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Abstract
Large Language Models of code have seen sig-
nificant jumps in performance recently. However,
these jumps tend to accompany a notable and per-
haps concerning increase in scale and costs. We
contribute an evaluation of prediction performance
with respect to model size by assessing the layer-
wise progression for language and user-defined el-
ements in code, using a new technique of Tuned
Lenses. We show that language-defined elements
can be predicted more accurately in earlier layers
of the PolyCoder model than user-defined elements
and contribute an evaluation of the attention mech-
anism, which shows patterns that explain such as-
pects of performance and indicate areas of missed
potential. These findings encourage research into
the internal prediction performance for other char-
acteristic aspects of code and could lead to the in-
troduction of new methods that make use of these
characteristics to improve performance without re-
lying on scaling.

1 Introduction
Interest in Large Language Models (LLM) of code has led
to many new models and innovations in the evaluation of
LLMs [21] and their ability to learn the structural syntax of
code [20]. However, a trend to reach new levels of perfor-
mance is to rely on scaling up in model size and training
data [6]. This trend is accompanied by significantly increased
costs and loss of accessibility, and might at some point reach
its limits, much like Moore’s Law [9]. Like the efforts of
semiconductor manufacturers, we should look at other av-
enues of improving performance to mitigate this trend and
apply new evaluation methods to enable this.

Recent work has shown deficiencies in match-based met-
rics regarding the evaluation of LLM performance on code,
which has led to a switch to evaluate functional correct-
ness [14]. The development of CodeBLEU was motivated
by such issues with capturing semantic features specific to
code [4].

Of specific interest to this paper is the recent introduction
of new methods to inspect the internal state of LLMs through
lenses [3,13]. These enable new research into the internals of
the now prevalent transformer architecture [17] and inspire
us to develop a generally applicable pipeline to evaluate the
performance of such LLMs. We use the new Tuned Lens
method to look at characteristic aspects of code language, and
how they relate to model performance.

We specifically aim to answer the following question: How
do user-defined elements compare to language-defined ele-
ments with regard to the depth of the first correct prediction?

The Hypothesis is that language-defined elements require
fewer layers due to their immutable structure and meaning.

We contribute an application of the Tuned Lens on a large
scale of multi-language inputs for the medium-sized version
of PolyCoder [21], a GPT2-based transformer model. A

Tuned Lens can return an accurate representation of the pre-
diction state at each internal layer of a LLM, allowing us to
evaluate the progression of accuracy throughout the model.
We present a method to distinguish between token types and
apply a first correct layer metric on Lens outputs to relate
accuracy to layer depth. Using these results we evaluate spe-
cific tokens and correlate this with earlier results and over-
all prediction accuracy to find that language-defined elements
outperform user-defined elements by a significant depth of 2
layers.

Finally, we contribute an evaluation of the patterns formed
by the attention heads of the LLM. Recent work indicates
patterns of null attention, a non-relevance indicator inside at-
tention heads [19]. We apply this concept of null attention to
complete heads to identify patterns of non-contributing heads
within layers. Comparing this statistic for both element types
we find an increased fraction of heads are idle for both ele-
ment types in later layers, and infer that earlier layers without
idle heads must be contributing a greater degree of accuracy.
Our results show a significant increase in non-contributing
heads for user-defined elements, indicating that the heads are
more limited in their ability to infer the relevance of this token
type.

These evaluations reveal areas of interest for future re-
search on model accuracy and computational efficiency, as
they identify specific characteristics that LLMs of code per-
form well on and aspects that need additional resources.
Building on these understandings could improve model per-
formance without relying on scaling, to mitigate the trend to-
wards larger and larger models and the subsequent costs and
accessibility issues involved.

2 Background and Related Work
As background for our work, we highlight the aspects of mod-
eling tasks and code languages involved in our research ques-
tion. We also discuss the Transformer Model, Lens develop-
ments, and subject model that we base our research on as an
introduction to our contributions.

Prediction Task Relevance LLMs can be applied to many
task types: analytic tasks such as error detection and cor-
rection, descriptive tasks like annotation or summarising, or
generative tasks like auto-completion. We focus exclusively
on auto-completion performance, also known as code syn-
thesis/generation/inference, where the next element has to be
suggested based on the inputs seen so far. The applications
of this task are in speeding up code writing tasks and creating
cleaner code, provided that the predictions are of sufficient
quality and arrive in time.

This subject is relevant and challenging, code completion
is widely used by developers [12] and previously required
hybrid solutions to meet such latency and validity require-
ments [2]. This introduces a strong motivation for investigat-
ing new aspects that affect how the correctness of predictions
relates to the computational resources used.

Significance of User and Language Elements We focus
our research question on a specific aspect of programming
languages, distinct user and language-defined elements:
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Language-defined elements refer to keywords that are re-
served by the language, these elements have a very specific
immutable meaning within a language, but the vocabulary
and exact meaning might vary between languages. This dif-
fers from natural language where a word might have different
interpretations based on context within a language.

User-defined elements refer to identifiers, words chosen
by the writer to refer to elements like functions or variables.
Their meaning and composition might relate to the context,
but can also vary wildly depending on the whims of the au-
thor. These differ from regular language due to the extent
to which code documents introduce original identifier names
that have never appeared before in the text or even in other
projects [1], this also implies the element is not in the learned
vocabulary of the model.

As it has been shown that LLMs have the ability to learn the
syntax structure of code [20], we hypothesize that knowing
these distinctions between user and language elements exist,
they should also be present in the internal representations of
LLMs and should have different performance characteristics
that can be used to our advantage.

2.1 Transformer Model Architecture
As we wish to make a contribution to the current state of the
art, we evaluate Models within the Transformer Architecture.
We discuss key model design choices, their effect on compu-
tational cost, and relation to our research question.

Transformers improve on the Recurrent Neural Network
architectures by means of the self-attention mechanism,
which allows for parallel processing of the positional mean-
ing of tokens in an input sequence [17], as each internal com-
ponent operates on a similar dimension of inputs. This par-
allelization comes at the cost of having a fixed maximum
input length. Choosing this internal dimension is a key de-
sign choice when creating a model as it is a trade-off between
computational cost and the quality of predictions due to the
amount of available context.

Matching dimensions ensure matching inputs and outputs,
which allows for blocks of operations that can be stacked re-
peatedly on top of each other. Current models apply two types
of block architectures: Encoders and Decoders. We focus ex-
clusively on the Decoder architecture type, as these are most
suitable for tasks that only involve inference [10]. The cur-
rent state-of-the-art decoder-only LLMs available and com-
putationally reasonable for our resources are GPT2 based, for
which the architecture can be seen in Figure 1.

The architecture shows the application of multiple such de-
coder blocks to increase accuracy at the cost of increased
computational resources. We refer to these decoder blocks
as layers, which introduces the final element of our research
question, a comparison based on layer depth that relates ac-
curacy to required computational resources.

2.2 Tuned Lens Inspection
We analyze the state of predictions as they progress through
the Layers of a transformer model. To get a meaningful in-
terpretation of this state we make use of the Tuned Lens tech-
nique, a recent improvement on Logit Lenses [13].

Figure 1: GPT2 Architecture With Tuned Lens translation

The Logit Lens is an early exiting technique of applying
the learned Unembedding directly on earlier layer outputs
to attempt to map them back to the token vocabulary. This
technique results in unreliable interpretations due to repre-
sentational drift at different layers [3]. A trained Transformer
Model produces a representation in its final layer that maps
back to the input vocabulary when the Unembedding is ap-
plied to it, but this is not necessarily the case for earlier lay-
ers.

The Tuned Lens improves on this technique with an in-
termediate translation step. A transformation involving a
learned bias and a learned change of basis is trained for
each layer of the model, which maps from the output space
of that layer to the output space of the final layer of the
model. The training minimizes the Kullback–Leibler (KL)
divergence between the final layer state and layeri state ∗
learned change of basis + learned bias. Once learned,
applying this translation to a state from layeri returns a rep-
resentation in the final layer, which makes it suitable to apply
a final layer norm and the Unembedding to get an improved
result. This process is illustrated on the left side of Figure 1.

2.3 The Attention Mechanism
Each layer within the GPT2 Transformer architecture makes
use of a multi-head attention sub-block as depicted on the
right of Figure 1. For the embedded input tokens, each at-
tention head is a neural network that learns Query, Key, and
Value linear projections [11], facilitated by the applied posi-
tional encoding [17]. The dot product of Query and Key pro-
jections is a measure of similarity between tokens, the output
of which is scaled and normalized to produce what are called
attention weights. A sequence with n input tokens results in
an n × n matrix of attention weights that signifies the rele-
vance of tokens to the current attention head.

It has been shown that using such attention weights leads
specific attention heads to form patterns that relate to struc-
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Figure 2: Concept of Null Attention, visualized using BertViz.

tural aspects of language [19]. Multiple head attention allows
the model to focus on separate aspects of language simulta-
neously during each layer and weigh its outputs accordingly.

It has also been shown that a concept of null attention ex-
ists [19], which is defined as heads defaulting to placing at-
tention weight on the first token when no tokens in the se-
quence were found to be relevant by the head. An illustration
of an occurrence of null attention is shown using BertViz [18]
in Figure 2.

2.4 Subject Model: PolyCoder
The subject of this paper is the medium-sized 400M param-
eter version of the PolyCoder model [21], further references
refer to this PolyCoder-400M variant.

PolyCoder uses a GPT2-based decoder-only architecture,
consisting of 24 internal layers with 16 attention heads. Its
internal dimension is 1024 positional encodings, which is
also the input size it was trained on, so we should provide
it with 1024 tokens of context to get ideal predictions during
our evaluation.

PolyCoder is trained exclusively on source code, the au-
thors selected up to 25k popular GitHub repositories per lan-
guage as training datasets. Duplicates were removed and files
under 1MB with at least 100 tokens were selected from 12
languages, the languages sampled for training can be seen in
Table 1. A GPT2 Byte Pair Encoding [15] tokenizer trained
on a subset of the data is used for tokenization. As the model
is trained from scratch on source code, any natural language
understanding is learned from comments and documentation
present in the files.

3 Approach
Our approach to answering if there is a difference in perfor-
mance for element types is to create predictions for 200k in-
puts per language with known outputs while using a Tuned
Lens to get intermediate results from all layers. We then ap-
ply a method to label element types and assess the correctness
of outputs across layers. This provides a clear answer to our
hypothesis that there is a difference and that language ele-
ments require fewer resources, but limited insight as to why.

We follow up by inspecting the focus of the attention heads
for specific tokens in these sets. We contribute a method
to identify whether these heads are idle or not and use this

Language Repositories Files
C 10,749 3,037,112
C# 9,511 2,514,494
C++ 13,726 4,289,506
Go 12,371 1,416,789
Java 15,044 5,120,129
JavaScript 25,144 1,774,174
PHP 9,960 1,714,058
Python 25,446 1,550,208
Ruby 5,826 674,343
Rust 4,991 304,842
Scala 1,497 245,100
TypeScript 12,830 1,441,926
Total 147,095 24,082,681

Table 1: PolyCoder Training corpus [21]

method to inspect the difference in activity between layers.
This offers insight as to why the performance difference ex-
ists.

3.1 Data Preparation
Some preparation is required for the data used in prediction
and attention experiments, we justify our choices and relate
them to previous work.

Model and Dataset selection
We select PolyCoder firstly because it is within the size range
we can reasonably evaluate on the compute resources avail-
able to us, PolyCoder is on the upper end of this range. The
model was part of recent state-of-the-art research within this
size class for code inference tasks and is compatible with the
Tuned Lens and BertViz inspection methods. Its sole training
on code and lack of Natural Language training also presents
an additional interest.

As dataset we use a de-duplicated subset of The Stack [8],
a dataset of permissively-licensed source code. The selected
subset consists of 100k files in the Java, Kotlin, Go, C++,
Python and Julia languages. This selection includes The
Kotlin and Julia languages to compare performance on code
the model was not trained on. As the exact set of files used
to train PolyCoder is ambiguous, these unseen languages also
serve as a reference point against evaluation on training data.

Pre-Processing
We are interested in the effects of language-specific aspects,
as such we focus purely on code inference by stripping com-
ments and docstrings from the inputs using regex-based fil-
ters. We then fully tokenize each comment-stripped sample
using the tokenizer defined for the model and take a subsec-
tion of each tokenized sample to create samples that have sim-
ilar lengths. As PolyCoder was trained on 1024 token length
inputs, we require at least 1024 tokens of left context to gen-
erate an optimal prediction, shorter samples are removed. We
also limit the number of predictions per sample to 2024 to-
kens, for 1000 predictions per sample. This is a sufficient
length to capture code syntax structure, accounting for white
space being a significant fraction of the tokenized inputs. If
the sample was longer this 2024 token subsection is randomly
selected from the sample in a reproducible manner.
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The results of these steps are saved with the original data
in a new dataset from which we take samples in future
steps. This simplifies matching future results against the orig-
inal inputs and the subsection method provides a sufficiently
spread distribution of code samples across each language,
with lengths that are ideal for our predictions.

3.2 Generating Predictions
In order to assess performance we require a large quantity
of predictions in each language to ensure that a significant
amount of both token types of interest are present. Taking
into account the presence of other tokens, we estimate that
200 samples from our pre-processed dataset for 200k pre-
dictions per language should be sufficient. We extract layer
states and apply the Tuned Lens method to translate these to
a meaningful token representation and store the results. We
acknowledge the DelftBlue supercomputer, provided by the
Delft High Performance Computing Centre [5] for enabling
this scale of computation.

3.3 How to tell if a Token is User or Language
Defined?

In order to compute statistics per token type, we label the
input tokens according to these definitions:

• White-space tokens are excluded from all statistics:
spaces, indents, linebreaks.

• Tokens listed explicitly as Keywords in the documenta-
tion for their respective language are marked as such:
for, else, return, etc.

• Tokens listed as operators in the documentation for each
language are marked as such: +, =, &&, etc.

• Tokens listed as syntax elements in the documentation
for each language are marked as such: (, }, (), etc.

• Only the remaining tokens after labelling all the above
are considered user-defined.

We consider Keywords, Operators and language-specific
Syntax elements as language-defined elements. The exact
sources used for these definitions are listed in Appendix B.
As syntax and operator tokens occur frequently and consis-
tently and skew the results, we also evaluate the keyword
group separately for validation.

We questioned whether this resolves elements that become
split by the Tokenizer and found that all language-defined el-
ements are common enough to receive their own token in the
vocabulary. If there are white space or syntax elements sur-
rounding these tokens, we can conclude they are not a split
section of a user-defined word like elsewhere, and can safely
assign them as language-defined elements.

This leaves one ambiguous group of elements that we label
as user defined elements: names like print from the stan-
dard and common libraries of each language. These could
also be considered as within the language-defined elements
scope. However, we believe these are better defined un-
der user-defined names considering the challenge of defining
when a name is common enough.

3.4 How many Layers to achieve a Correct
Prediction?

The Tuned Lens gives us a reliable token representation per
layer. We match these against the previously stored tokenized
inputs in our pre-processed dataset. We label each layer pre-
diction as correct or incorrect and create a new dataset entry
where we enter the first correct layer per token defined as:

• Token is not also marked as correct in any lower layer.

• Token is not marked as incorrect in any higher layer.

This metric accounts for uncertain instances where the model
still changes its decision later on, before settling on a predic-
tion. Using this metric we can plot the distribution of layer
performance per language and element type, draw clear con-
clusions for our main question, and identify average and out-
lier instances of interest for a further study of the model’s
behaviour as these predictions progress through internal lay-
ers.

3.5 Specific Token Performance
To further confirm the results of the evaluation of accuracy
per layer and explore possible explanations, we begin by
looking at the relative performance of specific tokens. For
language-defined elements, we select common keywords that
are defined for all languages in our dataset, for user-defined
elements we select common variable names. To define com-
mon we sort the Tokenizer vocabulary and select tokens with
a low id, signifying that they are common and distinct enough
to receive their own unique token.

• Language Defined Tokens of Interest:
return, else, if , =

• User Defined Tokens of Interest:
key, value, start, message

We define variations of the token with a space character (Ġ)
prefix to be the same token and check that no further com-
mon variations of them exist in the vocabulary. Additionally
for the selected user-defined tokens we define the variation
starting with a capitalized character to be the same token, this
accounts for use in compound names like NewV alue.

We find all occurrences of these tokens and plot the First
Correct Layer performance separately for each of these to-
kens per language. This will help us select subjects for eval-
uating the internal attention mechanism. It also serves as a
validation of the previous overall Language and User defined
element evaluation. If the classification method was good
enough we should see a continuation of observed trends in
the individual token performances.

3.6 Generating Attention Weights
To explore causes for observed Token Performance we in-
spect attention heads and their weights to look for patterns
that can explain observed performance differences. Attention
Matrices are very expensive computationally and storage-
wise, for an input size of 1024 each head needs a 1024×1024
matrix of floats. With PolyCoder we have 24 layers and 16
heads per layer for 384 total heads and 3̃84 million floats per
prediction.
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Due to this, we select one token from each of our earlier
identified Tokens of Interest groups as subjects to generate at-
tention weights for. We select the language-defined ‘else‘ and
user-defined ‘start‘ tokens due to their low variance in layer
performance so that we know their observed performance dif-
ference is precise. They also show similar numbers of occur-
rences in our dataset so that we can be confident their ob-
served performance difference is not due to sample size. We
generate attention weights for all occurrences of these tokens.

3.7 Where does Attention go?
If we refer back to the concept of identifying null attention as
seen in Figure 2, we can use this concept to identify heads that
have not found a pattern of tokens in the input sequence that
is relevant to them. This implies that the head is effectively
idle. We choose to focus on this null attention concept as it
provides a measure of the contribution of individual heads.

The challenge is to define when a head can be considered to
be idle as there is always some attention weight to every pre-
vious token. We need to define a minimum attention weight
on the first token to declare the head as mostly idle.

Our metric is the sum of attention weight placed on the first
token, which is a (0,1] range that corresponds to the clarity
of a line if we refer back to Figure 2. The sum of attention
weight on the first token is the sum of weight values of every
line pointing to it. To get an idea of the distribution of weight
on the first token we observed a set of 46k 1024×1024 heads.

We find a significant shift in this distribution from the orig-
inal BertViz [18] examples with our larger input size. Where
a common null attention head in a 20× 20 input would have
up to 95% of the attention weight on the first token, the max-
imum we observe across our 4̃6k PolyCoder attention head
samples is 15%. The weight is much more evenly spread out
in larger sample sizes and tokens with high attention must be
identified from a relatively small difference in weight, which
increases the difficulty of identifying trends.

We therefore choose the extremes in the distribution as the
most reliable statistic. We consider a head to contain signifi-
cant null attention only if it is within the top 5% of our weight
on first token distribution. We classify all heads involved in
our Tokens of Interest predictions according to this metric to
build a bar graph that shows the fraction of null heads per
layer. If a significant fraction of heads in a layer are null
heads, we can conclude that the input was not of relevance to
those heads and that the layer has contributed relatively little
to further the accuracy of the prediction.

4 Experimental Setup and Results
We perform our experiment according to the approach de-
scribed in section 3 using the HuggingFace transformer li-
braries [7] to generate the results shown here. Throughout
this section we maintain the same coloring for language-
defined results (green) and user-defined results (yellow).
Handling Computational Limits In order to facilitate
computation on the required scale, we make some critical
changes to our approach:

• As we are only using inference functions we enable
.eval() mode for models, primarily to reduce the load

Language Lang. Defined Keyword User Defined
Java 42.357 9.317 62.171
CPP 42.263 6.985 82.026
Python 32.039 5.646 81.003
Go 57.001 6.579 96.392
Julia 43.369 4.762 91.094
Kotlin 32.953 4.468 56.212

Table 2: Element Quantities Sampled per Language

but also to disable the dropout mechanisms used in train-
ing. This increases the quality of predictions.

• We run all model and lens functions with no grad() to
disable gradient computations, this has no effect on pre-
diction quality but reduces GPU memory load.

• We split all inputs and outputs into batches and save
these to separate files in between each step, this greatly
reduces memory requirements. This also allows us to
share intermediate results for review and reuse without
the need for significant computational resources.

4.1 Token Type Distribution
As outlined in subsection 3.3 we label input tokens according
to our definition of token types, we receive sample sizes of
each respective token type per language as shown in Table 2

Note the significantly smaller sample size for tokens that
are strictly defined as keywords for each respective language.
Inputs contained equal quantities of total tokens per language,
variations are due to language characteristics. Java shows a
relatively high use of keyword tokens due to being statically
typed with common use of access modifiers. Go shows rel-
atively high total counts due to fewer white-space tokens in
the samples which are excluded in statistics.

4.2 First Correct Prediction Layer per Type
To show relative performance per element type with respect
to layer depth of the model, We assess the correctness of
predictions per layer and record the first correct layer as de-
scribed in subsection 3.4. We plot this distribution as a box
plot per Language and Element type in Figure 3.

We immediately see a clear and well-defined 2-layer ad-
vantage for language-defined elements. We note an increased
variability in Strict Keyword Elements (blue), surprising per-
formance on untrained languages, and stronger fluctuation in
user-defined element performance.

4.3 First Correct Prediction Layer for Tokens of
Interest

We use box plots to show the distribution of the first correct
layer across all predictions that include our selected Tokens of
Interest. The results for the Java (Figure 4) and Go (Figure 5)
languages offer the best results and are of interest as the most
and least trained on respectively for PolyCoder. For com-
pleteness, the others are included in Figure C. The medians
are consistent across languages but the variability is inconsis-
tent, likely due to sample sizes, language characteristics, and
token type classification accuracy.
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Figure 3: Distribution of First Correct Prediction Layer per Language and Element Type. Lower is better.

Figure 4: Distribution of First Correct Prediction Layer for Tokens
of Interest in Java. Distributions towards the left are better.

Figure 5: Distribution of First Correct Prediction Layer for Tokens
of Interest in Go. Distributions towards the left are better.

Figure 6: Fraction of Null Attention Heads per Layer in Java
for ’else’ (language-defined) and ’start’ (user-defined) tokens, 960
heads per layer per token. A lower fraction is better.

Figure 7: Fraction of Null Attention Heads per Layer in Go for ’else’
(language-defined) and ’start’ (user-defined) tokens, 960 heads per
layer per token. A lower fraction is better.
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4.4 Fraction of Null Attention Heads per Layer
We use bar graphs to show the fraction of Null Attention
Heads per layer for ’else’ (language-defined) and ’start’ (user-
defined) tokens for the Java (Figure 6) and Go (Figure 7)
languages. We used an equal number of samples (n=60) of
each token for validity, giving us 960 head samples per layer.

5 Discussion and Limitations
From the results shown for the distribution of First Correct
Predictions, we see that language-defined elements are pre-
dicted earlier by a consistent and significant 2 layers. This
correlates with earlier work indicating greater difficulty for
user-defined elements [1].

There is a second observation that both element types are
on average predicted correctly in the model’s very early layers
(6 and 8 respectively). This happens to such a degree that our
plot of average distributions excludes the remaining 12 layers
of our 24-layer PolyCoder model.

We can infer that early subsections of layers of the model
show a strong capability to predict certain token types cor-
rectly. Observing the specific tokens of interest shows this
is especially true for the common assignment operator ‘=‘.
There is potential for techniques like the Tuned Lens to skip
layers for certain token types and still achieve high accuracy.

From previous work, we saw hints of the transfer of perfor-
mance between languages [21]. Our results show unexpect-
edly high layer-wise performance for languages the model is
not trained on, despite a higher failed prediction rate [Ap-
pendix A]. It is possible that certain language characteristics
transfer very well across training sets even if the final overall
prediction accuracy is lower, but we are not certain enough to
conclude this due to inaccuracies in our methods.

These results also show that a greater fraction of heads
(+7%, 2-3 fold increase) is unable to contribute to later lay-
ers of user-defined element predictions. A loss of contribut-
ing heads in higher layers should relate to more occurrences
of a first correct prediction in higher layers. However, this
is only a partial explanation as neither element sees null at-
tention in the earlier layers where we identified a high de-
gree of accuracy progression. We consider this absence ev-
idence that the heads in earlier sections must be of a more
general purpose: they see relevance in either type. From
the earlier correct layer predictions, we infer that these more
general-purpose heads must be significantly better at resolv-
ing language-defined elements.

5.1 Limitations
To support our conclusion, we show the limitations of our
work that are considered and accounted for.

Data Processing Limitations
In our preparation stage an assumption was made that strip-
ping comments would allow us to more effectively spend our
compute resources on predictions of code. We are wary of
this decision as it is a deviation from the model’s training and
will degrade prediction performance. A concern exists that
prediction quality for user-defined elements might degrade
to a greater degree due to missing context from comments.

However, we believe that a greater degree of variability would
be observed in prediction depth for user tokens if this was a
great influence. Ideally, we would verify this with a rerun of
the experiment to strengthen our conclusion.

Lens Limitations
It is important to note that while a Tuned Lens provides an
objectively better assignment of meaning to an internal layer
state, it is still a model trained to minimize an error and pro-
duce a most likely match, and as such is not an absolute
truth. However, the authors show significant results in re-
ducing variance, bias, and uninterpretable states, and present
significant evidence on the degree to which its outputs are
representative of the final layer distribution and correspond-
ing influence of features. As such we feel confident to place
a high degree of trust in the validity of its outputs.

Token Type Classification
We have taken great care to be consistent in the application
of our white space, keyword, operator, and user-defined labels
for each language, but the method is rudimentary and likely
has a bias towards some languages. We are confident however
that our multiple experiments cross-validate the results.

Classifying Null Heads
As mentioned in subsection 3.7 it is challenging to classify
a null head due to the distribution of attention weights for
higher input size sequences. This is worsened by our inabil-
ity to inspect them visually, a rendering method that scales
with input size could greatly assist in validating the classi-
fications. Ideally, we would also verify that no other token
besides the first one is gaining significant attention. We do
believe our choice to classify on extreme first token weight
is valid, as our observed ratio of classified null heads corre-
sponds with the ratio of pure null heads we would expect from
visual identification for smaller input sequences.

6 Conclusions and Future Work
To contribute to the topic of evaluating model performance
we set out to investigate how user-defined elements compare
to language-defined elements and posited the hypothesis that
a Large Language Model should be able to predict language-
defined elements earlier due to their well-defined structure
and meaning. From our results, we conclude that such a dif-
ference exists, that it is consistent across languages, and is
quantifiable as a 2-layer advantage in average layer depth re-
quired for correct predictions of language-defined elements
over user-defined elements. We therefore confirm our origi-
nal hypothesis and demonstrate a new capability to evaluate
the internal layer performance of specific aspects of code lan-
guages using a Tuned Lens. This technique can be further
refined by reconsidering the effects of code comments and
improving the token classification methods.

For specific high-occurrence language-defined Tokens
such as Operators, we observe an even greater difference in
performance. We question with what certainty a prediction
can be identified as such a token and how early, this could al-
low for an evaluation of early exiting techniques to relate exit
points to effects on accuracy and computational time. We
suggest this as a topic of interest for future research.
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7 Responsible Research
For our research, we have accounted for several common
topics of the code for responsible research: Reproducibility,
Integrity, and the ethical consideration of applied Machine
Learning.

Reproducibility Reproducibility is a recently increased
concern regarding topics in Computer Science [16], espe-
cially those involving large Datasets like ours. Not all scales
of computation are equally accessible, and not all source
code involved in research is shared properly. We have taken
great effort to ensure that our results are accessible and repro-
ducible:

• Our Paper is publicly accessible 1, as is our Code 2 and
the used Datasets 3 to the best of our ability.

• We also publish our intermediate results of computations
along with the above Dataset, to aid reproducibility for
those without access to significant compute resources.

• Our Approach section and linked sources are sufficiently
detailed to be able to construct a similar method.

Use of Resources Large-scale computation for machine
learning is expensive, both financially and ecologically, our
research topic itself relates to reducing this effect. Although
the topic was new to us and our time limited we have striven
to the best of our ability to make our code efficient and to
avoid repeated computations. This is also in consideration of
our peers who we share our compute resources with.

Integrity of Results Research is competitive and time-
constrained, this places pressure on researchers to show posi-
tive results and we have taken care to consider our own biases
regarding this. We have used reasonable methods to ensure
our results are based on a fair and representative distribution
of data. Results that conflict with our expectations are shown
or used as avenues to identify mistakes, with the mindset that
even negative results are still areas of interest.

Ethical Considerations Our research involves no direct
application, as such it is easy to hide behind our scientifically
driven motive of improving performance. Yet as we con-
tribute to an increased understanding of the performance of
LLMs, we should also caution against their dangers, specif-
ically their tendency to maintain wrong or harmful biases
present in training data.
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A Failed Predictions
A controversial take compared to other performance evalua-
tions: We only compute the fraction of correct final predic-
tions per language and element type as an exploratory statis-
tic and do not consider it further. Our focus lies on evaluating
the progression of performance per layer which is difficult
to define when progress is still uncertain at the final observed
stage. It is unclear if a failed prediction will eventually be cor-
rect and after how many additional layers. Whether this can
be estimated from the behaviour we see in layer progression
is a potential topic for future studies of the attention mecha-
nism.

we show the fraction of correct final predictions made by
PolyCoder per language and token type in Figure 8. We
match each prediction against the real next token from the
sample input, predictions are correct if the token ids match.

B Token Type Definitions
For completeness, we list the exact reference definitions used
for token type categories here.

• C++: We use the official cpp reference definitions, cur-
rently listed under https://en.cppreference.com/w/cpp/
language, specifically the https://en.cppreference.com/
w/cpp/keyword and https://en.cppreference.com/w/cpp/
language/expressions#Literals sections.

• Go: We use the Go language specification as listed under
https://go.dev/ref/spec, specifically the https://go.dev/
ref/spec#Keywords, https://go.dev/ref/spec#Operators
and punctuation and https://go.dev/ref/spec#Types sec-
tions.

• Java: we use the Java SE17 specification as listed
under https://docs.oracle.com/javase/specs/jls/se17/
html/jls-3.html#jls-3.9, specifically the 3.9 Keywords,
3.11 Separators and 3.12 Operators sections

• Julia: We use the Julia language organisation reference
manual, specifically the https://docs.julialang.org/en/v1/
base/base/#Keywords and https://docs.julialang.org/en/
v1/manual/mathematical-operations/ sections

• Kotlin: We use the Kotlin language organisation
reference documentation at https://kotlinlang.org/docs/
keyword-reference.html, specifically the Hard Key-
words and Operators and Special Symbols Sections.

• Python: we make use of The 3.11 language specification
as defined under https://docs.python.org/3.11/reference/
index.html, specifically the 2.3 Identifiers and keywords
and 2.5 Operators sections.

10

https://en.cppreference.com/w/cpp/language
https://en.cppreference.com/w/cpp/language
https://en.cppreference.com/w/cpp/keyword
https://en.cppreference.com/w/cpp/keyword
https://en.cppreference.com/w/cpp/language/expressions#Literals
https://en.cppreference.com/w/cpp/language/expressions#Literals
https://go.dev/ref/spec
https://go.dev/ref/spec#Keywords
https://go.dev/ref/spec#Keywords
https://go.dev/ref/spec#Operators_and_punctuation
https://go.dev/ref/spec#Operators_and_punctuation
https://go.dev/ref/spec#Types
https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html#jls-3.9
https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html#jls-3.9
https://docs.julialang.org/en/v1/base/base/#Keywords
https://docs.julialang.org/en/v1/base/base/#Keywords
https://docs.julialang.org/en/v1/manual/mathematical-operations/
https://docs.julialang.org/en/v1/manual/mathematical-operations/
https://kotlinlang.org/docs/keyword-reference.html
https://kotlinlang.org/docs/keyword-reference.html
https://docs.python.org/3.11/reference/index.html
https://docs.python.org/3.11/reference/index.html


Figure 8: Overall Successful Predictions per Language and Element
Type. Higher is better.

Figure 9: Performance on specific C++ element types.

C Tokens of Interest Performance for
remaining Languages

Figure 10: Performance on specific Julia element types.

Figure 11: Performance on specific Kotlin element types.

Figure 12: Performance on specific Python element types.
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