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Abstract

Using low-temperature thermochronology on apatite and zircon crystals, we show

that the western Reguibat Shield, located in the northern part of the West African

Craton, experienced significant cooling and heating events between Jurassic and

present times. The obtained apatite fission track ages range between 49 and

102 Ma with mean track lengths varying between 11.6 and 13.3 lm and Dpar val-

ues between 1.69 and 3.08 lm. Zircon fission track analysis yielded two ages of

159 and 118 Ma. Apatite (U–Th)/He uncorrected single-grain ages range between

76 and 95 Ma. Thermal inverse modelling indicates that the Reguibat Shield was

exhumed during the Early Cretaceous, Late Cretaceous, Palaeocene–Eocene and

Quaternary. These exhumation events were coeval with regional tectonic and geo-

dynamic events, and were probably driven by a combined effect of plate tectonics

and mantle dynamics.

1 | INTRODUCTION

A substantial number of studies examining the thermal evolution of

domains contiguous to the Moroccan Atlantic margin reveal the exis-

tence of major thermal events that occurred after the Early-Middle

Jurassic initiation of drifting in the Central Atlantic (e.g. Ghorbal, 2009;

Ghorbal, Bertotti, Foeken, & Andriessen, 2008; Leprêtre, Barbarand,

Missenard, Leparmentier, & Frizon de Lamotte, 2014; Leprêtre et al.,

2015; Oukassou et al., 2013; Ruiz et al., 2011; Saddiqi et al., 2009;

Sebti et al., 2009; Sehrt, 2014). These thermal events, constrained by

low-temperature thermochronology (LTT) (i.e. fission track and U–Th/

He analyses on apatite and zircon crystals), are systematically attribu-

ted to km-scale vertical movements of the continental crust (i.e. burial

and exhumation). The supposedly exhumed domains are characterized

by exposed old pre-Mesozoic basement, and the absence of sedimen-

tary cover prevents the understanding and quantification of the tec-

tonic processes that might have driven such evolution (Gouiza, 2011;

Teixell, Bertotti, Frizon de Lamotte, & Charroud, 2009).

The Reguibat shield is a domain that experienced at least one

major cooling event during Mesozoic times (Leprêtre et al., 2014,

2015). It is located in the northern part of the West African Craton

and extends over 1,400 km from the Algerian Sahara domain in the

east to the Moroccan Atlantic margin in the west (Figure 1). It is an

ENE–WSW basement rise where Archaean and Palaeoproterozoic

rocks are exposed (Figure 1) (Schofield et al., 2012; Villeneuve &

Corn�ee, 1994). It is surrounded by the Variscan Mauritanides Belt in

the SW (ca. 300 Ma; L�ecorch�e, Roussel, Sougy, & Guetat, 1983;

Purdy, 1987), the coastal Atlantic basin of Tarfaya in the NW, the

Palaeozoic Tindouf Basin in the N–NE, and the Neoproterozoic–

Palaeozoic Hank and Adrar Basins in the south (Villeneuve, 2005).

Whereas the fold belts surrounding the West African Craton

(Figure 1) were folded and metamorphosed during the Pan-African

and/or Variscan orogenies (e.g. Black et al., 1979; Gasquet, Ennih,

Li�egeois, Soulaimani, & Michard, 2008; Guiraud, Bellion, Benkhelil, &

Moreau, 1987; Hoepffner, Soulaimani, & Piqu�e, 2005; Purdy, 1987;

Soulaimani & Burkhard, 2008), the cratonic basement exposed in the

Reguibat and Man-Leo shields (Figure 1) is considered to have been

tectonically stable since 1,700 Ma (e.g. Villeneuve & Corn�ee, 1994).

However, recently published apatite fission track and (U–Th)/He

analyses on samples from the central and western Reguibat suggest

that major post-Triassic cooling/exhumation events affected the

shield (Leprêtre et al., 2015, 2017).

In this contribution, we present new LTT data from 18 samples

collected from the western Reguibat shield, including 17 apatite
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fission track (AFT), two zircon fission track (ZFT) and seven single-

grain apatite (U–Th)/He (AHe) analyses. We compare our results to

previously published data (Leprêtre et al., 2014, 2015) and challenge

the model of a stable craton by proposing a modified model for the

tectonic and thermal evolution of the shield.

2 | METHODS AND ANALYTICAL RESULTS

Investigation of the thermal history of the western Reguibat base-

ment rocks by AFT, ZFT and AHe analyses allows to constrain the

time when the samples passed through the temperature window

characteristic of each method: 350–220°C for ZFT (Yamada, Mura-

kami, & Tagami, 2007), 110–60°C for AFT (Green et al., 1989), and

75–45°C for AHe (Farley, 2000). Fission track densities, horizontal

confined track lengths and Dpar (diameter of etched spontaneous

fission tracks, used as a proxy for the chemical composition of apa-

tite) were measured in the apatite grains with internal surfaces paral-

lel to the c-axis (Donelick, Ketcham, & Carlson, 1999).

Two batches of samples were collected from the exposed mag-

matic rocks intruding the Archaean basement of the western Regui-

bat Shield (Figure 2). The first set of samples (AW) was collected

along a NW–SE transect, from the syenite, dolerite and granitoid

intrusions outcropping near Awsard (Figure 2). The second set of

samples (MS) was collected along a NNE–SSW transect between

Awsard and Tichla (Figure 2) within the Precambrian granite intru-

sions. Apart from the syenite intrusions of Awsard, which are dated

to be ca. 2.46 Ga (Bea, Montero, Haissen, & El, 2013), the sampled
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intrusions are not yet dated but are assumed to be Late Archaean to

Early Palaeoproterozoic (ca. 2.9–1.8 Ga; e.g. Schofield et al., 2012;

Jessell et al., 2015).

Age data from this study are presented in Tables 1 and 2. AFT

ages range between 74 and 102 Ma for the AW samples, and

between 49 and 87 Ma for the MS samples (Table 1). Mean track

lengths (MTL) measured in apatite grains vary between 11.8 and

13.3 lm in the AW samples, and between 11.6 and 13.1 lm in the

MS samples (Table 1). The measured Dpar values range from 1.69 to

3.08 lm in the AW samples, and from 1.72 to 2.95 lm in the MS

samples (Table 1). ZFT analysis was performed on samples MS-09

and MS-12 and yielded ages of 159 and 118 Ma, respectively

(Table 1).

AHe analysis, performed on samples AW-03, AW-05 and AW-06,

yielded uncorrected single-grain ages ranging between 76 and 95 Ma

(Table 2). The a-ejection corrected single-grain ages (Farley, Wolf, &

Silver, 1996) vary between 95 and 119 Ma, with single-grain ages of

the same sample overlapping within 1r uncertainty (Table 2).

We note that the AHe uncorrected ages are either younger than

the AFT ages of the same sample or equal within the 1r uncertainty

level, while the AHe corrected ages are systematically older than the

AFT ages of the same sample. Radiation damage in (old) apatite crys-

tals can cause non-thermal annealing of fission tracks (e.g. Hendriks

& Redfield, 2005; S€oderlund, Juez-Larr�e, Page, & Dunai, 2005) and

can increase He retentivity (e.g. Flowers, 2009; Green & Duddy,

2006; Shuster, Flowers, & Farley, 2006), which may result in an

inverted relationship between AHe and AFT ages (i.e. AHe ages

older than AFT ages). This is usually associated with a positive corre-

lation between effective uranium concentration (eU) and AHe ages

(Brown et al., 2013; Fitzgerald, Baldwin, Webb, & O’Sullivan, 2006),

which is not the case for the Reguibat samples (Table 2). Over-cor-

rection for a-ejection, due to U and Th zonation in apatite crystals,

may instead be responsible for the inverted relation between AFT

ages and corrected AHe ages observed in our data (Hourigan, Rein-

ers, & Brandon, 2005).

2.1 | Published thermochronology ages

Leprêtre (2015) and Leprêtre et al. (2014, 2015) presented AFT and

AHe analyses on samples from the entire Reguibat Shield (Figure 1).

According to their studies, AFT single-grain ages from the western

Reguibat range from 108 to 176 Ma, while a-ejection corrected AHe

ages range from 14 to 185 Ma. In the central Reguibat, AFT ages

vary from 139 to 256 Ma, while a-ejection corrected AHe ages vary

from 93 to 149 Ma. In the eastern Reguibat, AFT ages vary from

166 to 497 Ma, while a-ejection corrected AHe ages vary from 40

to 198 Ma. These studies show that the AFT ages get substantially

younger westwards, i.e. towards the Atlantic margin.

Overall, AFT ages from Leprêtre et al. (2015) from the Western

Reguibat are distinctly older than the AFT ages obtained in this

study. Even contiguous granitic samples such as SC9 and MS-13,

which were sampled only 300 m apart, and are thus expected to

belong to the same intrusive body, produce AFT ages of

143 � 13 Ma and 57.8 � 2.7 Ma, respectively. Single-grain AFT

data from Leprêtre et al. (2015) reveal a significant spread in individ-

ual grain ages, which could be related to variations in apatite chem-

istry (i.e. chlorine-rich vs. fluorine-rich apatites; see O’Sullivan &

Parrish, 1995; Barbarand, Carter, Wood, & Hurford, 2003).

2.2 | Thermal modelling

We used QTQt software (Gallagher, 2012) to model the thermal his-

tory of the western Reguibat Shield. QTQt is based on the Bayesian

transdimensional Markov Chain Monte Carlo method (Denison,

Holmes, Mallick, & Smith, 2002; Gilks, Richardson, & Spiegelhalter,

1995) and allows the sampling of a wide range of thermal histories
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constrained by fission track and (U–Th)/He data. The output of the

modelling is a collection of time–temperature (t–T) scenarios and

other specific t–T paths, such as the maximum likelihood model (i.e.

best data-fitting model) and the expected model (i.e. a weighted

mean model from the probability distribution of the sampled t–T

paths). The fit between the observed and predicted data is defined

by a likelihood function, which quantifies the probability of obtaining

the data given by the model. The higher the likelihood log value the

better the model fits the data. In addition, the validity of a model

must be checked by examining the stability of the log likelihood and

the number of t–T points at each iteration. More details about the

modelling method are given in Gallagher (2012).

Given the narrow spatial distribution of the samples and the lack

of Meso-Cenozoic tectonic structures in the sampled area that could

cause varying thermal histories among the samples, we believe that

the LTT data illustrate a uniform thermal history and that variations

in FT ages are related to compositional changes among the dated

apatites (Barbarand et al., 2003; O’Sullivan & Parrish, 1995). Thus,

for the purpose of thermal modelling, we combined the AFT data

from the six AW samples (Figure 3a), the AFT data from the eleven

MS samples (Figure 3b) and the ZFT data from MS-09 to MS-12

(Figure 3c). Due to the range of the LTT ages, we only model the

thermal evolution during post-Triassic times (i.e. between 200 and

0 Ma). Initial inverse modelling was carried out to explore several

modelling configurations and the modelling sensitivity to He kinetics

(Flowers, 2009; Gautheron, Tassan-Got, Barbarand, & Pagel, 2009)

and ZFT annealing models (Tagami, Lal, Sorkhabi, Ito, & Nishimura,

1988; Yamada et al., 2007). These initial models are presented in the

Supplementary Data S1. The final QTQt simulation (Figure 4) uses

the He kinetics of Flowers (2009) and the annealing models of Ketc-

ham, Carter, Donelick, Barbarand, and Hurford (2007) and Yamada

et al. (2007) for apatite and zircon, respectively. Our test models

indicate that changing the ZFT annealing model and the He kinetics

have a limited impact on the predicted t–T history (Figures S4, S5,

S6, S8 and S9); however, the He kinetics of Flowers (2009) (Figs. S4,

S5 and S6) and the ZFT annealing model of Yamada et al. (2007)

(Figures S8 and S9) best correspond to the observed AHe and ZFT

ages, respectively.

The obtained maximum likelihood t–T path (Figure 4) is charac-

terized by a major rapid cooling event (�370°C) during the Early

Cretaceous (between 130 and 120 Ma) followed by a thermally

unstable period (between 120 and 0 Ma) with potentially three addi-

tional cooling events of lesser magnitudes at 80–70 Ma (�50°C),

60–50 Ma (�80°C) and during the Quaternary (�40°C). The

predicted ZFT and AFT ages, along with the predicted track length

distributions, are consistent with the observed ones (Figures 4b, c).

However, the predicted uncorrected AHe ages are 30–60 Ma

younger than the observed ones (Figure 4c). The thermal trend illus-

trated in this model is fairly similar to the one obtained by Leprêtre

et al. (2015) for their samples from the western Reguibat Shield,

which predicts three thermal cooling events between the Cretaceous

and the present-day (i.e. 130–120 Ma [�120°C], 90–60 Ma [�30°C]

and 10–0 Ma [�50°C]).T
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2.3 | Post-Triassic evolution of the western
Reguibat Shield

LTT data indicate that the western Reguibat Shield shows a differen-

tiated post-Triassic thermal history. Inverse modelling (Figure 4) sug-

gests a major cooling event during the Early Cretaceous, which

brought the sampled basement rocks from mid-crustal to near-sur-

face temperatures, followed by three minor heating events between

the Late Cretaceous and the present-day. Heating events occurred

during the Aptian–Santonian (120–80 Ma), the Maastrichtian–Early

Palaeocene (70–60 Ma) and the Eocene–Pliocene (50–3 Ma).

Major magmatic events are recorded in the region, including the

Late Triassic–Early Jurassic tholeiitic basalt flows and dikes of the

Central Atlantic Magmatic Province (Knight et al., 2004; Marzoli

et al., 2004) and the Meso-Cenozoic peri-Atlantic alkaline pulses

(Matton & J�ebrak, 2009). Although volcanic rocks and/or magmatic

intrusions related to these magmatic events are yet to be docu-

mented in the Reguibat Shield per se, their widespread occurrence
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along the margins of the Central Atlantic suggests deep mantle or at

least asthenospheric origin (Matton & J�ebrak, 2009). In addition, the

Late Triassic–Early Jurassic rifting in the Central Atlantic involved

major thermal perturbations due to the related lithospheric thinning.

Increasing surface heat flux from 40 mWm�2 (characteristic of cra-

tonic domains) to 90 mWm�2 (characteristic of rifted domains) can

raise the 60°C isotherm (the upper limit of the AFT partial annealing

zone) from a depth of ~5 km to ~2 km (Ehlers, 2005). However, seis-

mic data offshore the Dakhla margin indicate that our samples are

located 400 to 500 km east of the margin hinge line and that the

crust underneath the western Reguibat Shield is at least 27–30 km

thick (Labails & Olivet, 2009).

In domains where the crust keeps its integrity through time, large

changes in surface heat flow may be accounted for only by a change in

crustal heat generation, while variations in basal heat flow from the

mantle have a minor impact on the upper portion of the crust (Mares-

chal & Jaupart, 2004). Thus, the succession of heating and cooling

events documented in the western Reguibat Shield by LTT analyses is

expected to be largely due to vertical movements of the crust

expressed by burial/subsidence and exhumation/erosion, respectively.

Given the magnitude of the modelled vertical movements/thermal

events, they must be documented in the sedimentary record of the

nearby basins of the Atlantic margin. Published data from the Dakhla

margin (Labails & Olivet, 2009), bordering the western Reguibat Shield,

do not properly illustrate the stratigraphic architecture of the margin.

Well and seismic data from the Tarfaya basin, located on the NW mar-

gin of the shield, however, show several regressive events (Figure 5;

El Jorfi, S€uss, Aigner, & Mhammdi, 2015), certainly associated with, or

even driven by, the exhumation of the hinterlands and their erosion.

Thus, the Hauterivian–Aptian (130–120 Ma) and the Campanian (80–

70 Ma) cooling events correlate with decreases in relative sea level

and erosional unconformities in the Tarfaya continental shelf (Fig-

ure 5). The Middle–Late Palaeocene (60–50 Ma) cooling event

appears to coincide with the end of a transgressive phase according to

El Jorfi et al. (2015), which persisted through the Eocene and Early

Oligocene (Figure 5; El Jorfi et al., 2015; Gouiza, 2011).
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The major cooling event recorded during the Hauterivian–Aptian,

which brought the basement rocks from mid-crust to near-surface

temperatures, is consistent with low-temperature thermochronology

results from the Anti-Atlas domain in the north (Gouiza, Charton,

Bertotti, Andriessen, & Storms, 2017; Oukassou et al., 2013; Ruiz

et al., 2011). It is also coherent with the presence of Lower Creta-

ceous sediments unconformably lying on the fringe of the Reguibat

basement in the north (Figure 1), although these sediments have yet

to be properly dated.

The heating events on the other hand are attributed to subsi-

dence and basement burial, which means that Mesozoic sediments

were deposited on the western Reguibat Shield and later eroded

during the following exhumation phases. The eroded sediments were

probably routed to the Atlantic shelf and deep basin (Davison, 2005;

Gouiza, 2011).

The geological processes driving these thermal events/km-scale

vertical movements are unclear, especially since similar vertical

movements are documented all along the Moroccan margin (e.g.

Ghorbal et al., 2008; Gouiza et al., 2017; Malus�a et al., 2007;

Oukassou et al., 2013; Ruiz et al., 2011) and the East American

conjugate as well (e.g. Grist & Zentilli, 2003; Roden-Tice & Tice,

2005; Roden-Tice & Wintsch, 2002). Bertotti & Gouiza (2012) pro-

posed that the Late Jurassic–Early Cretaceous exhumation recorded

in the Meseta and the High Atlas (Figure 1) is related to coeval

regional shortening, documented by syn-sedimentary tectonics in

the Essaouira basin, which is located in the western High Atlas to

the south of the Meseta. Leprêtre et al. (2017), on the other hand,

proposed transient mantle dynamics to account for the major ero-

sional phases recorded on both sides of the Atlantic. Gouiza (2011)

investigated the effect of small-scale sublithospheric mantle con-

vection on crustal exhumation, using thermo-mechanical numerical

modelling, and showed that the surface response to mantle dynam-

ics underneath continental lithosphere is limited to a few hundreds

of metres. However, the numerical modelling did not incorporate

erosion, which is known to enhance crustal exhumation.

We hypothesise that the major Early Cretaceous exhumation/

cooling was driven by the combined action of regional compressional

stresses and sublithospheric mantle dynamics. The regional stresses

are related to the readjustment of the African plate to the differen-

tial opening of the Central, South and North Atlantics, while mantle

dynamics are inherited from the rift system and triggered by the

established lateral thermal gradient between thinned and unthinned

continental lithosphere (Buck, 1986).

The following cooling events, during the Late Cretaceous, the

Palaeocene and the Quaternary, occurred during Africa–Europe con-

vergence, which began during the Senonian (e.g. Ricou, 1994). Fri-

zon De Lamotte et al. (2009) argued that this convergence was

accommodated through time by large wavelength folding/buckling

of the African lithosphere during the Late Cretaceous and Palaeo-

cene, and by inversion of the intracontinental rifts (e.g. Atlas rifts)

typically during the Middle–Late Eocene and the Pliocene–Quater-

nary.

3 | CONCLUSION

The LTT data indicate that the basement of the western Reguibat

Shield experienced a succession of cooling and heating events during

Mesozoic and Cenozoic times. According to inverse thermal mod-

elling, a major cooling episode occurred during the Early Cretaceous

(130–120 Ma), followed by minor cooling episodes during the Cam-

panian (80–70 Ma), the Middle–Late Palaeocene (60–50 Ma) and the

Quaternary (3–0 Ma). These cooling phases are interpreted to be

episodes of crustal exhumation, while the heating events are inter-

preted to reflect subsidence and burial. The exhumation episodes

correlate with regressive events and erosional unconformities docu-

mented in well and seismic data from the neighbouring Atlantic basin

of Tarfaya.

Since similar exhumation events are recorded in other domains

of the Atlantic margin, in Morocco and in eastern North America, we

believe that they are driven by regional processes. The processes are

thought to involve the combined action of regional compressional

stresses and subcontinental mantle dynamics. The regional stresses

are related to plate tectonics and the readjustment of the African

plate to the differential opening of the Central, South and North

Atlantics, while the mantle dynamics are due to lateral thermal gradi-

ents between thinned and unthinned continental lithosphere estab-

lished during the Atlantic rifting.
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