Automation, vol. 2015-June, no.
June, pp. 2339–2346, 2015.

[25] M. Kwon, S. H. Huang, and A. D. Dragan, “Expressing Robot
Incapability,” ACM/IEEE International Conference on Human-Robot
Interaction, pp. 87–95, 2018.

[26] C. Bodden, D. Rakita, B. Mutlu, and M. Gleicher, “Evaluating intent-
expressive robot arm motion,” 25th IEEE International Symposium
on Robot and Human Interactive Communication, RO-MAN 2016, pp.
658–663, 2016.

[27] C. Boden, D. Rikita, B. Mutlu, and M. Gleicher, “A flexible
optimization-based method for synthesizing intent-expressive robot
arm motion,” International Journal of Robotics Research, vol. 37,
no. 11, pp. 1376–1394, 2018.

[28] B. Busch, J. Grizou, M. Lopes, and F. Stulp, “Learning Legible
Motion from Human–Robot Interactions,” International Journal of
Social Robotics, vol. 211, no. 3-4, pp. 517 – 530, Mar. 2017. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01629451

[29] F. Stulp, J. Grizou, B. Busch, and M. Lopes, “Facilitating intention
prediction for humans by optimizing robot motions,” IEEE International
Conference on Intelligent Robots and Systems, vol. 2015-Decem, pp.
1249–1255, 2015.

[30] K. Hoang Dinh, O. S. Oguz, M. Elsayed, and D. Wollherr, “Adaptation
and Transfer of Robot Motion Policies for Close Proximity Human-

13

Robot Interaction,” Frontiers in Robotics and AI, vol. 6, no. July,
2019.

[31] M. Bied and M. Chetouani, “Integrating an Observer in Interactive
Reinforcement Learning to Learn Legible Trajectories,” 29th IEEE
International Conference on Robot and Human Interactive Communi-
cation, RO-MAN 2020, pp. 760–767, 2020.

[32] J. Zhao, B. Xie, and C. Song, “Generating human-like movements for
robotic arms,” Mechanism and Machine Theory, vol. 81, pp. 107–128,
2014. [Online]. Available: http://dx.doi.org/10.1016/j.mechmachtheory.
2014.06.015

[33] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” vol. 2, 02 2002, pp.
1398 – 1403.

[34] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” Advances in Neural Information Processing
Systems, pp. 1–9, 2013.

[35] ——, “Using probabilistic movement primitives in robotics,” Au-
tonomous Robots, vol. 42, no. 3, pp. 529–551, 2018.

[36] M. Ginesi, N. Sansonetto, and P. Fiorini, “Overcoming some drawbacks
of Dynamic Movement Primitives,” Robotics and Autonomous Systems,
vol. 144, 2021.

[37] P. P. Dae-Hyung Park, Heiko Hoffmann and S. Schaal, “Movement
reproduction and obstacle avoidance with dynamic movement primitives
and potential fields,” Humanoid Robots, 2008. Humanoids 2008. 8th
IEEE-RAS International Conference on, IEEE, pp. 469–474, 2008.

[38] H. Hoffmann, P. Pastor, D. H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: Automatic real-
time goal adaptation and obstacle avoidance,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 2587–2592,
2009.

[39] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” 2009
IEEE International Conference on Robotics and Automation, pp. 763–
768, 2009.

[40] M. Chi, Y. Yao, Y. Liu, and M. Zhong, “Learning, generalization, and
obstacle avoidance with dynamic movement primitives and dynamic
potential fields,” Applied Sciences (Switzerland), vol. 9, no. 8, 2019.

[41] C. Lauretti, F. Cordella, and L. Zollo, “A Hybrid Joint/Cartesian
DMP-Based Approach for Obstacle Avoidance of Anthropomorphic
Assistive Robots,” International Journal of Social Robotics, vol. 11,
no. 5, pp. 783–796, 2019. [Online]. Available: https://doi.org/10.1007/
s12369-019-00597-w

[42] M. Ewerton, G. Maeda, G. Kollegger, J. Wiemeyer, and J. Peters,
“Incremental imitation learning of context-dependent motor skills,”
IEEE-RAS International Conference on Humanoid Robots, pp. 351–358,
2016.

[43] K. French, S. Wu, T. Pan, Z. Zhou, and O. C. Jenkins, “Learning
behavior trees from demonstration,” Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2019-May, pp. 7791–
7797, 2019.

[44] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G.
Barto, “Learning grounded finite-state representations from unstructured
demonstrations,” International Journal of Robotics Research, vol. 34,
no. 2, pp. 131–157, 2015.

[45] M. Colledanchise and P. Ogren, “How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Com-
positions, the Subsumption Architecture, and Decision Trees,” IEEE
Transactions on Robotics, vol. 33, no. 2, pp. 372–389, 2017.

[46] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile
generalized inverted kinematics implementation for collaborative
working humanoid robots: The stack of tasks,” 2009 International
Conference on Advanced Robotics, ICAR 2009, no. 8, 2009.

[47] A. Ude, B. Nemec, T. Petrič, and J. Morimoto, “Orientation in Cartesian
space dynamic movement primitives,” Proceedings - IEEE International
Conference on Robotics and Automation, no. 3, pp. 2997–3004, 2014.

[48] F. J. Abu-Dakka and V. Kyrki, “Geometry-aware Dynamic Movement
Primitives,” Proceedings - IEEE International Conference on Robotics
and Automation, no. 0, pp. 4421–4426, 2020.

[49] R. Mao, “Robots Learning Manipulation Tasks,” p. 110, 2016.
[50] D. H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement

reproduction and obstacle avoidance with dynamic movement primitives
and potential fields,” 2008 8th IEEE-RAS International Conference on
Humanoid Robots, Humanoids 2008, no. May 2014, pp. 91–98, 2008.

[51] J. Meijer, Q. Lei, and M. Wisse, “An empirical study of single-
query motion planning for grasp execution,” IEEE/ASME International
Conference on Advanced Intelligent Mechatronics, AIM, pp. 1234–1241,
2017.

[52] T. Foote, “tf: The transform library,” in Technologies for Practical
Robot Applications (TePRA), 2013 IEEE International Conference on,
ser. Open-Source Software workshop, April 2013, pp. 1–6.

14

A
Demonstrations

During Demonstrations, the initial position of an object is obtained by the vision module (detailed in
Appendix D). Then the haptic device is used to move the end-effector from a start pose to the desired
pre-grasp pose. To conveniently provide the demonstrations using the 7-DOF manipulator of the care
robot, the Geomagic Touch was used as haptic device. An illustration is depicted in Figure A.1. This
device is used to control the end-effector position and orientation (6-DOF), and the Whole Body Con-
troller (WBC) uses an optimization algorithm to determine the joint positions (7-DOF).

Figure A.1: Geomagic Touch device used to generate the demonstrations.

The end-effector poses in time x(t) are recorded and saved in a database. There’s an illustration of a
demonstration in 2D in Figure A.2. This plot identifies two main issues. The demonstration contains
many data points, and there is a lot of noise at the end of the motion. The noise is a problem for learning,
because the model will have this noise as well. Whenever the robot uses a learned motion to generate
a new motion, there will be a lot of unnecessary movements. Therefore, the demonstration needs to
be filtered before learning a motion. The motion is filtered by hand in this case. However, a filter could
be applied to get a better motion.

15

16

Figure A.2: The recorded end-effector position in 2D. The plot shows that there is a lot of noise at the end of the motion.
Besides, a lot of data points are recorded. A filter should be applied before learning a motion in order to get a more legible

motion.

In order to reduce the noise in the data, the amount of data points is reduced by selecting every nth
element. As an example, see Figures A.3a and A.3b, where the 20th and 40th elements are selected,
respectively. There is a trade-off between encoding unimportant motion and not encoding relevant
information. Learning is accomplished by using motions with 15 to 20 data points. Figures A.4a and
A.4b provide a 3D illustration of a demonstration and the motion after filtering.

(a) Every 20th data point is selected which result in a smoother
demonstration.

(b) Every 40th data point is selected which result in a smoother
demonstration.

The data had a lot of end-effector vibrations. These vibrations can be caused by the operator or the
robot’s controller. We have seen that the controller causes some noise. However, controlling the robot
is beyond the scope of this project. Analyzing this might enable better demonstrations.

17

(a) Demonstration in 3D without filtering the motion. (b) Motion in 3D with the filtering.

B
Tools

B.1. Introduction to MoveIt
MoveIt is a state-of-the-art open source platform for mobile manipulators. The ROS interface includes
inverse kinematic solvers, path planning algorithms, and collision detection algorithms. This thesis uti-
lizes the move_group Python API to communicate with MoveIt. Figure B.1 presents a brief outline of
the MoveIt framework. There are several MoveIt commands which can be used to perform tasks such
as moving collision-free to a pose or modeling collision objects for the planning scene. The implemen-
tation of the motion planner will be briefly described in this Appendix. After that, the implementation of
the LfD framework using MoveIt is discussed.

Figure B.1: The MoveIt pipeline is visualized in this figure. The user can give input to the Move Group by using the MoveIt
Commander. The Move Group gets information of the Planning Scene. After that, a collision free plan can be made and

executed.

B.2. MoveIt Motion Planning
B.2.1. Initializing
Detailed instructions are provided in a MoveIt tutorial on how to use the Move Group Python Interface 1.
The moveit_commander and rospy node are initialized first. Next, there is a RobotCommander object

1https://ros-planning.github.io/moveit_tutorials/doc/move_group_python_interface/move_group_python_
interface_tutorial.html

18

https://ros-planning.github.io/moveit_tutorials/doc/move_group_python_interface/move_group_python_interface_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/move_group_python_interface/move_group_python_interface_tutorial.html

B.2. MoveIt Motion Planning 19

that provides information about the robot’s kinematics as well as the current joint state of the robot.
After that, a PlanningSceneInterface object is required. A Planning Scene is used to build a world and
inform the robot how the surrounding environment is structured. It can be used to ensure that the robot
moves in a collision-free manner. The final step is to create a MoveGroupCommander object. By doing
so, MoveIt is able to control the robot’s joints.

B.2.2. Planning Scene
It is essential that the robot understands its surroundings before it can plan and execute a motion.
Hence, the first step after initialization is to make the robot understand what the scene is. A table can
be modeled by a solid primitive as a box with known dimensions and positions (in the base footprint
frame):

Listing B.1: Modeling a Table

t ab l e = moveit_msgs .msg . Co l l i s i onOb j ec t ()
t ab l e . id = ” t ab le ”
t ab l e . header . f rame_id = ” base_ foo tp r i n t ”
t ab l e . opera t ion = tab l e .ADD

t ab l e _p r im i t i v e = shape_msgs .msg . So l i dP r im i t i v e ()
t a b l e _ p r im i t i v e . type = shape_msgs .msg . So l i dP r im i t i v e .BOX
t ab l e _p r im i t i v e . dimensions = [1 . 0 , 1 .5 , 0 . 8]
table_pose = Pose ()
table_pose . pos i t i o n . x = 1.15
table_pose . pos i t i o n . y = 0.0
table_pose . pos i t i o n . z = 0.4

tab l e . p r im i t i v e s = [t a b l e _p r im i t i v e]
t ab l e . p r im i t i ve_poses = [table_pose]

The cereal box is composed of information from the AruCo marker and known dimensions. Here, the
pose from the vision module is transformed into the base footprint frame and then used as the position
for the object. The z-position of the AruCo marker is the top of the box. To correct this, half of the
height of the box should be subtracted in order to get the pose of the box. The final step is to add these
objects to the Planning Scene by:

Listing B.2: Adding objects to Scene

s e l f . scene . add_object (t ab l e)
s e l f . scene . add_object (ob jec t_p i ck)

B.2.3. Planning and Execution
It is now possible to grasp and plan an object safely with MoveIt. Initially, the robot has to move into a
predetermined start position. The robot can be moved into a defined pose using the following function:

Listing B.3: Move to a Pose

def go_to_pose_goal (se l f , pose_goal) :
Planning to a Pose Goal .
The pose plan i s the plan made by the MoveIt p lanner

pose_target= s e l f . move_group . set_pose_target (pose_goal)
pose_plan= s e l f . move_group . plan ()

This pose_plan can now be executed
ex = s e l f . move_group . execute (pose_plan , wa i t=True)

Now we want to have no res i dua l movement ,
the re fo re we use the f unc t i on stop () .
The func t i on c l ea r make sure t ha t the t a rge t s are removed .

s e l f . move_group . stop ()
s e l f . move_group . c lear_pose_targe ts ()

B.2. MoveIt Motion Planning 20

The next step is to pick up the object with the MoveIt pick function. In this thesis, we follow the C++
approach described by MoveIt2 and implemented that in Python for the TIAGo robot. In order to ensure
that the object can be grasped in each position, the pre-grasp pose is set up to be a function of the
box pose. As a result, it is not necessary to program always a grasping position for the robot. A
pre-grasp and a grasp pose have to be determined before a pick can be performed. In a case with no
orientation (see Figure B.2), the pre-grasp should have the same y coordinate as the box and the same
x coordinate as the box minus a distance (26 cm in this case). Due to the fact that the object gets only
a yaw angle, the z-coordinate is always the same for the grasp pose as the object’s z-coordinate. The
gripper should be oriented in a manner that will enable it to grasp this object. It is a -90 degree yaw
angle for the TIAGo robot to grasp a box as illustrated in Figure B.2.

Figure B.2: Top view of the object. Grasping the cereal box that has no orientation. The gripper is in this figure at the
pre-grasp pose. The end-effector has a -90 degrees yaw angle in this case.

The pre-grasp pose changes in situations where the object is rotated. An illustration can be found in
Figure B.3. The vector in Figure B.2 gets the same orientation (alpha) as the object but still has the
same length. The change in orientation of the box needs to be added to that of the gripper in order to
be aligned with the object.

Figure B.3: Grasping the cereal box that has a orientation. The gripper is in this figure at the pre-grasp pose.

After making a grasp message which contains information about the pre-grasp and grasp pose of the
object, the MoveIt pick function can be called to plan and execute a grasp:

Listing B.4: Grasp object

s e l f . move_group . set_support_surface_name (” t ab l e ”)
I t i s a lso poss ib le to on ly plan by se t t i n g p lan_only to t r ue .
p ick_ the_ob jec t= s e l f . move_group . p ick (” ob jec t_p i ck ” , grasps , p lan_only=False)

The set support surface is necessary to let MoveIt know that those objects are in a ’collision’. The
function pick can pick the object named object_pick with the defined grasps.

2http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/pick_place/pick_place_tutorial.html

http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/pick_place/pick_place_tutorial.html

B.3. Combining MoveIt with LfD 21

B.3. Combining MoveIt with LfD
By combining MoveIt with the LfD module the robot will be able to plan safe motions and execute them.
Initializing and setting up the planning scene follow the same procedure as described in the previous
section. Using the go to pose function, the robot can then move to the start pose.
The next step will be to develop a plan with the DMPs. MoveIt should provide the following information:
the current end-effector pose, the pose of the object to be grasped, and the primitive to be used. The
following functions return the current end-effector pose, using the arm_tool_link as the frame of the
end-effector:

Listing B.5: Get end-effector pose

def end_ef fector_pose (s e l f) :
s e l f . move_group . se t_end_e f f ec t o r_ l i n k (” a rm_ too l_ l i nk ”)
return s e l f . move_group . get_current_pose ()

The planning scene provides information about the grasped object. However, the z-coordinate should
be converted to the marker position, since the pre-grasp pose is related to the marker position. As a
result, it is necessary to add half a height of the box to the z-coordinate:

Listing B.6: Get end-effector pose

ob jec t_ i d = [” ob jec t_p i ck ”]
v isua l_ob jec t_pose = s e l f . scene . get_object_poses (ob jec t_ i d)
dim_box= s e l f . scene . ge t_ob jec ts ([” ob jec t_p i ck ”])
dim_box_z= dim_box [’ ob jec t_p i ck ’] . p r im i t i v e s [0] . dimensions [1]
v isua l_ob jec t_pose [’ ob jec t_p i ck ’] . p o s i t i o n . z=
v isua l_ob jec t_pose [’ ob jec t_p i ck ’] . p o s i t i o n . z + (dim_box_z / 2)

It is possible to obtain the primitives for the DMP from either a State Machine or a Behavior Tree. A
hard coded algorithm is used to determine which primitive should be loaded and used by the robot. A
function that calls the DMP module receives the current end-effector pose, object pose, and motion
primitive. This DMP function will calculate the pre-grasp pose of this situation based on the data from
MoveIt and the database. A service request is then sent to the DMP module. A trajectory is published
to the generated_dmp topic by the DMP module. The MoveIt script receives these messages and has
to formulate a plan and execute it. In order to do this, MoveIt has to make a Cartesian plan from the
waypoints that are provided by the message. When it is difficult to make a plan, the path is cut into
several pieces. As a result, it is easier for the robot to develop plans and execute them. The core of
the code is the following:

Listing B.7: Make Cartesian Plan

waypoints = []
jump_threshold= 5.0
p rec i s i on= 0.01
wpose = s e l f . move_group . get_current_pose () . pose
leng th = len (data . poses)

for i in range (0 , length −1) :
wpose . pos i t i o n . x = data . poses [i] . pose . pos i t i o n . x
wpose . pos i t i o n . y = data . poses [i] . pose . pos i t i o n . y
wpose . pos i t i o n . z = data . poses [i] . pose . pos i t i o n . z
wpose . o r i e n t a t i o n . x = data . poses [i] . pose . o r i e n t a t i o n . x
wpose . o r i e n t a t i o n . y = data . poses [i] . pose . o r i e n t a t i o n . y
wpose . o r i e n t a t i o n . z = data . poses [i] . pose . o r i e n t a t i o n . z
wpose . o r i e n t a t i o n .w = data . poses [i] . pose . o r i e n t a t i o n .w
waypoints . append (copy . deepcopy (wpose))

(plan , f r a c t i o n) = s e l f . move_group . compute_cartesian_path (
waypoints , p rec is ion , jump_threshold)

B.3. Combining MoveIt with LfD 22

The data represents the path received from the DMPs. It is appended to a list called waypoints. After
this, MoveIt can simply be used to follow those points with the compute_cartesian_path. The function
returns a plan and the fraction of the waypoints it could follow. If this fraction is not 1, then a new plan
should be developed by segmenting the list of waypoints. When this is not possible, another motion
primitive should most likely be used. Another solution might be to reorient the arm. As for the precision,
it is set to 0.01 m, which is how precisely the end-effector should pass through the points. Identifying
the jump_threshold is crucial to the process. There is not enough documentation on this topic. In
the first test, the threshold was set to zero. Unfortunately, the arm is not constrained when it comes
in singularities. It is possible that the robot follows the waypoints and suddenly the arm needs to be
reconfigured between waypoints. In the process of reorienting the arm, MoveIt does not check for self-
collision with the robot. Figure B.4 shows the reproduced behaviour of the robot in simulation.

Figure B.4: Reproduced weird behaviour of the robot in simulation. The robot moves through the waypoints and suddenly
changes the path to get a different configuration. In this process it could collide with the robot.

In order to prevent this behavior, the jump_threshold can be used as a ”constraint” on the robot. It limits
the jumps between two waypoints in the joints. A value that is too low prevents the robot from making
any plans. By trial and error, it was found that a value of 5.0 was successful for the TIAGo robot. The
plan created by MoveIt is visualized in simulation. The robot can then be instructed to execute this
plan:

Listing B.8: Execute plan

pr in t (” Press�enter�to�generate�new�motion ”)
raw_input ()
execut ion= s e l f . execute_plan (plan

The last two steps involve grasping the object. This cannot be accomplished using the pick function.
This is becauseMoveIt will not simply find a plan that moves in the shortest path to the object. Therefore,
a grasp is made by following 4 waypoints towards the object. Another interesting possibility is to utilize
a newly learned motion and execute it. To determine the four waypoints, we obtain the pose of the
grasping frame of the robot and the edge of the cereal box. This is illustrated in Figure B.5.

Figure B.5: Defining 4 waypoints between the gripper grasping frame and the edge of the box. The black dot is the pose of the
cereal box, L is the length of the box, the yellow dot the grasping frame, and the gray dots the 4 waypoints.

MoveIt can determine the pose of the grasping frame, which is represented by the yellow dot. The
gripper frame is the same as the arm_tool_link frame (red dot), but translated inside the gripper. The

B.3. Combining MoveIt with LfD 23

object’s information is derived from the Planning Scene. After defining the waypoints, a plan can be
developed and executed as described above.

C
Generalization in Simulation

In this part, several figures are shown of how the teleoperated LfD method generalizes. Figure C.1a
shows the start pose of the end-effector before doing the demonstration and the place of the cereal box.
Figure C.1b shows the executed trajectory of the learned motion without generalization. The cereal box
is in the same pose as in the demonstrated data. The robot grasps the cereal box correctly with the
same motion and from the same side.

(a) Start pose of end-effector before executing a learned motion. (b) Successfully grasped the cereal box.

Figure C.1: The operator demonstrated the grasp in the same position as this box. This figure shows that the robot was able to
automatically grasp the object again from a certain start pose.

After this, the objects are placed more to the left or right of the robot. The robot starts with the same
end-effector configuration as in Figure C.1a. The result of grasping those objects is shown in Figure
C.2a and Figure C.2b. The green object is in all the figures the object with the same pose as used with
the demonstration. The purple box is a successfully grasped cereal box. The only thing the robot needs
to know is the pose of the cereal box. It generates autonomously a new grasp pose and a trajectory.
After that, the robot executes the motion and grasps the object. The motion from Figure C.2a shows
the same shape and grasp of the object. However, when the object is placed more to the left side of
the robot the motion looks less like the learned motion. In that case, it would probably be better to use
a new motion. A motion that is mirrored like in Figure C.3 could help in that case.

24

25

(a) Cereal box placed more to the right side of the robot. (b) Cereal box placed more to the left side of the robot.

Figure C.2: Successfully grasped the cereal boxes that are placed more to the right or left side as demonstrated (from robot’s
perspective). The right figure shows a motion that is becoming strange for a human.

Figure C.3: A mirrored motion is shown in this figure. A motion like this could probably be used when a motion with
exaggeration to another side is needed.

26

Another possibility is that the object is placed closer to the robot and also more to the left or right.
In Figure C.4a the object was placed closer and more to the left of the robot. Again the object is well
grasped with a learned motion. In Figure C.4b the object is placed higher than the object in the demon-
stration. Again the generation and execution of the grasp is successful.

(a) The cereal box is placed closer and more to the left of the robot. (b) The cereal box is placed higher than the demonstrated one.

Figure C.4: A cereal box that is translated in two different directions is shown in the left figure. The robot was still able to grasp
it. The right figure shows a box that has is placed higher than the demonstrated one.

The previous examples showed objects that had the same orientation as in the demonstration. In the
next two examples, the cereal box is placed with a different position and orientation. Figure C.5a shows
a grasp where the cereal box is 90 degrees rotated over the yaw axis with respect of the object pose
that was used during the demonstration. Figure C.5b shows a grasp of a cereal box that is 45 degrees
rotated. Both figures show that the robot generates a learned grasp without problems.

(a) 90 degrees rotation over the yaw axis of the cereal box. (b) 45 degrees rotation over the yaw axis of the cereal box.

Figure C.5: Different positions and orientations of the cereal box. Both cases are successfully grasped. The LfD method is
able to generalize to situations where both the object is translated and rotated.

However, when the object is -90 degrees rotated (Figure C.6a the motion becomes like the one shown
in Figure C.2b. It can successfully grasp the cereal box in this case but again a different motion is
preferred. Figure C.6b is again a cereal box that is randomly placed elsewhere. It is more to the left
side and closer to the robot.

27

(a) -90 degrees rotation over the yaw axis of the cereal box. (b) A random translated box.

Figure C.6: Different position and orientation of the cereal box. Both cases are successfully grasped. The left side is a strange
motion for the human. However, the robot was still able to grasp it. The right side show a box with a random translation. In this

case the motion is still useful but probably is becoming weird for a human.

The shown figures are RVIZ simulations which has no physics in the environment. However, in the
background the Gazebo simulation, which is like the real robot with a table and cereal box, was run-
ning. The robot could grasp the cereal box also in that simulation as is shown in Figure C.7a and C.7b.

(a) Same object pose as used by the demonstration. (b) 90 degrees rotation over the yaw axis of the cereal box.

Figure C.7: Gazebo simulation with physics. The robot is able to grasp the box in different situations.

After this, we visually analyzed how different start poses are working. Most of the cases worked per-
fectly. However, one interesting result is that the roll rotation of the end-effector is important. Figure
C.8a shows a different start pose than the one used in the demonstration. A motion is generated which
can be successfully executed. However, Figure C.8b shows the same start position but with a different
orientation of the end-effector. It looks almost the same but the end-effector is 180 degrees rotated
over the roll axis. For an operator, it is hard to understand what is happening. It can generate a new
trajectory but the robot cannot execute this motion due to this orientation. Figure C.9a and Figure C.9b
show the same behavior, with the first one a working motion and the second one a trajectory that can
not be executed. A solution could be an additional motion that changes the configuration of the end-

28

effector. Another solution might be to demonstrate that the object can also be grasped in a different
orientation of the end-effector. In that case the robot could choose between grasps.

(a)Working grasp with different start pose. The end-effector is in a
different orientation than demonstrated.

(b) Not working start pose because the end-effector is 180 degrees
rotated over the roll axis with respect to the left figure.

Figure C.8: Different start poses used to grasp the cereal box. With the left side showing a start configuration of the
end-effector what could be used to successfully grasp the object. The right side is almost the same, however the robot is not

able to execute a motion in this case. It shows that the roll angle of the end-effector is important.

(a)Working grasp with different start pose. The end-effector is in a
different orientation than demonstrated.

(b) Not working start pose because the end-effector is 180 degrees
rotated over the roll axis with respect to the left figure.

Figure C.9: Different start poses used to grasp the cereal box. Again the robot is not able to grasp the object in the right figure.

D
Detection of Object Pose

For the experiment, a vision module is implemented in order to get the poses of the objects. By using a
vision module it can be seen what small noise in vision can do to the learning module. A vision module
is not within the scope of this project. Nevertheless, I wanted to combine a vision module with the LfD
approach to see how it can automatically grasp objects. The conditions for the module is that it can
detect a pose (position and orientation) of the object and that it is not too time consuming to make it
work. First of all, texture detection is used to get a pose of a texture on a surface. It was difficult for
the robot to detect textures on smaller objects. Therefore, color detection was implemented after that.
The detection module did present some issues which meant that it was time consuming to fix them. As
a result, ArUcO detection is used to get the pose of an object. The methods will be discussed shortly,
along with the issues.

D.1. Texture Detection
Firstly, texture detection is used to detect a box that has an image on top of it. Texture detection is
based on feature matching between the camera input and a reference image of the texture. Then, the
pose of the texture, and thus of the object, is determined by homography estimation and the size of the
texture. The implementation is based on tutorials of feature detection1 and planar texture detection2.
A large poster (0.5m by 0.64m) of a texture could be detected in simulation. This poster is scaled and
placed as a texture on a box with the top surface of 0.1m by 0.13m. Figure D.1 shows the Gazebo
simulation with a box that has this texture on it. A pose must be detected on this box in order to use

Figure D.1: A box with a texture on it for texture detection. The robot will try to detect the box pose by detecting the texture.

1http://wiki.ros.org/Robots/TIAGo/Tutorials/Matching
2{}http://wiki.ros.org/Robots/TIAGo/Tutorials/HomographyEstimation

29

http://wiki.ros.org/Robots/TIAGo/Tutorials/Matching
{}http://wiki.ros.org/Robots/TIAGo/Tutorials/HomographyEstimation

D.2. Color Detection 30

it in the LfD module. An image of the texture and the size of the top size of the box are provided to
the module. If the texture is detected, a pose will be returned from the middle of the image. Image
D.2 shows in RVIZ the texture pose for the box when it is rotated 90 degrees (top of box facing the
robot). The detection module can accurately identify the box by detecting its texture. However, in a lot
of poses, the box cannot be detected because the texture is too small. Therefore, we could not use
this method to detect the object pose.

Figure D.2: A pose is returned after the texture has been detected. The pose is visualized using an axes. In this case the
robot was able to detect the texture.

D.2. Color Detection
Instead of adding a texture on top of the box it is also possible to color the top side of the box and
use color detection from OpenCV3. Therefore, a box is made in simulation with a green top side (see
Figure D.3). In the module the green color will be detected in the RGB camera image. A rectangle is
drawn around the green surface and a 2D position of the middle is returned. With the depth camera
a 3D position is determined in the camera frame. After that, this position is transformed to the base
frame. This approach works fine for determining a 3D position. However, the orientation of the object
is also important. By using PCA the orientation can be calculated of the object. However, for an easy
implementation it is better to have a camera that is perpendicular to the top side of the cereal box.
Otherwise the object gets already an orientation by only placing it to the left or right. This problem is
shown in Figure D.3 at the top right side. The cereal box is placed to the left of the robot and has
no orientation. The robot, however, sees the object with an orientation. Two solutions are suggested,
namely using a different camera for object detection that is placed perpendicular to the objects or to use
homography. Another camera is not preferred because we want to use the robot only. Homography is
too time consuming. Therefore, ArUco marker detection is tried in the next section.

D.3. ArUco Detection
With the TIAGo robot it is possible to use ArUco marker detection4. An ArUco cube was used in a
pick-and-place pipeline5. After some changes, the ArUco module could be used for our TIAGo robot.
The result is that the ArUco cube (which is shown in Figure D.4a) in the Gazebo simulation could be

3https://opencv.org/
4http://wiki.ros.org/Robots/TIAGo/Tutorials/ArucoBoard
5http://wiki.ros.org/Robots/TIAGo/Tutorials/MoveIt/Pick_place

https://opencv.org/
http://wiki.ros.org/Robots/TIAGo/Tutorials/ArucoBoard
http://wiki.ros.org/Robots/TIAGo/Tutorials/MoveIt/Pick_place

D.3. ArUco Detection 31

Figure D.3: Problem with color detection. The object is placed more to the left side of the robot without having a orientation.
However, the robot sees the object as it has an orientation.

detected. A pose is published, which is visualized in Figure D.4b. This is used to detect a cereal box
with a marker on top of it (Figure D.5). Hereafter, a separate camera is used (same as the robot camera)
to see whether a real camera could detect the marker. Figure D.6 shows that the camera was able to
detect the marker in reality.

(a) ArUco cube in Gazebo simulation for detection. (b) Aruco marker is detected and a frame is published in RViz.

Figure D.4: The left figure shows the Gazebo simulation with the robot and a table with an ArUco cube on top of it. The right
figure shows that the robot is able to detect it. A frame is published which corresponds with the pose of the marker.

D.3. ArUco Detection 32

Figure D.5: ArUco marker placed on a cereal box in simulation.

Figure D.6: ArUco marker is detected with a real camera.

E
Additional Results of Experiment

In Table E.1 and Table E.2 the data of the motions shown in the video of the end-effector and elbow
are presented.

Table E.1: End-effector data of the experiment with participants. The Jerk is the integrated square jerk, cross are the
zero-crossings of the velocity. All data is calculated from the TF data obtained from the robot.

Place video Sort V_mean
(m/s)

V_max
(m/s)

A_mean
(m/s^2)

A_max
(m/s^2)

Jerk
(m^2/s^5) Cross Path length

(m)
1 LfD 4 0,035 0,176 0,234 3,390 2375 5 0,622
2 MP 1 0,048 0,311 0,294 5,017 7481 4 0,983
3 MP 6 0,057 0,594 0,227 4,296 8922 13 2,350
4 LfD 7 0,035 0,181 0,251 3,068 4410 2 0,706
5 MP 4 0,082 0,508 0,397 10,874 18813 9 1,995
6 LfD 2 0,030 0,155 0,182 2,693 2144 1 0,588
7 MP 5 0,079 0,779 0,602 10,675 78936 6 1,924
8 MP 7 0,090 0,782 0,640 26,763 70088 9 2,574
9 LfD 3 0,025 0,192 0,166 3,141 2677 3 0,724
10 LfD 1 0,021 0,235 0,141 3,750 4817 1 0,655
11 LfD 5 0,032 0,171 0,198 2,752 2609 3 0,699
12 MP 2 0,028 0,253 0,144 4,720 7640 5 0,852
13 MP 4 0,082 0,508 0,397 10,874 18813 9 1,995
14 MP 3 0,041 0,382 0,164 6,806 5239 9 1,352
15 LfD 6 0,035 0,182 0,232 3,081 4589 1 0,664
16 LfD 4 0,035 0,176 0,234 3,390 2375 5 0,622

33

34

Table E.2: Elbow data of the experiment with participants. The Jerk is the integrated square jerk, cross are the zero-crossings
of the velocity. All data is calculated from the TF data obtained from the robot.

Place video Sort V_mean
(m/s)

V_max
(m/s)

A_mean
(m/s^2)

A_max
(m/s^2)

Jerk
(m^2/s^5) Cross Path length

(m)
1 LfD 4 0,029 0,160 0,185 2,852 1663 4 0,511
2 MP 1 0,036 0,234 0,220 3,793 4018 7 0,739
3 MP 6 0,031 0,220 0,118 1,835 2379 7 1,292
4 LfD 7 0,032 0,171 0,220 3,066 3532 6 0,637
5 MP 4 0,046 0,312 0,209 3,028 3923 6 1,119
6 LfD 2 0,026 0,135 0,156 2,347 1652 7 0,510
7 MP 5 0,042 0,381 0,312 5,926 18086 5 1,030
8 MP 7 0,044 0,361 0,286 6,390 13711 7 1,266
9 LfD 3 0,021 0,174 0,124 2,234 1439 5 0,595
10 LfD 1 0,017 0,206 0,116 3,232 3705 7 0,543
11 LfD 5 0,026 0,183 0,151 2,565 1731 3 0,551
12 MP 2 0,028 0,307 0,134 4,903 9765 6 0,855
13 MP 4 0,046 0,312 0,209 3,028 3923 6 1,119
14 MP3 0,027 0,267 0,102 3,872 2335 5 0,875
15 LfD 6 0,026 0,137 0,165 2,644 2131 3 0,493
16 LfD 4 0,029 0,160 0,185 2,852 1663 4 0,511

F
Instructions to Participants of Legibility

Experiment

35

Experiment intent-expressiveness of TIAGo robot
Researcher: M.H. van Beem

May, 2022

Introduction
Your participation in this experiment is greatly appreciated. The purpose of the
experiment is to measure the legibility of the robot's movement. In other words,
can the robot's intention be deduced from observing a small part of its motion. In
this experiment, you will make predictions about what the robot will do. Videos
will illustrate these movements. First, some paperwork. After that, the
experiment will be further explained.

Important Notes

 At any time during the study, before, during, or after it, you are
free to withdraw from participation.

 There is no restriction on the questions you may ask as long as
they do not influence the study's outcome.

 There is no obligation for you to respond to any of the
researcher's questions.

 We will use your information only to conduct academic research
and pseudo anonymize it.

 Your confidentiality will be protected both internally and
externally, and only the researcher will have access to it.

 You can get in touch with the researcher in question about your
participation or the results of the study by contacting:
m.h.vanbeem@student.tudelft.nl

Form of Informed Consent

Taking part in the study

It has been read to me or I have read the above important notes of this study
dated May, 2022. It was possible for me to ask questions about the study, and
the questions I asked were answered satisfactorily.

By participating in this study, I agree to be a volunteer and understand that I may
refuse to answer any of the researcher's questions. I am aware that I can
withdraw from the study at any time, without having to provide a reason.

Yes

No

Yes

No

36

Privacy

Taking part in the study will expose my personal information to the researcher.
To safeguard my identity, I know my personal information will not be published
publicly.

This research may involve sensitive information about my own identity, which, if
published, will remain anonymous. I understand that my information will only be
used for academic research purposes.

I agree to have my pseudo anonymized research data from this particular study
archived in the TU Delft repository for future research and learning purposes.

Name Participant:

Date:

Experience with robot motion planning:

No

Yes

Yes

No

Yes

No

None 0-3 months 3-6 months

6-12 months 1-2 years More than 2 years

37

Experiment
In this experiment you will see a movie that consists of shorter videos of the
robot. Those short videos are featuring the robot and two identical cereal boxes.
One of the boxes will be grabbed by the robot. However, you will only see a few
seconds of the movement and you have to predict whether the left or right
cereal box will be grasped (from your perspective). The video will then be
interrupted by a image with a 15 seconds timer so you can fill in the answer. In
addition, you have to state how certain you are about your prediction. You may
pause the video if you need extra time to fill in the form.

The first two motions showed in the video will be test videos to get familiar with
the experiment and the form. However, the video will continue playing. So if you
have questions after the test videos please pause the video and ask those. Now
let’s start the video!

Test video 1:
Predict the robot’s actions based on your analysis of the video.

How certain are you?

Uncertain Certain

Test video 2:
Predict the robot’s actions based on your analysis of the video.

How certain are you?

Uncertain Certain

Now you have finished the test videos. If you have questions please let me know!

Otherwise, you may continue to the next page.

RIGHTLEFT

RIGHTLEFT

38

Video 1:
1.1 Predict the robot’s actions based on your analysis of the video.

1.2 How certain are you?

Uncertain Certain

Video 2:
2.1 Predict the robot’s actions based on your analysis of the video.

2.2 How certain are you?

Uncertain Certain

Video 3:
3.1 Predict the robot’s actions based on your analysis of the video.

3.2 How certain are you?

Uncertain Certain

LEFT RIGHT

LEFT RIGHT

LEFT RIGHT

39

Video 4:
4.1 Predict the robot’s actions based on your analysis of the video.

4.2 How certain are you?

Uncertain Certain

Video 5:
5.1 Predict the robot’s actions based on your analysis of the video.

5.2 How certain are you?

Uncertain Certain

Video 6:
6.1 Predict the robot’s actions based on your analysis of the video.

6.2 How certain are you?

Uncertain Certain

LEFT RIGHT

LEFT RIGHT

LEFT RIGHT

40

Video 7:
7.1 Predict the robot’s actions based on your analysis of the video.

7.2 How certain are you?

Uncertain Certain

Video 8:
8.1 Predict the robot’s actions based on your analysis of the video.

8.2 How certain are you?

Uncertain Certain

Video 9:
9.1 Predict the robot’s actions based on your analysis of the video.

9.2 How certain are you?

Uncertain Certain

LEFT RIGHT

LEFT RIGHT

LEFT RIGHT

41

Video 10:
10.1 Predict the robot’s actions based on your analysis of the video.

10.2 How certain are you?

Uncertain Certain

Video 11:
11.1 Predict the robot’s actions based on your analysis of the video.

11.2 How certain are you?

Uncertain Certain

Video 12:
12.1 Predict the robot’s actions based on your analysis of the video.

12.2 How certain are you?

Uncertain Certain

LEFT RIGHT

LEFT RIGHT

LEFT RIGHT

42

Video 13:
13.1 Predict the robot’s actions based on your analysis of the video.

13.2 How certain are you?

Uncertain Certain

Video 14:
14.1 Predict the robot’s actions based on your analysis of the video.

14.2 How certain are you?

Uncertain Certain

Video 15:
15.1 Predict the robot’s actions based on your analysis of the video.

15.2 How certain are you?

Uncertain Certain

LEFT RIGHT

LEFT RIGHT

LEFT RIGHT

43

Video 16:
16.1 Predict the robot’s actions based on your analysis of the video.

16.2 How certain are you?

Uncertain Certain

Feedback:
Thank you for participating in this experiment. If there are any import issues to
mention, please let me know:

LEFT RIGHT

44

Glossary
ADLs Activities of Daily Living i, 2

DMP Dynamical Movement Primitive 4, 5, 6, 21, 22

HIT Heemskerk Innovative Technology i, 2

LfD Learning from Demonstration i, ii, 2, 3, 4, 7, 8-12, 18, 21-24, 26, 29, 30, 33, 34

ProMPs Probabilistic Movement Primitives 4

WBC Whole Body Controller 4, 15

45

	Preface
	Paper
	Demonstrations
	Tools
	Introduction to MoveIt
	MoveIt Motion Planning
	Initializing
	Planning Scene
	Planning and Execution

	Combining MoveIt with LfD

	Generalization in Simulation
	Detection of Object Pose
	Texture Detection
	Color Detection
	ArUco Detection

	Additional Results of Experiment
	Instructions to Participants of Legibility Experiment

