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Effect of microstructure heterogeneity shapes on constitutive 
behaviour of encapsulated self-healing cementitious materials  

Sina Sayadi1*, Evan Ricketts1, Erik Schlangen2, Peter Cleall1, Iulia Mihai1, Anthony Jefferson1       
1School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK 
2Faculty of Civil Engineering and Geosciences, TUDelft, Delft 2628 CN, The Netherlands 

Abstract. Self-healing cementitious materials with microcapsules are complex multiscale and multiphase 
materials. The random microstructure of these materials governs their mechanical and transport behaviour.  
The actual microstructure can be represented accurately with a discrete lattice model, but computational 
restrictions mean that the size of domain that can be considered with this approach is limited. By contrast, a 
smeared approach, based on a micromechanical formulation, provides an approximate representation of the 
material microstructure with low computational costs. The aim of this paper is to compare simulations of a 
microcapsule-based self-healing cementitious system with discrete-lattice and smeared-micromechanical 
models, and to assess the relative strengths and weaknesses of these models for simulating distributed 
fracture and healing in this type of self-healing material. A novel random field generation technique is used 
to represent the microstructure of a cementitious mortar specimen. The meshes and elements are created by 
the triangulation method and used to determine the input required for the lattice model. The paper also 
describes the enhancement of the TUDelft lattice model to include self-healing behaviour. The extended 
micromechanical model considers both microcracking and healing. The findings from the study provide 
insight into the relative merits of these two modelling approaches. 

1 Introduction 
To reduce the environmental impact of repairing and 
maintaining conventional concrete structures, scientists 
have developed self-healing technologies in 
cementitious materials [1]. For almost two decades, 
researchers have investigated different self-healing 
technologies [2], [3] studying their effects on overall 
system responses. Many efforts have been devoted to 
formulating and modelling the physical and chemical 
processes behind self-healing phenomena [3], and due 
to their complex coupled behaviour, further research is 
needed to achieve a robust model.  
  In the current literature, microencapsulation 
techniques have been explored as an autonomous self-
healing method [4, 5],  for example, the specific 
triggering mechanisms for microcapsule rupture [6, 7]. 
The relationship between mechanical properties of both 
shell and matrix has also been investigated to ensure that 
capsule rupture would occur. Similarly, the probability 
of a crack intersecting with the shell of a microcapsule 
has also been investigated, both theoretically and 
numerically [8]. Rather than considering just the local 
capsule dynamics, the effects of microcapsules on 
mechanical properties can be extrapolated to the full 
system. For example, a homogenization scheme can be 
employed to estimate the overall representation of the 
elastic properties of encapsulated cementitious 
composite materials [9]. Recently, researchers have 
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explored the mechanical recovery of self-healing action 
in self-healing systems equipped with microcapsules 
[10]. By adopting a smeared approach, a constitutive 
formulation was developed to capture the mechanical 
behaviour of self-healing process [11]. Through using 
the micromechanical technique, Davies and Jefferson 
[11] developed a constitutive relationship which can 
model the distinct healing and re-damaging phases of 
self-healing systems.  Few studies exist which formulate 
the self-healing effect on mechanical recovery at the 
element level.  
 Often, microstructure heterogeneity and its effects 
on self-healing processes are neglected when modelling. 
Numerically, explicit representations of concrete 
mesostructures are generally obtained through 
aggregate particle placing methods [12], with many 
models using idealised ellipsoidal shapes [13]. Similar 
models exist for more realistic structural generation [14, 
15], but have high computational costs. A less explored 
application in cementitious materials is that of discrete 
random field generation, such as Plurigaussian 
simulation [16]. The computationally efficient method 
is highly flexible in the structures it can generate and can 
produce structures similar to those seen in particulate 
media.  
 In the present study, the self-healing responses 
derived from two different approaches are presented. 
The effects of cracking and healing on overall 
mechanical properties are compared. The presence of 
randomly distributed irregular inclusions on mechanical 
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properties is investigated and compared for different 
homogenization schemes. 
 Section 2 presents the model methodologies; 
Section 3 describes the numerical test case chosen for 
investigating the healing effect on the mechanical 
properties of encapsulated systems; Section 4 presents 
and discusses the results of the simulations; and Section 
5 gives the main conclusions of the study. 

2 Methodology 
The lattice beam element model (LBM) is based on 
employing multiple beam elements with different 
properties to represent the microstructure of 
encapsulated cementitious samples. The 
micromechanical homogenization approach is also used 
for developing a constitutive formulation for the 
distributed crack-healing problem. With this 
framework, the whole microstructure, including 
changes due to microcracking and healing, are 
homogenized as an equivalent medium.  

2.1 Smeared approach 

The microencapsulated cementitious material consists 
of a cement paste matrix and microcapsule inclusions. 
Cracks are considered to be randomly distributed penny 
shaped cracks. The additional strain caused by 
microcracking is accounted for in the constitutive 
formulation related to continuum damage mechanics 
(CDM) 

 
                        𝛔𝛔 = 𝐃𝐃(𝛆𝛆 − 𝛆𝛆���)                           (1) 

 
where 𝛔𝛔 is the average far field stress vector, 𝛆𝛆 is the far 
field prescribed strain, and 𝛆𝛆��� is the additional strain 
due to the microcracking in global coordinate, and 𝐃𝐃 is 
the material stiffness matrix.   
 The healing effect is considered by adding its effect 
on each local crack plane. By using the hierarchical 
homogenization scheme and Budiansky & O’Connell’s 
approach [17],  this gives the overall representation of 
the composite self-healing systems, as illustrated in 
Fig.1.     
 
 

 
Fig. 1. Schematic illustration for homogenization and 
microcracking effect 

 

2.1.1 Elastic properties of multiphase composite 

The average elastic modulus of a multiphase composite 
system is derived by employing the classical Eshelbian 
formulation in combination with Mori-Tanaka 
estimation [18] for a non-dilute distribution of 
inclusions of spherical shape. The following equation 
gives the effective elastic compliance of the two-phase 
composite system  

 
𝐃𝐃𝐞𝐞𝐞𝐞𝐞𝐞 = 𝐃𝐃𝐦𝐦 + (𝑓𝑓�(𝐃𝐃𝛀𝛀 − 𝐃𝐃𝐦𝐦)𝐀𝐀𝛀𝛀)(𝑓𝑓�𝐈𝐈 + 𝑓𝑓�𝐀𝐀𝛀𝛀)��

 (2) 
 
where 𝐃𝐃𝐞𝐞𝐞𝐞𝐞𝐞, 𝐃𝐃𝐦𝐦 and 𝐃𝐃𝛀𝛀 are effective stiffness, matrix 
stiffness and the inclusions stiffness respectively. 𝑓𝑓� and 
𝑓𝑓� are the matrix and inclusion volume fractions. 𝐈𝐈 is the 
identity tensor and 𝐀𝐀𝛀𝛀 is the dilute strain concentration 
tensor calculated by  
 
 𝐀𝐀𝛀𝛀  = [𝐈𝐈 + 𝐒𝐒𝐒𝐒𝐦𝐦(𝐃𝐃𝛀𝛀 − 𝐃𝐃𝐦𝐦)]��

          (3) 

 
where 𝐒𝐒 is the Eshelby tensor related to the inclusion 
geometry. Finally, 𝐒𝐒𝐦𝐦 is the matrix elastic compliance, 
denoted as 𝐒𝐒𝐦𝐦 = 𝐃𝐃𝐦𝐦

�𝟏𝟏.   

2.1.2 Crack-healing formulation 

The effect of microcracks appears as an additional 
strain. Budiansky & O’Connell’s method is used for 
calculating the additional strain due to microcracks and 
its effect on the overall stiffness matrix. As before, 
cracks are assumed to be penny shaped and randomly 
distributed throughout the medium. Equation (4) shows 
the constitutive formulation of distributed microcrack in 
quasi-brittle materials 

 

       𝛔𝛔 = �𝐈𝐈 + 𝐃𝐃𝐞𝐞𝐞𝐞𝐞𝐞
�� ∯ 𝐍𝐍𝛆𝛆

�𝐒𝐒�
�

���
 𝐍𝐍� �

��
𝐃𝐃𝐞𝐞𝐞𝐞𝐞𝐞𝛆𝛆           (4) 

 
where 𝐍𝐍 is the transformation matrix, and 𝜔𝜔 is the 
damage parameter of the matrix.  
 The evolution of the damage parameter is 
determined using an exponential formulation proposed 
by Jefferson and Bennett [19], which represents 
degradation in cementitious materials.  The effect of the 
microcracks in each direction on the total response is 
calculated using an integration over a hemisphere for a 
representative volume element.  

The healing contribution is added on a crack plane 
stress-strain formulation with a particular orientation as 
noted in equation 5 

 
𝐬𝐬�� = (1 − 𝜔𝜔)𝐃𝐃�𝛆𝛆� + ℎ�𝐃𝐃��(1 − 𝜔𝜔�)(𝛆𝛆� − 𝛆𝛆�)  (5) 

 
where 𝐒𝐒𝐋𝐋𝐋𝐋 is stress vector on crack plane, 𝐃𝐃𝐋𝐋 and 𝐃𝐃𝐋𝐋𝐋𝐋 
are the original and healed material stiffness matrix 
respectively, 𝜔𝜔� is the damage parameter of the healed 
material, 𝛆𝛆𝐋𝐋 is the healed material offset strain which 
ensures that healing happens in a stress-free condition, 
and ℎ� is the amount of healed material which can be 
associated with time. The healing rate can be described 
mathematically via the exponential function (1 − 𝑒𝑒�/� ), 
where 𝜏𝜏 represents the healing rate constant.  
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 The total additional strain due to microcracking and 
healing for the whole representative material is derived 
by rearranging the equation (5) and substituting into 
equation (1). The simultaneous effect of damage and 
healing shows itself in overall stiffness and the offset 
strain. During a healing process, the energy should be 
constant. This criterion should be maintained by 
introducing an offset strain in global coordinates. The 
derivation of healed secant stiffness as well as global 
offset strain for satisfying thermodynamic conditions in 
constitutive formulation would be fully discussed in the 
forthcoming journal paper. Fig.2 presents the 
normalized constitutive responses of this formulation 
for uniaxial tensile test loading-unloading scenarios. To 
have a schematic representative behaviour for healing in 
brittle materials, the derived overall stresses and strains 
are divided to the assumed original material maximum 
tensile strengths and corresponding tensile strain 
respectively to provide a dimensionless curve. The 
healing initiation time is noted figure.  It is assumed that 
three different of healing agent with different healing 
rate time is used.  

 

 
Fig.2. Uniaxial tension constitutive response of self-healing 
composite material for: a) monotonic loading, b) loading-
unloading case  

2.2 Lattice approach 

The discrete nature of the LBM allows crack 
propagation to be tracked in analyses. The cracking 
process is captured by removing the damage element 
and updating the local and global stiffness matrices. 
Healing events are also considered by recovering the 
damaged element in the deformed condition. The system 
stiffness and local forces would be updated during the 
healing step. Similarly, the microstructure can be 
accounted for by discretising the structural domain into 
sets of randomly distributed nodes and elements. A brief 
overview of the lattice mesh generation and cracking-
healing formulation are presented below.   

2.2.1 Lattice structure generation 

The domain is discretised with beam elements which 
connect a set of randomly positioned nodes and is 
generated using a Delaunay triangulation algorithm. 
Only elements with the common Voronoi face are 
considered, whose element cross-sectional area is 
calculated based on the Voronoi facet area. Fig.3. 
illustrated how the lattice meshes are generated.   

 
Fig. 3. Schematic illustration of triangulation Delaunay  

2.2.2 Self-healing process in lattice method 

Here, healing processes are simulated by retrieving the 
damaged element during the recovery phase (Fig.4). At 
a healing step, based on the healed material properties 
for a given healed element, the stiffness matrix is 
updated and the overall structural matrix is reassembled. 
 

 
Damaging  Removing Recovering  

Fig. 4. Removal and recovery mechanism proposed in the 
Lattice method.  

 The healed element length and coordinates are also 
updated based on the deformed state at the time of 
healing. In the same step, the local force-displacement 
equation and global equilibrium equation is adjusted 
such that no energy is created, meaning that the nodal 
force before and after the healing step will be the same.  
The nodal healing adjustment displacement is defined in 
a way that the nodal force before healing step where just 
stiffness matrix is updated due to healing, and after 
healing step are the same. The algorithm and derivation 
of this step is elaborated in the forthcoming journal 
paper.  

2.3 Microstructure generation 

2.3.1 Irregular inclusion distribution 

Plurigaussian simulation is employed to generate the 
distribution of aggregate particles. Let {𝑍𝑍�, 𝑍𝑍�} be a set 
of two independent random fields in ℝ�, and define a 
random field 𝒁𝒁 where: 
 

            𝒁𝒁(x) = �𝑍𝑍�(x), 𝑍𝑍�(x)�,     ∀x ∈ ℝ�.                (11) 
 

 Let 𝐿𝐿 = {𝐷𝐷�, … , 𝐷𝐷�} be a partition of ℝ� into 𝑚𝑚 
disjoint subdomains, such that the plurigaussian random 
field 𝑷𝑷 with 𝑚𝑚 distinct facies can be defined as: 

X1
X2

X3

X4
X5

X6

X7
X8

X9Voronoi cell
Lattice element
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            𝑷𝑷(x) = 𝑖𝑖𝑖𝑖𝑖 𝒁𝒁(x) ∈ 𝐷𝐷�, 𝑖𝑖𝑖𝑖∀x ∈ ℝ𝟐𝟐.                (12) 

 
 In principle, two (or more) Gaussian random fields 
are truncated using a prescribed lithotype rule to attain a 
discrete map which represents the desired phases, here 
being matrix and aggregate particle. In this case, we also 
apply a convex hull operation to the generated field 𝑷𝑷 to 
create shapes synonymous with aggregate particles, as 
seen in Figures 5 and 6. 

2.3.2 Random computational microcapsules 
generation. 

A pixel-based framework is used for the aggregate phase 
to determine microcapsule geometry and location. The 
shape of the microcapsules is created by using the 
Bresenham algorithm [20], which rasterizes the shell of 
the microcapsules in the pixel-based domain. The centre 
of each capsule is chosen such that there is no overlap 
between neighbouring microcapsules and aggregate 
particles. The proposed algorithm randomly distributed 
microcapsules within the composite cementitious 
domain, illustrated in red in Fig.5 for differing volume 
fractions.  

 
          

 
      1%                    4%   10% 

Fig. 5. Samples generated structures for different volume 
fractions and microcapsule inclusion percentage. 

3  Example 
A typical cementitious mortar with 33% aggregate and 
2.5 % microcapsules inclusion is considered to examine 
how self-healing affects the response of a uniaxial 
tensile test. The sample 2D domain has dimensions 4 cm 
 4 cm, where the loading rate is assumed to be 
0.0001mm/sec (0.000025mm/mm/sec for the strain 
path) such that healing would be initiated when the 
applied boundary displacement is reached at 0.075 mm. 
Here, it is assumed that healing has happened 
instantaneously.  
       The Mori-Tanaka approach is employed to derive 
the elastic properties of the RVE in the smeared method, 
and constitutive response is derived according to the 
method described in section 2.1. 
     The material mechanical properties and geometry is 
presented in Table 1 and Fig.6 respectively. 

 
 

Table 1. Material mechanical properties. 

Material 
/Properties 𝑣𝑣�% 𝐸𝐸(GPa) 𝑓𝑓�(MPa) 𝜀𝜀� 

Matrix-interface 33.0 30 4 0.00015 
Aggregate 63.5 49 - - 

Microcapsules 2.5 0.03 0.1 - 
Healing agent - 30 3.0 0.00015 

 
The parameter 𝜀𝜀� noted in Table 1 is the microcracking 
strain parameter used for the micromechanical model.  
In the lattice approach, the total number of nodes and 
elements are chosen appropriately such that the assumed 
mesh can capture the microstructure features as well as 
the crack propagation.   
 

 
 

  
(a) (b) 

Fig. 6. Considered RVE for: a) computational microstructure, 
b) Lattice mesh in the highlighted region.  

In this study it is assumed that the bond between 
microcapsules and cement is perfect. It is also assumed 
that a given capsule ruptures when it is intersected by a 
propagating crack. To compare the crack pattern with 
and without healing, the system was solved for both 
scenarios.  

4 Results 
The calculated responses derived from the two proposed 
method are presented in Fig. 7. The slope of the force-
displacement curve indicates that the overall stiffness of 
the RVE calculated from both the Lattice and smeared 
method are quite the same. Fig. 7 Shows the stress-strain 
relation for smeared and Lattice approaches with and 
without healing process. The comparison of the crack 
pattern between the control sample and healing cases 
illustrated in Fig.8. It shows that after healing the newly 
formed crack is different form the reference sample at 
the same stage.  
 

  
(a) (b) 

Fig. 7. Uniaxial responses, a) smeared approach, b) discrete 
approach 
 
 

Matrix 
Aggregate 
microcapsule 
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A typical cementitious mortar with 33% aggregate and 
2.5 % microcapsules inclusion is considered to examine 
how self-healing affects the response of a uniaxial 
tensile test. The sample 2D domain has dimensions 4 cm 
 4 cm, where the loading rate is assumed to be 
0.0001mm/sec (0.000025mm/mm/sec for the strain 
path) such that healing would be initiated when the 
applied boundary displacement is reached at 0.075 mm. 
Here, it is assumed that healing has happened 
instantaneously.  
       The Mori-Tanaka approach is employed to derive 
the elastic properties of the RVE in the smeared method, 
and constitutive response is derived according to the 
method described in section 2.1. 
     The material mechanical properties and geometry is 
presented in Table 1 and Fig.6 respectively. 

 
 

Table 1. Material mechanical properties. 

Material 
/Properties 𝑣𝑣�% 𝐸𝐸(GPa) 𝑓𝑓�(MPa) 𝜀𝜀� 

Matrix-interface 33.0 30 4 0.00015 
Aggregate 63.5 49 - - 

Microcapsules 2.5 0.03 0.1 - 
Healing agent - 30 3.0 0.00015 

 
The parameter 𝜀𝜀� noted in Table 1 is the microcracking 
strain parameter used for the micromechanical model.  
In the lattice approach, the total number of nodes and 
elements are chosen appropriately such that the assumed 
mesh can capture the microstructure features as well as 
the crack propagation.   
 

 
 

  
(a) (b) 

Fig. 6. Considered RVE for: a) computational microstructure, 
b) Lattice mesh in the highlighted region.  

In this study it is assumed that the bond between 
microcapsules and cement is perfect. It is also assumed 
that a given capsule ruptures when it is intersected by a 
propagating crack. To compare the crack pattern with 
and without healing, the system was solved for both 
scenarios.  

4 Results 
The calculated responses derived from the two proposed 
method are presented in Fig. 7. The slope of the force-
displacement curve indicates that the overall stiffness of 
the RVE calculated from both the Lattice and smeared 
method are quite the same. Fig. 7 Shows the stress-strain 
relation for smeared and Lattice approaches with and 
without healing process. The comparison of the crack 
pattern between the control sample and healing cases 
illustrated in Fig.8. It shows that after healing the newly 
formed crack is different form the reference sample at 
the same stage.  
 

  
(a) (b) 

Fig. 7. Uniaxial responses, a) smeared approach, b) discrete 
approach 
 
 

Matrix 
Aggregate 
microcapsule 

  
(a) (b) 

Fig. 8. Crack pattern, a) damage only, b) cracks after healing 

 It is worth noting that to represent the 
microstructure explicitly, 65000 elements were needed.  
Consequently, the computational costs were relatively 
high compared to the smeared approach. 
 
 

5 Conclusions  
The effects of self-healing on the mechanical response 
of heterogeneous cementitious materials have been 
studied. The constitutive behaviour and explicit 
modelling have been undertaken by extending existing 
micromechanical and discrete lattice models. Through 
using the combination of Plurigaussian simulation and 
the modified Bershams rasterising algorithm, the 
microstructure of encapsulated cementitious materials is 
generated. The main conclusions are as follows: 
 

 The micromechanical formulation can capture 
the full elastic and nonlinear responses of self-
healing materials 

 The effect of multiphases and their interactions 
with cracking and healing can be modelled 
explicitly by Lattice method. Healing effects 
can alter crack propagation paths 

 The computational costs of the smeared 
approach are much less than those of the 
Lattice method. 
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