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Design, Implementation, and Validation of an Active Kickstand

Stabilization Mechanism for Low-Speed Cargo Bicycle Balance
Bart de Vries, Master of Mechanical Engineering, Biomechanical Design, Delft University of Technology

Abstract—As cities increasingly transition to car-free and low-
emission zones, cargo bicycles have become a popular alternative
for both companies and families. They allow for the efficient
transport of goods and children while navigating busy urban
areas without emissions. However, single-track cargo bicycles still
have some limitations. Stability issues, especially at low and zero
speeds, and the effort required to lift a heavy cargo bicycle onto
its kickstand, reduce usability and safety. These problems are
amplified by uneven load distribution and heavy cargo.

A prototype for an active kickstand stabilization mechanism
was developed. A model was made where a simple spring-damper
feedback system was placed on the roll degree of freedom of the
cargo bicycle. After formulating design criteria, a design was
created and manufactured, and the system was assembled on
a cargo bicycle. The prototype was then tested to validate the
design specifications.

The results show a measurable improvement in stability,
especially when cycling off from a standstill. The system also
stabilized the bicycle with a cargo of 50 kilograms on the luggage
rack in addition to an 80-kilogram rider. These results show
that an active kickstand stabilization mechanism is suitable for
everyday use on cargo bicycles and can increase the safety and
usability of the cargo bicycle.

Index Terms—Cargo bicycle, low-speed stability, bicycle dy-
namics, bicycle stability, mechatronic design

I. INTRODUCTION

OVER the past decade, how we travel has changed a
lot. Climate goals, personal and public health goals,

and cities transitioning to low-emission and car-free zones
have contributed to these changes. These car-free and low-
emission zones push companies to find an alternative for their
diesel and petrol vehicles. Not only are companies seeking
alternatives to cars, but families are also reducing their car
usage. [1].

Cargo bicycles have become a popular alternative due to
their ability to transport packages, children, or other cargo
while avoiding traffic and parking issues and complying
with emission rules. The number of e-cargo bicycles sold
in Europe has increased significantly in the past years, with
a yearly revenue increase of over 200% between 2018 and
2024 and a projected revenue increase of 300% between 2024
and 2030 [2]. Germany shows an even greater increase in
commercial cargo bicycle sales of 104% in 2022 compared
to the previous year [3].

Despite their potential, conventional long-john cargo bicy-
cles, which are two-wheeled single-track cargo bicycles with
a cargo bay between the rider and the front wheel (Figure 1),
also have several practical limitations. For regular bicycles,
one study showed that 76.8% of accidents are single-sided

Fig. 1: Conventional single-track long-john cargo bicycle
(image used under Pixabay license).

accidents, and between 13.3% and 19.2% are while standing
still or mounting or dismounting the bicycle [4]. While similar
results are expected for cargo bicycles, there is limited data
available on cargo bicycle accidents. However, it is reasonable
to assume that the risks are even greater with a cargo bicycle.
In one study, cyclists mentioned that the added weight of their
e-bicycle was why they fell over while dismounting [5]. Not
only are cargo bicycles heavier than e-bicycles, but they can
also have an uneven load distribution, increasing the risk of
falling over when coming to a stop further.

Additionally, lifting a cargo bicycle onto its kickstand can
be difficult, especially when the bicycle is heavily loaded.
This makes parking impractical for short stops and potentially
unsafe, particularly on inclined or uneven surfaces.

These limitations ask for a solution that can help to increase
the stability of a single-track cargo bicycle, especially at low
speeds and when standing still, and to potentially replace or
improve a traditional kickstand.

Previous research on low-speed stability for single-track ve-
hicles shows multiple solutions. These can be categorized into
five methods: control moment gyroscopes, reaction wheels,
balancers, steering control & others.

The control moment gyroscope (CMG) was found to be the
most studied method for stability. The CMG can be divided
into separate control categories. Although the passive CMG
works for stabilization, a CMG with an actively controlled
gimbal delivers better performance [6]. The CMGs can also
be divided by the quantity of gyroscopes and the orientation of
the CMG: single horizontal, double horizontal, single vertical,
and double vertical. When using a double CMG, the flywheels
are combined as a ”scissored pair”, which means that both
flywheels spin in a different direction, and the gimbals are also
coupled and rotate in opposite directions. This ensures that the
gyroscopic torque from both gimbals is in the same direction,
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while unwanted torques are canceled [7]. Although no study
showed that the orientation of the wheels, either horizontal
or vertical, changed the performance of the CMG, multiple
studies showed that the scissored-pair double CMG is superior
to a single CMG [8]–[10]. Wardle et al. [11] use a single
horizontal CMG to help balance a rider on a stationary bicycle,
but were unable to balance for more than 40 seconds.

Six studies used a reaction wheel with a prototype that could
balance their single-track vehicle at zero speed. Two additional
studies showcased a working model, one of which had no
prototype and the other had a mechanical failure during testing
[12], [13]. Notably, the reaction wheels add significant mass
to the vehicles, enabling them to achieve balance.

Studies using balancers could also balance at zero speed.
The balancer can be divided into different categories: laterally
moving mass, pendulum, and inverted pendulum. Griese et al.
[14] used a balancer, in addition to their CMG, to compensate
for the center of gravity of their system not being in the same
plane as the wheels, thus increasing the robustness.

Studies found on steering control show less promising re-
sults for stabilization at low and zero speed. These studies were
on both two-wheel steering control and one-wheel steering
control. Two studies could only balance their bicycle at zero
speed using a balancer next to their steering control [15], [16].
Xiong et al. [17] could balance at zero speed by rotating the
front wheel 90 degrees, but could not stabilize their vehicle
while driving at low speeds. Yang et al. [18], [19] published
two studies on the same bicycle, comparing different modes
of steering control and accomplishing zero-speed stabilization.

Five studies show solutions that do not fall within the
categories mentioned above. Three of these studies show
an experimental motorcycle developed by Yamaha, which
rotates itself around a swivel axis to achieve stabilization
at zero and low speeds [20]–[22]. Honda also showcases
an experimental motorcycle that can laterally move its rear
wheel and adjust the steering axis angle to achieve low-speed
and zero-speed stabilization [23]. Finally, Huang et al. [24]
proposed a bicycle with legs to help stabilize on rough terrain.

While the literature research revealed multiple methods that
could sustain stability at low and zero speeds, many of these
approaches lack convincing evidence of robustness in real-life
situations, where uneven surfaces, moving or removing
cargo, and variable rider inputs can significantly affect
balance. Although the concept of using legs has received
little attention in existing research, it offers a promising
combination of mechanical simplicity, energy efficiency, and
robustness. Unlike systems found in the literature that require
continuous sensing and actuation, a leg-based approach can
provide reliable passive support at a standstill and controlled
assistance during low-speed maneuvers. For these reasons,
the concept of an active kickstand mechanism was selected
for further development. The research goal of this study is
therefore:

“To design, implement, and validate a novel active kickstand
stabilization mechanism for a single-track cargo bicycle, which
is aimed at low-speed stability.”

II. MODELING AND SIMULATION

A bicycle has two degrees of freedom, roll and steer.
Balancing a bicycle can be done by steering or by applying
a roll torque. To approximate the roll torques required for
stabilization, the stability of the cargo bicycle was simulated
using the method and equations by Meijaard et al. [25]. The
Carvallo-Whipple model, used by Meijaard et al., uses the
equations of motion of the bicycle, which are linearized about
the upright position at a constant speed (Equation 1).

Mq̈ + vC1q̇ +
(
gK0 + v2K2

)
q = f (1)

With generalized coordinates q and external forces f :

q =

[
ϕ
δ

]
, f =

[
Tϕ

Tδ

]
Where ϕ and δ are the roll and steering angle of the

bicycle, respectively, and where Tϕ and Tδ are the roll and
steering torques of the bicycle. M , C1, K0, and K2 are the
mass, damping, and two stiffness matrices, respectively, which
are defined by the bicycle’s parameters. The gravitational
acceleration is g and the bicycle’s speed is v.

The parameters (Appendix A) of the cargo bicycle without
a rider, which were determined in previous research, were
used to generate the mass, damping, and stiffness matrices
of the cargo bicycle. Inertia data for a rider was generated
and added to the cargo bicycle parameters using the parallel
axis theorem [26]. Consequently, the stable speed regions of
the cargo bicycle with rider could be determined with no
external forces acting on the system, so f = [0 0]

T . The
linearized equations of motion were converted to state-space
form, and the eigenvalues of the state matrix were calculated.
Stability is indicated when all real parts of the eigenvalues
are negative, corresponding to the exponential decay of the
system’s modes. The eigenvalues were calculated for a range
of speeds and plotted to visualize the bicycle’s stability. As
shown in Figure 2, the cargo bicycle showed no self-stability
at low speeds, while it is self-stable between 4.38 and 6.3 m/s.

A simple spring-damper feedback system was added to
the system as a simplified way to express the legs on the
cargo bicycle. The feedback system generated an active torque
between the ground and the bicycle, tending to move it toward
the upright position. A small spring and damper on the steering
angle were also required to stop the handlebars from getting
to unstable angles. The torques were added to the equations
of motion of the system as shown in Appendix B.

The coefficients were as follows:

kroll = 1030 N/rad,

croll = 20 Ns/rad,

ksteer = 7 N/rad,

csteer = 1 Ns/rad

With this feedback system, the cargo bicycle with rider
model could be made self-stable at all speeds, but most
importantly, it was stable at zero and low speeds (Figure 3).
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Fig. 2: Eigenvalues of the cargo bicycle with rider over speed.
The real parts of the eigenvalues are in black. The positive
imaginary parts of the eigenvalues are in red. The system
shows no stability at low speeds.
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Fig. 3: Eigenvalues of the cargo bicycle with rider and spring-
damper feedback system. The real parts of the eigenvalues are
in black. The positive imaginary parts of the eigenvalues are
in red. The system shows stability at all speeds.

A simulation was performed to evaluate the linearized
roll and steer dynamics of the cargo bicycle model at a
constant forward speed. The system’s equations of motion
were integrated over time using initial values for the angles
and rates, yielding the roll angle, steering angle, and their
respective rates over the simulation period to assess stability
behavior. The initial values and simulation parameters were as
follows:

v = 1.0 m/s,

t = 10 s,

x0 =


ϕ0

δ0
ϕ̇0

δ̇0

 =


10
10
0
0


With roll angle (ϕ) and steering angle (δ) in degrees, where

ϕ0 and δ0 are the initial angles, and ϕ̇0 and δ̇0 are the initial
angular rates. The bicycle speed in the simulation is v, and
the simulation time is t.

From the simulation, the roll torque can be calculated with:

Troll = −krollϕ− crollϕ̇ (2)

The results of the simulation are shown in Figure 4. An
absolute maximum roll torque of 180 Nm is required to
maintain stability.
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Fig. 4: Plot of the simulation of the cargo bicycle with an 80-
kilogram rider and spring-damper feedback system. The initial
roll and steering angles are both 10 degrees. The simulation
shows stable behavior.

Additionally, another set of parameters was generated by
adding an 80-kilogram point mass cargo to the model (Ta-
ble VII, Appendix A). For these parameters, new stiffness and
damping coefficients were determined, which made the bicycle
model stable at all speeds.

kroll = 1620 N/rad,

croll = 90 Ns/rad,

ksteer = 7 N/rad,

csteer = 1 Ns/rad

With the stable model of the cargo bicycle including rider
and cargo, another simulation was run to determine the torques
required for stabilization. The simulation parameters were as
follows:

v = 1.0 m/s,

t = 10 s,

x0 =


ϕ0

δ0
ϕ̇0

δ̇0

 =


7.5
10
0
0


This resulted in an absolute maximum roll torque of 215

Nm required to keep the bicycle stable.
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III. DESIGN PROCESS

In addition to the constraint that the system would stabilize
the cargo bicycle using an active kickstand mechanism, a set
of design requirements was formulated to further guide the
design process. These requirements are listed in Table I.

TABLE I: The design requirements formulated for the new
solution.

# Need

1 Activates when the bicycle goes below a certain speed
2 Stabilizes the bicycle when at low speed and when stationary

3 When the system is active, the bicycle cannot fall over due to
disturbances

4 Does not add too much weight to the system

5 When the system is active, the motion of the bicycle feels the same
to the rider

6 System can be turned on and off

7 The power consumption of the system is only up to 20% of average
e-cargo bicycle power consumption

8 The bicycle can take corners at normal speed when the legs are
retracted

9 The bicycle stabilizes to a vertical position, even on sloped or uneven
ground

From these requirements, and by using the results from the
simulations in Section II, metrics were derived to assess the
design after manufacturing and implementation (Table II).

A morphology-based design process was employed to
create multiple concept solutions, which were evaluated, and
the best solution was chosen based on weighted criteria.
Appendix C shows the full design process.

As described in Section II, a spring-damper feedback model
was used in the simulation to analyze the roll dynamics
and estimate the required torque, stiffness, and damping to
stabilize the cargo bicycle at low speeds. While this helped to
determine these values, the physical design ultimately used
a rigid mechanism. A compliant solution, such as concept
B.2 using a ball screw, was considered but dismissed due to
significantly higher cost. Additionally, the simulation showed
that the required stiffness increases with rider weight and
cargo load, which would have required the system’s stiffness
to be adjustable, adding further complexity. For these reasons,
a rigid design was selected as a simpler and cost-effective
alternative.

IV. FINAL DESIGN AND IMPLEMENTATION

Concept B.1 was further developed into a design that
could be manufactured. For this project, a Workcycles Kr8
cargo bicycle (Workcycles, Amsterdam, The Netherlands) was
used, which was taken into account when making the final
design for the prototype. The final design was manufactured
and assembled on the cargo bicycle. Since the system was
mechatronic, it consisted of three parts. The mechanical part
converts the motor’s rotational output to the movement of
the legs, which stabilizes the cargo bicycle. The electronic
part powers the system and does the sensing. Finally, the
control part processes the user inputs and sensor data, and
through logic and a state machine, outputs signals to control
the motors.

A render of the final design for the mechanism can be seen
in Figure 5.

Fig. 5: Solidworks render of the final design of the mechanism.

A. Functional overview

The final design, based on concept B.1, consists of two sep-
arately actuated legs mounted on either side of the underside
of the cargo bicycle. The legs are composed of a system of
linkages and a trapezoidal spindle, similar to a scissor jack,
which allows them to retract upwards and extend downwards.
On the ends of the legs, wheels are placed to allow the cargo
bicycle to keep moving forward, while the legs are down and
touching the ground. The wheels are omni-wheels, which can
also roll sideways, enabling the cargo bicycle to take turns
while the wheels are on the ground. Brushless DC motors
drive the spindles. To increase the torque from the motors, a
custom planetary gearbox is used.

The system automatically lowers the legs when the bicycle’s
speed drops below a certain threshold, and raises them again
once the bicycle speeds up. When walking slowly, the wheels
slightly lift off the ground to allow for greater maneuverability.
Limit switches are used to sense when the legs come in contact
with the ground and when the legs are fully retracted. To sense
the speed of the cargo bicycle, the output voltage of the front-
wheel dynamo is used. The system can be turned on or off
with a switch below the handlebars. When the system is turned
off, the legs always retract and remain retracted, regardless of
the speed of the cargo bicycle. An emergency stop switch is
located next to the on/off switch, which shuts down the system
and brakes the motors when pressed. The accelerometer on a
9-degree-of-freedom IMU is used to measure the lateral (X)
and vertical (Z) accelerations, from which the roll angle of the
bicycle is calculated.

An Arduino Uno R4 WiFi processes all signals. The Ar-
duino runs the control logic and a PID controller that outputs
direction and speed commands to the motor controllers.

The functioning of the system is visualized in Figures 6, 7,
and 8.

B. Mechanical overview

As mentioned before, the system uses linkages and a spindle
to move the legs. The motors, which are Maxon 500267
brushless DC motors (Maxon, Sachseln, Switzerland), have
their torque increased by a custom 3D-printed PLA planetary
gearbox with a reduction ratio of 1:6.7. The nominal torque
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TABLE II: The design metrics formulated for the design process. The metrics refer to the design requirements to which they
are linked.

# Need # Metric Value Unit

1 1,2,5 Speed sensor frequency ≥ 50 Hz
2 1,2,5 Speed sensor resolution ≤ 0.5 m/s
3 1,2,3 Activation time ≤ 1 s
4 2,3 Rider of 80 kg and cargo of 80 kg can be stabilized at 7.5 degrees 215 Nm
5 2,3 Rider of 80 kg can be stabilized at 10 degrees 180 Nm
6 4 Total weight of the system (without battery) ≤ 15 kg
7 5 Time increase to do 90-degree turn (compared with system off) ≤ 10 %
8 5 Time increase to do 180-degree turn (compared with system off) ≤ 10 %
9 7 Power consumption ≤ 2.7 Wh/km

10 8 Roll angle with legs up ≥ 10 deg
11 9 Maximum slope at which bicycle is vertical 10 deg

Fig. 6: Side view of the system activating. When the speed
goes below the threshold, the legs lower. The motors turn the
trapezoidal spindles, which pull the linkages toward the motor
and extend the legs. When the omni-wheels touch the ground,
the limit switches are activated, and a signal is sent to the
Arduino to stop lowering the legs. The components from right
to left are: Black: motor, purple: gearbox, green: spindle, gold:
spindle nut, red: omni-wheel. The black dots are the hinges.

Fig. 7: Frontal view of the legs lowering when the cargo
bicycle is leaning to the side. The legs touch the ground,
stabilizing the cargo bicycle in a vertical position.

of 0.964 Nm of the motors is increased to 6.46 Nm. A 10-
millimeter steel trapezoidal spindle with a 2-millimeter pitch
converts this torque to a linear force. While a 16-millimeter
spindle would have been more suitable for this project, a
10-millimeter spindle was chosen to limit the costs of the
prototype. The spindle exerts a pull force of approximately
6.43 kN on the bronze spindle nut. To restrict the axial

Fig. 8: Frontal view of the legs lowering when the cargo
bicycle is on an uneven surface. The legs lower until they
touch the ground and keep the cargo bicycle vertical.

movement of the spindle, a flange bearing was placed near
the hinge of the motor, and a steel trapezoidal nut was placed
against it.

The spindle crosses the long linkage to which the wheel
is attached (the leg), as can be seen in Figures 5 & 6, for
two reasons. This enables a lower placement of the motor,
which ensures the motor does not collide with the frame of the
cargo bicycle when the legs are fully extended. Additionally,
the spindle and hinge of the leg do not go through the same
point, simplifying the design of the hinge.

For this prototype, all linkages and hinges are made from
304 stainless steel, since this was the strongest material readily
available. Except for the leg and the upper linkage, which were
made from square tubes, all parts are made of sheet metal,
which was laser-cut and bent with a press brake.

A detailed overview of the assembled system can be seen
in Figure 9.

C. Electronic overview

The prototype is powered by a 48 V 13 Ah electric bicycle
battery. The 48 V is directed through two Maxon DRS 70/30
shunt regulators, one for each motor, to the Maxon ESCON
70/10 motor controllers (Maxon, Sachseln, Switzerland). An
XL7015 DC-DC converter converts the 48 V to 12 V to supply
power to the Arduino Uno R4 WiFi. The Arduino provides the
power to all sensors and switches.

Two limit switches are used to sense when the legs are
fully retracted. Another set of limit switches is used to sense
when the omni-wheels are in contact with the ground. The
wheels are placed on hinges, and when the wheels touch the
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Fig. 9: Prototype of the final design. Important mechanical parts are highlighted. The limit switches are on the rear side of the
linkages, and therefore their locations are indicated with orange boxes.

ground, the hinges rotate slightly, pressing the limit switches.
All switches, including the emergency stop switch and the
on/off switch, are in a custom circuit with a pull-down resistor
for each switch.

The system uses the Shimano DH-3D32-NT dynamo in the
front-wheel hub of the cargo bicycle as a speed sensor. A
diode and RC filter rectify the AC output, and a 4.7 V Zener
diode limits the voltage. An analog pin on the Arduino then
measures the resulting signal.

An overview of the electronic components can be seen in
Figure 19 in Appendix D. A schematic overview of the wiring
of all components is shown in Figure 21 in Appendix E.

D. Control overview

The Arduino processes all sensor and user inputs to
determine the output to the motors. This is done with control
logic and by using a state machine. The states are:

1) Deactivated
The system is switched off. The system has power, but the

legs are retracted and will not engage when the speed gets
below the threshold.

2) Activated
The system is switched on. The system will engage when

the speed gets below the threshold.
3) Engaging
The speed went below the threshold while activated, so the

legs will move down.
4) Disengaging
The speed went above the threshold while activated, or the

system was deactivated. The legs will retract.
5) Walking
The system is activated, and the speed is below the thresh-

old, but you are slowly moving. The legs will slightly move
up to allow more maneuverability of the cargo bicycle while
walking.

6) Controlling
Both legs are down, and the speed is below the threshold

to go to the walking state. The system will ensure the cargo
bicycle is vertical.

7) Emergency
The emergency switch is activated. The motors brake and

the Arduino cannot switch state until the switch is released.

The Arduino code can be seen in Appendix F. A state
diagram, which shows the working of the state machine, can
be seen in Figure 23 in Appendix G.

While in the controlling state, the Arduino controls the angle
of the bicycle by using a PID controller that uses the roll angle,
which is calculated from the filtered X and Z accelerations,
as input. A deadband of ±1 degrees was used to prevent
oscillatory behavior at small angles.

A block diagram showing how the system operates is shown
in Figure 24 in Appendix H.

E. Signal processing

Although an RC filter is used to convert the AC output of the
speed sensor to a DC signal, residual sinusoidal fluctuations
remain. To further smooth the signal, a digital exponential
moving average filter is applied. This filter uses a smoothing
factor of α = 0.05.

A digital exponential moving average filter also filters
the IMU data. The smoothing factor α is calculated using
Equation 3 to approximate a cutoff frequency of fc = 1 Hz,
which filters out all vibrations from the road, while the rider
input and bicycle roll remain.

α =
2πfc

2πfc + fs
=

2π

2π + 200
= 0.0305 (3)
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V. TESTING AND VALIDATION

To validate the system and to ensure the system satisfies
the design requirements as formulated in Section III, multiple
tests were formulated. This section elaborates upon those tests
and shows the results of each test.

TABLE III: Tests done to validate the system, showing the
metric that they are intended to measure.

Metric # Test

1,2 Speed sensor test
3 Activation time

4,5 Torque test
6 Mass measurement

7,8 Maneuverability test
9 Power consumption

10 Roll angle and inclination test
- Stability test

A. Speed sensor test

To determine the resolution of the speed sensor, which
the system requires to accurately set the activation threshold,
the cargo bicycle was placed on a treadmill. The speed was
gradually increased from 0 to 18 km/h in steps of 1 km/h. The
output signal from the dynamo was measured as an analog
input to the Arduino. Since the analog input of the Arduino
gives a value between 0 and 1023, the resolution of the speed
sensor can be determined. Considering the Zener diode limits
the input voltage to the Arduino to 4.7 V, the maximum value
the Arduino can read is theoretically 962.

The frequency of the speed sensor is determined by the
Arduino by setting the sampling frequency in the code.
The frequency needs to be sufficient to avoid introducing a
delay between the speed decreasing below the threshold and
the system measuring that the speed decreased below the
threshold.

The results from the speed sensor test can be seen in Fig-
ure 10. The measurements are linear between approximately 2
km/h and 8 km/h. This shows the speed sensor has a resolution
of 0.0125 km/h/div, or 0.003 m/s/div, in the linear part of the
measurement range.

Since the Arduino runs the code at 200 Hz, the sampling
frequency of the speed sensor is also 200 Hz.

B. Activation time

The time between turning the system on and the legs
touching the ground is measured. This was done multiple
times, and an average was taken.

Table IV shows that the average activation time for the
system is 2.16 seconds.

C. Torque test

The cargo bicycle was placed at a roll angle of 10 degrees
with the system turned off and both legs down and touching
the ground. An 80-kilogram rider was seated on the bicycle,

0 2 4 6 8 10 12 14 16 18
Speed (km/h)

0

100

200

300

400

500

600

700

800

900

An
al

og
 v

al
ue

Speed sensor measurements on Arduino

Fig. 10: Values measured by the analog input of the Arduino
over speeds.

TABLE IV: Measured activation times.

Measurement Time (s)

1 2.32
2 2.06
3 2.16
4 2.14
5 2.11

Average 2.16

and the system was activated to record if the system would
have enough roll torque to stabilize the bicycle back to vertical.

The same was repeated with an additional weight at an
initial roll angle of 7.5 degrees. Since the cargo bay of the
bicycle was being used for the electronics of the system,
a weight of 50 kilograms was placed on the luggage rack
(Figure 11). Since the luggage rack of the bicycle was
higher than the cargo bay, the longer moment arm resulted
in approximately the same roll torque as when placing 80
kilograms in the cargo bay.

The system was only tested at the maximum weights as
defined in the design requirements as not to damage the
prototype for further testing. The system was able to stabilize
both the rider at 10 degrees roll and the rider plus cargo at
7.5 degrees roll.

D. Mass measurement
The mass of the system, excluding the cargo bicycle,

was determined using the design in Solidworks and the
documentation of all the electronics. Additionally, the mass of
the system, including the cargo bicycle, was also determined
by placing the cargo bicycle on scales.

The weight of the system was determined to be approxi-
mately 11.5 kilograms using SolidWorks and part documen-
tation. The weight of the cargo bicycle, including the system,
was measured at approximately 58 kilograms.

E. Maneuverability test
To test the maneuverability, 90-degree and 180-degree turns

were performed at walking speed. The 180-degree test was
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Fig. 11: Torque test with an 80-kilogram rider and 50 kilo-
grams of weight on the luggage rack. The initial roll angle of
the bicycle is 7.5 degrees.

done by performing a three-point turn (Figure 12). Multiple
different ways of maneuvering the bicycle were tested. For
both the 90-degree and 180-degree tests, each maneuver was
repeated five times. The maneuvers were:

• Turning the bicycle to the left while standing next to the
bicycle and walking along

• Turning the bicycle to the right while standing next to
the bicycle and walking along

• Turning the bicycle to the left while sitting on the saddle
and scooting the bicycle forwards

• Turning the bicycle to the right while sitting on the
saddle and scooting the bicycle forwards

All these maneuvers were performed with the system
turned on and with the system turned off. Each maneuver was
timed by the rider to determine how much the time to take
the maneuver would increase when the system was turned on
and the legs were on the ground.

Fig. 12: The three-point turn maneuver. The cyclist is not in
the figure, but can be either sitting on the bicycle or walking
next to the bicycle. In this figure, the maneuver is performed
to the right.

The results of the maneuverability test can be seen in

Table V and Table VI, with more detailed versions tables in
Appendix I.

The results show an average increase in maneuvering time
of 9.28% for the 90-degree turn and a 7.13% increase for the
180-degree three-point turn.

TABLE V: Results of the maneuverability test for the 90-
degree turn. Each cell shows the time in seconds for each
maneuver. The table is color-scaled, where red cells are slower
than average and green cells are faster than average.

Standing Sitting

System off System on System off System on

Right Left Right Left Right Left Right Left

4.60 4.77 4.60 4.97 4.76 4.96 5.53 4.86
4.20 4.63 4.94 4.62 4.70 4.81 5.04 5.41
4.03 4.61 4.51 4.75 4.26 4.91 5.28 5.29
4.10 4.67 4.58 4.95 4.79 4.80 5.19 5.57
4.70 4.64 5.05 4.85 4.32 4.83 5.17 5.54

TABLE VI: Results of the maneuverability test for the 180-
degree three-point-turn. Each cell shows the time in seconds
for each maneuver. The table is color-scaled, where red cells
are slower than average and green cells are faster than average.

Standing Sitting

System off System on System off System on

Right Left Right Left Right Left Right Left

8.66 8.48 9.43 9.65 10.16 9.46 10.78 10.63
8.39 8.90 8.71 9.57 10.03 10.30 11.09 11.59
8.70 8.65 9.09 9.41 9.73 9.00 10.32 9.03
8.51 9.40 9.26 9.48 10.40 10.22 11.53 11.24
8.34 8.33 9.14 9.15 10.22 9.36 9.98 9.31

F. Power consumption

To determine the system’s power consumption, a test
ride was performed. A watt meter (EXTRON Modellbau,
Eggenfelden, Germany) was added between the battery and
the system to measure the power consumption during the test
ride. A route of 6.4 kilometers was planned through the city
of Delft in the Netherlands. The route consisted of multiple
busy intersections, traffic lights, and bridges to simulate
everyday usage. The test ride was done by an 80-kilogram
rider, without any additional cargo, at an outside temperature
of 25 degrees Celsius.

During the 30-minute ride, a total power consumption
of 15.5 Wh was recorded. This results in a system power
consumption of 2.42 Wh/km, or an average power of 31.0
W, for urban areas. During the ride, a total of 13 stops in
which the system was activated were recorded. This results in
an average power consumption of 1.2 Wh per activation.

G. Roll angle & inclination test

First, the system was deactivated, and with the legs fully
retracted, the cargo bicycle was rolled over until the wheel
on the leg hit the ground. The roll angle of the bicycle was
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measured at the farthest point. The same was done while
rolling the bicycle to the other side. The measured angles
indicate how much roll the bicycle can have while cornering
when the legs are fully retracted.

Additionally, the cargo bicycle was placed on a wooden
board, which was jacked up on one side to increase the angle
(Figure 13). A rider weighing approximately 100 kilograms
was seated on the bicycle, and the legs were put down with
the system turned off, to resemble a normal kickstand. The
angle was slowly increased until the bicycle would fall over
to the side. This was repeated with the system turned on.

Fig. 13: Incline test with the system turned off on the left and
the system turned on on the right.

The maximum roll angle of the cargo bicycle with the legs
fully retracted was measured to be 24.7 degrees to the right
and 23.5 degrees to the left.

The inclination test showed that the cargo bicycle would fall
over at an angle of 7.7 degrees when the system was turned
off. When the system was turned on, the cargo bicycle would
remain perfectly level up to an angle of 15.5 degrees. At 23.2
degrees, the bicycle would fall over with the system turned
on.

H. Stability test

To test whether the system would increase the stability of
the cargo bicycle during take-off and coming to a stop, a test
was conducted in which the system was activated and the
linear accelerations were measured while cycling off from a
standstill and then coming to a stop again. A total of 10 take-
offs and stops were done with the system turned on, and 10
more with the system turned off. The stability was measured
using the accelerometer on a Nokia 3.4 smartphone, which
was mounted right below the handlebars of the cargo bicycle
(Figure 20, Appendix D). The data was recorded with the
phyphox app from RWTH Aachen University.

The data from the stability test were filtered to isolate
the accelerations that are due to the human input and
natural movement of the bicycle’s roll from vibrations and
other noise. This was done using a second-order low-pass
Butterworth filter, chosen for its good balance between signal
preservation and noise reduction, with a cutoff frequency of
fc = 1 Hz. The filtered X and Z accelerations were used to
calculate the roll angle of the cargo bicycle. The trials are
cut into pieces of 3 seconds for taking off, and 2 seconds for
stopping, to ensure only the part of the trial where the system

influences the stability of the cargo bicycle is considered.

The filtered roll angle of the bicycle is plotted in Figure 14
to visualize the stability during taking off. The root mean
square of all trials yields 1.2493 degrees for the system when
turned off and 1.0251 degrees for the system when turned
on. To assess statistical significance, a t-test was performed,
yielding p = 0.0902, which indicates that the observed
increase in stability was not statistically significant.

The results of the stability during stopping showed nearly
identical results of the root mean square of the roll angles;
1.2479 degrees when the system was turned off and 1.2802
degrees when the system was turned on.
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Fig. 14: Roll angle during takeoff during the stability test.
Each line is a different trial.

VI. DISCUSSION

In this section, the results from the tests, as described
in Section V, are evaluated. Observations related to user
experience are included, and potential improvements to the
system are identified.

A. User experience

Although not part of the validation process, several test
rides showed that the system “felt” natural during use. It did
not interfere with cycling away from a standstill, even when
turning immediately after takeoff. When coming to a slow
stop, the legs were often able to fully extend and touch the
ground before the rider needed to place a foot down.

B. Performance

The speed sensor, based on the voltage output from the
front-wheel dynamo, provided sufficient resolution to reliably
detect low speeds. The sampling frequency was high enough to
allow triggering of the system when the speed dropped below
the threshold on time.

Although the activation time of the system was more than
twice the desired value, it was improved by increasing the
speed threshold at which the legs deploy. This adjustment
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ensured the legs were nearly in contact with the ground by the
time the rider would come to a stop, effectively compensating
for the slower deployment mechanism.

The relatively slow actuation time was a result of priori-
tizing torque over speed during the design process. However,
internal friction limited the motors to a speed of approximately
1850 RPM, which was lower than the manufacturer’s no-
load specification of 1960 RPM [27]. Changing to a motor
with a higher speed or reducing the gear ratio could signif-
icantly improve deployment time but at the cost of torque.
Alternatively, a more advanced design could incorporate two
separate stages, one motor for rapid extension to the ground
and another for stabilization. Another option is a gearbox
capable of shifting between high-speed and high-torque modes
during deployment.

The torque performance was satisfactory. Although the
torque test was only performed at 7.5 degrees and 10 degrees
with a set weight, the results indicated that the system could
withstand more roll torque than was used during testing.
Additionally, the motor current was limited to 3.5 A during
tests, while the rated nominal current is 4.06 A. Increasing the
current limit would further improve stabilization torque.

C. Weight and power consumption

The total weight of the system, excluding the battery,
remained below the design requirement of 15 kg. This assumes
that the system is being used on an electric cargo bicycle.
However, if the system is installed on a non-electric cargo
bicycle, an additional battery would be required. To obtain a
more accurate total weight, the system should be disassembled
and weighed directly on a scale.

The power consumption test showed an energy use of
2.42 Wh/km during a 25-minute urban test ride. This is well
below the typical energy consumption range of e-cargo bicy-
cles (9–18 Wh/km) [28], meaning the system contributes an
additional 14% to 27% in energy consumption. This is within
acceptable limits for integration into existing electric cargo
bicycles. For parcel delivery use, which involves frequent
stops, the system would consume approximately 30 Wh for
25 deliveries. Assuming a trip length of up to 1.5 hours,
the additional power used during riding would be 46.5 Wh,
resulting in a total consumption of 76.5 Wh per trip. While
this is within the system’s design specifications, it was on the
higher end of what was initially expected.

D. Low-speed behavior

The maneuverability test indicated that the system slightly
increased the time required to perform walking maneuvers,
although the increase was relatively small and within design
specifications. Potential bias may have been introduced by the
position of the person (always on the left side of the bicycle)
and the phone timer (on the right side of the handlebars).
Additionally, the test was performed on an uneven, tiled
parking lot instead of smooth tarmac. Maneuvers performed
downhill were faster than those performed uphill.

E. Stability

The incline test demonstrated that the cargo bicycle re-
mained stable at higher roll angles when the system was
activated. The difference between the measured 23.5 degrees
maximum roll angle and the 15.5 degrees angle at which the
system remained level is likely due to early activation of the
limit switches under lateral loading, which occurs at greater
inclinations. The roll angle test confirmed that the bicycle
had sufficient lean clearance to safely take corners at normal
cycling speeds.

During the stability test, the system showed, while not
significant, benefits during takeoff. It allowed the rider to begin
cycling from a stable, upright position, without the need to
balance manually. However, no improvement in stability was
observed during stopping. This may be due to the way the
rider uses the system in practice: when stopping, riders tend
to put their foot down before the legs have fully extended. As
a result, the system cannot actively assist in stopping, but it
can passively help prevent tipping once stationary.

VII. CONCLUSION

In this paper, a novel active stabilization system was de-
veloped to increase low-speed stability for single-track cargo
bicycles. The system consists of two deployable support legs
that extend when the bicycle slows down, offering additional
support during stopping, starting, or walking with the bicycle.
A PID controller regulates the actuation based on the filtered
roll angle, and the complete system was implemented, tested,
and validated on a cargo bicycle.

Test results showed that the system improved stability in
multiple real-life scenarios. It increased the maximum stable
inclination at which the cargo bicycle would tip over by 15.5
degrees, provided greater confidence during takeoff, and did
not interfere with maneuverability or normal riding. Test rides
showed that the bicycle retained a natural and intuitive feel
during operation with the system active. Compared to more
complex balancing methods found in literature, which often
involve continuous sensing and actuation, or complex steering
adjustments, this solution is mechanically simpler, energy-
efficient, and better suited to urban use cases with frequent
stopping and starting, such as parcel delivery or transporting
children.

While some design requirements, such as activation time,
were not fully met, practical workarounds proved effective
during testing. Slight improvements, such as using faster
motors or a two-stage actuation mechanism, could further
increase the system’s performance. The results show that this
stabilization approach is not only feasible but also offers a
robust and practical solution to a real problem, making it a
good addition to future cargo bicycle designs.
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dissertation, Université Claude Bernard - Lyon I, Dec. 2024.

[27] Maxon, “Maxon 500267 EC 90 flat brushless, 260 W, with Hall sensors,”
https://www.maxongroup.com/maxon/view/product/500267.

[28] S. Narayanan and C. Antoniou, “Electric cargo cycles - A comprehensive
review,” Transport Policy, vol. 116, pp. 278–303, Feb. 2022.

[29] Anthropic. (2025) Claude ai. Accessed: May 20, 2025. [Online].
Available: https://claude.ai

https://claude.ai


12

Appendix A: Model parameters

λ

Rear frame
including rider, R

Rear wheel, R Front wheel, F

z

P Q x
w

Front frame (fork
and handlebar), H

c

Fig. 15: Simplified bicycle visualizing the bicycle parameters and the coordinate system. Labeled parameters correspond with
the parameters in Table VII.

TABLE VII: Parameters of the cargo bicycle with and without rider. The front assembly A consists of the handlebar and fork
assembly and the front wheel.

Parameter Symbol Cargo bike Cargo bike with rider Cargo bike with rider & cargo Unit

Gravitational acceleration g 9.81 9.81 9.81 m/s2

Steer axis tilt λ 0.262 0.262 0.262 rad
Trail c 0.0241 0.0241 0.0241 m
Wheel base w 1.97 1.97 1.97 m
Front assembly (A)
COM perpendicular distance from
steering axis uA -0.00364 -0.00364 -0.00364 m

Mass mA 8.5 8.5 8.5 kg
Horizontal position center of mass xA 1.85 1.85 1.85 m
Vertical position center of mass zA -0.557 -0.557 -0.557 m

Mass moments of inertia

IAλλ

IAλx

IAλz

  0.0145
−0.0511
−0.0241

  0.0145
−0.0511
−0.0241

  0.0145
−0.0511
−0.0241

 kgm2

Rear wheel (R)
Mass mR 4.62 4.62 4.62 kg
Radius rR 0.305 0.305 0.305 kg
Mass moment of inertia IRyy 0.166 0.166 0.166 kgm2

Front wheel (F)
Mass mF 2.67 2.67 2.67 kg
Radius rF 0.230 0.230 0.230 m
Mass moment of inertia IFyy 0.09 0.09 0.09 kgm2

Total system (T)
Mass mT 49.0 129 209 kg
Horizontal position center of mass xT 0.811 0.5085 0.7885 m
Vertical position center of mass zT -0.395 -0.801 -0.705 m

Mass moments of inertia

ITxx 0 ITxz

0 0 0
ITxz 0 ITzz

 8.38 0 16.9
0 0 0

16.9 0 50.2

 32.6 0 10.3
0 0 0

10.3 0 60.9

 35.7 0 1.25
0 0 0

1.25 0 87.3

 kgm2
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Appendix B: Equations of motion feedback system
Filling in q and f in the equations of motion results in:

M

[
ϕ̈

δ̈

]
+ vC1

[
ϕ̇

δ̇

]
+

(
gK0 + v2K2

) [ϕ
δ

]
=

[
Tϕ

Tδ

]
(4)

Since the torque is modeled as a spring-damper system, it can be expressed as:[
Tϕ

Tδ

]
=

[
−krollϕ− crollϕ̇

−ksteerδ − csteer δ̇

]
(5)

Where kroll and ksteer are the stiffness coefficients on the roll and steer angle, respectively, and croll and csteer are the
damping coefficients on the roll and steer angle, respectively. This leads to the equations of motion:

[
Mϕϕ Mϕδ

Mδϕ Mδδ

] [
ϕ̈

δ̈

]
+ v

[
C1ϕϕ C1ϕδ

C1δϕ C1δδ

] [
ϕ̇

δ̇

]
+

(
g

[
K0ϕϕ K0ϕδ

K0δϕ K0δδ

]
+ v2

[
K2ϕϕ K2ϕδ

K2δϕ K2δδ

])[
ϕ
δ

]
=

[
−krollϕ− crollϕ̇

−ksteerδ − csteer δ̇

]
(6)

Matrix multiplication gives:

[
Mϕϕϕ̈+Mϕδ δ̈

Mδϕϕ̈+Mδδ δ̈

]
+ v

[
C1ϕϕϕ̇+ C1ϕδ δ̇

C1δϕϕ̇+ C1δδ δ̇

]
+ g

[
K0ϕϕϕ+K0ϕδδ
K0δϕϕ+K0δδδ

]
+ v2

[
K2ϕϕϕ+K2ϕδδ
K2δϕϕ+K2δδδ

]
=

[
−krollϕ− crollϕ̇

−ksteerδ − csteer δ̇

]
(7)

From here, the feedback coefficients can be moved to the left-hand side of the equation. The stiffness coefficients are added
to the K2 matrix, but could also have been added to the K0 matrix:

[
Mϕϕϕ̈+Mϕδ δ̈

Mδϕϕ̈+Mδδ δ̈

]
+ v

[(
C1ϕϕ + croll

v

)
ϕ̇+ C1ϕδ δ̇

C1δϕϕ̇+
(
C1δδ +

csteer

v

)
δ̇

]
+ g

[
K0ϕϕϕ+K0ϕδδ
K0δϕϕ+K0δδδ

]
+ v2

[(
K2ϕϕ + kroll

v2

)
ϕ+K2ϕδδ

K2δϕϕ+
(
K2δδ +

ksteer

v2

)
δ

]
= 0 (8)

Resulting in the coefficients affecting only four matrix components of the mass, damping, and stiffness matrices. With this
knowledge, the stiffness and damping coefficients can be added to the C1 and K2 matrices, before working out the equations
of motion:

C1 =

[
C1ϕϕ + croll

v C1ϕδ

C1δϕ C1δδ +
csteer

v

]
, K2 =

[
K2ϕϕ + kroll

v2 K2ϕδ

K2δϕ K2δδ +
ksteer

v2

]
(9)
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Appendix C: Design process
Using the design constraints and requirements, the design was broken down into 13 subproblems. These subproblems were:

• A way to move the system
• A way to control the system
• A way to tell the system what direction to move
• Compliance of the system
• A way the system makes contact with the ground
• A way the system knows the bike speed
• A way the system knows the legs are touching the ground
• A way the system knows the roll angle of the bike
• A way the system knows the legs are at the end of their movement range
• A way rotational movement is transferred to linear movement (if required)
• A way to increase the system’s force/torque (if required)
• The materials used for the system
• The way the system is attached to the bike

These subproblems could be categorized as different functions to help the design process. Using these functions, a morphological
chart was made where each function had multiple solutions for each subproblem (Table XII). From the morphological chart,
multiple concepts could be made.

Since the system would activate below a certain speed, all concepts require a speed sensor, which is therefore not added to
the morphological chart. Materials are also not added to the morphological chart, since the final decision on the material was
made during the final design after the concept had been chosen.

Concepts
Concept A

TABLE VIII: Solutions used for Concept A

Brushless motor Cycloidal drive Motor compliance Omni-wheels Accelerometer Clamp

Fig. 16: Sketch of Concept A. The motor is shown in black, the gearbox is purple, the leg is blue, and the wheel is red.

Concept A uses a brushless DC motor with a cycloidal drive to move the legs. The motor shaft is perpendicular to the main
frame tube, and the leg is directly attached to the output shaft of the gearbox. Since the cycloidal drive is back-drivable, the
system can use motor compliance to achieve a compliant system, so that the bicycle dynamics can remain. The results from
the simulations in Section II can be used to find the motor torque and the cycloidal drive gear ratio. Omni-wheels allow for
lateral rolling of the wheels. The system uses an accelerometer to find the roll angle of the bike. Attachment to the cargo bike
is done with clamps.
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Concept B

Since two similar concepts were made, Concept B consists of Concept B.1 and Concept B.2. Figure 17 shows a sketch of
Concept B.

TABLE IX: Solutions used for Concept B. Concept B.1 uses a lead screw, while Concept B.2 uses a ball screw.

Brushless motor Planetary gearbox Lead screw/ Omni-wheels Accelerometer Limit switch Clamp
ball screw

Fig. 17: Sketch of Concept B. The motor is shown in black, the gearbox in purple, the leg and linkages in blue, the spindle
is green, and the spindle nut is gold.

Concept B uses a brushless DC motor with a planetary gearbox. The rotational movement is transferred to a linear movement
using a spindle and a spindle nut. Concept B.1 uses a trapezoidal lead screw, while Concept B.2 uses a ball screw. The
linkages transfer the movement from the spindle nut to the leg. Like in Concept A, omni-wheels are used. An accelerometer
determines the roll angle of the bike. Additionally, limit switches trigger when the legs touch the ground or are at the end of
their movement range.

Since a ball screw is back-drivable, Concept B.2 can use motor compliance to improve bicycle dynamics while the system is
active and the legs are touching the ground. However, ball screw assemblies are significantly more expensive than lead screw
assemblies and therefore Concept B.1 was also considered, which are not back-drivable.

Concept C

TABLE X: Solutions used for Concept C.

Hydraulic motor Springs Wheels Accelerometer Pressure sensor Clamps

Concept C uses a hydraulic cylinder as the actuator. The wheels are attached to the cylinder through springs, which add
compliance to the system, improving bicycle dynamics. The wheels caster on the cylinder ends, so they can also move
sideways when the bike is taking a turn. Pressure sensors are used to determine when the wheels make contact with the
ground.
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Fig. 18: Sketch of Concept C. The hydraulic cylinder is shown in black, the wheel in red, and the spring is green.

Concept selection
To select the most suitable concept for the final design, assessment criteria were formulated. The criteria were as follows:
• Cost
• Dynamics
• Stability
• Weight
The criteria were ordered from important to least important, and then were given a weight so they could be used for concept

evaluation. Each concept was given a score on a 1-5 scale according to its expected performance for each criterion. The scores
were multiplied by the weights, and the sum of the weighted scores gave a final score that indicated which concept would
perform best. Table XI shows that Concept B.1 scores the highest during the evaluation. Therefore, Concept B.1 will be further
worked out into a final design.

TABLE XI: Weighted criteria and concept evaluation.

Criterion Weight Concept A Concept B.1 Concept B.2 Concept C
Stability 0.4 1 4 4 4

Cost 0.3 3 4 2 2
Dynamics 0.2 5 1 3 2

Mass 0.1 5 4 4 1
Weighted score 2.8 3.4 3.2 2.7



17

TABLE XII: Morphological chart used for the design process. The first column shows the functions in which the solutions
can be categorized.

Actuation
Brushed Brushless Hydraulic Pneumatic Solenoid

Sensing
Gyroscope Accelerometer Limit switch Pressure sensor Strain gauge

Compliance
Springs Compliant materials Motor compliance None

Ground con-
tact

Wheels Sliders Omni-wheels

Linear trans-
mission

Lead screw Ball screw Rack & pinion Belts/pulleys None

Rotational
transmission

Planetary gearbox Cycloidal drive Worm drive None

Attachment
Clamp Bolt Screw
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Appendix D: Electronics overview and user interface

Fig. 19: Detailed overview of the electronics of the system. Top right to bottom left: Red: Shunt regulators, Green: Battery, Blue:
motor controllers, Yellow: DC-DC converter, Purple: Arduino UNO R4 WiFi, Orange: Sparkfun ICM-20948 IMU, Turquoise:
custom circuit board (shown in Figure 22 in Appendix E).

Fig. 20: The cargo bike as seen from the driver’s point of view. Under the handlebar are the on/off switch, the emergency
switch, and the phone that was used for cloud connection and for gathering accelerometer data during testing.
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Appendix E: Wiring diagram

DC-DC Converter
(XL7015)

Fig. 21: Wiring diagram of the system. For simplicity, only one shunt regulator, motor controller, and motor are shown. Red
wires indicate the positive terminal of the DC supply, while black wires represent the negative terminal (ground/GND). Other
color wires are used for logic signals or data transfer.

Fig. 22: Schematic of the custom circuit board. The custom circuit board includes the speed sensor circuit and the circuitry
for the limit switches, ground contact switches, on/off switch, and emergency stop. This wiring is also present in Figure 21.
The boxes represent the inputs and outputs of the circuit board. Red wires indicate the positive terminal of the DC supply,
while black wires represent the negative terminal (ground/GND). Other color wires are used for logic signals or data transfer.
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Appendix F: Arduino code
The Arduino code consists of three different files.

A. Main code

The main code runs the state machine, controls the motors, and receives input from the (limit) switches. The motor controller
settings, which are set in ESCON Studio, are incorporated as constants in the Arduino code to set the motors’ RPM correctly.
The controller settings can be changed as desired. The controller runs at 200 Hz, but the rate can be changed as desired.

At first, cloud connectivity was enabled in the code to get live readings from the system and to set the speed threshold
while cycling. However, this introduced a problem where the system would freeze for 10 seconds whenever the Arduino lost
internet connection, so it was removed in the latest version. The code can be seen in Listing 1.

B. IMU Handler library

The IMU Handler communicates with the IMU over SPI. The library was generated using Claude.ai [29]. The low-pass
filter for the IMU data is integrated in the library. The filtered X and Z accelerations are used to calculate the roll angle. The
dt, which is determined by the controller rate of the main code, is required as input for the filter. The code can be seen in
Listing 2.

C. Header file

The header file for the IMU Handler. The header file was also generated by Claude.ai. The code can be seen in Listing 3.

Listing 1: Main code running on the Arduino.
1 /*
2 Cargo bike balance assist (CBBA) Arduino code
3
4 by Bart de Vries
5
6 as part of the graduation project for the master of Mechanical Engineering, department of

Biomechanical Engineering
7
8 Latest version: 17-5-2025 21:34
9 */

10
11 // LIBRARIES
12
13 #include <SPI.h>
14 #include <IMU_Handler.h>
15
16 // CONSTANTS & VARIABLES
17
18 const bool down = 1; // Value controller accepts to turn leg down
19 const bool up = 0; // Value controller accepts to turn leg up
20
21 int check = 0; // Check is used to not switch states due to false positives
22
23 const float angleThreshold = 15.0; // Angle threshold. Any angle above this will not

activate the system
24 const float engagingTolerance = 1.5; // Angle tolerance to control motors during engaging (see

engagingHandler)
25
26 // Speed thresholds for engaging and disengaging
27 int cyclingThreshold = 450;
28 int walkingThreshold = 50;
29
30 // Stores values of switch signals:
31 bool touchL;
32 bool touchR;
33 bool limitL;
34 bool limitR;
35
36 // Motor RPM and PWM values
37 const int maxPWM = 230; // PWM signal to get max motor RPM
38 const int minPWM = 25; // PWM signal to get 0 RPM on the motor
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39 const int minmaxPWM = maxPWM - minPWM;
40 const int maxRPM = 2000; // Maximum RPM

of the motor (As set in the controller: ESCON Studio)
41 const int disengagingRPM = 1670; // RPM for

disengaging the system (change as desired)
42 const int maxControllingRPM = 1670; // Max RPM for

controlling
43 const int minControllingRPM = 500; // Min RPM for

controlling
44 const int disengagingPWM = int(minmaxPWM * disengagingRPM / maxRPM) + minPWM; // PWM value for

disengaging the system
45 const int maxControllingPWM = int(minmaxPWM * maxControllingRPM / maxRPM) + minPWM; // PWM for

maximum controlling RPM
46 const int minControllingPWM = int(minmaxPWM * minControllingRPM / maxRPM) + minPWM; // PWM for

minimum controlling RPM
47
48 // Filter parameters
49 const float fc = 1.0; // Cutoff frequency
50 const float fs = 200.0; // Sampling frequency and frequency at which the system runs
51 const float speedAlpha = 0.05; // Filter constant for speed
52 int previousSpeed = 0; // Store previous filtered speed value
53 int bikeSpeed;
54 float dt; // dt value used for IMU accelerations and integral and

derivative errors for PID
55
56 // Controller constants
57 const float targetAngle = 0.0; // Target angle
58 const float tolerance = 1.0; // Tolerance on target angle
59 float currentAngle;
60
61 // PID parameters
62 const float Kp = 0.8;
63 const float Ki = 0.1;
64 const float Kd = 0.01;
65 const float maxIntegralError = 5.0;
66
67 // Controller variables
68 float integralError; // Integral error for integral calculation
69 float previousError; // Previous error for derivative

calculation
70 const unsigned long controlInterval = 1000000 / fs; // Control interval to set the rate of the

controller using microseconds
71 int motorSpeed;
72
73 // Stores values for timers
74 unsigned long lastTime = 0; // Timer for
75 unsigned long motorTimer = 0; // Timer for walking state motor control
76
77 // States:
78 int currentState;
79 int previousState;
80 enum State {
81 DEACTIVATED,
82 ACTIVATED,
83 ENGAGING,
84 DISENGAGING,
85 WALKING,
86 CONTROLLING,
87 EMERGENCY
88 };
89
90 // PINS
91 // Input pins:
92 const int OnOff = 4; // Turn the system on and off
93 const int eStop = 8; // Emergency stop
94
95 const int LimitL = 3; // Sensor to check end of travel of leg 1 (wired to button)
96 const int LimitR = 2; // Sensor to check end of travel of leg 2 (wired to button)
97
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98 const int touchdownL = 6; // Sensor to check if the wheel touches the ground (wired to button)
99 const int touchdownR = 7; // Sensor to check if the wheel touches the ground (wired to button)

100
101 const int speedPin = A5; // Speed sensor (voltage sensor from dynamo) (bike speed)
102
103 // Output pins:
104 const int OnL = A2; // Turn on/off left motor
105 const int DirL = 0; // Direction of left motor
106 const int OnR = A1; // Turn on/off of right motor
107 const int DirR = 1; // Direction of right motor
108
109 const int PWMpin = 9; // Sets motor speed (for both motors)
110
111 // Other pins:
112 IMU_Handler imu(10); // Set CS pin for SPI communication between IMU and Arduino
113
114
115
116 void setup() {
117 Serial.begin(115200); // Initialize Serial
118 log("Setup starting.");
119
120 SPI.begin(); // Initialize SPI
121
122 // Initialize the IMU
123 log("Attempting to connect to IMU...");
124 if (imu.begin()) {
125 log("IMU initialized successfully");
126 } else {
127 log("Failed to initialize IMU");
128 while (1)
129 ; // Infinite loop the program if IMU initialization fails
130 }
131
132 String filterMsg = "Lowpass filter used for IMU data. Using cutoff frequency fc = " + String(

fc) + " Hz, sampling frequency fs = " + String(fs);
133 log(filterMsg);
134
135 imu.setFilterFrequency(fc, fs); // Set cutoff frequency and sampling frequency for the

filter (calculates alpha in .cpp)
136
137 // Setting pins to OUTPUT or INPUT
138 pinMode(OnL, OUTPUT);
139 pinMode(DirL, OUTPUT);
140 pinMode(OnR, OUTPUT);
141 pinMode(DirR, OUTPUT);
142 pinMode(LimitL, INPUT);
143 pinMode(LimitR, INPUT);
144 pinMode(OnOff, INPUT);
145 pinMode(eStop, INPUT);
146 pinMode(touchdownL, INPUT);
147 pinMode(touchdownR, INPUT);
148
149 // Attach interrupts to limit switches
150 attachInterrupt(digitalPinToInterrupt(LimitL), limitLInterrupt, RISING);
151 attachInterrupt(digitalPinToInterrupt(LimitR), limitRInterrupt, RISING);
152
153 // Set initial state
154 if ((digitalRead(OnOff) == 0) && (digitalRead(LimitL) == 0 || digitalRead(LimitR) == 0)) {
155 log("Current state is Deactivated: Disengaging system.");
156 currentState = DISENGAGING;
157 } else if (digitalRead(OnOff) == 1) {
158 log("Current state is Activated.");
159 currentState = ACTIVATED;
160 } else {
161 log("Current state is Deactivated.");
162 currentState = DEACTIVATED;
163 }
164 }



23

165
166 void loop() {
167 // Emergency stop
168 if (digitalRead(eStop) == 1) {
169 if (currentState != EMERGENCY) {
170 log("Emergency stop activated!");
171 }
172 currentState = EMERGENCY;
173 }
174
175 // Continue if emergency stop is released
176 if (digitalRead(eStop) == 0 && currentState == EMERGENCY) {
177 log("System deactivated.");
178 currentState = DEACTIVATED;
179 }
180
181 // Run system at defined rate
182 unsigned long currentTime = micros();
183 if ((currentTime - lastTime) < controlInterval) {
184 return; // Exit if not enough time has passed
185 }
186
187 dt = (currentTime - lastTime) / 1000000.0; // dt in seconds
188 lastTime = currentTime;
189
190 // Update IMU data
191 imu.update(dt);
192 currentAngle = imu.getRoll();
193
194 // Update bike speed
195 bikeSpeed = readSpeed();
196
197 // Check angle threshold
198 if (abs(currentAngle) > angleThreshold) {
199 log("Angle too large, stopping system.");
200 digitalWrite(OnL, 0);
201 digitalWrite(OnR, 0);
202 return;
203 }
204
205 // Main state machine
206 switch (currentState) {
207 case DEACTIVATED:
208 handleDeactivated();
209 break;
210
211 case ACTIVATED:
212 handleActivated();
213 break;
214
215 case ENGAGING:
216 handleEngaging();
217 break;
218
219 case DISENGAGING:
220 handleDisengaging();
221 break;
222
223 case WALKING:
224 handleWalking();
225 break;
226
227 case CONTROLLING:
228 handleControlling();
229 break;
230
231 case EMERGENCY:
232 emergencyBrake();
233 break;
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234
235 default:
236 log("Error: entered undefined state.");
237 currentState = DEACTIVATED;
238 break;
239 }
240 }
241
242 void log(const String& message) { // Function to log messages to Arduino Cloud. Replaces

Serial.print
243 Serial.println(message);
244 String serialOutput = message;
245 }
246
247 void limitLInterrupt() { // Interrupt for left limit switch
248 digitalWrite(DirL, !digitalRead(DirL)); // Change direction for some braking
249 digitalWrite(OnL, 0);
250 }
251
252 void limitRInterrupt() { // Interrupt for right limit switch
253 digitalWrite(DirR, !digitalRead(DirR)); // Change direction for some braking
254 digitalWrite(OnR, 0);
255 }
256
257 void emergencyBrake() {
258 digitalWrite(DirL, !digitalRead(DirL)); // Reverse direction of left motor for braking
259 digitalWrite(DirR, !digitalRead(DirR)); // Reverse direction of right motor for braking
260 analogWrite(PWMpin, 230); // Increase PWM to maximum to increase braking force
261
262 delay(100);
263
264 digitalWrite(OnL, 0);
265 digitalWrite(OnR, 0);
266 }
267
268 int readSpeed() { // Function that reads the speed of the bike and

filters it
269 int rawSpeed = analogRead(speedPin);
270 bikeSpeed = (speedAlpha * rawSpeed) + ((1 - speedAlpha) * previousSpeed); // Exponential

filter to smooth out the speed reading
271 previousSpeed = bikeSpeed;
272 return bikeSpeed;
273 }
274
275 void handleDeactivated() {
276 if (digitalRead(OnOff) == 1) { // Checks to see if on/off switch is activated
277 currentState = ACTIVATED;
278 log("Going to state: Activated");
279 } else if (digitalRead(LimitL) == 0 || digitalRead(LimitR) == 0) { // Recheck if legs are

really up
280 log("System is deactivated, but legs are not up: Disengaging.");
281 currentState = DISENGAGING;
282 }
283 }
284
285 void handleActivated() {
286 if (digitalRead(OnOff) == 0) { // Checks to see if on/off switch is activated
287 currentState = DEACTIVATED;
288 log("Going to state: Deactivated");
289 return;
290 }
291
292 if (bikeSpeed < cyclingThreshold) { // Checks speed with threshold
293 log("Speed under threshold: Engaging.");
294 check = 0;
295 currentState = ENGAGING;
296 } else if (digitalRead(LimitL) != 1 || digitalRead(LimitR) != 1) { // Checks to see if

legs are up when they should be
297 log("System is activated, but speed is above threshold and legs are not up: Disengaging.");
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298 currentState = DISENGAGING;
299 }
300 }
301
302 void handleEngaging() {
303 touchL = digitalRead(touchdownL);
304 touchR = digitalRead(touchdownR);
305
306 if (touchL == 1 || touchR == 1) { // Sets motor RPM to max, but when a leg touches it is

slowed down to max Controlling RPM
307 analogWrite(PWMpin, maxControllingPWM);
308 } else {
309 analogWrite(PWMpin, 230); // Set speed to max for engaging before touchdown
310 }
311
312 if (digitalRead(OnOff) == 0) { // Checks to see if on/off switch is activated
313 currentState = DISENGAGING;
314 log("System deactivated: Disengaging.");
315 return;
316 }
317
318 if (bikeSpeed > cyclingThreshold) { // If the bike is moving too fast, disengage
319 currentState = DISENGAGING;
320 String message = "Speed (" + String(bikeSpeed) + ") above threshold: Disengaging.";
321 log(message);
322 return;
323 }
324
325 // Setting direction for both motors down
326 digitalWrite(DirL, down);
327 digitalWrite(DirR, down);
328
329 if (touchL == 0 && touchR == 0) { // Logic to control motors (tilted left is postive, tilted

right is negative)
330 digitalWrite(OnL, 1);
331 digitalWrite(OnR, 1);
332 } else if (touchL == 1 && currentAngle > engagingTolerance) { // Left touches and bike is

tilted left > keep moving both legs
333 digitalWrite(OnL, 1);
334 digitalWrite(OnR, 1);
335 } else if (touchR == 1 && currentAngle < -engagingTolerance) { // Right touches and bike is

tilted right > keep moving both legs
336 digitalWrite(OnL, 1);
337 digitalWrite(OnR, 1);
338 } else if (touchL == 1 && currentAngle < -engagingTolerance) { // Left touches, but bike is

tilted right > only move right
339 digitalWrite(OnL, 0);
340 digitalWrite(OnR, 1);
341 } else if (touchR == 1 && currentAngle > engagingTolerance) { // Right touches, but bike is

tilted left > only move left
342 digitalWrite(OnL, 1);
343 digitalWrite(OnR, 0);
344 }
345
346 if (touchR == 1 && touchL == 1) { // If both legs touch down, go the controlling state
347 check += 1;
348 if (check > 20) { // Stop system from going to CONTROLLING from false true button values
349 digitalWrite(OnR, 0);
350 digitalWrite(OnL, 0);
351 currentState = CONTROLLING;
352 log("Both legs are down: Controlling");
353 }
354 }
355 }
356
357 void handleDisengaging() {
358 analogWrite(PWMpin, disengagingPWM); // Set speed for disengaging
359
360 limitL = digitalRead(LimitL);
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361 limitR = digitalRead(LimitR);
362
363 digitalWrite(DirL, up);
364 digitalWrite(DirR, up);
365
366 if (digitalRead(OnOff) == 1 && bikeSpeed < cyclingThreshold) { // If the bike slows down

while activated, engage
367 String message = "Speed (" + String(bikeSpeed) + ") under threshold while disengaging:

Engaging.";
368 log(message);
369 digitalWrite(OnL, 0);
370 digitalWrite(OnR, 0);
371 currentState = ENGAGING;
372 return;
373 }
374
375 if (limitL == 0) { // Turn off left motor if limit switch is activated
376 digitalWrite(OnL, 1);
377 check = 0;
378 } else {
379 digitalWrite(OnL, 0);
380 }
381
382 if (limitR == 0) { // Turn off right motor if limit switch is activated
383 digitalWrite(OnR, 1);
384 check = 0;
385 } else {
386 digitalWrite(OnR, 0);
387 }
388
389 if (limitL == 1 && limitR == 1) { // If both legs are up, go to deactivated state
390 check += 1;
391 if (check > 2) {
392 log("Both legs are up: Deactivating.");
393 currentState = DEACTIVATED;
394 }
395 }
396 }
397
398 void handleWalking() { // Turns on motor for X seconds to slightly raise the wheels off the

ground
399 analogWrite(PWMpin, disengagingPWM); // Set motor speed
400
401 touchL = digitalRead(touchdownL);
402 touchR = digitalRead(touchdownR);
403 limitL = digitalRead(LimitL);
404 limitR = digitalRead(LimitR);
405
406 digitalWrite(DirL, up); // Legs can only move up while in Walking mode
407 digitalWrite(DirR, up);
408
409 if (bikeSpeed > cyclingThreshold || digitalRead(OnOff) == 0) { // If the bike is moving

too fast or the system is deactivated, disengage
410 String message = "Speed (" + String(bikeSpeed) + ") above threshold while walking:

Disengaging.";
411 log(message);
412 digitalWrite(OnL, 0);
413 digitalWrite(OnR, 0);
414 currentState = DISENGAGING;
415 return;
416 } else if (bikeSpeed < (walkingThreshold - 30)) { // If the bike is moving too slow,

engage
417 String message = "Speed (" + String(bikeSpeed) + ") under threshold while walking: Engaging

.";
418 log(message);
419 digitalWrite(OnL, 0);
420 digitalWrite(OnR, 0);
421 currentState = ENGAGING;
422 return;
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423 }
424
425 // Motor control
426 if (millis() - motorTimer >= 500) { // Check if 0.5 seconds have passed to turn off the

motors
427 digitalWrite(OnL, 0);
428 digitalWrite(OnR, 0);
429 } else {
430 digitalWrite(OnL, 1);
431 digitalWrite(OnR, 1);
432 }
433
434 if (previousState != currentState) { // Reset timer when entering walking state
435 motorTimer = millis();
436 }
437
438 previousState = currentState;
439 }
440
441 void handleControlling() {
442 previousState = currentState;
443 touchL = digitalRead(touchdownL);
444 touchR = digitalRead(touchdownR);
445
446 if (bikeSpeed > (walkingThreshold + 30)) { // If the bike is above walking speed, go to

walking state
447 currentState = WALKING;
448 String message = "Speed (" + String(bikeSpeed) + ") above threshold while controlling:

Walking.";
449 log(message);
450 return;
451 }
452
453 if (touchL == 0 || touchR == 0) { // If either wheel is not touching the ground, go to

engaging state
454 digitalWrite(OnL, 0);
455 digitalWrite(OnR, 0);
456 currentState = ENGAGING;
457 log("Legs lost contact with the ground while controlling: Engaging.");
458 return;
459 }
460
461 if (digitalRead(OnOff) == 0) { // Disengage if the system is deactivated
462 currentState = DISENGAGING;
463 log("System deactivated while controlling: Disengaging.");
464 return;
465 }
466
467 // Function that actually controls the motors:
468 angleController();
469
470 }
471
472 void angleController() {
473 limitL = digitalRead(LimitL);
474 limitR = digitalRead(LimitR);
475 touchL = digitalRead(touchdownL);
476 touchR = digitalRead(touchdownR);
477
478 // Calculate error
479 float error = targetAngle - currentAngle;
480
481 // Update integral term
482 integralError += error * dt;
483 integralError = constrain(integralError, -maxIntegralError, maxIntegralError);
484
485 // Calculate derivative term
486 float derivativeError = (error - previousError) / dt;
487 previousError = error;
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488
489 // Calculate control effort using PID controller
490 float controlEffort = Kp * error + Ki * integralError + Kd * derivativeError;
491
492 // Map absolute control effort to PWM value (10% to 90% -> values motor controller accepts)
493 motorSpeed = constrain(map(abs(controlEffort), 0, maxIntegralError, minControllingPWM,

maxControllingPWM), minControllingPWM, maxControllingPWM);
494
495 // Determine motor actions based on control effort
496 if (abs(error) <= tolerance) {
497 // Within tolerance band, stop both motors
498 digitalWrite(OnL, 0);
499 digitalWrite(OnR, 0);
500 } else if (controlEffort > 0) {
501 // Angle is positive (tilted left), need to tilt right
502 digitalWrite(DirL, up);
503 digitalWrite(DirR, down);
504
505 // Check to see if the left limit switch is activated, it cannot move up if it is
506 if (limitL == 1) {
507 digitalWrite(OnL, 0);
508 digitalWrite(OnR, 0);
509 } else {
510 if (touchL == 0) { // If statement checks if left wheel is still on the ground
511 digitalWrite(OnL, 0); // Legs do not move up if the wheel is not touching
512 } else {
513 digitalWrite(OnL, 1);
514 }
515 digitalWrite(OnR, 1);
516 analogWrite(PWMpin, motorSpeed);
517 }
518 } else {
519 // Angle is negative (tilted right), need to tilt left
520 digitalWrite(DirL, down);
521 digitalWrite(DirR, up);
522
523 // Check to see if the right limit switch is activated
524 if (limitR == 1) {
525 digitalWrite(OnL, 0);
526 digitalWrite(OnR, 0);
527 } else {
528 if (touchR == 0) { // If statement checks if right wheel is still on the ground
529 digitalWrite(OnR, 0); // Leg does not move up if wheel is not touching
530 } else {
531 digitalWrite(OnR, 1);
532 }
533 digitalWrite(OnL, 1);
534 analogWrite(PWMpin, motorSpeed);
535 }
536 }
537 }
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Listing 2: Library written by Claude.ai for communications with the Sparkfun ICM20948 IMU.
1 #include "IMU_Handler.h"
2 #include <math.h>
3
4 // ICM20948 SPI registers
5 #define ICM20948_REG_BANK_SEL 0x7F
6 #define ICM20948_PWR_MGMT_1 0x06 // Bank 0
7 #define ICM20948_ACCEL_XOUT_H 0x2D // Bank 0
8 #define ICM20948_ACCEL_CONFIG 0x14 // Bank 2
9

10 // Constructor
11 IMU_Handler::IMU_Handler(int csPin) :
12 CS_PIN(csPin),
13 spiSettings(1000000, MSBFIRST, SPI_MODE0),
14 alpha(0.1f) // Default filter value, will be recalculated in setFilterFrequency
15 {
16 // Initialize filtered values
17 filteredAccelX = 0.0f;
18 filteredAccelZ = 0.0f;
19 prevFilteredAccelX = 0.0f;
20 prevFilteredAccelZ = 0.0f;
21 }
22
23 bool IMU_Handler::begin() {
24 // Initialize SPI and CS pin
25 pinMode(CS_PIN, OUTPUT);
26 digitalWrite(CS_PIN, HIGH);
27 SPI.begin();
28
29 // Reset the device
30 writeRegister(ICM20948_REG_BANK_SEL, 0x00); // Select Bank 0
31 writeRegister(ICM20948_PWR_MGMT_1, 0x80); // Reset device
32 delay(100);
33
34 // Wake up the device
35 writeRegister(ICM20948_REG_BANK_SEL, 0x00); // Select Bank 0
36 writeRegister(ICM20948_PWR_MGMT_1, 0x01); // Auto select best available clock
37 delay(10);
38
39 // Configure accelerometer (Bank 2)
40 writeRegister(ICM20948_REG_BANK_SEL, 0x20); // Select Bank 2
41 writeRegister(ICM20948_ACCEL_CONFIG, 0x00); // Set accel to +/- 2g
42
43 // Return to Bank 0 for normal operation
44 writeRegister(ICM20948_REG_BANK_SEL, 0x00);
45
46 // Setup default low-pass filter (1Hz with 100Hz sample rate)
47 setFilterFrequency(1.0f, 100.0f);
48
49 return true; // Add error checking in a real implementation
50 }
51
52 void IMU_Handler::writeRegister(uint8_t reg, uint8_t data) {
53 SPI.beginTransaction(spiSettings);
54 digitalWrite(CS_PIN, LOW);
55 SPI.transfer(reg & 0x7F); // Bit 7 low for write
56 SPI.transfer(data);
57 digitalWrite(CS_PIN, HIGH);
58 SPI.endTransaction();
59 }
60
61 uint8_t IMU_Handler::readRegister(uint8_t reg) {
62 uint8_t data;
63 SPI.beginTransaction(spiSettings);
64 digitalWrite(CS_PIN, LOW);
65 SPI.transfer(reg | 0x80); // Bit 7 high for read
66 data = SPI.transfer(0);
67 digitalWrite(CS_PIN, HIGH);
68 SPI.endTransaction();
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69 return data;
70 }
71
72 void IMU_Handler::readXZAccelData(int16_t* accelX, int16_t* accelZ) {
73 uint8_t rawDataX[2]; // Buffer for X accelerometer data
74 uint8_t rawDataZ[2]; // Buffer for Z accelerometer data
75
76 // Switch to Bank 0 where accelerometer data registers are located
77 writeRegister(ICM20948_REG_BANK_SEL, 0x00);
78
79 // Read X accelerometer data
80 SPI.beginTransaction(spiSettings);
81 digitalWrite(CS_PIN, LOW);
82 // ACCEL_XOUT_H register address
83 SPI.transfer(ICM20948_ACCEL_XOUT_H | 0x80); // | 0x80 for read operation
84
85 // Read 2 bytes for X accelerometer data
86 rawDataX[0] = SPI.transfer(0); // High byte
87 rawDataX[1] = SPI.transfer(0); // Low byte
88
89 digitalWrite(CS_PIN, HIGH);
90 SPI.endTransaction();
91
92 // Read Z accelerometer data
93 SPI.beginTransaction(spiSettings);
94 digitalWrite(CS_PIN, LOW);
95 // ACCEL_ZOUT_H register address (ACCEL_XOUT_H + 4)
96 SPI.transfer((ICM20948_ACCEL_XOUT_H + 4) | 0x80); // | 0x80 for read operation
97
98 // Read 2 bytes for Z accelerometer data
99 rawDataZ[0] = SPI.transfer(0); // High byte

100 rawDataZ[1] = SPI.transfer(0); // Low byte
101
102 digitalWrite(CS_PIN, HIGH);
103 SPI.endTransaction();
104
105 // Convert accelerometer data to 16-bit signed values
106 *accelX = (int16_t)((rawDataX[0] << 8) | rawDataX[1]);
107 *accelZ = (int16_t)((rawDataZ[0] << 8) | rawDataZ[1]);
108 }
109
110 void IMU_Handler::update(float dt) {
111 int16_t rawAccelX, rawAccelZ;
112 float accelXG, accelZG;
113
114 // Read X and Z accelerometer data from IMU
115 readXZAccelData(&rawAccelX, &rawAccelZ);
116
117 // Convert to G forces
118 const float accelScale = 1.0f / 16384.0f; // For +/- 2g range
119 accelXG = rawAccelX * accelScale;
120 accelZG = rawAccelZ * accelScale;
121
122 // Apply low-pass filter to accelerometer data
123 filteredAccelX = alpha * accelXG + (1.0f - alpha) * prevFilteredAccelX;
124 filteredAccelZ = alpha * accelZG + (1.0f - alpha) * prevFilteredAccelZ;
125
126 // Update previous values for next iteration
127 prevFilteredAccelX = filteredAccelX;
128 prevFilteredAccelZ = filteredAccelZ;
129 }
130
131 float IMU_Handler::getRoll() {
132 // Calculate roll angle using filtered X and Z acceleration
133 float roll = atan2(filteredAccelZ, filteredAccelX);
134
135 // Convert to degrees
136 return roll * 180.0f / M_PI + 90.0;
137 }
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138
139 void IMU_Handler::setFilterFrequency(float cutoffFreq, float sampleFreq) {
140 // Calculate filter coefficient
141 float RC = 1.0f / (2.0f * M_PI * cutoffFreq);
142 float dt = 1.0f / sampleFreq;
143 alpha = dt / (RC + dt);
144 }
145
146 float IMU_Handler::getFilteredAccelX() {
147 return filteredAccelX;
148 }
149
150 float IMU_Handler::getFilteredAccelZ() {
151 return filteredAccelZ;
152 }
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Listing 3: Header file for the IMU Handler library
1 #ifndef IMU_HANDLER_H
2 #define IMU_HANDLER_H
3
4 #include <Arduino.h>
5 #include <SPI.h>
6
7 class IMU_Handler {
8 private:
9 // SPI settings

10 const int CS_PIN;
11 SPISettings spiSettings;
12
13 // Low-pass filter variables
14 float filteredAccelX; // Filtered X accelerometer data
15 float filteredAccelZ; // Filtered Z accelerometer data
16 float prevFilteredAccelX; // Previous filtered X value
17 float prevFilteredAccelZ; // Previous filtered Z value
18 float alpha; // Filter coefficient
19
20 // Private methods
21 void writeRegister(uint8_t reg, uint8_t data);
22 uint8_t readRegister(uint8_t reg);
23 void readXZAccelData(int16_t* accelX, int16_t* accelZ);
24
25 public:
26 // Constructor
27 IMU_Handler(int csPin);
28
29 // Public methods
30 bool begin();
31 void update(float dt);
32 float getRoll(); // Calculates roll from filtered acceleration
33 float getFilteredAccelX(); // Returns filtered X acceleration
34 float getFilteredAccelZ(); // Returns filtered Z acceleration
35 void setFilterFrequency(float cutoffFreq, float sampleFreq);
36 };
37
38 #endif
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Appendix G: Arduino state machine diagram

Fig. 23: State diagram of the Arduino state machine. The circles represent the states, and the arrows show the transitions
between states and their conditions. The black dot represents the start of the system when it is powered up or reset. The ”Any
state” circle replaces arrows running from all states to the Emergency state for clarity.
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Appendix H: Block diagram

Fig. 24: Block diagram shows the functioning of the system and signals between components. The blocks are the components of
the system, and the lines represent the logic signals being sent between the components. For clarity, the components providing
power to the system are left out, and only the logic signals are considered.
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Appendix I: Maneuverability experiment results

TABLE XIII: Results of the maneuverability test for the 90-degree turn. All numbers are the measured times in seconds.
The table is color-scaled to indicate which maneuvers were faster. Green colored cells indicate maneuvers that were faster
than average, while red colored cells indicate maneuvers that were slower than average. The colored cells show each timed
maneuver. The white cells with numbers indicate the average time colored cells above them. The white cells with percentages
indicate the percentage increase in time between the system on and off.

Standing Sitting

System off System on System off System on

Right Left Right Left Right Left Right Left

4.60 4.77 4.60 4.97 4.76 4.96 5.53 4.86
4.20 4.63 4.94 4.62 4.70 4.81 5.04 5.41
4.03 4.61 4.51 4.75 4.26 4.91 5.28 5.29
4.10 4.67 4.58 4.95 4.79 4.80 5.19 5.57
4.70 4.64 5.05 4.85 4.32 4.83 5.17 5.54

4.33 4.66 4.74 4.83 4.57 4.86 5.24 5.33
4.50 4.78 4.71 5.29

6.38% 12.18%

9.28%

TABLE XIV: Results of the maneuverability test for the 180-degree three-point-turn. All numbers are the measured times in
seconds. The table is color-scaled to indicate which maneuvers were faster. Green colored cells indicate maneuvers that were
faster than average, while red colored cells indicate maneuvers that were slower than average. The colored cells show each
timed maneuver. The white cells with numbers indicate the average time of the colored cells above them. The white cells with
percentages indicate the percentage increase in time between the system on and off.

Standing Sitting

System off System on System off System on

Right Left Right Left Right Left Right Left

8.66 8.48 9.43 9.65 10.16 9.46 10.78 10.63
8.39 8.90 8.71 9.57 10.03 10.30 11.09 11.59
8.70 8.65 9.09 9.41 9.73 9.00 10.32 9.03
8.51 9.40 9.26 9.48 10.40 10.22 11.53 11.24
8.34 8.33 9.14 9.15 10.22 9.36 9.98 9.31

8.52 8.75 9.13 9.45 10.11 9.67 10.74 10.36
8.64 9.29 9.89 10.55

7.56% 6.69%

7.13%
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