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1
INTRODUCTION

In this introductory chapter the use of Linear Parameter Varying state-space identification
methods is motivated and the main problem, the curse-of-dimensionality, is discussed. To
address this problem it is proposed to use tensor techniques, which will be the main topic
of this thesis. Finally, the organization of the thesis is presented.

1.1. A BRIEF INTRODUCTION TO LPV SYSTEMS
Linear Parameter Varying (LPV) systems are an intermediate step between Linear Time
Invariant (LTI) systems and non-linear systems. LPV systems are linear, but their dynam-
ics depend on an external time-varying signal also called the scheduling sequence. This
means LPV systems are time-varying strictly through their scheduling sequence. LPV
systems can be accurate models for many industrial applications and there are powerful
LPV control design methodologies available. This is especially interesting for applica-
tions for which LTI models do not suffice. Three such applications will now be discussed
for illustration purposes.

As a first example, consider the whirling modes of a wind turbine (Gebraad et al.,
2013, 2011a). The whirling modes describe a specific part of the movement of the rotor
blades and are illustrated in Fig. 1.1a. Namely, any two of the blades can bend towards
and away from each other in their plane of motion. It is shown in Hansen (2007) that the
frequency of these modes equal ω±Ω, where ω is the natural bending frequency of the
rotor blades, and Ω is the rotor speed. Hence the dynamics depend on the rotor speed
which can be seen as a scheduling sequence. This is illustrated in Fig. 1.1c using mea-
surement data from the wind turbine set-up shown in Fig. 1.1b. During operation, the
wind causes the rotor speed to vary erratically over time. Because the rotor speed affects
the dynamics, the dynamics also change considerably over time. This limits the appli-
cation of LTI modelling techniques. Whereas whirling mode dynamics can be captured
accurately using LPV models (Gebraad et al., 2013).

A second example of an application which can be accurately described by an LPV
model, is an overhead crane system (Zavari et al., 2014) as illustrated in Fig. 1.2a. By us-
ing a varying cable length, containers can be raised and moved at the same time. The

1
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(a) This figure shows a whirling mode of a
wind turbine. This figure is from Gebraad
et al. (2013).

(b) This figure is showing the 600 kW Con-
trols Advanced Research Turbine (CART) III
wind turbine in Colorado, United States of
America. Photo by Dennis Schroeder, NREL
37892.

(c) This figure shows a power spectrum density plot of the
whirling modes of a wind turbine using a waterfall diagram.
For different rotor speeds (on x-axis), the power spectrum
density is plotted along the y-axis (for frequency). More red
colors indicate higher power. Additionally, the harmonic fre-
quencies of the rotor speed are plotted (1P, 2P, ...). The two
diverging red lines represent the whirling modes.

Figure 1.1: Figures related to the example on whirling modes of a wind turbine.
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(a) This is a photo of a real experimental set-
up showing the load and the mechanism to
vary the cable length.

(b) This figure shows a bode magnitude plot
of an overhead crane model for several cable
lengths. A different color line is drawn per
length. In more detail, the discrete-time fre-
quency response from cart position to swing
angle is shown.

Figure 1.2: Figures related to the example on an overhead crane.

dynamics depend on the cable length and show LPV behaviour. Consider the relation
between the position of the crane and the swing angle of the container. In Fig. 1.2b its
discrete-time frequency response is shown for several cable lengths for a model. It is vis-
ible that the cable length has a major effect on the dynamics as it shifts the resonance
frequency. Zavari et al. (2014) shows, using a experimental set-up, that an overhead
crane can be very well described by an LPV model with the time-varying cable length
as scheduling sequence.

A third example is from bio-mechanics: the joint impedance of a human wrist (van
Eesbeek et al., 2013). An illustration of the human wrist is shown in Fig. 1.3a. The damp-
ing and stiffness of the human wrist joint are time-varying, because they depend on the
voluntary (deliberate) torque. Therefore LTI models are not satisfactory. On the other
hand, LPV models can be accurate for this time-varying problem, by using the voluntary
torque as scheduling sequence. The LPV behaviour is clearly visible in Fig 1.3b, which
shows a large variation of the frequency response at different values of the scheduling.

For these three examples and many other applications (see Mohammadpour and
Scherer (2012) or Sename et al. (2013)), LPV systems play a key role for two reasons.
Firstly, LPV models can capture time-varying behaviour allowing for higher accuracy
than LTI models. As a result, the performance of subsequently designed (LPV) con-
trollers can be higher (Tóth et al., 2011). Secondly, techniques are available (such
as Scherer (2001)) to design LPV controllers which can guarantee robust performance.
This guarantee does not require the scheduling sequence to be constant. In contrast,
LTI and (the LPV precursor) classic gain-scheduling control (Rugh and Shamma, 2000;
Leith and Leithead, 2000) generally give no guarantees on stability or performance,
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(a) This figure shows an illustration of a hu-
man wrist. The human wrist can use its
muscles to exert torque and has complex
stiffness and damping. However, for small
rotations these dynamics can be approxi-
mated by an LPV model (van Eesbeek et al.,
2013). This figure is from Gray (1918).

(b) In black the Frequency Response Func-
tions (FRF) of the LPV system for differ-
ent constant values of the scheduling se-
quence and in red the fitted parametrized
models (van Eesbeek et al., 2013) are shown.
More specifically, the input is wrist angle
and the output is torque. This figure is
from (van Eesbeek et al., 2013).

Figure 1.3: Figures related to the example on the human wrist joint.

unless the scheduling sequence is constant. As a result there is no stability guarantee
when the scheduling sequence is changing. However, for many applications such as
the whirling mode example the scheduling sequence is constantly varying. Addition-
ally, the technique of Scherer (2001) directly allows for Multiple Input Multiple Output
(MIMO) LPV controller design. In many industrial applications, instead of a Multiple
Input Multiple Output (MIMO) LPV controller, several Single Input Single Output (SISO)
gain-scheduling controllers are still used (Bossanyi, 2000; Van Kuik and Peinke, 2016).
However, the advantage of designing a single MIMO controller instead of multiple SISO
controllers, is that any coupling between different input-output pairs can directly be
taken into account and exploited (Skogestad and Postlethwaite, 2007).

While the model-based controller design for these LPV systems has been well de-
veloped, a model is required to design a controller. The accuracy of this model directly
affects the performance of the controller. These models can be obtained in two ways.
The first way is to use first principles modelling, which uses the laws of physics. How-
ever, this requires specialist knowledge as it is non-trivial which physics effects should
be included (Mohammadpour and Scherer, 2012). Furthermore certain quantities, for
example stiffness and damping, can be unknown and require dedicated experiments.
This approach is often used as a starting point for the second modelling technique. The
second modelling approach is system identification, which is the scope of this thesis and
presented in the next section.

1.2. LPV SYSTEM IDENTIFICATION

In the previous section it was argued that for the design of LPV controllers an LPV model
is needed and it was mentioned that this model can be obtained using system identifica-
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tion. System identification is a mathematical framework which allows the user to obtain
models of systems from their experimental input-output data. Whereas with first prin-
ciples modelling it is non-trivial to determine which effects are dominant and should
be included. In the next two subsections we present mathematical formulations of LPV
models (model structures) and discuss the state-of-the-art identification methods.

1.2.1. MODEL STRUCTURE

Firstly, a description using state-space systems is presented. The LPV behaviour ap-
pears through the state-space matrices which are known functions of the scheduling
sequence. This LPV model structure using discrete-time state-space representation is
given by:

xk+1 = A(µ(k))xk +B(µ(k))uk +wk

yk =C (µ(k))xk +D(µ(k))uk + vk ,
(1.1)

where the signals xk , uk , yk , wk and vk are the state, input, output, process noise and
measurement noise, and the matrices A, B , C and D are the time-varying state, input,
output and feed-through matrices. Because this representation is in discrete-time, the
sample number appears as the index k. Notice that the state-space matrices are func-
tions of the scheduling sequence denoted by µ. This type of description is used by state-
space methodologies.

In contrast, the type of description used by input-output methodologies is the input-
output description, presented here without noise:

yk =−
na∑

i=1
a(i )(µ(k))yk−i +

nb∑
j=1

b( j )(µ(k))uk− j , (1.2)

where na and nb are model orders, a(i ) and b( j ) are coefficient matrices and a function
of the time sample k.

The focus of this thesis will be on discrete-time LPV model structures with known
scheduling sequence. This focus will be motivated in two parts. Firstly, LPV model struc-
tures exist for both discrete-time and continuous-time, and control design methodolo-
gies exist for both as well (Scherer, 2001; Dong and Wu, 2007)1. However, experimental
data is always sampled data and thus discrete. Therefore the focus will be on discrete-
time systems and models. Secondly, in many applications the scheduling sequence is
measurable, such as the examples of the previous section. It is also possible to formu-
late an identification problem with unknown scheduling, which would lead to much
more involved identification problems. In this thesis, the focus will be on exactly known
scheduling sequences, which is common in LPV identification. Also, frequency-domain
model structures and identification methods will not be discussed, because that cate-
gory of methods is still in its early stage with only few publications in the literature (Goos
et al., 2017). In the next subsection we present an overview of LPV identification meth-
ods.

1It has to be remarked that the transformation of continuous-time LPV systems to discrete ones is non-trivial
and generally leads to more complicated functions of the scheduling sequences to appear (Tóth et al., 2008).
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1.2.2. SYSTEM IDENTIFICATION METHODS
In this subsection we briefly review available LPV system identification methods.

GLOBAL AND LOCAL METHODS

One way to categorize methods is by division into global and local methods. The two
categories of methods have different applications and purposes. Local methods, such as
the ones described in (Tóth, 2010; De Caigny et al., 2009; Shamma, 2012), perform several
LTI identification experiments. That is, at every experiment the scheduling sequence is
kept at a constant value. Every experiment returns one LTI model, and these models can
be combined into an LPV model. Obtaining LTI models is well-understood (van der Veen
et al., 2013; Ljung, 1999), however the combination step requires special care. The first
and common combination approach is by interpolation of the models. The second ap-
proach is to fit a parametrized global LPV model to the LTI models. This parametrization
can exploit prior knowledge. This is the core of glocal methods, whose name is a contrac-
tion of ‘global’ and ‘local’. In this thesis, glocal methods will be considered a sub-class
of local methods. Glocal methods, such as the methods of Vizer et al. (2013); Petersson
and Löfberg (2014); Mercere et al. (2011), avoid the problems of interpolation at the cost
of a more difficult optimization problem. This approach is promising but arguably not
yet mature (Sename et al., 2013). Regardless, the effectiveness of local methods depends
on whether the scheduling sequences can be kept reasonably constant during the iden-
tification experiments (De Caigny et al., 2009). For applications where this is possible,
such as for example high performance positioning devices (van der Maas et al., 2015;
Tóth et al., 2011) and distillation columns (Bachnas et al., 2013), local methods can yield
good results (De Caigny et al., 2009; Tóth, 2010; Shamma, 2012). However for a number
of applications these experiments are not possible.

On the other hand, global methods work with data from experiments during which
the scheduling sequence can vary and yield an LPV model. In contrast to local methods,
data from a single experiment is used. This does mean the relevant dynamics have to
be sufficiently excited during the experiment. There exist several global methods, both
in input-output and state-space setting. Some examples are (van Wingerden and Ver-
haegen, 2009; Larimore and Buchholz, 2012; Golabi et al., 2017). These will be discussed
in the next subsection. In the remainder of this thesis only global methods will be dis-
cussed.

Another way to divide methods is division into input-output and state-space meth-
ods. State-space methods can be further divided into subspace and state-space refine-
ment methods. These three categories will be reviewed in the next three subsections.

INPUT-OUTPUT METHODS

Input-output methods are all methods which return input-output LPV models, and
they have received considerable attention in literature (Tóth, 2010; Laurain et al., 2010;
Butcher et al., 2008; Bamieh and Giarre, 2002). A few of them will be discussed to il-
lustrate the vast literature. The (local) method of Tóth (2010) uses Orthonormal Basis
Functions (OBF) to benefit from the well worked out theory of OBF’s for LTI problems.
These OBF are a set of user-chosen orthogonal and normalized functions which can
be used to approximate a complex function, such as an impulse response. One of the
benefits is that the obtained model simplifies subsequent control design. The methods
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of Laurain et al. (2010); Abbas and Werner (2009) use an Instrumental Variable (IV)
method to deal with more complex noise structures. Most identification methods as-
sume and require some statistical properties of the input signal to produce unbiased
estimates. If this assumption does not hold, one can construct and use an (instrumen-
tal) variable which does have these properties. There also exist input-output methods
with Bayesian regularization, such as in Darwish et al. (2015); Golabi et al. (2017). Regu-
larization is a way to introduce a bias-variance trade-off in estimates, where some small
bias is introduced to reduce large variances. The intuitive extension of input-output
models from LTI to LPV has also allowed specialized methods, such as for problems with
spatially interconnected subsystems (Liu et al., 2016; Belforte et al., 2005).

However, the preferred model structure for mainstream LPV control design method-
ologies is state-space (Scherer, 2001), and transformation from input-output to those
state-space models has been shown to be problematic in the LPV setting (Tóth et al.,
2012). Namely, such a transformation can introduce very complex scheduling depen-
dency or non-minimality. State-space methods have also received considerable atten-
tion (van Wingerden and Verhaegen, 2009; Larimore et al., 2015; Cox and Tóth, 2016a,b).
The methods can be seen as extensions of different LTI approaches. Additionally, they
produce state-space models and extend naturally to the MIMO case. In the next two sub-
sections state-space methods are reviewed: first subspace then state-space refinement
methods.

SUBSPACE METHODS

Subspace methods are state-space methods which use linear parametrization and in-
volve convex optimization problems 2. However, in the LPV setting, a linear parametriza-
tion can result in a huge number of parameters. More specifically, ‘huge’ refers to expo-
nential explosion. This will be illustrated in the next section. This huge number of pa-
rameters causes problems with memory and computation costs and can lead to poorly
conditioned problems. This problem appears as the number of parameters can vastly
exceed the number of data points. In some special cases, the scheduling sequence can
exhibit some structure which can simplify the problem. For example, tailored methods
are available for periodic scheduling (Felici et al., 2007), noise scheduling (Favoreel et al.,
1999) or piecewise constant scheduling (van Wingerden et al., 2007). However, gener-
ally the scheduling sequence is arbitrarily varying, such as for the presented wind tur-
bine example. For these cases, several methods exist. The identification method of Cox
and Tóth (2016a) uses correlation analysis: an approach based on the correlation of sig-
nals. In its current form, it does assume the noise and input to be white noise. The
first two steps of the method of Cox and Tóth (2016b) can also be used to obtain an
LPV state-space estimate in convex manner. However, the third non-convex refinement
step is required to obtain some of the important properties of the total method. The
method of Larimore and Buchholz (2012) (see also (Larimore et al., 2015)) uses canoni-
cal variate analysis, which estimates the states by first estimating some other, ‘canonical’
states. In Larimore and Buchholz (2012) it is claimed but not shown that this closed-loop
method does not have an exponential explosion in the number of variables. That is, the

2Optimization problems can roughly be divided in two categories of difficulty: convex and non-convex. Non-
convex problems can suffer from local minima.
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algorithm is not publicly available. It is worth remarking that in Chiuso (2010) it is shown
for the LTI case that this method is asymptotically 3 equivalent in terms of variance to
the Predictor-Based Subspace IDentification (PBSID) method of Chiuso (2007). In this
thesis the focus will be on the latter. More specifically, the methods of van Wingerden
and Verhaegen (2009); Gebraad et al. (2011a) use a predictor-based approach (Chiuso,
2007), and will be discussed in detail in the next section. This approach is based on
the assumption that the state-observer, which estimates the states of the system based
on inputs and outputs, is asymptotically stable. This is quite common for LTI subspace
methods (van der Veen et al., 2013) and allows dealing with closed-loop data. The huge
parameter count is tackled by assuming that the solution of the underling regression
problem is the minimum-norm solution (see Chapter 3 for a detailed discussion). This
greatly reduces the parameter count, and provides means to perform computation effi-
ciently. The ill-condition (and thus high variance) is further tackled using regularization.
Several regularization techniques have been proposed in literature, but the underlying
LPV structure is not exploited.

STATE-SPACE REFINEMENT METHODS

State-space refinement methods are methods which return state-space models, but in-
volve a non-convex optimization problem which has to be solved. The non-convexity
appears, because non-linear parametrizations are used to avoid huge parameter counts
and problems with memory or computation. This does mean these methods require ini-
tialization by an initial estimate. Notice that there are many non-linear parametrizations
and cost functions possible. The methods of Cox and Tóth (2016b); Verdult et al. (2003);
Lee and Poolla (1999) directly (element-wise) parametrize the LPV state-space matrices.
The method of Cox and Tóth (2016b) also deploys regularization, has local convergence
and can deal with closed-loop data. However, notice that there do not exist any convex
LPV subspace methods which directly parametrize the state-space matrices. As a result,
the cost function of the convex method which produces the initial estimate is inherently
different from the cost function of these subsequent refinement methods. This may give
a possible disadvantage, since the initializing and refining methods are not in line in
terms of cost functions. This raises the question whether refinement methods can be
developed which do not have this possible disadvantage.

OPEN LOOP AND CLOSED LOOP

In this paragraph, the problem of closed-loop identification is discussed. Closed-loop
identification is identification using ‘closed-loop data’: data obtained under closed-loop
operation (with active controller). Closed-loop methods are methods which can deal
with this type of data. Other methods can return biased estimates when given closed-
loop data (Ljung, 1999). Inability to deal with closed-loop data is a problem, because
open-loop data may not be available. For many industrial applications, such as wind tur-
bines, the system under open-loop operation is either unstable or has poor performance,
which makes open-loop experiments very costly. Also, for the human wrist example the
data is inherently closed-loop data due to the control loops in the body. Additionally, “for

3(as the number of data points tend to infinity)
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model-based control design, closed-loop identification gives better performance” (Hjal-
marsson et al., 1996). Therefore the focus of this thesis is on LPV methods that can deal
with (both open- and) closed-loop data.

In the remainder of this chapter, the focus will be on closed-loop predictor-based
global subspace methods and state-space refinement methods. These predictor-based
methods are reviewed in the next section.

1.3. PREDICTOR-BASED METHODS
In the previous section predictor-based methods have been motivated and in this
section they will be presented in detail. Before presenting the bottleneck ‘curse-of-
dimensionality’ and the challenge of this thesis, the predictor-based model structure
and its key assumption will be reviewed.

1.3.1. MODEL STRUCTURE
In this subsection, the predictor-based model structure (Chiuso, 2007; van Wingerden
and Verhaegen, 2009) is presented. For clarity, the model structure is first presented
for the LTI case and afterwards for the LPV case. Furthermore, before presenting the
predictor-based representation, the equivalent innovation form is presented because it
has a more clear relation to the general LPV system representation of (1.1). Starting from
that equation, the innovation representation is:

xk+1 = Axk +Buk +K ek

yk =C xk +Duk +ek ,
(1.3)

where e is the innovation signal and K is the innovation gain. This equations allows
direct presentation of its LPV variant. It should be noted that for LPV systems, mov-
ing to this innovation representation removes the capability to model some of the more
complex noise structures (Cox and Tóth, 2016c) like in (1.1). For the LPV variant of this
equation, the state-space matrices become known functions of the scheduling sequence
µ. Many methods, such as Cox and Tóth (2016b); van Wingerden and Verhaegen (2009),
choose these functions as both affine and static functions ofµ. Static dependency means
that only the current sample of µ affects the time-varying state-space matrices at that
sample: A(µ(k)) = A(µk ). Affine dependency means that the state-space matrices are
affine functions of the scheduling sequence µ. This can also be regarded as a weighted
sum of local models. The result is that the LPV state-space matrices take the following
form:

A(µ(k)) =
m∑

i=1
µ(i )

k A(i ), (1.4)

where m is the number of time-varying variables in the scheduling sequence, i is an
index and µ(i )

k is a scalar. A similar expression is used for the B , C and D matrices. This
yields the following LPV system representation:

xk+1 =
m∑

i=1
µ(i )

k A(i )xk +µ(i )
k B (i )uk +µ(i )

k K (i )ek

yk =
m∑

i=1
µ(i )

k C (i )xk +µ(i )
k D (i )uk +ek

(1.5)
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Before moving to the predictor-based representation, the output equation will be sim-
plified for the sake of presentation and simplicity of derivation, similar to what has been
done in van Wingerden and Verhaegen (2009). This will not make the bottleneck of
predictor-based methods trivial. This bottleneck will be presented in the next subsec-
tion. The simplification is that C will be parameter-invariant and D will be the zero
matrix. Afterwards, the predictor-based equation can be obtained by substituting the
bottom equation into the top equation to remove the innovation e from the top equa-
tion:

xk+1 =
m∑

i=1
µ(i )

k

(
Ã(i )xk + B̄ (i )

[
uk

yk

])
(1.6a)

yk =C xk +ek , (1.6b)

where Ã(i ) is A(i ) −K (i )C and B̄ (i ) is [B (i ),K (i )]. Notice that this predictor-based repre-
sentation is very similar to a basic state-observer (which estimates the states x using the
inputs and outputs). This form allows making the following assumption on state evolu-
tion to simplify identification.

1.3.2. KEY ASSUMPTION
In this subsection the key assumption of predictor-based methods is reviewed. This as-
sumption relates to the evolution of states. The effect of an initial state on a future state is
described by the time-varying state transition matrix φ (van Wingerden and Verhaegen,
2009):

Ãk =
m∑

i=1
µ(i )

k Ã(i ) (1.7a)

φ j ,k = Ãk+ j−1 . . . Ãk+1 Ãk (1.7b)

Notice that this matrix describes how an initial state would evolve by itself without
inputs, outputs or noise. More specifically, it describes the relation between xk and
xk+ j . Predictor-based methods, both LTI and LPV, and several other subspace methods
(see van der Veen et al. (2013)) assume this matrix to be exactly zero for large enough
windows:

φ j ,k ≈ 0 ∀ j ≥ p, (1.8)

where p is the past window. That is, without inputs, outputs or noise, any initial state
is assumed to become approximately zero after some time steps. This is equivalent to
assuming that an initial state does not affect states far enough in the future. This ap-
proximation has some favourable properties. If the predictor-based system (1.6) is (uni-
formly exponentially) stable 4, then the approximation error of (1.8) can be made arbi-
trarily small by increasing p (Knudsen, 2001). This approximation results in a bias in
subsequent estimations, which disappears as p goes to infinity. But the effect is hard to
quantify for finite p (Chiuso, 2007; Knudsen, 2001). Under this assumption, states are
assumed not to affect future states which come p samples later. As a result, xk−p has no

4The interested reader is referred to Verdult and Verhaegen (2002) for the detailed discussion and equation of
this condition
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effect on xk and hence yk . This in turn means the current output yk can be expressed us-
ing current and only past inputs and outputs without the states. Hence this yields a sim-
ple relation between inputs and outputs, which can be estimated in a straight-forward
manner. This estimate can then be used to obtain an estimate of the LPV state-space
matrices (van Wingerden and Verhaegen, 2009). However, a bottleneck appears in the
first estimation step: a ‘curse-of-dimensionality’.

1.3.3. CURSE-OF-DIMENSIONALITY
Predictor-based identification methods have a bottleneck in their first estimation step:
the ‘curse-of-dimensionality’. That is, the number of parameters to estimate scales expo-
nentially with the past window. Before specifically defining this effect and the problems
it causes, first this effect is illustrated.

ILLUSTRATION

The parameters to be estimated are presented to illustrate the scale of the problem.
Firstly, define these parameters as the (LPV sub-)Markov parameters. For brevity, the
matrix K is fixed at zero in this subsection. Then, the parameters describe the rela-
tion between the current outputs and the current and past inputs. Hence for this case
Ã(∗) = A(∗) and B̄ (∗) = B (∗). For the LTI case, these parameters are just the elements of
the matrices:

C B , (1.9a)

C AB , (1.9b)

C A AB , . . . (1.9c)

where these matrices and their relation to the past window p have been defined in the
previous subsection. Notice that the number of parameters scales linearly with the past
window p. That is, for p = 1 only C B is estimated, for p = 2 C B and C AB , etcetera.
However in the LPV predictor-based case (1.6), there is not just one A matrix but m of
them. As a result, every possible combination must be considered. For brevity, an LPV
system is considered where only the matrix A is parameter dependent, and m = 2. Then
the parameters to be estimated are the elements of:

C B , (1.10a)

C A(1)B , C A(2)B , (1.10b)

C A(1) A(1)B , C A(1) A(2)B , C A(2) A(1)B , C A(2) A(2)B , . . . (1.10c)

Notice that now for p = 2 three matrices, and for p = 3 seven matrices have to be es-
timated. This illustrates how the parameter count scales exponentially with the past
window. In contrast, the scaling was linear for the LTI case. Notice that increasing the
past window by one roughly doubles the number of parameters for the LPV case. For this
example, the next steps would be adding 8, 16 and 32 new matrices to estimate respec-
tively. This exponential increase is also illustrated in Fig. 1.4. The problems which this
increase causes are described next.
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Figure 1.4: This figure shows how the parameters to estimate presented in (1.10) grow in number
for increasing past windows. For p = 1 only the first column of parameters is estimated, for p = 2
the first and second columns, etcetera. Notice that every increment of p by one roughly doubles
the amount of parameters.

DEFINITION AND PROBLEMS

Before presenting the specific problems, first the ‘curse-of-dimensionality’ is defined:

Remark 1.3.1 In this chapter presence of ‘curse-of-dimensionality’ refers to that the num-
ber of parameters to estimate in the first estimation step scales exponentially with the past
window.

Since the past window can not be chosen too small as argued in the previous subsection,
the ‘curse-of-dimensionality’ generally plays an important role. Namely, it gives three
specific problems:

1. The memory cost scales exponentially with the past window.

2. The computational cost scales exponentially with the past window.

3. The parameters quickly become too numerous, possibly greatly exceeding the
number of data points. This can make the first estimation problem ill-conditioned
and increase the variance of the estimate.

These problems, combined with the fact that state-of-the-art methods don’t exploit the
underlying structure of the LPV sub-Markov parameters, lead to the challenge of this
thesis.

1.3.4. CHALLENGE
The challenge of this thesis is built on the previously described three problems caused by
the ‘curse-of-dimensionality’. Regarding the first two problems, memory and computa-
tional cost, the challenge will require novel methods to be ‘curse-of-dimensionality’-free
in memory and computation. That is, these costs should scale slower than exponential,
for example as a power. Regardless, it should be remarked that overly large past windows
can increase variance. Regarding the third problem, ill-condition (or high variance), sev-
eral approaches have been proposed in literature. This high-variance effect appears for
all reasonable past windows. Hence, it is an important and open problem. Therefore,
the challenge is:
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Challenge: develop methods which are ‘curse-of-dimensionality’-free in mem-
ory and computation and have reduced variance.

In this thesis the underlying structure of the LPV sub-Markov parameters will be ex-
ploited to solve this challenge in an elegant way. Before presenting the proposed ap-
proach, an overview of other approaches which try to solve the challenge mentioned
above is presented. The different approaches can be divided in two groups: subspace
and state-space refinement methods. Firstly, subspace methods greatly reduce the pa-
rameter count by assuming the solution of the regression problem is the minimum-
norm solution. This allows ‘curse-of-dimensionality’-free storage and computation5.
The ill-condition problem is further tackled using regularization (van Wingerden and
Verhaegen, 2009; Gebraad et al., 2011b). Regularization can be more effective if the un-
derlying structure is exploited better. This is also the point where there is vast room
for improvement compared to existing subspace methods. Secondly, state-space refine-
ment methods use a non-linear parametrization 6 with few parameters which allows
them to be ‘curse-of-dimensionality’-free in memory and computation. Furthermore,
this non-linear parametrization has less spurious freedom which can improve variance.
This does come at the cost of having a non-convex optimization problem which requires
initialization by an initial estimate. One approach is to circumvent the predictor-based
approach and its ‘curse-of-dimensionality’ by directly parametrizing the state-space ma-
trices Verdult et al. (2003); Lee and Poolla (1999); Cox and Tóth (2016b). However, as dis-
cussed in the previous section, this leads to a discrepancy between the cost functions of
the initializing subspace method and subsequent refinement method which may hurt
model quality. This raises the question whether the ‘curse-of-dimensionality’ can be
tackled by a different direction of refinement methods, namely predictor-based ones. To
summarize, this ‘curse-of-dimensionality’ is still an open problem.

One possible approach to tackle this ‘curse-of-dimensionality’ problem is to use ten-
sor techniques. Tensor techniques can exploit multi-linear structure to break a ‘curse-
of-dimensionality’. The underlying LPV structure is such a multi-linear structure, as dis-
cussed in the previous subsection. Therefore in this thesis, tensor techniques will be
used to tackle the stated challenge. Both novel tensor subspace and state-space refine-
ment methods will be developed. In the next section tensors, tensor techniques and
their relation to predictor-based identification are introduced.

1.4. TENSOR TECHNIQUES

In the previous section it was argued that the ‘curse-of-dimensionality’ of the LPV
predictor-based identification problem can be tackled using tensor techniques. In this
section, the connection between the two is discussed and tensors and tensor techniques
are further reviewed.

5by using Kronecker algebra (van Wingerden and Verhaegen, 2009)
6That is, the model output is non-linear in the parameters of the parametrization.
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1.4.1. TENSOR TECHNIQUES IN LITERATURE

Tensors and tensor techniques have been used successfully in many applications, such
as structured data fusion (Sorber et al., 2015), blind signal separation (Cichocki et al.,
2009), denoising (Signoretto et al., 2010), higher order statistics (De Lathauwer and Van-
dewalle, 2004) and chemometrics (Smilde et al., 2005). These tensor techniques are also
deployed in TensorFlow (Abadi et al., 2016) by Google and even have specialized hard-
ware for it. This is because tensors can represent multi-linear structure more intuitively
and tensor techniques can be used to exploit this structure.

To illustrate how tensor techniques can be used to break ‘curse-of-dimensionality’, a
problem from scientific computing (Vervliet et al., 2014; Khoromskij, 2012) is presented
as an example. This problem inherently has a ‘curse-of-dimensionality’, because it in-
volves discretization of a function over all its variables. For example, consider a function
y = f (a,b,c) and discretize it over a grid of different values of a, b and c. Suppose the
user wishes to use a fine discretization, where every single variable is discretized at a
large number of values. Let a, b and c be between zero and one and discretized in 100
points: this gives 1003 grid points. Notice that as the number of variables increase, the
number of grid points increase exponentially. For three variables there are one million
grid points, but for four variables one hundred million and for six variables one trillion
grid points. As a result, even modest variable counts yields unmanageably many grid
points. This illustrates an inherent ‘curse-of-dimensionality’.

This problem has been tackled in literature by reformulating it using tensors and
then constructing tensor decompositions. Tensor decompositions are, like matrix de-
compositions, condensed and possibly approximate representations of tensors. That is,
a huge tensor does not have to be stored element-by-element, but can also be stored in a
less memory-consuming way. A thorough discussion will be presented in 1.4.3. The huge
grid in three variables can be seen as a three-dimensional tensor. A tensor generalizes a
matrix in that it can have more than two dimensions. For example, in addition to height
and width it can also have depth. See Fig. 1.5 for an illustration. For this case, the dimen-
sions link to a, b and c separately. For now, suppose the function to discretize is y = abc.
Notice that this is a very basic form of multi-linear structure. Namely, a function is multi-
linear if it is linear in every variable it has separately. Then, this multi-linear structure
allows condensely storing the huge 100-by-100-by-100 grid or tensor. Namely, instead of
element-wise storage a condense tensor decomposition can be stored. For example, the
tensor can be described using three vectors of length 100 relating to the three variables.
Each vector equals [0.01, 0.02, . . . , 1]. Notice that this condensed representation reduces
the number of elements to store from 1003 to 300. Also notice that the condensed repre-
sentation no longer has a ‘curse-of-dimensionality’, as it scales linearly with the number
of variables. Additionally, decompositions can be obtained directly without storing orig-
inal, huge tensors in memory by using randomized sub-block approaches (Vervliet and
De Lathauwer, 2016). This is an example of how tensor techniques can be used to break
a ‘curse-of-dimensionality’.

The use of tensors and tensor techniques for LPV predictor-based identification is
discussed in the next subsection.
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Figure 1.5: This figure shows a cube consisting of eight smaller cubes. Suppose every cube contains
one value, then it can be seen as a three-dimensional tensor of size two-by-two-by-two.

1.4.2. RELATION BETWEEN TENSORS AND LPV PREDICTOR-BASED IDEN-
TIFICATION

In this subsection the relation between LPV predictor-based identification and tensors
are discussed.

Tensor techniques can exploit multi-linear structure. The LPV identification problem
has this structure, and will now be presented explicitly. The parameters which suffer
from the ‘curse-of-dimensionality’, the LPV sub-Markov parameters, are (1.10):

C B , (1.11a)

C A(1)B , C A(2)B , (1.11b)

C A(1) A(1)B , C A(1) A(2)B , C A(2) A(1)B , C A(2) A(2)B , . . . (1.11c)

Notice that the multi-linear structure of these parameters is clearly visible: each is a
product of several matrices. More specifically, the LPV sub-Markov parameters are every
possible combination of the A(∗) of any product length, pre-multiplied by C and post-
multiplied by B . This is an exact multi-linear structure. This structure allows natural rep-
resentation using tensors, possibly with condense decompositions. More importantly,
this also motivates use of tensor techniques, some of which can break the ‘curse-of-
dimensionality’. As a result, tensor algebra opens the possibility to develop ‘curse-of-
dimensionality’-free LPV state-space identification methods.

It is worth remarking that tensor decompositions have been used for LPV systems
before (see Petres (2006) and the references therein), for the decomposition of entire
LPV systems (and not LPV sub-Markov parameters) for purpose of control design.

In the next two subsection, detailed definitions on tensors are presented.

1.4.3. ADDITIONAL TENSOR DEFINITIONS
In this subsection, some key definitions are presented. The matrix variants are discussed
first for clarity.

First consider the matrix case. Notice that for very large size matrices, storing every
single element of the matrix may be costly in memory. In that case a decomposition can
be used: a way of representing the matrix in a condensed manner. One such decompo-
sition is matrix Singular Value Decomposition (SVD), which has received considerable
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attention in literature (Deprettere, 1989; Vaccaro, 1991; Moonen and De Moor, 1995).
For example, using the SVD, a matrix M can be decomposed into a set of singular values
and the left- and right-‘singular’ vectors:

M =U

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

. . .

V T , (1.12)

where the columns of U are the left-singular vectors, the columns of V are the right-
singular vectors andσ∗ are the singular values, whose properties are omitted for the sake
of brevity. Notice that the SVD is a different way of representing the same matrix. The
number of (non-zero) singular values is exactly the rank of the matrix. A rank one matrix
of size 1000-by-1000, can be stored with just 2001 variables through the SVD. As the rank
increases, the decomposition becomes less effective and finally defective. If a matrix has
the largest possible rank for its size, then the matrix is called ‘full-rank’ and otherwise
‘low-rank’. Regardless, for matrices with large ranks, the representation may not be as
condensed as desired. For these cases, compression is an option. Compression removes
the smallest singular values, reducing the number of variables of the decomposition, but
introducing an approximation error.

These definitions allow defining some tensor notions. Like matrices, tensors can
also be decomposed and compressed. This can be done using matrix compression tech-
niques after flattening7 the tensor, or directly using tensor compression techniques. No-
tice that tensor compression techniques are able to exploit multi-linear structure and
break ‘curse-of-dimensionality’. Some notions however, do not extend trivially to ten-
sors. While the notion of matrix rank is well-understood and unique, tensors have sev-
eral rank notions. Each corresponds to a different approach of tensor decomposition.
The three tensor decompositions, which are the best understood and have the most at-
tention received in literature, will be discussed in the next subsection.

1.4.4. TENSOR DECOMPOSITIONS
In this subsection tensor decompositions will be reviewed as they allow exploiting multi-
linear structure and breaking ‘curse-of-dimensionality’. Several tensor decomposition
approaches exist, but only the three which are best understood and have received the
most attention in literature are briefly reviewed. Their (low-)rank notions are explained,
because low-rank properties of tensor decompositions play a key role in breaking ‘curse-
of-dimensionality’. Each of the three decompositions is reviewed in further detail in or-
der in a subsequent chapter.

POLYADIC DECOMPOSITION

The polyadic (tensor) decomposition (Kolda and Bader, 2009; De Lathauwer, 2009) has
been successfully applied in chemometrics (Smilde et al., 2005), neuroimaging (Zhou
et al., 2013) and biomedical signals (De Vos et al., 2007), to name a few. This decompo-
sition approach describes tensors as a sum of (polyadic) rank one tensors. Polyadic rank
one tensors are tensors which are constructed as the (outer) product of vectors (Zhou

7flattening is the procedure of reorganizing the elements of a tensor into a matrix
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et al., 2013). This allows describing a tensor by only storing a number of vectors. The
memory usage depends on the polyadic rank: the number of polyadic rank one tensors
summed. In this thesis a polyadic decomposition is said to be low-rank, if its polyadic
rank is smaller than the maximally needed polyadic rank to describe every tensor of the
same size8.

MULTI-LINEAR SINGULAR VALUE DECOMPOSITION (MLSVD)
The Multi-Linear Singular Value Decomposition (De Lathauwer et al., 2000) has,
amongst others, applications in harmonic retrieval (Papy et al., 2009) and image pro-
cessing (Vasilescu and Terzopoulos, 2002). This tensor decomposition approach is a
generalization of the matrix SVD to the tensor case. It decomposes a tensor into one
‘core tensor’ and several (orthogonal and normalized) matrices. If the core tensor is
small, then a considerable memory usage reduction can be obtained. Since the size of
this core tensor determines the effectiveness of this decomposition, it is defined as the
multi-linear rank. Notice that hence the multi-linear rank is a tuple, for example it can
be (3,4,5). Therefore in this thesis an MLSVD is said to be low-rank if its multi-linear
rank tuple is smaller than the original tensor size in all dimensions.

TENSOR NETWORKS

Tensor networks (Batselier et al., 2017; Chen et al., 2016; Oseledets, 2011) 9 can be nu-
merically efficient and have applications in for example molecular dynamics (Scholl-
wöck, 2005) and Volterra systems (Batselier et al., 2017; Chen et al., 2016). This decom-
position decomposes a tensor into a series of three-dimensional tensors. These tensors
are ‘multiplied’ with each other (see Chapter 4 for details) to obtain the original tensor.
The sizes of the dimensions across which ‘multiplication’ finds place, determine the ef-
fectiveness of the decomposition and are defined as the ‘tensor network ranks’. Finally, a
tensor network is low-rank if its rank tuple is (in any element) less than what is maximally
needed to describe every tensor of the same size. This value can be computed (Oseledets
and Tyrtyshnikov, 2010).

Using the novel insights, on how the underlying structure of the LPV sub-Markov
parameters can be exploited using tensor techniques, and the stated challenge for LPV
identification the goal of this thesis can now be formulated.

1.5. GOAL OF THIS THESIS
In Section 1.3, it was argued that the development of LPV identification techniques is
hampered by the ‘curse-of-dimensionality’. Advances in this field would greatly benefit
several applications, such as wind turbines and bio-mechanics. This will involve exploit-
ing the underlying structure better. In the previous section, it was shown that this struc-
ture can be seen as (exact) multi-linear structure. This multi-linear structure, through
the use of tensor techniques, allows breaking the ‘curse-of-dimensionality’. Therefore,
in this thesis our goal is as follows.

8It has to be remarked that this value is generally only known up to some bounds (Alexeev et al., 2011). There-
fore the conservative, lower bound (Alexeev et al., 2011) will be used.

9In this thesis ‘tensor networks’ only refer to the ones of Oseledets (2011); Batselier et al. (2017); Chen et al.
(2016).
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Thesis goal: develop LPV identification techniques which are ‘curse-of-
dimensionality’-free in memory and computation and have improved variance
by exploiting the tensor structure.

More specifically, in this thesis improved variance is defined as higher Variance Ac-
counted For (VAF) than the LPV-PBSIDopt method with regularization and kernels of van
Wingerden and Verhaegen (2009) which is taken as the ‘base-line’ method.

The goal of this thesis can be achieved if the following research question is answered:

Research question: do exact, low-rank

• polyadic,

• multi-linear singular value,

• tensor network,

decompositions of the LPV sub-Markov parameters exist, and if so, what are
they and how can they be exploited to obtain methods which are ‘curse-of-
dimensionality’-free in memory and computation and have improved variance?

Notice that this research question is focused on three tensor decomposition ap-
proaches which have received the most attention in literature as discussed in the
previous section.

1.6. ORGANIZATION OF THIS THESIS
In this thesis, three novel tensor methods for LPV state-space identification are de-
rived. Each method uses one of the three previously motivated tensor decomposition
approaches in order. Since these algorithms are completely different from each other,
they are presented in separate chapters which can be read independently. This does
mean there is some overlap between the chapters. A concise overview of each chapter
is provided at the start of each chapter in their abstract. The references are provided per
chapter. The backbone of each chapter is based on one journal paper. There is a slight
difference in notation between the chapters and for Chapter 3, an extended version of
its paper is presented. This version provides the tools to perform the proposed method
in ‘curse-of-dimensionality’-free manner. A short outline of the chapters is given below:

• In Chapter 2, a novel refinement LPV state-space identification method based on
polyadic decompositions is presented. It also contains a thorough introduction of
moving from the matrix perspective on LPV identification to a tensor perspective
and is therefore placed first.

This chapter has been published in:
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Gunes, B., van Wingerden, J.-W., and Verhaegen, M. Predictor-based tensor re-
gression (PBTR) for LPV subspace identification. Automatica, 79:235 – 243, 2017a.
ISSN 0005-1098

and is also based on:

Gunes, B., van Wingerden, J.-W., and Verhaegen, M. Tensor regression for LTI
subspace identification. In American Control Conference (ACC), 2015, pages
1131–1136. IEEE, 2015a,

Gunes, B., van Wingerden, J.-W., and Verhaegen, M. Tensor regression for LTI sub-
space identification: free parametrizations. SYmposium on System IDentification,
IFAC-PapersOnLine, 48(28):909–914, 2015b

Gunes, B., van Wingerden, J.-W., and Verhaegen, M. Tensor regression for LPV sub-
space identification. SYmposium on System IDentification, IFAC-PapersOnLine,
48 (28):421–426, 2015c

• In Chapter 3, a novel LPV subspace identification method based on the MLSVD
is presented. This includes several results which are interesting to a wide system
identification audience. Firstly, it is shown how to form and exploit (exactly) multi-
linear low-rank tensors from the (LPV sub-Markov) parameters. Secondly, for this
problem tools are provided to perform the (regularized) optimization in ‘curse-of-
dimensionality’-free manner.

This chapter is an extension 10 of:

Gunes, B., van Wingerden, J.-W., and Verhaegen, M. Tensor nuclear norm LPV sub-
space identification. IEEE Transactions on Automatic Control, 2018.

• In Chapter 4, a novel refinement LPV state-space identification method based on
tensor networks is presented. This chapter provides several contributions to ma-
ture the use of tensor techniques for LPV refinement methods, and can be seen as
a successor to Gunes et al. (2017). The ranks of these tensor networks are exactly
the number of states. This allows making educated guesses of the tensor network
ranks. Additionally, tensor network optimization tools are well-understood in lit-
erature and have nice properties: they are well-posed for fixed ranks (even with
incorrectly fixed ranks) and enjoy local linear convergence under mild conditions.
Furthermore, the entire method is ‘curse-of-dimensionality’-free in storage and
computation.

This chapter has been published in:

Gunes, B., van Wingerden, J.-W., and Verhaegen, M. Tensor networks for MIMO
LPV system identification. Submitted to International Journal of Control, 2017b

Finally in Chapter 5, the conclusions and recommendations are presented. A visual-
ization of the thesis outline is presented in Fig. 1.6.

10This extension makes the method ‘curse-of-dimensionality’-free in memory and computation.
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Figure 1.6: This figure shows an illustration of the thesis outline. In this chapter the research ques-
tion and its sub-questions have been introduced. The next three chapters each tackle one sub-
question. Finally, the sub-answers are combined in the final conclusion chapter.
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2
PREDICTOR-BASED TENSOR REGRESSION

(PBTR) FOR LPV SUBSPACE

IDENTIFICATION

The major bottleneck in state-of-the-art Linear Parameter Varying (LPV) subspace meth-
ods is the curse-of-dimensionality during the first regression step. In this paper, the origin
of the curse-of-dimensionality is pinpointed and subsequently a novel method is proposed
which does not suffer from this bottleneck. The problem is related to the LPV sub-Markov
parameters. These have inherent structure and are dependent on each other. But state-
of-the-art LPV subspace methods parametrize the LPV sub-Markov parameters indepen-
dently. This means the inherent structure is not preserved in the parametrization. In turn
this leads to a superfluous parametrization with the curse-of-dimensionality. The solu-
tion lies in using parametrizations which preserve the inherent structure sufficiently to
avoid the curse-of-dimensionality. In this paper a novel method based on tensor regression
is proposed. This novel method is named the Predictor-Based Tensor Regression method
(PBTR). This method preserves the inherent structure sufficiently to avoid the curse-of-
dimensionality. Simulation results show that PBTR has superior performance with respect
to both state-of-the-art LPV subspace techniques and also non-convex techniques.

2.1. INTRODUCTION
Identification problems can be seen as inverse problems. Given some observations and
a model structure, they try to infer the values of the parameters characterizing the sys-
tem. Better results can be obtained both by better observations and richer model struc-
tures. One way to obtain richer model structures, is to incorporate more structure of the
underlying problem. For some systems this can be achieved by starting to use Linear
Parameter Varying (LPV) model structures (Giarré et al., 2006). In this paper, we develop
novel methods for Linear Parameter Varying (LPV) subspace identification.

This chapter is a reprint of the paper (Gunes et al., 2017) published in Automatica.
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LPV systems are a very useful subclass of non-linear systems. They are time-varying
systems, but their dependence on time is strictly through a scheduling sequence. This
system description is very useful for applications for which the scheduling sequence is
known. Some application examples are wind turbines (Bianchi et al., 2005; Gebraad
et al., 2013), aircraft applications (Balas, 2002), batteries (Remmlinger et al., 2013) and
compressors (Giarré et al., 2006). Unlike descriptions of systems that are completely
non-linear, there are control methodologies available for LPV systems which can guar-
antee stability and performance in the face of uncertainties (Scherer, 2001). These con-
trol methodologies of course require models of the system, which can be obtained from
first principles approaches or from identification.

Our focus is on the development of novel LPV identification methods. More specif-
ically, we allow for arbitrarily varying scheduling sequence. This class of systems also
encompasses bilinear systems, where the scheduling sequence equals the inputs. Mod-
els can be obtained from experimental data by using identification methods. LPV
Identification can be divided into global and local approaches. Global approaches
perform only one identification experiment, while local approaches perform several ex-
periments at fixed scheduling parameters and then interpolate. Therefore, they perform
differently depending on the application (De Caigny et al., 2009) , (Lovera and Mercere,
2007) , (Shamma, 2012). In this paper only global approaches will be discussed. There
are two major approaches to (global) LPV identification: the subspace approach and
the Prediction Error (PE) approach. Both have received considerable attention in litera-
ture (Bamieh and Giarre, 2002; Tóth et al., 2012; van Wingerden and Verhaegen, 2009).
The advantage of subspace methods is that they produce state-space models which
can be directly used by the mainstream LPV control design methodologies (Scherer,
2001). This is advantageous, because transforming between input-output and state-
space models in the LPV setting is non-trivial (Tóth et al., 2012). Another advantage is
that subspace methods can extend naturally to Multiple Input Multiple Output (MIMO)
and closed-loop systems. But they also have a major disadvantage: they suffer from
the curse-of-dimensionality and yield unwieldy parameter counts (van Wingerden and
Verhaegen, 2009). There are several solutions proposed in literature. Some solutions
are based on regularization, such as Tikhonov or Nuclear Norm regularization (van
Wingerden and Verhaegen, 2009; Gebraad et al., 2011). Some other solutions are tailored
towards scheduling sequences which are periodic (Felici et al., 2007), white noise (Fa-
voreel et al., 1999) or piecewise constant (van Wingerden et al., 2007). However these
solutions either only partially alleviate this bottleneck or only work for specific cases.

In this paper the origin of the curse-of-dimensionality of LPV subspace methods is
pinpointed. It is shown that the curse-of-dimensionality appears when structure of the
LPV sub-Markov parameters is not preserved in the parametrization. More specifically,
not all the structure of the LPV sub-Markov parameters need to be preserved. This will
be made clearly visible by reformulating the LPV data equation using tensors. Such a
reformulation will be presented using the inner product of a structured LPV sub-Markov
parameter tensor and a corresponding data tensor. Based on this insight, a novel method
based on tensor regression (Zhou et al., 2013; Lu et al., 2011; Guo et al., 2012) is proposed.
Tensor regression is generally used in order to deal with curse-of-dimensionality, such
as Magnetic Resonance Imaging (MRI) data (Zhou et al., 2013). Tensor arise naturally in
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several more applications such as facial recognition (Vasilescu and Terzopoulos, 2002)
and gait recognition (Lu et al., 2008), and preserving that structure can be highly bene-
ficial (Signoretto et al., 2010). The novel method preserves structure just sufficiently to
avoid the curse-of-dimensionality. This method is named the Predictor-Based Tensor
Regression method (PBTR). Simulation results show that this method has higher perfor-
mance than both state-of-the-art (LPV subspace) methods and also other non-convex
methods in the sense of variance accounted for.

In previous work, we presented variants of PBTR for both for LTI (Gunes et al.,
2015a,b) and LPV (Gunes et al., 2015c) systems. The novel LPV parametrization pre-
sented here, has been presented before in Gunes et al. (2015c) using unnecessarily
complicated matrices. In this paper we now present everything explicitly using tensor
forms in order to greatly improve clarity on the true system, the parametrizations of sev-
eral methods and the cause of the curse-of-dimensionality. These tensor forms are the
inherent form for tensor regression. This also allows for a clear discussion of the design
choices made with PBTR. Furthermore, we compare PBTR with existing non-convex
methods, and present simulation results which show that PBTR can outperforms them
in terms of variance. We do remark that the formal proof to generalize these simulation
results remains an open issue. This paper provides a complete and concise investigation
of tensor regression for LPV subspace identification.

The outline of this paper is as follows. The basics of LPV subspace identification are
discussed in the next section. Afterwards in Section 2.3, PBTR is presented together with
its motivations. Simulations results are presented in Section 2.4. Finally the conclusions
are presented.

2.2. LPV SUBSPACE IDENTIFICATION
In this section, LPV subspace identification is reviewed. The focus will be on the work
of van Wingerden and Verhaegen (2009) and Verdult et al. (2003).

An LPV system can be described by a discrete LPV state-space equation:

xk+1 = A(µk )xk +B(µk )uk +wk (2.1a)

yk =C (µk )xk +D(µk )uk + vk , (2.1b)

where x ∈Rn , u ∈Rr and y ∈Rl are the state, input and output vector variables. This de-
scription takes into account both process noise w and measurement noise v . The sub-
script k indicates the sample number. The matrices A, B , C and D are the appropriately
dimensioned state-space matrices. The scheduling sequence µk is time-varying and af-
fects the state-space matrices. We assume that the relation of the scheduling sequence
to the state-space matrices is affine:

A(µk ) =
m∑

i=1
µ(i )

k A(i ), (2.2)

and similarly for the other state-space matrices. The scalar µ(i )
k is defined as the k-th

sample of the i -th scheduling parameter, and µ(1)
k = 1. Additionally we assume in this

paper that:
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Assumption 2.2.1 The scheduling sequence µk is known.

For presentation reasons we also restrict ourselves to LPV systems whose output equa-
tions are independent of the scheduling sequence. We also omit D for presentation pur-
poses. The extension to include D is straight-forward.

For identification purposes, the innovation representation is commonly used (Ljung,
1999). This representation uses the innovation term e to describe the system. For our
LPV system, the resulting expression becomes:

xk+1 =
m∑

i=1
µ(i )

k

(
A(i )xk +B (i )uk +K (i )ek

)
(2.3a)

yk =C xk +ek (2.3b)

This representation uses the properties of the Kalman filter.
If the system is closed-loop, then the inputs and noise are correlated due to the

feedback. This causes open-loop identification methods to produce biased estimates.
The state-of-the-art (LPV subspace) method presented in this section is a closed-loop
method, and deals with the correlation between the input and noise by using a predictor-
based representation of (2.3):

x̂k+1 =
m∑

i=1
µ(i )

k

(
Ã(i )xk + B̄ (i )

[
uk

yk

])
(2.4a)

yk =C xk +ek , (2.4b)

where Ã(i ) = A(i ) −K (i )C and B̄ (i ) = [B (i ),K (i )]. This representation has two nice proper-
ties. First, notice that now the innovation only appears at the output equation. Second,
the equations now describe the observer error states and use the corresponding observer
error dynamics Ã(i ) = A(i ) −K (i )C . The observer error dynamics can be assumed to be
uniformly exponentially stable (van Wingerden and Verhaegen, 2009; Chiuso, 2007; Jans-
son, 2005), and hence the influence of the states at time k will decay with time. This can
be exploited. It appears that if the LPV description (2.4) is (uniformly) exponentially sta-
ble, then it can be approximated arbitrarily well under the assumption that the effect of
an initial state is exactly zero after some p time steps (Knudsen, 2001). In other words:
the current state can be arbitrarily well approximated by using the p past inputs and
outputs without any (initial) states:

x̂k+p ≈KZk+p , (2.5)

where K contains the (LPV sub-Markov) parameters and Zk the effective (past input and
output) data. In this factorization (van Wingerden and Verhaegen, 2009), the scheduling
sequence is absorbed into Z and K is independent of the scheduling sequence. These
two matrices will be defined explicitly later in this section. The output equation follows
directly:

yk+p ≈CKZk+p +ek+p , (2.6)

which is very useful for the first identification step because it directly allows for linear
regression. Next, for completeness we present the parameter matrix CK and effective
data matrix Zk .
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The matrix CK contains the sub-Markov parameters and is independent of the
scheduling sequence. Recall that the scheduling sequence is absorbed into Zk . The
matrix CK is a function of the predictor-based state-space matrices:

CK= [Lp , . . . ,L1], (2.7)

where L j contains all possible routes from inputs to outputs of length ( j +1):

C1 = [B̄ (1), . . . , B̄ (m)] (2.8a)

C2 = [Ã(1)C1, . . . , Ã(m)C1] (2.8b)

Ci+1 = [Ã(1)Ci , . . . , Ã(m)Ci ] (2.8c)

L j =CC j (2.8d)

Notice that this definition is slightly different from van Wingerden and Verhaegen (2009)
in the sense that we absorb the C matrix into L.

During the first regression step of predictor-based methods, the matrix CK has to be
estimated. But unlike in the LTI case, CK now has a very large number of elements:

q = l (l + r )
p∑

j=1
m j (2.9)

This creates a problem for linear regression because linear regression uses as much pa-
rameters as there are elements in CK, namely q . More specifically, state-of-the-art LPV
subspace methods suffer from the curse-of-dimensionality:

Definition 2.2.1 Identification methods suffer from the curse-of-dimensionality if their
number of parameters scales exponentially with the past window p.

The main contribution of this paper is a novel method which does not suffer from the
curse-of-dimensionality and has good numeric properties.

The effective data matrix Zk is:

Zk = N p
k−p Zk , (2.10)

where N p
k−p contains the scheduling sequence and Zk the input-output data relevant to

yk . The matrix N p
k is:

N p
k =


Pp|k 0 · · · 0

0 Pp−1|k+1 · · · 0
...

...
. . .

...
0 0 · · · P1|k+p−1

 , (2.11a)

Pp|k =µk+p−1 ⊗·· ·⊗µk ⊗ Ir+l , (2.11b)

where ⊗ is defined as the Kronecker product (Brewer, 1978). The matrix Zk is:

Zk =

zk−p
...

zk−1

 , zk =
[

uk

yk

]
(2.12)
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The general estimation procedure is as follows. First, the matrix CK is estimated
using the data-equation (2.6). Afterwards the estimate of CK is used in order to choose a
model order and obtain an estimate of the state sequence. Together with that estimate,
the state-space matrices can be readily estimated (van Wingerden and Verhaegen, 2009).

The state-of-the-art (LPV subspace) method (van Wingerden and Verhaegen, 2009)
follows these same steps, but additionally deploys a dual (or kernel) approach with
Tikhonov regularization in the first step. Its regularization parameter is chosen using
Generalized Cross Validation (Golub et al., 1979). This reduces computational complex-
ity and improves the quality of the estimate in most cases.

Alternatively, non-convex methods exist such as Lee and Poolla (1999) and Verdult
et al. (2003). These methods directly parametrize the state-space matrices (2.3). The
resulting parametrizations are polynomial and very sensitive to local minima. In order
to somewhat ease this issue, most of these methods assume K = 0. In this paper PBTR is
compared among others with the output-error method of Verdult et al. (2003).

In the next section, the novel representation and PBTR are presented.

2.3. PREDICTOR-BASED TENSOR REGRESSION
The novel method, Predictor-based Tensor Regression, is presented in this section. First
some general (tensor regression) expressions are presented. Afterwards we show that
the LPV subspace identification problem contains structure that can be exploited. This
can be done using tensor regression in order to avoid the curse-of-dimensionality. We
show how the LPV sub-Markov parameters indeed form a parameter tensor. Then the
parametrization of PBTR and its algorithm are presented.

2.3.1. GENERAL TENSOR REGRESSION EXPRESSIONS
We first present some general (tensor regression) expressions.

Define [M ]i , j as the entry of M at row i and column j . Let [M ]:, j and [M ]i ,: respec-
tively be a column and row vector. For a two-by-two matrix M :

M =
[

[M ]1,1 [M ]1,2

[M ]2,1 [M ]2,2

]
=

[
[M ]1,:

[M ]2,:

]
=

[
[M ]:,1 [M ]:,2

]
(2.13)

For both row and column vectors, define [v]i as the i -th entry of v .
We define an operator to form tensors from a set of vectors, like in Zhou et al. (2013).

Let βd represent a vector with size di -by-1. Then the outer product β1 ◦β2 ◦ · · · ◦βD is a
tensor of size Rd1,d2,...,dD with entries:

[β1 ◦ · · · ◦βD ]i1,...,iD =
D∏

d=1
[βd ]id (2.14)

A tensor can be represented in several forms. For the use of tensor regression, the
most natural form is the rank-R decomposition (Zhou et al., 2013) (or CANonical DE-
Composition/PARAllel FACtors in psychometrics (Kolda and Bader, 2009)). This decom-
position decomposes a tensor into the sum of exactly R outer products. For example
consider a tensor T with D dimensions. This tensor can then be rank-R decomposed
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into:

T =
R∑

r=1
β(r )

1 ◦β(r )
2 ◦ · · · ◦β(r )

D , (2.15)

where the β(∗)
∗ represent vectors and ◦ is the outer product (Zhou et al., 2013) which

turns vectors into a tensor. The subscript indicates the vector group, and the superscript
indicates which individual vector to take. There are in total R times D vectors.

In the succeeding subsections, the structure of the LPV subspace problem and PBTR
are presented explicitly and in tensor form.

2.3.2. THE HIGHLY-STRUCTURED PARAMETER TENSOR
In this subsection we use the LPV sub-Markov parameters to build a highly-structured
parameter tensor. We present this tensor in rank-R decomposition form, such that ten-
sor regression can be directly applied. This will allow for a clear view on the parametriza-
tion of PBTR and why it is sufficient to avoid the curse-of-dimensionality.

We present the structure of the LPV sub-Markov parameters explicitly in tensor form.
For this purpose, consider the LPV sub-Markov parameters:

CK= [Lp ,Lp−1, . . . ,L1] (2.16)

For presentation purposes, consider the part:

L2 =C [Ã(1)B̄ (1), Ã(1)B̄ (2), Ã(2)B̄ (1), · · · Ã(m)B̄ (m)]

Notice that there is structure present. This structure becomes more apparent if we re-
organize the parameters to:

L̃2 =

C Ã(1)B̄ (1) C Ã(1)B̄ (2) . . . C Ã(1)B̄ (m)

...
...

. . .
...

C Ã(m)B̄ (1) C Ã(m)B̄ (2) . . . C Ã(m)B̄ (m)

 ,

or even more clear:

L̃2 =


C Ã(1)

C Ã(2)

...
C Ã(m)

 [B̄ (1), B̄ (2), . . . , B̄ (m)], (2.17)

where the reorganization changed the size from l -by-(l + r )m2 to lm-by-(l + r )m.
However, this description using matrix products is not directly suitable for tensor

regression. For that reason we now move towards a rank-R decomposition form, which
is a sum of outer products of vectors. First we solve this problem for one output C1 and
one effective input B̄1. Equation (2.17) then becomes:

L̄1,1
2 =


C1 Ã(1)

C1 Ã(2)

...
C1 Ã(m)

 [B̄ (1)
1 , . . . , B̄ (m)

1 ], (2.18)
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Then we can rewrite the equation above by splitting out every single summation inside
the matrix multiplications:

L̄1,1
2 =

n∑
i=1

n∑
j=1


[C1]i [Ã(1)]i , j

[C1]i [Ã(2)]i , j
...

[C1]i [Ã(m)]i , j

 [[B̄ (1)
1 ] j , . . . , [B̄ (m)

1 ] j ],

or using the fact that [C1]i is scalar:

L̄1,1
2 =

n∑
i=1

n∑
j=1

[C1]i


[Ã(1)]i , j

[Ã(2)]i , j
...

[Ã(m)]i , j

 [[B̄ (1)
1 ] j , . . . , [B̄ (m)

1 ] j ]

Now there are just products of vectors instead of products of matrices. Hence, we can set
up the following rank-R decomposition:

L̄1,1
2 =

n∑
i=1

n∑
j=1

v (i )
1 ◦ v (i , j )

2 ◦ v ( j )
3 (2.21)

where we have:

ṽ (i )
1 = [C ]1,i , v (i , j )

2 =

 [Ã(1)]i , j
...

[Ã(m)]i , j

 , ṽ ( j )
3 =


[B̄ (1)

1 ] j
...

[B̄ (m)
1 ] j

 ,

where tildes have been used to indicate definitions which are only valid for the single
output and single effective input case (2.18).

Now we can extend to the case of a full C matrix. This is done by redefining v (i )
1 .

While previously it was a scalar, we now turn it into a vector. The resulting outer product
becomes three-dimensional. Simply define:

v (i )
1 = [C ]:,i (2.22)

Now we can extend to the case of a full B̄ matrix as well. This is more involved, because
we already had a vector group devoted to B̄1. The solution is to devote two vector groups
to B̄ . First, we define v3 to incorporate the entire B̄ matrix. This requires another super-
script index κ̄:

v ( j ,κ̄)
3 =

 [B̄ (1)] j ,κ̄
...

[B̄ (m)] j ,κ̄

 (2.23)

Notice that previously κ̄was fixed at one. Also notice that j cycles the states, and κ̄ cycles
the width of B̄ (#). We want to map this added complexity on a new dimension. For that
purpose, we define v4 as:

v (κ̄)
4 =

 0̄κ̄−1

1
0̄(l+r )−κ̄

 (2.24)
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If we then use:

L̄2 =
n∑

i=1

n∑
j=1

l+r∑
κ̄=1

v (i )
1 ◦ v (i , j )

2 ◦ v ( j ,κ̄)
3 ◦ v (κ̄)

4 , (2.25)

we obtain aRl ,m,m,l+r tensor where the last dimension cycles over the width of B̄ (#). That
is, [L̄2]:,:,:,i corresponds to the i -th column of all B̄ (#). Notice that L̄2 and L2 have the
same entries, but in different positions. Basically, we reorganized L2 into L̄2 in order to
make it suitable for rank-R decomposition and tensor regression.

The resulting expression (2.25) is valid for any LPV system, but describes only the LPV
sub-Markov parameters in L2. Hence, we need to extend this formulation to capture
all the LPV sub-Markov parameters. Before searching for an expression containing all
the LPV sub-Markov parameters, we first investigate an expression containing the LPV
sub-Markov parameters of Lp . Its added complexity is the appearance of multiple Ã
within every product. We accommodate this complexity by using multiple v2, one for
each appearance of Ã within every product:

L̄2 =
n∑

i , j

l+r∑
κ̄=1

v (i )
1 ◦ v (i , j )

2 ◦ v ( j ,κ̄)
3 ◦ v (κ̄)

4

L̄p =
n∑

i , j ,δ1,...,δp−2

l+r∑
κ̄=1

v (i )
1 ◦ v (i ,δ1)

2 ◦ v (δ1,δ2)
2 ◦ . . .

◦ v
(δp−2, j )
2 ◦ v ( j ,κ̄)

3 ◦ v (κ̄)
4 ,

where L̄p is aRl ,m,m,...,m,l+r tensor. Notice that the superscripts continue to form a chain
link (i ,δ1), (δ1,δ2) etc. This is a result of the underlying matrix multiplications, as was
explained for (2.20).

The following step is to define a single tensor which contains all the LPV sub-Markov
parameters. This requires the stacking of all L̄∗. These will be stacked over a new dimen-
sion, which runs from 1 to p and has index p̄. So L̄1 will be at the first index and so forth.
However, the tensors L̄∗ do not have equal size. The solution is to make all these tensors
the same size. For this purpose, consider the first product of the first L∗:

L1 = [C B̄ (1), . . . ] (2.27a)

L2 = [C Ã(1)B̄ (1), . . . ] (2.27b)

L3 = [C Ã(1) Ã(1)B̄ (1), . . . ] (2.27c)

...

The dimension mismatch of different L̄# appears because they have a different number
of terms in their products. This can be easily solved by adding identity matrices:

L1 = [C In In B̄ (1), . . . ] (2.28a)

L2 = [C Ã(1)In B̄ (1), . . . ] (2.28b)

L3 = [C Ã(1) Ã(1)B̄ (1), . . . ] (2.28c)

...
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Now every L∗ has the same number of terms inside their products, and we can redefine:

Definition 2.3.1 The tensors L̄ j

Redefine the tensors L̄ j as:

L̄p =
n∑

i , j ,δ1,...,δp−2

l+r∑
κ̄=1

v (i )
1 ◦ v (i ,δ1)

2 ◦ v (δ1,δ2)
2 ◦ . . .

◦ v
(δp−2, j )
2 ◦ v ( j ,κ̄)

3 ◦ v (κ̄)
4

L̄p−1 =
n∑

i , j ,δ1,...,δp−2

l+r∑
κ̄=1

v (i )
1 ◦ v (i ,δ1)

2 ◦ v (δ1,δ2)
2 ◦ . . .

◦ [I ]δp−2, j 1̄m ◦ v ( j ,κ̄)
3 ◦ v (κ̄)

4

...

L̄2 =
n∑

i , j ,δ1,...,δp−2

l+r∑
κ̄=1

v (i )
1 ◦ v (i ,δ1)

2 ◦ [I ]δ1,δ1 1̄m ◦ . . .

◦ [I ]δp−2, j 1̄m ◦ v ( j ,κ̄)
3 ◦ v (κ̄)

4

L̄1 =
n∑

i , j ,δ1,...,δp−2

l+r∑
κ̄=1

v (i )
1 ◦ [I ]i ,δ1 1̄m ◦ [I ]δ1,δ2 1̄m ◦ . . .

◦ [I ]δp−2, j 1̄m ◦ v ( j ,κ̄)
3 ◦ v (κ̄)

4 ,

such that all L̄i have the same dimensions which is Rl ,m,m,...,m,m,l+r . The tensor L̄i con-
tains all entries of Li and their transformation back and forth is one-to-one. Basically the
smaller tensors are padded with themselves until they have the appropriate size.

Now we can safely stack L̄∗ over a new dimension to obtain the parameter tensor.
Define:

Definition 2.3.2 Define the tensor L̄ ∈Rl ,m,...,m,l+r,p as:

L̄=
p∑
p̄
L̄p̄ ◦

0̄p̄−1

1
0̄p−p̄

 , (2.30)

using Definition 2.3.1, (2.22), (2.22), (2.23) and (2.24). Notice that L̄ and CK have the
same entries (with some duplicates), but in different positions. Basically, we reorganized
CK into L̄ in order to make it suitable for rank-R decomposition and tensor regression.

We have finished deriving the highly-structured parameter tensor L̄. Its expression
is different from the parameter matrix CK, but contains the same LPV sub-Markov pa-
rameters. The new expression will be useful for clarifying which pieces of structure
are discarded in state-of-the-art methods and why the curse-of-dimensionality appears.
This relates strongly to the chosen parametrizations. In the next section, we present the
parametrizations of both the state-of-the-art method and PBTR and investigate the re-
sulting parameter counts.
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2.3.3. PARAMETRIZATIONS

In this subsection, we present the parametrization of PBTR and compare it to the
parametrization of state-of-the-art methods. We show which pieces of structure are
ignored where, and what causes the curse-of-dimensionality to appear.

Consider the LPV predictor-based data equation:

yk ≈CKZk +ek (2.31)

This equation is parametrized by state-of-the-art LPV subspace methods element-
wise as:

ŷk (θ) = [CK](θ)Zk (2.32)

As a result, the parameter count of state-of-the-art LPV subspace methods is equal to
the number of entries in CK. Because this number scales exponentially with the past
window p, so these methods suffer from the curse-of-dimensionality.

The PBTR is a tensor regression method, therefore we present a novel rewritten LPV
data equation which is more suitable for tensor regression. This data equation uses the
inner product of the parameter tensor L̄ (Definition 2.3.2) and and appropriate data ten-
sor Z̄k . This appropriate data tensor is a reorganization of Zk which matches the reorga-
nization of CK into L̄, where the data corresponding to duplicate parameters are scaled
down. This tensor-form LPV data equation is:

yk ≈ < L̄,Z̄k > +ek , (2.33)

where the inner product is redefined in order to deal with multiple outputs:

Definition 2.3.3 Consider the inner product of two tensors: < T ,U >. Normally this re-
quires T and U to have equal size. But in order to deal with multiple outputs, we extend
the definition of this operator as follows. Let T ∈ Rl ,d1,...,dN and U ∈ Rd1,...,dN . Then their
inner product exists and equals:

< T ,U >=

< T1,U >
...

< Tl ,U >

 , (2.34)

where Ti ∈Rd1,...,dN is an appropriate part of T .

The parametrization of PBTR is a tensor regression parametrization, and as a result
multi-linear in nature. Additionally, the parametrization revolves around the predictor-
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based state-space matrices. It can then be written as:

L̄(θ) =
p∑
p̄
L̄p̄ (θ)◦

0̄p̄−1

1
0̄p−p̄

 (2.35a)

L̄p (θ) =
n∑

i , j ,δ1,...,δp−2

l+r∑
κ̄=1

v (i )
1 (θ1)◦ v (i ,δ1)

2 (θ2,1)◦ . . .

◦ v
(δp−2, j )
2 (θ2,p−1)◦ v ( j ,κ̄)

3 (θ3)◦ v (κ̄)
4 (2.35b)

L̄p−1(θ) =
n∑

i , j ,δ1,...,δp−2

l+r∑
κ̄=1

v (i )
1 (θ1)◦ v (i ,δ1)

2 (θ2,1)◦ . . .

◦ [I ]δp−2, j 1̄m ◦ v ( j ,κ̄)
3 (θ3)◦ v (κ̄)

4 (2.35c)

where each individual vector is parametrized element-wise. The sizes of the param-
eter group are as follows. The θ1 has l n parameters, θ2,i has n2m parameters for all
i ∈ {1, . . . , p −1}, and θ3 has (l +r )nm parameters. Notice that this parametrization is not
a direct parametrization in the LPV predictor-based state-space matrices (2.4), because
the Ã(i ) are spuriously parametrized in order to obtain a multi-linear parametrization.
Notice that PBTR exploits more structure than the state-of-the-art LPV subspace meth-
ods do and does not suffer from the curse-of-dimensionality.

It is also possible to use the polynomial non-convex method (Verdult et al., 2003),
which enforces available structure by directly parametrizing the regular state-space ma-
trices. Notice that this method does not have a second estimation step. This method
also does not suffer from the curse-of-dimensionality, and the surplus enforced struc-
ture slightly further reduces the parameter count. Notice that both PBTR and the poly-
nomial non-convex method have a non-convex parametrization. Therefore they require
an initial estimate (including a model order). This initial estimate can be obtained from
state-of-the-art (LPV subspace) methods. This places PBTR and the polynomial non-
convex method as refinement methods for LPV subspace methods.

The parameter counts are summarized in Table 2.3.3. Notice that the parameter
counts of the evaluated methods scale differently. The state-of-the-art LPV subspace
methods suffer from the curse-of-dimensionality, because their parameter count scales
exponentially with p. Usage of kernels (dual approaches) changes the parameter count
to scale with data instead, but have the disadvantage that they result in ill-conditioned
problems. Regularization can only partially solve this problem (van Wingerden and Ver-
haegen, 2009). Both PBTR and the polynomial method do not suffer from the curse-of-
dimensionality.

This concludes the evaluation of the parameter counts of PBTR and state-of-the-art
methods. In the next subsection, the full PBTR algorithm is presented.

2.3.4. ALGORITHM

Algorithm 2.3.1 The PBTR
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Method Parameter count

LPV-PBSIDopt (primal) l (r + l )
p∑

j=1
m j

LPV-PBSIDopt (dual) l (N −2p)

PBTR
nl +n(l + r )m +n2m(p −1)

(with free parametrization)

Polynomial method nl +nr m +n2m

Table 2.1: Comparison of the parameter counts for the (first) estimation step

Define the cost function of PBTR as:

VN (θ) =
N∑

k=1
(yk − ŷk (θ))T (yk − ŷk (θ)), (2.36a)

ŷk (θ) =< L̄(θ),Z̄k > (2.36b)

where ŷk is the model output, L̄(θ) is defined in (2.35) and Z̄k is defined in the previ-
ous subsection. This is a multi-linear parametrization in the predictor-based state-space
matrices with additional structure. It is possible to obtain a consistent estimate of all θ us-
ing multi-linear optimization (Zhou et al., 2013), for cases where equation (2.6) is not an
approximation but an equality. This can be done using Alternating Least Squares (Zhou
et al., 2013) or MATLAB’s ’fmin’ command. Notice that the only indeterminacy is modulo
global state-coordinate transformation, which is common. After obtaining an estimate of
L̄, an estimate of CK can be directly and one-to-one constructed. The succeeding steps
follow the same methodology as other predictor-based subspace methods as presented in
Section 2.2.

This concludes the section on PBTR. In the next section, the simulation results are
presented.

2.4. SIMULATIONS
In this section simulation results are presented in order to compare PBTR with state-of-
the-art methods for several cases in terms of bias, variance and parameter count.

2.4.1. SIMULATION SETTINGS
In this subsection, the general simulation settings and some definitions are presented.

The results presented in this paper are based on 100 Monte Carlo simulations. For
every Monte Carlo simulation different realizations of both the input and the innovation
vector were used. During every Monte Carlo simulation, first estimates of the state-space
matrices are obtained from both the unregularized and the regularized variant of the LPV
subspace method of van Wingerden and Verhaegen (2009). Then the estimate of the reg-
ularized variant is used as an initial estimate for the non-convex methods: PBTR and the
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method of Verdult et al. (2003). It is worth noting that we do not consider the prediction
error variant of the method of Verdult et al. (2003), because the authors indicated that
that variant performs badly. The variant that we do use, fixes the parameters of K to zero
in order to somewhat relieve its involved parametrization. All methods are provided with
the system order n, which is assumed to be known, and the information that D = 0 and
C is LTI.

We also present the following settings which are the same for every case. The matrix
K (i ) for i = {1, . . . ,m} is obtained from the Discrete Algebraic Ricatti Equation (DARE)
with A(i ), C and identity covariance of the concatenated process and measurement
noise. Every signal of the input vector uk and innovation vector ek is white noise. The
data size N is chosen as 200, and both the past window p and the future window f are 6.

The quality of the estimates is evaluated by investigating the Variance Accounted For
(VAF) on a validation data set different from the one used for identification, in the sense
that different realizations of both the input and the innovation vector are used. The VAF
for single-output systems is defined as (van Wingerden and Verhaegen, 2009):

V AF (ȳk , ŷk ) = max

{
1− var (ȳk − ŷk )

var (ȳk )
,0

}
∗100%

Notice that the noise-free simulated output of the system can be used when evaluating
the VAF, because the data is obtained from simulations. This allows the VAF to reach
100% when the model is equal to the true system modulo global state-coordinate trans-
formations, such that the analysis becomes more clear. The noise-free (simulated) out-
put of the system is denoted as ȳk . Similarly, ŷk is used for the noise-free (simulated)
model output. The var (∗) operator denotes the variance.

In the case that a non-convex method produces an estimate with an identification
data VAF less than half the identification data VAF of the initial estimate, the refined esti-
mate is rejected and substituted directly by the initial estimate. This is possible, because
the identification data is available during estimation. Notice that this does not prevent
local minima, but merely serves to reject poor optimization results.

The cases and their results are presented in the following subsection. A parameter
count investigation is performed in the last subsection.

2.4.2. SIMULATION RESULTS CASE 1
This case uses the following LPV state-space system (2.3):

[A(1), A(2)] =

 4
15

1
15

− 1
6

1
30

∣∣∣∣∣∣∣
3

20 − 1
60

− 1
60

3
20

 ,

[B (1),B (2)] =
1

0

∣∣∣∣∣∣0.2

0.2

 ,C =
[

1 0
]

,

and the Signal-to-Noise Ratio (SNR) is 1. The remaining settings are as described in Sub-
section 2.4.1. The system is evaluated at two different affine scheduling sequences with:

µ(2)
k = cos(2πk

Π

N
)/2+0.2,
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whereΠ= 20 for the first andΠ= 4 for the second scheduling sequence.

Scheduling Method VAF

Π= 20

LPV-PBSIDopt (kernel) 95.8

Reg. LPV-PBSIDopt (kernel) 96.6

PBTR 98.0

Polynomial non-convex method 96.5

Π= 4

LPV-PBSIDopt (kernel) 23

Reg. LPV-PBSIDopt (kernel) 97.0

PBTR 98.1

Polynomial non-convex method 96.7

Table 2.2: Mean VAF for different methods for Case 1

Figure 2.1: Boxplots of the VAF results of Case 1 for the evaluated methods at scheduling sequence
1. The methods are: 1. Reg. LPV-PBSIDopt , 2. PBTR, 3. Polynomial method.

From the results of Table 2.2 it can be seen that PBTR has superior VAF in comparison
to the other methods. The other (polynomial) non-convex method has comparable VAF
to state-of-the-art LPV subspace method. Furthermore, the VAF of the unregularized
variant of the state-of-the-art LPV subspace method appears to vary considerably with
the scheduling sequence. These results are further supported by Fig. 2.1 and 2.2.
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Figure 2.2: Boxplots of the VAF results of Case 1 for the evaluated methods at the scheduling se-
quence 2. The methods are: 1. Reg. LPV-PBSIDopt , 2. PBTR, 3. Polynomial method.

2.4.3. SIMULATION RESULTS CASE 2
This case uses the following LPV state-space system (2.3):

[A(1), A(2), A(3)] =

 4
15

1
15

− 1
6

1
30

∣∣∣∣∣∣∣
3

20 − 1
60

− 1
60

3
20

∣∣∣∣∣∣∣
29

405
2

81

1
81

52
405

 ,

[B (1),B (2),B (3)] =
1

0

∣∣∣∣∣∣0.2

0.2

∣∣∣∣∣∣0.2

−0.2

 ,C =
[

1 0
]

,

and the Signal-to-Noise Ratio (SNR) is 2. The remaining settings are as described in Sub-
section 2.4.1. The system is evaluated at two different affine scheduling sequences with:

µ(2)
k = cos(2πk

Π

N
)/2+0.2

µ(3)
k = cos(2πk

Π

2.5N
+0.5π)/3,

whereΠ= 20 for the first andΠ= 4 for the second scheduling sequence.

From the results of Table 2.3 it can be seen that PBTR has superior VAF in comparison
to the other methods. The other (polynomial) non-convex method has comparable VAF
to state-of-the-art LPV subspace method. Furthermore, the VAF of the unregularized
variant of the state-of-the-art LPV subspace method appears to vary considerably with
the scheduling sequence. These results are further supported by Fig. 2.3 and 2.4.
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Scheduling Method VAF

Π= 20

LPV-PBSIDopt (kernel) 81

Reg. LPV-PBSIDopt (kernel) 97.4

PBTR 98.4

Polynomial non-convex method 97.6

Π= 4

LPV-PBSIDopt (kernel) 7.3

Reg. LPV-PBSIDopt (kernel) 97.7

PBTR 98.4

Polynomial non-convex method 97.6

Table 2.3: Mean VAF for different methods for Case 2

Figure 2.3: Boxplots of the VAF results of Case 2 for the evaluated methods at scheduling sequence
1. The methods are: 1. Reg. LPV-PBSIDopt , 2. PBTR, 3. Polynomial method.

2.4.4. SIMULATION RESULTS CASE 3
This case uses the following LPV state-space system (2.3) with:

[A(1), A(2)] =



−1
300

1
30

11
75

8
75

3
20

1
20

−3
20

−3
20

−29
100

1
10

32
75

7
25

11
300

−1
60

−3
100

23
300

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−3
10

1
6

11
30

11
30

1
20

7
60

−1
20

−1
20

−9
20

3
20

31
60

9
20

−1
30

1
30

1
30

1
10


,
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Figure 2.4: Boxplots of the VAF results of Case 2 for the evaluated methods at the scheduling se-
quence 2. The methods are: 1. Reg. LPV-PBSIDopt , 2. PBTR, 3. Polynomial method.

and

[B (1),B (2)] =


1

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣

0.2

0.2

0.2

0.2

 ,C =
[

1 0 0 0
]

,

and the Signal-to-Noise Ratio (SNR) is 0.5. The remaining settings are as described in
Subsection 2.4.1. The system is evaluated at the affine scheduling sequence with:

µ(2)
k = cos(2πk

20

N
)/2+0.2,

Method VAF

LPV-PBSIDopt (kernel) 81

Reg. LPV-PBSIDopt (kernel) 85.1

PBTR 90.8

Polynomial non-convex method 80.9

Table 2.4: Mean VAF for different methods for Case 3

From the results of Table 2.4 it can be seen that PBTR has superior VAF in compari-
son to the other methods. The other (polynomial) non-convex method however fails to
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Figure 2.5: Boxplots of the VAF results of Case 3 for the evaluated methods. The methods are: 1.
Reg. LPV-PBSIDopt , 2. PBTR, 3. Polynomial method.

refine the initial estimates supplied by the state-of-the-art LPV subspace method. These
results are supported by Fig. 2.5.

2.4.5. PARAMETER COUNTS
The parameter counts of the evaluated methods for Cases 1 and 2 are presented in Table
2.5. It is visible that the PBTR has a parameter count roughly in between the state-of-
the-art LPV subspace methods and the polynomial non-convex method. The PBTR does
not suffer from the curse-of-dimensionality, while also having a superior performance
in terms of VAF as shown in the previous subsections.

Method Case 1 Case 2

LPV-PBSIDopt (primal) 252 2184

LPV-PBSIDopt (dual) 188 188

PBTR
50 74

(with free parametrization)

Polynomial method 18 26

Table 2.5: Comparison of the parameter counts for the (first) estimation step for some cases

2.5. CONCLUSIONS
In this paper a novel method for LPV identification was presented, which is named PBTR.
The benefit of PBTR over state-of-the-art LPV subspace methods is that it does not suf-
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fer from the curse-of-dimensionality. This was achieved by first pinpointing the origin
of the curse-of-dimensionality, which appeared to be the ignoring of inherent structure
of the LPV sub-Markov parameters, and then using tensor regression to prevent it. This
does make PBTR a non-convex method. The difference of PBTR with other non-convex
methods is that it uses tensor regression to exploit only the structure necessary to avoid
the curse-of-dimensionality. Though the formal proof remains an open issue, simula-
tion results show that PBTR has better performance with respect to state-of-the-art LPV
subspace techniques and non-convex techniques by looking at the variance.
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3
TENSOR NUCLEAR NORM LPV SUBSPACE

IDENTIFICATION

Linear Parameter Varying (LPV) subspace identification methods suffer from an expo-
nential growth in number of parameters to estimate. This results in problems with ill-
conditioning, memory and computation costs. In literature, attempts have been made to
address the ill-conditioning by using regularization and curse-of-dimensionality by using
dual problems. The effectiveness of regularization hinges on suitable a priori knowledge.
In this paper we propose using an alternative regularization. That is, we first show that the
LPV sub-Markov parameters can be organized into several tensors which are multi-linear
low-rank by construction. Namely, their matricization along any mode is a low-rank ma-
trix. Then we propose a novel convex method with tensor nuclear norm regularization
which exploits this low-rank property. Simulation results show that the novel method has
higher performance than the regularized LPV-PBSIDopt technique in terms of bias and
variance.

3.1. INTRODUCTION
Linear Parameter Varying (LPV) systems have been used in many applications. Some
examples are wind turbines (Bianchi et al., 2005; Gebraad et al., 2011a), aircraft applica-
tions (Balas, 2002), batteries (Remmlinger et al., 2013), compressors (Giarré et al., 2006)
and wafer stages (Wassink et al., 2005; van der Maas et al., 2015). These LPV systems are
linear systems whose dynamics vary with a known time-varying parameter vector. They
are suitable for describing many applications in greater detail than LTI systems can. Just
like for LTI systems, there also exists a powerful control design framework for LPV sys-
tems (Scherer, 2001), which can guarantee stability, performance and robustness. This
is generally not the case for non-linear systems. Most control design frameworks do re-
quire an LPV state-space model of the system.

This chapter is an extended version of the paper (Gunes et al., 2018) published in IEEE Transactions on Auto-
matic Control.
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This model can be obtained from measurement data using system identification.
There are many LPV identification methods which can be classified as global and local
methods (Tóth, 2010; De Caigny et al., 2009; Shamma, 2012). Local methods hinge on
the property that for constant scheduling parameters the LPV system behaves as an LTI
system. They identify LTI models at several fixed constant scheduling parameter condi-
tions and then use interpolation techniques to obtain an LPV model. For applications
where these experiments are possible, this can yield good results (De Caigny et al., 2009;
Tóth, 2010; Leith and Leithead, 2000; Rugh and Shamma, 2000; Shamma, 2012). Global
methods on the other hand do not have this requirement and only use one experiment.
In this paper we focus on global LPV identification methods.

These methods can be further divided into input-output and subspace methods.
Input-output methods yield input-output LPV models and have received considerable
attention in the literature (Tóth, 2010; Laurain et al., 2010; Butcher et al., 2008). But the
preferred model structure for mainstream LPV control design methodologies is state-
space, and transformation from input-output to state-space models is problematic in
the LPV case (Tóth et al., 2012). Subspace methods have also received considerable at-
tention (van Wingerden and Verhaegen, 2009; Felici et al., 2007; Favoreel et al., 1999; van
Wingerden et al., 2007; Gebraad et al., 2011a; Cox and Tóth, 2016; Larimore and Buch-
holz, 2012). They directly produce state-space models, and can deal naturally with mul-
tiple input multiple output and closed-loop systems. In this paper we focus on subspace
methods. If the scheduling sequence has some special structure, for example, is peri-
odic (Felici et al., 2007), white noise (Favoreel et al., 1999) or piecewise constant (van
Wingerden et al., 2007), then tailored methods can be used. However, this is not true
for all applications. There exist several LPV subspace methods for this case (van Winger-
den and Verhaegen, 2009; Gebraad et al., 2011b; Cox and Tóth, 2016), and they suffer
from the ‘curse-of-dimensionality’ during their first regression step. This means that the
number of LPV sub-Markov parameters to be estimated can quickly, vastly exceed the
number of data points. This results in ill-conditioned problems, memory and computa-
tional cost issues. The memory and computational costs can be reduced by solving dual
problems (van Wingerden and Verhaegen, 2009). One way to tackle ill-condition of the
problem is to use regularization. Methods with Tikhonov regularization (van Winger-
den and Verhaegen, 2009) and matrix nuclear norms (Gebraad et al., 2011a) have been
proposed. The former penalizes the magnitude of estimate parameters, and the latter
exploits the approximate low-rank property of the state-revealing matrix. In this paper
we propose using an alternative regularization, which arguably exploits more structure.
Namely, we propose using tensor nuclear norms (Signoretto et al., 2010), in order to ex-
ploit the exact multi-linear low-rank property of the parameter tensor.

Our proposed method can also be seen as an extension of the method presented
in Hjalmarsson et al. (2012). That is, our method extends it to the LPV Multiple Input
Multiple Output (MIMO) with tensors case. Furthermore we provide numeric efficiency
contributions, in order to perform the LPV case computations ‘curse-of-dimensionality’
free.

A tensor is a multi-dimensional generalization of a matrix. That is, it can have more
than two dimensions. Then this multi-dimensional structure can be exploited using
techniques from the tensor framework such as tensor nuclear norms (Signoretto et al.,
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2010). Tensor nuclear norms and nuclear norms in general have received considerable
attention in literature (Recht et al., 2010; Verhaegen and Hansson, 2014; Signoretto et al.,
2010; He et al., 2005; Vasilescu and Terzopoulos, 2002). Matrix nuclear norms can be
used to exploit knowledge that some matrices are low-rank. Tensor nuclear norms can
be used to exploit knowledge that some tensors have low-rank matricizations.

In this paper we propose a novel convex LPV subspace identification method which
uses these tensor nuclear norms as regularization. Namely, as the major contribution
we show and exploit that the LPV sub-Markov parameters can be organized into several
tensors whose matricizations are all low-rank. Additionally, we present three minor con-
tributions to make the optimization ‘curse-of-dimensionality’ free. Firstly, we show how
these regularization terms can be expressed in the dual problem similar to van Winger-
den and Verhaegen (2009). Secondly, we present how the arguments of these tensor nu-
clear norms can be replaced by ‘curse-of-dimensionality’ free arguments while produc-
ing the exact same norm result. Thirdly, we show how these norm results can be com-
puted ‘curse-of-dimensionality’ free by using tensor trains (Oseledets, 2011). In short,
we propose a novel method with tensor nuclear norms together with means to perform
its optimization ‘curse-of-dimensionality’ free.

This paper relates to previous work as follows. In Gunes et al. (2017a,b), the ‘curse-
of-dimensionality’ of the LPV sub-Markov parameters was also tackled by using tensor
techniques. However, in Gunes et al. (2017a) the LPV sub-Markov parameters were or-
ganized in a single padded tensor and then a non-linear (polyadic) decomposition and
parametrization was used. In Gunes et al. (2017b), a tensor train decomposition and
parametrization is used. Both methods do not use multi-linear low-rank properties or
nuclear norms or dual problems and are non-convex refinement methods. The full LPV
sub-Markov tensors and data tensors used in this paper have been generalized from the
tensors presented before in Gunes et al. (2017b). Additionally, the tensor train decompo-
sition of the data tensors have also been generalized from the decomposition in Gunes
et al. (2017b). It is worth remarking that the proposed method is a convex method.

Before presenting the novel method, first essential background material is provided
in Section 3.2. This section covers LPV subspace identification, tensor decompositions,
matrix and tensor nuclear norms. Afterwards the LPV sub-Markov parameter tensors
are presented explicitly in Section 3.3 and proven to be of multi-linear low-rank. Then
in Section 3.5 it is shown how these tensor nuclear norms can be computed ‘curse-of-
dimensionality’-free. This requires the tensor train decompositions of the data tensors in
Section 3.4. Finally the novel method is presented in Section 3.6 and a comparison with
the regularized LPV-PBSIDopt method of van Wingerden and Verhaegen (2009) through
simulation results are presented in Section 3.7.

3.2. BACKGROUND

Prior to presenting the novel method, several related topics are reviewed in this section.
These topics are LPV subspace identification, tensor decompositions and matrix and
tensor nuclear norms.
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3.2.1. FIRST REGRESSION STEP OF LPV SUBSPACE IDENTIFICATION
In this subsection we review LPV subspace identification van Wingerden and Verhaegen
(2009). Firstly, define the signals relevant to the LPV state-space description:

xk ∈Rn̂ , uk ∈Rr , yk ∈Rl , µk ∈Rm , (3.1)

as the state, input, output and scheduling sequence vector at sample number k. The
number n̂ is the system order. Additionally, define the column vector:

µk =
[
µ(1)

k . . . µ(m)
k

]T
(3.2)

Predictor-based methods (Chiuso, 2007; van Wingerden and Verhaegen, 2009) make
use of the innovation representation and predictor-based representation. Therefore the
assumed data-generating system is directly presented as:

xk+1 =
m∑

i=1
µ(i )

k

(
A(i )xk +B (i )uk +K (i )ek

)
(3.3a)

yk =C xk +ek , (3.3b)

where the matrices A(i ), B (i ), C and K (i ) are appropriately dimensioned state, input, out-
put and observer matrices and ek is the innovation signal at sample k. Here, an LTI C
matrix and zero matrix feed-through term D is used as in van Wingerden and Verhaegen
(2009). This is an assumption which is made for presentation and simplicity of deriva-
tion. However, this does not trivialize the bottleneck ‘curse-of-dimensionality’. Further-
more, we assume µk is known and this state-space system has affine dependency on
µk (van Wingerden and Verhaegen, 2009). That is, µ(1)

k = 1 ∀k. By substituting (3.3b)
in (3.3a), the predictor-based representation can be obtained as:

xk+1 =
m∑

i=1
µ(i )

k

(
Ã(i )xk + B̄ (i )

uk

yk

)
(3.4a)

yk =C xk +ek , (3.4b)

where Ã(i ) is A(i ) −K (i )C and B̄ (i ) is [B (i ),K (i )]. Notice that these states are the observer
states. Also, we define p as a past window. Additionally, define the discrete-time time-
varying transition matrix (van Wingerden and Verhaegen, 2009):

Ãk =
m∑

i=1
µ(i )

k Ã(i ) (3.5a)

φ j ,k = Ãk+ j−1 . . . Ãk+1 Ãk (3.5b)

The key assumption of predictor-based methods is that this matrix is exactly zero when
j is greater than or equal to the past window p (van Wingerden and Verhaegen, 2009;
Chiuso, 2007):

φ j ,k ≈ 0 ∀ j ≥ p (3.6)
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This approximation is also used in several LTI methods (van der Veen et al., 2013).
The resulting approximation error can be made arbitrarily small by increasing p if the
predictor-based system is uniformly exponentially stable (Knudsen, 2001). Furthermore,
the introduced bias also disappears as p goes to infinity (but remains hard to quantify
for finite p (Chiuso, 2007)). This assumption is used to obtain the predictor-based data
equation.

But before presenting this data equation, some definitions are given. Define for
brevity the integer q :

q = (l + r )
p∑

j=1
m j , (3.7)

The predictor-based data equation involves the extended LPV controllability matrix (van
Wingerden and Verhaegen, 2009), which is defined as:

K=
[

Lp . . . L2 B̄
]

∈Rn̂×q , (3.8a)

B̄ =
[

B̄ (1) . . . B̄ (m)
]

∈Rn̂×(l+r )m (3.8b)

L2 =
[

Ã(1)B̄ . . . Ã(m)B̄
]

∈Rn̂×(l+r )m2
(3.8c)

Li+1 =
[

Ã(1)Li . . . Ã(m)Li

]
∈Rn̂×(l+r )mi+1

,2 ≥ i ≥ p −1 (3.8d)

This data equation also involves the ‘effective’ data matrix (van Wingerden and Verhae-
gen, 2009):

Zk+p = N p
k Zk+p ∈Rq , (3.9)

where Zk is:

zk+p =
uk+p

yk+p

 , (3.10a)

Zk+p =


zk

zk+1

...

zk+p−1

 (3.10b)

and N p
k is:

N p
k =


P̃p|k 0 · · · 0

0 P̃p−1|k+1 · · · 0
...

...
. . .

...

0 0 · · · P̃1|k+p−1

 , (3.11a)

P̃p|k =µk+p−1 ⊗·· ·⊗µk ⊗ Ir+l , (3.11b)
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where µk is a column vector and the operator ⊗ is the Kronecker product (Brewer, 1978).
One detail is that Zk+p involves samples from k to k+p−1. These definitions and equa-
tion (3.4) allow describing the states as:

xk+p =φp,k xk +KZk+p (3.12)

The effect of the initial state xk can be neglected using assumption (3.6) to obtain:

xk+p ≈KZk+p , (3.13)

which directly results in the predictor-based data equation:

yk+p ≈CKZk+p +ek+p (3.14)

For brevity, we name the entries of CK as the LPV sub-Markov parameters.
However, notice that the size of CK and Zk+p require special care. These matrices

and their sizes are inherent to LPV predictor-based methods. Namely, their number of
elements scale exponentially with the past window. Additionally, as argued earlier in this
section the past window affects the approximation error and bias. In the remainder of
this paper this size increase will be referred to as ‘the curse-of-dimensionality’. Addition-
ally, we refer to the absence of ’the curse-of-dimensionality’ as ‘curse-of-dimensionality
free’.

With these results, an estimate of the LPV state-space matrices can be obtained as
follows. Firstly, stack the data over all relevant samples as:

Z =
[
Zp+1 . . . ZN

]
(3.15a)

Y =
[

yp+1 . . . yN

]
(3.15b)

Notice that the width of Z is N −p because every Zk involves samples from k−p to k−1.
Thus when using all samples, this yields N −p many Zk . Also, assume for persistence of
excitation that [µ1 . . . µN−p+1] has rank m and N −p +1 > m. With these definitions, the
matrix CK is estimated in the first regression step, for example by solving:

minCK||Y −CKZ ||2F (3.16)

In this paper we are mainly interested in the first regression step as it suffers from the
‘curse-of-dimensionality’. Afterwards, this estimate is used to form a rank-revealing ma-
trix. This allows choosing a model order with the assistance of a Singular Value Decom-
position (SVD). Then the state sequence is reconstructed. With this state sequence the
state-space matrices can be readily estimated, see for example van Wingerden and Ver-
haegen (2009).

The size of CK does require special care. In the method of van Wingerden and Ver-
haegen (2009), a dual problem is used to reduce the parameter count in the first regres-
sion step. Using Verdult and Verhaegen (2005), it is shown that the minimum norm so-
lution of (3.16) is equal to the solution of

minα||α||2F with Y −αZTZ = 0 (3.17)
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where α are the Lagrange multipliers or dual parameters, provided Z has full column
rank. Notice that Z ∈Rq×N−p is generally tall and its columns are Zk for different k, so it
having full column rank is a weak assumption. This equivalence motivates the assump-
tion that:

CK=αZT (3.18)

In this paper we will refer to expressions with the LPV sub-Markov parameters as the
primal form and to expressions with the Lagrange multipliers α as the dual form. The
benefit of this dual approach is as follows. Firstly, the dual parameters α and the re-
lated data matrix ZTZ are both ‘curse-of-dimensionality’ free in size. Secondly, ZTZ
can be computed ‘curse-of-dimensionality’ free in memory and computation. In fact,
the entire method of van Wingerden and Verhaegen (2009) can be performed ‘curse-of-
dimensionality’ free in memory and computation. For completeness, we present the
data equation:

Y ≈αZTZ +E , (3.19)

This ill-condition problem has been tackled using Tikhonov regularization (van Winger-
den and Verhaegen, 2009) and matrix nuclear norms (Gebraad et al., 2011b) in literature.

In the next subsection we introduce several tensor-related definitions.

3.2.2. GENERAL TENSOR-RELATED DEFINITIONS
In this subsection some general tensor-related definitions are presented. These defini-
tions are needed in the next section in order to present a tensor perspective on the LPV
subspace identification problem.

Firstly, we formally define a tensor and its sizes.

Definition 3.2.1 Consider a tensor T. Let D be the number of dimensions. Denote the size
of the i -th dimension as Ji . Then the tensor is in RJ1×···×JD . Or in other words, the size of
the tensor is J1-by-. . .-by-JD and contains real values. In this paper we use bold upper case
characters to denote tensors.

Secondly, we define how we access entries from vectors and matrices.

Definition 3.2.2 Consider a matrix M and a vector v. Define [M ]i , j as the entry of M at
row i and column j . Let [M ]:, j and [M ]i ,: respectively be the j -th column and i -th row
vector. For a two-by-two matrix M this means:

M =
[M ]1,1 [M ]1,2

[M ]2,1 [M ]2,2

=
[M ]1,:

[M ]2,:

=
[

[M ]:,1 [M ]:,2

]
(3.20)

For both row and column vectors, define [v]i as the i -th entry of v.

In the next subsection tensor nuclear norms are reviewed.

3.2.3. THE MATRIX NUCLEAR NORM AND THE TENSOR NUCLEAR NORM
In this subsection the matrix nuclear norm (Recht et al., 2010) and the tensor nuclear
norm (Signoretto et al., 2010) are reviewed. They can be used to exploit a priori knowl-
edge on low-rank properties of matrices and matricizations of tensors. These norms will
play a key role in the method proposed in this paper.
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First we review the matrix nuclear norm. The matrix nuclear norm has received con-
siderable attention in the literature (Recht et al., 2010; Verhaegen and Hansson, 2014; Yu
and Verhaegen, 2015). It can be used in a regularization term in order to exploit low-rank
properties in a convex manner (Recht et al., 2010). The matrix nuclear norm of a matrix
is the largest convex lower bound of the rank of that matrix (Recht et al., 2010) as:

||M ||∗ ≤ rank(M), ||M ||2 ≤ 1, (3.21)

where ||M ||∗ is the nuclear norm of M , and M has been normalized. The matrix nuclear
norm itself is defined as the sum of singular values.

Next we review the tensor nuclear norm. The tensor nuclear norm of a tensor relates
to the multi-linear rank of a tensor (Signoretto et al., 2010). The multi-linear rank of a
tensor is a tuple of numbers. Each number is the matrix rank of a different matricization
of the tensor. We formally define the n-mode matricization of a tensor as follows:

Definition 3.2.3 Consider a tensor T (Definition 3.2.1) of size RJ1×J2×···×Jd . This tensor is
of d-th order. Let n be a integer ∈ {1, . . . ,d} and represent the mode number at hand. Then
the n-mode matricization of T is denoted T<n> and can be constructed as follows. First
rearrange the dimensions of the tensor in the ordering [n,n + 1, . . . ,d ,1,2, . . . ,n − 1]. The
entry of T at position (i1, i2, . . . , iD ) is now put on position (in , in+1, . . . , in−1). Then reshape
the result into a matrix with Jn rows. The resulting matrix is the n-mode matricization or
tensor unfolding (with forward cycling). This n-mode matricization can be transformed
back into the original tensor by performing the two operations in reverse.

Define also the n-mode product:

Definition 3.2.4 The n-mode product of a tensor T with a matrix M is T•n M and can be
computed using:

[T•n M ]<n> = MT<n>, (3.22)

where the right hand side requires a matricization and a matrix multiplication. Returning
to T•n M can be done using Definition 3.2.3. This and other tensor operations can also be
computed using the TensorLab toolbox (Vervliet et al., 2016).

Also define:

Definition 3.2.5 The n-rank of a tensor is defined as the rank of the n-mode matricization
of that tensor:

rankn(T) = rank(T<n>) (3.23)

Now it is possible to define the multi-linear rank explicitly:

Definition 3.2.6 The multi-linear rank of a tensor is the d-tuple of all n-ranks of that
tensor.

The multi-linear rank notion is computationally attractive because it is a tuple of ma-
trix ranks. For contrast, the polyadic rank is NP-hard to determine (Håstad, 1990). This
multi-linear rank relates to the tensor nuclear norm as defined in Signoretto et al. (2010).
In this paper we use the definition of Signoretto et al. (2010) and not the different one
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of Friedland and Lim (2014), because the former is computationally much cheaper to
compute. Both have received considerable attention in the literature (He et al., 2005;
Vasilescu and Terzopoulos, 2002; Friedland and Lim, 2014). The tensor nuclear norm is
defined as:

||T||∗ = 1

d

d∑
n=1

||T<n>||∗, (3.24)

and has the property:

||T||∗ ≤ 1

d

d∑
n=1

rankn(T), ||T<n>||2 ≤ 1 ∀n, (3.25)

however it is not proven to be the best convex heuristic. Just like the matrix nuclear
norm, the tensor nuclear norm can be used as a regularization term.

In the next subsection the multi-linear SVD of a tensor is reviewed.

3.2.4. MULTI-LINEAR SINGULAR VALUE DECOMPOSITION (MLSVD)
In this subsection we review the SVD for matrices and the MLSVD for tensors, in order to
be able to prove the multi-linear low-rank property of the parameter tensors in the next
section.

First we present the more simple matrix SVD for illustration. The SVD (Golub et al.,
1979) of a real matrix can be seen as a decomposition with special properties:

M =UΣV T , (3.26)

where U and V are unitary and Σ contains the (non-negative) singular values of M along
its diagonal in descending order. What is interesting for this paper is that the matrix M is
low-rank if and only if some singular values are zero. Suppose only r̄ singular values are
non-zero, such that the rank is r̄ . This allows truncating without error to:

M =UΣV T = Ū Σ̄V̄ T , (3.27)

where Ū and V̄ are the first r̄ columns of U and V and Σ̄ is the top-left r̄ -by-r̄ sub-matrix
of Σ. Notice that Σ̄ is smaller than M for low-rank M .

The MLSVD (De Lathauwer et al., 2000) can be seen as an extension of the SVD to
tensors. It decomposes a tensor as follows:

T =S •1 U (1) •2 U (2) •3 · · · •D U (D), (3.28)

where the n-mode product •n is defined in Definition 3.2.4, S is the all-orthogonal core
tensor with ordered multi-linear singular values and the matrices U (∗) have orthonormal
columns. The conditions for multi-linear low-rankness of a tensor are:

Definition 3.2.7 A tensor is multi-linear low-rank if and only if all its n-mode matriciza-
tions are low-rank.

or alternatively:
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Definition 3.2.8 A tensor is multi-linear low-rank if the core tensor of its MLSVD (3.28) is
smaller than the full tensor in all dimensions. More specifically, the multi-linear rank of
a tensor is the minimal size of its core tensor.

In fact, there is no need for an MLSVD to prove multi-linear low-rankness. A multi-linear
decomposition is sufficient to prove some tensor to be multi-linear low-rank. This de-
composition is defined as:

T =A•1 M (1) •2 M (2) •3 · · · •D M (D), (3.29)

where A is a D-th order tensor and M are matrices with corresponding sizes. With this
decomposition the multi-linear rank of the tensor is entry-wise bounded from above by
the size ofA. This is becauseA and M (∗) can be normalized to obtain an MLSVD with the
same sizes (Vervliet et al., 2016). In the next section it will be proven that the parameter
tensor is multi-linear low-rank, by providing a multi-linear decomposition with a non-
trivially sized A. But first, in the next subsection tensor trains are reviewed for later use
in the numeric efficiency results.

3.2.5. TENSOR TRAINS AND NETWORKS
In this subsection we review the tensor train framework (Oseledets, 2011), because ten-
sor trains will be used for presenting the data tensors and for the numeric efficiency
results.

Firstly, we define a tensor and how we access any of its elements:

Definition 3.2.9 Consider a tensor T (Definition 3.2.1) with D dimensions. Let i1 to iD be
the D indices of the tensor, which each correspond to one dimension. Then T(i1, . . . , iD ) is
its single element at position i1, . . . , iD . Furthermore, the symbol ‘:’ is used when multiple
elements are involved. More specifically, ‘:’ indicates that an index is not fixed. For exam-
ple, T(:, . . . , :) = T and T(:, :, j3, . . . , jd ) ∈ RJ1×J2 is a matrix obtained by fixing the indices j3

to jd . This also applies to matrices (two-dimensional tensors).

Before discussing the use of tensor trains, we first formally define tensor trains. Ten-
sor trains are a way to condensely present a tensor. They can be seen as a decomposition.
A tensor train consists of D ’cores’ A(1) to A(D). Each core is a three-dimensional tensor.
The relation between the tensor and the cores of its tensor train are defined element-
wise as:

T(i1, . . . , iD ) =A(1)(:, i1, :)A(2)(:, i2, :) . . .A(d)(:, iD , :), (3.30)

where the left hand side is defined in Definition 3.2.9. Every element of the tensor is the
product of several matrices. Notice that because the left hand side is a scalar, the first
term in the product is a row vector and the last term is a column vector. For brevity of
notation, also define the generator operator g (∗) as:

T = g (A(1), . . . ,A(D)), (3.31)

From equation (3.30) it is clear that the second index of the cores relates to indices of the
original tensor. The remaining first and third indices of the (three-dimensional) cores are
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named the tensor train ranks. These tensor train ranks are relevant to the effectiveness
of tensor train decompositions.

Regarding the use of tensor trains, they can be used to condensely represent tensors
and also to reduce computation costs (Oseledets, 2011). Firstly, instead of storing the
original tensor element-by-element, its tensor train cores can be stored. Depending on
the tensor train ranks, this can decrease memory costs. Also notice that these two ways
of storage scale differently with the number of dimensions. The former way scales ex-
ponentially, while the latter scales linearly (since only new cores would be added). Sec-
ondly, tensor trains allow performing many operations on the original tensor without
explicitly constructing it in memory and at lower computational cost. Namely, these op-
erations can be directly applied on the tensor trains representing the original tensor. For
example, the inner product of two tensors can be computed directly from their tensor
trains. Depending on the tensor train ranks, this may come at lower computational cost,
as again the scaling of the cost is different. In short, tensor trains can be used to break
exponential scaling and thus ‘curse-of-dimensionality’.

In this paper, this property will mainly be exploited through the (tensor train) inner
product:

Definition 3.2.10 The inner product of two tensors is the sum of their element-wise mul-
tiplication (Oseledets, 2011). This is well defined if the tensors have the same size. If the
two tensors have a tensor train representation, then this operation can be performed di-
rectly using those representations (Oseledets, 2011). Then this operation becomes ‘curse-
of-dimensionality’ free in memory and computational cost1.

In the next section the parameter tensors are discussed.

3.3. MULTI-LINEAR LOW-RANK PARAMETER TENSORS
In this section we show that the LPV sub-Markov parameters can be organized into sev-
eral multi-linear low-rank tensors. That is, all their matricizations are low-rank. This
property is proven using the multi-linear decompositions discussed in Subsection 3.2.4.
This low-rank property will be exploited by the novel method in the next section.

First we present a three-dimensional example to illustrate the parameter tensors for
a simple case. Consider an LPV state-space system (3.3) with m = 2. Let this system be
Single Input Single Output (SISO) output-error with LTI input matrix. Furthermore we
choose the size of the parameter tensor to be 3-by-3-by-3, such that it contains all LPV
sub-Markov parameters to be estimated for p = 4. Then, the parameter tensor for this
example system is as shown in Fig. 3.1.

Notice that the parameter tensor shown in Fig. 3.1 contains the LPV sub-Markov pa-
rameters and has some similarities with Hankel matrices. For example, the front slice
is exactly a Hankel matrix. Also, the LTI variant would be exactly a Hankel tensor. More
specifically, this tensor has some block-Hankel tensor structure. Later in this section we
will show that we can make statements about its multi-linear ranks.

Next we present the parameter tensors in multi-linear decomposition form for the
general case. This decomposition will also prove (an upper bound on) the multi-linear

1 In detail, the computational cost scales linearly with the dimension count and dimension sizes and as a third
power of the tensor train ranks.
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C Ã(2)B · · · C Ã(2) Ã(2)B

C Ã(1) Ã(2)B · · · C Ã(1) Ã(2) Ã(2)B

C Ã(2) Ã(2)B · · · C Ã(2) Ã(2) Ã(2)B

C Ã(1)B · · · C Ã(2) Ã(1)B

C Ã(1) Ã(1)B · · · C Ã(1) Ã(2) Ã(1)B

C Ã(2) Ã(1)B · · · C Ã(2) Ã(2) Ã(1)B

C B C Ã(1)B C Ã(2)B

C Ã(1)B C Ã(1) Ã(1)B C Ã(1) Ã(2)B

C Ã(2)B C Ã(2) Ã(1)B C Ã(2) Ã(2)B

Figure 3.1: This figure shows the parameter tensor for the example system of Section 3.3.

rank (Subsection 3.2.4). The parameter tensors are denoted Ho,κ and are defined per
output o and column of B̄(κ). The dimensions of a parameter tensor are all equal. Let
the scalar t be this dimension (value), and D the number of dimensions. Both variables
are user-chosen and will be defined explicitly later in this section. The relation of the two
variables with the past window is discussed at the end of this section. First we present
their multi-linear decomposition:

Ho,κ =AH •1 Fo •2 F •3 · · · •D−1 F •D Fκ ∈Rt×···×t , (3.32)

where the tensor AH and matrices Fo , F and Fκ will be defined next. The matrix Fo

contains the output matrix and products of Ã(∗) and is:

Fo =



[C ]o,:

[C ]o,: Ã(1)

...

[C ]o,: Ã(m)

[C ]o,: Ã(1) Ã(1)

[C ]o,: Ã(2) Ã(1)

...

[C ]o,: Ã(m) Ã(m)

...



∈Rt×n̂ , (3.33)
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where we let t be the height of this matrix, and the brackets with subscript are defined
in Definition 3.2.2. Notice that this is by definition also the size of the first dimension of
Ho,κ. The matrix F contains products of Ã(∗) in vectorized form as:

F =



vec(In̂)T

vec(Ã(1))T

...

vec(Ã(m))T

vec(Ã(1) Ã(1))T

vec(Ã(2) Ã(1))T

...

vec(Ã(m) Ã(m))T

...



∈Rt×n̂2
(3.34)

Notice that the width of F is n̂2, but this will be dealt with in the definition of AH . The
matrix Fκ contains the matrix B̄ and is defined as:

Fκ =



([B̄ ]:,κ)T

(Ã(1)[B̄ ]:,κ)T

...

(Ã(m)[B̄ ]:,κ)T

(Ã(1) Ã(1)[B̄ ]:,κ)T

(Ã(2) Ã(1)[B̄ ]:,κ)T

...

(Ã(m) Ã(m)[B̄ ]:,κ)T

...



∈Rt×n̂ (3.35)

These three matrices and the tensor AH together form the LPV sub-Markov parameters.
This tensor AH consists purely of ones and zeros, and discards all inadmissible products
between elements of the matrices F∗. These inadmissible products appear because in-
stead of matrix products we have products of the vectorizations of those matrices. There-
fore this tensor is named here as the admissibility tensor. We present the algorithm to
generate AH as a function of n̂ and D in Appendix 3.A. Proof of the decomposition fol-
lows through straightforward computations. The size of this tensorAH matches with the

widths of F∗ as shown in (3.32) and is
[

n̂ n̂2 n̂2 . . . n̂2 n̂
]

. Using the definition

of the multi-linear decomposition (Section 3.2.4), we can state that this size is the upper
bound of the multi-linear rank of Ho,κ.
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Now that we know the multi-linear rank of Ho,κ, we can state under which conditions
it is multi-linear low-rank. Using Definition 3.2.8, this is the case if AH is smaller than
Ho,κ in all dimensions. Filling in their sizes gives:

Theorem 3.3.1 The parameter tensor Ho,κ is multi-linear low-rank if t > n̂2.

Since t is user-chosen, we will implicitly assume throughout this paper that t > n̂2.

In this paragraph we give details on the size of Ho,κ for completeness. The dimension
t is:

t =
f̄ −1∑
j=0

m j , (3.36)

where f̄ is named the incremental window. The maximum number of Ã(∗) in sequence
in F∗ is exactly f̄ − 1. It is interesting to note that for fixed f̄ = 2, the full tensors are
similar to the ones in our previous work (Gunes et al., 2017b). Furthermore, the number
of dimensions D of Ho,κ is also user-chosen. Together they determine the size of Ho,κ.
For purpose of simple notation, we omit D and f̄ from the notation of Ho,κ and other
affected variables. These two also determine which LPV sub-Markov parameters will
appear in Ho,κ. Let the ‘order’ of an LPV sub-Markov parameter be the number of Ã(∗) in
sequence that it has plus one. Then the highest order of LPV sub-Markov parameters in
Ho,κ is equal to:

h = 1+ ( f̄ −1)D, (3.37)

where h is named the regularization window. A natural choice would be h = p. However,
we keep the option of choosing h open. In the remainder of this paper we let h ≤ p. The
availability of the choice of h will allow reducing computational load where needed.

Before presenting the novel method, first the data tensor is presented.

3.4. DATA TENSORS
In this section we present the data tensors and their tensor train decompositions, be-
cause they will be used in the numeric efficiency results in Section 3.5. Additionally
we present the predictor-based output equation (3.14) using tensors for illustration pur-
poses.

The data tensors will be defined using their tensor train decompositions. There-
fore, these decompositions are presented first. For this purpose, define their tensor train
ranks:

R =
[

1 1 f̄ 2 f̄ −1 . . . 1+ ( f̄ −1)D 1
]

Rs = R(s)
(3.38)

Also, similar to the parameter tensors, the dimensions of the data tensors are each equal
to t . This makes the size of every core Rs -by-t-by-Rs+1. Notice that these cores do not
suffer from the ‘curse-of-dimensionality’. Before presenting the cores, first some defini-
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tions are needed. Define the zero matrices:

0L(b) = zeros(Rs ,Ō(b)−1) (3.39a)

0R (b) = zeros(Rs , f̄ −Ō(b)) (3.39b)

Ō =


ones(m0,1)1

ones(m1,1)2
...

ones(m f̄ −1,1) f̄

 (3.39c)

Also, define the matrices: P̄ :

P̄ (s) =


P (s)

0
...

P (s)
f̄ −1

 ∈Rt×Rs , (3.40)

where
P (s)

0 =
[

1 . . . 1
]
∈R1×Rs

P (s)
1 =

[
µk−1 . . . µk−Rs

]
∈Rm×Rs

P (s)
2 =

[
µk−2 ⊗µk−1 . . . µk−Rs−1 ⊗µk−Rs

]
∈Rm2×Rs

P (s)
f̄ −1

=


(µk−( f̄ −1) ⊗·· ·⊗µk−1)T

...

(µk−( f̄ −1)−Rs+1 ⊗·· ·⊗µk−Rs )T


T

∈Rm f̄ −1×Rs

(3.41)

Furthermore, define diag() as an operator with vector argument, which returns a diag-
onal matrix whose diagonal entries are the entries of its vector argument in the same
order. With these definitions, the cores can be presented. In order to be consistent with
previous work (Gunes et al., 2017b), we use a tensor train decomposition which has two
extra cores. These cores are just vectors and therefore do not increase the number of
dimensions of the data tensors. As a result, the tensor train decompositions have D +2
cores. Using the previous definitions, cores number 2 to D + 1 can be presented using
matrix slices as:

B(s)
k (:,b, :) =

[
0L(b) diag(P̄ (s)(b, :)) 0R (b)

]
∈RRs×Rs+1

∀b ∈ {1, . . . , t },∀s ∈ {2, . . . ,D +1}

(3.42)

Notice that these cores have a shift and a diagonal structure, which is also sparse. The
shift structure appears as the zero matrices 0L(b) and 0R (b) change in width for b. The
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diagonal structure appears due to the operator diag(∗). Together, this also results in spar-
sity. This structure appears, because the scheduling sequence samples always appear in
sequence in the data (3.11b). Next, we define the two extra cores. They are the first and
last cores. The first core is simply a unit scalar:

B(1) = 1, (3.43)

and the last core is a vector:

B(D+2)
k,κ =


µT

k−1 ⊗ zT
k−1

...

µT
k−h ⊗ zT

k−h

 (:,κ) ∈Rh , (3.44)

where µT
k− j ⊗ zT

k− j is a row vector of which we take its κ-th element. Similarly define

another variant:

B̄(D+2)
k,κ =


µT

k−1 ⊗ zT
k−1/s̄(1)
...

µT
k−h ⊗ zT

k−h/s̄(h)

 (:,κ) ∈Rh , (3.45)

where s̄ is defined in Algorithm 3.B. With these definitions, we can define the data ten-
sors using their tensor train decomposition (Subsection 3.2.5). Define for use in the nu-
merical efficiency results in Section 3.5, the unweighed data tensor:

Zk,κ = g (B(1),B(2)
k , . . . ,B(D+1)

k ,B(D+2)
k,κ ) (3.46)

Additionally, define (for use in the tensor variant of the predictor-based output equa-
tion):

Z̄k,κ = g (B(1),B(2)
k , . . . ,B(D+1)

k ,B̄(D+2)
k,κ ), (3.47)

which only differs in the last core. In this paper we use these two variants, in order sim-
plify the respective equations in which they are used. These tensor train decomposi-
tions have been generalized from results previously presented in Gunes et al. (2017b) (for
f̄ = 2). Proof of the tensor trains follows through straightforward computations. Now the
data tensors have been defined.

Finally, we illustrate the role of the data tensor with the following output equation:

[yk ]o ≈ [C ]o,:KZk + [ek ]o =
m(l+r )∑
κ=1

< Ho,κ, Z̄k,κ > +[ek ]o ,
(3.48)

where < ∗,∗ > is the inner product (Definition 3.2.10). Notice that the top line is the
classic predictor-based output equation (3.14) and the bottom line is its tensor form.
This equation will play a key role in the next section.

In the next section we present how the tensor nuclear norm of the parameter tensors
can be computed without ‘curse-of-dimensionality’.
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3.5. EFFICIENT COMPUTATION OF THE PARAMETER TENSOR

NUCLEAR NORM
In this section we present how to compute the tensor nuclear norms of the param-
eter tensors ‘curse-of-dimensionality’ free. This is non-trivial, because the parame-
ter tensors contain the LPV sub-Markov parameters which suffer from the ‘curse-of-
dimensionality’. We present three successive contributions to reach the goal. Firstly,
we show how the parameter tensors can be expressed in the dual problem presented in
Subsection 3.2.1. Secondly, we present how the arguments of the tensor nuclear norms
at hand can be replaced by ‘curse-of-dimensionality’ free arguments while producing
the exact same (norm) result. Thirdly, we show how these norm results can be com-
puted ‘curse-of-dimensionality’ free using tensor trains. These contributions allow for
efficiency of the method proposed in the next section.

First we show how the parameter tensors can be expressed in the dual problem pre-
sented in Subsection 3.2.1. One difficulty is that we have tensors instead of matrices.
Therefore we first rewrite the dual form of CK matrix (containing the LPV sub-Markov
parameters) in a form suitable for tensors as:

CK=αZT =
N∑

k=p+1
α:,k−pZT

k , (3.49)

From this starting point, CK (or the LPV sub-Markov parameters) can be used to form
the parameter tensors. A similar approach can be used to derive the dual form of the
parameter tensors. This results in:

Ho,κ =
N∑

k=p+1
αo,k−p Zk,κ (3.50)

where Ho,κ and Zk,κ are defined in (3.32) and (3.46), respectively. Notice that this equa-
tion is a direct result of equation (3.49). This returns the dual description of the parame-
ter tensors. Notice that this step has not changed the (huge) sizes. These tensors will be
the arguments of tensor nuclear norms.

Secondly, we address the size of the arguments of the nuclear norms at hand. Recall
that the tensor nuclear norm is computed as the average matrix nuclear norm of all the
matricizations (3.24). Therefore we work out the matricizations and their norms. Addi-
tionally we add the averaging factor 1

D of the norm in advance in order to simplify the
objective functions in Section 3.6. The (scaled) matricizations are:

1

D
Ho,κ,<n> = 1

D

[ N∑
k=p+1

αo,k−p Zk,κ
]
<n>

= 1

D

N∑
k=p+1

αo,k−p
[
Zk,κ

]
<n> ∈Rt×t D−1

(3.51)

where n is the mode number. Notice that the reformulation of (3.49) allowed easy ex-
traction of the dual parameters α, which will be important later in this paragraph. The
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matrix nuclear norm of (3.51) is:

1

D
||Ho,κ,<n>||∗ = 1

D
||

N∑
k=p+1

αo,k−p
[
Zk,κ

]
<n>||∗, (3.52)

The argument of this norm contains in dual form LPV sub-Markov parameters which
suffer from the ‘curse-of-dimensionality’. Therefore we propose replacing it by a differ-
ent argument which is both ‘curse-of-dimensionality’ free in size and produces the exact
same norm. Here we exploit the dual form and that the argument is a very wide matrix.
For this purpose, rewrite:

1

D
||

N∑
k=p+1

αo,k−p

[
Zk,κ

]
<n>||∗ = 1

D
Trace

√√√√ N∑
ki=p+1

N∑
k j =p+1

αo,ki−pαo,k j −p

[
Zki ,κ

]
<n>

[
Zk j ,κ

]T

<n>,

(3.53)

such that the wide data matrix is multiplied with its transpose and the resulting matrix
has the much smaller size t-by-t . We can also get rid of the summations. For that, define
the following two matrices:

Zκ,<n> = 1

D



{[
Zp+1,κ

]
<n>

}
1,:

...{[
ZN ,κ

]
<n>

}
1,:

...{[
Zp+1,κ

]
<n>

}
t ,:

...{[
ZN ,κ

]
<n>

}
t ,:



∈Rt (N−p)×t D−1
, (3.54)

whose width we will address in the next paragraph, and define the function dt (∗) as:

dt (αo,:) =


αo,: 0 · · ·

0 αo,: · · ·
...

...
. . .

 ∈Rt×t (N−p) (3.55)

Now it possible to rewrite (3.53) without summations as:

Trace
√

dt (αo,:)Zκ,<n>ZT
κ,<n>dt (αo,:)T , (3.56)
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Finally, this equation can be cast back in normal tensor nuclear norm definition without
trace as:

1

D
||Ho,κ,<n>||∗ = ||dt (αo,:)

[
Zκ,<n>ZT

κ,<n>
]1/2||∗, (3.57)

where the square root of a matrix is defined via the SVD (Signoretto et al., 2010). This
nuclear norm is exactly equal to the one in (3.52), but has a argument which is ‘curse-of-
dimensionality’ free in size.

Thirdly, we show how the nuclear norm presented in (3.57) can be computed ‘curse-
of-dimensionality’ free using tensor trains. More specifically, we present how the
matrix Zκ,<n>ZT

κ,<n> can be computed ‘curse-of-dimensionality’ free. This is non-trivial,
because Zκ,<n> itself is not ‘curse-of-dimensionality’ free. We present a formula for
Zκ,<n>ZT

κ,<n> which directly shows how it can be computed ‘curse-of-dimensionality’
free. This formula is derived as follows.

Firstly, notice that the size of Zκ,<n>ZT
κ,<n> is t (N − p)-by-t (N − p) and thus ‘curse-

of-dimensionality’ free in size, such that it can be computed entry-wise. Afterwards its
square root can be readily obtained. So the problem boils down to computing the entries
‘curse-of-dimensionality’ free. A single entry of the product Zκ,<n>ZT

κ,<n> using (3.54) is:

[
Zκ,<n>ZT

κ,<n>
]

i , j
= 1

D2

{[
Zki ,κ

]
<n>

}
t̄i ,:

{[
Zk j ,κ

]
<n>

}T

t̄ j ,:
, (3.58)

which is a scalar and where:

i = ki −p + (t̄i −1)(N −p) (3.59a)

j = k j −p + (t̄ j −1)(N −p) (3.59b)

Notice that computing this single product in straight-forward manner would require
storage of 2t D−1 elements. We wish to compute this product ‘curse-of-dimensionality’
free and will therefore use tensor trains (Subsection 3.2.5). In order to simplify deriva-
tions, we move to the inner product form (Definition 3.2.10). We use that the prod-
uct (3.58) is a multiplication of a row vector with a column vector to obtain a scalar,
to rewrite to: [

Zκ,<n>ZT
κ,<n>

]
i , j

= 1

D2
〈
{[

Zki ,κ

]
<n>

}
t̄i ,:

,

{[
Zk j ,κ

]
<n>

}
t̄ j ,:

〉 (3.60)

The benefit of this inner product notation is that some properties are more clear. No-
tice that due to the definition of the inner product, any simultaneous reshape of the two
vectors does not change the inner product result. The same applies to permutations and
matricizations. So we can freely turn these two vectors into tensors. For numeric effi-
ciency purposes, we are interested in tensors with suitable tensor train decompositions.
We use the tensor train decomposition of Zk,κ (3.46), to turn these vectors into tensor
trains:

Z(n,t̄ )
k,κ = g (B(1),B(2)

k , . . . ,B(n)
k (:, t̄ , :), . . . ,B(D+1)

k ,B(D+2)
k,κ ), (3.61)

where the effect of t̄ in (3.60) is accounted for by cutting the n-th core. Furthermore
notice that the tensor trains for both vectors are cut at the same core number n due (3.60)
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and thus have matching sizes. This allows rewriting the inner product into:[
Zκ,<n>ZT

κ,<n>
]

i , j
= 1

D2 < Z(n,t̄i )
ki ,κ ,Z

(n,t̄ j )

k j ,κ >, (3.62)

where the left hand side equals the inner product of two tensor trains. We can perform
this operation directly on the tensor trains ‘curse-of-dimensionality’ free in both mem-
ory and computation (Oseledets, 2011).

These results allow computing the tensor nuclear norm of the parameter tensors
‘curse-of-dimensionality’ free for the proposed method in the next section.

3.6. PREDICTOR-BASED TENSOR NUCLEAR NORM REGRES-
SION (PBTNNR)

Using the results from the previous sections we now have all the ingredients to derive
the new Predictor Based Tensor Nuclear Norm Regression method (PBTNNR) algo-
rithm. The proposed convex LPV subspace identification method does not suffer from
the ‘curse-of-dimensionality’ in terms of memory or computational cost and uses its
regularization to improve problem conditioning.

The difference between the proposed method and the regularized method of van
Wingerden and Verhaegen (2009) and Gebraad et al. (2011a) is in their regularization
term during the first regression step. This step suffers from the ‘curse-of-dimensionality’
and is therefore crucial. Therefore we only present the first regression step in this section
and refer to Section 3.2.1 for details on subsequent steps. We first present our cost func-
tion using Section 3.3 in primal form for illustration, and afterwards directly in ‘curse-of-
dimensionality’ free dual form using results from Section 3.5. The starting point is the
objective function (van Wingerden and Verhaegen, 2009):

minθ||Y − [CK](θ)Z ||2F , (3.63)

where CK and Z are defined and motivated in Subsection 3.2.1. The proposed method
adds tensor nuclear norm regularization terms to this objective function. More specif-
ically, the arguments of these norms are the parameter tensors defined in (3.32). For
simplicity, all regularization terms are weighed in the objective function by a single tun-
ing parameter λ. This results in the following objective function:

minθ||Y − [CK](θ)Z ||2F +λ
l∑

o=1

m(l+r )∑
κ=1

||Ho,κ(θ)||∗, (3.64)

where Ho,κ is defined in (3.32). Every scalar LPV sub-Markov parameter is parametrized
by one optimization parameter. This applies to both [CK](θ) and the parameters tensors
Ho,κ(θ). This also implies that some optimization parameters θi appear multiple times
in Ho,κ(θ). For purpose of illustration, we rewrite this equation using (3.48) using only
Ho,κ(θ) as:

minθ
∑
k,o

(
[yk ]o −

m(l+r )∑
κ=1

< Ho,κ(θ), Z̄k,κ >
)2+

λ
l∑

o=1

m(l+r )∑
κ=1

||Ho,κ(θ)||∗,

(3.65)
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where we let h = p (3.37) for ease of notation and Z̄k,κ is defined in (3.47). These
objective functions are for illustration, and the proposed method uses the ‘curse-of-
dimensionality’ free dual form derived in Section 3.5. This ‘curse-of-dimensionality’
free dual form of the objective function is:

minα||Y −αZTZ ||2F+

λ
l∑

o=1

m(l+r )∑
κ=1

D∑
n=1

||dt (αo,:)
[

Zκ,<n>ZT
κ,<n>

]1/2||∗,
(3.66)

where the Lagrange multipliers α and the fit criterion are defined and motivated in Sub-
section 3.2.1, n is the mode number and the argument of the nuclear norm is derived in
Section 3.5.

In the next section the simulation results are presented.

3.7. SIMULATION RESULTS
In this section simulation results are presented in order to compare the proposed
method PBTNNR with the method of van Wingerden and Verhaegen (2009) in terms of
variance and bias. Both methods can be run using the PBSID toolbox (van Wingerden
and Verhaegen, 2009).

3.7.1. SIMULATION SETTINGS
In this subsection, the simulation settings and some related definitions are presented.

For statistical significance, the results presented in this paper are based on 100 Monte
Carlo simulations. For every Monte Carlo simulation a different realization of both the
input and the innovation vector is used. The scheduling sequence is kept the same. All
methods use a model order equal to the system order, and are supplied the information
that D̄ = 0 and that the output equation is LTI. For completeness, the future window
variable for the SVD step is chosen equal to the past window p.

In this section we compare the novel method with the (Tikhonov) regularized LPV-
PBSIDopt (kernel) method of van Wingerden and Verhaegen (2009). The quality of the
estimates is evaluated by investigating the Variance Accounted For (VAF) on a validation
data set which is different from the one used for identification, in the sense that different
realizations of both the input and the innovation vector are used. The VAF for single-
output systems is defined as follows (van Wingerden and Verhaegen, 2009):

VAF(ȳk , ŷk ) = max

{
1− var (ȳk − ŷk )

var (ȳk )
,0

}
100%

The noise-free simulated output of the system is used when evaluating the VAF, because
this allows the VAF to reach 100% when the model is equal to the true system modulo
global state-coordinate transformations. Notice that this is possible because the data
is generated using simulations. The noise-free simulated output of the system is here
denoted as ȳk . In similar sense the noise-free (simulated) model output is denoted as
ŷk . The operator var (∗) denotes the variance of its argument. The tuning parameter
λ of the proposed method has been chosen as follows. The λ with single significant



3

70 3. TENSOR NUCLEAR NORM LPV SUBSPACE IDENTIFICATION

digit which yields the highest mean validation VAF is chosen. The computations are per-
formed on an Intel i7 quad-core processor running at 2.7Ghz with 8 GB RAM. We provide
the computation time both of the proposed method and the method of van Wingerden
and Verhaegen (2009).

Several cases and their results are presented in the following subsections.

3.7.2. SIMULATION RESULTS CASE 1
In this subsection simulation results are presented for a case of Gunes et al. (2017a) in
order to compare the proposed method with both the method of van Wingerden and
Verhaegen (2009) and Gunes et al. (2017a) (PBTR).

This case uses the following LPV state-space system (3.3):

[A(1), A(2)] =

 4
15

1
15

− 1
6

1
30

∣∣∣∣∣∣∣
3

20 − 1
60

− 1
60

3
20

 ,

[B (1),B (2)] =
1

0

∣∣∣∣∣∣0.2

0.2

 ,C =
[

1 0
]

,

and D is zero and K is LPV. The matrix K (i ) for i = {1, . . . ,m} is obtained from the Discrete
Algebraic Ricatti Equation (DARE) with A(i ), C and identity covariance of the concate-
nated process and measurement noise. Both the input vector uk and the innovation
vector ek are white noise with unit power. The data size N is chosen as 200. Both meth-
ods are run with past window p equal to 6.

The system is evaluated at the scheduling sequence:

µ(2)
k = cos(2πk

20

N
)/2+0.2,

We present the VAF of the proposed method, the method of van Wingerden and Ver-
haegen (2009) and the non-convex refinement method of Gunes et al. (2017a) (PBTR) in
Table 3.1, and a box-plot of the VAF in Fig. 3.2. We present the computation times for
the convex methods. The average computation times are 6.6 seconds for the proposed
method and 38 milliseconds for the method of van Wingerden and Verhaegen (2009) per
simulation.

Method VAF

LPV-PBSIDopt (kernel) 96.6

PBTNNR (kernel, f̄ = 2, D = 2) 97.9 with λ= 0.1

PBTR (refinement method) 98.0

Table 3.1: Mean VAF for different methods for Case 1.
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Figure 3.2: This figure shows a box-plot of the validation VAF of the 100 Monte Carlo simulations
for three methods. Only the first two methods are convex; the last method is a non-convex refine-
ment method.

From Table 3.1 and Fig. 3.2 it can be concluded that for this case the proposed
method has higher performance than the method of van Wingerden and Verhaegen
(2009) in terms of VAF. Additionally, the non-convex refinement method of Gunes et al.
(2017a) has a higher VAF than the two convex methods.

3.7.3. SIMULATION RESULTS CASE 2
In this subsection simulation results are presented for a larger past window with a case
which relates to the flapping dynamics of a wind turbine. This case has been used before
in Felici et al. (2007); van Wingerden and Verhaegen (2009).

This case uses the following LPV state-space system (3.3):

[A(1), A(2)] =

 0 0.0734

−6.5229 0.4997

∣∣∣∣∣∣∣
−0.0021 0

−0.0138 0.5196

 ,

[B (1),B (2)] =
−0.7221

−9.6277

∣∣∣∣∣∣0

0

 ,C =
[

1 0
]

,

and D is zero and K is LPV. The matrix K (i ) for i = {1, . . . ,m} is obtained from the Discrete
Algebraic Ricatti Equation (DARE) with A(i ), C and identity covariance of the concate-
nated process and measurement noise. The input vector uk is white noise with unit
power, the innovation vector ek is also white noise and the signal-to-noise ratio is 40dB.
The data size N is chosen as 100. Both methods are run with past window p equal to 15.

The system is evaluated at the scheduling sequence:

µ(2)
k = cos(2πk

20

N
)/2+0.2,
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We present the VAF of both the novel method and the method of van Wingerden
and Verhaegen (2009) in Table 3.2, and a box-plot of the VAF in Fig. 3.3. The average
computation times are 23 seconds for the proposed method and 50 milliseconds for the
method of van Wingerden and Verhaegen (2009) per Monte Carlo simulation.

Method VAF

LPV-PBSIDopt (kernel) 97.0

PBTNNR (kernel, f̄ = 3, D = 3) 98.1 with λ= 0.01

Table 3.2: Mean VAF for different methods for Case 2.

Figure 3.3: This figure shows a box-plot of the validation VAF of the 100 Monte Carlo simulations
for two methods.

From Table 3.2 and Fig. 3.3 it can be concluded that for this case the proposed
method has higher performance than the method of van Wingerden and Verhaegen
(2009) in terms of VAF.

The conclusions are presented in the next subsection.

3.8. CONCLUSION
In this paper we proposed a novel convex LPV subspace identification method which
exploits the multi-linear low-rank property of the parameter tensors. This is done by
regularization with the tensor nuclear norms of parameter tensors. However, these ten-
sors are reorganizations of the LPV sub-Markov parameters which inherently suffer from
the ‘curse-of-dimensionality’. There we additionally present three minor contributions
to allow computing these norms ‘curse-of-dimensionality’ free. Firstly, we show how to
express the parameter tensors in the dual form. Secondly, we show that the arguments
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of the norms can be replaced by much smaller arguments without changing the re-
sult. Thirdly, we show how these arguments can be computed ‘curse-of-dimensionality’
free. Then, the proposed method becomes ‘curse-of-dimensionality’ free in memory and
computation. Finally, simulation results showed that the novel method has higher per-
formance than the regularized LPV-PBSIDopt technique in terms of bias and variance.

3.A. ALGORITHM FOR THE ADMISSIBILITY TENSOR
First define the ones vector and zeros vector:

1̄c =
[

1 · · · 1
]T ∈Rc×1, for c ≥ 1

0̄c =
[

0 · · · 0
]T ∈Rc×1, for c ≥ 1,

where for c ≤ 0 the result is defined as an empty vector.

Algorithm 3.A.1 The admissibility tensor AH

Input: System order n̂ and dimension count D ≥ 2
Output: Admissibility tensor AH

1. v =
[

1 n̂ +2 2n̂ +3 . . . n̂2
]T

2. for d = 3 to D do

(a) c = (n̂ +1)n̂2(d−2)

(b) V1 = v 1̄T
n̂

(c) V2 = c1̄n̂d−2

[
1 2 . . . n̂

]
(d) v = vec(V1 +V2 − c)

3. end for

4. AH = zeros(
[

n̂ n̂21̄T
D−2 n̂

]
)

5. AH (v) = 1;

Proof follows through straightforward computations.

3.B. ALGORITHM FOR DUPLICATION CORRECTION FACTORS
Algorithm 3.B.1 The duplication correction factors s̄

Input: Incremental window f̄ , dimension count D
Output: The duplication correction factors s̄

1. v =
[

1 2 4 · · · 2 f̄ −1
]

2. Take the Kronecker product of D v’s: w = (v ⊗ v ⊗·· ·⊗ v)
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3. w = log2w

4. for a = 0 to ( f̄ −1)D

(a) s̄(a +1) = length(find(w == a))

5. end for

Proof follows through straightforward computations.
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4
TENSOR NETWORKS FOR MIMO LPV

SYSTEM IDENTIFICATION

In this paper we present a novel Multiple Input Multiple Output (MIMO) LPV state-space
refinement system identification algorithm that uses tensor networks. Namely, we repre-
sent the LPV sub-Markov parameters, data and state-revealing matrix condensely and in
exact manner using specific tensor networks. These representations circumvent the ‘curse-
of-dimensionality’ as they inherit the properties of tensor trains. The proposed algorithm
is ‘curse-of-dimensionality’-free in memory and computation and has conditioning guar-
antees. Its performance is illustrated using simulation cases and additionally compared
with existing methods.

4.1. INTRODUCTION
In this paper the focus is on Linear Parameter Varying (LPV) systems. Because these sys-
tems are able to describe time-varying and non-linear systems, while allowing for power-
ful properties extended from linear system theory. Also, there are control design meth-
ods which can guarantee robust performance (Scherer, 2001), and several convex and
non-convex identification methods exist. The dynamics of LPV systems are a function
of the scheduling sequence, which contains the time-varying and non-linear effects. In
this paper we focus on affine functions of known arbitrary scheduling sequences, which
are relevant to wind turbine applications (van Wingerden and Verhaegen, 2009; Bianchi
et al., 2005; Gebraad et al., 2011). Other applications are aircraft applications (Balas,
2002), compressors (Giarré et al., 2006), batteries (Remmlinger et al., 2013) and wafer
stages (Wassink et al., 2005; van der Maas et al., 2015). The scheduling sequence can be
any function of known variables. This representation allows us for example to take the
effect of blade position on gravity forces and blade rotational speed into account (Ge-
braad et al., 2013).

In this paper the focus is on LPV identification methods. That is, from input-output
and scheduling data we try to estimate an LPV model of the system. This model can

Parts of this chapter have been published in Gunes et al. (2017b).
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then be used to design a controller. Several methods exist, which can be divided in
two different ways. Firstly, global and local methods can be distinguished (Tóth, 2010;
De Caigny et al., 2009; Shamma, 2012). Local methods utilize that LPV systems act as
LTI systems when the scheduling sequence is kept at constant value. These methods
identify LTI models at several fixed constant value scheduling sequences and then com-
bine them into an LPV model through interpolation techniques. This does require the
application to allow for such experiments. In contrast, global methods use only a single
experiment. In this paper only global methods will be considered. Secondly, input-
output (Tóth, 2010; Laurain et al., 2010) and state-space methods (van Wingerden and
Verhaegen, 2009; Verdult et al., 2003; Cox and Tóth, 2016; Larimore and Buchholz, 2012)
exist. The first produces input-output models and the latter state-space models. While in
the Linear Time Invariant (LTI) framework these two types of models can be transformed
back and forth, in the LPV case this is not trivial and problematic (Tóth et al., 2012). In
this paper the focus is on state-space models, because they are the mainstream con-
trol design models and can inherently deal with Multiple Input Multiple Output (MIMO)
problems. More specifically, we focus on predictor-based methods because they can
deal with closed-loop data. However, one possible drawback of these methods is the
‘curse-of-dimensionality’.

Namely, the number of to be estimated (LPV sub-Markov) parameters scales expo-
nentially. This can give problems with memory usage and computational cost. Fur-
thermore, the number of parameters can exceed the number of data points, resulting in
ill-conditioned problems. Both problems demand special care.

In literature, these problems have been tackled using both convex methods and non-
convex refinement methods. Convex methods such as proposed by van Wingerden and
Verhaegen (2009); Gebraad et al. (2011) overcome the memory and computation cost
problem by using a dual parametrization, and address the ill-condition with regulariza-
tion. Regularization is a way to introduce a bias-variance trade-off in estimates. Refine-
ment methods use a non-linear parametrization with few variables to overcome both
problems. However, this returns a non-convex optimization problem which requires
initialization by an initial estimate. Hence the goal of refinement methods is to refine
initial estimates. The method proposed by Verdult et al. (2003) directly parametrizes the
state-space matrices for this purpose, and works for open-loop data.

These problems have also been tackled in Gunes et al. (2017a, 2018). Those two pa-
pers and this paper differ in that they use different tensors and different tensor tech-
niques. The different tensor techniques result in completely different methods. In Gunes
et al. (2018), a parameter tensor is constructed whose matricizations are each low-rank.
This allows exploitation through nuclear norms and has resulted in a convex subspace
method. Tensor techniques are not used to tackle the ‘curse-of-dimensionality’ in that
paper. It is worth remarking that some tensors of Gunes et al. (2018) have been general-
ized from tensors presented in this paper. In Gunes et al. (2017a), a parameter tensor is
constructed which admits a constrained polyadic decomposition and parametrization.
This resulted in a refinement method. However, the computation of the polyadic rank
is NP-hard (Håstad, 1990) and approximation with a fixed polyadic rank in the Frobe-
nius norm can be ill-posed (De Silva and Lim, 2008). This method is not ‘curse-of-
dimensionality’-free in memory or computation. In this paper, a tensor network ap-
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proach will be used. The identification problem will be recast and optimized using
tensor networks. The major difference with previous work is that this approach uses
tensor networks. These allow the method to circumvent the explicit construction of
the LPV sub-Markov parameters and makes the proposed refinement method ‘curse-
of-dimensionality’-free in memory and computation. This includes a novel technique
for constructing the estimate state-revealing matrix directly from the estimate tensor es-
timate. Another difference with Gunes et al. (2018) is that this method is a refinement
method, and does not limit the exploitation of the tensor structure to a regularization
term. For completeness, the problem definition is to develop an LPV state-space re-
finement method which by exploiting underlying tensor network structure is ‘curse-of-
dimensionality’-free in memory and computation and successfully refines initial esti-
mates from convex methods.

In this paper, we present the following novel contributions. Firstly, the LPV identi-
fication problem is recast and optimized using tensor networks to make the proposed
refinement method ‘curse-of-dimensionality’-free in memory and computation. This
is done by circumventing the explicit construction of the LPV sub-Markov parameters.
Namely, operations can be performed directly on the tensor network decompositions.
In detail, the used class of tensor network (Batselier et al., 2017) is a generalization of
tensor trains (Oseledets, 2011). They inherit tensor train efficiency results, and become
tensor trains for single-output problems. These decompositions allow efficient storage
and computation in the tensor network domain. This recast in tensor networks includes
not only the LPV sub-Markov parameters, but also the data and state-revealing matrix.
More specifically, the LPV sub-Markov parameters are shown to admit exact tensor net-
work representation with ranks equal to the model order, and the data tensor admits ex-
act and sparse tensor network representation. Secondly, these properties are exploited
to obtain a condensed tensor network parametrization which can be optimized ‘curse-
of-dimensionality’-free in memory and computation. Thirdly, we propose an efficient
way to obtain the estimate state sequence from the estimate tensor networks without
explicitly constructing the LPV sub-Markov parameters. Additionally, we provide an up-
per bound on the condition numbers of its sub-problems.

The paper outline is as follows. In Section 4.3 our LPV identification problem is pre-
sented in the tensor network framework. Subsequently in Section 4.4 a tensor network
identification method is proposed. Finally, simulations results and conclusions are pre-
sented. In the next section, background is provided on LPV identification and tensor
trains (and networks).

4.2. BACKGROUND

Before presenting the novel results, relevant topics are reviewed. These topics are LPV
identification with state-space matrices, tensor trains and tensor networks. Throughout
the paper, for clarity matrices will be denoted by capital characters, tensors which are
part of a tensor network decomposition by calligraphic characters and other tensors by
bold characters.
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4.2.1. LPV SYSTEM IDENTIFICATION WITH STATE-SPACE MATRICES
In this subsection LPV system identification with state-space matrices is reviewed (van
Wingerden and Verhaegen, 2009). First define the following signals relevant to LPV state-
space systems:

xk ∈Rn , uk ∈Rr , yk ∈Rl , µk ∈Rm , (4.1)

as the state, input, output and scheduling sequence vector at sample number k. For later
use, additionally define:

µk =
[
µ(1)

k . . . µ(m)
k

]T

µ=
[
µ1 . . . µN

] (4.2)

Predictor-based methods (Chiuso, 2007; van Wingerden and Verhaegen, 2009) use
the innovation representation and predictor-based representation of LPV state-space
systems. Therefore we directly present the assumed data-generating system as:

xk+1 =
m∑

i=1
µ(i )

k

(
A(i )xk +B (i )uk +K (i )ek

)
(4.3a)

yk =C xk +ek , (4.3b)

where the variables A(i ), B (i ), C and K (i ) are appropriately dimensioned state, input,
output and observer matrices and ek is the innovation term at sample k. Notice that
the output equation has an LTI C matrix and the feed-through term D is the zero ma-
trix. This assumption is made for the sake of presentation and simplicity of derivation,
similar to what has been done in van Wingerden and Verhaegen (2009). This will not
trivialize the bottleneck ‘curse-of-dimensionality’. Furthermore, it is assumed that µk is
known and this state-space system has affine dependency on µk like in van Wingerden
and Verhaegen (2009). That is, µ(1)

k = 1 ∀k. The predictor-based representation follows
by substituting (4.3b) in (4.3a):

xk+1 =
m∑

i=1
µ(i )

k

(
Ã(i )xk + B̄ (i )

uk

yk

)
(4.4a)

yk =C xk +ek , (4.4b)

where Ã(i ) is A(i )−K (i )C and B̄ (i ) is [B (i ),K (i )]. Notice that the states here are the observer
states. Also, define p as a past window for later use. Furthermore, define the discrete-
time time-varying transition matrix (van Wingerden and Verhaegen, 2009):

Ãk =
m∑

i=1
µ(i )

k Ã(i ) (4.5a)

φ j ,k = Ãk+ j−1 . . . Ãk+1 Ãk (4.5b)

Predictor-based methods make the assumption that this matrix is exactly zero when j is
greater than or equal to the past window p (van Wingerden and Verhaegen, 2009; Chiuso,
2007):

φ j ,k ≈ 0 ∀ j ≥ p (4.6)
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A similar approximation is also used in several LTI methods (van der Veen et al., 2013).
If the predictor-based system is uniformly exponentially stable, then the approximation
error can be made arbitrarily small by increasing p (Knudsen, 2001). In fact the intro-
duced bias disappears as p goes to infinity, but is hard to quantify for finite p (Chiuso,
2007). This assumption results in the predictor-based data equation.

Before presenting this data equation, first some definitions must be given. For ease
of presenting matrix sizes, define:

q = (l + r )
p∑

j=1
m j , (4.7)

Now define the extended LPV controllability matrix (van Wingerden and Verhaegen,
2009) as:

K(p) =
[

Lp . . . L2 B̄
]

∈Rn×q , (4.8a)

B̄ =
[

B̄ (1) . . . B̄ (m)
]

∈Rn×(l+r )m (4.8b)

L2 =
[

Ã(1)B̄ . . . Ã(m)B̄
]

∈Rn×(l+r )m2
(4.8c)

Li+1 =
[

Ã(1)Li . . . Ã(m)Li

]
∈Rn×(l+r )mi+1

,2 ≥ i ≥ p −1 (4.8d)

For this purpose also define the data matrix (van Wingerden and Verhaegen, 2009) as:

Zk+p = N p
k+p z̄k+p ∈Rq , (4.9)

where z̄k+p is:

zk+p =
uk+p

yk+p

 ∈Rl+r , (4.10a)

z̄k+p =


zk

zk+1

...

zk+p−1

 ∈Rp(l+r ), (4.10b)

where the subscript of z̄k+p indicates its relation to yk+p in equation 4.14, and N p
k+p is:

P j |k =µk+ j−1 ⊗·· ·⊗µk ⊗ Il+r ∈R(l+r )m j ×(l+r ), (4.11a)

N p
k+p =


Pp|k 0 · · · 0

0 Pp−1|k+1 · · · 0
...

...
. . .

...

0 0 · · · P1|k+p−1

 ∈Rq×p(l+r ), (4.11b)
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where µk is a column vector and the operator ⊗ is the Kronecker product (Brewer, 1978).
Notice that Zk+p involves samples from k to k +p −1. With these definitions and equa-
tion (4.4), the states can be described by:

xk+p =φp,k xk +K(p)Zk+p (4.12)

Using assumption (4.6) gives:
xk+p ≈ K(p)Zk+p , (4.13)

which yields the predictor-based data equation:

yk+p ≈C K(p)Zk+p +ek+p , (4.14)

where the entries of C K(p) are named the LPV sub-Markov parameters.
However, the number of columns of K(p) (or rows of Zk+p ) is q (4.7), which scales

exponentially with the past window. Additionally, as argued earlier in this section the
past window affects the approximation error and bias. Hence, the resulting matrix sizes
can yield problems with memory storage, computation costs and cause ill-conditioned
estimation problems. For brevity, define:

Definition 4.2.1 The curse-of-dimensionality
In this paper we say that a vector, matrix, tensor or set suffers from the curse-of-

dimensionality if the number of elements scale exponentially with the past window.

For later use, additionally define:

Z =
[

Zp+1 . . . ZN

]
∈Rq×N−p , (4.15)

and
z =

[
z1 . . . zN

]
(4.16)

Notice that the width of Z is N −p because every Zk involves samples from k−p to k−1.
Thus when using all samples, this yields N −p many Zk .

Also for later use, define the partial extended observability matrix as in van Winger-
den and Verhaegen (2009):

Γ f =


C

C Ã(1)

...

C
(

Ã(1)
) f −1

 ∈R f l×n , (4.17)

where the future window f is chosen as p ≥ f ≥ n (van der Veen et al., 2013). We assume
this matrix is full column rank.

An estimate of the LPV state-space matrices can be obtained as follows (van Winger-
den and Verhaegen, 2009). Firstly, the matrix C K(p) can be estimated using linear or
non-linear regression using (4.14). Secondly, this estimate can be used to construct a
state-revealing matrix whose Singular Value Decomposition (SVD) returns an estimate
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of the state sequence. We define the state sequence as X =
[

xp+1 . . . xN

]
and assume

it to have full row-rank as in van Wingerden and Verhaegen (2009). If the predictor-based
assumption (4.6) holds exactly, the following equality holds exactly too:

Γ f K(p)Z ≈ Γ f X , (4.18)

such that its SVD:
Γ f K(p)Z = ŪΣV T , (4.19)

returns the states through X =ΣV T modulo global state-coordinate transformation. Ad-
ditionally, the model order can be chosen by discarding the smallest singular values in
Σ.

However, notice that Γ f K(p) is not suitable when working with estimates, be-
cause it involves terms which are not estimated. One example are its bottom rows

C
(

Ã(1)
) f −1K(p). But under the same predictor-based assumption (4.6), these terms can

be assumed zero to obtain the ‘state-revealing matrix’ R:

R =


C Lp C Lp−1 · · · C L1

0 C Ã(1)Lp−1 · · · C Ã(1)L1

...
. . .

. . .
...

0 0 C
(

Ã(1)
) f −1L1

 Z ∈R f l×N−p , (4.20)

where the block-lower-triangular entries are assumed negligible. The estimate R can be
constructed from the columns of the estimate C K(p). Therefore, the SVD of R is used
to obtain an estimate state sequence. Additionally, for persistence of excitation it is as-
sumed that [µ1 . . . µN−p+1] has rank m and N − p + 1 > m. Finally, the estimate state
sequence allows readily obtaining the state-space matrices using two least squares prob-
lems (van Wingerden and Verhaegen, 2009).

4.2.2. TENSOR TRAINS AND NETWORKS
In this subsection the background on tensors and the tensor train framework (Oseledets,
2011) is presented. Furthermore we also present the slightly generalized tensor network
framework of (Batselier et al., 2017).

Firstly, the notion of a tensor has to be defined. A tensor is a multi-dimensional gen-
eralization of a matrix. That is, it can have more than two dimensions. Formally define a
tensor and how its elements are accessed:

Definition 4.2.2 Consider a tensor T with d dimensions. Let its size be T ∈ RJ1×···×Jd . Let
j1 to jd be the d indices of the tensor, which each correspond to one dimension. Then
T( j1, . . . , jd ) is its single element at position j1, . . . , jd . Furthermore, the symbol ‘:’ is used
when multiple elements are involved. More specifically, ‘:’ indicates that an index is not
fixed. For example, T(:, . . . , :) = T and T(:, :, j3, . . . , jd ) ∈RJ1×J2 is a matrix obtained by fixing
the indices j3 to jd .

The multi-dimensional structure of tensors can be exploited using techniques from the
tensor framework such as tensor networks.
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Secondly, tensor trains are discussed (Oseledets, 2011). They are condense decom-
positions of tensors. These tensor trains consist of d ‘cores’ A(1) to A(d), where each
core is a three-dimensional tensor. Notice that to distinguish regular tensors and cores,
calligraphic characters have been used for cores. The relation between a tensor and its
tensor train is defined element-wise as:

T(i1, . . . , id ) =A(1)(:, i1, :)A(2)(:, i2, :) . . .A(d)(:, id , :), (4.21)

where the left hand side is defined in Definition 4.2.2. Notice that because the left hand
side is a scalar, A(1)(:, i1, :) is a row vector and A(d)(:, id , :) is a column vector. The re-
maining terms in the product are matrices. For brevity of notation, define the generator
operator g (∗) as:

T = g (A(1), . . . ,A(d)), (4.22)

where A(∗) are the cores of the tensor train of T
The tensor train decomposition allows describing a tensor with less variables and

performing computations without constructing the original tensor and at lower com-
putational cost. To specify this, first, define the tensor train ranks as the first and third
dimension of each core. In this paragraph, let each tensor train rank 1 be r̄ and let the
size of the original tensor be ∈RJ×···×J . Then the memory cost of the tensor train scales as
O(J r̄ 2), while the memory cost of the original tensor scales as O(J d ). Hence the memory
cost can be reduced, depending on the size of the tensor train ranks. It is also possi-
ble to decrease the tensor train ranks by introducing an approximation (with guaranteed
error bounds (Oseledets, 2011)). The computational cost can also be reduced, by per-
forming computations using the tensor train without constructing the original tensor.
This is possible for many operations (Oseledets, 2011). For example, consider the inner
product of the example tensor with itself. This is equivalent to the sum of its individual
entries squared. A straight-forward computation scales with J d , while performing the
computation directly on its tensor train using Oseledets (2011) scales with d Jr 3. Hence
the computation cost can be reduced, depending on the size of the tensor train ranks.
Most importantly, the memory and computation cost scale differently when using ten-
sor trains.

This property allows tensor trains to break exponential scaling and ‘curse-of-
dimensionality’ (Definition 4.2.1). For brevity, also define:

Definition 4.2.3 ‘Curse-of-dimensionality’-free in memory and computation
In this paper we say that an algorithm is ‘curse-of-dimensionality’-free in memory and

computation if its memory usage and computational cost does not scale exponentially
with the past window, but for example as a polynomial.

Furthermore, in order to be able to deal with multiple output systems, we use the
slightly generalized tensor network of (Batselier et al., 2017). This generalization is that
we allow A(1)(:, i1, :) to be a full matrix instead of a row vector. As a result, the right hand
side of (4.21) would return a column vector instead of a scalar. This generalization pre-
serves the previously presented properties. In the remainder of this paper, we will refer
to this specific tensor network directly as ‘tensor network’.

Additionally, we define the inner product for later use:

1except the first and last one, as they are fixed at one (4.21)
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Definition 4.2.4 The inner product of two tensors is the sum of their element-wise mul-
tiplication (Oseledets, 2011). This is well defined if the tensors have the same size. If one
tensor has an additional leading dimension, we use the definition of (Oseledets, 2011) to
obtain a column vector containing inner products of slices of the larger tensor with the
other tensor.

If the two tensors have a tensor train or network representations, then this operation
can be performed directly using those representations (Oseledets, 2011). The resulting
computational cost scales linearly with the dimension count and dimension sizes and as
a third power of the tensor train ranks.

The inner product operation can be performed using the Tensor Train Toolbox (Os-
eledets, 2011). The technical descriptions of this subsection will be used in the next
section to derive the tensor networks for our LPV identification problem.

4.3. THE LPV IDENTIFICATION PROBLEM IN TENSOR NET-
WORK FORM

In this section we present several key aspects of the LPV identification problem using
tensor networks (Subsection 4.2.2). The LPV sub-Markov parameters, their associated
data matrix (4.9), the system output, the model output and the state-revealing matrix
are represented using tensor networks. This allows directly formulating the proposed
method based on tensor networks in the next section. Through the use of these tensor
networks the proposed method is ‘curse-of-dimensionality’-free in memory and com-
putation (Definition 4.2.3).

4.3.1. AN ILLUSTRATION FOR A SIMPLE CASE

In this subsection we present an example to illustrate the two more complicated tensor
networks. Namely, we derive and present the tensor networks for the LPV sub-Markov
parameters and their associated data matrix (4.9). The following simplified SISO LPV
state-space system is considered:

xk+1 =
m=2∑
i=1

µ(i )
k

(
A(i )xk

)+Buk (4.23a)

yk =C xk +ek , (4.23b)

with one input, one output and two states. This simplification also affects other equa-
tions. Because there is only one input, the tensor network is also just a tensor train. We
consider the following, first few, LPV sub-Markov parameters corresponding to p = 3:

C Ã(1) Ã(1)B̄ ,C Ã(1) Ã(2)B̄ , . . .

C Ã(2) Ã(1)B̄ ,C Ã(2) Ã(2)B̄ , . . .

C Ã(1)B̄ ,C Ã(2)B̄ , . . .

C B̄ ∈R1×7
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These parameters can be rearranged into the following tensor:

T =


C B̄ C Ã(1)B̄ C Ã(2)B̄

C Ã(1)B̄ C Ã(1) Ã(1)B̄ C Ã(1) Ã(2)B̄

C Ã(2)B̄ C Ã(2) Ã(1)B̄ C Ã(2) Ã(2)B̄

 ∈R3×3, (4.24)

where some entries appear multiple times, such that it admits an exact tensor train net-
work decomposition with its cores equal to:

A(1) =

C I C Ã(1) C Ã(2)

∈Rl×(m+1)×n

A(2) =

I B̄ Ã(1)B̄ Ã(2)B̄

∈Rn×(m+1)×r

Notice that the ranks of this tensor network are equal to the system order. In detail, the
illustrated sub-tensors can be accessed using for example A(1)(:,1, :) = C I . Proof of this
decomposition follows through straightforward computations.

Details on its generalization are as follows. Firstly, while the parameter tensor for
this example is a two-dimensional tensor (matrix), the general case produces a higher
dimensional tensor. Secondly, while for this example the matrix B̄ is only a vector and
absorbed into the second core for simplicity, it will appear in a separate core for the
general case. The matrix C will not appear in a separate core, because optimizing this
core (with alternating least squares) would stringently require l ≥ n. The general case
will be presented in the next subsection.

Next the tensor network of the associated data matrix (4.9) is illustrated using the
same example. For one sample, the following vector is obtained:

Zk = N p
k+p z̄k+p =


µk−1 ⊗µk−2 0 0

0 µk−1 0

0 0 1




uk−3

uk−2

uk−1



=


(µk−1 ⊗µk−2)uk−3

µk−1uk−2

uk−1

 ∈R7×1,

(4.25)

where µk is a column vector and u j = uT
j is a scalar. This data can be rearranged into the
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following tensor:

Zk =
 uk−1 µT

k−1uk−2/2

µk−1uk−2/2 µk−1µ
T
k−2uk−3

 ∈R3×3 (4.26a)

=
 1(1⊗uk−1)T 1(µk−1 ⊗uk−2/2)T

µk−1(1⊗uk−2/2)T µk−1(µk−2 ⊗uk−3)T

 , (4.26b)

where some entries appear multiple times (and are divided by two), such that it admits
an exact tensor train network decomposition. We present its cores as sliced matrices:

B(1)
k (:,1, :) = [1,0] (4.27a)

B(1)
k (:,1+b, :) = [0,µ(b)

k−1], b ∈ {1, . . . ,m} (4.27b)

B(2)
k (:,1, :) =

 1⊗uk−1

1⊗uk−2/2

 (4.27c)

B(2)
k (:,1+b, :) =

µ(b)
k−1 ⊗uk−2/2

µ(b)
k−2 ⊗uk−3

 , b ∈ {1, . . . ,m} (4.27d)

The division by two appears in entries which appear twice in order to allow for a sim-
ple tensor network output equation in the next subsection. For the general case, these
factors will appear as binomial coefficients. Proof of this decomposition follows through
straightforward computations. In the next subsection the general case for this subsec-
tion and the tensor network output equation are presented.

4.3.2. THE GENERAL CASE

In this subsection we present the tensor networks of the LPV sub-Markov parame-
ters (4.8) and the associated data matrix (4.9) for the general case. Additionally, we
present the predictor-based data equation (4.14) using these tensor networks.

The classic form of this equation is:

yk ≈C K(p)Zk +ek , (4.28)

which has the bottleneck that the matrices C K(p) and Zk suffer from the ‘curse-of-
dimensionality’ (Definition 4.2.1).

Therefore we first present their tensor network decompositions. Define the cores of
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the tensor network of the LPV sub-Markov parameters in three-dimensional view as:

A(1) =

C C Ã(1) C Ã(m). . .

∈Rl×(m+1)×n

A(s) =

I Ã(1) Ã(m). . .

∈Rn×(m+1)×n ,∀s ∈ {2, . . . , p −1}

A(p) =
B̄

∈Rn×m(l+r )×1,

or equivalently,

A(1)(:,1, :) =C (4.29a)

A(1)(:,1+b, :) =C Ã(b) ,∀b ∈ {1, . . . ,m} (4.29b)

A(s)(:,1, :) = In ,∀s ∈ {2, . . . , p −1} (4.29c)

A(s)(:,1+b, :) = Ã(b) ,∀b ∈ {1, . . . ,m}

,∀s ∈ {2, . . . , p −1} (4.29d)

A(p) = B̄ (4.29e)

Also, define the cores of the tensor network of the associated data matrix (per sample) in
three-dimensional view as:

B(s) =

I 0
0

µT
k−1

. . .

µT
k−p

,∈Rs×(m+1)×s+1,∀s ∈ {1, . . . , p −1}

B(p) =

[µk−1 ⊗ zk−1]T
(p−1

0

)−1

...
[µk−p ⊗ zk−p ]T

(p−1
p−1

)−1

∈Rp×m(l+r )×1,
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where [µk− j ⊗ zk− j ]T is a row vector, and equivalently,

B(s)
k (:,1, :) =

[
Is 0

]
∈Rs×s+1

∀s ∈ {1, . . . , p −1} (4.30a)

B(s)
k (:,1+b, :) =


0 µ(b)

k−1 0 · · · 0

0 0 µ(b)
k−2 · · · 0

...
...

...
. . .

...

0 0 0 0 µ(b)
k−s

 ∈Rs×s+1

∀b ∈ {1, . . . ,m},∀s ∈ {1, . . . , p −1} (4.30b)

B(p)
k =


[µk−1 ⊗ zk−1]T

(p−1
0

)−1

...

[µk−p ⊗ zk−p ]T
(p−1

p−1

)−1


∈Rp×m(l+r ), (4.30c)

Notice that these cores have this specific sparse form, because Kronecker products of
subsequent scheduling sequence samples appear in the data (see for example (4.11)).
Proof of both decompositions follows through straightforward computations. The bi-
nomial coefficients in this last core divide entries of the full tensor by how many times
they appear in the full tensor. These coefficients may give finite precision problems for
p ≥ 58. These cores are defined like this to keep the following data equation simple.

Using these two tensor networks, the predictor-based data equation can be recast as:

yk ≈C K(p)Zk +ek = < T,Zk > +ek , (4.31)

where < ∗,∗ > is the inner product (Definition 4.2.2), and T and Zk are defined by their
tensor networks:

T = g (A(1), . . . ,A(p))

∈Rl×(m+1)×···×(m+1)×m(l+r ) (4.32a)

Zk = g (B(1)
k , . . . ,B(p)

k )

∈R1×(m+1)×···×(m+1)×m(l+r ) (4.32b)

In detail, the full tensor T has l (l +r )m(m+1)p−1 elements of which l (l +r )
∑p

j=1 m j (4.7)

are unique. The advantage of this recast is that < T,Zk > can be computed ‘curse-
of-dimensionality’-free in memory and computation using tensor networks (Defini-
tion 4.2.2).

In the next subsection the state-revealing matrix is recast using tensor networks.

4.3.3. THE STATE-REVEALING MATRIX
In this subsection we present how the (estimate) state-revealing matrix (4.20) can be
constructed from the (estimate) parameter tensor network (4.31) and the data sequence
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‘curse-of-dimensionality’-free in memory and computation. Afterwards the (estimate)
state sequence and state-space matrices can be obtained using Subsection 4.2.1.

Constructing the (estimate) state-revealing matrix R (4.20) in straight-forward man-
ner from the (estimate) LPV sub-Markov parameters and associated data matrix is
problematic, because they both suffer from the ‘curse-of-dimensionality’. Therefore we
present how it can be constructed with tensor networks using the operator h() as:

R = h(A(1), . . . ,A(p),µ, z, f ) (4.33a)

R(θ) = h(A(1)(θ), . . . ,A(p)(θ),µ, z, f ), (4.33b)

where R and A(∗) are defined in (4.20) and (4.29) respectively, and the parametrization
is discussed in detail in the next section. Because the definition of h() is lengthy, its de-
tails are provided in Appendix 4.C. This equation allows computing the (estimate) state-
revealing matrix ‘curse-of-dimensionality’-free in memory and computation.

In the next section, the proposed method is presented.

4.4. THE PROPOSED METHOD
In the section the proposed method is presented. The proposed refinement predictor-
based method uses a tensor network parametrization in order to obtain refined LPV
state-space estimates ‘curse-of-dimensionality’-free in memory and computation. This
can be as exploitation of the underlying tensor structure.

4.4.1. PARAMETRIZATION
A tensor network parametrization of the LPV sub-Markov parameters is used by the pro-
posed method. That is, the LPV sub-Markov parameter tensor (4.32) is parametrized as:

T(θ) = g (A(1)(θ1), . . . ,A(p)(θp )), (4.34)

with each core parametrized as black-box. Using the data equation (4.31), the model
output can be described as:

yk (θ) =< T(θ),Zk > (4.35)

Furthermore, the estimated state-revealing matrix (4.20) is:

R(θ) = h(A(1)(θ1), . . . ,A(p)(θp ),µ, z, f ) (4.36)

Notice that the system order is generally not known, so the sizes of the cores will de-
pend on the model order ñ instead. We underline that this parametrization is a free
parametrization and not canonical. Furthermore the core and state estimates are mod-
ulo global state-coordinate transformation. In total there are l (m+1)ñ+(ñ(m+1)ñ)(p−
2)+ñm(l+r ) parameters to estimate. Notice that the number of LPV sub-Markov param-
eters is generally many times larger (l (l + r )

∑p
j=1 m j (4.7)). The parameter tensor T(θ)

has over-parametrization: an LPV sub-Markov parameter can appear multiple times and
each will be parametrized differently. The chosen parametrization allows for well-known
(tensor network) optimization techniques.
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The optimization of these parameters is performed using Alternating Least Squares
(ALS) for tensor networks (Oseledets, 2011; Batselier et al., 2017). That is, we start with
an initialization of the cores and iteratively update them one-by-one. Every update boils
down to solving a least squares problem (4.55). Afterwards we make an orthogonaliza-
tion step in order to improve the conditioning of the next sub-problem. This orthogonal-
ization is also performed on the initialization of the cores. We refer to (Oseledets, 2011;
Batselier et al., 2017; Chen et al., 2016) for this common step. For this orthogonalization
step, some assumptions are made on the sizes of the cores. Let A(s)(θ) be ∈Ra×b×c . Then
for 1 ≤ s ≤ p −1 we assume ab ≥ c , and for 2 ≤ s ≤ p we assume bc ≥ a.

This optimization approach enjoys some nice properties. Firstly, the optimization
has local linear convergence under some mild condition (Holtz et al., 2012; Rohwedder
and Uschmajew, 2013). Secondly, the condition number of the least squares problem
of every sub-problem has upper bounds (Holtz et al., 2012). The latter result allows ex-
changing the assumption that each sub-problem is well-conditioned by the assumption
that this upper bound holds (Holtz et al., 2012) and is finite. We show how to compute
these bounds for our problem ‘curse-of-dimensionality’-free in memory and computa-
tion in Appendix 4.B.

In the next subsection the algorithm of the proposed method is summarized.

4.4.2. ALGORITHM
Algorithm 4.4.1 The proposed method

Input: an initial estimate of the LPV state-space matrices, µ, z, p, f , termination con-
ditions

Output: a refined estimate of the LPV state-space matrices

1. Initialize the tensor network cores A(θ) (4.34). This can be done using an initial es-
timate of the LPV state-space matrices and the formulas (4.29). This initial estimate
can be obtained from a (‘curse-of-dimensionality’-free in memory and computa-
tion) convex method, such as proposed by Gunes et al. (2018); van Wingerden and
Verhaegen (2009).

2. Compute the tensor network cores B of the data (4.30)

3. Optimize the tensor network cores A(θ) using the tensor network ALS (Holtz et al.,
2012) and Subsection 4.4.1 until the termination conditions (discussed in the next
paragraph) are met. The sub-problems of this ALS are given in Appendix 4.A.

4. Use the estimate cores to compute the estimate state-revealing matrix using (4.33)

5. Use an SVD to obtain an estimate of the states as described in Subsection 4.2.1

6. Solve two least squares problem to obtain a (refined) estimate of the LPV state-space
matrices as described in van Wingerden and Verhaegen (2009)

The entire algorithm is ‘curse-of-dimensionality’-free in memory and computa-
tion. Some details on the algorithm are worth mentioning. Firstly notice that the
initial estimate also provides a well-supported choice of the tensor network ranks, so
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these ranks can be kept fixed during optimization. It is worth remarking that methods
without fixed ranks exist such as the Density Matrix Renormalization Group (DMRG)
algorithm (White, 1992). Secondly, there are several ways to terminate the optimization.
One option is to terminate when the residual changes less than 0.1% after updating all
cores forward and backward. Another option is to terminate after a few such ‘sweeps’.
We do not recommend a termination condition on the absolute residual itself for this
application, as the LPV data equation (4.14) can have non-negligible bias. Furthermore,
in the simulations we will solve the least squares problem for every update with added
Tikhonov regularization. More specifically, instead of solving ||Ȳ − V̄ (s)vec(A(s))||2F
we solve ||Ȳ − V̄ (s)vec(A(s))||2F + λ||vec(A(s))||2F where the definitions are given in Ap-
pendix 4.A. The tuning parameter λ is chosen using Generalized Cross Validation
(GCV) (Golub et al., 1979). Additionally, the computation cost of this algorithm scales
favourably with the past window as a fifth power. This is dominated by the computation
cost of the inner products in the ALS step. In the next section simulation results are
presented to evaluate the performance of the proposed method.

4.5. SIMULATION RESULTS

In this section we illustrate the performance of the proposed method with simulation
results.

4.5.1. SIMULATION SETTINGS

In this section the general simulation settings, constant over every case, are presented.

The following information is passed to the identification methods. All methods are
passed the input, output and scheduling sequences. The model order is chosen equal
to the system order. The future window in any SVD step is chosen equal to the past
window. The evaluated methods are all global LPV identification methods for known ar-
bitrary scheduling sequences. All cases generate data based on a finite-dimensional dis-
crete affine state-space LPV system. Together with the proposed non-convex method,
the convex LPV-PBSIDopt (kernel) method by van Wingerden and Verhaegen (2009), the
non-convex Predictor-Based Tensor Regression (PBTR) method by Gunes et al. (2017a)
and the non-convex polynomial method by Verdult et al. (2003) are evaluated. More
specifically, the LPV-PBSIDopt with its own Tikhonov regularization and Generalized
Cross Validation (GCV), and the output error variant of the polynomial method (Verdult
et al., 2003) is used. The proposed method is terminated after five sweeps. All the non-
convex methods are initialized from the estimate of the convex method. Additionally,
results are presented of the proposed method initialized in ‘random’ manner as follows.
Firstly, m (4.3) random, stable LTI systems with the chosen model order and matching
input and output counts are generated. Secondly, these m LTI systems are combined in
straight-forward manner into an LPV system. Thirdly, this LPV system is regarded as an
initial estimate. The matrix K is generated in the same way as B . These methods are
or will soon be available with the PBSID toolbox (van Wingerden and Verhaegen, 2009).
The convex method (Gunes et al., 2018) from previous work is not evaluated, because
it is not related to the core contributions of the current paper. All results are based on
100 Monte Carlo simulations. For each Monte Carlo simulation, a different realization of
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both the input and the innovation vector is used, while the scheduling sequence is kept
the same.

The produced estimates are then scored using the Variance Accounted For (VAF) cri-
terion on a validation data set. That is, fresh data not available to the methods is used
which has different realizations of both the input and the innovation vector. The VAF for
single-output systems is defined as follows (van Wingerden and Verhaegen, 2009):

VAF(ȳk , ŷk ) = max

{
1− var (ȳk − ŷk )

var (ȳk )
,0

}
100%

The variable ȳk denotes the noise-free simulated output of the system, and similarly
ŷk denotes the noise-free (simulated) model output. The operator var (∗) returns the
variance of its argument. If a non-convex refinement method returns an estimate with
identification VAF fifteen percent lower than that of its initialization, then the refined
estimate is rejected and substituted by the initialization. Notice that this only involves
identification data. Also notice that this does not prevent local minima, but only serves
to reject known poor optimization results. Finally, the computations are performed on
an Intel i7 quad-core processor running at 2.7GHz with 8 GB RAM, and the computation
times are provided. In the next subsections, we present several cases and the parameter
counts.

4.5.2. SIMULATION RESULTS CASE 1
In this subsection, a case which relates to the flapping dynamics of a wind turbine is
used to evaluate the performance of the proposed method and existing methods. This
case has been used before in (Felici et al., 2007; van Wingerden and Verhaegen, 2009).
Consider the following LPV state-space system (4.3):

[A(1), A(2)] =

 0 0.0734

−6.5229 0.4997

∣∣∣∣∣∣∣
−0.0021 0

−0.0138 0.5196

 ,

[B (1),B (2)] =
−0.7221

−9.6277

∣∣∣∣∣∣0

0

 ,C =
[

1 0
]

,

where D is zero and K is LPV. The matrix K (i ) for i = {1, . . . ,m} has been obtained from
the Discrete Algebraic Ricatti Equation (DARE) using A(i ) and C and identity covariance
of the concatenated process and measurement noise. The input uk is chosen as white
noise with unit power and and the innovation ek is also chosen as white noise with unit
power. The past window is 6. The data size N is 200.

The system is evaluated at the affine scheduling sequence:

µ(2)
k = cos(2πk

10

N
)/2+0.2,

The results are shown in Table 4.1, Fig 4.1 and 4.2. The average computation times are
0.033, 15, 0.82, 10 and 9.4 seconds for respectively the LPV-PBSIDopt , the PBTR, the poly-
nomial and the proposed method (for pseudo-random and normal initialization) per
Monte Carlo simulation.
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Method VAF%

LPV-PBSIDopt (kernel) 92.2 ±0.5

PBTR 91.1 ±0.6

Polynomial method 94.6 ±0.3

Proposed method (r.i.) 94.8 ±0.3

Proposed method 95.8 ±0.2

Table 4.1: Mean VAF for different methods for Case 1. The text ‘r.i.’ indicates random initialization,
as discussed in Subsection 4.5.1.

Figure 4.1: This figure shows a box-plot of the validation VAF of the 100 Monte Carlo simulations
for five methods. The initialization method is LPV-PBSIDopt (kernel), and the other four are re-
finement methods. The text ‘r.i.’ indicates random initialization, as discussed in Subsection 4.5.1.

From Table 4.1, Fig 4.1 and 4.2 it is visible that for this case the proposed method
and the polynomial method can refine the initial estimates successfully. Two additional,
minor results are that the proposed method may converge quickly and perform well for
random initialization.
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Figure 4.2: This figure shows how the validation VAF of the proposed method, averaged over the
Monte Carlo simulations, is affected by the number of sweeps. The VAF at 0 sweeps performed is
the initialization. This sweep is defined in Subsection 4.4.1.

4.5.3. SIMULATION RESULTS CASE 2

In this subsection, the proposed method is shown to work for a MIMO case with higher
system order. Consider the following LPV state-space system (4.3) with:

A(1) =



−15
30 0 0 0

2
30

−17
30

−4
30

38
30

2
30

−2
30

−19
30

2
30

0 0 0 21
30


, A(2) =



24
30 0 0 0

9
30

15
30

−18
30

−18
30

9
30

−9
30

6
30

9
30

0 0 0 −1
30



A(3) =



0 0 0 0

−2
30

2
30

4
30

−2
30

−2
30

2
30

4
30

−1
30

0 0 0 0


, A(4) =



0 0 0 0

0 0 0 6
30

0 0 0 0

0 0 0 6
30


,
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and

B (1) =


1 0

1 0

0 1

0 1

 ,B (2) = B (3) = B (4) = B (1)/4

C =


1 0 0 0

0 1 0 0

0 0 1 0

 ,

where D is zero and K is LPV. The matrix K (i ) for i = {1, . . . ,m} has been obtained from the
Discrete Algebraic Ricatti Equation (DARE) using A(i ) and C and identity covariance of
the concatenated process and measurement noise. Every input signal is chosen as white
noise with unit power and and every innovation signal is chosen as white noise with half
a unit power. The past window is 6. The data size N is 200.

The system is evaluated at the affine scheduling sequence:

µ(2)
k = sawtooth(1+2πk

1

N
)/3+0.2

µ(3)
k = sawtooth(−1+2πk

1

N
/3.5+0.5π)

µ(4)
k = cos(2πk

1

N
/3)+0.2,

where ‘sawtooth’ is a sawtooth wave function with peaks of −1 and 1. It is −1 when its
argument is a multiple of 2π. The results are shown in Table 4.2, Fig. 4.3 and 4.4. The
average computation times are 0.020 and 13 seconds for respectively the LPV-PBSIDopt

method and the proposed method per Monte Carlo simulation.

Output

Method Channel VAF%

1 67.3 ±2.9

LPV-PBSIDopt (kernel) 2 54.5 ±3.0

3 60.3 ±3.3

1 79.7 ±1.9

Proposed method 2 73.9 ±2.3

3 74.2 ±2.4

Table 4.2: Mean VAF for different methods for Case 2.
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Figure 4.3: This figure shows a box-plot of the validation VAF of the 100 Monte Carlo simulations
for two methods. The initialization method is LPV-PBSIDopt (kernel), and the refinement method
is the proposed method.

Figure 4.4: This figure shows a scatter-plot of the validation VAF of the 100 Monte Carlo simulations
for two methods. The initialization method is LPV-PBSIDopt (kernel), and the refinement method
is the proposed method.

From the results of Table 4.2, Fig. 4.3 and 4.4, it is visible that the proposed method
can refine initial estimates for this case. We do remark that a few ‘refined’ estimates have
decreased VAF, which is possible due to the two compared methods optimizing different
objective functions.
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4.5.4. PARAMETER COUNTS

We present the parameter counts of several methods in Table 4.3.

This table shows that a straight-forward black-box parametrization, like LPV-
PBSIDopt without kernels, results in a parameter count which scales exponentially.
A more condense parametrization can be obtained by using kernels van Wingerden
and Verhaegen (2009) or a non-linear parametrization. The parameter count of the
proposed method is comparable with the one of PBTR and larger than the one of the
polynomial method. The parameter counts for Case 2 show that the parameter counts of
the evaluated methods is much smaller than is the case for a straight-forward approach.

Method Parameter count formula Case 1 Case 2

LPV-PBSIDopt (primal) l (l + r )
p∑

j=1
m j 252 81900

LPV-PBSIDopt (kernel) l N 200 600

PBTR nl +n(l + r )m +n2m(p −1) 50 412

Polynomial method nl +nr m +n2m 14 108

Proposed method l (m +1)n +n2(m +1)(p −2) 62 460

+n(l + r )m

Table 4.3: Comparison of the parameter counts for the (first) estimation step, for model order
equal to system order.

4.6. CONCLUSIONS

In this paper it was shown that the MIMO LPV identification problem with state-space
matrices admits a tensor network description. That is, the LPV sub-Markov parame-
ters, data and state-revealing matrix were condensely and exactly presented as tensor
networks. Additionally, it was shown how to obtain the (estimate) state-revealing ma-
trix directly from (estimate) tensor networks. These results provided a tensor network
perspective on the MIMO LPV identification problem. Then a refinement method was
proposed which is ‘curse-of-dimensionality’-free in memory and computation and has
conditioning guarantees. The performance of the proposed method was illustrated us-
ing simulation cases and additionally compared with existing methods.

4.A. DERIVATION OF THE LEAST SQUARES PROBLEM

The proposed method involves the optimization of a tensor network using ALS. At ev-
ery update of a tensor network core, a least squares problem must be solved. In this
appendix we derive that least squares problem.

Using the algorithm for the inner products of two tensor networks (Oseledets, 2011)
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and (4.29) (4.30), we can state that:

< T,Zk >=
s=p∏
s=1

ns∑
is=1

A(s)(:, is , :)⊗B(s)
k (:, is , :) (4.40)

where ns is:
ns = m +1 for s ≤ p −1, otherwise m(l + r ) (4.41)

and the operator
∏

is defined as:

d∏
i=1

Mi = M1M2 . . . Md (4.42)

Then we can isolate the s-th core:

< T,Zk >=V (s)
−,k

( ns∑
is=1

A(s)(:, is , :)⊗B(s)
k (:, is , :)

)
V (s)
+,k , (4.43)

where A(s) ∈Rm̄×ns×n̄ , B(s)
k ∈Rp̄×ns×q̄ , and

V (s)
−,k =Im̄p̄ for s = 1,

t=s−1∏
t=1

nt∑
it=1

A(t )(:, it , :)⊗B(t )
k (:, it , :) otherwise,

(4.44)

and
V (s)
+,k =In̄q̄ for s = p,

t=p∏
t=s+1

nt∑
it=1

A(t )(:, it , :)⊗B(t )
k (:, it , :) otherwise

(4.45)

Using the Kronecker algebra trick in (Batselier et al., 2017), we can rewrite:

< T,Zk >=
(
(V (s)

+,k )T ⊗V (s)
−,k

)
ns∑

is=1
vec

(
A(s)(:, is , :)⊗B(s)

k (:, is , :)
)
,

(4.46)

where we additionally pulled the summer out of the vectorization operator vec(∗). Next
we use the following equivalence (Turkington, 2013). For a matrix M of size m̄-by-n̄ and
a matrix N of size p̄-by-q̄ :

vec(M ⊗N ) = (In̄ ⊗ K̄ q̄m̄ ⊗ I p̄ )(Im̄n̄ ⊗vec(N ))vec(M), (4.47)

where the matrix K̄ is defined such that:

K̄m̄n̄vec(M) = vec(M T ) (4.48)

Now we can fill in:
M =A(s)(:, is , :)

N =B(s)
k (:, is , :)

(4.49)



4

102 4. TENSOR NETWORKS FOR MIMO LPV SYSTEM IDENTIFICATION

to obtain:

< T,Zk >=
(
(V (s)

+,k )T ⊗V (s)
−,k

)
(In̄ ⊗ K̄ q̄m̄ ⊗ I p̄ )

ns∑
is=1

(Im̄n̄ ⊗vec(B(s)
k (:, is , :))vec(A(s)(:, is , :))

(4.50)

Notice that the sizes are constant over is . Next we can rewrite without summation:

< T,Zk >=
(
(V (s)

+,k )T ⊗V (s)
−,k

)
(In̄ ⊗ K̄ q̄m̄ ⊗ I p̄ )[

Im̄n̄ ⊗vec(B(s)
k (:,1, :)) . . .

]


vec(A(s)(:,1, :))
...

vec(A(s)(:,ns , :))


(4.51)

We can further simplify this equation by reorganizing the right-most matrix into
vec(A(s)) as follows. Define the matrix V̄ (s)

k in pseudo-code:

V̄ (s)
k =reshape(permute(reshape((

(V (s)
+,k )T ⊗V (s)

−,k

)
(In̄ ⊗ K̄ q̄m̄ ⊗ I p̄ )[

Im̄n̄ ⊗vec(B(s)
k (:,1, :)) . . .

]
,

[l ,m̄,ns , n̄]), [1,2,4,3]), [l ,m̄ns n̄]),

(4.52)

where the two functions are defined as follows. The ‘reshape’ function changes the size
of the dimensions of its first argument as specified in its second argument. The ordering
of the elements is not changed. The ‘permute’ function changes the indexing of its first
argument as specified in its second argument. Then, we obtain (using (4.31)):

yk ≈ < T,Zk >+ek = V̄ (s)
k vec(A(s))+ek (4.53)

We can stack this over all samples. Define:

V̄ (s) =


V̄ (s)

p+1
...

V̄ (s)
N

 ∈Rl (N−p)×m̄ns n̄ , Ȳ =


yp+1

...

yN

 , Ē =


ep+1

...

eN

 ∈Rl (N−p), (4.54)

such that:
Ȳ = V̄ (s)vec(A(s))+ Ē , (4.55)

where it is assumed that l (N −p) is greater than or equal to the number of elements of
each A(s). Additionally, upper bounds are derived on the condition number of V̄ (s) in
Appendix 4.B. This is the least squares problem that has to be solved when updating a
core.
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4.B. THE CONDITION GUARANTEE
The proposed method uses ALS to optimize its tensor network cores. This involves solv-
ing a number of sub-problems (4.55), whose conditioning depends on the condition
number of V̄ (s). In this appendix we derive an upper bound on this condition number
using Holtz et al. (2012). Notice that this property is in part due to the orthogonalization
steps of tensor network ALS. Additionally, we provide a means to compute it ‘curse-of-
dimensionality’-free in memory and computation.

Firstly, define the condition number of a matrix as the ratio of the largest singular
value of that matrix to the smallest singular value. If the smallest singular value is zero,
then the condition number is by convention infinite. Let “cond()” be an operator whose
output is the condition number of its argument.

Define using (4.31):

Y̌ =


yT

p+1
...

yT
N

 , Ě =


eT

p+1
...

eT
N

 , Ž =


vec(Zp+1)T

...

vec(ZN )T

 , (4.56)

such that we can rewrite (4.31) as:

Y̌ ≈ (C K(p)Z )T + Ě = Ž(T<1>)T + Ě (4.57)

Additionally, we assume that the chosen initialization of the tensor network cores results
in all V̄ (s) (4.55) being invertible at the start of the optimization. Then, using the results
of (Holtz et al., 2012), we can now state that the condition number of each V̄ (s) (4.55) is
upper bounded by the condition number of the matrix Ž.

Next, we provide means to compute the latter condition number in a way which is
‘curse-of-dimensionality’-free in memory and computation using tensor trains. Notice
that Ž suffers from the ‘curse-of-dimensionality’, such that the computation of its con-
dition number is problematic. However, since Ž only has N −p rows, the following trick
can be applied. For any wide matrix M , cond(M) = cond((M M T )1/2) holds. Notice that
M M T is smaller than the wide M . Hence we use that:

cond(Ž) = cond((ŽŽT )1/2), (4.58)

where the size of (ŽŽT )1/2 is only N−p-by-N−p. Hence cond((ŽŽT )1/2) can be computed
if (ŽŽT ) is available. In other words, the size and square root do not induce any ‘curse-
of-dimensionality’, such that the problem reduces to computing the following equation
‘curse-of-dimensionality’-free in memory and computation. This reduced problem can
be tackled using tensor trains. Using (4.56):

[ŽŽT ](i , j ) = vec(Zp+i )T vec(Zp+ j ), (4.59)

or equivalently:
[ŽŽT ](i , j ) = < Zp+i ,Zp+ j > (4.60)

which is an inner product of two tensor trains (Definition 4.2.2). This inner product
and, with it, the upper bound on the condition number can be computed ‘curse-of-
dimensionality’-free in memory and computation.
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4.C. THE OPERATOR FOR THE STATE-REVEALING MATRIX
In Subsection 4.2.1 it has been discussed how the estimate (LPV sub-Markov) parameters
can be used to obtain an estimate of the state sequence. This is done by constructing the
estimate state-revealing matrix R(θ) and taking its SVD. In this appendix, we show how
to obtain this matrix from the estimate tensor networks ‘curse-of-dimensionality’-free
in memory and computation.

Recall that R has been defined as (4.20):

R =


C Lp C Lp−1 · · · C L1

0 C Ã(1)Lp−1 · · · C Ã(1)L1

...
. . .

. . .
...

0 0 C
(

Ã(1)
) f −1L1

 Z ∈R f l×N−p (4.61)

Notice that both matrices of the product suffer from the ‘curse-of-dimensionality’. How-
ever, we can avoid this problem by using the tenor networks as in (4.33) :

R = h(A(1), . . . ,A(p),µ, z, f ) (4.62a)

R(θ) = h(A(1)(θ), . . . ,A(p)(θ),µ, z, f ), (4.62b)

where some operator h(∗) is used which is ‘curse-of-dimensionality’-free in memory and
computation.

This operator is non-trivial, because of the following reason. The rows of R involve
subsets of the LPV sub-Markov parameters and the relation of these subsets to the ten-
sor network decomposition is complex. Firstly, the LPV sub-Markov parameters appear
multiple times in the parameter tensor and require averaging. Secondly, the tensor net-
work cores contain identity matrices which add further ambiguity. The remainder of this
appendix provides details on the functionality of this operator. The operator is presented
formally in Algorithm 4.C.2.

The operator h(∗) consists of several loops. The major loop is over the outputs. That
is, we split the full problem into l single-output sub-problems. Then we solve each sub-
problem individually and merge the results. How we split and merge is presented in full
detail in Algorithm 4.C.2. How we solve each sub-problem will be introduced next. In
the remainder of this appendix we consider one such sub-problem with output number
o for clarity.

For each such sub-problem, we compute the state-revealing matrix (4.20) with C re-
placed by Co = C (o, :). The top row of this matrix is CoK(p)Z and can be computed effi-
ciently using inner products of tensor networks (4.31), where C is substituted by Co . The
other rows are more involved.

The difficulty of the other rows is that we do not have a single inner product, be-
cause these rows involve only subsets of the LPV sub-Markov parameters. Namely,
row number t only involves LPV sub-Markov parameters whose product begins with
Co(Ã(1))t−1 (4.20). Therefore we compute these rows in two parts. The first part relates
to the required begin of the product, and the second part relates to the ‘free’ part.

Before presenting the computation, we first provide insight into how LPV sub-
Markov parameters appear multiple times in the parameter tensor and how to deal with



4.C. THE OPERATOR FOR THE STATE-REVEALING MATRIX

4

105

this. The reason LPV sub-Markov parameters appear multiple times in the parameter
tensor, is that they can be constructed in different ways from the tensor train cores. For
example consider the (1,2,1)-th and (2,1,1)-th entry of the estimate parameter tensor for
three cores:

T(1,2,1)(θ) = [Co](θ1) [Ã(1)](θ2) [B (1)](θ3)

T(2,1,1)(θ) = [Co Ã(1)](θ1) [I ](θ2) [B (1)](θ3)
(4.63)

Both relate to the same LPV sub-Markov parameter. To be exact, LPV sub-Markov pa-
rameters with c many Ã(∗)’s appear

(p−1
c

)
times. This phenomenon poses a problem, as

we have several estimates of the same LPV sub-Markov parameter. It turns out that dis-
carding all but one estimate is not viable, because it changes the model output. However,
averaging estimates does not change the model output and removes the ambiguity. This
is possible because the estimates are multiplied with the same data during the compu-
tation of the model output. We will explain later in this subsection how to perform this
averaging efficiently.

First we define the matrix S in order to store all possible ways of fixing the cores to ob-
tain the subset of LPV sub-Markov parameters relevant to one row of the state-revealing
matrix. Let the number of cores we fix be δ. Then we need to fix δ cores, of which t −1
cores to Ã(1) and the rest as I . The last core we have to fix as Ã(1), for reasons we will ex-
plain later in this subsection. This becomes a pick t −2 cores out of δ−1 cores problem.
This can be done in

(δ−1
t−2

)
ways. For every possible way, we put a row in S where the s-th

element of that row is a 1 if core s is fixed at Ã(1) and a 0 otherwise for s is one to δ. We
summarize this algorithm:

Algorithm 4.C.1 S =S(δ, t )
For every possible way of picking t −2 cores out of δ−1 cores, put a row in S, where the

s-th element of that row is a 1 if core s is picked and a 0 otherwise. Let the δ-th element of
that row be 1. This results in a

(δ−1
t−2

)
-by-δ matrix.

We illustrate the result of the algorithm with an example:

S(δ= 4, t = 4) =


0 1 1 1

1 0 1 1

1 1 0 1

 (4.64)

In this paragraph we discuss why we need δ in the computations. The LPV sub-
Markov parameters related to the t-th row all start with C (Ã(1))t−1, and we can isolate
these by fixing cores. This we can do by fixing the first t −1 cores as C Ã(1) and Ã(1). The
remaining cores are ‘free’. We can also do this while fixing more cores, by fixing some at
I . That can also leave a number of cores ‘free’. Therefore to capture all estimates of the
same LPV sub-Markov parameter, we have to consider δ= t −1 to p −1. Additionally, to
avoid counting estimates double, we let the last fixed core always be fixed at Ã(1). Now
we return to how to perform the computations of the operator h(∗).

The first part of the computation relates to the fixed cores. The fixed cores are simply
matrices. More specifically, they are slices of the cores corresponding to either I or Ã(1).
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They form a series of matrix products. This product returns a row vector, as we consider
one output at a time. We define this product as L̄.

The second part of the computation relates to the ‘free’ cores. Notice that for the
top row we had no fixed cores and directly used a tensor network inner product. Here
we again use inner products. We form a reduced tensor network from the free cores.
To match this smaller size tensor network in size, we also define a reduced data tensor
network. This tensor network can simply be computed using (4.30) with p substituted
by p −δ, and the following change.

Additionally, we have to change the duplication correction factors (4.30) to account
for the effect of δ not being just zero. Therefore we define the matrix Dr :

Dr =


(p−(t−1)

1

)(p−δ−1
0

)−1 · · · 0
...

. . .
...

0 · · · (p−(t−1)
p−δ

)(p−δ−1
p−δ−1

)−1

 , (4.65)

such that changing the last data tensor network core as:

B̌(p−δ)
k = Dr B̌(p−δ)

k (4.66)

ensures the correct duplication correction factors for the computation of the state-

revealing matrix. Notice that B̌(p−δ)
k is a matrix. This then forms the tensor network of

the reduced data tensor.
Then we combine these computations to obtain the state-revealing matrix of the

sub-problem. Namely, we post-multiply L with the inner product of the reduced param-
eter and reduced data tensor networks. This is done over several loops, over: the sample,
row, δ and rows of S. We remark that the operator R(∗) is ‘curse-of-dimensionality’-free
in memory and computation.

Next we summarize the computation of the operator h(∗) in the following algorithm
in pseudo-code.

Algorithm 4.C.2 The operator h(∗)
Input: (estimate) A(1), . . . ,A(p),µ, z, f
Output: (estimate) state-revealing matrix R

1. R= 0̄ ∈R f l×N−p

2. for o = 1 to l do

3. Ā(1)
o =A(1)(o, :, :)

4. R(o) = h̄(Ā(1),A(2), . . . ,A(p),µ, z, f )

using Algorithm 4.C.3

5. v = o : l : f l

6. R(v, :) = R(o)



4.C. THE OPERATOR FOR THE STATE-REVEALING MATRIX

4

107

7. end for

Algorithm 4.C.3 The operator h̄(∗)
Input: (estimate) Ā(1),A(2), . . . ,A(p),µ, z, f
Output: (estimate) state-revealing matrix R(o)

1. R(o) = 0̄ ∈R f ×N−p

2. for k = p +1 to N do

3. R(1,k −p) =< T,Zk > using (4.31)

4. for row number t = 2 to f do

5. for fixed cores number δ= t −1 to p −1 do

6. S =S(δ, t ) ∈Rc̄×δ using Algorithm 4.C.1

7. for c = 1 to c̄

8. L̄ =A(1)(:,1+S(c,1), :)

9. for s = 2 to δ

10. L̄ = L̄A(s)(:,1+S(c, s), :)

11. end for

12. Ť = g (A(1+δ), . . . ,A(p)) using (4.22)

13. Compute B̌(1)
k to B̌(p−δ)

k using (4.30)

with p substituted by p −δ

14. B̌(p− f i xno)
k = Dr B̌(p−δ)

k using (4.65)

15. Žk = g (B̌(1)
k , . . . ,B̌(p−δ)

k ) using (4.22)

16. R(o)(t ,k −p) = R(o)(t ,k −p)+

L̄ < Ť, Žk > /c̄

17. end for

18. end for

19. end for

20. end for
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5
CONCLUSIONS AND RECOMMENDATIONS

In this final chapter, the conclusions about the proposed methods for LPV state-space
identification using tensor techniques are presented and the research question is reflected
upon. Additionally, some recommendations for future research are discussed.

5.1. CONCLUSIONS
In this thesis it is shown that the LPV system identification problem has an underlying
tensor structure and how it can be exploited. This can result in more accurate LPV models
which in turn allow for higher performance of LPV controllers and systems. This affects
many applications, such as wind turbines, overhead cranes and bio-mechanics.

In this thesis three novel methods are proposed which exploit the tensor structure
of the LPV identification problem using tailored tensor techniques. These methods are
one subspace method and two refinement methods. The subspace method exploits
tensor structure using tensor nuclear norms, whereas existing subspace methods do
not. The refinement methods follow a vastly different approach than any existing re-
finement method. They do not circumvent the ‘curse-of-dimensionality’ through direct
parametrization of the state-space matrices, but rather tackle it using tensor techniques.
Hence the cost functions of the initializing method and the refinement method are in
line, which may benefit the quality of the initialization of the refinement method. The
novelty of the proposed methods lies mainly in how the problematic first regression step
of predictor-based approaches is tackled. To summarize, the proposed methods are fo-
cussing on exploiting tensor structure to be ‘curse-of-dimensionality’-free (in memory
and computation) and to have improved variance 1.

Before discussing the detailed conclusions, the research question will be repeated.
“Do exact, low-rank polyadic, multi-linear singular value, tensor network decomposi-
tions of the LPV sub-Markov parameters exist, and if so, what are they and how can they
be exploited to obtain methods which are ‘curse-of-dimensionality’-free in memory and

1More specifically, in this thesis improved variance is defined as higher variance accounted for than the LPV-
PBSIDopt method with regularization and kernels which is taken as the ‘base-line’ method.
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computation and have improved variance?” This question can be split into two more
manageable sub-questions. Firstly, do such exact, low-rank tensor decompositions of
the LPV sub-Markov parameters exist and if so, what are they? Secondly, how can these
decompositions be exploited to obtain methods with these properties?

These two sub-questions can be explained as follows. The challenge of this thesis is
dealing with the ‘curse-of-dimensionality’ of LPV predictor-based methods. It has been
proposed to use tensor techniques, which can break ‘curse-of-dimensionality’. Their ef-
fectiveness however depends on whether (preferably exact) low-rank tensor decompo-
sitions are available of the problematic variables. This explains the first sub-question.
Once such tensor decompositions are available, their properties can be exploited. The
thesis goal is to, by exploiting this tensor structure, develop LPV identification tech-
niques which are ‘curse-of-dimensionality’-free in memory and computation and have
improved variance. This explains the second sub-question. The research question will
be discussed using these two sub-questions.

FIRST SUB-QUESTION

The first sub-question is on whether exact, low-rank tensor decompositions of the LPV
sub-Markov parameters exist and what they are. For the polyadic approach, an exact
but not low-rank polyadic decomposition has been presented. It has to be remarked
that there might exist other decompositions which do have the desired low-rank prop-
erty. For the Multi-Linear Singular Value Decomposition (MLSVD) and tensor network
decomposition, exact and low-rank decompositions of the LPV sub-Markov parameters
have been proven to exist and have been presented algebraically.

These exact, low-rank decompositions are obtained through organizing the LPV sub-
Markov parameters into block-Hankel tensors. The rank of these block-Hankel ten-
sors gives information on the underlying system order of the LPV state-space system.
Namely, its MLSVD has ranks equal to the system order and the square of the system or-
der. Also, the tensor network decomposition has ranks exactly equal to the system order.

SECOND SUB-QUESTION

The second sub-question is on how to exploit the presented tensor decompositions to
obtain methods which are ‘curse-of-dimensionality’-free in memory and computation
and have improved variance. In this thesis, both subspace (initializing) and refinement
methods have been developed.

Firstly, a convex subspace method has been proposed which exploits the tensor
structure using a convex regularization term. This regularization term contains (tensor)
nuclear norms and utilizes the fact that the proposed block-Hankel tensor is (multi-
linear) low-rank. Additionally, the memory and computation aspects have been tackled
using tailored data kernels. Simulation results show the proposed method has a higher
VAF than the base-line method for the presented cases.

Secondly, two refinements methods have been proposed. For the polyadic method,
the used polyadic decomposition is not low-rank, and the method is not ‘curse-of-
dimensionality’-free. However, the proposed tensor network method is ‘curse-of-
dimensionality’-free in memory and computation. This method recasts the LPV iden-
tification problem in tensor networks and performs the operations directly on these
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networks. In other words, the LPV sub-Markov parameters are never constructed explic-
itly in memory. An additional, possible benefit is that these refinement methods have
cost functions which are very similar to those of their initializing (convex predictor-
based) methods. This property may yield better initializations of these refinement
methods. Both refinement methods have been shown to successfully refine (or increase
mean validation VAF of) initial estimates using simulations.

The conclusions are summarized in Table 5.1.

Method decomposition exact low-rank class ‘c.o.d.’-free VAF

‘base-line’ none N/A N/A initializer + N/A

Chapter 2 polyadic + - refiner - ++

Chapter 3 MLSVD + + initializer + +

Chapter 4 tensor network + ++ refiner + ++

Table 5.1: This table summarizes the discussed properties of the proposed methods. Methods are
graded with ‘-’, ‘+’ and ‘++’ for respectively bad, good and very good properties in a category. Notice
that refinement methods do require initialization and involve non-convex optimization. Also, the
word ‘c.o.d-free’ is abbreviated from: ‘curse-of-dimensionality’-free in memory and computation,
and is a desired property.

5.2. RECOMMENDATIONS
In this thesis the focus has been on the development of identification methods which
exploit tensor structure, and not the details of choosing past and future windows, input
and scheduling signals or regularization parameters. It would be of practical interest
to investigate how to choose these parameters. For example, for the proposed polyadic
method the choice of the past window is especially interesting, because the method is
not ‘curse-of-dimensionality’-free in memory and computation. This means that for a
given identification problem the optimal past window for this method can be beyond the
memory capabilities of current computers. It would be of interest to have techniques to
check whether this is the case for a given identification problem. Another example is
that for the proposed tensor network method there are conditioning guarantees avail-
able which depend on the data. This means it could be beneficial to design inputs and if
possible scheduling signals with these guarantees in mind.

For the proposed refinement methods, standard Alternating Least Squares (ALS)
schemes were used. However, it would be of interest to apply more advanced variants.
The first example is about polyadic decompositions. This decomposition represents a
tensor as a sum of (outer) products of vectors. It is well-known in literature that if some
of these vectors are (almost) collinear, then a standard ALS scheme optimization of this
decomposition may converge slowly. It should be investigated whether this collinear
property does appear for the proposed polyadic method, and whether it imposes a sig-
nificant problem. If so, then advanced ALS variants should be investigated and applied.
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The second example is about the proposed tensor network method. For this method
also a standard ALS (tensor network) scheme was used. This required fixing the tensor
network ranks a priori. These are now fixed at the model order of the initial estimate,
which may not be optimal for the tensor network. However, the Density Matrix Renor-
malization Group optimization approach (DMRG) does not have this requirement. That
is, by using DMRG the ranks can be allowed to vary during optimization of the net-
work. Hence this DMRG approach may allow obtaining smaller rank tensor network
estimates with comparable performance. This could benefit computation and reduce
over-fitting. Additional questions in this DMRG setting would be how to deal with the a
priori knowledge that the ranks are all equal.

For the proposed subspace method, it would be of interest to assess the obtainable
computational speed when the accelerated variant of the Alternating Direction Method
of Multipliers (ADMM) and a dedicated algorithm, such as in Python or C, are used. Also,
the ADMM could be initialized using an initial estimate. This can be done using any of
the other LPV predictor-based subspace kernel methods. The possible benefit is that the
ADMM routine may start closer its optimum and thus converge in less time. This also
involves making more use of existing optimization tools in literature.

The proposed block-Hankel tensors are also relevant for LTI problems and their use
for LTI identification methods should be investigated. These tensors can be simplified
from the LPV case to the LTI case to obtain new tensors, which can still be low-rank and
admit exact, low-rank tensor decompositions. This property is due to the fact that the
Markov parameters are products of matrices, which holds both in the LTI and the LPV
setting.
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SUMMARY

Many industrial applications, such as wind turbines and overhead cranes, would bene-
fit in terms of performance by using Linear Parameter Varying (LPV) robust controllers
instead of Linear Time Invariant (LTI) ones. This is because the underlying LPV mod-
els can describe time-varying dynamics (through external time-varying parameters) for
higher modelling accuracy. The performance of these LPV controllers depend on the
quality of the LPV models. While there are powerful LPV control design methodologies
available, obtaining LPV models is still in its infancy. LPV models can be obtained from
experimental data under normal operation by using (predictor-based) system identifi-
cation, but a ‘curse-of-dimensionality’ appears. Namely, the to be estimated (LPV sub-
Markov) parameters are generally to numerous to store in memory or compute with
straight-forward techniques. Techniques which do not have this problem are ‘curse-of-
dimensionality’-free in memory and computation. Additionally, the number of param-
eters can exceed the number of data samples causing estimates to have high variance.
In literature, tensor techniques are used to break ‘curse-of-dimensionality’ by exploiting
underlying tensor structure. In this thesis it is shown that the LPV system identification
problem does have an underlying tensor structure. The goal of this thesis is to develop
LPV system identification techniques which are ‘curse-of-dimensionality’-free in mem-
ory and computation and have improved variance 2 by exploiting the tensor structure.

In order to exploit the tensor structure, suitable tensor decompositions of the prob-
lematic variables are needed. Tensor decompositions are (preferably exact) condensed
representations of (variables re-organized into) tensors. This reduces memory usage
and can simplify computations. How condense a decomposition is depends on the
rank of the decomposition. In this thesis a tensor decomposition is said to be low-rank,
if its rank is less than what is maximally needed to describe every tensor of the same
size. In this thesis, the three most well-known and well-understood tensor decomposi-
tion approaches are considered: polyadic, Multi-Linear Singular Value Decomposition
(MLSVD) and tensor networks. For the polyadic approach an exact, but not low-rank,
polyadic decomposition has been presented. It has to be remarked that there might ex-
ist other decompositions which do have the desired low-rank property. For the MLSVD
and tensor network decomposition, exact and low-rank decompositions of the LPV sub-
Markov parameters have been proven to exist and presented algebraically.

These suitable decompositions hinge on the forming of block-Hankel tensors. These
are generalizations of the Hankel matrix and share useful properties. The Hankel matrix
has constant skew diagonals and its rank gives information on the system order. As a
powerful result, the proposed tensor network decomposition has ranks exactly equal to
the system order.

2More specifically, in this thesis improved variance is defined as higher variance accounted for. The LPV-
PBSIDopt method with regularization and kernels is taken as the ‘base-line’ method to compare against.
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These proposed tensor decompositions can now be exploited to obtain meth-
ods which are ‘curse-of-dimensionality’-free in memory and computation and have
improved variance. In this thesis both convex and non-convex methods have been
developed. Non-convex (refinement) methods can be used to refine estimates obtained
from convex methods. The proposed convex method exploits tensor structure through
novel tensor nuclear norm regularization. This regularization is a way to introduce a
bias-variance trade-off in estimates, where some small bias is introduced to reduce
large variances. These proposed tensor nuclear norms exploit the property that the
MLSVD of the LPV sub-Markov parameters is exact and low-rank. Simulation results
show the proposed method has a improved variance for the presented cases. Also, two
non-convex (refinement) methods have been proposed. Firstly, the polyadic method
appeared to not be ‘curse-of-dimensionality’-free, because the used decomposition is
not low-rank. Secondly, the tensor network method is ‘curse-of-dimensionality’-free in
memory and computation. Namely, it recasts the LPV identification problem in tensor
networks and performs the operations directly on these networks. In other words, the
problematic LPV sub-Markov parameters are never constructed explicitly in memory.
An additional, possible benefit is that these refinement methods optimize (cost) func-
tions which are very similar to those of their initializing methods. Both refinement
methods have been shown to successfully refine initial estimates using simulations.
Hence, the three proposed methods can have improved variance.
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De prestatie van veel industriële applicaties, zoals windturbines en bovenloopkranen,
hebben baat bij het gebruik van robuuste regelaars voor Lineair Parameter Variërende
(LPV) systemen in plaats van Lineair Tijd Invariante (LTI) systemen. De onderliggende
LPV-modellen kunnen tijd-variërende dynamica beschrijven (via externe tijd-variërende
parameters) en resulteren in accuratere modellen ten opzichte van LTI-modellen. De
accuratere modellen kunnen gebruikt worden voor het ontwerp van betere regelaars.
De prestatie van deze LPV regelaars hangt af van de kwaliteit van de LPV-modellen.
Hoewel effectieve LPV regelaar-ontwerptechnieken beschikbaar zijn, staat het verkrijgen
van LPV modellen nog in de kinderschoenen. LPV modellen kunnen verkregen worden
aan de hand van experimentele data, gedurende de normale werking van het systeem,
met behulp van (voorspeller-gebaseerde) systeemidentificatie. Echter, een ‘vloek-van-
dimensionaliteit’ verschijnt: er zijn te grote aantallen (LPV sub-Markov) parameters die
geschat moeten worden. Het is een probleem om deze parameters in computergeheu-
gen op te slaan of om mee te rekenen met standaard technieken. Speciale technieken die
dit probleem niet hebben zullen ‘vloek-van-dimensionaliteit’-vrij in geheugen en bere-
kening worden genoemd. Bovendien kan het aantal parameters groter zijn dan het aan-
tal data punten, waardoor schattingen hoge variantie krijgen.

In de literatuur worden tensortechnieken gebruikt om ‘vloek-van-dimensionaliteit’
te doorbreken door onderliggende tensorstructuren uit te buiten. In dit proefschrift
wordt aangetoond dat het LPV systeemidentificatieprobleem een onderliggend ten-
sorstructuur heeft. Het doel van dit proefschrift is het ontwikkelen van LPV systeemi-
dentificatietechnieken die ‘vloek-van-dimensionaliteit’-vrij in geheugen en berekening
zijn en verbeterde variantie 3 hebben door middel van het uitbuiten van deze ten-
sorstructuur.

Om de tensorstructuur uit te kunnen buiten zijn geschikte tensorontbindingen van
de problematische variabelen nodig. Tensorontbindingen zijn (bij voorkeur exacte) effi-
ciënte beschrijvingen van variabelen, georganiseerd in tensoren. Het gebruik van ten-
sorontbindingen vermindert geheugengebruik en mogelijk ook de rekenlast. Hoe ef-
ficiënt een tensorontbinding is, hangt af van de rang van de tensorontbinding. In dit
proefschrift wordt een tensorontbinding ‘lage rang’ genoemd, wanneer zijn rang kleiner
is dan wat maximaal nodig is om elke tensor van dezelfde grootte te beschrijven. In dit
proefschrift worden alleen de drie meest bekende en goed begrepen tensorontbindingen
geëvalueerd: polyadische ontbinding, Multilineaire Singulierewaardenontbinding (MS)
en ontbinding in tensornetwerken. Voor de polyadische aanpak wordt een exacte, maar
niet lage-rang, polyadische tensorontbinding gepresenteerd. Een opmerking is dat er
wellicht andere tensorontbindingen zijn die wel de beoogde lage-rang eigenschap heb-

3Specifiek is ‘verbeterd variantie’ in dit proefschrift gedefinieerd als een hogere Verklaarde Variantie waarde.
Hierbij wordt vergeleken met een vergelijkbaar, bestaand methode in de literatuur (Van Wingerden en Ver-
haegen, 2009).
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ben. Voor de MS- en de tensornetwerk-aanpakken zijn exacte, lage-rang tensorontbin-
dingen van de LPV sub-Markov parameters bewezen te bestaan en zijn in algebraïsche
vorm gepresenteerd.

Deze geschikte tensorontbindingen zijn gebaseerd op het vormen van blok-Hankel
tensoren. Deze zijn generalisaties van de Hankelmatrix en hebben vergelijkbare bruik-
bare eigenschappen. De Hankelmatrix heeft constante antidiagonalen en zijn rang geeft
informatie over de orde van de dynamica in het onderliggende systeem. Een sterk resul-
taat is dat de rangen van de voorgelegde tensornetwerkontbinding exact gelijk zijn aan
de systeemorde.

De voorgelegde tensorontbindingen kunnen nu uitgebuit worden om methodes
te verkrijgen die ‘vloek-van-dimensionaliteit’-vrij zijn in geheugen en berekening en
verbeterde variantie hebben. In dit proefschrift zijn zowel convexe als niet-convexe
methodes ontwikkeld. Niet-convexe (verfijnings)methoden kunnen gebruikt worden
om schattingen van convexe methodes te verfijnen. De voorgelegde convexe methode
buit tensorstructuur uit met behulp van tensor-nucleaire-norm regularisatie. Deze
voorgelegde tensor nucleaire normen buiten de eigenschap uit dat de MS van de LPV
sub-Markov parameters exact en lage-rang zijn. Simulatieresultaten laten zien dat de
voorgelegde methode een verbeterde variantie heeft voor de gepresenteerde voorbeel-
den. Er zijn ook twee niet-convexe (verfijnings)methoden voorgelegd. Ten eerste, de
polyadische methode blijkt niet ‘vloek-van-dimensionaliteit’-vrij in geheugen en be-
rekening zijn doordat de gebruikte tensorontbinding niet lage-rang is. Ten tweede, de
tensornetwerk-methode is daarentegen ‘vloek-van-dimensionaliteit’-vrij in geheugen
en berekening. Namelijk, het herschrijft het LPV systeemidentificatieprobleem met ten-
sornetwerken en voert de berekeningen direct op deze netwerken uit. In andere woor-
den, de problematische LPV sub-Markov parameters worden nooit expliciet opgebouwd
in het geheugen. Een aanvullend, mogelijk voordeel is dat deze twee verfijningsmetho-
den kostenfuncties optimaliseren die erg vergelijkbaar zijn met die van methodes die
zijn gebruikt om hun initiële schattingen te verkrijgen. Voor beide verfijningsmethoden
wordt laten zien dat deze initiële schattingen succesvol kunnen verfijnen. Dit laat zien
dat de drie voorgelegde methodes verbeterde variantie kunnen hebben.
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