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Abstract

Automated generation of robot controllers using an Evolutionary Algorithm
(EA) has received increasing attention in the last years as it has the potential
for a reduction in the development time of a robot. Often these EAs generate
Neural Networks (NNs) as robot controllers. Using a NN for automatically
generating robot controllers has two important downsides: 1.) A human is
not able to fully understand the inner working of a multi-layer NN, and 2.)
a NN has only limited abilities to decompose a complex task into sub tasks.

Both of these downsides can be addressed by using a State Machine (SM)
instead of a NN as robot controller. Therefore, this thesis introduces an EA
called Evolving State Machines As Controllers (ESMAC). ESMAC gener-
ates SMs instead of NNs. A SM is understandable for humans because of
its modularity and allows for task decomposition by using a state for each
sub task. Furthermore, two extensions of ESMAC are proposed: adaptive
ESMAC and selector ESMAC. Adaptive ESMAC aims to automatically de-
termines the number of states with which the best fitness for a task can
be achieved. Selector ESMAC replaces the transitions that are used in a
SM to switch between states with a NN-based switching mechanism. This
switching mechanism allows mutations to make more gradual changes to a
SM’s behaviours, which improves the performance of the EA.

The performance of ESMAC is evaluated on two robotic tasks: come-
and-go and phototaxis-with-obstacles. All three variants of ESMAC show
equally good performance as a NN-based EA on the evaluated tasks. The
controllers generated with standard ESMAC and adaptive ESMAC hardly
make any state transitions and mainly use one state. However, controllers
that do use multiple states appear to be more robust to changing scenarios
and in noisy environments. Selector ESMAC is able to generate SMs-based
controllers that have complementing states and, therefore, shows potential
for decomposing a task into sub tasks.
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Chapter 1

Introduction

Manually designing robot controllers is hard and time consuming. The Zebro
team [21] of Delft University of Technology experienced this first hand when
they were designing robot controllers for their six-legged robot. The aim
of the Zebro team is to design a fully autonomous swarm of walking robots
that is able to monitor an area. This requires a robot controller that defines
how each robot behaves by mapping the sensor inputs to actuator outputs.
The time-consuming process of designing a robot controller that allows the
robot to walk and interact with neighbouring robots slows down progress
in achieving this goal. Therefore, the Zebro team is interested in exploring
methods that speed up a controller’s design process. One of these methods
is to automatically generate a controller using machine learning.

Automated generation of robot controllers using machine learning has
received increasing attention over the past years. One of the reasons for this
attention is the potential for a reduction in the development time of robots.
Furthermore, by using the right tools complex controllers can be generated
without human ingenuity. Traditional machine learning tools, such as back
propagation for training a neural network, are not suitable for generating
robot controllers because they require training data. Training data, such as
realistic sensor inputs, can only be gathered when the robot is operational,
but making the robot operational is the goal of the learning.

Therefore, artificially designing a robot controller is usually done using
one of two methods: a reinforcement learning algorithm or an Evolutionary
Algorithm (EA). In reinforcement learning a robot learns to improve its
controller by receiving feedback on its performance from the environment or
from designers. Based on this feedback the robot changes its controller.

EAs utilize Charles Darwin’s theory of natural selection to develop robot
controllers. Darwin observed that animals adapt to their environment and
he attributed this to, what later has been called, ‘survival of the fittest’.
In his theory, Darwin stated that random mutations in an individual’s gene
lead to diversity in a population (a group of animals of the same species).
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Because of this diversity some individuals are able to generate more offspring
than others. Therefore, the genes of those individuals are more dominant
in the next generation. Over many generations this means that the genes
of the fittest individuals survive and those of the weak vanish. This idea
can easily be used for automated generation of robot controllers: evaluate
many controllers and ensure that good performing ones are slightly changed
(mutated) and live on.

EAs are applied to robotics in a field that is called evolutionary robot-
ics [19]. Controllers for many standard robotic tasks have been generated
using EAs. Among others, this includes the phototaxis task (moving to a
light) [4], maze navigation [9], and making a legged robot walk [5]. The use
of EAs in robotics, however, is not limited to single robots. EAs have also
been successfully applied to multi-robot tasks, such as flocking [1], aggreg-
ation [6], multi-agent monitoring [7], and creating patterns of tiles [30].

Currently, the type of controller evolved by an evolutionary algorithm
usually is a Neural Network (NN) [11]. A NN maps the robot’s sensor
values to input signals for its actuators using a network of nodes [25]. The
detailed working of a NN will be explained in Section 2.1.

1.1 Problem statement

Two problems appear when evolving a NN as a controller for a robotic task
using an EA. First, solving complex robotic tasks requires an increase in
the number of nodes in a NN, which reduces a human’s ability to interpret
and verify the working of the network [2]. This difficulty of interpretation
is because a NN is a cascade of non-linear functions as will be explained
in Section 2.1. Understanding robot controllers can be highly beneficial to
engineers as it allows for identification of dangerous situations.

Second, for complex robotic tasks evolutionary algorithms encounter the
so called bootstap problem [19]. The bootstrap problem means that the
optimization problem becomes intractable in complex search spaces because
it becomes too hard to rank the controllers and select the better ones. One
of the causes of bootstrapping is that the task as a whole is too complex to
solve and a decomposition into sub tasks is required. However, for complex
tasks it is not always clear what this decomposition looks like and therefore
automated decomposition would be beneficial.

Both these problems can be addressed by evolving a State Machine (SM)
instead of a NN. A SM consists of states, which can all have different func-
tions, and transitions that allow switching between states. Therefore, a SM
naturally decomposes a task in sub tasks. Each state can consist of an un-
derstandable controller because the sub tasks are easier than the whole task.
Furthermore, the transitions allow understanding of the relations between
the sub tasks. Figure 1.1 aims to make intuitively clear why SMs are easier

2



(a) 2-layer NN

State 1

State 2 State 3

c 2 
->

 1

c 1 
->

 2
c1 -> 3c3 -> 1

c2 -> 3

c3 -> 2

+ 3x

(b) SM with three states

Figure 1.1: Example NN and SM with the same number of in- and out-
puts. The SM is more understandable because different component can be
analyzed individually.

to understand than NNs. The relations between all nodes and connections
and how they interact already becomes difficult to understand for a NN
with one hidden layer, five inputs and two outputs. On the other hand, a
SM with the same number of in- and outputs and three states is easier to
understand because of its modularity. This will be more so for controllers
with 24 sensor inputs as used in this thesis.

Therefore, in this thesis the possibility of evolving a SM instead of a NN
for solving a robotic task is investigated. While other works [12, 13] limit the
search space by defining a set of possible state behaviours, the aim of this
thesis is to autonomously generate the behaviour of each state as well. This
allows the creation of behaviours that were not imagined by the designers.
This challenge results in a research question, which is formulated as follows:

Is it possible to automatically generate state machines using an evolu-
tionary algorithm that decompose a task in sub tasks and perform at
least as good as a neural network?

1.2 Contributions

This thesis investigates whether a SM can be generated as a robot controller
using an EA. The author’s key contributions are:

1. Evolving State Machines As Controllers (ESMAC), an evolutionary
algorithm that evolves a state machine that is able to solve robotic
tasks.

2. Two variants on ESMAC: selector ESMAC, uses a different transition
mechanism compared to standard ESMAC, and adaptive ESMAC,
which determines the number of states while running the EA.
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3. A comparison of the performance of ESMAC against the performance
of NN controllers evolved using an EA on two robotic tasks: come-
and-go and phototaxis-with-obstacles.

4. An analysis of the generated controllers in terms of state usage and
robustness.

1.3 Thesis Outline

The content of this thesis is as follows: Chapter 2 introduces the sources of
inspiration and the building blocks of this thesis. Chapter 3 introduces ES-
MAC, an EA that generates a state machine as a robot controller. Chapter 4
explains the experimental setup and the robotic tasks that are used for eval-
uation. Chapter 5 presents the findings of the evaluation of ESMAC on
the selected tasks. The conclusions as well as future work are presented in
Chapter 6.
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Chapter 2

Related Work

This section introduces the building blocks required in this thesis. First, the
general layout of a feed-forward neural network, which is often used in com-
bination with evolutionary algorithms, is presented. Second, generation of
robot controllers using evolutionary algorithms is explained. Last, research
on evolving state machines is reviewed.

2.1 Neural Networks

A robot controller generated using machine learning or evolutionary al-
gorithms is often a Neural Network (NN) [18]. Figure 2.1 shows a per-
ceptron, the smallest NN. A perceptron consists of a set of connections,
trough which inputs arrive, and a node that calculates the output. Each
input ii for i ∈ {1, ..., n}, where n is the number of inputs, arrives trough a
connection that multiplies the input with a weight wi. The weighted inputs
arrive at the node where their weighted sum is calculated. Furthermore,
A bias b is added to the weighted sum, which allows for a constant offset.

I1

I2

In

...

Output

b 

Node

w1

w2

wn

Connections

Figure 2.1: Layout of a perceptron.
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I2

I1

I3

O1

O2

Figure 2.2: Example of a neural network. The input nodes are blue, hidden
nodes are orange, and output nodes are red.

The weighted sum is passed to an activation function, which determines the
output of the perceptron. In this thesis, the activation function is defined
by g(x) = tanh(x), which maps any input in range [−1, 1]. In mathematical
form a perceptron looks like:

o = g(b+
n∑

i=0

wiii) (2.1)

where o is the output of the perceptron, b the bias, wi the weight corres-
ponding to each input.

The output of the perceptron can be fed to an actuator. Perceptrons can
also become nodes in a network when linked with other perceptrons by using
the output of one as input to another. Perceptrons are then called neurons.
A network of neurons without cycles is called a feedforward neural network,
in the following of this thesis indicated as Neural Network (NN). Figure 2.2
shows an example of a multi-layer NN. Layers in a NN are groups of nodes
with connections to the previous and next layer. Nodes in the first layer,
the input layer, receive the actual inputs of the network. Nodes in the last
layer, the output layer, output the actual outputs of the network. Nodes
in a hidden layer, a in-between layer, receive inputs from the previous layer
and send outputs to the next layer.

When the number of hidden layers increases, understanding how the input
values lead to the output of the NN becomes harder. When a non-linear ac-
tivation function such as the tanh function is used, a NN becomes a cascade
of non-linear functions. This makes understanding and manually designing
a NN hard. Therefore, NNs are often generated using machine learning or
evolutionary algorithms, which automatically optimizes the weights and bi-
ases in the network. While automated optimization of NNs has proven to
provide functional networks, explaining a network’s output is hard because
there are many parameters and many interactions between nodes.
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Initialize Population

Mutation

Fitness Evaluation noTermination Criterion?

Crossover

Select Population

Output Optimized Resultsyes

Figure 2.3: Diagram of a standard evolutionary algorithm.

2.2 Generating Robot Controllers using Evolution-
ary Algorithms

Evolutionary Algorithms (EAs) are a set of algorithms that use concepts
from biological evolution to optimize the solution to a problem. EAs are
used in many domains, for example in robotics [18] and bioinformatics [10].
When the performance on a robot task can be described by a fitness function,
which indicates how well a robot controller executes the task, EAs can be
applied to robotics. This method of generating robot controllers is part of
a research field called evolutionary robotics [19].

The most-known EA is presented in Figure 2.3. This algorithm consists
of the following steps:

1. Initialization: A population of n robot controllers is randomly gener-
ated, where n is the number of individuals in the population.

2. Evaluation: Each controller is evaluated with respect to a fitness func-
tion that describes the required behaviour.

3. Selection: The best scoring p% controllers in a generation are selected
to seed the next generation of controllers, where p is user defined.

4. Crossover: In this step two controllers are randomly selected, which
are then combined to generate a new controller. This is repeated until
n new controllers are generated.

5. Mutation: The newly generated controllers are randomly mutated.
6. Repeat from step 2, until a specified number of generations has passed

or a suitable solution has been found.

When the algorithm is finished, the best performing controller is returned
to the user.

The set of controllers that is evaluated at any point in the algorithm is
called a population. Each controller in this population is called an indi-
vidual. Technically, a population consists of genomes instead of controllers.
Genomes are encodings of controllers that can be mutated and which can
be crossed over. In EA terminology, a genome is called a genotype and a
decoded genome is called a phenotype. These terms are important when a

7



genome looks completely different than the corresponding controller. For
example, grammatical evolution is an EA where the genotype is a binary
string and the genotype is a context free grammar [20]. However, in ESMAC
the genotype and the phenotype are almost the same.

Every iteration of the algorithm (from step 2 till 5) is called a generation.
The fitness of the controllers is expected to improve with generations, be-
cause only the scoring individuals of the each generation are used for the
next generation.

The standard algorithm presented here, which uses both crossover and
mutation, is called a genetic algorithm [33]. In recent works, for example
in [32], crossover is often skipped and the selected controllers are only
mutated. This type of EA is called evolutionary computation. Elitism is
another improvement to the evolutionary process that is often used. When
Elitism is used, the elite, the k best performing individuals, are copied to
the next generation without crossover or mutation. The size of the elite k is
a user parameter. Elitism ensures that in a static environment the highest
fitness can only improve, and cannot decrease because of a ‘bad’ crossover
or mutation.

2.2.1 Neuroevolution

Optimizing a NN using an EA is called neuroevolution. Neuroevolution is
often used in evolutionary robotics for controller generation, for example
in [29], [31], and [32]. A robot controller that consists of a fixed topology
NN is generated as follows using an EA: First, a population of n NNs is
generated, where the weights and biases of each network are randomly ini-
tialized. After evaluation and selection, crossover is performed by cutting
two individuals at the same spot and gluing the different halves together,
creating two new individuals. Mutation randomly changes the weights and
biases of the newly created individuals. In this thesis, numbers such as the
weights and the biases can be mutated in two ways: a replace mutation,
which replaces the number by a random number, or a gaussian mutation,
which adds a random draw from a Gaussian distribution to the number.

A neuroevolution algorithm that is a source of inspiration for adaptive ES-
MAC is Neuroevolution of Augmenting Topologies (NEAT). NEAT evolves
both the topology of the networks and their weights and biases at the same
time. This allows for minimal but not too small networks. Special operators
for mutation and crossover are introduced that can cope with different to-
pologies while the EA runs. Furthermore, it introduces speciation, which is
meant to protect newly evolved topologies. Speciation divides a population
in species based on genetic difference, meaning similar individuals are put
in the same species. The size of these species is determined by their fitness
relative to other species. Adaptive ESMAC uses speciation to protect State
Machines (SMs) that just extended their topology.

8



2 3

1

sub 1
sub 2

sub 3

Figure 2.4: Sub modules within
the main SM, as proposed in [3].

Figure 2.5: Layout of PFSM used
for robot clustering in [15].

2.3 Evolving State Machines using an EA

As the goal of this thesis is to generate a SM using an EA, this section
presents a review of the work on evolving SMs. A SM is an abstract machine
that maps a set of inputs to a set of outputs. In case of a robot controller, a
SM maps sensor inputs to actuator outputs. A SM consists of a set of states,
one of which the robot is in at any moment in time, a set of transitions,
and an action function that maps the current state and the inputs to an
action, or output. Transitions allow the robot to change state based on the
sensor inputs. In this thesis, Deterministic Finite State Machines (DFSMs)
are used, which means that no random transitions are made and every SM
consists of a finite number of states.

One of the first works on learning a DFSM using an EA is by Spears and
Gordon [27] who aim to learn a resource-capturing game in which an agent
is to capture more ground patches than a pre-programmed adversary. The
SM representation used by Spears and Gordon cannot be used in this work
as their SM’s genome requires a small and discrete range of the inputs and
can therefore not be used with continuous sensors.

An useful improvement to increase the performance of EAs that generate
SMs is introduced by Chellapilla and Czarnecki [3]. In their work they evolve
a SM with sub SMs as shown in Figure 2.4. In each generation either a sub
module or the main SM is changed. This technique can be applied in our
approach, where NNs are sub modules.

Automated generation of state machines as robot controllers is introduced
in [22]. In this work, transitions are based on a condition in the form
{senori [<,==, >] n}, where sensori is a sensor input and n is a num-
ber. ESMAC uses this condition representation. Contrary to the approach
in this thesis, basic behaviours are designed manually and not evolved with

9



Expert network 1 Expert network 2 Expert network 3 Expert network 4

Decision Neuron 1 Decision Neuron 2

Figure 2.6: Example of an ETDN network [29]. The expert networks are
NNs that can control a robot. The decision neurons determine which expert
network is used based on the sensor input.

the SM. Furthermore, ESMAC does not use incremental learning, which
means that the difficulty of the tasks increases as the algorithm progresses.

AutoMoDe [12, 13] is an initiative towards general-purpose automated
design methods and focuses on generating a SM-based controller for swarm
robotic tasks. In AutoMoDe the possible transitions and the states (beha-
viours) are already implemented and the EA is cannot create new trans-
itions or behaviours. In a similar work, a Probabilistic Finite State Machine
(PFSM), which runs on every robot, is generated using Particle Swarm Op-
timisation (PSO) [16]. Only the transition probabilities and the predefined
behaviour that each state executes are evolved. In this thesis, both the
topology of the SM and the basic behaviours of the robots are evolved.

A source of inspiration for selector ESMAC, which is introduced in Sec-
tion 3.2.4, is the generalization of the Emergent Task Decomposition Net-
work (ETDN) architecture [29]. This architecture consists of several neural
networks, called expert networks, that should specialize in a specific task
while running the EA. Besides the expert networks, decision neurons are
evolved that aim to select the correct expert network to use based on the
sensor inputs. Figure 2.6 shows the layout of this architecture with four
expert networks. Selector ESMAC replaces the decision neurons with a per-
ceptron network and puts one in each state to allow for state-dependent
state changes.

In summary, research in generating state machines using an EA is in its
early stages. A compact form of representing conditions on transitions has
been identified, which will be used in this thesis. Furthermore, this work
will, to the best of our knowledge, be the first to introduce a method to
simultaneously evolve a SM’s topology and each state’s behaviour.
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Chapter 3

Evolving State Machines As
Controllers

The goal of this thesis is to introduce an automated generation procedure for
robot controllers that are more understandable for humans than multi-layer
Neural Networks (NNs). This generation procedure utilizes an Evolutionary
Algorithm (EA) to evolve a State Machine (SM) that will be used as con-
troller. This section introduces the layout of the SM-based controller and
an automated generation procedure that evolves these controllers using an
EA. The overall system is called after what it does, namely Evolving State
Machines As Controllers (ESMAC).

3.1 State machine-based controller

Figure 3.1 shows the layout of the high-level robot controller used in this
thesis. The controller’s inputs are the robot’s sensors indicated by the set
I = {I1, ..., In} with n being the number of sensors. These sensors can range
from a simple distance sensor to a more complex LIDAR system or radio
receiver. The controller’s outputs are signals to the robot’s actuators and
other peripherals, such as motors and radio transmitters. Output signals
are indicated with O = {O1, ..., Om} with m being the number of actuators.

At the base of the controller is a finite Mealy state machine [26], which
is defined by a 6-tuple, (S, s0,Σ,Λ, T,G), consisting of a finite set of states
S, an initial state s0, a set of input signals Σ, which are all combinations of
inputs from the sensors, a set of output signals Λ, which are all combinations
of the outputs of the controller, a transition function T : S ×Σ→ S and an
output function G : S × Σ→ Λ.

The output function G for each state is defined by single-layer NN or, in
other words, a perceptron for each output. A single-layer NN makes the
working of a state understandable. Every state has its own single-layer NN,
which makes the output function state dependent.

11



I1 I2 I3 I4

O1 O2
CS1 -> S3

S1 S2S3

CS2 -> S1

State Pointer

CS3 -> S2CS3 -> S1

Figure 3.1: Layout of the state machine-based robot controller. Ii indicates
sensor i. Oj indicates actuator j. The states of the state machine are the
large circles marked with Si. CSi→Sj indicates the condition for branching
from state i to state j. The state pointer (indicated by the blue arrow)
points to the current state of the robot.

In the following the NN of state si will be indicated with NNsi . At every
controller step t, the NN of the controller’s state at time t is executed with
as inputs the sensor readings and its outputs are fed to the actuators. As
stated before, NNsi for all states si ∈ S consists of a perceptron for each
output. Therefore, output j given st, the controller’s state at t, can be
calculated as follows:

Oj,st = g(bj,st +
∑

i=1,...,n

wi,j,stIi) (3.1)

In this equation wi,j,st is the weight of NNst ’s connection from input i to
output j and bj,st is NNst ’s bias of output j.

The state pointer keeps track of the current state of the controller. A state
transition from state i to state j is defined by the tuple TSi→Sj = (ob, c)
where ob is a boolean operator in {and, or} that is used for combining the
conditions and c = {c1, ...cn} is a set of conditions. Each condition ck ∈ c is
of the form:

Il [<,>,=] vk (3.2)

where Il is a sensor input and vk is a numeric value. Every controller step,
the transition function T evaluates all outgoing transitions of the current
state. If all transitions evaluate to false the current state is returned. Oth-
erwise the transition function returns the destination of a randomly selected
transition that evaluates to true.
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3.2 Evolving a state machine-based controller

To automatically generate state machines as proposed in the previous sec-
tion a specially designed EA, called Evolving State Machines As Controllers
(ESMAC), is introduced. There are three versions of ESMAC: standard
ESMAC, adaptive ESMAC, and Selector ESMAC. Adaptive ESMAC ex-
tends standard ESMAC by dynamically changing the number of states and
selector ESMAC slightly changes standard ESMAC by replacing the transti-
tions with NN-based state switching. But first, the genotype of a SM-based
controller is introduced.

3.2.1 Genetic encoding

The genotype of a state-transitioned controller is shown in Figure 3.2. Each
state is represented by a state gene. A state gene contains an identifier, the
weights for each of the connections in the neural network wi,j and a bias bj
for each of the output nodes of the network. The state’s identifier is unique
and cannot be changed by mutation or crossover.

A transition is represented by a transition gene. A transition gene refers
to the state where the transition comes from, Sfrom, and to the state where
the transition goes to, Sto. Furthermore, it contains a set of conditions
in the form introduced in the previous section and a boolean operator for
combining them. In addition to those, it contains a boolean to signal whether
the transition is enabled, that is the transition can be taken. This enable bit
allows the (temporal) removal of transitions without losing the conditional
information of the transition.

3.2.2 Standard ESMAC

Standard ESMAC optimizes the states and transitions of a fully connec-
ted SM with user-defined number of states nstates. A population of SM
genomes is initialized by randomly initializing genomes with nstates state
genes. Furthermore, a transition gene with one random transition condition
is initialized between every pair of states. The resulting genome encodes a
controller that consists of a fully-connected SM.

The standard evolutionary process, as introduced in Section 2.2, is used
for generating an optimized controller. Every generation the best 20% of
controller genomes is used as a seed for the next generation. Elitism, in-
troduced in Section 2.2, ensures that the k best genomes continue to the
next generation without modification. The other n− k genomes of the next
generation are generated using crossover.
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Genome (genotype)

State
Genes

Transition
Genes

State 1
w1, 1 0.5
w1, 2 0.7

...
wn, m 0.2

b1 0.5
b2 1.0

...
bm -1.3

From 1
To 2

ob: and
c1: I1 < 1.0
c2: I4 = 0.3

Enabled

From 1
To 3

ob: and
c1: I1 < 1.0
c1: I3 < 1.0

Enabled

From 2
To 3

ob: or
c1: I1 = 1.0
c2: Im > 0.2

...
cm: I1 < 1.0

Enabled

State 2
w1, 1 0.5
w1, 2 0.6

...
wn, m -1.1

b1 -0.1
b2 1.0

...
bm -1.3

State 3
w1, 1 0.0
w1, 2 0.7

...
wn, m -0.2

b1 0.2
b2 1.0

...
bm 0.0

From 3
To 1

ob: and
c1: I3 > 1.0

Enabled

From 3
To 2

ob: or
c1: I1 < 1.0
c1: I3 < 1.0
Disabled

Figure 3.2: Genotype of a robot’s controller.

Crossover

Crossover works on 2 randomly-selected seed genomes. The states are sorted
on identifier and a random cut divides the states in both genomes in two
parts. The states in the first part are in the cut; the others are not. Two
new genomes are generated by swapping the states that are not in the cut.
Transitions genes that do not have endpoints in the cut are also swapped.
Each transition that crosses the cut is swapped with a 50% probability.
Figure 3.3 shows an example crossover on 4-state SMs.

Mutation

Mutation randomly mutates the state genes and transition genes in every
newly generated genome. The NN in each state gene is mutated as described
in Section 2.2.1. Transition genes can be mutated in five ways: a toggle
enable mutation, a change condition operator mutation, an add condition
mutation, a change condition mutation, and a remove condition mutation.
Each mutation has a user-defined probability of occurring. The enable bit
of a transition can be toggled with the toggle enable mutation. The change
condition operator mutation changes the boolean operator ob, which is used
for concatenating the conditions. Adding a new randomly initialized con-
dition to the transition is done with the add condition mutation. A change
condition mutation randomly changes one of the conditions. A condition
can be changed by randomly changing the sensor used on the condition, by
randomly changing the condition’s comparison operator, or by mutating the
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S1 S2

S3 S4

seed genome 1

S1 S2

S3 S4

S1 S2

S3 S4

new genome 1

S1 S2

S3 S4

new genome 2

seed genome 2

Figure 3.3: Crossover of two controllers in standard ESMAC. The dashed
line indicates the cut of the SMs. States that are not in the cut are swapped.
Transitions that cross the cut are swapped with a 50% probability.

comparison value. For example, the condition I1 == 1.0 can be mutated to
I2 == 1.0, I1 > 1.0 or I1 == 0.5. The remove condition mutation removes
one of the conditions from the transition.

3.2.3 Adaptive ESMAC

In standard ESMAC the number of states are fixed and each state is con-
nected to all other states by transitions. Adaptive ESMAC is inspired by
Neuroevolution of Augmenting Topologies (NEAT) [28] (Section 2.2.1) and
allows for adding and removing states and transition with the aim to gener-
ate minimal SMs. Initially a random population of genomes with only one
state is generated. Mutations extend the genomes while the EA runs.
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1 32

Add transition

1 32

1 -> 2 2 -> 1 2 -> 3 3 -> 1 1 -> 2 2 -> 1 2 -> 3 3 -> 1 3 -> 2

1 2 3 1 2 3

Figure 3.4: Illustration of the add transition mutation, with the genome
shown above the corresponding state machine. Changes are colored blue.

Mutation

Adaptive ESMAC extends standard ESMAC with two mutations: an add
transition mutation and an add node mutation.

The add transition mutation selects two random states and creates a trans-
ition between them. In case a transition was already present it is enabled.
A new transition contains one condition, which is randomly initialized. Fig-
ure 3.4 shows an example of such a mutation.

The add state mutation introduces a new state, with a randomly initialized
neural network, and connects it to the SM by an outgoing transition and an
incoming transition both from a random state. As an identifier the current
number of states plus one is used. This allows for diverse crossover because
states are matched based on this identifier, which does not say anything
about the state’s functioning. An example of this mutation is shown in
Figure 3.5.

Crossover

Extending individual genomes means that there can be genomes with a
different number of states or a different number of transitions within a pop-
ulation. Therefore, a new crossover operator is required that is able to deal
with different genome topologies. This crossover operator matches the states
and transitions, the building blocks of a genome, of two seed genomes, gp1
and gp2, and combines them into a child gchild.

States are matched based on their identifiers. State identifiers are well
suited for matching, because every newly introduced state gets an identifier.
For states that are present in both parents, one of the states is selected
at random to be included in the child. Furthermore, the states that are
present in the fittest parent, but not in the other, are also included. Using
this selection method the state’s functioning, i.e. its neural network stays
intact. This is in line with the assumption that the functioning of the state
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1 32

Add state

1 32

1 -> 2 2 -> 1 2 -> 3 3 -> 1 1 -> 2 2 -> 1 2 -> 3 3 -> 1

1 2 3 1 2 3 4

4

2 -> 4 4 -> 3

Figure 3.5: Illustration of the add state mutation, with the genome shown
above the corresponding state machine. A state is added and connected to
two random existing states. The blue color indicates change.

contributes to the better fitness and crossover within a neural network can
break useful parts of the network [8].

The transitions are matched based on the pair (Sbegin, Send), their begin-
and end state. As with states, when the same transition is present in both
parents one of the transitions is selected at random. Transitions that are
only included in the fittest parent are also selected. Though the origin of
matched states and transitions is similar because of matching identifiers,
their inner working can be completely different due to mutation. However,
only identifiers are used for matching because they allow for easy topology
matching.

Figure 3.6 shows the crossover operation of two parents with an equal
fitness. It shows that a random state or transition is selected in case of
matching identifiers. States or transitions without a match are always in-
cluded in the child, because the parents are equally fit.

Speciation

New structures are given a change to evolve trough speciation similar as
in NEAT [28]. The population of controllers is divided in groups based on
similarities in topology. This means that controllers with a similar topology
end up in the same species. Speciation protects a new SM topology and
allows it to optimize the weights and biases of the NNs and the conditions
of the transitions. Without speciation a new topology that does not perform
well because it is not (yet) optimized will not survive one generation.

A compatibility distance δ is used to indicate the compatibility or similar-
ity between two genomes. The compatibility distance is a linear combination
of the number of unique states (D), unique transitions (T ), the difference
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1 32

1 -> 2 2 -> 1 2 -> 3 3 -> 1

1 2 3

1

4

2

1 -> 2 2 -> 1 2 -> 4 
Disabled 4 -> 2

1 2 4

1 -> 4

1 -> 2 2 -> 1 2 -> 4 
Disabled 4 -> 21 -> 4

1 -> 2 2 -> 1 2 -> 3 3 -> 1Parent 1 
transitions 

Parent 2 
transitions 

Offspring
transitions 2 -> 1 2 -> 4 

Disabled 4 -> 21 -> 4 2 -> 3 3 -> 11 -> 2

1 32

4

1 2 3 4

2 -> 1 2 -> 4 
Disabled 4 -> 21 -> 4 2 -> 3 3 -> 11 -> 2

Offspring
genome

crossover

gp1 gp2

gc

Figure 3.6: Crossover operation of ESMAC. The states and transitions are
matched based on their identifier. Selection in the child is indicated by
a black dot. In this example the parents are equally fit so matches are
randomly resolved.

between the number of conditions in matching transitions (δC), and the
average weight and bias difference of the neural networks in the matching
states (δW ):

δ = c1(D + T ) + (1− c1)(δC + δW ) (3.3)

where c1 is a coefficient to adjust the importance of the factors. For two
matching states Si and Sj the average weight and bias difference, δW , is
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calculated by:

δW =

∑n
k=1

∑m
l=1 |wk,l,Si

− wk,l,Sj
|

m ∗ n
+

∑m
l=1 |bl,Si

− bl,Sj
|

m
(3.4)

where wk,l,Si
is weight wk,l in state Si, bl,Si

is bias bl in state Si, m is
the number of outputs, and n is the number of inputs. For two matching
transitions Ti and Tj the difference between the number of conditions is
calculated by:

δC =

∣∣|Ci| − |Cj |
∣∣

max{
∣∣|Ci| − |Cj |

∣∣∣∣∣for all matching Ci, Cj}
(3.5)

where |Ci| gives the number of conditions of transition i.

The genomes are divided in species as in NEAT. A genome is put in the
first species where the compatibility with a random genome in that species
is less than δt, the compatibility threshold. If δt is exceeded for each species
a new species is created.

For reproduction explicit fitness sharing is used [14]. Explicit fitness shar-
ing allows small species to survive in a population by dividing the fitness
of each genome by the number of individuals in its species. Therefore the
adjusted fitness of an individual i in species j is: fij = fi

|speciesj |
, where fi is

the fitness of the individual as evaluated. Species are then resized using the
following formula:

N
′
j =

⌊∑Nj

i=1 fij

f

⌋
, (3.6)

where Nj and N
′
j are the old respectively the new number of individuals in

species j, fij is the adjusted fitness of individual i in species j and f is the
mean adjusted fitness in the entire population. When rounding has caused
the population size to decrease, the size of species with the highest average
adjusted fitness is increased so that the population has its original size.

N
′
j offspring is generated for each species performing crossover and muta-

tion among the best r% of the species, where r is a human input.

3.2.4 Selector ESMAC

The above described implementations of ESMAC use state transitions to
switch between states. However, experiments show that transitions are
hardly used, which causes the generated controllers to function as a single-
state controller. The sheer amount of possible transitions might be one of
the causes that transitions are hardly used. Another possible cause is that
adding a transition can completely change the controllers behaviour, which
means that similar controllers do not produce similar fitness. Therefore,
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Genome (genotype)

State
Genes

Selector 
Genes

State 1
w1, 1 0.5
w1, 2 0.7

...
wn, m 0.2

b1 0.5
b2 1.0

...
bm -1.3

State 2
w1, 1 0.5
w1, 2 0.6

...
wn, m -1.1

b1 -0.1
b2 1.0

...
bm -1.3

State 3
w1, 1 0.0
w1, 2 0.7

...
wn, m -0.2

b1 0.2
b2 1.0

...
bm 0.0

Selector 1
w1, 1 0.5
w1, 2 -0.7

...
wn, |S| 0.3

b1 1.1
b2 0.1

...
b|S| -0.4

Selector 2
w1, 1 0.5
w1, 2 0.8

...
wn, |S| 0.2

b10.9
b2 1.0

...
b|S| -2.3

Selector 3
w1, 1 0.6
w1, 20.7

...
wn, |S| 0.75

b10.5
b2 -1.5

...
b|S| -1.3

Figure 3.7: Genotype of a robot’s controller when selectors are used for state
switching.

selector ESMAC replaces transition genes with selector genes, which is as-
sumed to make changes to the controllers behaviour more gradual. Selector
genes, one for each state gene, contain the weights and biases for a per-
ceptron network with as inputs the sensor values and as many outputs as
there are states. A controller executes the perceptron network represented
by the selector gene of the current state and the index of the highest score is
the next state. Using this method of selecting the next state it is expected
that the number of state changes increases, because all sensors influence the
decision and not just those that are on the transitions. Furthermore, a next
state is always selected, and a lack of transitions (or transitions with con-
ditions that cannot become true) does not influence the number of possible
next states.

As an example for how state changes are made with this controller type
consider a 3-state controller that is in state 1 at time t. Then after feeding
the output of state gene 1’s perceptron network to the actuators, it also
runs the perceptron network represented by selector genome 1. Suppose the
output of this network is [0.5, 0.0, 0.6]. The highest output is at index 3
(starting from 1) and therefore the state at t+ 1 will be state 3.

Figure 3.7 shows the genome of a state-selected controller. Crossover goes
as in standard ESMAC, by making a cut and swapping the state genes (and
selector genes) that are not in the cut. Both the state genes and the selector
genes are mutated as the state genes in standard ESMAC.
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Chapter 4

Experimental Setup

Repeatable experiments are important because they allow results to be veri-
fied by others. Therefore, it is of sheer importance to understand how ex-
periments are conducted and what experiments are conducted. This chapter
focuses on how the experiments in this thesis are conducted, the next chapter
focuses on the experiments and their results. This chapter, first, explains
the software components that are part of the experiments and how they in-
teract. Second, the scenarios used to evaluate the performance of the robot
controllers are introduced.

4.1 Software Components

Two parts have been implemented to evaluate the performance of Evolving
State Machines As Controllers (ESMAC): ESMAC’s Evolutionary Algorithm
(EA) and a simulation engine. Those parts are interconnected using the
Robot Operating System (ROS) [24], a platform often used in robotics to
provide support communication between components within a robot. Fig-
ure 4.1 shows how the EA interacts with the simulation engine. The code
for these components, including usage details, can be found on: https:

//github.com/matthijsdentoom/ros-ea.

4.1.1 Implementation of ESMAC’s EA

The task of ESMAC’s EA is to generate controllers and randomly modifying
them while keeping the best controllers. Chapter 3 describes this process.
The performance of the controllers created by the EA is evaluated in a simu-
lation engine that runs the required task. ESMAC’s evolutionary algorithm
has been implemented in Python mainly because Python’s ease of use and
ease of modification. Another advantage of using python for the EA is that
many other EAs are implemented in python, which, therefore, allows for
direct comparisons.
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ESMAC EA Simulation Engine

Evaluate controllers

g++

g = gmax

Select and modify
genomes

Genomes

Receive genomes

Decode Genomes
to Robot Controllers

Actuator inputs

Robot
Controller

Sensor readings

Simulator

Scores

Send scores back to
EA

g = 0

Generate initial
controller genomes

Output best
performing controller

Evaluate controllers

Figure 4.1: Interaction of the software components of ESMAC. g stands for
generation and gmax for the number of generations the algorithm runs.

As a basis for implementation a Python library called neat-python [17]
is used. This library contains an implementation of the Neuroevolution of
Augmenting Topologies (NEAT) algorithm (Section 2.2.1). Many elements
of ESMAC are already implemented in this library because of ESMAC’s re-
semblance to NEAT. Using this library, mutation and crossover of controllers
is implemented as described in the previous chapter. Every iteration of the
algorithm these genetic operators are used to generate new controllers. The
generated controllers are sent to the simulation engine that evaluates the
performance of the controllers on a simulated robot and returns the res-
ults to the EA. These results are used to select the controllers in the next
generation.

4.1.2 Implementation of the simulation engine

The simulation engine’s task is to decode a genome sent by the EA and run
the resulting controller on a simulated robot for a user-defined amount of
time. After running the controller, the controller’s performance with respect
to predefined metrics is reported to the EA.

For the evaluation of the controllers, a robot simulator called Autonomous
Robots Go Swarming (ARGoS) is used. ARGoS [23] is a simulation platform
for (swarm) robotics research. This simulator has been chosen because it is
extensively used in robotic research and because it already includes physics
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engines and robot models. Furthermore, ARGoS is easily adapted to be used
as evaluation tool for an EA. Multiple instances of the simulation engine can
be launched, allowing the time consuming task of evaluating the performance
of the robot controllers to be executed in parallel.

The robot used in simulation is foot-bot, a model of which is already
included in ARGoS [23]. The foot-bot has 24 proximity sensors and 24 light
sensors both in a ring around its body. To reduce the complexity of the
controllers, the number of proximity sensor and the number of light sensors
are both reduced to 12 in this project. Therefore, there are 24 sensor inputs
to a controller. The range of a light sensor is unlimited (with an exponential
reduction in detection strength as distance increases) and the range of a
proximity sensor is 0.5 meter. All sensor readings are normalized in the
range [0, 1]. The robot uses differential drive to move around, which means
that the robot has 2 actuators, a left and a right motor. A controller needs
to provide a normalized motor speed in the range [-1, 1] for each of the two
motors.

4.2 Evaluation Tasks

To investigate whether it is possible to evolve a State Machine (SM) con-
troller that outperforms a Neural Network (NN) controller, robot tasks that
(to the eye) need to be executed with a multi-state controller are required.
Such tasks have two characteristics: 1.) different actuator outputs need to
be generated with the same sensor inputs at different phases of the task, i.e.
the task consists of mutually exclusive sub tasks, and 2.) the robot controller
can deduct which sub task to execute based on the sensor input. Unfortu-
nately there are no reproducible benchmark tasks have these characteristics
and can be used to experiment with automated task decomposition. There-
fore, this section introduces two simple robotic tasks that comply with these
characteristics: come-and-go and phototaxis-with-obstacles.

4.2.1 The come-and-go task

A simple task with potential for sub-task decomposition is come-and-go.
This task requires a robot to go to a light and once the light has been
reached move as far as possible away from the light. In real-life this task
occurs when a robot needs to find a bomb, pick it up and get as far away as
possible from its original location in order to ensure that location’s safety.
This task can benefit from multiple states as the light sensors are first needed
to find the light and once the light has been found to steer away from it.

Figure 4.2 shows the layout for a come-and-go scenario. The initial ori-
entation and location of the robot is randomized to avoid overfitting. At the
beginning of each simulation the robot is dropped somewhere in the blue
area.
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Figure 4.2: Layout of come-and-go scenario. The yellow circle indicates
the location of the light and the gray elements are obstacles. The robot is
dropped randomly in the blue area at the beginning of each simulation.

Fitness Evaluation

The fitness fc,i of a controller, c, in a specific come-and-go scenario i is
indicated by the distance between the robot and the light after the light has
been found. Controllers that are not able to find the light are not rewarded.
Equation 4.1 gives the fitness function for a come-and-go scenario, where
loclight is the location of the light, locrobot,t is the location of the robot at
time t and tsim end is the duration of the simulation, which is either the
number of time steps until the first collision or tmax, the maximum duration
of a simulation. A higher fitness indicates better performance.

fc,i =

{
0, if |loclight − locrobot,t| > 0.1 for t = 0, ..., tsim end

|loclight − locrobot,tsim end
|, otherwise

(4.1)
The fitness of a controller, fc, is the average performance on the evaluated

scenarios:

fc =

∑# scenarios
i=1 fc,i

# scenarios
(4.2)

An EA uses this fitness for selection among controllers.

4.2.2 The phototaxis-with-obstacles task

Another simple benchmark task used to evaluate the effectiveness of evolving
a SM instead of a ‘normal’ NN is phototaxis-with-obstacles. The robot’s task
is to go to a light using its light sensors, without colliding with obstacles.
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This task has been chosen because it can be decomposed into sub tasks, for
example avoid obstacles and go towards the light. While this decomposition
does not consist of mutually exclusive sub tasks, because a robot can avoid
obstacle while going to the light, the sensor outputs can clearly indicate
when a state transition is required, namely when the robot gets close to
an obstacle. Two variants of this task have been used for the evaluation of
ESMAC: a set of static scenarios and randomly generated scenarios.

Static scenarios

Figures 4.3 (a) - (d) show the layout of the four static scenarios used to
evaluate a controller’s performance while the EA is running. In this thesis,
these scenarios are called training scenarios. Using fixed scenarios instead of
randomized scenarios during generation makes the experiments repeatable,
but it comes with the risk of overfitting on the selected scenarios. Overfit-
ting, which means that the generated controllers work well in the training
scenarios but not in other scenarios, is undesirable because the EA is not
able to generalize the task. To reduce the risk of overfitting, the four scen-
arios are of incremented difficulty, while the obstacles of different scenarios
do not overlap completely.

Scenarios 5 and 6, as seen in Figure 4.3 (e) - (f), are evaluation scenarios
that are only used to evaluate the robustness of the controllers generated
using an EA. The evaluation scenarios are selected because they rely on
the same principles as the training scenarios, but are significantly different.
Scenario 6 is also more complex than the training scenarios as multiple
obstacles need to be avoided.

Random scenario

Because evaluating the controllers on fixed scenarios increases the risk of
overfitting, a scenario with randomly positioned obstacles is also created.
Figure 4.3 (g) shows this scenario. Four obstacles are positioned between
the robot and the light, and are moved along the x-axis by a random number
in range [-1, 1] when the environment is reset. ESMAC evaluates each
controller on four randomly generated scenarios.

Fitness Evaluation

The performance (or fitness) of a controller, c, on a specific phototaxis scen-
ario i in the simulator is calculated by:

fc,i =

min(tmax,tcollision)∑
t=1

1−
|loclight − locrobot,t|

distancemax
(4.3)
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6 (g) Random scen-
ario

Figure 4.3: The layout of six static scenarios and one random scenario of
the phototaxis task with obstacles used to evaluate ESMAC’s performance.
The yellow circle is the light, the blue circle is the starting point of the
robot, and the grey blocks are obstacles. The arrows in the random scenario
indicate the possible deviation of the obstacles.

where tmax is the user-defined maximum running time of the simulation,
tcollision is the time of the first collision, loclight the location of the light,
locrobot,t the location of the robot at time step t and distancemax the max-
imum possible distance between the robot and the light. A higher fitness
indicates better performance.

As with the come-and-go task, the fitness of a controller in ESMAC (or
another EA) is the average score of the evaluated scenarios and is calculated
by Equation 4.2.
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Chapter 5

Evaluation and Results

The goal of this thesis is to investigate the possibilities of evolving a State
Machine (SM) instead of a Neural Network (NN) using an Evolutionary
Algorithm (EA). To this end, an EA that evolves SMs, named Evolving State
Machines As Controllers (ESMAC), has been introduced in Section 3. This
section presents the performance of ESMAC on the evaluation tasks that
have been introduced in Section 4.2. A detailed overview of the parameters
used for these experiments is given in Appendix A.

5.1 ESMAC on the come-and-go task

The come-and-go task requires two complementary actions to be executed,
depending on whether the light has been found or not. To achieve this, a
multi-state SM is assumed to be a good controller choice. Figure 5.1 shows
the performance of the best scoring controllers for different controller types
for every generation. ESMAC is used to generate SMs controllers with three
and with five states. The NN-based controllers, which are the NN with one
hidden layer and the perceptron network, are generated with the standard
EA introduced in Section 2.2.1.

None of the EAs are able to solve this task since a successful run with 600
time steps would allow a robot to travel at least 20 meters after finding the
light, i.e. have a fitness of at least 20. The spikes in the fitness are caused by
controllers that are not able to find the light, which results in a fitness score
of 0 and has a visible effect on the average with only 10 randomly seeded
evolutionary runs. This can be deduced from the high average standard
deviation in the fitness of the best controllers over all controller types and
all generations, which is 3.6 (std: 0.93).

The standard deviation of the best 3-state and 5-state controllers at the
last generation are 1.52 respectively 3.95. The better performance of ES-
MAC with 5 states compared to ESMAC with 3 states is a mere coincidence
as its standard deviation is high and the low number of repetitions of the
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Figure 5.1: Average fitness of best scoring controllers (over 10 evolutionary
runs) for different controller types with respect to the number of generations
the EA ran on the come-and-go task.

evolutionary runs. This has been confirmed by generating 10 new controller,
which resulted in completely different outcomes and a lower average fitness.
A valid performance comparison is hard because too little evolutionary runs
are executed for a good average fitness, but the performance of ESMAC and
the NN-based EA are similar in terms of obtained fitness.

It is interesting to see whether the generated SM-based controllers actually
use different states. Table 5.1 shows the average number of states used by
the generated controllers and the percentage of time these controllers spend
in the most-used state for 1000 randomly initialized simulations. This table
shows that the controllers spend most of their time in one state. Other
states are used only 1% of the time average for the 3-state SMs, which
comes down to 6 time steps in this experiment. This is not enough time to
make the robot considerably change behaviour and is therefore not counted
as a meaningful usage of different states.

The evolutionary runs of ESMAC for a 5-state SM clearly show how the
usage of different states is reduced over generations. Figure 5.2 shows the
average time spend in each state during simulation sorted by duration of use
for the best controllers per generation. It can be seen that while the best
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3-state controllers 5-state controllers

Average number of states used 1.44 1.15
Fraction of time in most-used state 99.0% 99.9%

Table 5.1: The average number of states used and the fraction of time spend
in the most-used state for 3-state and 5-state controllers.

Figure 5.2: The average time spend in each state (sorted by fraction of time
used) for the best 5-state SMs generated using ESMAC for each generation.

controllers in the first generations use other states besides the most-used
state, the best controllers in later generations almost only use one state.

In conclusion, ESMAC is not able to generate SMs with multiple states
for this task. While in early generations there are some state switches, these
are filtered out in later generations. The most likely cause for this it that
well performing single-state SMs are able to obtain the same fitness as multi-
state SMs. As there is no benefit in using multiple states, controllers that
use only one state dominate the population. This leads to the conclusion
that for an easy task that only requires one state ESMAC is able to produce
a simple controller that only uses one state. Therefore, the next section
evaluates the performance of ESMAC on a better understood problem.
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5.2 ESMAC on phototaxis-with-obstacles

The phototaxis-with-obstacles task is chosen because it can best be solved
by a multi-state controller (see Section 4.2.2). Therefore, it is expected that
SM controllers generated using ESMAC perform better than NN controllers
generated using a standard EA.

Figure 5.3 shows the average fitness of the best scoring controllers for
different controller types for each generation of the EA. Unless specified
otherwise, the averages in this section are taken over 10 evolutionary runs
to filter the random elements of the EA. This number of repetitions is chosen
mainly because an analysis takes one night to finish on the used computers.
More repetitions lead to more consistent results, which is important in future
work. ESMAC is used to generate SMs controllers with three and with
five states. The NN-based controllers are generated with the standard EA
introduced in Section 2.2.1. From Figure 5.3 it can be seen that all EAs find
equally good solutions. The slightly better performance of the 5-state SM
controllers is due to the EA finding a controller that performs very good on
scenario 4 in one of the runs, while all others EA runs (including the other
nine of runs for a 5-state SM) perform medium on that scenario.

Inspection of the state usage of the best SM-based controllers shows that
two of the ten generated 3-state controllers make a state switch in the train-
ing scenarios. These controllers are compared against the two best control-
lers that do not switch state in the training scenarios. Table 5.2 shows the
average performance of the controllers that make state switches and those
that do not on the training scenarios and on the evaluation scenarios. The
table also shows the performance of the controllers when the sensors are
noisy. Noisy sensors are simulated by adding a uniform random number in
range [-0.2, 0.2] to the actual sensor value. The fitness of the entries indic-
ated with noisy sensors are averages over 100 runs. The performance of the
controllers with noisy sensors are an indication of their robustness.

From Table 5.2 it can be concluded that without noise the non-switching
controllers perform significantly better than the controllers that do make
state-switches. However, when noise is added to the sensors the switching
controllers perform better in the more difficult scenarios 3, 4 and 6. In-
spection of the robot’s trajectory in these scenarios shows that switching
controllers prevent the robot from getting stuck in a corner, whereas the
non-switching controllers do get stuck.

Since controllers that utilize state transitions perform better than non-
switching controllers on some scenarios when noise is added, controllers
that use state transitions might be more robust than single-state controllers.
This claim is strengthened when comparing the controllers in the random
scenario, which is also introduced in Section 4.2.2. To evaluate whether
state-switching controllers are more robust than controllers that uses only
one state, the controllers have been run 100 times in the random scenario,
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Figure 5.3: Average fitness of best scoring controllers (over 10 evolutionary
runs) for different controller types with respect to the number of generations
the EA ran on the training scenarios of the phototaxis-with-obstacles task.

Average
Score

Controller
type

switching non-switching switching
(noisy

sensors)

non-switching
(noisy sensors)

Scenario 1 292.3 353.2 274.3 331.1
Scenario 2 320.5 357.0 308.5 344.8
Scenario 3 308.8 347.2 297.1 289.9
Scenario 4 320.1 340.1 296.2 270.2
Scenario 5 322.3 372.6 319.3 329.8
Scenario 6 319.5 251.6 261.7 188.5

Table 5.2: The average score of state switching controllers and non-state
switching controllers with precise sensors and with noisy sensors for different
scenarios. Better scores are in bold.

leading to 200 data points per controller group. Table 5.3 shows the av-
erage fitness of the controllers in each group and the number of successful
simulations in which the light is reached. It shows that the controllers
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Switching controllers Non-switching controllers

Average fitness 431.0 383.2
Successful simulations 141 121

Table 5.3: The average score of state-switching controllers and non-
switching controllers and the number of successful simulations in the random
phototaxis-with-obstacles task. Better scores are in bold.

Avoid and
keep to left

Avoid and
keep to rightGo to light

Obstacle to right

Front and right free

Obstacle left 
or in front

Front and left free

Figure 5.4: A manually-designed controller for the phototaxis-with-obstacles
task.

that switch state on average perform better in the random phototaxis-with-
obstacles scenario. This is shown in both a higher average fitness and more
successful simulations than the non-switching controllers.

5.2.1 Using ESMAC with manual seed

As mentioned in the previous section, only two out of ten generated 3-state
controllers make state transitions in the evaluation scenarios. The possibility
of generate a SM using ESMAC that utilizes multiple states and is able to
solve that task is investigated by running ESMAC with a manually designed
controller as seed. This controller uses multiple states and is able to solve
the task for the four training scenarios.

Figure 5.4 shows the SM of the manually designed seed controller. This
controller is based on the intuitive solution to phototaxis-with-obstacles,
namely to drive towards to light unless an obstacle is detected in which case
the obstacle is avoided first. In this controller, obstacle in front, obstacle
left and obstacle right are indications that respectively the front, the left-
front and the right-front proximity sensor senses an object within 0.5 meters.
Front and left free indicates that none of the sensors in front and to the left
sense an object. Similarly, front and right free is triggered when none of
the sensors in front and to the right sense an object. The performance of
the seed controller is reasonable and it has been verified that this controller
makes at least one state switch on all scenarios except scenario 1.

Figure 5.5 shows the evolution of the average best fitness for ESMAC
initialized with a manual seed and for ESMAC initialized with randomly
generated 3-state controllers. It shows that seeded ESMAC, which is stand-
ard ESMAC initialized with the manual seed described above, has a head
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Figure 5.5: Evolution of the best fitness (averaged over 10 evolutionary
runs) for ESMAC with manual seed and ESMAC with random initialization
on the training scenarios. The average fitness of the manual seed on the
training scenarios is indicated with a red dot.

start with the scores, but is not able to find significantly better performing
controllers.

Comparison of generated controllers

The controllers generated using seeded ESMAC are compared with the con-
trollers generated using standard ESMAC to find the benefits of using a seed
and to find out whether it is possible to generate a controller that switches
states. Table 5.4 shows the fitness and percentage of successful simulations
on the evaluation scenarios and on 1000 simulations of the random scen-
ario for the controllers generated with standard ESMAC and with seeded
ESMAC. It shows that the controllers generated with seeded ESMAC per-
form slightly better than standard ESMAC in terms of fitness and in terms
of success rate, which means the light has been found. This leads to the
conclusion that seeding ESMAC with a functional, but not optimized, con-
troller helps in finding good controllers for this task, but does not lead to
large improvements.

Table 5.5 shows the average percentage of time the generated controllers

33



Avg fitness score Random population Seeded population

Scenario 5 253.1 (40%) 322.7 (40%)
Scenario 6 124.7 (20%) 140 (20%)
Random scenario (1000x) 263.3 (4.5%) 330.8 (18%)

Table 5.4: Average fitness score for controllers generated with seeded ES-
MAC and standard ESMAC on the evaluation scenarios and 1000 runs
on the random scenario. The percentage of successful runs is indicated
between the brackets. Better scores are in bold.

Percentage in most-used state Random population Seeded population

Scenario 5 96.0% 97.8%
Scenario 6 99.0% 97.8%
Random scenario (1000x) 97.0% 97.9%

Table 5.5: Percentage of time the generated controllers spend on average in
their most-used state for seeded ESMAC and standard ESMAC.

spend in their most-used state for both seeded ESMAC and standard ES-
MAC. For both seeded ESMAC and standard ESMAC these values indicate
that hardly any state changes are made and most of the time is spend in
one state. Inspection of the state changes shows that the initial state is not
necessarily the most-used state, as some controllers make change state at
t = 0. However, the best performing controllers are those that have the
initial state as most-used state. Because all controllers hardly make any
state changes, the better performance of seeded ESMAC cannot be due to
the use of different states. Furthermore, because the best performing con-
trollers have their initial state as most-used state, it can be concluded that
the initial state can evolve better when initialized with a seed. This has
been verified by using only the go-to-light state of the manually designed
controller as seed, which also shows an improvement in fitness compared to
standard ESMAC. This is most likely because the seed gives a good starting
point in the search space.

Seeded ESMAC throughout generations

Figure 5.6 shows the average number of states used by the best performing
controllers of for each generation for both seeded ESMAC and standard
ESMAC. This figure shows that the number of states that is used on average
by the best controllers drops already in the first five generations for seeded
ESMAC. Figure 5.7, which shows the average number of states used by
all controllers in each generation, shows a similar pattern. Inspection of
the genomes shows that the state changes introduced by the seed controller
are removed from most individuals within five generations. Figure 5.7 also
shows that controllers in the non-seeded algorithm use more states than
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Figure 5.6: Average number of states
used by best performing controllers
for each generation for seeded ES-
MAC and standard ESMAC.

Figure 5.7: Average number of states
used by all controllers for each gener-
ation for seeded ESMAC and stand-
ard ESMAC.

Figure 5.8: Average fraction of time
spend in most-used state by best per-
forming controllers for each generation
for seeded ESMAC and standard ES-
MAC.

Figure 5.9: Average fraction of time
spend in most-used state by all
controllers for each generation for
seeded ESMAC and standard ES-
MAC.

the controllers generated with a seed. It is unclear why this is the case.
A possible explanation is that the controller genomes are more uniformly
divided over the search space and therefore the likelihood of creating a valid
transition during crossover or mutation increases.

Figure 5.9 shows the average fraction of simulation time that the control-
lers in the population spend in the most-used state during evaluation over
generations. From this figure it is clear that the amount of time spend in the
most-used state does not deviate much over generations. Furthermore, a dip
is shown in the first 20 generations of standard ESMAC, which is in accord-
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ance with the increase in number of states used that is seen in Figure 5.7.
Seeding the EA increases the amount of time spent in the most-used state.
This is unexpected, as the seed spends a considerable time in other states
for the training scenarios (especially in scenario 4). However, as already
mentioned above the seed’s transitions do not cause more transitions to be
made when ESMAC runs.

When only looking at the best controllers for each generation, even more
time is spend in the most-used state. Figure 5.8 shows the average fraction
of simulation time that the best controllers in each generation spend in the
most-used state. Compared to standard ESMAC, seeded ESMAC spends
more time in a different state. However, the amount of time spend in other
states is still low, with about 10% in later generations. All this leads to the
conclusion that while seeding ESMAC leads to controllers that seem more
robust, it does not lead to controllers that make better use of multiple states
than controllers generated with standard ESMAC.

Conclusions on the phototaxis-with-obstacles task

The analysis of the state-switching controllers and the lack of state switches
when a functional seed controller is used, lead to the conclusion that it is
highly likely that this task is best solved with a single-state SM or a per-
ceptron network and that adding states does not improve the performance
on this task. On the other side, the controllers that utilize multiple states
appear to be more robust to noisy sensors and changing scenarios.

5.3 Selector ESMAC on phototaxis-with-obstacles

One of the problems with transitioned SMs is that one sensor can determine
whether a transition is made or not. This might result in large jumps in
the search space, as adding one transition might completely change how a
controller works. Selector ESMAC has been introduced with the assumption
that it makes state transitions change more gradual over generations. This
should lead to a better exploration of the search space and therefore to better
controllers. This assumption is evaluated by comparing selector ESMAC to
standard ESMAC.

Figure 5.10 shows the evolution of 3-state controllers for selector ESMAC
and standard ESMAC. This figure shows that selector ESMAC over the
whole simulation finds slightly worse scoring controllers. The claim that the
controllers perform slightly worse is partially enforced by Table 5.6, which
shows the performance on the evaluation scenarios and the random scenario.
For the evaluation scenarios the selector-switching controllers do perform
worse than the transition-switching controllers, but for the random scen-
arios the selector-switching controllers outperform the transition-switching
controllers.
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Figure 5.10: Performance best performing controllers generated using se-
lector ESMAC and standard ESMAC on the phototaxis-with-obstacles task
for each generations.

Avg fitness score standard ESMAC Selector ESMAC

Scenario 5 253.1 (40%) 196.0 (20%)
Scenario 6 124.7 (20% 165.3 (10%) )
Random scenario (1000x) 263.3 (4.5%) 325.6 (21.4%)

Table 5.6: Average fitness score for controllers generated with standard
ESMAC and with selector ESMAC on the evaluation scenarios and 1000
runs on the random scenario. The percentage of successful runs is indicated
between the brackets. Bold values are better values.

Selector ESMAC causes considerably more time spend in other states
compared to normal ESMAC as is apparent from Figure 5.11. The limited
switching caused by conditioned transitions is removed by using a perceptron
network for state-switching. Whether this also causes the better perform-
ance in the random scenarios is investigated by running the full genome as
well as the most-used state on the random scenarios. All controllers are
run on the same 1000 generated scenarios for fair comparison. Figure 5.12
shows the performance of the 10 controllers generated with selector ESMAC
along with the performance of their most-used state. The most-used state
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(a) Standard ESMAC (b) Selector ESMAC

Figure 5.11: Percentage in time in each state where the states are sorted on
usage for standard ESMAC and selector ESMAC for each generation.

of four controllers (0, 1, 8 and 9) have a fitness similar to the full controller.
Inspection shows that these controllers are mainly in the most-used state.
Two controllers (3 and 5) do not benefit from state-switches. This is inter-
esting, because inspection shows that these controllers spend about 90% of
the running time in these states, which is a large fraction. This means that
the 10% in other states has a significant effect on the fitness. The other four
controllers benefit from switching away from their most-used state, so se-
lector ESMAC is able to find controllers that make beneficial state switches,
even though it does not lead to an increase in fitness compared to standard
ESMAC. Controller 6 is interesting because the most-used state has such a
low fitness. Inspection of the state shows that it collides with a wall most
of the time. In the full controller this is prevented by a state switch before
this happens, which results in the other states utilized almost a much as
the most-used state. Therefore, this controller is a good example of how
multiple less functional states can form a functional SM.

In conclusion, while selector ESMAC is not able to improve the fitness
score on the phototaxis-with-obstacles task, it is able to generate controllers
that use multiple states. This goes as far as controllers that use multiple
inferior states to form a functional controller.
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Figure 5.12: The average fitness score on 1000 random phototaxis-with-
obstacles scenarios of the controllers generated with selector ESMAC and
the most-used state of each controller.

5.4 Adaptive ESMAC on phototaxis-with-obstacles

Adaptive ESMAC’s aim is automatically determine the number of states
required to solve a task. Figure 5.13 shows the fitness of the best control-
lers for each generation for both adaptive ESMAC and standard ESMAC.
Adaptive ESMAC is able to find slightly better controllers on average. The
performance on the alternative and random scenarios, which is shown in
Table 5.7, is slightly better than standard ESMAC.

The generated controllers exist on average of 2.5 states, with the size of the
smallest controller and largest controller being 1, respectively, 5. However,
the state usage is 99% in the most-used state and hardly any state changes
are made. This explains the similarity in scores between adaptive ESMAC
and standard ESMAC; their behaviour in simulation is similar. A task that
better allows for task decomposition is required for a more detailed analysis
of the species and the functionality of specialization. With such a task the
effect of dynamically adding and removing states and the improvement in
fitness is more visible. It has been found that the average number of states
tends to grow over generations and does not stabilize at an optimal number.
This is most likely because larger state machines can do the same as smaller
ones. Therefore, a cost for adding a state is required, which prevents the
SMs from growing unbounded.
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Figure 5.13: Performance best performing controllers generated using ad-
aptive ESMAC and standard ESMAC on the phototaxis-with-obstacles task
for each generations.

Avg fitness score Standard ESMAC Adaptive ESMAC

Scenario 5 253.1 (40%) 217.6 (10%)
Scenario 6 124.7 (20%) 170.4 (20%)
Random scenario (1000x) 263.3 (4.5%) 318.0 (6.1%)

Table 5.7: Average fitness score for controllers generated with standard
ESMAC and with adaptive ESMAC on the evaluation scenarios and 1000
runs on the random scenario. The percentage of successful runs is indicated
between the brackets. Bold values are better values.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

This thesis’ goal is to investigate the possibility of automatically generating
State Machines (SMs) as robot controllers using an Evolutionary Algorithm
(EA). To this end, Evolving State Machines As Controllers (ESMAC) has
been introduced. ESMAC optimizes a set of SMs for a specific (robotic)
task using an EA. A key difference between ESMAC and other SM-based
EAs is that ESMAC does not use predefined states and transitions. While
ESMAC is a good start towards automatically generating SMs using an EA,
it does not yet succeed in automatically generating SMs that use multiple
states.

Because automated task decomposition and evolving SMs as robot con-
trollers are still in their infancy there are no benchmark tasks for comparing
different task decomposition approaches. Therefore, ESMAC has not been
compared to other task decomposition approaches such as, for example, the
Emergent Task Decomposition Network (ETDN) architecture (Section 2.3).
ESMAC has been compared with Neural Network (NN)-based EAs on two
different tasks: come-and-go and phototaxis-with-obstacles.

The come-and-go task requires a robot to find the light and once the light
has been found get as far away as possible from it. For this task, ESMAC is
not able to outperform NN-based approaches. Furthermore, only minimal
state changes are made by the best scoring controllers.

The more-difficult phototaxis-with-obstacles task, where a robot needs to
find a light without colliding with obstacles, shows a similar picture. For
this task only the minority of controllers generated using ESMAC use more
than one state. The controllers that use more states use only two states,
and their performance is slightly worse than the controllers that use one
state. Promising is that the state-switching controllers are more robust
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to noisy sensors and changing scenarios in the evaluated tasks. Using a
manually designed controller that is functional on the task as seed for the
initial population of ESMAC does not improve the quality of the generated
controllers.

Selector ESMAC, which changes transition-based state switching for state
switching based on the output of a perceptron network, is not able to im-
prove the fitness score on the phototaxis-with-obstacles task. However, it is
able to generate controllers that use multiple states and make useful state
switches. One of the generated controllers even consisted of inferior states
that cooperated such that the overall controller is able to perform the task.
Therefore, even though transitions are less understandable with selector ES-
MAC, it is a good direction for future work.

Another extension to ESMAC is adaptive ESMAC, which aims to auto-
matically determine the optimal number of states required for a task. Auto-
matically determine the number of states required has large benefits, because
it prevents users from analyzing unnecessary large SMs without having the
risk of generating SMs with to few states, which makes the task intractable.
Because of the challenges with standard ESMAC, little effort is put in the
analysis of adaptive ESMAC. One of the findings is that a counter mechan-
ism is needed that prevents the size of the SM to grow unlimited. Adding
a cost for the size of the SM will prevent this unlimited growth, as large
SMs will have a lower fitness score. This cost needs to be overcome by an
increase in the fitness score on the evaluated scenarios. A detailed analysis
of adaptive ESMAC is left for future work. An interesting idea for future
work would also be to combine selector ESMAC with adaptive ESMAC.

6.2 Future Work

Several aspects of ESMAC remain to be investigated and improved. As
many generated controllers did not make any state changes, state changes
need to be rewarded by the EA. States that are not used can better be
removed from the controller, however that decreases the possibility of task
decomposition. A reward for state changes or state usage causes more states
to be reached and thus optimized, and with that comes the opportunity of
useful task decomposition. Research is required into how states can be
explored without changing the actual task and reward function.

Another aspect of ESMAC that can be investigated in more detail is the
encoding of SMs. In this thesis, the encoding of a SM is almost the same
as the actual SM. Other encodings, for example a binary encoding, possibly
allow for faster learning as the information can be represented more concise.

An important shortcoming of this thesis is the lack of real-life verification.
All experiments and verification have been done in simulation. Therefore,
it is unknown whether the generated controllers are able to perform their
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task on an actual robot. A real-life scenario has been approximated by
adding noise to the sensors, but simulation lacks important aspects of the
real world. For example, what happens when one of the sensor starts out-
putting rubbish? These are questions that need to be answered in future
work.

In the same line, ESMAC needs to be evaluated on tasks that have value
in the real world. For example, can ESMAC be used to find controllers that
perform well on a foraging task and with that can they help in cleaning
the streets? As the idea of using SMs is to make the learned controllers
understandable, robots using these controllers should be able to interact
with humans and animals without unexpected behaviour.

In the grand scheme of automatically generating understandable robot
controllers for complex tasks, there is a need of well-selected benchmark
tasks. These benchmark tasks should capture essential aspects of real-world
robot tasks. One important aspect that these tasks should have is the po-
tential to be decomposed in sub tasks. Good candidate tasks are the tiling
pattern task [30] and the swarm robotic tasks introduced in [12]. These
benchmark tasks have to be accepted by experts in the field. In addition to
benchmark tasks, metrics are required to measure the understandability of
a robot controller. For example, one of these metrics might judge the modu-
larity of a controller as modularity allows humans to understand a controller
part by part. With those tools in hand, research can progress towards robot
controllers that are understandable and good in what they need to do.
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Appendix A

Parameter Assignment

The parameters used by the EAs during the experiments can be found in
the table below.

Parameter Value

General EA Parameters (for ESMAC as wel as NN-based EA)

Number of generations 100
Population size 100

Number of evolutionary runs 10
Elistim 2

General controller parameters

Activation function tanh
Aggregation function sum

Bias mutation probability 0.7
Bias replace probability 0.1

Bias value range [-1, 1]
Weight mutation probability 0.8
Weight replace probability 0.1

Weight value range [-2, 2]

Standard ESMAC parameters

Toggle enabled mutation probability 0.01
Transition boolean operator mutation probability 0.05

Add condition probability 0.2
Remove condition probability 0.2

Condition comparator mutate probability 0.5
Condition input sensor mutate probability 0.5
Condition comparator mutation probability 0.8
Condition comparator replace probability 0.1

Condition comparator value range [0, 1]
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Parameter Value

Selector ESMAC parameters (in addition to standard ESMAC parameters)

Selector bias mutation probability 0.7
Selector bias replace probability 0.1

Selector bias value range [-1, 1]
Selector weight mutation probability 0.8
Selector weight replace probability 0.1

Selector weight value range [-2, 2]

Adaptive ESMAC parameters (in addition to standard ESMAC parameters)

Number of intial states 1
Maximum number of states 5

Add state probability 0.05
Remove state probability 0.05
Add transition probability 0.05

Remove transition probability 0.05
c1 0.5

Compatibility threshold δt 0.5
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