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Summary

Microseismic event detection and localization: A migration-based
and machine-learning approach using full waveforms

When humans started started exploiting the abundant underground natural resour-
ces the Earth has to offer such as hydrocarbons, minerals and heat, we started to
experience earthquakes that are related to this exploitation, so called induced earth-
quakes. Under certain conditions those can damage local infrastructure. However,
most events are weak and only sensed by seismic sensors. Microseismic monitoring
plays a vital role to optimize and insure the safety of these underground activities
and new technologies such as carbon capture and storage.

One key task besides the detection of microseimsic events is to determine the
source location of these events using data recorded at the surface. In this thesis we
investigate a method to localize weak microseismic events, using a deterministic ap-
proach, assuming a dense network of sensors. In simple words this method takes the
seismic signals recorded at the Earth’s surface and sends them back into the Earth,
where the signals start to focus at the point they originated from. This focusing
method uses one-way wavefield extrapolation with an estimate of the background
velocity model. The advantage of this method is that the weak signals recorded by
the different sensors at the surface are amplified as they approach the location of
the event that emitted the signal due to constructive interference. However, this is
not enough to reliably recover the source location because typically earthquakes do
not radiate seismic waves evenly; complex radiation patterns are typically observed
depending on the mechanical properties of the rupture. To obtain a strong focused
signal at the optimal source location we therefore perform a grid search over pos-
sible source mechanisms and increase the strength of the signal by deconvolution.
Without taking the source mechanism into account we are not able to obtain ac-
curate source locations, especially at low signal-to-noise ratios. However, by taking
the source mechanism into account we are able to retrieve accurate source locations
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while also retrieving information about the source mechanism. Good results were
obtained for 2D synthetic data for both a simple subsurface model as well as the
realistic Annerveen salt model even when realistic noise was added.

A drawback of this method is that it is computationally as well as logistically
expensive and it requires a dense network of receivers such that backpropagation
can be done aliasing free. Therefore, machine learning methods that can deal with
much smaller number of sensors and additionally are computationally cheap during
the application phase are further explored in the remainder of the thesis.

Deep learning (DL) methods require a large number of training samples. Since
for many microseismic monitoring applications there is no field data before the
operations start, e.g. fracking, we first train a deep neural network on synthetic
data. As a neural network, we consider a convolutional neural network with an
architecture similar to the U-Net architecture. This network takes the waveforms as
input and outputs a Gaussian distribution in a 3D (x,y,z) volume, representing the
source locations at the peak of the 3D distribution. The synthetically trained deep
learning algorithm is then applied to hydraulic fracturing field data. For optimal
results the synthetic data is augmented with field noise during training. The results
show that the neural network reliably localizes the higher magnitude events and
thus that synthetic data can be used to train a neural network for the application of
field data. Moreover, the locations predicted by the neural network are close to the
locations recovered by a field-standard migration-based diffraction stacking method.

While the neural network can reliably estimate the locations of the higher mag-
nitude events it still falls short for most of the low-magnitude events. Therefore, we
updated the approach for those events.

To localize the weak microseismic events we fine-tune the neural network para-
meters with field data. Fine-tuning a neural network is also referred to as transfer
learning (TL). Instead of training a DL model from scratch, TL makes use of an
existing DL model that was trained for a similar task. This has several advanta-
ges such as it not requiring large amounts of training data (since the weights of
the model were already optimized with large amounts of data) and a reduced trai-
ning period. In our case the neural network’s weights are updated by training with
field data. In addition, we are interested in applying the method for real-time lo-
calization. Therefore, we iteratively fine-tune the neural network as new data are
recorded. Still, since the event locations migrate over time and appear in different
clusters the neural network always lags behind. Therefore, we fine-tune the neu-
ral network not only with field data but also with synthetics, which improves the
neural network’s generalizability. The updated neural network is now capable to
accurately localize a large majority of all hydraulic fracturing events given in the
data set. Furthermore, the locations recovered by the fine-tuned neural network are
more consistent and appear to have more self-consistent depth estimates compared
to a diffraction stacking method.

To achieve real-time localization an event first needs to be detected. We explore
the possibility of using the output generated by the neural network trained for
localization to detect events. Since the network was trained to return a location
output given data with an event in the input, it is not expected to return a similar
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output given noise in the input. Leveraging that idea we build a detector solely
using the localization deep learning algorithm. While this detector did return some
false detections, it did detect a majority of the events that were also detected by
diffraction stacking. Furthermore, it detected events that were not detected by
diffraction stacking.

This thesis shows that deep learning algorithms can be pre-trained on synthetic
data to localize hydraulic fracturing events. Furthermore, by means of transfer
learning the deep learning model is capable of localizing events from waveforms
with low signal-to-noise ratios. Finally, the output generated by the deep learning
model trained for source-localization can be used as an event detector.
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Samenvatting

Opsporing en lokalisatie van microseismische gebeurtenissen: Een
op migratie gebaseerde en machinaal-lerende benadering gebruik
makende van volledige golfvormen

Toen de mens begon met de exploitatie van de overvloedige ondergrondse natuur-
lijke rijkdommen die de aarde te bieden heeft, zoals koolwaterstoffen, mineralen en
warmte, kregen we te maken met aardbevingen die verband houden met deze exploi-
tatie, de zogeheten geïnduceerde aardbevingen. Onder bepaalde omstandigheden
kunnen deze aardbevingen schade toebrengen aan de plaatselijke infrastructuur. De
meeste gebeurtenissen zijn echter zwak en worden alleen door seismische sensoren
waargenomen. Microseismische monitoring speelt een vitale rol bij het optimalise-
ren en verzekeren van de veiligheid van deze ondergrondse activiteiten en nieuwe
technologieën zoals koolstofafvang en -opslag.

Een belangrijke taak naast het opsporen van microseismische gebeurtenissen is
het bepalen van de bronlocatie van deze gebeurtenissen met behulp van gegevens die
aan het oppervlak zijn opgenomen. In dit proefschrift onderzoeken we een methode
om zwakke microseismische gebeurtenissen te lokaliseren, gebruikmakend van een
deterministische benadering, uitgaande van een dicht netwerk van sensoren. Een-
voudig gezegd neemt deze methode de seismische signalen die aan het aardoppervlak
zijn opgenomen en zendt ze terug de aarde in, waar de signalen zich gaan concen-
treren op het punt waar ze vandaan komen. Deze focusmethode maakt gebruik van
éénrichtings-golfveldextrapolatie met een schatting van het velocity-depth achter-
grondmodel. Het voordeel van deze methode is dat de zwakke signalen die door
de verschillende sensoren worden geregistreerd, worden versterkt naarmate zij de
plaats naderen van de gebeurtenis die het signaal heeft uitgezonden. Dit is echter
niet voldoende om op betrouwbare wijze de plaats van de bron te bepalen, omdat
aardbevingen de seismische golf doorgaans niet gelijkmatig uitstralen; er worden
doorgaans complexe stralingspatronen waargenomen, afhankelijk van de mechani-
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sche eigenschappen van de breuk. Om een sterk gefocusseerd signaal op de juiste
bronlocatie te verkrijgen, voeren we daarom een rasterzoektocht uit over mogelijke
bronmechanismen en verhogen we de sterkte van het signaal door deconvolutie.
Zonder rekening te houden met het bronmechanisme zijn we niet in staat om nauw-
keurige bronlocaties te verkrijgen, vooral bij lage signaal-ruis verhoudingen. Door
rekening te houden met het bronmechanisme zijn we echter wel in staat om nauwkeu-
rige bronlocaties te verkrijgen, terwijl we ook informatie over het bronmechanisme
verkrijgen. Goede resultaten werden verkregen voor 2D synthetische data voor zowel
een eenvoudig model van de ondergrond als het realistische Annerveen zout model,
zelfs wanneer realistische ruis werd toegevoegd.

Een nadeel van deze methode is dat ze zowel computationeel als logistiek duur is
en dat ze een dicht netwerk van ontvangers vereist zodat backpropagatie aliasingvrij
kan worden uitgevoerd. Daarom worden in het vervolg van dit proefschrift methoden
voor machinaal leren onderzocht die met een veel kleiner aantal sensoren kunnen
werken en die bovendien in de toepassingsfase rekenkundig goedkoop zijn.

Deep-learning (DL) methoden vereisen een groot aantal trainingssamples. Aan-
gezien er voor veel microseismische monitoringtoepassingen geen veldgegevens zijn
voordat de operaties, bv. fracking, beginnen, trainen we eerst een diep neuraal
netwerk op synthetische gegevens. Als neuraal netwerk beschouwen we een convo-
lutioneel neuraal netwerk met een architectuur vergelijkbaar met die van U-Net.
Dit netwerk neemt de golfvormen als input en geeft als output een blob in een 3D
(x,y,z) volume, die de bronlocaties met maximale waarde weergeeft. Het synthe-
tisch getrainde deep-learning algoritme wordt vervolgens toegepast op de gegevens
van het hydraulisch breken van gesteentes in het veld. Voor optimale resultaten
worden de synthetische gegevens tijdens de training aangevuld met veldruis. Het
resultaat toont aan dat het neurale netwerk op betrouwbare wijze de bronlocatie lo-
kaliseert van de gebeurtenissen met grotere magnitude en dat synthetische gegevens
dus kunnen worden gebruikt om een neuraal netwerk te trainen voor de toepassing
van veldgegevens. Bovendien liggen de door het neurale netwerk voorspelde locaties
dicht bij de locaties die met een huidige standaard migratie-gebaseerde diffractie-
stapelingsmethode worden teruggevonden.

Hoewel het neurale netwerk de locaties van gebeurtenissen met een grotere mag-
nitude op betrouwbare wijze kan schatten, schiet het nog tekort voor de meeste
gebeurtenissen met een geringe magnitude. Daarom hebben wij de aanpak voor die
gebeurtenissen bijgewerkt.

Om de zwakke microseismische gebeurtenissen te lokaliseren stemmen we de
neurale netwerkparameters af met veldgegevens. Het afstemmen van een neuraal
netwerk wordt ook wel transfer learning (TL) genoemd. In plaats van een DL-
model vanaf nul te trainen, maakt TL gebruik van een bestaand DL-model dat voor
een soortgelijke taak is getraind. Dit heeft verschillende voordelen, zoals het feit
dat er geen grote hoeveelheden trainingsgegevens nodig zijn (omdat de gewichten
van het model al met grote hoeveelheden gegevens zijn geoptimaliseerd) en een
kortere trainingsperiode. In ons geval worden de gewichten van het neurale netwerk
geactualiseerd door te trainen met veldgegevens. Bovendien zijn wij geïnteresseerd in
toepassing van de methode voor real-time lokalisatie. Daarom stellen wij het neurale
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netwerk iteratief bij naarmate nieuwe gegevens worden geregistreerd. Aangezien de
locaties van de gebeurtenissen in de loop van de tijd migreren en in verschillende
clusters voorkomen, loopt het neurale netwerk echter altijd achter de feiten aan.
Daarom stemmen we het neurale netwerk niet alleen af met veldgegevens, maar ook
met synthetische gegevens, wat de generaliseerbaarheid van het neurale netwerk
verbetert. Het bijgewerkte neurale netwerk is nu in staat om een grote meerderheid
van alle gebeurtenissen als gevolg van hydraulisch breken in de dataset nauwkeurig
te lokaliseren. Bovendien zijn de door het fijnafgestemde neurale netwerk gevonden
locaties consistenter en hebben ze betere diepteschattingen in vergelijking met een
diffractie-stapelingmethode.

Om real-time lokalisatie te bereiken moet een gebeurtenis eerst worden gedetec-
teerd. Wij onderzoeken de mogelijkheid om direct gebruik te maken van de output
die wordt gegenereerd door het neurale netwerk dat voor lokalisatie is getraind.
Aangezien het netwerk getraind is om een lokalisatieoutput te genereren met data
met een gebeurtenis in de input, wordt niet verwacht dat het een gelijkaardige out-
put zal genereren met ruis in de input. Gebruikmakend van dat idee bouwen we
een detector die uitsluitend gebruik maakt van het lokalisatie deep-learning algo-
ritme. Hoewel deze detector enkele valse detecties teruggaf, detecteerde hij een
meerderheid van de gebeurtenissen die ook werden gedetecteerd door de diffractie-
stapelingsmethode. Bovendien detecteerde hij gebeurtenissen die niet werden gede-
tecteerd door diffractie-stapelingsmethode.

Deze dissertatie toont aan dat deep-learning algoritmen vooraf getraind kunnen
worden op synthetische data om gebeurtenissen bij het hydraulisch breken van ge-
steentes te lokaliseren. Verder is het deep-learning model door middel van transfer
learning in staat om gebeurtenissen te lokaliseren uit golfvormen met lage signaal-
ruis verhoudingen. Tenslotte kan de output van het deep-learning model, getraind
voor bronlokalisatie, gebruikt worden als een event detector.
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1
Introduction

“Earthquakes travelling through the interior of the globe are like so many
messengers sent out to explore a new land. The messages are constantly coming

and seismologists are fast learning to read them. ”

Reginald Aldworth Daly, 1926

1.1 Induced Seismicity

Induced seismicity, i.e. seismicity arising due to industrial activities, has been re-
searched for over a hundred years with its origins in the mining industry [McGarr
et al., 2002]. However, the interest in the topic has gained a lot of attention in the
past few decades due to major induced earthquakes around the globe that directly
impacted thousands of people’s lives. Some industrial activities associated with in-
duced seismicity include water reservoirs, mining, wastewater injection, enhanced
geothermal systems, carbon sequestration, hydrocarbon extraction and hydraulic
fracturing. During such activities many small earthquakes that can not be felt at
the surface are occurring. Such earthquakes are called microseismic events. Those
events are also closely monitored as they can provide information about the loca-
tions of fractures in the subsurface and in order for the operators to prove that the
magnitude of the events are within the limits imposed by regulators.

The illustration in Fig. 1.1 shows a schematic of an earthquake triggered by fluid
injection and an example of what seismic data recorded along an array of geophones
from an induced event looks like. Note that the fault-slip source mechanism creates
directivity effects on the recorded data, visible, e.g. as amplitude variations in the
first arrival. In the next few paragraphs the industrial activities mentioned above
are briefly introduced.
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Figure 1.1: Left: Illustration of induced earthquake due to fluid injection by Rutqvist et al.
[2014] and right: synthetic example of seismic earthquake data.

Water-reservoir triggered earthquakes may not be the first example that comes
to mind when thinking about the drivers behind industry-related earthquakes. How-
ever, there have been several reports of reservoir-triggered earthquakes with moment
magnitudes (M) greater than 6, such as in Greece in 1966 and in Koyna, India in
1967 [Gupta, 2002]. The earthquake in Koyna resulted in the deaths of nearly 200
people and thousands of injured and homeless. The main driver behind this type
of seismicity is the extra mass of water increasing the stress regime in that region.
However, different mechanisms can be involved, which lead to these high seismic
activities [Gupta, 2002].

Monitoring mining activities can help identify unstable locations and the location
of rockbursts, which is crucial for a rescue mission [Mendecki, 1993; Mendecki et al.,
1999].

Wastewater injection induced seismicity is particularly prominent in the central
and eastern United States, with earthquakes reaching moment magnitudes up to
5.7 [Keranen et al., 2014]. The earthquake reaching M 5.7 in Oklahoma destroyed
homes and damaged infrastructure. A study determined that the initial rupture
plane of the series of earthquakes that led to the M 5.7 earthquake was within 200
m from an active injection well [Keranen et al., 2013].

Enhanced geothermal systems struggle with being widely accepted for use -
albeit being one of the technologies that can become part of the transition to a
hydrocarbon-free society - due to their history of inducing earthquakes. Before be-
ing able to use the heat stored at depths between 2 to 5 km (depending on the
geothermal gradient in the region) these systems require a permeable subsurface for
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the fluids to circulate. In many situations this is not naturally present and thus the
permeability needs to be artificially increased. This is achieved by injecting fluids
at high pressure and thereby create fractures [Majer et al., 2007]. Once the per-
meability is increased this allows the injected fluids to circulate and heat up before
pumping them back up to the surface. However, both during the creation of the
fractures and in production, microseismic events can be induced. Therefore, it is
important to understand how larger events can be avoided to ensure the realization
of enhanced geothermal projects, avoiding situations such as in Basel, Switzerland,
where the entire project had to be ceased due to the occurrence of a M 3.4 earth-
quake [Deichmann and Giardini, 2009].

Carbon sequestration, also known as carbon capture an storage, is a technology
that could play a key role towards reducing greenhouse gas emissions. The aim
of carbon sequestration is to permanently store CO2 in the subsurface. As with
all fluid injection projects, carbon sequestration also faces the challenge of induced
seismicity. The CO2 capture projects to date did not lead to seismicity that can be
felt at the Earth’s surface. However, as projects are scaled up for commercial use,
the history from other injection-related projects suggests that the issue of induced
seismicity needs to be carefully evaluated for carbon sequestration projects as well
[Nicol et al., 2011; Zoback and Gorelick, 2012; Rutqvist et al., 2016].

In the extraction of hydrocarbons there actually are very few reports of induced
seismicity compared to the total number of existing fields. However, this can also
be due to a lack of monitoring systems [Suckale, 2010]. For fields that are far
offshore or in deserted areas the resulting seismicity has most likely no impact to
the general public. However, as similar operations are performed closer to urban
areas the consequences of the seismic activity are much more severe. A perfect
example is found in one of the most densely populated countries in Europe that
also happens to possess Europe’s largest inland gas field, the Netherlands. The
main driver behind the induced seismicity in the Groningen gas field is reservoir
compaction [Van Wees et al., 2014], along with soft soils near the surface amplifying
the effect. This led to an earthquake with local magnitude (ML) 3.6 in 2012 that
damaged local infrastructure.

Finally, hydraulic fracturing also aims at creating fractures, as in enhanced
geothermal systems, however for the purpose of extracting hydrocarbons from un-
conventional reservoirs such as shales. Most of these events are directly related
to the fracturing activity, which lead to weak microseismic events. However, there
have also been numerous cases of felt seismicity in the United Kingdom, Canada, the
United States and China induced by hydraulic fracturing operations due to faults
near the injection sites [Schultz et al., 2020a].

The induced seismicity led governments to mandate strict regulations for these
activities to mitigate induced seismicity, which also include the use of traffic light
protocols (TLPs). TLPs contain thresholds on the magnitudes of the detected
events to decide when the activities can proceed as normal (green), mitigation mea-
sures must be started (amber) and when operations must be ceased (red) [Schultz
et al., 2020b]. To monitor risks associated to the activities, microseismic monitoring
systems must be set up, which are capable to detect, localize and retrieve the mag-
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nitudes of the weak microseismic events. The seismic activity is recorded by seismic
sensors that can be deployed in deep boreholes or close to the surface. The sensors
are often placed close to the surface, as this is cheaper, and in case of a defect the
sensors can more easily be exchanged or repaired. For optimal monitoring, events
should be detected, their magnitudes and locations determined and their source
mechanism computed. In this thesis we focus primarily on the source localization
and secondly on the detection.

1.2 Localization methods

As stated above, identifying the location of microseismic events is an important
topic. A main challenge remains that the recorded events are weak with signal-to-
noise ratios below 1. Fig. 1.2 shows a normal moveout-corrected gather of a weak
microseismic event with the first arrivals highlighted by red arrows.

Figure 1.2: Normal moveout-corrected weak microseismic event recorded during hydraulic
fracturing in the Barnett Shale, Fort Worth basin, Texas. Red arrows highlighting first
arrivals.

The signals recorded by such low-magnitude events can hardly be detected using
only a few sensors. However, when many sensors are available, different array and
waveform based processing methods can be used to detect the signal by adding up
the signals recorded at the individual sensors.
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One commonly used migration-based detection and location method is based
on diffraction stacking [Duncan and Eisner , 2010; Chambers et al., 2010; Gharti
et al., 2010]. In diffraction stacking the amplitudes of the individual waveforms are
stacked along the expected moveout curve (i.e. relative traveltime arrivals) assuming
the subsurface velocity model is roughly known. Since the moveout curve depends
on the location of the event, which is unknown, the amplitudes are stacked along
different precomputed moveout curves from different hypothetical source-locations.
By finding the stack with the highest amplitude, the correct source location can be
identified.

However, microseismic events, similar to earthquakes, do not have a symmet-
ric radiation pattern. Thus, the complex radiation pattern of microseismic events
requires some corrections prior to stacking to avoid summing of amplitudes with op-
posite polarities. The better approaches take the radiation pattern into account. In
these approaches, in addition to considering the moveout from every possible source
location, the moment tensor is considered for every source point. This information
is used to correct the polarity of the amplitudes prior to stacking. The highest stack
is then found at the correct source location and correct moment tensor [Rodriguez
et al., 2012; Anikiev et al., 2014; Chambers et al., 2014; Staněk et al., 2015; Zhebel
and Eisner , 2015].

In other similar approaches, the recorded seismic signals are numerically extrap-
olated backwards in time, thereby generating an image of the seismic source in time
and space. Imagine for example a water tank surrounded by transducers on its
boundary that record the acoustic waves that propagate in water. If you throw
a stone-pebble into the middle of the quiet water tank it will create ripples that
travel from the middle towards the boundaries, where the transducers record the
pressure change over time. Once the water tank is quiet again, we can time-reverse
the recorded signals at each transducer and have each transducer emit that signal.
A chaotic wave pattern will appear but as time moves on you will observe how the
chaotic pattern starts to form the ripples that you observed when you threw the
stone into the tank, with the only beautiful exception that the ripples seem to be
moving back in time towards the location where the stone first touched the sur-
face of the water. This is the time-reversal technique [Fink, 1992], as, e.g., used in
reverse-time migration [Whitmore, 1983; Loewenthal and Mufti, 1983; Baysal et al.,
1983]. Luckily, the same can be achieved using numerical simulations and there is
no need to back inject an earthquake from observations at the Earth’s surface.

In seismology this concept was first introduced as a synthetic study in 1982 in
2D using a finite-difference approach to both forward model the source to gener-
ate synthetic data and to then time-reverse the signals recorded at each receiver
and back propagate it using the time-reversed seismograms as input [McMechan,
1982]. Soon after, this principle was applied on field data using the 2D approxi-
mation [McMechan et al., 1985; Rietbrock and Scherbaum, 1994], extended to 3D
[McMechan et al., 1988; Chang and McMechan, 1991] and to the elastic 2D case [Hu
and McMechan, 1988]. Various numerical and field studies thereof at exploration
scale have been investigated in the more recent past [Gajewski and Tessmer , 2005;
Xuan and Sava, 2010; Artman et al., 2010; Bazargani and Snieder , 2013; Li et al.,
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2019b; Yang and Zhu, 2019].
With the rapid advancement of machine learning methods across a wide spec-

trum of fields, it is no wonder that it found its way to seismology. Various deep
learning based earthquake detection methods [Wu et al., 2018b; Meier et al., 2019;
Dokht et al., 2019; Mousavi et al., 2019] and event clustering and detection methods
[Perol et al., 2018] have been investigated. Similarly deep learning methods have
been applied and developed for the sake of source localization from the seismic sig-
nals, some of which are based on arrival time picking [Ross et al., 2018a,b; Meier
et al., 2019; Zhou et al., 2019; Zhu and Beroza, 2019; Chai et al., 2020; Zhu et al.,
2019; Zhang et al., 2020a] and others that directly retrieve the location given the
seismic waveforms as input [Kriegerowski et al., 2019; Zhang et al., 2020b; Van den
Ende and Ampuero, 2020; Mousavi and Beroza, 2020a]. However, main challenges
are (1) the lack of available data for training, (2) that the data are not labeled (which
is a requirement for supervised machine learning methods) and (3) unbalanced data
sets, e.g. lack of high magnitude events in the training set could lead to large magni-
tude events not being detected by a neural network trained for earthquake detection
as reported by [Mousavi and Beroza, 2020b].

1.3 Research questions and outline

In this thesis we investigate both migration based as well as machine learning based
source detection and localization methods. In particular we seek to answer

• How one-way inverse wavefield extrapolation operators can be used for the
localization and source mechanism estimation of induced earthquakes;

• Whether deep neural networks can be trained on synthetic data to be applied
on field data in particular for situations of scarce field data availability;

• How weak microseismic events can accurately be localized by fine-tuning a
neural network trained on synthetic data;

• How events can be detected in real-time in order to combine the detection
with the localization neural network for real-time microseismic monitoring.

The following chapters are part of this thesis:

• Chapter 2: Data-driven earthquake localization and source-mechanism esti-
mation based on wavefield extrapolation and 2D deconvolution in high-noise
environments.
In this chapter a method to localize weak microseismic events is investigated
which requires a dense network of sensors at the surface. The dense network
together with some knowledge about the subsurface, i.e. the seismic veloci-
ties that determine how the seismic waves propagate through the Earth, and
about the physics of wave propagation, we can use a method which allows us
to numerically backpropagate seismic waves back into the subsurface. This
concept is employed in many different source localization applications. The
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method is computationally as well as logistically expensive as it requires many
sensors. As cost plays an important role for companies, most often much fewer
sensors are used in practice. Thus, in chapters 3 and 4 we consider a method
that can recover the source locations with fewer sensors.

• Chapter 3: Localizing microseismic events on field data using a U-Net based
convolutional neural network trained on synthetic data.
In this chapter machine learning, in particular deep learning, is used to deter-
mine the locations of microseismic events recorded during hydraulic fracturing
operations, given seismic data as input. The source location is returned as a
3D Gaussian distribution where its peak defines the location. A main limi-
tation of many deep learning methods is that they require large data sets to
train. The hydraulic fracturing field data set used to demonstrate the applica-
bility of the method is too small to train a deep learning model from scratch.
Thus, the main purpose of this chapter is to demonstrate how a deep learning
model can (1) be trained on synthetic data to (2) be applied on field data to
recover the locations of microseismic events.

• Chapter 4: Localizing weak microseismic events using transfer learning with a
deep neural network.
In this chapter the issue of continuous microseismic source localization is ad-
dressed. As a basis we start with the deep learning model that was trained on
synthetic data. This step could be performed before a microseismic monitor-
ing system is set up. Next, we want to use the deep learning model for seismic
source localization as soon as possible after the microseismic monitoring sys-
tem is in place and recording. We achieve this by optimizing the deep learning
model with field data collected at the end of each day. This way the model
constantly improves and is able to return better source locations comparable
to locations recovered by traditional state-of-the-art methods, such as diffrac-
tion stacking methods. One advantage of this method is that it achieves those
results using data recorded by fewer sensors. One remaining disadvantage
is that while the method returns the source locations it still relies on other
methods that first detect whether a signal is present in the data or not.

• Chapter 5: Fine tuning a deep neural network to localize low magnitude earth-
quakes.
In this chapter the possibility of fine-tuning the synthetically trained deep
learning using high magnitude field data in order to localize weaker magnitude
events is investigated. These initial results are promising, where iteratively
fine-tuning the model’s weights using increasingly lower magnitude events can
result in a network model with enhanced feature extraction capabilities for
localizing weaker magnitude events not included in the training set.

• Chapter 6: Detecting microseismic events using a deep neural network trained
for localization.
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In this chapter the possibility of using the deep learning model trained for
source localization to act as a microseismic event detector is explored. Since
the deep learning model is trained to return a 3D Gaussian distribution given
microseismic data as input it returns some information about how reliable
it is at recognizing seismic waveforms in the data in terms of the maximum
amplitude in its output. If the input only contains noise, ideally the deep
learning model would return a 3D output full of zeros, because there is no
relevant information for it to extract. This is explored on three hours of
continuous field data. An efficient detector should (1) not miss any events and
(2) not cause false alarms. We developed a strategy that takes those two points
into account and uses the deep learning model trained for localization. In this
way, we established a framework for real-time microseismic event detection
and localization using a single deep learning model.

• Chapter 7: Conclusions and recommendations.
Finally, in this last chapter conclusions and recommendations of the previous
research chapters are discussed.



2
Data-driven earthquake localization
and source-mechanism estimation
based on wavefield extrapolation and
2D deconvolution in high-noise
environments

“Nobody ever figures out what life is all about, and it doesn’t matter. Explore the
world. Nearly everything is really interesting if you go into it deeply enough.”

Richard P. Feynman

Abstract Near real-time detection and localization of weak induced earth-
quakes is a topic of active research in the field of microseismic monitoring with
the purpose of reducing the seismic risk and increasing the productivity of a reser-
voir. At low signal-to-noise ratios standard earthquake detection methods fail to
detect microseismic signals. Thus, over the past few decades seismologists started
using data-driven methods to detect and image earthquakes recorded with spatially
Nyquist-sampled arrays. This is achieved by exploiting the time-invariance of the
wave equation in a lossless medium, which allows the extrapolation of the wave-
fields back towards the source they originated from. In practice it is possible to
apply these methods to media such as the Earth, which are not loss-free. Applying

Parts of this chapter are part of the conference proceeding: N. A. Vinard, G. G. Drijkoningen
and D. J. Verschuur (2019), Data-driven earthquake detection, localization and source mechanism
estimation based on wavefield extrapolation and 2D deconvolution in high noise environments,
Annual Meeting Seismological Society of America Technical Sessions, pp. 963-694.
Note that minor changes have been introduced to make the text consistent with the other chapters.
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those methods lead to increased signal-to-noise ratios, which naturally result in an
increased detection threshold.

In this chapter we downward continue the wavefields in depth with the weighted-
least squares (WLSQ) one-way acoustic wavefield extrapolation operator in the
space-frequency domain. These operators were designed to work efficiently and with
high accuracy in heterogeneous media. Ideally, the amplitudes of the extrapolated
wavefields reach a maximum at the location of the source. This can be used as an
imaging condition to determine the hypocenter location and origin time. However,
due to the radiation pattern of the source, there are polarity changes in the P- and
S-wave phases along the receiver array, which lead to destructive interference of the
extrapolated data at the source. We propose to maximize the defocused signal by
deconvolving the extrapolated data by an ideal filter. The ideal filter represents
the solution of the surface wavefield downward extrapolated at the source depth for
a source mechanism matching the recorded wavefield. Since the source mechanism
and location is unknown, a database of focused wavefields for different source mecha-
nisms and locations, given the velocity model and the acquisition geometry as input,
is precomputed. The maximum amplitude is reached when the source mechanism
of the data matches the filters source mechanism and location the most. With this
procedure the hypocenter, origin time and an estimate of the source mechanism can
be recovered simultaneously.
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2.1 Introduction

Large-scale industrial activities in the subsurface can induce earthquakes. These are
especially problematic if they occur close to urban areas and result in an increased
seismic hazard in that region. Induced earthquakes can occur from a large variety of
subsurface activities such as waste-water injection [Ellsworth, 2013; Keranen et al.,
2014], enhanced geothermal systems [Majer et al., 2007] or the depletion of large oil
and gas fields [Vlek, 2018]. The North of the Netherlands is experiencing induced
earthquakes due to the depletion of the Groningen gasfield, Europe’s largest inland
gas field. After being discovered in 1959 from the drilling of the Slochteren-1 well,
the production started in 1963 and until 2015 2115 billion m3 of the natural gas had
been extracted [van Thienen-Visser and Breunese, 2015]. As a consequence, seismic
events in the North of the Netherlands started to be detected since 1986. Thus, the
seismic network in that region was expanded in the following years, especially since
this part of the Netherlands was considered a seismically inactive region.

In usually seismically quiet regions such as the Netherlands, the local infrastruc-
ture is often not designed to withstand strong ground motion. Furthermore, soft
soils and the shallow depth of the induced earthquakes increase the risk of dam-
ages in that area. The largest magnitude event was recorded on the 16th of August
2012 with a local magnitude (ML) of 3.6. Due to the increased seismic activity and
damages caused in the past years the Dutch government decided to regulate and
eventually halt production by 2022.

Passive microseismic monitoring plays an important role to better understand
the situation and how it might evolve in the future. Microseismic monitoring is
typically employed to inspect the seismic activity in the region of interest. The
main tasks of microseismic monitoring are event detection, event magnitude estima-
tion, source-location identification and source-mechanism inversion. The ability to
successfully locate and determine the source mechanism of small earthquakes adds
valuable information to locally study (1) the possibility that larger earthquakes have
small precursors (2) the subsurface with additional data and (3) the active fault re-
gion. For the detection, localization and source-mechanism inversion of events at low
signal-to-noise ratios (S/N) migration-type methods are typically employed. These
can be divided into traveltime stacking and reverse-time modeling methods [Zhebel
and Eisner , 2015]. In this work we focus on the latter.

The application of migration-type methods for determination of source param-
eters dates back to 1982 [McMechan, 1982]. Inspired by reverse-time migration
(RTM) [Whitmore, 1983; Loewenthal and Mufti, 1983; Baysal et al., 1983], McMechan
time reverses the seismograms and inputs the time-reversed wavefield as source into
a two-way acoustic wave-equation finite-difference modeling solver. The difference
to active seismics being that the origin time, location and source mechanism are
unknown. Therefore, a different imaging condition is needed. In his synthetic study
McMechan [1982] determines the origin time and location of the source by seeking
the maximum acoustic amplitude. By numerically back propagating the recorded
wavefields at the surface through a subsurface velocity model the surface noise is at-
tenuated whilst the signal is constructively interfering as the wavefield moves closer



12 Earthquake localization by inverse wavefield extrapolation and 2D deconvolution

to the region it originated from given that an accurate velocity model is used. A few
years later this method was successfully applied to field data [McMechan et al., 1985;
Rietbrock and Scherbaum, 1994]. Hu and McMechan [1988] extended the method
to the elastic wave equation presenting possibilities to get the location, extent, ori-
entation and radiation pattern of the event. As the origin time of the source is
unknown McMechan [1982] used the maximum amplitude as an imaging condition.
If both P- and S-waves are used, a better imaging condition can be used based on
the fact that the extrapolated P- and S-waves will focus at the origin time and thus
the correlation of P- and S-wave energy can be used as imaging condition [Artman
et al., 2010], given that accurate S- and P-wave models are used.

Due to the complexity of the source mechanism the surface-recorded wavefields
show differences in polarities. This can lead to destructive interference in the ex-
trapolated wavefields, and thus, lower the amplitude of the focused wavefield. To
overcome this issue the unknown source mechanism can be taken into account.
The source mechanism contains valuable information about the mechanism behind
the earthquake and thus, it is desirable to retrieve these parameters as well. This
is for instance done in traveltime stacking where prior to stacking the polarities
are corrected considering the effect of the source mechanism [Anikiev et al., 2014;
Chambers et al., 2014]. Xuan and Sava [2010] use time-reversal imaging solving the
acoustic and elastic two-way wave equation and address issues bound to the method
such as inadequate acquisition geometries, errors in the velocity model and noise.
They approach the problem of the unknown source mechanism by constructing ideal
solutions of the focused wavefields at various locations given the acquisition geom-
etry and velocity model. Using this database of focused wavefields they compute
the crosscorrelation between the wavefields in their database and the extrapolated
synthetic wavefield at different time steps. The maximum of the crosscorrelation
indicates a likely location and origin time of the earthquake.

Our objective is to accurately estimate the source parameters, i.e. the hypocenter
(location and origin time) and source mechanism, of induced earthquakes under
the presence of strong correlated noise and a complex velocity model. We achieve
this by using the one-way acoustic wave equation to extrapolate the wavefields
recorded at the surface to different depths. One drawback of using one-way wave
equations is that turning waves cannot be handled because around the turning
point up- and downgoing waves are coupled [Wapenaar and Berkhout, 1985]. Our
working hypothesis is that this should not be an issue because we are interested in
imaging local earthquakes occurring underneath the array. We use one-way wavefield
extrapolation operators that can handle heterogeneous media, based on weighted
least squares (WLSQ) optimization [Thorbecke et al., 2004]. In laterally invariant
media, extrapolation operators based on the phase-shift operator [Gazdag, 1978]
can be applied. We also take the source mechanism into account by designing a
set of optimal filters and we compute the deconvolution by deconvolving the inverse
extrapolated surface wavevields by the optimal filters, which boosts the extrapolated
signal when the location and type of source match well with the corresponding filter.
This is a similar approach to Xuan and Sava [2010]. Indeed, if the deconvolution
filter matches the type of source and extrapolation depth at the source, the correct
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source location and estimate of the source mechanism is found. The differences to
Xuan and Sava [2010] are in the usage of different operators for backpropagation
(two-way vs one-way extrapolation), cross-correlation vs deconvolution, differences
in the complexity of the velocity models (layered vs laterally varying media), the
noise added to the synthetics (synthetic Gaussian noise vs correlated field noise),
scarce vs dense receiver sampling and dense vs coarse filter sampling. In this chapter
we only consider a 2D scenario, i.e. with 2D forward modelling and 2D inverse
wavefield extrapolation.

In the following we will describe the methodology, which includes the WLSQ
one-way wavefield extrapolation operator, the creation of the optimal filters and
the workflow of the localization and source-mechanism estimation method. Next,
results are presented starting with a simple layered 2D model and finally with a
more complex 2D model and strong superimposed field noise. Finally, we end this
chapter with a discussion and conclusions.

2.2 Theory and Methodology

We briefly describe inverse wavefield extrapolation and the WLSQ inverse wave-
field extrapolator [Thorbecke et al., 2004]. Next, we describe the source-localization
workflow, which includes the design of the filters, inverse wavefield extrapolation
and deconvolution.

2.2.1 Inverse wavefield extrapolation

Seismometers on the Earth’s surface record the seismic waves emitted by earth-
quakes. The recorded wavefields can be extrapolated in depth back towards the
source they originated from. This process is called inverse wavefield extrapola-
tion. To derive forward extrapolation operators, the causal solution of the Green’s
function is used [Wapenaar and Berkhout, 1989]. Inverse wavefield extrapolation op-
erators on the other hand are based on the anti-causal part implied by the two-way
wave equation.

In a homogeneous medium the forward extrapolation operator can be computed
analytically, as described in more detail in Appendix A and this appendix also
includes the definitions of the forward and backward Fourier integrals. Here, the
theory is presented for a 3D setting, however, only the 2D case is considered in
the examples of this chapter. In the frequency-wavenumber domain (ω, kx, ky), the
downward-forward extrapolation operator, W̃+, is defined as,
W̃+(kx, ky, ω,∆z) = e−jkz∆z

=
{
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(2.2.1)

with j being the imaginary unit, ∆z the chosen extrapolation step in depth and
k = ω/c, with the wave propagation velocity c. Eq. 2.2.1 is known as the phase-
shift operator Gazdag [1978]. Note that temporal Fourier transforms are denoted by
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capital letters and spatial transforms by a tilde. From this equation it can be inferred
that the amplitude spectrum in the propagating wavenumber area is constant and
equal to 1 and that it is exponentially decaying in the evanescent wavenumber area.
A stable inverse wavefield extrapolation operator, F̃ , can be computed by taking
the complex conjugate of eq. 2.2.1 [Wapenaar and Berkhout, 1989]:

F̃ (∆z) =
[
W̃ (∆z)

]∗ =
{
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y) for k2
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x + k2

y > k2.
(2.2.2)

The complex conjugate only acts on the imaginary part of the operator, thus leaving
the real part, i.e. the evanescent spectrum, decaying. If one were to take the direct
inverse of eq. 2.2.1, the evanescent term would blow up. For further details and
the derivation of inverse wavefield extrapolation operators in vertically and laterally
inhomogeneous media, we refer the reader to Wapenaar and Berkhout [1989].

2.2.2 WLSQ one-way wavefield extrapolation operators

To handle heterogeneity, the extrapolation is carried out in the space-frequency
domain, rather than the wavenumber-frequency domain. Thus, the phase-shift op-
erator is Fourier transformed to the space-frequency domain. The resulting equation
is then discretized and truncated to a finite number of points. The accuracy of the
operators can be assessed by comparing this truncated operator with the analytical
phase-shift operator in the wavenumber spectrum [Thorbecke et al., 2004]. To find
the optimal operator, a WLSQ optimization is implemented. The seeked optimized
operator should be equal to the ideal phase-shift operator for the propagating waves.
However, in the evanescent domain it is not restricted to equal the exact phase-shift
operator, which is referred to as smooth phase-shift operator [Thorbecke et al., 2004].
In the smooth phase-shift operator the amplitude and phase for wavenumbers out-
side the band of interest are designed to smoothly decay to zero, hence its name.
The maximum angle of propagation is also included in the definition of the smooth
phase-shift operator. This results in an extrapolation operator that - given the lim-
ited size in the spatial coordinates - is much more accurate than other truncated
operators, as discussed in Thorbecke et al. [2004].

The weighted least squares (WLSQ) one-way extrapolation operators are applied
as spatial convolution operators in the space-frequency domain. Spatial convolution
is an expensive computation, which grows quadratically with the size of the kernel
[Wu et al., 2018a]. Extrapolation of wavefields in heterogeneous media requires
spatially short operators in order to take into account lateral velocity variations.
However, to handle large propagation angles a spatially larger operator is required.
Additionally, since the extrapolation is carried out recursively over many depth steps
it is important that the amplitudes for all wavenumbers of the operator stay below
a given threshold to keep the operation stable [Thorbecke et al., 2004]. The WLSQ
one-way wavefield extrapolation operators take these points into account and they
were designed to work efficiently and with high accuracy in heterogeneous media.
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Surface P-wave polarity

Figure 2.1: Example of double couple source with inclination θs from the horizontal and its
corresponding P-wave polarity at the surface (plus and minus signs).

2.2.3 Workflow to retrieve source parameters

To recover the source location of a seismic event we inverse extrapolate the surface
wavefields in depth using the afore-mentioned WLSQ one-way extrapolation oper-
ators [Thorbecke et al., 2004]. The surface wavefields need to be extrapolated to
several depths since the source depth is unknown. If the wavefields are extrapolated
to the correct source depth, the energy should focus, indicating the location and
origin time of the source. However, opposing polarities along the recorded events
due to complex source mechanisms might weaken the focusing at the depth of the
source. Furthermore, if strong noise is present in the data, the focused wavefield
may still have lower amplitude than the noise.

In this 2D synthetic study we model the induced events as double-couple (DC)
sources, which represent a shear dislocation, i.e. a rupture along a fault. In 2D the
DC mechanism can be described by the inclination angle from the horizontal, θs.
The inclination angle of a double-couple source from the horizontal as well as its
corresponding P-wave polarity at the surface is illustrated in Fig. 2.1.

To further boost the focused signal we deconvolve the inverse extrapolated wave-
fields by a set of ideal filters. To create the filters we model several double-couple
sources from different locations within the region where events are expected using a
known velocity model. The elastic surface wavefields are modeled with the software
Salvus [Afanasiev et al., 2019a]. To create a filter, the detected surface wavefield,
s, from a source located at (xs, zs) is inverse extrapolated using the extrapolation
operator, F , to its corresponding source depth, zs, and finally a window,W, around
the focused wavefield is taken and saved to the filter database. A single filter is thus
obtained as,

h(x, t; zs, θs) =W(x, t;xs)
{
F−1

t [S(x, z = z0, ω;xs, θs) ∗ F (x, z0 − zs, ω)]
}
, (2.2.3)

where F−1
t describes the temporal inverse Fourier transform and ∗ stands for the

spatial convolution operator. For each modelled source eq. 2.2.3 is applied twice,
since the z-component of the wavefield typically has a stronger P-wave signal com-
pared to the x-component, which has a stronger S-wave signal. Thus, the vertical
surface wavefield is inverse extrapolated with the P-velocity model to obtain the
filter hP

z and the horizontal wavefield is inverse extrapolated with the S-velocity
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model to obtain filter hS
x . Note that the subscripts x and z denote the horizontal

and vertical wavefield, respectively and the superscripts P and S denote inverse
extrapolation with the P- and S-velocity model, respectively.

Here, the inverse wavefield extrapolation operator works under the assumption
that the P- and S-waves propagate to the surface as the same wave mode. Thus, in
this chapter converted waves are not dealt with during inverse wavefield extrapola-
tion, as we make use of single-mode operators. In principle, converted waves could be
dealt with, although then inverse wavefield operators with similar mode-conversions
would be needed.

Similarly, to recover the source location and mechanism of an earthquake, the
vertical wavefields are inverse extrapolated with the P-wave velocity model and
horizontal wavefields are inverse extrapolated with the S-wave velocity model. Fur-
thermore, since the source location is unknown the vertical and horizontal surface
wavefields (dz and dx, respectively) are inverse extrapolated to various depths. The
downward continued surface wavefields are described as dP

z and dS
x .

Once we have the filter database and the inverse extrapolated P- and S-wavefields
at various depths, we can follow the workflow summarized in Fig. 2.2, which will
be explained next. The deconvolution is computed in the frequency-wavenumber
domain and the result is then transformed back to the space-time domain by inverse
Fourier transform as,

ddec(x, z, t) = F̃−1
tx

(
D̃(kx, z, ω)H̃∗(kx, ω; zs, θs)

H̃(kx, ω; zs, θs)H̃∗(kx, ω; zs, θs) + ε

)
, (2.2.4)

with D̃ the inverse extrapolated wavefield, ddec the data after deconvolution by one
of the filters, H, in the database and F̃−1

tx standing for the temporal and spatial
inverse Fourier transform. The complex conjugate is denoted by the star and ε is
the stability factor used to avoid division by zero.

As we do not know the filter location and type of source mechanism in advance,
a loop over all filters in the database is performed at each inverse extrapolation
step. The individual filters are defined as HS

x,i and HP
z,i where the i stands for the

i-th filter, x refers to the horizontal component and S to the extrapolation with
the S-wave velocity model and analogously for the vertical component, z, downward
continued with the P-wave velocity model.

To overcome the destructive interference at the source depth we compute the 2D
deconvolution of the inverse extrapolated wavefields by the filters. The filters that
more closely match the location and source mechanism of the extrapolated wavefields
yield a stronger focusing. Thus, from the computed deconvolved wavefields dS

x,dec

and dP
z,dec the maximum value, maxP and maxS, over all extrapolated depths is

determined. From that we retrieve the estimated source locations, xP and xS , the
source origin times and an estimate of the source mechanism.

It is desired that the estimated source locations xP and xS as well as their
distances to the filter location, xK , applied to obtain the locations are close from
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wavefields and the source mechanism

Figure 2.2: Procedure to retrieve source location, origin time and mechanism.
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each other. Therefore, we compute penalization distances dP and dS as,

dP = ‖xP − xS‖+ ‖xP − xK‖ (2.2.5a)
dS = ‖xP − xS‖+ ‖xS − xK‖, (2.2.5b)

which are used to penalize estimated source locations that are far from each other
and their respective filter location, by computing weighted maximum values maxSw
and maxPw:

maxPw = maxP
dp

(2.2.6a)

maxSw = maxS
ds

. (2.2.6b)

Finally, the sum of the penalized maximum values, maxC, is computed:

maxC = maxPw + maxSw (2.2.7)

These calculations are performed for all filters and once the maxC-value for all filters
has been computed, the maximum over all maxC-values is determined. This yields
the estimated locations for both P- and S-wavefields, the source origin time and the
estimate of the source mechanism.

2.3 Results

2.3.1 Layered 2-D medium

To introduce the method, we start with a simple four-layered elastic model as shown
in Fig. 2.3. This figure shows the locations of the filters and sources. Earthquakes
usually rupture along faults which can be modelled as double-couple (DC) sources,
representing a shear dislocation. The filter database consists of DC sources with
inclinations 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦ and are located at the positions of the
black squares in Fig. 2.3. The filter locations are only placed in the center of
the model in order to investigate whether retrieving locations for sources laterally
further away from the model can still be accurately recovered. Since in this example
we have a layered model it may not be strictly necessary to have filters at many
lateral positions because of the lateral invariance. However, this is possible only to
a certain extent, as the focusing is not only dependent on the source mechanism and
the model but also on the recording aperture. For computational reasons we only
used a few inclinations and filter locations. With this database we try to recover the
locations and source mechanisms for the numbered sources positioned at the white
squares in Fig. 2.3.

Receivers are spanned along the surface from 20 to 4980 m with 20 m intervals.
The synthetic surface data is generated with the elastic solver Salvus [Afanasiev
et al., 2019a]. We inverse extrapolate the vertical-component data with the P-wave
velocity model (dP

z ) and the horizontal-component data with the S-wave velocity
model (dS

x ). An example wavefield as well as two examples of filters designed for the
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Figure 2.3: 2D model: P-wave velocities from top to bottom: 1500, 2200, 3000 and 3500 m/s
and S-wave velocities from top to bottom: 600, 930, 1200 and 1400 m/s. Filter locations
(black dots) and source locations (white dots).

Table 2.1: Summary of results for the four layered model: Source locations and double-couple
inclination (θs) and their estimated locations as well as the filter with source mechanism
information that yielded the best result.

Source No. (x, z)-location (m) θs (◦) estimated (x, z)-location (m) Filter θ◦s ; depth (m))
1 (2180, 1680) 75 (2180, 1700) 75; 1600
2 (2300, 1800) 67 (2300, 1800) 75; 2000
3 (1140, 1800) 67 (1160, 1800) 60; 1600
4 (1280, 2480) 25 (1300, 2450) 30; 3000
5 (3120, 3280) 25 (3120, 3300) 30; 3000
6 (4000, 3500) 38 (3990, 3550) 30; 3000

four-layered model are shown in Fig. 2.4. The data are inverse extrapolated in the
depth interval 1000 to 4500 m with steps of 100 m. In this example we retrieve the
source location and mechanism based solely on the maximum absolute amplitude of
the inverse extrapolated and deconvolved wavefields.

For source number 1 located at (x=2180, z=1680) m with a DC inclination of
75◦, the location is accurately determined at (x=2180, z=1700) m with the filter at
depth 1600 with θs=75◦, thus also estimating the source mechanism correctly, as
summarized in Table, 4.1.

The location of source number 2 is also accurately recovered, see table 4.1. Due
to the coarse filter sampling in both space and source mechanism the estimated θs
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Figure 2.4: Vertical particle velocity data for a source with θs = 45◦ in 4-layered medium
(left) and two filter examples hP

z (top right) and hS
z (bottom right).

does not exactly match the θs of 67◦. However, the estimated source mechanism is
close with θs=75◦.

The locations and source mechanisms recovered for source number 3, which is
horizontally positioned much further away from the filters, are also accurately es-
timated, see table 4.1. Source number 4 is also horizontally further away from the
filters. The estimated source mechanism is also close to the actual source mecha-
nism. However, while the maximum absolute value for both the inverse extrapolated
and deconvolved P- and S-waves is at the same horizontal location, the depths are
different. For the P-wave the depth is estimated at 2400 m while for the S-wave
the depth is found at 2500 m. Therefore, the reported depth in table 4.1 is re-
ported at 2450 m. Finally, the recovered location and mechanism for source number
5 are accurate, whereas for source number 6 the location is slightly worse but still
good. This is expected as source number 6 is located furthest away from the filters
compared to the other sources.

Finally, the origin times for all sources were found at less than 0.04 seconds from
the true origin time.

2.3.2 Complex 2-D medium: Noise-free data

Next, we apply the method to a single event modelled using a structurally complex
elastic 2D model, resembling the geology close to Annerveen, a small town in the
North of the Netherlands, lying above a gas field. The model (Fig. 2.5) is based on
seismic data and includes a salt layer that is located just above the gas-producing
field. Receivers are spanned along the surface in 20 m intervals ranging from 20
to 8980 m. The location of the point source is denoted by the large black square
at (x=5900 m, z=3700 m) and it is defined as a double-couple source with an



2.3 Results 21

Figure 2.5: Annerveen S-wave velocity model. Source location (large black square), filter
locations (small black squares), best filter location (white square), estimated source locations
without deconvolution (yellow squares) and estimated source locations with deconvolution
(green squares). White-dotted rectangle denotes area for designing filters.

Figure 2.6: Horizontal (left) and vertical (right) wavefields from the double-couple point
source (θs = 48◦) in the Annerveen model, located at the large black dot in vx (left) and
vz (right) recording input for extrapolation with the S-wave and P-wave velocity model,
respectively.

inclination of 48◦. The horizontal and vertical component of the particle-velocity
wavefields are shown in Fig. 2.6. As in the example above we seek the absolute
maximum value in the inverse extrapolated and deconvolved wavefields to determine
the source parameters.
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Figure 2.7: Filter examples with different (x,y) locations and DC inclinations: (3800, 3800)
m, (7400, 3800) m and (5400, 3800) m and DC-inclinations (60, 15 and 0) from left to
right. Top row: S-wave filters. Bottom row: P-wave filters.

The white dotted rectangle in Fig. 2.5 delineates the area used to design the
filters denoted by small black squares and one white square. At each of those
filter locations, seven different double-couple sources (DC) are considered. The DC
sources have different angles, θs, from the horizontal, ranging from 0◦ to 90◦ with
increments of 15◦. With there being 18 filter locations, this results in a total of 126
filters, Nfilt, for each HS

x and HP
Z . Some of the P- and S-filters are shown in Fig.

2.7.
The surface wavefields are inverse extrapolated to various depths between 1500

and 5000 m in 100 m intervals. As described above, the horizontal wavefield is
extrapolated with the S-wave velocity model and the vertical wavefield with the
P-velocity model. A few inverse extrapolated wavefield snapshots at depths of 2000
m, 3700 m and 5000 m of the horizontal surface data (displayed in Fig. 2.6) are
shown in Fig. 2.8. From left to right we have the wavefields at a depth above, at
and below the true source depth, respectively.

First, we attempt to retrieve the source location by directly seeking the maxi-
mum amplitude of the inverse extrapolated wavefields without deconvolution. The
retrieved locations of the two extrapolation components are denoted by the yellow
squares in Fig. 2.5. The result is not very satisfying, especially with respect to the
source depth and has to do with destructive interference.

Next, we try to improve the source parameter estimates by 2D deconvolution.
Applying the procedure described above, i.e. computing the deconvolution of each
inverse extrapolated wavefield by all filters in the database and finding the optimal
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Figure 2.8: Horizontal wavefields extrapolated at three different depths: 2000 m, 3700 m and
5000 m from left to right. The source depth is at 3700 m.

solution, the best estimate is found using the filter located at the white square with
DC inclination of 45◦. The retrieved locations for the two extrapolation components
after deconvolution by that filter are much closer to the location of the source (green
squares in Fig. 2.5) compared to the locations retrieved without deconvolution
(yellow squares in Fig. 2.5). The estimated source mechanism is also close to the
actual source mechanism.

2.3.3 Complex 2-D medium: Noisy data

In this example we add field noise to the synthetic data shown in Fig. 2.6. The field
noise added to the synthetics was recorded in Groningen by 92 multi-component
receivers. Since the synthetic data have more traces than the noise, the noise is
linearly interpolated to 449 traces, equaling the number of traces in the synthetics.

Experimental setup

To take into account velocity model uncertainties, the Annerveen model used to
generate the synthetic surface wavefields is slightly modified. To generate the filters
and for inverse wavefield extrapolation the same Annerveen model as before is used.
The differences are present in the salt layer and the layer above the salt contoured
by white lines in Fig. 2.9. The contoured layer is 200 m/s higher in the S-wave
velocity and 100 m/s higher in the P-wave velocity compared to the model used for
the filters. The salt layer is constant with 3200 m/s in S-wave velocity and 4700
m/s in P-wave velocity for the filters. In the true model the salt layers shear-wave
velocity varies between 3300 and 3350 m/s and between 4700 and 4750 m/s in the
P-wave velocity. All forward modelling computations are carried out with Salvus
[Afanasiev et al., 2019b].

As in the previous example the locations denoted by black squares in Fig. 2.9
represent the locations used to design the filters and the same filters described above
were used. The source location is denoted by the white square in Fig. 2.9 and has
DC inclined by 48 degrees. The noise-free horizontal, dx, and vertical, dz, surface
data are shown in Fig. 2.6. Again, the surface wavefields are inverse extrapolated
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Figure 2.9: Annerveen model. Filter locations (black dots), source location (white dot),
estimated P/S locations (cyan), filter location yielding best result (green dot), locations
estimated without deconvolution (yellow), salt layer (red), layer above salt denoted by white
lines.

to various depths between 1500 and 5000 m in 100 m intervals. With an interval
of 100 m the computational cost is kept at an acceptable level and still provides an
acceptable depth resolution for this scenario.

Retrieval of source parameters

As mentioned we add field noise to the synthetics. The surface wavefields with
the added field noise are shown in Fig. 2.10. The S/N is 0.264 for the P-wave in
the vertical component and 0.303 for the S-wave in the horizontal component. The
surface wavefields are inverse extrapolated through the respective velocity model
with the WLSQ inverse extrapolation method [Thorbecke et al., 2004]. If we try
to directly recover the source location based on the maximum amplitude in the
inverse extrapolated wavefields without deconvolution, the retrieved source location
is completely off and the maximum amplitude is found somewhere in the noise. The
retrieved location is denoted by the yellow square in Fig. 2.9 at the left of the model.
To the contrary, when we apply deconvolution and follow the steps summarized in
Fig. 2.2 the retrieved source locations for both the P- and S-extrapolated wavefields
are very close to the actual source location as denoted by the cyan colored square
in Fig. 2.9. The filter used to obtain this result is located close to the source as well
and is denoted by the small green square and it has a DC inclined by 45◦, which
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Figure 2.10: Horizontal (dx, left) and vertical (dz, right) particle velocity data superim-
posed with real spatially correlated noise. These serve as input for the inverse wavefield
extrapolation with the S-wave and P-wave velocity model, respectively. Red arrows highlight
areas where the waves are visible. Every fifth trace is plotted for illustration purposes. The
noise-free equivalent is shown in Fig. 2.6.

Figure 2.11: Inverse extrapolated surface wavefields (particle velocity dx left, dz right) at
retrieved source depth after deconvolution. Red arrows indicate focused signal position

is close to the true DC inclined by 48◦. The inverse extrapolated wavefield after
deconvolution at the recovered source depth is shown in Fig. 2.11. The focused
signal can be clearly observed in both the horizontal and vertical wavefields. The
S/N improved significantly after inverse extrapolation and deconvolution with the
optimal filter from 0.26 to 2.65 for the P- and from 0.30 to 2.24 for the S-waves.

By tracking the normalized maximum amplitudes in the downward continued
wavefields at each depth level the effect of taking the source mechanism into account
by deconvolution vs not taking the source mechanism into account becomes apparent
as well. Fig. 2.12 shows the normalized maximum amplitudes of the wavefields over
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Figure 2.12: Change of maximum absolute amplitude as function of depth. Left: maximum
amplitude variations from extrapolated wavefields without deconvolution. Right: maximum
amplitude variations after deconvolution with the optimal filter.

the extrapolation depth. Without deconvolution no clear peak is visible and the plot
looks noisy. On the other hand the plot showing the maximum amplitude of the
downward continued wavefields after deconvolution with the optimal filter shows a
clear peak that forms at the correct source depth.

2.4 Discussion

The source focusing pattern reconstructed by inverse wavefield extrapolation de-
pends not only on the source mechanism, but also on the overburden and acqui-
sition design. This limits the application of the method to areas with well known
velocity models. However, for the situation of monitoring oil and gas fields it can be
assumed that at least the P-wave velocity model is well known from active reflection
surveys. Nonetheless, the accuracy of the velocity model plays a very important role
for most source-localization methods and this is expected to be the case also for this
method. Further studies are needed to assess how strongly velocity variations affect
the localization process.

Without prior knowledge about the expected source mechanisms and hypocen-
ters in the region of interest, a large number of filters needs to be designed. This
naturally increases the computational resources to both design and run the filters,
also during monitoring due to the need to compute the deconvolution of each ex-
trapolated wavefield by deconvolving by the entire filter database. The number of
filters could be reduced if any prior knowledge about the expected source locations
and mechanisms can be taken into account. Another approach that may reduce the
computational burden could be to start with a sub sample of the filter locations and
DC components and iteratively refine the result by including more filters.

The method requires regular and dense spatial sampling, which is often not the
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case in current monitoring practices. Further research is needed to find a way to
adapt the method to sparse and irregular acquisition geometries.

One-way wavefield extrapolator operators can not handle guided waves such as
those encountered in boreholes. If many such waves would be present in the surface
data these would represent noise for the one-way operators. If these would prevent
the source location algorithm from recovering accurate locations, they would have
to be removed in a preprocessing step.

In this chapter the vertical P-wave data was inverse extrapolated with the P-
wave model and the horizontal S-wave data with the S-wave model. Generalizing
the method to PS and SP waves could be achieved by designing new operators which
would require knowing where the conversions happen.

2.5 Conclusions

Accurate hypocenters are obtained by combining inverse wavefield extrapolation
with 2D deconvolution using filters that include source-mechanism information. Ad-
ditionally, an estimate of the source mechanism is obtained. The filters need to be
designed for various source mechanisms and also at various locations within the
model. However, the results show that even with a sparse distribution of decon-
volution filters in terms of spatial location and source mechanism good results are
obtained even for a complex medium and signal levels below the noise levels. Fur-
thermore, the results showed that it is crucial to take the source mechanism into
account, especially for events below the noise level.
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3
Localizing microseismic events on
field data using a U-Net based
convolutional neural network trained
on synthetic data

“I am scared that if you make the technology work better, you help the NSA misuse
it more. I’d be more worried about that than about autonomous killer robots.”

Geoffrey Hinton

Abstract Hydraulic fracturing plays an important role when it comes to the ex-
traction of resources in unconventional reservoirs. The microseismic activity arising
during hydraulic fracturing operations needs to be monitored to both improve pro-
ductivity and to make decisions about mitigation measures. Recently, deep learning
methods have been investigated to localize earthquakes given field-data waveforms
as input. For optimal results, these methods require large field data sets that cover
the entire region of interest. In practice, such data sets are often scarce. To overcome
this shortcoming, we propose initially to use a (large) synthetic data set with full
waveforms to train a U-Net that reconstructs the source location as a 3D Gaussian
distribution. As field data set for our study we use data recorded during hydraulic
fracturing operations in Texas. Synthetic waveforms were modelled using a velocity
model from the site that was also used for a conventional diffraction-stacking (DS)
approach. To increase the U-Nets ability to localize seismic events, we augmented

Published as: N. A. Vinard, G. G. Drijkoningen and D. J. Verschuur (2022), Localizing micro-
seismic events on field data using a U-Net based convolutional neural network trained on synthetic
data, Geophysics, 87 (2), doi.org/10.1190/geo2020-0868.1
Note that minor changes have been introduced to make the text consistent with the other chapters.
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the synthetic data with different techniques, including the addition of field noise.
We select the best performing U-Net using 22 events that have previously been
identified to be confidently localized by DS and apply that U-Net to all 1245 events.
We compare our predicted locations to DS and the DS locations refined by a rela-
tive location (DSRL) method. The U-Net based locations are better constrained in
depth compared to DS and the mean hypocenter difference with respect to DSRL
locations is 163 m. This shows potential for the use of synthetic data to complement
or replace field data for training. Furthermore, after training, the method returns
the source locations in near real-time given the full waveforms, alleviating the need
to pick arrival times.
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3.1 Introduction

Many of our society’s energy requirements are provided by oil and gas that are
extracted from conventional and unconventional reservoirs in the subsurface. In
certain unconventional reservoirs, hydraulic fracturing (HF) is a prerequisite step
for the extraction of the resources. During HF operations fluids are injected into
the subsurface at high pressures to fracture the surrounding rocks [Li et al., 2020].
Naturally, this leads to seismicity that is generally weak with moment magnitudes
(M) around 0, typically referred to as microseismicity [Van Der Baan et al., 2013].

Microseismic monitoring has been around for many decades and finds applica-
tions in different industries such as the mining industry to gain insights about the
rock-mass response to mining activities [Mendecki, 1993], the hydroelectric power
industry to monitor the seismicity induced by water reservoirs [Simpson et al., 1988]
and the geothermal industry [Pearson, 1981]. However, herein we focus on HF.

Continuous microseismic monitoring in a hydraulic fracturing setting provides
important information to both optimize production [Maxwell et al., 2002] and to de-
cide about mitigation measures to prevent larger events [Kao et al., 2018]. Some key
tasks of microseismic monitoring include event detection, source-location identifica-
tion, event-magnitude evaluation and source-mechanism inversion [Li et al., 2019a].
The location of events is important for several reasons. First, it helps to differenti-
ate between events linked to the current anthropogenic activity and other types of
events. Second, the event locations provide a map of the created fractures. Finally,
the locations provide a starting point for understanding the source mechanism.

In some situations HF is carried out in multiple stages lasting over extended time
periods. For example the operations within the Duvernay Formation in Canada
were carried out over 153 stages in two time periods, the first one lasting 17 and
the second one 16 days [McKean et al., 2019; Rodríguez-Pradilla and Eaton, 2020].
In another example 19 stages each lasting about 3 hours were performed between
the 28 October and 10 November 2014 in the southern Sichuan Basin, China [Chen
et al., 2018]. Similarly, the microseismic data used in this study, monitored HF
activities over a period of 3 weeks in the Barnett Shale in Texas, USA, using a near-
surface permanent installation consisting of vertical component geophones [Kratz
et al., 2012]. In such situations, where a lot of data needs to be processed, it may
be desirable to have a method that retrieves the event locations in near real-time
either while the operations are ongoing or in a post-processing step.

Waveform-based source-localization methods are commonly used in the field of
microseismic monitoring [Li et al., 2020]. One such method involves stacking the
wavefields at different stations along expected travel-time functions to improve the
signal-to-noise ratio (S/N) [Anikiev et al., 2014; Trojanowski and Eisner , 2017].
Since the source location and origin time are unknown, a grid search over these
variables is required to correctly stack the waveforms. Due to the source mechanism
of the events, different polarities can be observed at different stations. Therefore,
an additional grid search to align the polarities at the different stations can be used,
which can improve detection [Chambers et al., 2014; Anikiev et al., 2014].

Machine learning and in particular deep-learning techniques have been widely
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applied in seismology for a wide number of tasks such as seismic phase detection
and picking [Ross et al., 2018a; Zhu et al., 2019; Zhu and Beroza, 2019; Zhang
et al., 2020a], P-wave picking and first-motion polarity determination [Ross et al.,
2018b], microseismic monitoring in mining [Mousavi et al., 2016; Huang et al., 2018;
Johnson et al., 2021], earthquake early warning [Jozinović et al., 2020; Münchmeyer
et al., 2021], earthquake signal detection [Perol et al., 2018;Mousavi et al., 2019] and
earthquake magnitude estimation [Lomax et al., 2019; Mousavi and Beroza, 2020b].
Convolutional neural networks (CNNs) have also been applied in recent years to
identify the location of seismic events. Kriegerowski et al. [2019] formulate the source
localization problem as a regression task returning a (x,y,z)-location for the event.
Furthermore, they used the waveforms from multiple three-component stations as
input data to their CNN. Mousavi and Beroza [2020a] present a Bayesian deep
learning approach to identify the location of global earthquakes from single-station
observations. Van den Ende and Ampuero [2020] propose a location algorithm that
includes the information of the receiver locations using a graph-based deep learning
approach. Zhang et al. [2020b] use a fully convolutional network (FCN) [Long et al.,
2015] with multiple up-sampling layers to retrieve the source location of induced
events in Oklahoma. They used the FCN to return the source location as a 3D
probability density function where the peak defines the source location. In all these
recent works [Kriegerowski et al., 2019; Zhang et al., 2020b; Mousavi and Beroza,
2020a; Van den Ende and Ampuero, 2020], the models were trained and applied
to field data. In some of those publications it was suggested that synthetic data
could be used to augment their data sets, especially to fill existing gaps in the field
data. Synthetic waveforms have been used in the past to train neural networks to
invert for source parameters of natural earthquakes [Käufl et al., 2016a,b]. The
neural networks used in these works were trained to return the posterior probability
density functions for the focal depth, longitude and latitude of the earthquakes as
well as other source parameters given the seismic waveforms as input. This was
achieved by using Mixture Density Networks [Bishop, 1994, 1995].

In this chapter we model synthetic seismic data given a reasonable velocity model
of the area of interest to generate a large labeled data set. The label associated
to each synthetic waveform is represented as a 3D Gaussian distribution where the
peak of the distribution is defined at the source location, as proposed by Zhang et al.
[2020b]. The data consist of seismic waveforms from multiple stations, where only
the vertical component is used. This synthetic data set is used to train a modified
version of a U-Net, a supervised deep learning algorithm originally developed for
biomedical image segmentation [Ronneberger et al., 2015]. After training we apply
the U-Net to microseismic field data recorded during hydraulic-fracturing operations
in Texas, USA. During training we apply different types of data augmentations
including the addition of field noise. To validate the U-Net we first apply it to a
smaller number of events, so-called master events, that were defined by Alexandrov
et al. [2020]. The U-Net that performs best on these 22 master events is then applied
to all 1245 events with moment magnitude ranges between 1.7 to -0.6. We compare
our predicted locations to locations computed using a diffraction stacking (DS)
method [Anikiev et al., 2014] and DS locations that were refined in a second step
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using a relative location (RL) method [Grechka et al., 2015]. The event locations
obtained by DS and RL are much better constrained in depth, i.e. around the
injection depth, compared to the DS locations [Alexandrov et al., 2020].

Our results show a good localization accuracy for the events with moment mag-
nitudes above 0.2 and potential for localizing weaker M events, therefore suggesting
that: (1) synthetic data can be used to train CNNs to localize field data events,
(2) synthetic data can be used to augment field data sets, and (3) the 3D Gaussian
distribution output could be used to restrict the search space for grid-search-based
source-localization methods. Additionally, since after training an output is gen-
erated within milliseconds, we believe this to be an initial step towards real-time
source localization either as a post-processing step or during the actual operations
in situations where these last over several weeks.

The chapter is structured as follows. First, we describe how our deep learning
(DL) model is trained and discuss some of the basic operations performed in con-
volutional neural networks. Here we also introduce the modified U-Net architecture
that we use to reconstruct the source locations in terms of 3D Gaussian distribu-
tions. In the next section we introduce the field as well as the synthetic data used
to train the network. This is followed by the localization results obtained using
different types of learning strategies as well as data augmentations. Additionally,
we show how the locations are affected by the value of M. Finally, we discuss the
results of previous analyses and summarize our results.

3.2 Methods

In this section we introduce U-Nets that are based on convolutional neural networks
(CNNs). This is followed by the U-Net architecture used for this study. Finally, we
briefly describe the training process.

3.2.1 U-Nets

U-Nets have a down-sampling path (encoder) and an up-sampling path (decoder)
where the number of layers in both these paths are approximately the same. Fur-
thermore, U-Nets contain skip connections between each encoder and decoder layer,
which are used to pass information from the encoder to the decoder.

The convolutional layers take the output from the previous layer as input and
compute convolutions of the input with a set of filters. The coefficients of these
filters are optimized during the training stage. The input can be down-sampled by
writing the crosscorrelation operation with an additional parameter that determines
by how many samples the filter, k, skips over the input, y, to produce the output, x.
This parameter is known as stride and the operation is called strided convolution,

xi,j =
KH∑
n=1

KW∑
m=1

kn,myish+n−1,jsw+m−1, (3.2.1)

where sh and sw define the stride along the height and width of the input and KH

and KW denote the height and width of the filter, respectively.
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In the decoder the down-sampled input is gradually up-sampled using transposed
convolutions. The filters used in the transposed convolutions are also optimized in
the training phase.

3.2.2 Training

As mentioned in the introduction, the network returns a 3D Gaussian distribution
whose peak location is defined at the source location. To optimize the weights we
used the sigmoid cross-entropy loss function, similar to Zhang et al. [2020b]. The
sigmoid cross-entropy loss, L is defined as,

L = − 1
NM

N∑
i=1

M∑
j=1

[
g

(i)
j log(ĝ(i)

j ) + (1− g(i)
j )log(1− ĝ(i)

j )
]
, (3.2.2)

where gj is the target value i.e. the true 3D Gaussian distribution for the input j
and ĝ is the predicted output generated by the network. We take the sum of the
sigmoid cross-entropy loss over the number of training examples, N , and the number
of voxels, M . Due to the large size of the training set a stochastic gradient-descent
algorithm is used. With stochastic gradient-descent, in each epoch (iteration) the
entire training set is processed in smaller subsets, called a mini-batch. In each
training step, a mini-batch of N training examples is used to compute the loss and
update the weights of the network. At the beginning of every epoch the entire
training set is randomly shuffled.

We used the ADAM algorithm [Kingma and Ba, 2015] to optimize the parameters
in the network and the entire optimization process was implemented in Tensorflow
[Abadi et al., 2015]. We used the default values as proposed by Kingma and Ba
[2015], but adjusted the learning rate (or step size) to 0.001. Finally, N=20 was
used as batch size.

3.2.3 U-Net architecture

The U-Net used in this work receives 3D tensors of seismic waveforms as input,
the exact input shape being (1024 × 96 × 1) referring to the time, seismic trace
and components, respectively, the number of components being 1 here since we
only have the vertical component. For each convolutional layer a specific number
of filters are used, which determine the number of feature maps in that layer. In
these convolutional layers the 3D tensors are described by height, width and feature
maps as (height × width × feature maps). We used 32 filters in the first five
convolutional layers and 64 filters in the remaining convolutional and transposed-
convolutional layers. The height and width (KH and KW ) of all filters was set
to 3. In the encoder, we gradually shrink the height and width of the previous
input by computing strided convolutions. With respect to our seismic input, height
corresponds to time and width to seismic traces. The shapes, i.e. the height, width
and number of feature maps in each layer of the network are shown in Figure 3.1. In
the first layer following the seismic input the number of feature maps is 32 whereas
the height and width stay the same as in the input. In the next layer this input of
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H

1024× 96× 1

1024× 96× 32

512× 96× 32

256× 96× 32

128× 96× 64

64× 48× 64

32× 24× 64

16× 12× 64

8× 6× 64

128× 96× 64

128× 96× 64

Figure 3.1: Illustration of the U-Net architecture used throughout this work: seismic input
data go through a set of convolutional and transposed convolutional layers generating a 3D
Gaussian distribution as output. Black down- and up-going arrows indicate standard con-
volutional layers. Red down-going arrows denote strided convolutions (down-sampling) and
up-going arrows denote transposed convolutional layers (up-sampling). Dashed horizontal
lines indicate skip connections between encoder and decoder. The numbers next to the curly
brackets indicate the dimensions of each layer.

shape (1024 × 96 × 32) is down-sampled using strided convolutions with strides of
(sh = 2, sw = 1) to a shape of (512× 96× 32). We can see that the original input is
down-sampled to a final size of (8× 6× 64) before being up-sampled in the decoder
to the final output size of (128× 96× 64) representing a 3D Gaussian distribution.

As just described, the input and output of all convolutional layers are 3D tensors.
We represent the output of the previous convolutional layer, (l − 1), as z(l−1) ∈
RZH×ZW×Ci with height ZH , width ZW , and feature maps Ci, where the subscript
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i stands for input. Similarly, we let the output layer, l, be zl ∈ RZH×ZW×Co with
feature maps Co, where the subscript o stands for output. Finally, the filter wl ∈
RKH ,KW ,Co,Ci has four dimensions. A single activation unit in the l-th convolutional
layer can be computed as,

z
(l)
h,w,o = φ

(
Ci∑

i=1

KH∑
n=1

KW∑
m=1

{
w

(l)
n,m,i,oz

(l−1)
hsh+n−1,wsw+m−1,i

})
. (3.2.3)

Equation 3.2.3 computes the sum of the strided convolution of the filter, W(l)
i,o, and

the feature map of the previous layer, z(l−1)
i , and applies a nonlinear activation

function φ(·).
We used the (non-linear) rectified linear unit, ReLU, [Nair and Hinton, 2010]

as the activation function in both the encoder and decoder, φ(x) = max(x, 0). We
then apply batch normalization [Ioffe and Szegedy, 2015], which normalizes the out-
put feature maps over the training batch by subtracting the mean and dividing by
the standard deviation of the batch. In contrary to the classical U-Net architec-
ture, which contains skip connections between each encoder and decoder layer, we
only added skip connections in the deeper layers of the U-Net as represented by
the horizontal arrows in Figure 3.1. The skip connections concatenate the feature
maps from a layer of the encoder to the feature maps in one of the decoder layers
[Ronneberger et al., 2015] and speed up convergence during training [Li et al., 2017].
In the last layer we used the sigmoid activation function, S(x) = ex/(ex + 1), to
map every voxel of the input, x, into a range of values between 0 and 1.

3.3 Field data and training data set

In this section we introduce the field data used to evaluate the networks that were
trained with the synthetics. The field data are accompanied by an earthquake
catalog and a P-wave velocity model.

3.3.1 Field data

The data set contains microseismic events caused by hydraulic fracturing operations
from 2010 in the Barnett Shale Formation in the Fort Worth Basin in Texas, USA
[Alexandrov et al., 2020]. The data were acquired by 543 vertical component geo-
phones that were placed in shallow boreholes spanning an area of approximately 144
square kilometers. Each borehole was equipped with 3 geophones at 30, 45 and 60
meters below the surface. To limit the amount of data (in order to reduce memory
and computational costs), we only kept the deepest geophones, which amounts to
181 geophones. From these, 85 receivers at large offsets had strongly attenuated
signal and poor S/N. They have also been removed. This left us with 96 receivers
covering the source region (Figure 3.2).

The field data set consists of 1245 detected events saved in fixed time windows
of roughly 2.8 seconds each. The events were previously detected and located by
Alexandrov et al. [2020] using a migration-type diffraction-stacking (DS) technique



3.3 Field data and training data set 37

Figure 3.2: Receiver locations (black triangles), source region of interest (shaded cuboid)
and source locations (red stars).

[Anikiev et al., 2014] and some locations were further refined in a second step using
a relative location (RL) method [Grechka et al., 2015]. We will refer to this method
as DSRL. The relative locations were computed with respect to 27 master events
[Alexandrov et al., 2020]. 22 of those 27 master events are present in our data set
and those have moment magnitudes between 0.3 and 1.6. We use those 22 master
events as a validation set to chose the best performing U-Net that will be used to
predict the locations of all 1245 events in the field data set. Before the data enter the
network we apply a band-pass filter of 5-50 Hz and normalize the data by dividing
them by their maximum amplitude value. Three examples of the field data after
band-pass filtering are shown in Figure 3.3.

3.3.2 Generating synthetic data

We used the reflectivity method [Kennett and Kerry, 1979] to generate the synthetics
using the open source software ERZSOL3 [Kennett, 2005], because it is fast and
accurate for the situation of modeling 3D data given a 1D velocity model. The
reflectivity method computes the response of layered media from a point source,
represented by the moment tensor. We defined the source region of interest within
the 3D space shown in Figure 3.2 by the blue-shaded cuboid (it ranges from 5700
to 8300 meters in Easting, from 3700 to 5900 meters in Northing and from 1200 to
3000 meters in depth). We simulated 51200 earthquakes at random locations within
the region of interest. For each event we defined a random moment tensor in terms
of rake, dip and strike and therefore only consider pure double-couple sources. We
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Figure 3.3: Bandpass-filtered examples of three master events with decreasing signal quality
from left to right. Percentile clipping was applied to better visualize events. Shown entire
waveforms are used as input to the U-Nets (without added percentile clipping).

limited the degrees for strike, dip and rake in the intervals [0, 360], [15, 85] and
±[15, 150], respectively. We checked that including a wider range of angles did not
improve the quality of the results. The source center frequency was also randomly
selected in the frequency range [20, 24] Hz.

3.3.3 Training data set

Supervised machine learning requires an input-output pair during the learning phase.
As described above, the U-Net takes a 3D tensor of seismic waveforms as input. The
output is represented as a 3D Gaussian distribution with the peak at the source lo-
cation defined as,

g(x, y, z) = exp

(
−
(

(x− xs)2

2σ2
X

+ (y − ys)2

2σ2
Y

+ (z − zs)2

2σ2
Z

))
, (3.3.1)

where (xs, ys, zs) represent the source coordinates, (x, y, z) represent all coordinates
within the 3D space of interest and σX , σY , and σZ represent the spread of the
Gaussian distribution in each dimension. The spread of the distribution needs to be
selected prior to training. There is a trade-off between the resolution and the rate
of convergence during training: The smaller the spread the sparser the 3D output
will be with most values being nearly zero with a few higher values around the true
source location. This will lead to poor convergence as the loss function compares the
voxel-wise difference between the output and the true distribution. On the contrary
a large spread decreases resolution but increases convergence. We tested different
spreads and found a spread of 200 m to yield best results. The 3D output space
extends from 5500 to 8500 meters in Easting, from 3500 to 6100 meters in Northing
and from 1000 to 3200 meters in depth. Thus, the size of a voxel is 23 m in Easting,
27 m in Northing and 34 m in depth.
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Figure 3.4: Three synthetic events augmented with field noise as used during training.

Data augmentations

To simulate more realistic data, we applied a few data augmentations to the syn-
thetic data during training. In addition to fixed time windows containing detected
events, we have an additional 4 hours of continuous data, from which we selected
noise windows where no events were detected according to the catalog. This selected
field noise can be used to augment the training set during training. Since undetected
events could be present within the selected field noise windows we randomly per-
turb the noise windows by flipping, permutating and time-shifting the individual
field-noise traces.

The following data augmentations were applied to the synthetic input data:
First, we randomly bulk time-shift the data. Second, we added random band-pass
filtered Gaussian noise of varying intensity in each trace. Gaussian noise does not
represent field noise and is of limited use if strong field noise is present in the
data. However, it is a good way to avoid zero-valued entries before and after the
event in the synthetics and to artificially augment the size of the data set. Third,
we add continuous field noise to the data. As a final augmentation we applied
station-dropout as proposed by Kriegerowski et al. [2019], which means that we
randomly mute between 5 and 20 traces. A few training examples with applied data
augmentations are shown in Figure 3.4. After applying all data augmentations the
data is normalized by its maximum absolute value before it is passed to the network.

Training and validation set and evaluation metrics

We use the 51200 synthetic waveforms and their known locations as a training set
and the 22 master events as validation set. The purpose of the validation set is to
ensure that the network is not overfitting to the training data and to select the best
performing U-Net. To this end we evaluate the performance of the trained model on
the validation set. If the discrepancy in performance between the two is high, with
much better performance for the training set, the network is said to be overfitting.
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We used the Dice-similarity coefficient [Dice, 1945] (CDice) as evaluation metric,

CDice(g, ĝ) = 2 g ∩ ĝ
g + ĝ

, (3.3.2)

where again g is the target (true 3D Gaussian distribution), ĝ is the 3D output
distribution predicted by the model and ∩ is the symbol for intersection. Before
computing the CDice we clip all values in the target and network output distribution
with values above a threshold of 0.1 to 1 and the rest to 0.

3.4 Results

In this section, we present the results of the trained U-Nets applied to the field
data. We start by showing the results for the U-Net described previously, which
was trained on synthetic data using all data augmentation steps described before,
applied to the 22 master events selected as validation set. We will refer to this
model, trained with all data augmentation steps (including field noise) and with
skip connections, as U-Net A. Next, we show and discuss the results for (1) a U-
Net trained without field noise, U-Net B and (2) a model trained without skip
connections, i.e., an FCN. U-Net A is our baseline model, to which we compare the
results of the other models.

Since the optimization method is stochastic and therefore gives slightly different
results each time, we trained each deep neural network (DNN) ten times for 20
epochs. We evaluate the DNNs using the validation set by computing the CDice-
coefficient between the predicted output and the desired 3D Gaussian distribution,
which is constructed using the location given by the diffraction-stacking method.

3.4.1 U-Net A: Baseline model

We apply the synthetic-data trained model to the 22 master events and compute the
CDice value between the predicted and desired output, using the master locations
computed by diffraction stacking to construct the desired output. The CDice-value
over those 22 master events is 0.78, which is close to the CDice-value reached at the
last epoch of training, being 0.81. To visualize the results, we take cross-sections
along the horizontal and vertical planes of the 3D output at the maximum value
of the Gaussian distribution. The predicted Gaussian distributions are shown in
Figure 3.5. The black dots denote the DS-locations and the white stars mark the
peaks of the predicted Gaussian distributions. We can observe that all 22 events are
well localized within the spread of the Gaussian distribution. Larger differences are
observed in depth compared to the epicenter locations, which could be due to the
surface acquisition and/or differences between the synthetic and real waveforms. We
estimate the hypocenter from the peak of the Gaussian distribution and compare
with the hypocenter computed by DS. The results of the mean peak value of the
predicted output and the mean hypocenter, epicenter and focal depth differences
are summarized in Table 3.1. The mean depth, epicenter and hypocenter differences
using the baseline model are 96, 82 and 135 meters, respectively.
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Figure 3.5: U-Net A output cross-sections: (a) horizontal cross-section with Easting along
horizontal and Northing along vertical axis and (b) vertical cross-section with Easting along
horizontal and depth along vertical axis. Black stars represent DS cataloged locations and
white stars are placed at highest-valued voxel in U-Net A’s output. Each panel corresponds
to the output of one of the 22 master events with M between 0.3 and 1.6.
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Table 3.1: Mean peak value of DNNs over 22 master events and their location differences
compared to DS catalog.

Model Peak value Hypocenter difference (m) Epicenter difference (m) Focal depth difference (m)
U-Net A 0.79 135 82 96
U-Net B 0.59 302 175 223
FCN 0.75 177 54 163

3.4.2 U-Net B: no field noise

U-Net B is trained with the same U-Net architecture as U-Net A, however without
the addition of field noise in the data augmentation steps. The strength of the added
gaussian noise was augmented by a factor of 4 for U-Net B compared to the other
U-Nets since otherwise the noise level would be too low and, therefore, the model
would do poorly on most of the master events. The CDice-value on the training set is
0.90 whereas on the 22 master events it is only 0.48. The high CDice-value observed
over the training set comes from the fact that the data are less complex (no added
field noise) and therefore the learning process is simpler. This also explains the low
CDice-value on the master events, which is due to the training set not representing
the field data set well enough. The mean peak value over the master events is also
low and the hypocenter and focal depth distances are significantly higher compared
to U-Net A, see Table 3.1.

3.4.3 FCN: no skip connections

We trained the FCN with the same architecture as the U-Net and with all data
augmentation steps but without skip connections. The CDice-value at the end of
training on the training set is 0.83 whereas on the master events it is quite a bit
lower, i.e. 0.70. The mean depth, epicenter and hypocenter differences are 177, 54
and 163 meters, respectively. The epicenter locations are closer to the catalog loca-
tions compared to all other models, however, the mean depth as well as hypocenter
differences are larger compared to U-Net A.

3.4.4 U-Net A applied to all detected field data events

From the preceding results, we see that the peak value can change depending on the
input data. For the model trained without field noise, some of the predictions had
peak values around 0.1, and the predicted output did not resemble a 3D Gaussian
distribution. Thus, the peak value could be used as an indicator of how reliably
the model recognizes waveforms in the input data. Since we train the deep learning
algorithm on synthetic data we do expect more difficulties for the models to recognize
and therefore accurately predict locations of lower magnitude events with lower
S/Ns. A threshold acting on the peak value could be set to only consider predictions
passing the threshold. We apply U-Net A to all 1245 field data events and consider
the location at the peak value of the output as the predicted hypocenter location
and compute its distance from the hypocenter location given in the catalog that is
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Figure 3.6: Peak value of U-Net A output vs Magnitude of 1245 field data events. Each
data point is colored according to its distance to the DSRL cataloged location.

based on DS and further refined using the master events with the RL method. In
Fig. 3.6 the peak value with respect to magnitude of all 1245 events is plotted. We
observe a trend between the peak value returned by U-Net A and the M. Each data
point is colored according to its distance to the cataloged location (based on DSRL).
Most events predicted at distances smaller than 200 meters show higher peak values
and also have higher magnitudes. A majority of the events with large distances
between the catalog and predicted locations have peak values below 0.3 and have
moment magnitudes between -0.6 to 0.3. We thus decide to set the threshold at 0.4.

We compare the predicted locations passing the threshold to the locations de-
termined by the diffraction stacking method (DS) [Anikiev et al., 2014], catalog DS,
and to the locations determined by the diffraction stacking and relative-location
method (RL), catalog DSRL. The main difference between the locations in catalog
DS and catalog DSRL are the depth locations, which in the latter are much more
concentrated along the injection depth level. For a detailed comparison between the
two catalogs applied to the Texas data set we refer to [Alexandrov et al., 2020]. To
view the differences in locations between the catalogs and the predicted locations we
draw lines connecting the predicted to both cataloged locations of each event (see
Fig. 3.7). While some predicted locations still show larger differences to the cata-
loged locations most have a close match. A grid pattern is observed in the locations
returned by U-Net A, which is due to the discretized 3D output space. We note that
depth locations given by DSRL are concentrated around 2100 m depth, whereas the
focal depths given by DS as well as U-Net A are scattered around 2100 m depth.
Comparing the depth distribution of the located events in a histogram (Fig. 3.8)
reveals that the depth distribution predicted by U-Net A more closely follows the
trend of the DSRL catalog compared to the DS catalog, with most events at depths
between 2100 and 2200 meters, which is the injection depth level. This could in-
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Figure 3.7: Locations given in DS catalog (red), DSRL catalog (black) and locations pre-
dicted by U-Net A passing an amplitude threshold of 0.4 (blue). Lines connect predicted to
cataloged locations.

dicate that U-Net A is doing better at predicting the depth locations compared to
DS for the events passing the threshold. The mean hypocenter, epicenter and depth
distances of the locations predicted by U-Net A compared to the DSRL catalog are
214, 147 and 130 m, respectively for the 467 events that passed the threshold. The
moment magnitude of those events range between -0.4 and 1.7.

With the threshold of 0.4 there are still some events that have large location
differences compared to the catalogs. To focus on the predicted locations that more
closely match the DSRL cataloged locations we set the threshold to 0.6 (as can be
seen in Fig. 3.6). Comparing these predicted event locations to both cataloged
locations, we observe a good match in epicenter locations (Fig. 3.9). Furthermore,
the predicted depth locations are more concentrated around the expected depth level
compared to DS. A total of 314 events pass that threshold and the mean hypocenter,
epicenter and depth distances compared to the DSRL catalog are 163, 110 and 99
m, respectively, with moment magnitudes in the range -0.2 to 1.7.

Since the locations from the catalog are captured inside the 3D Gaussian distri-
bution returned by the U-Net, the U-Net’s locations could be used as initial source
locations that can then be further improved with the use of other microseismic
source localization methods such as RL.

3.5 Discussion

We did not address the issue of the detection of events in this study since we do not
have continuous field data. For a practical application we would suggest to separate
the detection and localization problem. The detection could for instance be made
by diffraction stacking [Anikiev et al., 2014; Staněk et al., 2015]. Machine learning
methods capable of differentiating between signal and noise have also already been
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Figure 3.8: Depth distributions of events in DS catalog (red), DSRL catalog (black) and
locations predicted by U-Net A passing an amplitude threshold of 0.4 (blue).

Figure 3.9: Locations given in DS catalog (red), DSRL catalog (black) and locations predicted
by U-Net passing threshold of 0.6 (blue). Lines connect predicted to both cataloged locations.
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proposed and successfully applied [Perol et al., 2018; Li et al., 2018; Wu et al.,
2018b; Mousavi et al., 2019] and could also be used in combination with an event-
localization method. If an event is detected, the information can be passed to
the source-localization network. Alternatively, we could explore whether the U-Net
trained in this study could be used as a detection method, based on the peak value
returned by the model. In continuous mode a possible criterion for a detection
could be that the peak value should pass a predefined threshold for a number of
consecutive time windows if an event is present.

One main limitation of the method is the ability to mimic realistic field noise that
can be added to the synthetics - especially to target low-S/N events. Each station
in the field is subjected to local noise. Thus, if longer passive noise recordings were
available for each station, these could easily be added to the corresponding traces
in the synthetics during training. The network would then be able to learn directly
with the noise specific to each station and possibly be able to detect and predict
the hypocenter locations of lower S/N-events. This subject falls outside the scope
of this work.

Contrary to previous works on earthquake source localizations using convolu-
tional neural networks [Kriegerowski et al., 2019; Zhang et al., 2020b; Mousavi and
Beroza, 2020a; Van den Ende and Ampuero, 2020] this work only made use of the
vertical component of the seismic wavefield, because this was the only component
recorded in the field. It would be interesting to study the differences of a network
trained with both the vertical and horizontal wavefields and a network trained only
with the vertical component. We can assume that the network with all three com-
ponents would perform better since many source-localization methods make use of
both P- and S-waves.

In this study, a subset of all available stations was used to reduce the amount
of data needed to store the synthetic data and reduce the data input-output bot-
tlenecks and memory footprint during the training phase of the network. However,
the earthquake catalog with the source locations is based on all the available sta-
tions. Even though less stations were used the network still returned accurate source
locations.

In this study we did not address the problem of localizing multiple events present
in a single time window and only considered the situation where a single event is
present, as this was the case in the field data. To address this issue we would suggest
training a network with input data containing a random number of events, K, and
similarly the target would therefore contain K Gaussian distributions. In that way
the network could possibly learn to recognize whether more than a single event is
present in the input and return source locations for those events.

Generating the synthetic data set for 51200 sources took 7 days running 100
jobs in parallel on 2.3 GHz Intel Xeon central processing units. Training for 20
epochs took 11 hours on a NVIDIA GeForce GTX 1080 Ti graphics processing unit.
Prediction of a single event takes 0.28 seconds on a 3.1 GHz Dual-Core Intel Core
i5 processor.

In this work we extended upon previous works using CNNs [Perol et al., 2018;
Kriegerowski et al., 2019; Zhang et al., 2020b] and specifically addressed the problem
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of missing events in the training set by generating synthetics everywhere in the
model space. We wanted to test the possibility of training a network solely with
synthetic data that can directly be applied to field data. This work shows that this is
indeed possible, however, the ability of localizing weaker magnitude field data events
decreases rapidly. It could be investigated whether augmenting the synthetics using
longer recordings of passive noise from the area under investigation could lead to
better localizations of weaker events or whether the weights of the network trained
with the synthetic data set can be fine-tuned using field data in order to localize
weaker magnitude events.

In this study we applied the method to single-component data from a hydraulic
fracturing site, however, it can be applied to larger areas by up-scaling the entire
experimental setup.

3.6 Conclusion

In this chapter we showed that synthetic data can be used to train a U-Net to ac-
curately localize microseismic field data. Furthermore, we showed that augmenting
the synthetic data with field noise further increases the U-Net’s accuracy to localize
events. After the network is trained, this method returns the source location within
less than one second given the event waveforms as input. Furthermore, the retrieved
locations are comparable to state-of-the-art localization methods such as diffraction-
stacking and refined diffraction-stacking locations using a relative location method.
In terms of depth locations the deep learning model seems to outperform diffraction-
stacking as the depths are better constrained around the expected depth level for
the events predicted with peak values above a set threshold. The proposed method
provides locations based on the full waveform without the need for any picking, while
its accuracy was better than that of a conventional diffraction stacking approach.
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4
Localizing weak microseismic events
using transfer learning with a deep
neural network

“So easy, when you know how.”

Fats Waller

Abstract Retrieving accurate microseimsic source locations induced by hydraulic-
fracturing operations is an important step to gain insights about the hydraulically
stimulated reservoir volume. Recently, deep neural networks (DNNs) have been pro-
posed, which directly recover source locations from the seismic waveforms. Optimal
performance of the proposed DNNs usually require large training sets. The need
for a large training set can be circumvented if a previously trained DNN can be
used to start the training process with its weights instead of randomly initialized
weights. Those weights can then be fine tuned using a smaller training set, which is
also known as transfer learning (TL). In this work we implement a TL workflow to
update the weights of a DNN that was initially trained on a large synthetic data set
to localize microseismic events. We present two methods of processing, namely one
post-monitoring mode and one continuous mode where the processing takes place
during the monitoring period. We apply the methods on field data from a hydraulic
fracturing site in Texas, USA. In the first scenario a subset of the field data from
the entire monitoring period is used to update the weights of the DNN, which is
next applied to the remaining data resulting in mean and median distances of 227 m
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(2022), Localizing weak microseismic events using transfer learning with a deep neural network,
Geophysical Prospecting, doi: 10.1111/1365-2478.13238
Note that minor changes have been introduced to make the text consistent with the other chapters.
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and 182 m, respectively, compared to the results of a good localization method. In
the second scenario the DNN is updated daily with previously detected and located
events and applied to the events detected the following day. Since the observed data
used for training generally does not cover a wide range of source locations we en-
rich the training set with synthetic data. The addition of synthetics for TL ensures
that the updated DNN provides accurate source locations for events with locations
far from locations used during TL. TL combining synthetic and real data performs
significantly better (more consistent) locations than TL without synthetics.
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4.1 Introduction

The increasing demand for underground-related energy resources, such as geother-
mal and unconventional oil and gas reservoirs, as well as the growing interest in CO2
sequestration and hydrogen storage requires reliable and fast methods to monitor
the seismic activity around the reservoir to both optimize the underlying task and
mitigate risks associated to induced earthquakes [Gaucher et al., 2015; Li et al.,
2020]. Most of the seismicity associated to these activities is weak in moment mag-
nitudes, M, i.e. around and below zero [Van Der Baan et al., 2013], and are called
microseismic events as they are not felt at the surface. Therefore, the signal-to-noise
ratio (S/N) is also poor, especially when detected by sensors close to the surface
[Li et al., 2019a]. Microseismic monitoring systems are set in place to detect, lo-
calize and estimate the source mechanisms and magnitudes of the induced events.
The hypocenter locations provide information about the hydraulically stimulated
reservoir volume or they can identify pre-existing fault systems.

In recent years several machine learning and deep-learning (DL) approaches have
been proposed to identify hypocenter locations. One area of applications is focused
on using machine learning and DL-based picking algorithms that are able to pick
arrival times nearly as good or even better than an analyst at a fraction of the
time required for manual picking [Ross et al., 2018b,a; Zhou et al., 2019; Zhu and
Beroza, 2019; Zhu et al., 2019; Zhang et al., 2020a; Ma et al., 2020]. Ross et al.
[2018b] trained a convolutional neural network (CNN) on earthquakes with labeled
P-wave picks and first-motion polarities to first detect the onset of the P-wave and
next determine the polarity of the P-wave. Ross et al. [2018a] trained a CNN on
millions of 3-component hand-labeled seismic records, that were split into records
only containing P-waves, S-waves and noise, respectively. The CNN was trained
to classify the input as a P-wave, S-wave or noise. Zhou et al. [2019] use a CNN
to first detect earthquakes and next pass the detected waveforms to a recurrent
neural network to pick P- and S-wave arrivals. PhaseNet [Zhu and Beroza, 2019] is
a modified U-Net architecture [Ronneberger et al., 2015] applying 1D convolutions
over 3-component seismic waveforms that returns probabilities around the P-wave
and S-wave arrivals and noise. Zhu et al. [2019] develop a CNN that can be trained
on smaller training sets compared to previous works that can be applied for P- and S-
wave picking of aftershocks. Zhang et al. [2020a] trained a CNN to classify waveforms
and arrival time picking for microseismic data. To train the CNN they first convert
the signal into the time-frequency domain using the continuous wavelet transform.
Ma et al. [2020] propose a U-Net architecture for P- and S-wave classification on
microseismic 3-component data. First, the data are preprocessed such that the
waveforms show clearer arrival times. Next, waveforms are converted to gray-scale
images and fed to the U-Net to pick the S- and P-phase arrivals.

Other DL algorithms directly return the source locations without picking of wave
arrivals and directly relate observed waveforms to locations [Kriegerowski et al.,
2019; Zhang et al., 2020b; Van den Ende and Ampuero, 2020; Mousavi and Beroza,
2020a]. Kriegerowski et al. [2019] accomplished this by training a CNN taking 3-
component seismic waveforms from several stations as input and outputting the
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source locations in terms of their (x,y,z)-coordinates. Zhang et al. [2020b] train a
deep neural network with 3-component waveforms from multiple stations as input
that returns the source locations in terms of a 3D probability density function.
Van den Ende and Ampuero [2020] propose the use of a graph neural networks,
which incorporates the spatial information of the seismic stations in addition to
the seismic waveforms to determine the location of the earthquakes as well as their
magnitudes. Mousavi and Beroza [2020a] train Bayesian neural networks to estimate
the location of earthquakes from single-stations.

A considerable drawback of DL methods is that large training data sets, which
sample the model space well, are usually required to reach good performances. This
limitation can be overcome by using a previously trained deep neural network (DNN)
and refining it using a much smaller data set. This is known as transfer learning
(TL) and is based on the idea that DNNs applied to similar tasks share common
features [Pan and Yang, 2009]. In the field of geophysics TL has been applied to a
variety of different problems. El Zini et al. [2019] used TL to detect bright spots
in seismic data by first pre-training a CNN on unlabeled seismic data (unlabeled
meaning that the information whether a bright spot is or is not present in the input
is missing) and then fine-tuning the network on a much smaller labeled data set.
By pre-training their CNN on unlabeled data they circumvent the constraint of
labeled data sets required for supervised machine learning tasks. Chai et al. [2020]
used a phase picker previously trained on 0.7 million local earthquakes (tens of km
distances between sources and receivers) [Zhu and Beroza, 2019] and refined it to
get better picks for microseismic data recorded from a meter-scale project. This
was achieved using a small training data set of 3500 seismograms. In other works,
TL was used by pre-training DNNs with large synthetic data sets and then fine-
tuning the DNNs with field data. This has been done for the task of seismic trace
interpolation using a convolutional denoising autoencoder [Wang et al., 2020] and
for seismic fault detection using a CNN [Cunha et al., 2020].

In this work we apply TL to localize weak microseimsic events using waveforms
as input. As a starting point we use a DNN that was trained with a large syn-
thetic data set and applied to a small field-data set to retrieve the source locations
of hydraulic-fracturing (HF) induced earthquakes [Vinard et al., 2022]. This was
achieved using a modified version of a U-Net [Ronneberger et al., 2015], a type of
CNN originally developed for image segmentation, which is composed of both an
encoder and decoder. The encoder extracts useful features in the input (waveforms)
and the decoder maps the extracted features into a 3D Gaussian distribution of
location probability [Vinard et al., 2022]. In the following we refer to the DNN that
was trained on synthetic data as QNetSynth, where Q stands for quake and Synth
for synthetic. QNetSynth reliably localizes the higher-magnitude events, however it
fails to accurately localize lower-magnitude events. This is problematic for moni-
toring applications where the majority of the events are low in magnitude, such as
observed in HF monitoring. To improve QNetSynth’s performance we apply transfer
learning by updating it with field data. We refer to this updated version as QNet.
Furthermore, we aim for QNet to return more consistent locations compared to the
diffraction stacking locations.
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To train the DNN we need labeled data, meaning that we need the input (wave-
forms) and the known output (source locations), also called the label. This type of
learning with labeled data is called supervised learning. After training, the QNet
can receive new waveforms as input and return source locations.

Training a DNN with synthetic data for the task of microseismic source localiza-
tion can be useful to retrieve initial locations of seismic events on real datasets. How-
ever, for low S/N events such training is insufficient. To increase the source location
accuracy of the DNN trained on synthetic data, TL using field data is investigated.
Furthermore, we are interested in both modes of processing: (1) post-monitoring
processing when data are processed after being acquired and (2) continuous pro-
cessing when the data are acquired while being processed (e.g. near-real-time or
real-time processing).

In the next section we explain the transfer learning process in more detail and
how the DNN is evaluated. We also discuss its application and illustrate how the
methodology can be applied to a dataset from a monitored hydraulic fracturing site.
The case study is investigated in both a post-monitoring processing mode as well
as continuous acquisition mode. Finally, we discuss limitations and potential of this
approach for future applications. Note that we do not necessarily aim at improving
the quality of the locations, but its automation and consistency.

In this section we describe the transfer learning (TL) process used to predict
the source locations using the synthetically trained DNN, QNetSynth. The la-
beled training data consists of input-output pairs, which for QNetSynth consisted
of synthetic seismic waveforms as input and their corresponding source locations
represented as 3D Gaussian distributions as output. The peak of the Gaussian dis-
tribution is taken at the source location, (xs, ys, zs) of the event and the standard
deviation, σ, has a fixed (input) value in all directions independent of the input
data. The Gaussian distribution is defined as,

g(x, y, z) = exp

(
−
(

(x− xs)2

2σ2 + (y − ys)2

2σ2 + (z − zs)2

2σ2

))
. (4.1.1)

The values in the output range from 0 to 1. In supervised learning the weights of
a DNN are optimized by minimizing a loss function that computes the difference
between the label and the output generated by the DNN based on the current
weights. After training, the DNN can be applied to new (unlabeled) data to return
3D Gaussian distributions. If the weights of the DNN can extract the relevant
features from the input with ease, the returned Gaussian distribution will have a
peak value of 1 at the location expected by the DNN.

The architecture of QNetSynth is shown in Fig. 4.1. QNetSynth consists of
convolutional layers in the encoder where the input is gradually down-sampled as
it moves further down the convolutional layers. In the decoder transposed convolu-
tional layers gradually up-sample the previously down-sampled input. Additionally,
a few skip connections are established, that pass the output from layers in the en-
coder to the decoder by concatenating the encoder output with the decoder output.
The ADAM algorithm [Kingma and Ba, 2015] was used to train QNeSynth using a
learning rate (step size) of 0.001, a batch size of 20 and the sigmoid cross-entropy
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loss function. The height and width of all filters was set to 3 and the rectified linear
unit [Nair and Hinton, 2010] was used as activation function. Furthermore, the
standard deviation of the 3D Gaussian distribution was selected as 200 m. This
is a hyperparameter that needs to be selected before training and it represents a
trade-off between the resolution and training convergence. For more details about
QNetSynth we refer to Vinard et al. [2022].

Seismic Input Data

(height, width, channels)

3D Location
Output

(x, y, z)

(1024,96,1)

(1024,96,32)

(512,96,32)

(512,96,32)

(256,96,32)

(256,96,32)

(128,96,64)

(128,96,64)
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Figure 4.1: DNN architecture with seismic data as input and 3D location output. Encoder
(left) consisting of convolutional layers with red arrows denoting strided convolutions used
for down-sampling. Decoder (right) with transposed convolutional layers with red arrows
indicating strided transposed convolutions used for up-sampling. Gray horizontal arrows
denote skip connections.



4.1 Introduction 55

4.1.1 TL for post-monitoring and continuous acquisition mode

We investigate two possible applications, one that is suitable for post-monitoring
processing and the other represents a continuous acquisition mode. In both scenarios
alternative detection and localization methods are used to build a field training set
that can be used to update the weights of QNetSynth. Alexandrov et al. [2020]
detected and localized the events used in this study. As detection and localization
algorithm the diffraction stacking (DS) algorithm [Anikiev et al., 2014] was used and
some of the DS-localized events were further improved in a post-processing step by
a relative location (RL) method [Grechka et al., 2015] that requires a set of master
events. We refer to the latter method as DSRL. For the post-monitoring scenario
we build a training set with a subset of the DS-detected events as input (waveforms)
and we use the DS-locations to create the corresponding labels. QNetSynth is next
updated using that training set and this updated network, QNet, is next applied to
the remaining detected events. The QNet predicted locations are then compared to
the DSRL-locations. In the continuous acquisition mode scenario the HF operations
are still ongoing and events are detected and localized by DS. After the first day of
operations a training set can be built from the DS-detected and DS-localized events,
which is then used for TL to update QNetSynth. The updated DNN, QNet, can then
be applied on the next day to retrieve locations of the DS-detected events. After
each day the previous QNet can be updated with new DS-detected and DS-localized
events and applied on the next day together with DS.

In order for the QNet to return good source locations on new data, the training
set needs to be similar to the new data. This is a major challenge as source locations
vary and change over time, especially in HF operations. Since the field data used
for training may not cover all possible locations, the DNN will be biased towards
the locations in the field data set used for training and fail to generalize to other
locations. This would limit the applicability of the method. To overcome this issue
we enrich the training set with synthetic data that were used to train QNetSynth
and which cover the entire region of interest.

4.1.2 TL Workflow

The general TL workflow is summarized by the flowchart in Fig. 4.2. We start the
learning process with QNetSynth, which will be equal to QNetPrev (where Prev
stands for previous) in the total TL flow. The training set is a combination of
labeled field and labeled synthetic data. For the case of the labeled field data, the
source locations were computed by another method (e.g. diffraction stacking). The
synthetic database contains all events that were used to train QNetSynth. Instead
of using all of the synthetic data we randomly pick a subset of n synthetic events
and apply data augmentations (random bulk time shifts, random muting of traces,
adding field noise) to the synthetics (see also Vinard et al. [2022]). The combination
of the augmented synthetic data set with the field data forms the training set that
is used to update the weights of QNetPrev in the TL process. Note that at each
epoch (training set passed forward and backwards through the network to update
the weights) a new subset of n random synthetics is selected from the synthetic
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database. The training set contains more labeled synthetic than field data, however
the synthetic data used at each epoch is different due to random sampling of events
from the larger synthetic database and random data augmentations, whereas the
field data are always the same (we tested different values of n to determine its
optimal value). If all of the synthetic data were used for TL at each epoch the field
data would be underrepresented in the training set. This would lead to a highly
imbalanced training set [Chawla et al., 2004] and the weights in the updated QNet
would be biased towards the synthetic data with few changes in its weights in favor
of field data. After TL, QNet can be used to reconstruct 3D Gaussian distributions
on new field data, where the waveforms are taken as input and the output is a
3D distribution as shown in Fig. 4.3. The TL process can be repeated whenever
an updating condition is met. In that case the field data set used in training is
enlarged with new events and QNet is set as QNetPrev to repeat the TL process
with the newest set of weights. Again, here we take the source locations determined
by another method (e.g. DS) to create the labels for the new set of events.

QNetSynth

Assigning QNetPrev

Transfer Learning

Synthetic database

Pick n synthetics
at random

Synthetic-Training Set

Add new local-
ized events to

field-training set

Field-Training Set

+

QNetNew detections Event locations

Update?
No

Yes

Offline (Updating)

Online (Prediction)

Figure 4.2: Workflow describing TL to update weights of QNetPrev, applying QNet on new
field data and possible further updating of QNet using more field data.

Updating QNetPrev only with the field data set could lead to overfitting, mean-
ing that QNet can produce very good results on the training data but fail to ac-
curately locate events in areas where there were no samples in the training data.
Combining TL with both the field and the synthetic data helps to reduce overfitting.
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(a)
(b)

Figure 4.3: (a) Example of waveform input to QNet on the left and its output (cross sections
taken at maximum voxel in map view and view from south) on the right. White star denotes
location computed by DS. Clipping applied for visualization purposes only. (b) Normal-
moveout corrected version of the input waveform, created using the 1D velocity model used
for DS, to better visualize signal.

The data augmentations applied to the synthetic data are used to increase the
size of the data set and also help to reduce overfitting. Random bulk time shifts and
random muting of traces are augmentations that are easy to implement and also
help the learning process by creating variability in the data. The addition of field
noise on top of the synthetics was shown to be crucial for QNetSynth to localize
field data events [Vinard et al., 2022].

4.1.3 TL training and evaluation

During TL we allow all the weights of QNetPrev to change. Freezing parts of the
weights during TL, i.e. preventing those weights to be updated during TL, did not
result in noticeable changes. Thus, we decided to allow all of the weights to change.
We use the Tensorflow software [Abadi et al., 2015] for training using the Adam
optimizer [Kingma and Ba, 2015]. We set the learning rate (step size) to 0.001
and use a batch size of 20 (number of training examples that are passed forward
and backward through the network to update the weights). The same learning rate
and batch size were used to train QNetSynth [Vinard et al., 2022]. Note that the
input data (waveforms) are always (not only during training) normalized by their
maximum amplitude value before being passed to the QNet.

During TL we set a fixed number of epochs over which to update the weights
of QNetPrev. We compute a metric between the output generated by the DNN
and the expected 3D Gaussian distribution on the validation set at the end of every
epoch and after training we save the weights that maximized that metric over all
epochs. As metric we use the Dice similarity coefficient (CDice) [Dice, 1945], which
is defined as,

CDice(g, ĝ) = 2 g ∩ ĝ
g + ĝ

, (4.1.2)
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where g is the label, i.e. the 3D-Gaussian distribution defined with its peak at
the location given by the DS, and ĝ is the 3D output distribution produced by the
QNet. As in Vinard et al. [2022] we clip the values in both g and ĝ above 0.1 to 1
and the rest to 0 before computing the CDice. Thus, if there is a perfect overlap the
CDice-value equals one and if there is no overlap it is zero. As loss function we use
the sigmoid cross-entropy loss that was also used to train QNetSynth.

4.2 Data

The field data used in this study were acquired in Texas, USA, in 2010, during
hydraulic-fracturing operations in the Barnett Shale Formation in the Forth Worth
basin. The monitoring system used 543 vertical component geophones buried in
shallow boreholes where each borehole contained three geophones placed at 30, 45
and 60 meters below the surface. The system covered an area of approximately 144
square kilometers. Alexandrov et al. [2020] generated a 1D layered P-velocity model
from the site from sonic logs and computed hypocenter locations of the events using a
migration-type diffraction-stacking (DS) technique [Anikiev et al., 2014] and further
refined the location of some events using a relative location (RL) method [Grechka
et al., 2015] using a set of 27 master events. The diffraction stacking and relative
location, DSRL, method improved the depth estimates of the events, relocating them
closer to the injection wells located between 2000 and 2200 meters depth. However,
the relative locations can only be computed after the whole monitoring period since
it requires a set of master events, which are usually only available for postprocessing.
This is why the DS-locations are used to create the labels during training. However,
after training the DNN’s performance is compared to the DSRL-locations.

The S/N of the events in our dataset are very low with the majority of events
having S/N below 1 dB, as summarized in Table 4.1. As Table 4.1 reveals 622 events
have a S/N ratio below 0.77 dB, implying that on most traces the signal is below the
noise level. The signal for such events is enhanced by diffraction stacking allowing
those events to be detected and located.

Table 4.1: S/N statistics of the 1245 field data events in dB, as taken from the S/N computed
by [Alexandrov et al., 2020].

Mean Std. Min. 25% 50% 75% Max.
0.87 0.55 0.40 0.64 0.77 0.96 9.31

4.2.1 Synthetic data

QNetSynth was trained with synthetic data modeled with the reflectivity method
[Kennett and Kerry, 1979] with the software ERZSOL3 [Kennett, 2005] using the
layered P-velocity model generated by [Alexandrov et al., 2020] and with the same
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geophone locations defined in [Vinard et al., 2022]. For QNetSynth only 96 geophone
locations were used mainly to reduce computational and memory costs. QNetSynth
was trained with 51200 synthetic events that cover the entire event region. This
region as well as the receiver locations and well locations are shown in Fig. 4.4.
Within the region of interest random double-couple sources with center-frequencies
ranging between 20-24 Hz were modeled. The synthetics were augmented with field
noise, Gaussian noise varying in amplitude per trace, random bulk time shifts and
random muting of traces during training. The size of the input data is (1024 x 96
x 1), and the 3D region where events can occur is discretized to a shape of (128
x 96 x 64) with grid size of (23 m, 27 m, 34 m) in Easting, Northing and depth,
respectively. The label of each event is defined by its 3D Gaussian distribution with
the peak equal to 1 at the source location and with a fixed standard deviation of
200 m in all directions. This fixed standard deviation was chosen for QNetSynth
and found to be optimal for good convergence and resolution [Vinard et al., 2022].
For more details about the synthetic data we refer to Vinard et al. [2022].

Figure 4.4: Receiver locations (black triangles) and region where events can occur (shaded
cuboid) extending from 5700 to 8300 m in Easting, 3700 to 5900 m in Northing and 1200
to 3000 m in depth. For the simulations this space is increased by 200 m in all directions.
Black lines represent orientation of wells.

4.2.2 Field data preprocessing

As for the synthetic data, the label for the field data for training is created in the
same way, i.e. as a 3D Gaussian distribution with a standard deviation of 200
m. For the field data we use the locations retrieved by DS to create the Gaussian
distribution. We apply a band-pass filter of 5-50 Hz to the detected field data (during
both training and application on new data). No denoising steps are performed to
the data. Finally, note that all of the data used to train the DNN and to make
predictions were previously detected and confirmed as true detections by Alexandrov
et al. [2020].
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4.2.3 Field data for post-monitoring application

In order to apply transfer learning we need labeled field data. Thus a preprocess-
ing step that detects and localizes a number of events is needed. In our case the
preprocessing step was carried out by Alexandrov et al. [2020] and 1245 events were
detected and located from 9 days of monitoring. We divide these events into a field-
training, validation and test sets. The labels are created using the DS-locations.
The field-training and validation sets are used during TL to update the weights of
QNetSynth and to determine the weights that maximized the CDice (eq. 5.3) on
the validation set over all epochs. Finally, the test set is used to apply the updated
QNet to data not used during TL.

We randomly split the 1245 events using 60% for training, 20% for validation
and 20% for testing. Thus 747 events serve as a field-training set and 249 events
each as validation and test sets. This partitioning of the data is used for the post-
monitoring application. The DSRL-epicenter locations of the 1245 events are shown
in Fig. 4.5 together with the well locations.

Figure 4.5: Epicenter locations of 1245 DS-detected and DSRL-localized events from first
to ninth day of monitoring. Each colored dot represents an event recorded on a particular
day. Well positions are shown by black lines.

4.2.4 Field data for continuous acquisition modes

The methodology for continuous acquisition modes is based on dividing the time
into intervals (in our case study into days) and using the labeled data from past
intervals in TL for the newest time intervals. In this case study, as new events are
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DS-detected and DS-localized we use those to update the weights of the current
model and apply it to events that are DS-detected the following day. Thus, after
the first day of monitoring we update QNetSynth with the DS-detected and DS-
localized data from the first day and apply the updated QNet to localize the DS-
detected events from the second day of monitoring. Next, we update the QNet
after the second day of monitoring with field data events that were DS-detected and
DS-localized during the first two days of monitoring. This is repeated up until the
last day of monitoring. Thus, the TL process summarized in Fig. 4.2 is looped once
per day. The events detected each day are randomly split into a field-training and
validation set with a 80/20% ratio. The field-training data set is used to update the
weights of the network in combination with the synthetic data for a fixed number of
epochs. At the end of each epoch we compute the CDice over the entire validation set
and after training we select the weights from the epoch that maximized the CDice.
It is important to regularly update the DNN due to changing event locations that
can affect the performance of the DNN. The changes in DSRL-epicenter locations
from the first to the ninth day of monitoring (indicated by colors) are shown in Fig.
4.5. It can be observed that the event locations change over time.

4.3 Results

We present the results of both the post-monitoring and the continuous acquisition
mode source-localization applications. Starting with QNetSynth we apply TL to
update its weights using a combination of field and synthetic data.

4.3.1 Post-monitoring application

During TL we use the 747 field data events and synthetic data as training data.
As mentioned above the labels are created using the locations recovered by DS.
However, we compare the QNet predicted locations to the DSRL-locations as those
are the more accurate locations. We use 100 epochs for training and choose the
weights from the epoch that maximizes the CDice (eq. 5.3) on the validation set
and name the updated DNN, QNet. Increasing the number of epochs did not bring
any significant improvements. To create the training set a limited number of random
synthetics were selected from the synthetic database at each epoch. The synthetic
database contains 51200 events, from which we randomly select a subset at each
epoch. Thus, at every epoch a new set of synthetic samples are picked and added
to the field-data events used for training. We experimented with different numbers
and got best results by randomly sampling 2000 events from the synthetic database
at each epoch.

After TL QNet is ready to be applied to the test set. The test set contains
249 events with moment magnitudes between -0.59 and 1.52. In Fig. 4.6 we show
the locations retrieved by QNet from the peak of the reconstructed distribution for
all 249 events in the test set compared to the DSRL-locations. Note that a grid
pattern emerges in the DNN predicted locations, which is due to the discrete 3D
output space. In general the hypocenter locations returned by QNet match well with
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the DSRL-localized events. The mean distances in hypocenter, epicenter and depth
between the locations provided by QNet and DSRL are 227 m, 148 m and 141 m,
respectively and with a median hypocenter distance of 182 m. The depth locations
returned by QNet are concentrated in depth between 2000 and 2200 meters for most
events. This is also the depth of the fractured interval.
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Figure 4.6: Locations predicted by QNet on test set for post-monitoring processing applica-
tion plotted together with DSRL-locations. Lines connect locations of same event predicted
by QNet and DSRL. Left-side plot is map view and right-side plot is view from south.

The histogram (Fig. 4.7) of the location errors, computed as the distances
between QNet-located events (from the peak of the distribution) and the DSRL-
locations shows that a majority of the events are located within 300 m from each
other with a sharp decrease in events with distances greater than 300 m away from
the DSRL-locations in the validation and test sets. We take a closer look at those
latter events. We compare their magnitudes and S/N’s with the events located less
than 300 m from the DSRL-locations in the test set as well as to the magnitudes
and S/N’s present in the field data used for training. We only plot the magnitudes
between -0.6 and 1.0 and S/N between 0.4 and 1.9 in order to better observe the
events that were located at greater distances from the DSRL-locations, see Fig. 4.8.
We observe that a majority of the events that are located further than 300 m from
each other have low magnitudes and S/N. This is to be expected since there are less
events within that moment magnitude and S/N range in the field-training set and
thus fewer of those examples that the DNN can learn from.

4.3.2 Continuous acquisition mode

For the continuous acquisition mode we update the DNN on a daily basis, starting
with the DNN that was trained on synthetic data, QNetSynth. For labeling of the
detected events we use the DS-locations.

To investigate the added value of the synthetic data, we apply TL excluding and
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Figure 4.7: Histogram showing number of events located in different distance bins of 100
meters width as a function of the distances to the DSRL-locations in test and validation
set.
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Figure 4.8: Histograms of moment magnitudes (left) and S/N (right) of events predicted at
distances greater than 300 m (red) and less than 300 m (blue) from DSRL-locations in the
test set and distributions in training set (black).

including synthetic data. Starting with QNetSynth and the events detected and
located after the first day of monitoring, we follow the scheme described in Fig. 4.2:
QNetSynth becomes QNetPrev and the field-data events detected and localized the
preceding day by DS are used to update the weights of QNetPrev. For the situation
where synthetic data are also used during TL we randomly select a new set of 2000
synthetic events at each epoch, as we did for the post-monitoring application. We
randomly create splits of 80/20% of the field data events to serve as field-training
and validation sets, respectively. After training for 100 epochs, we again keep those
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weights that maximized the CDice on the validation set. This updated model, QNet,
is next applied to data detected on the next day of monitoring. This process is
repeated until the last day of monitoring. We refer to the QNets obtained with
this iterative TL workflow without synthetics as QNet1 and those updated with
synthetics as QNet2. The CDice- and loss-curves over the training and validation
set using data after the first day of operations are shown in Fig. 4.9. The curves
look similar for the remaining TL iterations. The vertical dashed line shows the
epoch at which the CDice-value over the validation set reached its maximum value.
The training- and validation-loss curves are close to each other, indicating that the
model is not heavily overfitting and the validation loss in Fig. 4.9 is steadier after
70 epochs.

(a) (b)

Figure 4.9: CDice-curves (left) and loss-curves (right) of training and validation set during
first TL iteration in continuous acquisition mode.

After each TL iteration we apply the updated QNets, QNet1 and QNet2, to the
same field data detected the following day and compare the results to the DSRL-
locations of the events. Fig. 4.10 shows the epicenter locations from the second
to the ninth day of monitoring separately for QNet1 and QNet2. The red dots are
DSRL-localizations and the blue dots represent locations retrieved by the QNets
(QNet1 in the first and the third column and QNet2 in the second and the fourth
column). The lines connect the DS-localizations to the locations predicted by the
QNets.

With the exception of a few events the epicenter locations recovered by QNet2
on the second day of monitoring better compare to the DSRL-locations compared
to QNet1. The DNN updated without synthetic data during TL, QNet1, mislocates
the small cluster of events located in the upper part of the plot (black circle in Fig.
4.10). A similar observation can be made for the epicenters from the third day of
monitoring where QNet1 does worse at localizing the small clusters on the upper
and lower parts of the plot whereas QNet2 does much better with exception of a
few outliers. These problems can be explained by the lack of training samples in
those areas. This can very clearly be observed on the fourth day of monitoring
when comparing the locations predicted by QNet1 to those of QNet2. As the event
locations up to the day used to update QNetPrev are always slightly different to the
event locations from the following day, QNet1 seems to always be lagging behind
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Figure 4.10: Epicenters returned by QNet1 updated without synthetics (columns 1 and 3) and
QNet2 updated with synthetics (columns 2 and 4) from second to ninth day of monitoring.
DSRL and respective DNN locations (QNet1 and QNet2) connected by black lines.

a little, as also observed throughout days 5 to 9 of monitoring. QNet2, however,
can overcome this issue due to the use of the synthetic data, which well samples the
locations of interest.

The mean distance between all locations predicted by QNet1 and the DSRL-
locations is 282 m. The mean epicenter distance is 226 meters. For QNet2 the
mean hypocenter distance is 249 m and the mean epicenter distance is 167 m.
These differences are large, however, note that DS-locations and not DSRL-locations
were used for training and furthermore, we cannot be sure that the DSRL-locations
are true locations. Thus, updating QNetPrev with the synthetic data that covers
the entire event region is more consistent with the DSRL-localized events. This is
especially important with continuous processing where new events occur in regions
where past events did not occur and were therefore not part of the training set
used for TL. Fig. 4.5 shows how the events migrate on a daily basis. The depth
differences between the DSRL-locations and the predictions by QNet1 and QNet2
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are similar with 146 m and 151 m, respectively.

4.4 Discussion

In the introduction we mentioned that QNetSynth (trained purely with synthetics)
failed to localize many of the lower magnitude field-data events. In order to show
how TL helps to improve the localization of field data events, we compare the
locations of QNetSynth with the daily updated versions of QNet2, applied to the
events recorded from the second to the ninth day of monitoring. We plot the moment
magnitude of the events versus the distance between the DSRL locations and the
locations returned by both QNet2 and QNetSynth in Fig 4.11a. We can see that
QNet2 is able to localize many of the lower magnitude events more accurately than
QNetSynth.

(a) (b)

Figure 4.11: Comparing QNetSynth with QNet2. (a) Moment magnitude vs distance and (b)
peak value vs euclidean distance between the QNet-locations and DSRL-locations. QNet-
Synth displayed by large red dots and QNet2 by small blue dots.

We consider the maximum value of the distribution to be at the source location
and refer to it as the peak value. We can see from Fig. 4.11b, where the peak
value of the output is plotted with respect to distance, that the peak values are
higher for QNet2. Thus by updating QNetSynth with field data (and synthetics)
the number of confidently localized events increases. Based on Fig. 4.11b we might
consider setting a threshold on the peak value to only accept events that are above
it. In practice the threshold should be based on the validation set. For now we
set a threshold to 0.5 for both QNetSynth and QNet2 and compare the moment
magnitude distribution of the events that pass the threshold (Fig. 4.12). We can
see that most of the higher magnitude events for QNetSynth passed the threshold
but that many of the lower magnitude events did not. Between moment magnitudes
0.6 to 1.6 roughly the same number of events pass the threshold for QNetSynth and
QNet2. For magnitudes below 0.6 increasingly more events pass the threshold in the
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Figure 4.12: Magnitude distributions of events passing threshold 0.5 for QNetSynth (red)
and QNet2 (blue).

case of QNet2 compared to QNetSynth and no events with M below -0.3 pass the
threshold for QNetSynth whereas for QNet2 events down to M between -0.6 to -0.5
pass the threshold. The mean distance over all events recorded after the first day of
monitoring is 688 m for QNetSynth and 249 m for QNet2. The localization improved
similarly comparing QNetSynth to QNet: Over the test set of 249 events the mean
distance between QNetSynth locations and DSRL-locations is 747 m, whereas for
QNet the mean distance is 227 m.

In this study we focus our attention on the locations of detected microseismic
events. For a practical situation a detection algorithm needs to be employed to
first detect an event. In this study the diffraction stacking algorithm was used
for detection [Anikiev et al., 2014]. Alternatively, several machine learning based
seismic event detection algorithms have been successfully applied in recent years
[Perol et al., 2018; Wu et al., 2018b; Meier et al., 2019; Wu et al., 2018b; Dokht
et al., 2019; Mousavi et al., 2019].

During the supervised learning phase our DNN was only trained with data con-
taining events and it learned to extract features from that input and map it into
a 3D Gaussian distribution. Thus, the QNet was not fully trained to differentiate
between noise and seismic events. However, if the input to the QNet contains noise
only, we do not expect it to return a 3D Gaussian distribution with a high peak-
value. Therefore, the QNet might serve as an event detector. To investigate this
possibility we take a time window of approximately 7 s around an event recorded
on the 6th day of monitoring. Next, we pass QNet2 (trained with iterative TL up
to day 5) chunks of 2.8 s each shifted by 0.6 s from start to finish. The seismic data
that is used as input to QNet2 as well as its output are shown in Fig. 4.13. The
predicted output is sliced horizontally and vertically through the maximum output
voxel. The peak of the output distribution corresponding to noise is significantly
below 1 before the signal enters the time-window and the output can not be char-
acterized as Gaussian. As soon as the signal appears on the first few receivers, the
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distribution’s peak value is significantly higher and resembles a Gaussian distribu-
tion. However, the peak of the distribution does not yet match with the DS-location.
In the two consecutive time windows the peak of the distribution is on top of the
DS-location and the peak value is at its highest. Finally, at the later time steps,
as the first signals start passing the receiver array, the distribution starts to change
and eventually dissipates as no signals are present in the input. We believe this
methodology can be extended to provide detection of seismic events.

The synthetic data used to train QNetSynth and also used in the TL scheme was
generated using the same velocity model as used to localize the events by diffraction
stacking. The velocity model may not always be well known. If the velocity is
complex then to create the synthetics we may need to use a more computationally
intensive method to compute seismograms. Therefore, to analyze how accurate the
velocity models need to be in order to train a DNN that is able to provide good
locations for field data is a recommendation for further research. As is known from
other methods, the accuracy of the locations depends on the velocity model and we
expect this to be the case for this method as well.

In this study we benefited from a well known velocity model. However, in general
the velocity model, especially if used for simulating full waveform synthetic seismo-
grams, may not be well known. Further investigation on accuracy of the velocity
model may help us to understand limitations of the proposed methodology, but this
is beyond the scope of this study as we need to define the quality of the velocity
model to judge better.

When creating our training, validation and test sets from the field data we
randomly created the splits. Thus all three sets roughly cover the same moment
magnitudes. It would be interesting to investigate the possibility of applying TL
using high magnitude events in a first run and apply the updated DNN to low
magnitude events to test if it can extrapolate its feature extraction and classification
capacities to the those events.

In order to get an idea about the computational effort needed for our approaches:
to generate 51200 synthetics and running 100 simulations in parallel takes roughly
7 days on 2.3 GHz Intel Xeon CPUs. The training time depends on the size of the
training set. A single epoch took approximately 60 seconds on a Tesla P100-PCIE-
16GB GPU. Thus training for 100 epochs takes about 1.7 hours. Finally, applying
the trained QNet on a single event to generate the output takes 0.28 seconds on a
3.1 GHz Dual-Core Intel Core i5 CPU. Hereby we show that it is feasible to apply
this method on a daily basis.

4.5 Conclusions

In this work we introduced a TL scheme to update a DNN previously trained on
synthetic data. The TL scheme can be either used a single time in a post-monitoring
situation or iteratively for continuous monitoring. In the TL scheme the QNet is
updated using a combination of labeled field and labeled synthetic data. By updat-
ing the QNet in this fashion the number of confidently localized field-data events at
low magnitudes drastically increased. Furthermore, we showed the importance of



4.5 Conclusions 69

Figure 4.13: QNet2 trained on first 4 days of field data applied to event recorded on 6th
day. QNet2 receives seismic data as input (records) and returns 3D output (plan and
section slice through maximum value). White star denotes DS-location. Time increases
from left column downwards and continues from upper left column. Clipping applied to
better visualize events in records (not applied during training and prediction).

keeping the synthetic data during TL in order to provide accurate source locations
in areas not yet covered by the field data used during training. Additionally, we
provide a framework to regularly apply TL in a continuous data processing mode,
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which increases the localization performance of the QNet over time.



5
Fine tuning a deep neural network to
localize low magnitude earthquakes

“Learn to deal with the valleys and the hills will take care of themselves.”

Count Basie, 1926

Abstract A main challenge in microseismic monitoring is that the seismic
signals recorded at the Earth’s surface are weak and thus localization of those mi-
croseismic earthquakes becomes challenging. Diffraction stacking is a traditional
method used to localize weak earthquakes, which involves stacking the waveforms
along precomputed travel-time curves from different locations, where the maximum
is used to determine the source location. In this work we aim to recover the source
location of weak microseismic earthquakes using a deep neural network (DNN) that
resembles the U-Net but uses fewer skip connections. However, the size of the field
data is too small to train the DNN from scratch. Thus, we propose to pretrain
a DNN using synthetic data that resembles the field data and that learns to map
the source location in terms of a 3D Gaussian distribution directly from the seismic
signals. This pretrained DNN is capable of localizing the higher magnitude earth-
quakes in the field data, but fails for the weaker earthquakes. To be able to localize
the weaker magnitude earthquakes we therefore, fine tune the pretrained DNN using
the higher magnitude field-data earthquakes. We observe that the updated model is
able to extrapolate the information learned during the fine tuning step from higher
magnitude earthquake data to lower magnitude earthquake data.

Published as: N. A. Vinard, G. G. Drijkoningen and D. J. Verschuur (2021), Fine tuning a
deep neural network to localize low magnitude earthquakes, IEEE ICECET Proceedings.
Note that minor changes have been introduced to make the text consistent with the other chapters.
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5.1 Introduction

Industrial activities in the subsurface such as waste-water injection, hydrocarbon ex-
traction, geothermal stimulation, CO2-sequestration and hydraulic fracturing gen-
erate stress changes in the subsurface, which lead to primarily small earthquakes,
known as microseismic events [Foulger et al., 2018]. In order to better understand
where these changes in the subsurface occur, the location of the microseismic events
can be determined from data collected by seismic sensors placed closed to the Earth’s
surface surrounding the area of the industrial activities. Since most of those events
have low magnitudes their signals are weak and thus they are difficult to detect
and localize. To detect and localize microseismic events from seismic signals, array-
processing methods, which most often take the wave propagation effects into ac-
count, are used. One such method is diffraction stacking (DS), which stacks the
waveforms along precomputed travel-time curves [Anikiev et al., 2014]. This in-
volves a grid search over all possible source locations, where the most likely source
location can be based on different conditions, such as the maximum over all stacks.
Another difficulty is caused by the complex radiation pattern of microseismic events,
resulting for instance in different polarities at different sensor locations. Thus, for
optimal stacking, the polarities can be corrected by also applying a grid search over
different source mechanisms.

Deep learning methods and especially convolutional neural networks have been
widely applied to seismic data for many different applications, e.g. phase detection
[Zhu and Beroza, 2019], earthquake signal detection [Mousavi et al., 2019], earth-
quake magnitude estimation [Lomax et al., 2019] and source localization [Kriegerowski
et al., 2019; Mousavi and Beroza, 2020a; Van den Ende and Ampuero, 2020; Zhang
et al., 2020b]. Most of these source-localization methods trained their models on
field data by splitting the data set into a training, validation and test set. For small
field data sets it may not be possible to train a deep neural network (DNN) from
scratch as usually large data sets are needed to train deep learning models. In such
situations it is possible to use weights from another DNN that was trained for a sim-
ilar task to avoid starting training from scratch and to fine tune those weights on a
smaller data set. One such example in a seismic application used a model trained
for seismic phase picking of earthquakes [Zhu and Beroza, 2019] to fine tune it for
picking phases of microseismic events [Chai et al., 2020]. Others used large synthetic
data sets to pretrain their models and then fine tuned the models on smaller field
data sets for interpolating seismic traces [Wang et al., 2020] and for seismic fault
detection [Cunha et al., 2020].

In this work we aim to first train a modified U-Net [Ronneberger et al., 2015]
(a convolutional neural network developed for biomedical image segmentation) on
a large synthetic data set and next fine tune the model on higher magnitude field
data events in order to apply it to lower magnitude events. The synthetic data set
is generated using a known layered velocity model from the monitoring area, the
expected region where events are likely to occur and the known sensor locations
given in the field. The need for a synthetic data set is due to the small size of the
field data set, which makes it difficult to start training from scratch. However, this



5.2 Data 73

is not the only purpose of the synthetic data set. The synthetic data set is also
useful because it covers almost all possible source locations and thus, the model
trained on the synthetic data set, learns to associate input data from many source
locations. Since the synthetic data do not perfectly resemble field data, we fine
tune the synthetically trained network with high magnitude field data events. The
fine-tuned model is able to accurately localize lower magnitude field data events
that the synthetically trained model was unable to localize. The case study data
uses microseismic events recorded during hydraulic fracturing operations.

In contrast to previous work in the field of earthquake localization, we first
train our network on synthetic data instead of field data. Secondly, we fine-tune the
synthetically trained model only with the higher magnitude field data events instead
of sampling from the entire field data population, to investigate the capacity of the
model to expand its feature extraction capacities beyond the data encountered in
the training set.

The main goals of this work are to (1) determine the location of microseismic
earthquakes and to show the value of synthetic data for situations where (2) the
amount of field data is limited to train a DNN from scratch, (3) the observed field
data do not cover the whole area where future events can occur and (4) synthetic
data are relatively quickly generated and (5) to investigate the capacity of fine tuning
the model on high magnitude events to localize low magnitude events.

5.2 Data

5.2.1 Field data

Our case study is based on microseismic field data recorded in 2010 in Texas, USA,
during hydraulic fracturing operations [Alexandrov et al., 2020]. From this monitor-
ing period, we have 1245 events in our data set from nine days of operations. The
source locations of those events were computed using a diffraction stacking (DS)
method [Anikiev et al., 2014] by [Alexandrov et al., 2020], which we also have at our
disposal. While the data were acquired by over 500 vertical-component sensors, we
only used a subset of 96 sensors in our case study, in order to reduce the computa-
tional footprint. The 96 sensors as well as the region where events are expected to
occur are shown in Fig. 5.1. We bandpass filter the field data in the frequency range
5-50 Hz. During both training and prediction the input data are first normalized
by the maximum amplitude value in a time window.

5.2.2 Synthetic data

We simulated synthetic data given the locations of the 96 sensors, a P-wave velocity
model of the subsurface and the region where events are expected to occur (ranging
from 3700 to 5900 m in Northing, 5700 to 8300 m in Easting and 1200 to 3200 m in
depth). Within the expected region we randomly generated 51200 sources, where
each source was assigned a random location and source mechanism, which defines
the radiation pattern of the source. To model the synthetic data we used the open
source software ERZSOL3 [Kennett, 2005], which is based on the reflectivity method
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Figure 5.1: Map view of sensor locations (triangles) and expected source region (red rectan-
gle). Easting and Northing are relative locations.

[Kennett and Kerry, 1979].

5.3 Methodology

The deep learning network that we use to recover the source locations given the
seismic waveforms as input, resembles the U-Net architecture [Ronneberger et al.,
2015]. This architecture is suitable to map seismic input into a 3D Gaussian dis-
tribution by the use of the encoder-decoder architecture. The encoder is composed
of a set of convolutional layers and the decoder is composed of a set of transposed
convolutional layers. In the encoder the DNN extracts the features in the input
that contain relevant signals, whereas the decoder maps the extracted features into
a 3D Gaussian distribution with its peak defining the source location, similar to
[Zhang et al., 2020b]. The standard deviation of the Gaussian distribution is fixed,
independent of the input data and it is selected before training based on the de-
sired resolution and convergence speed of the training. The architecture with the
shapes of each layer as well as an example of an input and output is shown in Fig.
5.2. Strided convolutions are used for downsampling in the encoder and, similarly,
strided transposed convolutions are used for upsampling in the decoder. Instead of
using skip connections through all hidden layers of the network, we only use them
in a few layers, since we map the input to a different output space. We use the skip
connections as they help speed up convergence [Li et al., 2017]. The convolutional
and transposed convolutional layers are followed by the ReLU activation function
[Nair and Hinton, 2010] and batch normalization [Ioffe and Szegedy, 2015], except
for the final transposed convolutional layer generating the output, where the sigmoid
activation function is applied. The sigmoid cross-entropy is used as loss function,
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Figure 5.2: DNN architecture with input (seismic field data), label (3D Gaussian distri-
bution) and shapes. Skip connections denoted by thick horizontal arrows. Encoder with
convolutional layers on left side, strided convolutions (red arrows) without strides (black
arrows), and decoder with transposed convolutional layers on right side, strided transposed
convolutions (red arrows) without strides (black arrows).
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with gj being the label of the j-th input and ĝ being the output returned by the
DNN, M stands for the number of voxels and N for the number of training samples
the loss is computed over (batch size). The model is trained with Tensorflow [Abadi
et al., 2015] using the Adam optimizer [Kingma and Ba, 2015]. As metric we use
the dice similarity coefficient (CDice) [Dice, 1945],

CDice(g, ĝ) = 2 g ∩ ĝ
g + ĝ

. (5.3.2)

Before computing the CDice, we set the values in the label and output that are
above 0.1 to 1 and the rest to 0.

A first model, Model 1, is trained from scratch using the large synthetic data
set that covers all possible source locations. During training we augment the syn-
thetic data with different techniques such as random bulk time shifts, trace-varying
gaussian noise, field noise and muting of individual traces (also known as station
dropout [Kriegerowski et al., 2019]). As for the field data, the synthetic data are
also normalized by the maximum absolute amplitude during training. Next, a sec-
ond model, Model 2, is trained by fine-tuning Model 1 on a much smaller field data
set that consists of high magnitude events. Fig. 5.3 summarizes the two steps.
The role of the synthetic data set is to provide a way to train a DNN from scratch
when the amount of field data available is too small in the first place. Additionally,
the synthetic data set covers all possible source locations and, therefore, Model 1,
learns to associate seismic waveforms to all possible source locations. However, due
to unaccounted differences between synthetic and real data, Model 1 is not capa-
ble of returning good source locations for lower magnitude events and instead only
returns confident source locations for higher magnitude events that tend to have
higher signal-to-noise ratios. Thus, in the second step, Model 1 is fined tuned using
higher magnitude events. During this second training step the DNN learns to better
recognize and extract relevant features in the field data, which allows it to better
localize weaker magnitude events.
We experimented with freezing some of the weights, such as the entire encoder or
decoder, during the fine tuning step. However, we did not observe any significant
differences in the results. Therefore, we allowed all of the weights from Model 1 to
change during the fine tuning step.

5.4 Results

As described in the previous section, we first train the DNN from scratch using
the synthetic data set. The synthetically trained model, Model 1, was trained for
20 epochs with 51200 training samples, a batch size of 20 and a learning rate of
0.001. Training the model for a greater number of epochs did not significantly
improve performance. Model 1 was then fine tuned using higher magnitude field
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Synthetic Data Training Model 1

High Magnitude
Field Data

Fine-tuning
Model 1

Model 2

Model training

Figure 5.3: Training DNN with synthetic data from scratch to get Model 1 and fine-tuning
Model 1 using high magnitude field data to get Model 2.

data events for training. Fig. 5.4 shows the magnitude distribution of the field data
set (training/validation and test set).
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Figure 5.4: Magnitude distribution of training set (black), test set (turquoise) and magnitude
distributions of events passing peak-value threshold of 0.5 given Model 1 (red) and Model 2
(blue).

We chose the events with moment magnitudes greater than 0.4 to create a field
training and validation set with an 80/20% split. The field training set only contains
176 events and the validation set 44 events, whereas the test set contains 1025
events. The magnitude distribution of the training/validation and test set is shown
in Fig. 5.4. Next, we fine tune the weights of Model 1 using the field data training
set. We use early stopping to prevent the model from overfitting by analyzing the
convergence over the CDice. If the CDice on the validation set does not increase by
more than 0.001 in the course of 10 epochs training is stopped. Using this early
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stopping criterion, Model 2 was trained for 26 epochs. The learning rate was set to
0.0001 and the batch size to 2.

The test set contains all field data events with magnitudes less than 0.4, see Fig.
5.4. We apply Model 1 and Model 2 to the test set. As described above, the DNN
returns the source location in terms of a 3D Gaussian distribution, which can take
values between 0 and 1. In situations where the DNN is not able to extract features
from the input efficiently, the output may not resemble a Gaussian distribution or it
may have a lower maximum value, referred here as peak value. Thus, a threshold for
the peak value can be used to accept or ignore the output. Here we set the threshold
at 0.5 to keep things simple, however, the threshold could be selected based on some
further analysis.

The magnitude distribution of the events in the test set that passed the threshold
for Model 1 and Model 2 are shown in Fig. 5.4. We can observe that Model 1 covers
a smaller range of magnitudes and also less events. We see that for Model 2 roughly
2 or more times as many events passed the threshold in the moment magnitude
range between -0.3 and 0.3 compared to Model 1. Overall 420 events in the test
set pass the threshold in Model 2, whereas for Model 1 only 180 events passed
the threshold. This can be explained by Model 2 having better feature extraction
capacities, as can be observed by comparing feature maps of the ninth hidden layer
from Model 1 and 2 given the same input, as seen in Fig. 5.5: On the bottom row
(Model 2) features associated to seismic waveforms are better visible than on the
top row (Model 1) as highlighted by white rectangles.

Figure 5.5: Feature map outputs of the ninth hidden layer of Model 1 (first row) and Model
2 (second row) given same input. Part of waveform signal highlighted by white rectangles.

Fig. 5.6 shows the epicenter locations predicted by Model 1 and Model 2 along
with the DS-locations. In both situations we see an overall good match between the
predicted locations and the DS-locations. However, we also see an improvement in
location consistency in certain clusters in Model 2 compared to Model 1 (highlighted
by round circles).

The hydraulic fracturing stimulations were undertaken at depths around 2000 to
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Figure 5.6: Horizontal locations predicted by Model 1 (left) and Model 2 (right) passing
threshold of 0.5 (turquoise dots) compared to locations computed by diffraction stacking
(DS, red dots).

2200 m. We plot the distributions of the predicted depths that passed the threshold
given the test set for both models, as well as the DS computed depths that passed
the threshold for Model 2, see Fig. 5.7. It is expected that the depths of the events
concentrate and scatter around the hydraulic fracturing depth level. However, we
observe that the DS computed depths scatter between 1900 and 2300 m. Model
1 more closely follows the expected depth distribution. However, Model 2 clearly
follows the expected trend with a large number of events predicted at the hydraulic
fracturing depth level. Thus, the fine tuning step also resulted in more consistent
depth estimates compared to both the locations predicted by Model 1 and computed
by DS.

Although fine tuning the model pretrained on synthetic data with higher-magnitude
events helped localizing more low-magnitude events and also increased the localiza-
tion accuracy, only about half the events in the test set passed the defined threshold.
To increase the number of events passing the threshold the second model could be
further refined by enlarging the training set. The larger training set could for in-
stance include those events that passed the threshold for Model 2. We would then
expect a similar observation as we have now: by fine tuning on more field data
examples with lower magnitudes the updated model can extrapolate its localization
capacities to events with lower quality data than that present in the training set.

The field training set used for fine tuning is very small. It may help to include
a fraction of the synthetic data set in the fine tuning step to reduce the chance of
overfitting due to the small training set.

For this case study we had a fairly good velocity model to generate the synthetic
data. It would be interesting to investigate the importance the velocity model plays
in generating synthetic data to pretrain the DNN. If pretraining with synthetic
data that poorly resemble the field data does not affect the results after fine tuning
on field data, the method could be employed to areas with poorly known velocity
models.
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Figure 5.7: Depth distribution predicted by Model 1 (red) and Model 2 (blue) passing thresh-
old of 0.5.

In this work only the vertical component of the seismic wavefield was used as
input to obtain the source location, as this was the only component recorded in
the field. The DNN-based source-localization methods presented in [Kriegerowski
et al., 2019; Mousavi and Beroza, 2020a; Van den Ende and Ampuero, 2020; Zhang
et al., 2020b] all made use of multiple component wavefields. It would be interesting
to compare DNN models trained and applied to multiple component wavefields to
those only using the vertical component.

Finally, we only considered situations where a single event is present in the
input. Usually this is not a problem as in case multiple events are observed in the
input they usually originate in proximity to each other. Still, to better understand
what would happen if multiple events were present in the input, we simulate the
presence of two events within a single time window under the same noise conditions
and explore different situations: (1) same origin time and same magnitude/strength
(Fig. 5.8a), (2) same origin time but different magnitudes (Fig. 5.8b), (3) different
origin time but same magnitude/strength (Fig. 5.8c) and (4) different origin time
and different magnitude (Fig. 5.8d). In the first situation Model 2 predicts a 3D
distribution that lies somewhere in between both source locations. In the second
situation one event is 10 times stronger than the other and Model 2 outputs a 3D
Gaussian distribution at the stronger event’s location. In the third situation where
both events have the same magnitude but different origin time we observe a weak
Gaussian distribution located nearby one of the event locations. Finally, if they
have different origin times but one event dominates over the other, Model 2 predicts
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the location of the stronger event again. To summarize: the current network will
choose the stronger event for localization and be located somewhere in between if
the strength of the events is similar.

(a) (b)

(c) (d)

Figure 5.8: Two synthetic events within same time-window including field noise. (a) same
origin time and strength, (b) same origin time but different strength, (c) different origin
time same strength and (d) different origin time and strength.

Training Model 1 for 20 epochs takes roughly 13 hours on a Tesla T4 GPU, 140
seconds to train Model 2 for 26 epochs and loading and predicting a single input
takes 0.01 seconds.

5.5 Conclusions

In this work we showed how a DNN can be trained on synthetic data to localize high
magnitude field data events and map the location in terms of a 3D Gaussian distri-
bution. The subsurface model used in this study was rather simple, which allowed
the use of a computationally cheap modelling method to generate the synthetics.
For complex subsurfaces other modelling algorithms that are computationally much
more expensive would have to be used. This could pose a limitation on the number
of synthetic training samples that can be generated.

The synthetically trained model was updated in a fine tuning step using a small
number of high magnitude field data for training. This increased the capacity of
the model to localize lower magnitude events. Not only does the fine-tuned model
enable the localization of a larger number of events, but it also gives more consistent
locations and better depth estimates compared to diffraction stacking.
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6
Detecting microseismic events using a
deep neural network trained for
localization

“I’ve never seen a Lindy Hopper who wasn’t smiling. It’s a happy dance. It makes
you feel good.”

Frankie Manning

Abstract A crucial step to achieve real-time localization in microseismic moni-
toring is event detection. In previous chapters a deep learning algorithm (QNet) for
microseismic localization was developed. It was shown that QNet generated a 3D
Gaussian output with high maximum values representing the reconstructed source
location, when presented with data containing microseismic events. From earlier
work it was also observed that QNet’s prediction provided a very faint distribu-
tion given noise in the input, for which the amplitude increased as soon as signal
started to be present in the input. In this chapter we explore the possibility of using
QNet for detection using three hours of continuous data from the same hydraulic
fracturing site in Texas, USA. A simple detection method is developed that is fully
based on the output generated by QNet. In the three hours of continuous data 14
events are detected by a diffraction stacking method. With the method developed
in this chapter 12 of those events are detected, whilst two were missed. However,
while there are some false detections, this method detects new events that were not
detected by the diffraction stacking method.
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6.1 Introduction

The very first step in the whole processing workflow of microseismic monitoring is
event detection. There exist several signal detection methods in seismology one of
the most popular being the short-term-long-term average (STA/LTA) [Allen, 1978].
The STA/LTA requires parameters defining the length of the short and long term
window and a triggering threshold. Depending on how these parameters are set
events may be missed or too many false detections may be triggered. Thus, these
parameters have to be carefully selected. In microseismic monitoring the recorded
signal associated with the operations commonly are around the same amplitude
range as the noise or lower. Since the STA/LTA operates on individual time recorded
signals it is not the most suitable detection algorithm for such situations.

To detect earthquakes with signals around or below the noise level and to distin-
guish them from other anthropogenic signals several other methods have been inves-
tigated. For instance the matched filter/template matching approach computes the
crosscorrelation of the continuous data with a set of waveform templates [Withers
et al., 1998; Shearer , 1994]. However, this method can miss events for which there
is no similar template. Yoon et al. [2015] presented a highly efficient detection al-
gorithm (FAST) that is based on an algorithm originally designed to detect similar
audio clips. FAST extracts features from the waveforms by creating a fingerprint,
which is used to find similar pairs efficiently by using the local-sensitivity hashing
method [Andoni and Indyk, 2006]. In microseismic monitoring the most commonly
used detection method is based on diffraction stacking, and, thus also returns the
location of the source. Trojanowski and Eisner [2017] provide a good overview and
comparison of migration-based detection and localization methods.

In the past few years several machine learning and in particular deep learning
based detection methods have been proposed. Perol et al. [2018] train a Convolu-
tional Neural Network (CNN) on a single 3C seismic station for earthquake detection
and classification into six large regional clusters. Ross et al. [2018a] trained a CNN
to classify the input as containing either a P-wave, an S-wave or noise using a data
set of millions of hand-picked arrivals. Zhu et al. [2019] developed a CNN based al-
gorithm capable of learning to discriminate between noise and P- or S-phases using
a much smaller data set with thousands instead of millions of examples. However,
they mostly address signals with a high S/N. Dokht et al. [2019] used a CNN earth-
quake detector using the time-frequency domain representation of the seismograms
as input. Wu et al. [2018b] take a very interesting approach to the detection problem
as they identify the entire event window. This is particularly challenging because
the duration can vary depending on the earthquake. To address this problem they
developed a novel deep learning algorithm named Cascaded Region-based Densely
Connected Network.

It is crucial that the detection methods are capable of distinguishing between
waveforms associated to an earthquake and different impulsive noise sources. Li
et al. [2018] address this issue by combining so-called generative adversarial net-
works (GANs) [Goodfellow et al., 2014] and random forests [Breiman, 2001]. First,
they train the GAN on P-wave data for it to essentially learn the key features in the
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P-wave signal. Next, the random forest classifier is trained using P-wave and noise
signals that were falsely triggered as events by an STA/LTA trigger. The signals
are first fed to the feature extraction part in the GAN and transformed to a vector
of features, which are passed to the random forest classifier. Meier et al. [2019]
tested various different machine learning methods on a data set of local earthquakes
with M>3. They found that the more complex models that directly extract fea-
tures from the raw waveforms did better compared to the simpler models that were
trained using user-defined features. Mousavi et al. [2019] developed a convolutional
and recurrent neural network algorithm with the input data being represented as
spectograms of the 3C seismograms. The model was trained using data recorded
in Northern California. To test the generalization of their model they applied it
to a different data set recorded in Guy-Greenbrier, Arkansas, where it reached a
detection precision of 69%, which exceeded the precision of the FAST algorithm by
24%.

In chapters 3-5 of this thesis a deep learning method for the localization of
microseismic events was presented (QNet). This method requires a multichannel
input containing an event and maps it into a location output. Therefore, first an
event must be detected and then be passed to QNet for localization. This detection
step could be performed by several existing methods either based on classical signal
processing or machine learning.

There are different possibilities to use QNet and turn it into a detection method.
One possibility would be to keep the QNet architecture as is and turn QNet into
a detection and localization network using noise and events as training data: for
events in the input QNet would learn to reconstruct a 3D Gaussian distribution
as before and for noise it would return zeros in the entire 3D space. Another way
would be to adapt the architecture of QNet and train a separate network for the
detection task only. Since detection is a binary task the entire decoder part of the
QNet architecture is not needed. Thus, we could only take the encoder part of the
network and add fully connected layers as well as a binary output layer, e.g. as
shown in Fig. 6.1. Fig. 6.1 shows the original QNet architecture with the addition
of fully connected layers at the bottom and where the grayed out decoder part would
be removed. Furthermore, the training would not have to start from scratch since
the convolutional layers were already trained for the localization problem and thus
those layers were trained to extract features given microseismic events as input.
Thus, only the weights in the newly added fully connected layers would have to be
trained from scratch. Finally, a labeled training set would be needed with waveform
and noise data. Since the weights in the convolutional layers are already trained,
the training time is reduced and a smaller training set can be used. The trained
detection model could next be used to differentiate between noise and signal in real
time and whenever a signal is detected the data would be passed to the localization
model to estimate the source location.

Another possibility would be to do something similar as Kriegerowski et al.
[2019]: They trained a CNN for earthquake localization that returns the source
coordinates (east, west and depth) and next investigated the possibility to use their
model, trained purely on data containing events, for detection using the output of
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Figure 6.1: Adapting original QNet architecture to use for transfer learning for event detec-
tion. All gray parts are dropped and fully connected layers are added at the bottom of the
network to get a binary noise/signal classifier.
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the first layer of their localization model. Of the 400 detections they investigated
(out of 6000) only 3.5% were false positives. Thus, it could be analysed how the
output in the early convolutional layers could be used for detection. In previous
chapters it was shown that QNet returned very low Gaussian outputs when pre-
sented with noise preceding an event. Thus, in this chapter the possibility of using
QNet for detection is investigated, which would alleviate the need of using another
detection method.

In the following the data, QNet and the detection method are described. This
is followed by the results where two detection approaches are shown, as well as a
breakdown analyzing events missed by the method and missed by diffraction stacking
but detected by the method. Finally, this chapter is concluded with a discussion
and conclusions.

6.2 Data, QNet and Method

6.2.1 Data and QNet

QNet was trained on synthetic and field data recorded during ongoing operations
at a hydraulic fracturing site in Texas, USA. Only time windows containing known
events were used to train the model. In this chapter we analyze three hours of
continuous data from the fifth day of monitoring recorded between 10 am and 1 pm.
Thus, we use the QNet that was updated with field data up to the fourth day of
monitoring (see Chapter 4). In those three hours of data a total of 14 events were
detected by Alexandrov et al. [2020] (2 in the first, 8 in the second and 4 in the third
hour).

6.2.2 Method

In this chapter we investigate the possibility of directly using QNet by using the
Gaussian output returned by QNet given seismic data as input. As we saw in the
previous chapters the peak value of the Gaussian output can vary and tends to
be lower for weaker signals. However, for most events, the maximum value in the
output generated by QNet is high. Furthermore, it was observed that for time-
windows only containing noise that precede an event QNet returns a weak output
(Chapter 5). Thus, the output of the localization network could be used as an
indicator for detection. In a way this would be similar to diffraction stacking which
does both detection and localization.

Since for most events QNet returns a Gaussian distribution with a high value at
its peak, a threshold on the maximum value in the output could be set to consider
all of QNet’s outputs with a maximum value above the threshold as a detection and
the rest as noise. However, this could lead to missing events where the maximum
value in the output is below the threshold and also to false detections where noise
may fool QNet.

Since an event is present in multiple consecutive time windows the predicted
output is likely going to be similar for those consecutive inputs. Thus, the maximum
value in the predicted outputs is likely going to be similar as well and higher than
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the surrounding predictions. Thus, we can only consider those points that for n
consecutive time windows are above a threshold. By doing so the threshold can be
lowered, reducing the risk of missing an event with a lower maximum value in the
prediction and at the same time reducing the number of false detections as random
spikes are filtered out in the process. For convenience we refer to detections made
with this method as QNetD and events detected by diffraction stacking as DS.

6.3 Results

As mentioned, QNet is applied continuously on three hours of data. QNet takes
time windows of 2.8 seconds on 96 traces as inputs and the continuous data is fed
to QNet every 0.4 seconds. This results in QNet processing 27000 time windows.
Processing the three hours of data on a Intel(R) Xeon(R) CPU @ 2.20GHz, takes
2.75 hours, which involves loading 60 seconds of continuous data, removing all traces
not used by QNet, band-pass filtering the data and feeding the data to QNet in time
windows of 2.8 seconds.

6.3.1 Detections

For each prediction the maximum value of the output and the location at the max-
imum output, as well as the time at the onset of the input is saved. Figure 6.2a
shows the maximum value from QNet’s output over all 27000 inputs. A large major-
ity of those values are in the range between 0 and 0.4. We observe that for many of
the events detected by diffraction stacking (red dashed vertical lines) the maximum
value in the output predicted by QNet is higher with values around 0.7 and above.
However, it is also observed that at similar regions with high maximum values, there
are no events detected by diffraction stacking. Therefore, it is not straightforward
to assess whether there is an event or not by looking at the maximum value given
by the individual predictions.

By setting a threshold at 0.7 the number of predictions that potentially represent
detections, is significantly reduced, see Fig. 6.2b. However, this leads to a high
number of false positives and some events might still be missed if the maximum
value in the prediction is below 0.7. Setting the threshold higher would potentially
lead to more missed events and setting it lower to more false detections.

To increase the confidence that an event is truly detected, based on the maximum
value in the predicted output, and at the same time lower the threshold, we only keep
predictions where the maximum value is above a threshold of 0.5 for five consecutive
times. As can be seen in Fig. 6.2c this results in a much smaller number of detections
and at the same time most of the events given in the catalog are also detected.

6.3.2 Normal Moveout Corrected Gathers

As can be seen in Fig. 6.2c QNetD results in more detections compared to diffraction
stacking. While some of those detections might be due to there actually being an
event, others might be false detections. Since the signal from weak events is around
or below the noise level, it is difficult to determine whether an event is present or
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(a)

(b)

(c)

Figure 6.2: Maximum values of the predicted 3D-Gaussian output given continuous data as
input: (a) Maximum value for each of the 27000 inputs over 3 hours of continuous data,
(b) threshold of 0.7 applied to continuous output, (c) continuous output filtered by only
keeping predictions with five consecutive maximum values above threshold of 0.5. Events
detected by diffraction stacking are highlighted by red vertical lines.

not just by looking at the input data. To better assess whether an event is present
or not we compute the offset from the QNet predicted location to all receivers, i.e.
not only the 96 receivers that are used for prediction. From those we keep the 200
closest receivers with respect to the predicted source locations. To do the NMO-
correction, the traveltimes to each receiver are computed using an eikonal solver
using the FTeikPy software [Noble et al., 2014]. From the NMO-corrected gather
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it is easier to observe whether an event is present or not. However, the usefulness
of the NMO-corrected gathers depends on how accurate the predicted locations are
and how strong the signal is.

6.3.3 Missed events

Out of the 14 events detected by diffraction stacking during that period of time,
two events are missed by QNetD. For one of the two missed events the maximum
value in the predicted output was never above 0.5 and instead ranged between 0.1
and 0.2. That event followed two seconds after the event detected at 11:23:06. The
preceding event had a moment magnitude of 0.24 whereas the second event that was
missed had a magnitude of -0.26. This weak magnitude event is difficult to observe
even after applying a NMO-correction (Fig. 6.3c) using the layered P-velocity model
and the source location determined by the diffraction stacking and relative location
method [Alexandrov et al., 2020]. The second missed event was not detected because
the threshold of 0.5 was only reached three consecutive times instead of five.

Table 6.1 summarizes the QNetD triggered detections and all DS detected events,
as well as whether an event can be observed in the input and the mean maximum
value over the five consecutive predictions around each detection.

6.3.4 QNetD detections missed by diffraction stacking

Between hour ten and eleven we have one detection that is not given in the diffraction
stacking catalog at 10:45:33. It is surprising that this event is not given in the DS
catalog as the event’s signal can be clearly observed on the NMO-corrected gather,
see Fig. 6.3a. The next QNetD detection not reported by DS can also be identified
as being an event and was detected at 11:21:09. Although the signal strength is
weaker compared to the event detected at 10:45:33, it can still be observed, see Fig.
6.3b. The next detection was triggered at 11:24:00. For this event it becomes more
difficult to determine whether there is an event or not. A weak alignment can be
identified, see Fig. 6.3d, but it is far less convincing than in the previous two cases.
However, the NMO-corrected gather looks similar to the NMO-corrected gather of
the event of magnitude -0.26 that was missed by QNetD, see Fig. 6.3c. We classified
that detection as a “Maybe” in Table 6.1. The detection at 11:27:07 can be identified
as a true detection, see Fig. 6.3e. For the detections at 11:36:52 and 12:55:53 it is
not clear from the NMO-corrected gather if an event is observed or not, see Figs.
6.3f and 6.3i. Finally, the detection at 12:55:09 can be clearly classified as a true
detection as the event is clearly visible, see Fig. 6.3h. Again, it is surprising that
this event is not reported in the DS catalog.

6.3.5 QNetD false detections

Between hour 11 and 12 QNetD gives two false detections. In the last hour QNetD
returns many false detections. At 12:10 two false detections were triggered at second
4 and 26 and another false detection is determined at 12:13:43. Between 12:30:33
to 12:31:40 many detections were triggered. However, no events can be identified
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around this time. It is possible that during this time there was some correlated noise
that was picked up by QNetD. However, this is difficult to determine only from the
data. Finally, at 12:56:52 and 12:56:59 two more false detections were triggered.

(a) 10:45:32 (b) 11:21:09 (c) 11:23:08

(d) 11:24:00 (e) 11:27:07 (f) 11:36:29

(g) 12:36:52 (h) 12:55:09 (i) 12:55:53

Figure 6.3: NMO-corrected gathers of detections missed by QNetD (c), missed by DS but
not by QNetD (a, b, e, h), detected by QNetD but not clear if event is present (d, f, g, i) .

6.4 Discussion

QNetD was capable to detect events that were not in the diffraction stacking catalog.
However, it also generated several false detections. In order to reduce these false
detections the mean maximum value over the consecutive outputs that triggered
a detection could help. We have seen that for many cases where an event was
identified (either by DS or from the NMO-corrected gather) the mean maximum
value is around 0.8 and for situations where there is no event this value is lower.
However, this is not always the case, e.g. the missed event at 11:23:08 for which
QNet returned low maximum values around 0.2. Furthermore, this could lead to
wrongly classify detected events as false detections if their mean maximum value is
below 0.8.

Another option could be to analyse how the locations predicted by QNet change
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Table 6.1: Summary of all DS detected events and QNetD detections.

Detection time DS QNetD Event Mean max. value
10:06:28 Yes Yes Yes 0.83
10:45:32 No Yes Yes 0.83
10:59:04 Yes Yes Yes 0.9
11:21:09 No Yes Yes 0.75
11:22:27 Yes Yes Yes 0.85
11:23:06 Yes Yes Yes 0.67
11:23:08 Yes No Yes 0.19
11:24:00 No Yes Maybe 0.78
11:24:12 Yes Yes Yes 0.74
11:27:07 No Yes Yes 0.79
11:29:22 Yes Yes Yes 0.85
11:34:33 Yes No Yes 0.59
11:35:05 No Yes No 0.59
11:36:29 No Yes Maybe 0.77
11:36:33 Yes Yes Yes 0.83
11:46:32 No Yes No 0.67
11:53:45 Yes Yes Yes 0.89
12:10:04 No Yes No 0.62
12:10:26 No Yes No 0.62
12:13:43 No Yes No 0.68
12:17:29 Yes Yes Yes 0.87
12:30:33-12:31:40 No Yes No 0.52-0.72
12:36:52 No Yes Maybe 0.68
12:47:31 Yes Yes Yes 0.87
12:47:39 Yes Yes Yes 0.85
12:52:32 Yes Yes Yes 0.89
12:55:09 No Yes Yes 0.89
12:55:53 No Yes Maybe 0.82
12:56:52 No Yes No 0.72
12:56:54 No Yes No 0.66

from prediction to prediction. It is expected that if an event is present the predicted
locations should be close to one another as long as the full event is present in the
input. That information combined with QNetD could help reduce false detections.
However, it would still not detect events that are missed due to a low Gaussian
output returned by QNet.
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It would also be possible to train a detector for example by using transfer learning
and adapting the existing QNet architecture, as shown in Fig. 6.1, and combine that
detection network with QNetD to increase the confidence in the detections.

6.5 Conclusions

We showed that a deep learning model trained for microseismic source localization
can be used as a detector without additional training by making use of the predicted
output of the localization model. While there were false detections, QNetD was able
to detect events that were not detected by diffraction stacking. Furthermore, since
the three hours of continuous data were processed in less than three hours the
method shows real potential for real-time microseismic detection and localization
using QNet. Finally, the application of QNet with QNetD resembles diffraction
stacking, which also does both detection and localization in one go.
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7
Conclusions and recommendations

“I don’t need time, I need a deadline.”

Duke Ellington

7.1 Conclusions

The increasing exploitation of natural resources close to urban areas have led to
stronger regulations leading to a demand for real-time source detection and local-
ization methods to comply with the regulations. The main aim of this thesis was
to localize the source of induced microseismic events. In particular the aim was
to address the localization of events at low signal-to-noise ratios. Additionally, a
system that can be used for near real-time localization was sought. The preceding
step of event localization is its detection. Thus, detection plays a crucial role in
a real-time source-localization system. The detection step was only addressed in
the last chapter of this thesis because the source-localization problem was the main
driver of this research.

In chapter 2 a method requiring dense and regular spatial sampling of receivers
over the monitoring site was investigated. This method involved the downward
continuation of the recorded surface wavefields which focuses the signal at the time
and location it originated from. It was shown that it is crucial to take the source
mechanism into account to determine accurate hypocenters. Since the location and
source mechanism are not known a priori, a set of filters were designed with each
filter corresponding to a particular location and source mechanism in the area un-
der investigation. By deconvolving the downward extrapolated wavefields with a set
of filters the hypocenter and source mechanism can be determined by seeking the
maximum amplitude. Good results were obtained for 2D synthetic data for both a
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simple subsurface model as well as the realistic Annerveen salt model and also when
realistic noise was added.

In chapter 3 a deep learning algorithm based on a modified U-Net architecture
is trained on synthetic data to be applied on field data. The need for the synthetic
data was for one due to the small size of field data available to train a deep neural
network from scratch and secondly, because of the problem that field data are rarely
available before the start of underground industrial activities. The motivation be-
hind the use of deep neural networks is that once trained the network can provide
an output nearly instantly and at a low computational cost. Furthermore, deep
neural networks have been proven to work extremely well at solving specific tasks.
The synthetic data were generated using the same velocity model that was used
to obtain the source locations using a diffraction stacking method. Random source
locations within the defined source region as well as random double-couple source
mechanisms were generated to model events. The addition of field noise to the syn-
thetics proved to be an important step during training in order to obtain a robust
network capable of accurately localizing events in field data. The source locations
obtained using the deep neural network proved to be close to diffraction stacking
as well as those refined by a relative location method for the events passing a given
threshold. However, many of the lower magnitude events could not be accurately
located by the network which was addressed in the subsequent chapter.

The localization of the lower magnitude events is addressed in chapter 4 by fine-
tuning the synthetically trained deep learning algorithm using field data. First, a
post-monitoring situation is addressed where all of the field data have been gath-
ered and are next used in a transfer learning step to update the deep neural network
(DNN) trained on synthetics. The updated DNN is far better compared to the previ-
ous DNN in localizing a much wider range of events. However, this post-monitoring
application does not bring us closer to real-time source-localization. Therefore, a
continuous acquisition mode workflow is proposed where the DNN is regularly up-
dated using newly gathered field data. This further highlights the need of generating
synthetic data to pretrain a DNN, since even less field data are initially available.
The workflow is once applied only with the use of field data during the transfer
learning step and once with both field and synthetic data.

The locations of the induced microseismic events migrate over time. Thus, there
can be a discrepancy between the field data used for training compared to field data
the DNN is applied to, which contain future events. DNNs are prone to overfit
especially if trained on small data sets. Thus, the DNN updated only with field
data tends to fail at accurately localizing the field data events. However, the DNN
updated using both field and synthetic data provides more accurate locations be-
cause the synthetic data cover a wider range of locations and secondly, allows more
data to be used during transfer learning, thus reducing the risk of overfitting.

In the discussion of chapter 4 it was mentioned that it may be possible to fine-
tune the synthetically trained DNN using high magnitude field data in order to
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apply it on lower magnitude field data not present in the training set. This is ex-
plored in chapter 5. After fine-tuning the DNN trained purely on synthetic data
using high magnitude field data the two DNNs are compared. First, a threshold was
set based on the maximum value in the reconstructed 3D output by the DNNs to
only keep predictions above the threshold. Compared to the DNN trained purely on
synthetics the fine-tuned DNN returned better predictions and for a larger range of
magnitudes and events. This shows that the DNN is able to extrapolate its feature
extraction and source reconstruction capacities learned from higher M events to
lower M events. By repeating the fine-tuning step several times each time including
a larger range of M this trend may persist up to a certain point.

As mentioned at the start of these conclusions event detection is the first step
towards an automated and near real-time event detection and localization workflow.
In chapter 4 an example of an incoming event along with the predicted output
showed how the localization DNN could be exploited for event detection. This is
further addressed in chapter 6. Instead of training a new DNN from scratch or using
parts of the localization-DNN for transfer learning to obtain a detection-DNN, the
direct information returned by the localization-DNN is used to determine whether
an event is detected in the input or not. This is achieved by considering a detection
whenever the maximum value in the predicted output falls above a given threshold
for a consecutive number of times. Since the localization-DNN was trained to extract
features from the microseismic waveforms in the encoder and map those into a 3D
location output it is assumed that whenever there are no waveforms in the input
the output should not return a strong Gaussian distribution. It was shown that
most of the events detected by diffraction stacking were also detected using this
method. Furthermore, events not detected by diffraction stacking were detected.
However, there were also some false detections where noise seems to have fooled the
network. Nonetheless, this method enables real-time detection and localization on a
single CPU. Finally, using the localization-DNN for both detection and localization
somewhat resembles diffraction stacking methods as detection and localization are
also performed together.

7.2 Recommendations

For this research several recommendations can be made for further investigation,
which are listed in the following subsections.

7.2.1 Data-driven earthquake localization and source-mechanism estima-
tion based on wavefield extrapolation and 2D deconvolution in high-noise
environments

The synthetic study in chapter 2 was only performed in 2D and thus, obvious next
steps involve the extension to 3D and applying the method on field data. Techni-
cal challenges for the extension to 3D are the large volume of data gathered due
to dense spatial sampling in both the inline and crossline directions and the high
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computational cost in forward modelling data for the creation of the filters as well
as the downward continuation in 3D. Furthermore, the range of possible source
mechanisms to consider significantly increases, even if only double-couple sources
are considered due to the additional rake parameter. Advances in physics-informed
neural networks Raissi et al. [2019] could be investigated for both forward modelling
data through complex 3D models as well as for downward wavefield extrapolation.
Another issue is that there is still the lack of microseismic monitoring systems with
densely spatially sampled receivers. However, this may very well change in the near
future as the industry’s interest in distributed acoustic sensing continues to increase.

The detection problem was also not addressed in chapter 2. Detection could for
instance be based on a threshold over the maximum value retrieved after downward
continuation over all depths and deconvolving by all filters. However, this would be a
costly detection scheme as it would involve the expensive downward continuation and
deconvolution to be applied over all the data, which is not very practical, especially
given that the majority of the recorded data contains noise. A cheaper alternative
could be to downward continue the continuous data to a fixed depth level, thereby
increasing the signal-to-noise ratio to some extent, and apply detection algorithms
from this depth level.

7.2.2 Investigate velocity model uncertainty

To generate the synthetic data to train the DNN, the same velocity model used
for diffraction stacking was used. To take into account inaccuracies in the velocity
model one might choose to use a set of different velocity models to generate the
synthetic data. A DNN trained with those synthetic data may thereby be able to
better handle uncertainties in the velocity model. It would also be of value to better
understand the amount of data needed to train a DNN with synthetic data. Are
more data needed to further improve the DNN or can a similar accuracy be obtained
with less data?

7.2.3 Investigate what makes a good synthetic training set

In general a good training set for a supervised machine learning algorithm is training
data that is similar to the data the algorithm will be applied on. In this thesis,
the synthetic data was generated using the same velocity model that was used to
compute the diffraction stacking locations. The diffraction stacking locations were
also used to create the labels for transfer learning. However, it would be valuable
to investigate in depth what defines and how to evaluate a good synthetic training
set.

7.2.4 Train a DNN returning the posterior source location

In this thesis the source location is returned as a 3D Gaussian distribution with
predefined standard deviation. However, this output has nothing to do with the
posterior distribution or uncertainty distribution around the estimated source loca-
tion. Therefore in the DNN used in this thesis the output gives little insight into
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location uncertainty, except partly by the magnitude of the output. The source lo-
cation uncertainty is an important factor to take into account. Therefore, it would
be interesting to include this information in deep learning applications. Bayesian
neural networks [MacKay, 1992] and mixture density networks [Bishop, 1994] are
possible candidates to investigate this topic.

7.2.5 Train a DNN to output source mechanisms

The strike, dip and rake angles of the double-couple components used to model the
synthetic data were randomly sampled from a wide range of values to allow for a
large variability in the data. However, if information about the expected source
mechanisms is known a priori, it might be of value to model synthetics in a smaller
range following the source mechanisms expected in the field. This may allow to
train a DNN that is more targeted towards what is expected in the field data and
therefore result in more accurate source locations. Finally, since the synthetic data
are modelled and thus the source mechanism is known, the same synthetic data
could be used to train a DNN to return the source mechanism.

7.2.6 Deep learning based localization

The DNN source localization method proposed in this thesis is tailored towards a
specific monitoring site. It therefore can not be directly applied to a new monitoring
site. For a new site new synthetics need to be computed taking into account the
receiver locations, the velocity model and the expected source region at the new site.
Furthermore, the entire DNN would have to be retrained from scratch. Perhaps it
would be possible to start from a DNN trained at a different site but it would
still require either field data or synthetics from that site. This is a drawback as
generating synthetics and retraining a DNN are time-consuming tasks. This is
much in contrast to other geophysical algorithms that were developed for imaging
and inversion. Typical algorithms for source localization simply need the velocity
model of the region and do not require it to be tuned depending on the site under
investigation. I believe one of the main goals for future research in the field of
artificial intelligence with applications in geophysics is the development of algorithms
that can be generally applied. Developments in physics-informed neural networks
definitely will become key to reach this goal. In any case artificial intelligence will
continue to develop and I am curious to see where this journey will take us.
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A
Supplemental Information to:
Data-driven earthquake localization
and source-mechanism estimation
based on wavefield extrapolation and
2D deconvolution in high-noise
environments

A.1 Basics of forward and inverse wavefield extrapolation

The acoustic wave equation in homogeneous media and without sources in the space-
time domain is written as,

∇2p(x, t)− 1
c2
∂2p(x, t)
∂t2

= 0, (A.1.1)

where p is pressure, c the acoustic velocity, t is time, x is the position vector (x, y, z)
and ∇2 stands for the Laplace operator:

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (A.1.2)

Eq. A.1.1 can be transformed to the frequency-wavenumber domain and back again
to the space-time domain using the temporal and spatial Fourier transform and the
inverse transform, respectively. The temporal Fourier transform (FT) is defined as,

P (x, ω) =
∫ ∞
−∞

p(x, t)e−jωtdt, (A.1.3)
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with ω representing the angular frequency and j the imaginary unit. The inverse of
eq. A.1.3 is defined as:

p(x, t) = 1
2π

∫ ∞
−∞

P (x, ω)ejωtdω. (A.1.4)

Note that the temporal Fourier transform is described by capital letter. Similar
equations exist for the transformation in the wavenumber domain, which are de-
scribed with a tilde (~) above the letter. The spatial Fourier transform in x is
defined as,

p̃(kx, y, z, t) =
∫ ∞
−∞

p(x, y, z, t)ejkxxdx, (A.1.5)

where kx is the horizontal wavenumber. Similarly its inverse is defined as:

p(x, y, z, t) = 1
2π

∫ ∞
−∞

p̃(kx, y, z, t)e−jkxxdkx. (A.1.6)

By applying the temporal FT, eq. A.1.3, and the spatial FT for both x and y, eq.
A.1.5, to the acoustic wave equation, eq. A.1.1, we obtain the wave equation in the
frequency-wavenumber domain:(

−k2
x − k2

y + ∂2

∂z2

)
P̃ (kx, ky, z, ω) + ω2

c2
P̃ (kx, ky, z, ω) = 0. (A.1.7)

Eq. A.1.7 can be written as,

∂2P̃ (kx, ky, z, ω)
∂z2 + k2

z P̃ (kx, ky, z, ω) = 0 (A.1.8)

with,

kz =


√

ω2

c2 − k2
x − k2

y for k2
x + k2

y ≤ ω2

c2

−j
√
k2

x + k2
y − ω2

c2 for k2
x + k2

y >
ω2

c2

(A.1.9)

The solution of the two-way wave equation A.1.8 is given as,

P̃+(kx, ky, z=∆z, ω) = P̃+(kx, ky, z=0, ω)e−jkz∆z (A.1.10a)
P̃−(kx, ky, z=∆z, ω) = P̃−(kx, ky, z=0, ω)ejkz∆z, (A.1.10b)

where the + and - signs represent down- and up-going waves, respectively. For a
detailed derivation of eqs. A.1.10a-A.1.10b the reader is referred to Wapenaar and
Berkhout [1989] or Gisolf and Verschuur [2010]. The exponential in eq. A.1.10a and
A.1.10b is known as the phase-shift or extrapolation operator W̃ in homogeneous
media:

W̃ (kx, ky, ω,∆z) =
{
W̃+ = e−jkz∆z

W̃− = ejkz∆z.
(A.1.11)
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