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Abstract

Using low-temperature thermochronology on apatite and zircon crystals, we show
that the western Reguibat Shield, located in the northern part of the West African
Craton, experienced significant cooling and heating events between Jurassic and
present times. The obtained apatite fission track ages range between 49 and
102 Ma with mean track lengths varying between 11.6 and 13.3 um and Dpar val-
ues between 1.69 and 3.08 um. Zircon fission track analysis yielded two ages of
159 and 118 Ma. Apatite (U-Th)/He uncorrected single-grain ages range between
76 and 95 Ma. Thermal inverse modelling indicates that the Reguibat Shield was
exhumed during the Early Cretaceous, Late Cretaceous, Palaeocene-Eocene and
Quaternary. These exhumation events were coeval with regional tectonic and geo-
dynamic events, and were probably driven by a combined effect of plate tectonics

and mantle dynamics.

1 | INTRODUCTION

A substantial number of studies examining the thermal evolution of
domains contiguous to the Moroccan Atlantic margin reveal the exis-
tence of major thermal events that occurred after the Early-Middle
Jurassic initiation of drifting in the Central Atlantic (e.g. Ghorbal, 2009;
Ghorbal, Bertotti, Foeken, & Andriessen, 2008; Leprétre, Barbarand,
Missenard, Leparmentier, & Frizon de Lamotte, 2014; Leprétre et al.,
2015; Oukassou et al., 2013; Ruiz et al., 2011; Saddiqgi et al., 2009;
Sebti et al., 2009; Sehrt, 2014). These thermal events, constrained by
low-temperature thermochronology (LTT) (i.e. fission track and U-Th/
He analyses on apatite and zircon crystals), are systematically attribu-
ted to km-scale vertical movements of the continental crust (i.e. burial
and exhumation). The supposedly exhumed domains are characterized
by exposed old pre-Mesozoic basement, and the absence of sedimen-
tary cover prevents the understanding and quantification of the tec-
tonic processes that might have driven such evolution (Gouiza, 2011;
Teixell, Bertotti, Frizon de Lamotte, & Charroud, 2009).

The Reguibat shield is a domain that experienced at least one
major cooling event during Mesozoic times (Leprétre et al., 2014,
2015). It is located in the northern part of the West African Craton
and extends over 1,400 km from the Algerian Sahara domain in the

east to the Moroccan Atlantic margin in the west (Figure 1). It is an
ENE-WSW basement rise where Archaean and Palaeoproterozoic
rocks are exposed (Figure 1) (Schofield et al, 2012; Villeneuve &
Cornée, 1994). It is surrounded by the Variscan Mauritanides Belt in
the SW (ca. 300 Ma; Lécorché, Roussel, Sougy, & Guetat, 1983;
Purdy, 1987), the coastal Atlantic basin of Tarfaya in the NW, the
Palaeozoic Tindouf Basin in the N-NE, and the Neoproterozoic—
Palaeozoic Hank and Adrar Basins in the south (Villeneuve, 2005).

Whereas the fold belts surrounding the West African Craton
(Figure 1) were folded and metamorphosed during the Pan-African
and/or Variscan orogenies (e.g. Black et al., 1979; Gasquet, Ennih,
Liégeois, Soulaimani, & Michard, 2008; Guiraud, Bellion, Benkhelil, &
Moreau, 1987; Hoepffner, Soulaimani, & Piqué, 2005; Purdy, 1987;
Soulaimani & Burkhard, 2008), the cratonic basement exposed in the
Reguibat and Man-Leo shields (Figure 1) is considered to have been
tectonically stable since 1,700 Ma (e.g. Villeneuve & Cornée, 1994).
However, recently published apatite fission track and (U-Th)/He
analyses on samples from the central and western Reguibat suggest
that major post-Triassic cooling/exhumation events affected the
shield (Leprétre et al., 2015, 2017).

In this contribution, we present new LTT data from 18 samples
collected from the western Reguibat shield, including 17 apatite
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FIGURE 1 Simplified geological maps
of (a) the West African Craton (WAC) and
(b) the Reguibat Shield and surrounding
domains (modified from the geological map
of Africa 1:5,000,000 (Whiteman, 1965)
and after Ennih & Liégeois, 2008). Red
dots with white outlines indicate the
locations of samples analysed in this study;
yellow dots with black outlines indicate the
locations of samples analysed by Leprétre

(a) 18°W 12°W 6°W 0° 6°E
z| 0 500 | 1000 km
o
on
Fig. 1b |:| Mesozoic to recent
£ [1 Neogene-quaternary
a [ Palacogene
[ Upper cretaceous
>z I Lower cretaceous
% ) Basic intrusions
a (Late Triassic-Early Jurassic)
D Variscan belts
820 |:| Palaecozoic cover
. Neoproterozoic cover
Z Pan-African terraines
e}
S \ Palaeoproterozoic basement
gsx Archean basement
Z \ g Procambrian inliers
o ] (Anti-Atlas)
(b) 18°W 16°W 14°W  12°W 10°W 8°W 6°W 4°W 2°W
CANARY ISLANDS s DO = v&‘@o}[ al
. — )
Zl e
% <
g
=}
(@]
. 4
OZ Fig. 2
g Dakhla.
Z
&
N Ve
£
S | TAOUDENI BASIN
@/p 0 250 500 km

(2015) and Leprétre et al. (2014, 2015)

fission track (AFT), two zircon fission track (ZFT) and seven single-
grain apatite (U-Th)/He (AHe) analyses. We compare our results to
previously published data (Leprétre et al., 2014, 2015) and challenge
the model of a stable craton by proposing a modified model for the
tectonic and thermal evolution of the shield.

2 | METHODS AND ANALYTICAL RESULTS

Investigation of the thermal history of the western Reguibat base-
ment rocks by AFT, ZFT and AHe analyses allows to constrain the
time when the samples passed through the temperature window
characteristic of each method: 350-220°C for ZFT (Yamada, Mura-
kami, & Tagami, 2007), 110-60°C for AFT (Green et al., 1989), and

75-45°C for AHe (Farley, 2000). Fission track densities, horizontal
confined track lengths and Dpar (diameter of etched spontaneous
fission tracks, used as a proxy for the chemical composition of apa-
tite) were measured in the apatite grains with internal surfaces paral-
lel to the c-axis (Donelick, Ketcham, & Carlson, 1999).

Two batches of samples were collected from the exposed mag-
matic rocks intruding the Archaean basement of the western Regui-
bat Shield (Figure 2). The first set of samples (AW) was collected
along a NW-SE transect, from the syenite, dolerite and granitoid
intrusions outcropping near Awsard (Figure 2). The second set of
samples (MS) was collected along a NNE-SSW transect between
Awsard and Tichla (Figure 2) within the Precambrian granite intru-
sions. Apart from the syenite intrusions of Awsard, which are dated
to be ca. 2.46 Ga (Bea, Montero, Haissen, & El, 2013), the sampled
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FIGURE 2 Zoom-in on the western
Reguibat Shield showing in detail the
locations of samples analysed in this study
(red dots) and by Leprétre et al. (2015)
(black dots). MS samples are marked with
orange outlines, AW samples with purple

outlines. Same legend for geological units
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as in Figure 1

intrusions are not yet dated but are assumed to be Late Archaean to
Early Palaeoproterozoic (ca. 2.9-1.8 Ga; e.g. Schofield et al., 2012;
Jessell et al., 2015).

Age data from this study are presented in Tables 1 and 2. AFT
ages range between 74 and 102 Ma for the AW samples, and
between 49 and 87 Ma for the MS samples (Table 1). Mean track
lengths (MTL) measured in apatite grains vary between 11.8 and
13.3 um in the AW samples, and between 11.6 and 13.1 pym in the
MS samples (Table 1). The measured Dpar values range from 1.69 to
3.08 um in the AW samples, and from 1.72 to 2.95 um in the MS
samples (Table 1). ZFT analysis was performed on samples MS-09
and MS-12 and vyielded ages of 159 and 118 Ma, respectively
(Table 1).

AHe analysis, performed on samples AW-03, AW-05 and AW-06,
yielded uncorrected single-grain ages ranging between 76 and 95 Ma
(Table 2). The a-ejection corrected single-grain ages (Farley, Wolf, &
Silver, 1996) vary between 95 and 119 Ma, with single-grain ages of
the same sample overlapping within 1c uncertainty (Table 2).

We note that the AHe uncorrected ages are either younger than
the AFT ages of the same sample or equal within the 1c uncertainty
level, while the AHe corrected ages are systematically older than the
AFT ages of the same sample. Radiation damage in (old) apatite crys-
tals can cause non-thermal annealing of fission tracks (e.g. Hendriks
& Redfield, 2005; Soderlund, Juez-Larré, Page, & Dunai, 2005) and
can increase He retentivity (e.g. Flowers, 2009; Green & Duddy,
2006; Shuster, Flowers, & Farley, 2006), which may result in an
inverted relationship between AHe and AFT ages (i.e. AHe ages
older than AFT ages). This is usually associated with a positive corre-
lation between effective uranium concentration (eU) and AHe ages
(Brown et al., 2013; Fitzgerald, Baldwin, Webb, & O’Sullivan, 2006),
which is not the case for the Reguibat samples (Table 2). Over-cor-
rection for a-ejection, due to U and Th zonation in apatite crystals,
may instead be responsible for the inverted relation between AFT

ages and corrected AHe ages observed in our data (Hourigan, Rein-
ers, & Brandon, 2005).

2.1 | Published thermochronology ages

Leprétre (2015) and Leprétre et al. (2014, 2015) presented AFT and
AHe analyses on samples from the entire Reguibat Shield (Figure 1).
According to their studies, AFT single-grain ages from the western
Reguibat range from 108 to 176 Ma, while a-ejection corrected AHe
ages range from 14 to 185 Ma. In the central Reguibat, AFT ages
vary from 139 to 256 Ma, while a-ejection corrected AHe ages vary
from 93 to 149 Ma. In the eastern Reguibat, AFT ages vary from
166 to 497 Ma, while a-ejection corrected AHe ages vary from 40
to 198 Ma. These studies show that the AFT ages get substantially
younger westwards, i.e. towards the Atlantic margin.

Overall, AFT ages from Leprétre et al. (2015) from the Western
Reguibat are distinctly older than the AFT ages obtained in this
study. Even contiguous granitic samples such as SC9 and MS-13,
which were sampled only 300 m apart, and are thus expected to
belong to the same intrusive body, produce AFT ages of
143 + 13 Ma and 57.8 & 2.7 Ma, respectively. Single-grain AFT
data from Leprétre et al. (2015) reveal a significant spread in individ-
ual grain ages, which could be related to variations in apatite chem-
istry (i.e. chlorine-rich vs. fluorine-rich apatites; see O'Sullivan &
Parrish, 1995; Barbarand, Carter, Wood, & Hurford, 2003).

2.2 | Thermal modelling

We used QTQt software (Gallagher, 2012) to model the thermal his-
tory of the western Reguibat Shield. QTQt is based on the Bayesian
transdimensional Markov Chain Monte Carlo method (Denison,
Holmes, Mallick, & Smith, 2002; Gilks, Richardson, & Spiegelhalter,
1995) and allows the sampling of a wide range of thermal histories
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uncorrected age/Ft) are shown. Errors are calculated by adding errors

TABLE 2 Analytical results of apatite (U-Th)/He analyses of AW samples. Uncorrected and a-ejection corrected ages

from the analytical procedure, the crystal size and the variability of the measured Durango standard. a-ejection correction is calculated to account for alpha loss in the outer 20 pm of the

apatite crystal (Farley et al., 1996)

Corrected

Uncorrected

Crystal

Crystal

Error

AHe age (Ma)

118.8

Ft factor
0.80
0.80
0.77
0.78
0.84
0.82
0.81

Error
8.9

AHe age (Ma)

94.6

eU (ppm)
10.74
14.90
32.20
75.67

Th/U

232Th (ppm)

17.15

238 (ppm)
6.71
10.13

“He (ncc/gm)
1.25E+05
1.38E+05
3.06E+05
8.07E+05
8.75E+04
6.48E+05
6.64E+05
2.67E+05
2.62E+05

Mass (ug)
7.60
8.

radius (pm)

76
76
62

length (um)
247

Coordinates

Sample

11.2
9.3
9.8

10.5

2.55

N22°35'0.24"

AW-03-|

94.5
103.8
111.7
101.6

75.5 7.5

2.00
0.16

0.27

20.26

61

250

W14°22/33.52"

AW-03-IlI

7.5

80.1
8

5.06
19.09

31.01

71.19

8.04
7.42
15.76

29.51

215

N22°33'41.86"

AW-05-1

8.2
8.4

8.1

7.0

64
86
86
80

234
328
237

W14°19'36.51"

AW-05-l1

10.1

84.9

8.42
64.73

0.24
0.23
0.25
19.08
23.22

191
13.86
13.50

216.93

7.97
61.47
53.74
11.37

9.37

N22°35'47.42"
W14°24'4.83"

AW-06-1

9.8
111

99.1
118.0

81.7

AW-06-I1

9.0
&3
33

95.1

56.91

7.78

193

AW-06-l

35.1

62.35

Dur11
Dur12

35.5

60.51

217.62

Terra Nova BUIE o ik

constrained by fission track and (U-Th)/He data. The output of the
modelling is a collection of time-temperature (t-T) scenarios and
other specific t-T paths, such as the maximum likelihood model (i.e.
best data-fitting model) and the expected model (i.e. a weighted
mean model from the probability distribution of the sampled t-T
paths). The fit between the observed and predicted data is defined
by a likelihood function, which quantifies the probability of obtaining
the data given by the model. The higher the likelihood log value the
better the model fits the data. In addition, the validity of a model
must be checked by examining the stability of the log likelihood and
the number of t-T points at each iteration. More details about the
modelling method are given in Gallagher (2012).

Given the narrow spatial distribution of the samples and the lack
of Meso-Cenozoic tectonic structures in the sampled area that could
cause varying thermal histories among the samples, we believe that
the LTT data illustrate a uniform thermal history and that variations
in FT ages are related to compositional changes among the dated
apatites (Barbarand et al., 2003; O’Sullivan & Parrish, 1995). Thus,
for the purpose of thermal modelling, we combined the AFT data
from the six AW samples (Figure 3a), the AFT data from the eleven
MS samples (Figure 3b) and the ZFT data from MS-09 to MS-12
(Figure 3c). Due to the range of the LTT ages, we only model the
thermal evolution during post-Triassic times (i.e. between 200 and
0 Ma). Initial inverse modelling was carried out to explore several
modelling configurations and the modelling sensitivity to He kinetics
(Flowers, 2009; Gautheron, Tassan-Got, Barbarand, & Pagel, 2009)
and ZFT annealing models (Tagami, Lal, Sorkhabi, Ito, & Nishimura,
1988; Yamada et al., 2007). These initial models are presented in the
Supplementary Data S1. The final QTQt simulation (Figure 4) uses
the He kinetics of Flowers (2009) and the annealing models of Ketc-
ham, Carter, Donelick, Barbarand, and Hurford (2007) and Yamada
et al. (2007) for apatite and zircon, respectively. Our test models
indicate that changing the ZFT annealing model and the He kinetics
have a limited impact on the predicted t-T history (Figures S4, S5,
S6, S8 and S9); however, the He kinetics of Flowers (2009) (Figs. 54,
S5 and Sé) and the ZFT annealing model of Yamada et al. (2007)
(Figures S8 and S9) best correspond to the observed AHe and ZFT
ages, respectively.

The obtained maximum likelihood t-T path (Figure 4) is charac-
terized by a major rapid cooling event (—370°C) during the Early
Cretaceous (between 130 and 120 Ma) followed by a thermally
unstable period (between 120 and O Ma) with potentially three addi-
tional cooling events of lesser magnitudes at 80-70 Ma (—50°C),
60-50 Ma (—80°C) and during the Quaternary (—40°C). The
predicted ZFT and AFT ages, along with the predicted track length
distributions, are consistent with the observed ones (Figures 4b, c).
However, the predicted uncorrected AHe ages are 30-60 Ma
younger than the observed ones (Figure 4c). The thermal trend illus-
trated in this model is fairly similar to the one obtained by Leprétre
et al. (2015) for their samples from the western Reguibat Shield,
which predicts three thermal cooling events between the Cretaceous
and the present-day (i.e. 130-120 Ma [-120°C], 90-60 Ma [-30°C]
and 10-0 Ma [-50°C]).
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2.3 | Post-Triassic evolution of the western &

Reguibat Shield

LTT data indicate that the western Reguibat Shield shows a differen-
tiated post-Triassic thermal history. Inverse modelling (Figure 4) sug-
gests a major cooling event during the Early Cretaceous, which
brought the sampled basement rocks from mid-crustal to near-sur-
face temperatures, followed by three minor heating events between
the Late Cretaceous and the present-day. Heating events occurred

Palaeocene (70-60 Ma) and the Eocene—Pliocene (50-3 Ma).

Major magmatic events are recorded in the region, including the
Late Triassic—Early Jurassic tholeiitic basalt flows and dikes of the
Central Atlantic Magmatic Province (Knight et al., 2004; Marzoli
et al, 2004) and the Meso-Cenozoic peri-Atlantic alkaline pulses
(Matton & Jébrak, 2009). Although volcanic rocks and/or magmatic
intrusions related to these magmatic events are yet to be docu-
mented in the Reguibat Shield per se, their widespread occurrence
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along the margins of the Central Atlantic suggests deep mantle or at
least asthenospheric origin (Matton & Jébrak, 2009). In addition, the
Late Triassic—Early Jurassic rifting in the Central Atlantic involved
major thermal perturbations due to the related lithospheric thinning.
Increasing surface heat flux from 40 mWm™2 (characteristic of cra-

=2 (characteristic of rifted domains) can

tonic domains) to 90 mWm
raise the 60°C isotherm (the upper limit of the AFT partial annealing
zone) from a depth of ~5 km to ~2 km (Ehlers, 2005). However, seis-
mic data offshore the Dakhla margin indicate that our samples are
located 400 to 500 km east of the margin hinge line and that the
crust underneath the western Reguibat Shield is at least 27-30 km
thick (Labails & Olivet, 2009).

In domains where the crust keeps its integrity through time, large
changes in surface heat flow may be accounted for only by a change in
crustal heat generation, while variations in basal heat flow from the
mantle have a minor impact on the upper portion of the crust (Mares-
chal & Jaupart, 2004). Thus, the succession of heating and cooling

events documented in the western Reguibat Shield by LTT analyses is

SE

expected to be largely due to vertical movements of the crust
expressed by burial/subsidence and exhumation/erosion, respectively.
Given the magnitude of the modelled vertical movements/thermal
events, they must be documented in the sedimentary record of the
nearby basins of the Atlantic margin. Published data from the Dakhla
margin (Labails & Olivet, 2009), bordering the western Reguibat Shield,
do not properly illustrate the stratigraphic architecture of the margin.
Well and seismic data from the Tarfaya basin, located on the NW mar-
gin of the shield, however, show several regressive events (Figure 5;
El Jorfi, Siiss, Aigner, & Mhammdi, 2015), certainly associated with, or
even driven by, the exhumation of the hinterlands and their erosion.
Thus, the Hauterivian-Aptian (130-120 Ma) and the Campanian (80—
70 Ma) cooling events correlate with decreases in relative sea level
and erosional unconformities in the Tarfaya continental shelf (Fig-
ure 5). The Middle-Late Palaeocene (60-50 Ma) cooling event
appears to coincide with the end of a transgressive phase according to
El Jorfi et al. (2015), which persisted through the Eocene and Early
Oligocene (Figure 5; El Jorfi et al., 2015; Gouiza, 2011).
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FIGURE 5 Chronostratigraphic chart of

the Tarfaya basin showing the sedimentary
gaps and seismic sequences (El Jorfi et al., -

2015) with respect to the maximum
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thermal modelling and the regional

tectonic events [a: Central Atlantic Rift
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Rousse, Labails, & Smethurst, 2009); c:
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De Lamotte, Andrieux, & Guezou, 1991;
Pigué et al., 2002)]
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The major cooling event recorded during the Hauterivian-Aptian,
which brought the basement rocks from mid-crust to near-surface
temperatures, is consistent with low-temperature thermochronology
results from the Anti-Atlas domain in the north (Gouiza, Charton,
Bertotti, Andriessen, & Storms, 2017; Oukassou et al., 2013; Ruiz
et al., 2011). It is also coherent with the presence of Lower Creta-
ceous sediments unconformably lying on the fringe of the Reguibat
basement in the north (Figure 1), although these sediments have yet
to be properly dated.

The heating events on the other hand are attributed to subsi-
dence and basement burial, which means that Mesozoic sediments
were deposited on the western Reguibat Shield and later eroded
during the following exhumation phases. The eroded sediments were
probably routed to the Atlantic shelf and deep basin (Davison, 2005;
Gouiza, 2011).

The geological processes driving these thermal events/km-scale
vertical movements are unclear, especially since similar vertical
movements are documented all along the Moroccan margin (e.g.
Ghorbal et al, 2008; Gouiza et al, 2017; Malusa et al., 2007;
QOukassou et al., 2013; Ruiz et al., 2011) and the East American
conjugate as well (e.g. Grist & Zentilli, 2003; Roden-Tice & Tice,
2005; Roden-Tice & Wintsch, 2002). Bertotti & Gouiza (2012) pro-
posed that the Late Jurassic-Early Cretaceous exhumation recorded
in the Meseta and the High Atlas (Figure 1) is related to coeval
regional shortening, documented by syn-sedimentary tectonics in
the Essaouira basin, which is located in the western High Atlas to
the south of the Meseta. Leprétre et al. (2017), on the other hand,
proposed transient mantle dynamics to account for the major ero-
sional phases recorded on both sides of the Atlantic. Gouiza (2011)
investigated the effect of small-scale sublithospheric mantle con-
vection on crustal exhumation, using thermo-mechanical numerical
modelling, and showed that the surface response to mantle dynam-
ics underneath continental lithosphere is limited to a few hundreds
of metres. However, the numerical modelling did not incorporate
erosion, which is known to enhance crustal exhumation.

We hypothesise that the major Early Cretaceous exhumation/
cooling was driven by the combined action of regional compressional
stresses and sublithospheric mantle dynamics. The regional stresses
are related to the readjustment of the African plate to the differen-
tial opening of the Central, South and North Atlantics, while mantle
dynamics are inherited from the rift system and triggered by the
established lateral thermal gradient between thinned and unthinned
continental lithosphere (Buck, 1986).

The following cooling events, during the Late Cretaceous, the
Palaeocene and the Quaternary, occurred during Africa-Europe con-
vergence, which began during the Senonian (e.g. Ricou, 1994). Fri-
zon De Lamotte et al. (2009) argued that this convergence was
accommodated through time by large wavelength folding/buckling
of the African lithosphere during the Late Cretaceous and Palaeo-
cene, and by inversion of the intracontinental rifts (e.g. Atlas rifts)
typically during the Middle-Late Eocene and the Pliocene-Quater-
nary.

3 | CONCLUSION

The LTT data indicate that the basement of the western Reguibat
Shield experienced a succession of cooling and heating events during
Mesozoic and Cenozoic times. According to inverse thermal mod-
elling, a major cooling episode occurred during the Early Cretaceous
(130-120 Ma), followed by minor cooling episodes during the Cam-
panian (80-70 Ma), the Middle-Late Palaeocene (60-50 Ma) and the
Quaternary (3-0 Ma). These cooling phases are interpreted to be
episodes of crustal exhumation, while the heating events are inter-
preted to reflect subsidence and burial. The exhumation episodes
correlate with regressive events and erosional unconformities docu-
mented in well and seismic data from the neighbouring Atlantic basin
of Tarfaya.

Since similar exhumation events are recorded in other domains
of the Atlantic margin, in Morocco and in eastern North America, we
believe that they are driven by regional processes. The processes are
thought to involve the combined action of regional compressional
stresses and subcontinental mantle dynamics. The regional stresses
are related to plate tectonics and the readjustment of the African
plate to the differential opening of the Central, South and North
Atlantics, while the mantle dynamics are due to lateral thermal gradi-
ents between thinned and unthinned continental lithosphere estab-

lished during the Atlantic rifting.
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