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Abstract We study the impact of an accurate computation
and incorporation of coloured noise in radar altimeter data
when computing a regional quasi-geoid model using least-
squares techniques. Our test area comprises the Southern
North Sea including the Netherlands, Belgium, and parts
of France, Germany, and the UK. We perform the study
by modelling the disturbing potential with spherical radial
base functions. To that end, we use the traditional remove-
compute-restore procedure with a recent GRACE/GOCE
static gravity field model. Apart from radar altimeter data,
we use terrestrial, airborne, and shipboard gravity data.
Radar altimeter sea surface heights are corrected for the
instantaneous dynamic topography and used in the form of
along-track quasi-geoid height differences. Noise in these
data are estimated using repeat-track and post-fit residual
analysis techniques and then modelled as an auto regressive
moving average process. Quasi-geoid models are computed
with and without taking the modelled coloured noise into
account. The difference between them is used as a measure
of the impact of coloured noise in radar altimeter along-track
quasi-geoid height differences on the estimated quasi-geoid
model. The impact strongly depends on the availability of
shipboard gravity data. If no such data are available, the
impact may attain values exceeding 10 centimetres in particu-
lar areas. In case shipboard gravity data are used, the impact is
reduced, though it still attains values of several centimetres.
We use geometric quasi-geoid heights from GPS/levelling
data at height markers as control data to analyse the quality
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of the quasi-geoid models. The quasi-geoid model computed
using a model of the coloured noise in radar altimeter along-
track quasi-geoid height differences shows in some areas a
significant improvement over a model that assumes white
noise in these data. However, the interpretation in other areas
remains a challenge due to the limited quality of the control
data.

Keywords Radar altimetry - Coloured noise - ARMA -
Quasi-geoid - Spherical radial base functions

1 Introduction

Radar altimeter data in the form of along-track (quasi-) geoid
slopes (i.e., deflections of the vertical) or along-track (quasi-)
geoid height differences play an important role in regional
(quasi-) geoid modelling (Hwang et al. 1997; Hwang and
Hsub 2008; Sandwell and Smith 2005, 2009; Smith 2010;
Slobbe 2013; Slobbe and Klees 2014; Slobbe et al. 2014).
Using radar altimeter measurements in one of these forms
is mainly motivated by the fact that they are less contam-
inated by long-wavelength errors of different origins; see
Chelton et al. (2001) and Sandwell and Smith (2009) for an
overview of various error sources. However, these data are
polluted by coloured noise, which is primarily due to data
differentiation. Though there are numerous approaches of
how differential radar altimeter measurements are used in
quasi-geoid modelling, a common nominator is that noise
in along-track (quasi-) geoid slopes or (quasi-) geoid height
differences is assumed to be white, sometimes after a low-
pass filtering has been applied. This applies also when radar
altimeter data are used in (quasi-) geoid modelling in the
form of gravity anomalies, because such a transformation
requires differencing data into along-track deflections of the
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vertical (e.g., Hwang et al. 1998; Andersen et al. 2010). A
proper modelling of noise in differential radar altimeter data
is, however, important, particularly when data of different
sources are combined when computing (quasi-) geoid mod-
els. Statistical approaches, such as least-squares techniques
and least-squares collocation, allow, in principle, any noise
model to be incorporated. In this study, we use the least-
squares technique to estimate quasi-geoid models. Olesen
et al. (2002) have investigated the impact of accounting for
coloured noise in airborne gravity measurements on quasi-
geoid models and concluded that the impact is insignificant at
the one-centimetre target accuracy. A study on an impact of
coloured noise in radar altimeter along-track (quasi-) geoid
slopes or (quasi-) geoid height differences on (quasi-) geoid
models has not been published yet.

Sandwell and Smith (2009) have shown that noise in radar
altimeter point-wise sea surface measurements is almost
white. This implies that noise in along-track slopes or along-
track sea surface height differences increases proportionally
with frequency due to differentiation. In a more recent study,
Slobbe (2013) and Slobbe and Klees (2014) applied a repeat-
track analysis method to exact repeat mission radar altimeter
data over the North Sea and found that noise in along-
track sea surface height slopes is indeed coloured. However,
coloured noise in radar altimeter measurements has not
been accounted for yet when computing regional quasi-geoid
models, e.g., those computed by Slobbe and Klees (2014).
There may have been two reasons for that. First, it is due to
a presumption that miss-modelling of high-frequency noise
has a reduced impact on the estimated quasi-geoid model.
Moreover, high-frequency noise in radar altimeter differen-
tial data is often dealt with by applying a low-pass filter (e.g.,
Sandwell and Smith 2005, 2009), which may facilitate the
assumption of white noise over the pass band. Second, it
is computationally quite intensive to account for coloured
noise in radar altimeter differential data when estimating
quasi-geoid models seen the huge amount of radar altime-
ter data available today. However, accounting for coloured
noise in these data may improve the accuracy of quasi-geoid
models, making numerous new applications possible. For
instance, quasi-geoid models with one centimetre accuracy
or perhaps even better may pave the way to reconsider the
realization of vertical datums using the expensive levelling
networks. For most coastal areas, altimeter data are indis-
pensable, and the question rises whether or not better noise
models for radar altimeter along-track (quasi-) geoid slopes
or along-track (quasi-) geoid height differences are required
to achieve this.

The main research question to be addressed in this man-
uscript is about the impact of accounting for coloured noise
in radar altimeter along-track quasi-geoid height differences
on a regional quasi-geoid model. We consider two scenar-
ios: (1) radar altimeter measurements comprise the only
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data available offshore, and (2) shipboard gravity data are
additionally available. To that end, we reduce instantaneous
radar altimeter along-track sea surface height differences to
along-track quasi-geoid height differences using a hydrody-
namic model. Then, we estimate the noise in along-track
quasi-geoid height differences using a repeat-track analysis
technique for exact repeat mission (ERM) radar altimeter
data and a post-fit residual analysis technique for geodetic
mission (GM) radar altimeter data. For each radar altimeter
mission phase, we estimate the noise power spectral den-
sity (PSD) and fit to it an auto regressive moving average
(ARMA) model. This ARMA model is then used to filter
the functional model for radar altimeter along-track quasi-
geoid height differences (e.g., Schuh 1996). Subsequently,
we estimate a regional quasi-geoid model with weighted
least-squares using the radar altimeter-derived data together
with terrestrial and airborne gravity data, and depending on
the scenario, also with shipboard gravity data. We compare
this quasi-geoid model with a model estimated using the same
data, however, assuming white noise in radar altimeter along-
track quasi-geoid height differences after a suitable low-pass
filter is applied. Since the estimation of ARMA noise models
per radar altimeter mission phase is time-consuming, we also
address a question whether or not the same ARMA model,
except for the variance, can be used for all radar altimeter
mission phases.

We also make an attempt to answer the question whether
or not the quality of a quasi-geoid model improves when
coloured noise in radar altimeter along-track quasi-geoid
height differences is accounted for. This test is performed for
two control data sets, namely, (1) the European Gravimetric
Geoid 2015, EGG2015 (Denker 2013, 2015) assuming that
no shipboard gravity data are available when computing the
quasi-geoid, and (2) GPS/levelling data at height markers for
the Dutch and Belgium mainlands.

The outline of the manuscript is the following. We begin
with a summary of the procedure used in this study to estimate
quasi-geoid models (Sect. 2). Next, we describe in Sect. 3
our approach to estimate noise in along-track quasi-geoid
height differences from radar altimeter data. The question
about the impact of accounting for coloured noise in these
data on quasi-geoid models is the subject of Sect. 4. Here,
we also present the results of a comparison with EGG2015
and independent GPS/levelling data. Finally, in Sect. 5, we
conclude by emphasizing the main findings and identifying
topics for future research.

2 Regional quasi-geoid modelling
We perform our study in the Southern North Sea (Fig. 1).

It includes the Netherlands and Belgium as well as parts of
France, Germany, and the UK.



Impact of accounting for coloured noise in radar altimetry data...

99

56.0°f Sare i

54.0°f

52.0°

50.0°

0.0 ] o . g 600 80°

Fig. 1 Testarea and data: terrestrial gravity data (red), airborne gravity
data (blue), shipboard gravity data (green), and radar altimetry data
(cyan)

In this section, we summarize the key steps of the
quasi-geoid modelling approach used in this study, i.e.,
(1) the chosen parameterization of the regional quasi-geoid
(Sect. 2.1), (2) the available data sets and the data pre-
processing (Sect. 2.2), and (3) the data weighting (Sect. 2.3).

2.1 Parameterization

We use the remove-compute-restore procedure. The long-
wavelength signal content in the data is reduced by removing
the contribution of the GOCOO0S5S global gravity model com-
plete to degree 280 (Pail et al. 2010; Mayer-Girr et al. 2015).
At the very short wavelengths, residual terrain modelling
(RTM) is applied (e.g., Forsberg 1984). The residual disturb-
ing potential is parameterized over the data area (Fig. 1) using
Poisson wavelets of order 3 (Holschneider and Iglewska-
Nowak 2007). They belong to the class of spherical radial
base functions (SRBFs), which have become popular in
regional gravity field modelling (e.g., Schmidt et al. 2007;
Klees et al. 2007, 2008; Eicker 2008; Tenzer and Klees
2008; Wittwer 2009; Panet et al. 2011; Slobbe 2013). The
horizontal positions of the SRBFs are located on a Fibonacci
point distribution (e.g., Gonzédlez 2010), one of several homo-
geneous point distributions on the sphere. This choice is
motivated by Wittwer (2009), who investigated the per-
formance of different point distributions in the context of

quasi-geoid modelling using SRBFs. Suitable values for the
density and the depth of the SRBFs at sea and land are found
following the procedure in Slobbe (2013). We find an optimal
distance between the SRBFs of 10 km at sea and 4 km on land,
which gives a total number of 18,706 SRBF coefficients to
be estimated. The optimal depth of the SRBF:s is found to be
40 km at sea and 25 km on land below the RTM surface (see
Sect. 2.2). According to Tenzer et al. (2012), this provides
more accurate quasi-geoid models than locating the SRBFs
on a Bjerhammar sphere or at a surface of constant ellipsoidal
heights. The set of SRBF coefficients are complemented with
bias parameters for terrestrial, shipboard, and airborne grav-
ity data (see Sect. 2.2). In this way, existing inconsistencies
among various gravity data sets may be accounted for, which,
for instance, may be caused by height datum offsets.

2.2 Data and data pre-processing

Apart from radar altimetry data, we use terrestrial gravity
anomalies (147,540 data points), airborne gravity distur-
bances (7594 data points), and, depending on the scenario,
shipboard gravity anomalies (66,236 data points). Figure 1
shows the spatial distribution of the used gravity data sets.
The data are reduced by the contribution of GOCOO05S com-
plete to degree 280 to decrease the signal correlation length.
Moreover, RTM (Forsberg 1984) is used to smooth the data
and limit the number of SRBFs in mountainous regions. The
RTM corrections are computed using the method of Heck
and Seitz (2007) and Grombein et al. (2013). In doing so,
bathymetry is ignored to reduce the numerical complexity.
The bathymetry contribution to the RTM corrections is rather
negligible. This is in view of the fact that over the area of
interest water depths are relatively small (the average depth
is about 90 m), slopes are negligible, and prominent under-
water features are absent. Finally, biases in shipboard gravity
anomalies are reduced using a cross-over adjustment, whose
details are documented in Slobbe and Klees (2014).

Radar altimeter sea surface heights are corrected for
the instantaneous dynamic topography (IDT), which may
improve the quality of the quasi-geoid model significantly
as shown in Slobbe and Klees (2014). The IDT correc-
tion includes three components: (1) ocean tides, (2) surge
(which is due to wind- and pressure-driven sea level varia-
tions), and (3) baroclinic effects (which are due to salinity-
and temperature-driven sea level variations). To account for
the former two components, whose contributions are by far
the largest, we use the Dutch Continental Shelf Model, ver-
sion 6, DCSMv6 (Zijl et al. 2013). To account for the third
component, we use differences between the DTU10 mean
sea surface model (Andersen and Knudsen 2009; Andersen
2010) and the European Gravimetric Geoid 2008, EGG2008
(Denker et al. 2009). Radar altimeter along-track sea sur-
face heights corrected for the IDT may suffer from long
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wavelength systematic errors, due to, e.g., orbit inaccura-
cies. Therefore, we do not use them directly as quasi-geoid
heights when estimating quasi-geoid models. Instead, we
form differences between two successive measurements and
interpret them as along-track quasi-geoid height differences.
These differences compose the “altimeter data set” when esti-
mating quasi-geoid models using least-squares in Sect. 4.
This data set comprises 1-Hz data from multiple ERM and
GM phases: CryoSat-2, Envisat (phases C and B), ERS-1
(phases A-G), ERS-2, Geosat (phase D), GFO-1, Jason-
1 (phases A—C), Jason-2, Poseidon, and Topex (phases A,
B, and N). It is worth noting that data in the vicinity of
the coast are absent (see Fig. 1), since no data re-tracking
has been performed there (Scharroo 2012). In case of ERM
data, along-track quasi-geoid height differences obtained
over multiple cycles of the same passes are stacked together
and averaged. Therefore, they have smaller a priori noise
variances compared to GM altimeter data. Furthermore, data
from mission phases that share the same orbit are com-
bined and averaged over multiple cycles. This applies to (1)
Topex (phase A), Poseidon, Jason-1 (phase A), and Jason-
2; (2) ERS-1 (phases C and G), ERS-2, Envisat (phase B),
and Saral Altika; and (3) ERS-1 (phases B and D). They
are referred to as “TopexA+Poseidon+JasonlA-+Jason2”,
“ERS1CG+ERS2+EnvisatB+SA”, and “ERS1BD”, respec-
tively. They are treated as single mission phases in our manu-
script. The number of radar altimeter along-track quasi-geoid
height differences per mission phase is provided in Table 1.

In this study, we prefer using radar altimeter data in the
form of along-track quasi-geoid height differences and not in

Table 1 The average number of cycles over which ERM data are aver-
aged and the number of radar altimeter along-track quasi-geoid height
differences per mission phase used in quasi-geoid estimation

Mission phase Average number  Number
of cycles of data
Topex (phase B) 96 545
“ERS1BD” 49 160
“ERS1CG+ERS2+EnvisatB+SA” 217 1944
“TopexA+Poseidon+Jasonl A+Jason2” 719 690
Jason-1 (phase B) 112 614
ERS-1 (phase A) 35 80
GFO-1 123 1122
Topex (phase N) n/a 1480
Envisat (phase C) n/a 20,245
CryoSat-2 n/a 63,988
Geosat (phase D) n/a 26,424
Jason-1 (phase C) n/a 18,186
ERS-1 (phase E) n/a 7145
ERS-1 (phase F) n/a 7397

ERMs and GMs are listed in the upper and lower part, respectively
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the form of gravity anomalies, as is often done in quasi-geoid
modelling. The conversion of radar altimeter sea surface
heights into gravity anomalies comprises many data process-
ing steps, including filtering, interpolation (i.e., gridding),
and integration. At the end, the noise in the computed gravity
anomalies is correlated, and the associated noise covariance
matrix is full. As the along-track sampling of the radar altime-
ter is lost during the data conversion into gravity anomalies,
the full noise covariance matrix cannot be estimated in the
same, relatively simple manner as done in this study, but
must be computed using the law of error propagation. Seen
the amount of radar altimeter-derived gravity anomalies and
the complexity of the conversion into gravity anomalies, it is
numerically challenging to do this noise propagation. This
may explain why so far no attempts have been made to
estimate such a covariance matrix. Using along-track quasi-
geoid height differences as data set in combination with a
parametric noise model (i.e., ARMA model) and the filter-
ing of the functional model (e.g., Schuh 1996) does not suffer
from these drawbacks.

2.3 Data weighting

The SRBF coefficients and bias parameters for the sets
of gravity anomalies and disturbances are estimated using
weighted least-squares without regularization. In doing so,
noise in terrestrial and shipboard gravity anomalies and air-
borne gravity disturbances is assumed to be white. For the
terrestrial and shipboard gravity anomalies, this may be a
reasonable assumption. Regarding the airborne gravity dis-
turbances, this choice is motivated by the fact that these
data are low-pass filtered and the noise characteristic over
the pass band is almost flat. Furthermore, accounting for
coloured noise in these data may have a negligible influ-
ence on the estimated quasi-geoid model as concluded in
(Olesen et al. 2002). To properly scale the different data sets
when estimating the unknown parameters, we use Monte-
Carlo variance component estimation (MCVCE); see Koch
and Kusche (2002) and Kusche (2003) for details. For each
gravity data set, a variance factor is estimated. Regarding the
altimeter-derived data set, one variance factor is estimated
per mission phase. To account for coloured noise in these
data, we use the frequency-depending data weighting scheme
of Ditmar et al. (2007), which was originally developed in
the context of global gravity field modelling using satellite
gravity data. The scheme is implemented per radar altime-
ter track in the form of filter operations applied to the data
and the columns of the design matrix as described by Klees
et al. (2003). An advantage of this approach is that it can
easily deal with data gaps, which are quite common in radar
altimeter tracks. In this way, we also avoid setting up the full
noise covariance matrix (Schuh 1996).
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3 Noise estimation and modelling

The optimal method to obtain a noise covariance matrix of
radar altimeter derived along-track quasi-geoid height dif-
ferences is a complete error budgeting comprising noise
in along-track sea surface heights and the instantaneous
dynamic topography, and the effect of along-track differenti-
ation. There are many studies known that are related to errors
in radar altimeter sea surface heights (e.g., Sandwell and
Smith 2009; Chelton et al. 2001) and the references therein.
A description of the spatial-temporal noise characteristics of
hydrodynamic models, in particular shallow-water hydrody-
namic models as used in this study, is still in its infancy.
Some preliminary results are discussed in Holt et al. (2005)
and Zijl et al. (2013). Here, we suggest a more simplistic
approach for noise estimation, which is described below.
This approach provides an approximate noise covariance
matrix for radar altimeter along-track quasi-geoid height
differences. We expect that this noise covariance matrix per-
forms better than the white noise assumption, among others,
due to the fact that along-track differentiation is accounted
for. Some weaknesses of this approach are discussed below.

To estimate noise in ERM along-track quasi-geoid height
differences, we follow a repeat-track analysis technique pro-
posed in Slobbe (2013) and Slobbe and Klees (2014). This
procedure applies to wide-sense stationary Gaussian noise.
For each pass of a particular ERM phase, we obtain mul-
tiple noise realizations by differencing data belonging to
different cycles. When assuming J cycles, we can compute
% x J x (J — 1) noise realizations. Per noise realization, we
compute the PSD, and average over all PSDs to obtain one
PSD per pass. The final noise PSD per ERM phase is then
obtained by taking the mean over all passes belonging to the
mission phase. In doing so, we exclude a limited number of
passes due to being too short to allow for a reliable estimation
of the PSD. As an example, Fig. 2 shows the +/PSD of noise
in along-track quasi-geoid height differences for individual
passes of Jason-1 phase B, the mean over all passes, and an
estimate of the scatter around the mean.

The figure illustrates that for Jason-1 phase B the noise in
along-track quasi-geoid height differences changes over all
frequencies from 1100 km down to 10 km wavelength. Two
regimes can be distinguished. A rather moderate increase
with frequency down to wavelengths of about 50 km, which
is followed by a much stronger increase with frequency for
wavelengths shorter than 50 km. For each phase, an ARMA
model is fit to the final noise PSD using the method of Klees
and Broersen (2002), Klees et al. (2003) and Klees and Dit-
mar (2004). The red curve in Fig. 2 shows the +/PSD of
the best-fitting ARMA model for Jason-1 phase B. The fit is
tight, within uncertainties, and captures all relevant features.

The same approach is applied to data from all the other
ERM phases: “ERS1BD”, “ERS1CG+ERS2+EnvisatB+SA”,
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Fig. 2 Noise in Jason-1 phase B radar altimeter along-track quasi-
geoid height differences: (1) /PSDs of noise for various passes (cyan);
(2) the square-root of the average noise PSD, i.e., the final noise +/PSD
(blue); (3) the standard deviation of the final noise +/PSD (green); and
(4) ~/PSD of the best-fitting ARMA model (red). About 12 % of passes
are absent due to being too short for a reliable PSD computation
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Fig. 3 Square-root noise PSDs in radar altimeter along-track quasi-
geoid height differences of the ERM and GM phases listed in Table 1

“TopexA+Poseidon+Jason1 A+Jason2”, ERS-1 (phase A),
GFO-1, and Topex (phase B). The +/PSDs of the along-track
quasi-geoid height differences are shown in Fig. 3. They
exhibit the same features as already discussed for Jason-1
phase B.

A repeat-track analysis is not applicable to GM phases.
However, for those missions, which have both ERM and
GM phases, we use the noise PSD obtained for the ERM
phase also for the GM phase up to a scale factor (i.e., the
total power), which is later estimated using MCVCE. This
applies to ERS-1 (phases E and F), Envisat (phase C), Jason- 1
(phase C), and Topex (phase N) GM phases. For CryoSat-
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2 and Geosat (phase D), we cannot rely upon ERM data.
To obtain an estimate of noise in data from these mission
phases, we apply a post-fit residual analysis technique. That
is, we start assuming white noise in along-track quasi-geoid
height differences of these two mission phases. We compute
a quasi-geoid model using all available data sets including
the available noise covariance matrices. The least-squares
residuals for the Cryosat-2 and Geosat phase D data are then
taken as a realization of the noise in these measurements. The
corresponding noise PSDs and ARMA models are then com-
puted per mission phase in the same way as in case of ERM
data. Next, we repeat the quasi-geoid computation, now using
the latest noise models. The iteration has to go on until the
differences between two successive quasi-geoid models are
below the expected accuracy of the quasi-geoid model. In our
case, we found that a second iteration is not necessary. It is
worth noting that a similar iterative scheme was successfully
applied by Farahani (2013) and Farahani et al. (2013, 2014)
to deal with coloured noise in GRACE inter-satellite accel-
erations and GOCE gravity gradients in the context of global
gravity field modelling. Figure 3 also shows the final /PSDs
of noise for CryoSat-2 and Geosat phase D GM data. They
share the same features as the noise PSDs already shown for
the other mission phases.

Estimating measurement noise using the post-fit residual
analysis technique is a critical step as, for instance, errors
in the functional model may be miss-interpreted as measure-
ment noise. To obtain an indication that the applied procedure
indeed provides a useful estimation of the noise PSDs for the
Cryosat-2 and Geosat phase D data, we perform the follow-
ing experiment. For GM phase E of ERS-1, we estimate the
noise PSD using the post-fit residual technique. The result is
compared with the noise PSD already obtained for the ERM
phase A of ERS-1. Figure 4 shows the result of this compar-
ison.

Overall, the two noise PSDs show the same behaviour and
exhibit the same strong increase for wavelengths shorter than
50 km. There are some minor discrepancies in the range of
medium wavelengths between 150 and 50 km, and at the
very long wavelengths above 300 km. However, it turns out
that the impact of these discrepancies on the quasi-geoid are
within uncertainty. In this sense, the post-fit residual analy-
sis technique provides a sufficiently accurate estimate of the
noise in data from the CryoSat-2 and Geosat phase D mission
phases.

Finally, we find it worth noting that, in reality, the noise
characteristics of a mission phase may be different for differ-
ent regions. Here, we did not attempt to refine the noise PSDs
correspondingly for two reasons. First, estimating PSDs for
sub-regions reduces the performance of the PSD estimator
due to the reduced number of data and the shorter passes.
Secondly, the least-squares estimator is quite robust against
small errors in noise stochastic models.

@ Springer

0.07

N Phase A
EEN Phase F

0.06

0.05

0.04 r

PSD"? (m/Hz'"?)

0.03

0.02 ¢

500 100 50 40 30 20 15
Wavelength (km)

Fig. 4 +/PSD of noise in ERS-1 radar altimeter along-track quasi-
geoid height differences. The repeat-track and post-fit residual analysis
techniques are used for a realization of noise for ERM phase A and GM
phase F, respectively

4 Impact of accounting for coloured noise

To quantify the impact of accounting for coloured noise in
radar altimeter along-track quasi-geoid height differences on
quasi-geoid models, a number of experiments are performed.
Basically, we compare quasi-geoid models computed with
and without using the full noise covariance matrix of the
altimeter-derived data set in the least-squares estimation
process. In the latter case, we follow the current practice and
low-pass filter (22 km cut-off wavelength) radar altimeter
along-track quasi-geoid height differences to remove strong
noise at the short wavelengths (e.g., Sandwell and Smith
2005, 2009; Slobbe and Klees 2014; Slobbe et al. 2014). In
doing so, we use EGG2008 to synthesize and extend data for
each mission phase at both ends of a pass prior to the low-pass
filtering. This substantially reduces errors when initializing
the filter.

Two scenarios are considered when accounting for
coloured noise in the altimeter-derived data set. First, we
use the ARMA noise models, which are derived for each
mission phase as described in the previous section (see
Sect. 4.1). Second, we use only one ARMA noise model for
all radar altimeter mission phases under consideration (see
Sect. 4.2). In both cases, proper variance factors are estimated
for each mission phase using MCVCE. Differences between
the quasi-geoid models computed in this way allow conclu-
sions to be drawn whether or not a single ARMA model
may be sufficient at the benefit of a reduced complexity of
the data processing. We begin our analysis in the absence of
shipboard gravity data. This allows the study of the impact
in an extreme case in which radar altimeter measurements
comprise the only data set available offshore. Thereafter,
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we quantify the impact on quasi-geoid models when ship-
board gravity data are added to the data base. In the Southern
North Sea, the shipboard gravity data are collected with high
accuracy and good spatial coverage, whereas the quality of
the radar altimeter measurements is degraded in the coastal
waters of the Southern North Sea (Andersen and Knudsen
2000; Deng et al. 2002). Hence, this scenario may be seen as
another extreme case in which the impact of the altimeter-
derived data set is expected to be limited as is the impact
of accounting for coloured noise in these data. It is worth
noting that when we perform our analysis in the absence of
shipboard gravity data, we still incorporate these data in the
Markermeer and IJsselmeer lakes as well as in the Wadden
sea as these areas are void of any radar altimeter data (Fig. 1).

4.1 Using individual coloured noise models
4.1.1 Excluding shipboard gravity data

Figure 5 shows the difference between two quasi-geoid mod-
els. One is computed using the coloured noise models per
altimeter mission phase, whereas the other one is computed
without using them, but applying a low-pass filter.

The RMS of the differences is 2.3 cm with extreme val-
ues of —8.6 and 10.5 cm. The mean difference between the
two solutions is negligible. The impact is the largest along
the coast of France, Belgium, the Netherlands, and Germany.
The dominant pattern has long-wavelength features. This is
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Fig. 5 Impact of accounting for coloured noise in radar altimeter
along-track quasi-geoid height differences on the quasi-geoid model.
Minimum, maximum, mean, standard deviation (SD) and RMS (root
mean square) values are —8.6, 10.5, 0.1, 2.2, and 2.3 cm, respectively.
The coloured noise in case of each mission phase is accounted for using
the corresponding ARMA noise model. No shipboard gravity data are
used

to be expected from the noise PSDs, presented in Fig. 3.
Compared to a white noise model of the same variance, the
derived coloured noise model gives higher weights to long
wavelengths and lower weights to short wavelengths. It is
remarkable that the effect of ignoring coloured noise in the
least-squares estimation introduces strong gradients in the
quasi-geoid of 6 cm per 100 km in North-West to South-East
direction in the coastal areas of the Netherlands and Bel-
gium. We also notice significant differences between the land
quasi-geoids over parts of the Netherlands and Belgium with
amplitudes of up to 3 cm. This can be explained by a funda-
mental property of gravitational fields, which may undergo
changes everywhere if data are changed locally. Here, this
feature provides an opportunity to validate the computed
quasi-geoid models against GPS/levelling control data over
the Netherlands and Belgium. Finally, we notice a relatively
pronounced anomaly in the North Sea off the coast of north-
ern France, which appears as a dark red blob in the map
of impact. The reason for this anomaly is a lack of data in
the vicinity of a SRBF (cf. Fig. 1). Due to this lack of data,
the corresponding SRBF coefficient is not well constrained,
causing this local artifact.

Figure 6 shows the differences between the computed
quasi-geoid models and GPS/levelling data at 624 and 2735
height markers in the Netherlands and Belgium, respectively.
Table 2 shows the corresponding statistics.

For the Netherlands, we notice a reduction of the bias
between gravimetric and geometric quasi-geoid heights at the
GPS/levelling points from 2.1 to 0.1 cm when coloured noise
in the altimeter-derived data set is taken into account. For Bel-
gium, the bias, however, increases from —0.5 to —3.5 cm. For
the standard deviations between gravimetric and geometric
height anomalies, the situation in both countries is oppo-
site: an increase from 1.4 to 1.8 cm for the Netherlands and a
decrease from 3.0 to 2.7 cm for Belgium. The standard devia-
tion of the geometric quasi-geoid heights at the GPS/levelling
data is known to be not better than 2 cm. Therefore, based
on a comparison with independent quasi-geoid heights at the
GPS/levelling points, we cannot decide whether or not the
quality of the quasi-geoid (in terms of the standard deviation)
has improved when coloured noise in the altimeter-derived
data set is accounted for.

We also compare the computed quasi-geoid models with
EGG2015 at the available GPS/levelling stations. The corre-
sponding differences are shown in Fig. 7, and their statistics
are provided in Table 3.

We notice a much better fit of our quasi-geoid model
with EGG2015 when accounting for coloured noise in the
altimeter-derived data set. This is particularly visible in Bel-
gium, where the RMS of the differences to EGG2015 reduces
significantly from 3.1 to 0.8 cm. The standard deviations
are nearly the same. The RMS reduction indicates a signif-
icant improvement of the quality of our quasi-geoid model
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Fig. 6 Differences between gravimetric and geometric quasi-geoid
heights at height markers in the Netherlands (fop) and Belgium (bot-
tom). The gravimetric quasi-geoid models are computed without (left)
and with (right) accounting for coloured noise in radar altimeter along-

Table 2 Statistics (in cm) of differences between gravimetric and geo-
metric quasi-geoid heights at height markers in the Netherlands and
Belgium

Statistics Min Max Mean SD RMS
—22 7.1 2.1 1.4 25
Netherlands =5 59 51 13 13
. -10.3 6.1 —0.5 3.0 3.1
Belgium 123 31 =35 27 o

The quasi-geoid models are computed without (numerator) and with
(denominator) accounting for coloured noise in along-track quasi-geoid
height differences. The latter refers to using different ARMA noise
models for each mission phase. No shipboard gravity data are used
when computing the gravimetric quasi-geoids

when accounting for coloured noise. This statement is justi-
fied because EGG2015 uses shipboard gravity data, whereas
no shipboard gravity data have been used here when comput-
ing our quasi-geoid models. Hence, EGG2015 is expected to
be more accurate and, therefore, may serve as a reference.
Over the Netherlands, we also observe a reduction of the
RMS difference to EGG2015 from 4.0 to 3.0 cm, whereas
the standard deviation of the differences increases from 1.2 to
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track quasi-geoid height differences. The latter refers to using different
ARMA noise models for each mission phase. No shipboard gravity data
are used when computing the gravimetric quasi-geoid models

2.3 cm. This increase, however, is still within the uncertainty
of EGG2015, i.e., statistically not significant.

Practically, the differences between the quasi-geoid mod-
els computed with and without accounting for coloured noise
in the altimeter-derived data set could also be entirely or
partly be caused by a different weighting of the sets of ter-
restrial gravity anomalies or airborne gravity disturbances,
because MCVCE is used in all computations. However,
Table 4 shows that this is not the case here.

The variance factors and a posteriori noise variances com-
puted for these data sets are statistically identical no matter
whether the coloured noise in the radar altimeter-derived data
is accounted for or not. Thus, the relative weighting of the
non-radar altimetry data sets is the same in all experiments no
matter whether coloured noise in the altimeter-derived data
set has been accounted for or not.

4.1.2 Including shipboard gravity data

When including shipboard gravity data in the least-squares
adjustment, we expect that the contribution of the altimeter-
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(a)

3 4 5 6

Fig. 7 Differences between the computed quasi-geoid models and
EGG2015 at the GPS/levelling points in the Netherlands (fop) and Bel-
gium (bottom). The quasi-geoid models are computed without (leff)
and with (right) accounting for coloured noise in radar altimeter along-

Table 3 Statistics (in cm) of differences between the computed quasi-
geoid models and EGG2015 at the GPS/levelling points

Statistics Min Max Mean SD RMS
0.5 7.0 3.8 1.2 4.0
Netherlands === 9T 19 73 30
. 0.4 5.5 3.0 0.9 3.1
Belgium =26 70 0.0 08 08

The quasi-geoid models are computed without (numerator) and with
(denominator) accounting for coloured noise in radar altimeter along-
track quasi-geoid height differences. The latter refers to using different
ARMA noise models for each mission phase. No shipboard gravity data
are used when computing the quasi-geoid models

derived data set to the quasi-geoid model is reduced. This is
simply due to the fact that shipboard gravity data, in particu-
lar, if carefully collected and pre-processed, is widely known
to be more accurate than radar altimeter data. Therefore, we
expect that the impact of accounting for coloured noise in
radar altimeter along-track quasi-geoid height differences is
lower when shipboard gravity data are added as opposed to
when these data are excluded. To study this, we repeat the
experiment of Sect. 4.1.1, now including the shipboard grav-
ity data.

(b)

[S)
cm

cm

track quasi-geoid height differences. The latter refers to using different
ARMA noise models for each mission phase. No shipboard gravity data
are used when computing the quasi-geoid models

Table 4 Estimated variance factors and a posteriori noise variances
(mGal?) for the terrestrial gravity anomalies and airborne gravity dis-
turbances when computing quasi-geoid models assuming white and
coloured noise in radar altimeter along-track quasi-geoid height differ-
ences, respectively

Data Variance factors A posteriori variances
White Coloured White Coloured

Terrestrial ~ 0.14 0.14 0.53 0.53

Airborne 0.31 0.32 1.25 1.30

The latter refers to using individual ARMA noise models per mission
phase. No shipboard gravity data are used when computing the quasi-
geoid models

Figure 8 shows the spatial pattern of the differences
between quasi-geoid models estimated with and without
accounting for coloured noise in the altimeter-derived data
set.

All statistics of the differences are smaller compared to the
experiment without shipboard gravity data (cf. Fig. 5). For
instance, the RMS difference reduces from 2.2 to 0.9 cm and
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Fig. 8 Impact of accounting for coloured noise in radar altimeter
along-track quasi-geoid height differences on the quasi-geoid model.
Its Min, Max, Mean, SD, and RMS are —7.3, 6.2, 0.0, 0.9, and 0.9 cm,
respectively. The coloured noise in case of each mission phase is
accounted for using the corresponding ARMA noise model. The ship-
board gravity data are used

the extreme differences now range from —7.3 to 6.2 cm com-
pared to —8.6 and 10.5 cm when no shipboard gravity data are
used. Furthermore, the spatial pattern of the differences has
changed significantly with many short wavelength features
at the sea, where the impact is maximum. A closer analysis
reveals that these features are highly correlated with areas of
poor coverage with shipboard gravity data (cf. Figs. 8, 9).

Examples of such anomalies are marked with dashed
boxes in Figs. 8 and 9. An extreme example is indicated by
a dashed green box in both figures. There, the spatial pattern
of differences matches the shipboard gravity tracks in that
area.

The facts that (1) the impact is reduced as compared to
the experiment where no shipboard gravity data are used,
(2) the spatial pattern of the impact at sea is now heavily
influenced by the distribution of the shipboard gravity data;
and (3) the largest differences occur in areas of poor spatial
coverage with shipboard gravity data all indicate that the
altimeter-derived data set is down-weighted when shipboard
gravity data are included. This is in line with findings in
earlier studies (e.g., Slobbe and Klees 2014). It can easily be
verified by studying the a posteriori noise standard deviations
of the shipboard gravity data set and the altimeter-derived
data set. We find that the a posteriori noise standard deviation
of the shipboard gravity data is 1.1 mGal, no matter whether
coloured noise in the altimeter-derived data set is accounted
for or not. The a posteriori noise standard deviations of the
altimeter-derived data are provided in Table 5 per mission

@ Springer

1. 47 =
Fe (N D7
mum dp% 278 |
o RIS A
56.0 [EE FEE l
S 123594 |
| | S |
. SE=r=
54.0
=1
uny g
: A
. T
R . [ V-z, 2
520 | - Fz 7 T -
50.0° _; ............
0.0° 2.0 40 6.0 8.0

Fig. 9 The distribution of the shipboard gravity data. Areas of poor
coverage are marked with red and green boxes

phase with and without accounting for coloured noise when
estimating the quasi-geoid.

The analysis of Table 5 additionally confirms that along-
track quasi-geoid height differences derived form the ERM
phases are more accurate than those associated with the GM
ones. This is an expected outcome given the fact that the
former ones are averaged over many cycles; see Table 1 for
the number of cycles over which ERM data are averaged.

Similarly to the experiment without shipboard gravity
data, the results are not affected by a change of the relative
weighting between the non-radar altimeter data sets. This is
clear from Table 6, in which the estimated variance factors
and a posteriori noise variances are provided for the non-
radar altimeter data sets.

Figure 8 also reveals some long wavelength features over
land, particularly in Belgium. However, the amplitudes are
rather small, hardly reaching 1 cm. This is below the stan-
dard deviation of the geometric quasi-geoid heights at height
markers. Therefore, results of a comparison of gravimetric
and geometric quasi-geoid heights are not presented. Assess-
ing whether in this case the quasi-geoid improves or not
requires much better control data (with a standard devia-
tion of a few millimeters), which are nowadays unavailable.
Figure 10 shows the differences between EGG2015 and the
quasi-geoid models obtained without and with accounting
for the coloured noise in the altimeter-derived data set. The
statistics of the differences are provided in Table 7.
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;I;zgzliﬁd C?;&Zﬁgﬁggﬁgﬁ; Mission phase Shipboard data included Shipboard data excluded

altimeter along-track White  Coloured White Coloured

quasi-geoid height differences cm cm mGal cm cm

for the ERM (top rows) and GM

(bottom rows) phases TOPEX (phase B) 0.55 1.41 2.28 0.40 0.99
“ERS1BD” 0.53 0.96 1.46 0.41 0.72
“ERS1CG+ERS2+EnvisatB+SA” 0.71 1.53 221 0.54 1.36
“TopexA+Poseidon+Jasonl A+Jason2”  0.64 1.07 1.81 0.48 0.93
Jason-1 (phase B) 0.69 1.25 2.14 0.49 1.02
ERS-1 (phase A) 0.95 1.90 2.88 0.71 1.42
GFO-1 1.06 2.19 3.30 0.94 2.12
TOPEX (phase N) 1.60 2.94 6.46 1.52 4.30
Envisat (phase C) 1.56 2.67 3.30 1.49 4.05
Cryosat-2 1.77 3.11 431 1.71 5.40
Geosat (phase D) 1.78 3.17 5.35 1.72 5.19
Jason-1 (phase C) 1.68 2.88 6.49 1.64 3.78
ERS-1 (phase E) 2.09 4.28 6.03 2.05 4.39
ERS-1 (phase F) 2.29 4.77 6.72 2.25 4.94

They are estimated when computing quasi-geoid models assuming white and coloured noise in these data
sets, respectively. The latter refers to using individual ARMA noise model per mission phase. The numbers
are provided with and without using shipboard gravity data in quasi-geoid modelling. When shipboard
gravity data are used and coloured noise in the altimeter-derived data set is incorporated, the standard
deviations are converted from units of centimetre to units of mGal using the rule of thumb that 1 prad geoid
slope corresponds to 1 mGal gravity anomaly; see, e.g., Sandwell and Smith (1997) and Smith (2010). They
should only be used to support a comparison of the relative weighting of the altimeter-derived data set and

the shipboard gravity data set

Table 6 Estimated variance factors and a posteriori noise variances
(mGal?) for the terrestrial gravity anomalies, shipboard gravity anom-
alies, and airborne gravity disturbances for white noise and coloured
noise models of the altimeter-derived data set

Data Variance factors A posteriori variances
White Coloured White Coloured
Terrestrial 0.14 0.14 0.53 0.53
Shipboard 0.31 0.32 1.25 1.32
Airborne 0.46 0.46 1.85 1.85

The latter refers to using different ARMA noise models for each mission
phase

The corresponding RMS values for the Netherlands are
comparable. In Belgium, the RMS difference is reduced from
2.4to 1.5 cm when coloured noise is accounted for. However,
the reduction is within the uncertainty of EGG2015, which
does not allow to draw further conclusions about which quasi-
geoid model is to be preferred.

Finally, an analysis of the differences between gravimet-
ric and geometric height anomalies at the height markers
across the Netherlands and Belgium reveals the presence of
long wavelength errors in both the EGG2015 model and the
regional quasi-geoid model computed in this study, which
uses all data sets and a proper modelling of coloured noise
in the altimeter-derived data set. Figure 11 shows the differ-

ences between gravimetric and geometric height anomalies at
height markers in the Netherlands and Belgium after removal
of the mean difference per country. The corresponding sta-
tistics are provided in Table 8.

The spatial pattern of the differences cannot be attributed
to systematic errors in the geometric height anomalies, but
are long wavelength errors in the two gravimetric quasi-
geoid models. To understand this, one should remember that
the levelling networks and the GPS networks in both coun-
tries are set up, observed, and adjusted independently. If
they had been responsible for the long wavelength differ-
ences between gravimetric and geometric height anomalies,
the pattern would have been discontinuous across the polit-
ical border. Figure 11, however, shows a smooth transition
across the political border, which can only be caused by long
wavelength errors in the gravimetric quasi-geoid models. A
possible explanation for these long-wavelength gravimetric
quasi-geoid model errors are systematic inaccuracies in the
terrestrial gravity anomaly data sets, which are not properly
dealt with in the remove-compute-restore procedure.

4.2 Using a single ARMA model
So far, we have used for each particular radar altimeter

mission phase a different ARMA noise model following
the procedure of Sect. 3. Estimating noise PSDs and fit-
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(a)

Fig. 10 Differences between the computed quasi-geoid models and
EGG2015 at the GPS/levelling points in the Netherlands (fop) and Bel-
gium (bottom). The quasi-geoid models are computed without (left)
and with (right) accounting for coloured noise in radar altimeter along-

Table 7 Statistics (in cm) of differences between the computed quasi-
geoid models and EGG2015 at the GPS/levelling points

Statistics Min Max Mean SD RMS
—0.2 6.0 2.2 1.4 2.6
Netherlands =05 73 5= 13 22
. —1.3 4.8 2.2 1.0 24
Belgium =% i3 2 58 4

The quasi-geoid models are computed without (numerator) and with
(denominator) accounting for coloured noise in radar altimeter along-
track quasi-geoid height differences. The latter refers to using individual
ARMA noise models per mission phase. Shipboard gravity data are used
when computing the quasi-geoid models

ting ARMA models are numerically intensive operations.
Looking at the noise PSDs found in Sect. 3, we notice that
the shapes of the noise PSDs do not differ significantly.
Therefore, we find it relevant to inspect whether or not a
single ARMA noise model (up to the total power, which is
always estimated using MCVCE) can be used when com-
puting a quasi-geoid model for the region of interest. To
address this question, we use the ARMA noise model of
“TopexA+Poseidon+Jason1 A+Jason2” for all radar altime-
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(b)

track quasi-geoid height differences. The latter refers to using different
ARMA noise models for each mission phase. Shipboard gravity data
are used when computing the quasi-geoid models

ter mission phases under consideration. We compare the
quasi-geoid model based on this single ARMA model with
the one that uses different ARMA models per radar altime-
ter mission phase. Figure 12 shows a spatial rendition of
the differences between the two quasi-geoid models. The
differences are plotted for models excluding and including
shipboard gravity data.

The differences obtained in both cases are minor with peak
values barely reaching one centimetre, which is below the
noise level of the quasi-geoid models.

Furthermore, in line with earlier findings, we notice that
(1) the differences are larger when no shipboard grav-
ity data are used, which can be seen when comparing
Fig. 12a with Fig. 12b; (2) the differences computed in
the absence of shipboard gravity data (Fig. 12a) show
short- and long-wavelength patterns; and (3) the differ-
ences computed when shipboard gravity data are included
are the largest in areas with no or sparse shipboard grav-
ity data, which can be seen when comparing Fig. 12b with
Fig. 9.
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(a)

Fig. 11 Differences between gravimetric and geometric height anom-
alies at height markers in the Netherlands and Belgium. The left refers
to the gravimetric quasi-geoid computed in this study based on all data

Table 8 Statistics (in cm) of differences between gravimetric and
geometric height anomalies at height markers in the Netherlands and
Belgium

Statistics Min Max SD
—3.99 5.18 1.46

Netherlands =35 250 Ted
. —8.68 6.94 2.60
Belgium o7 750 703

The numerators refer to the gravimetric quasi-geoid model computed
in this study based on all data sets and coloured noise in the altimeter-
derived data set being accounted for, whereas the denominators refer
to EGG2015. For each country, the mean difference is removed before
computing the statistics

5 Summary and conclusions

We studied the impact and added value of a proper handling
of coloured noise in radar altimeter along-track quasi-geoid
height differences on a regional quasi-geoid model. Using
radar altimeter data in this form has a number of advan-
tages compared to non-differenced data. The corresponding
functional model is simple, interpolation or filtering at the
pre-processing stage is not needed, and data gaps do not
require a special attention.

We confirmed earlier findings of Slobbe (2013) and Slobbe
and Klees (2014) that ERM radar altimeter along-track quasi-
geoid height differences suffer from coloured noise, and
showed in addition that the same applies to GM phase data.
The noise PSD increases with frequency. It has a moderate
slope for wavelengths longer than 50 km, and a significantly
steeper slope for shorter wavelengths. Combined with ter-
restrial, airborne, and shipboard gravity data, we computed
regional quasi-geoid models in the Southern North Sea with-

(b)

sets and coloured noise in the altimeter-derived data set being accounted
for, whereas the right refers to EGG2015. For each country, the mean
difference is removed

out and with taking the coloured noise in radar altimeter
along-track quasi-geoid height differences into account. The
difference between these models was used as a measure of
the impact of accounting for the coloured noise in these data.
The main findings of the study are the following:

(i) The impact on the estimated quasi-geoid model may
attain peak values of more than a decimetre if shipboard
gravity data are not available. Peak values are still above
afew centimetres if shipboard gravity data are included.

(i) The impact is not confined to offshore regions, but vis-
ible over the whole area considered in this study. It is
most pronounced along the coast, but has also long-
wavelength features of a few hundred kilometres over
the land.

(iii)) A comparison with independent GPS/levelling data
reveals some improvements (e.g., about 28 % in terms of
RMS differences in the Netherlands) when a full noise
covariance matrix is used. However, for some areas
noise in the GPS/levelling control data does not allow
for a decision in favour of one or the other quasi-geoid
model.

(iv) A much better fit of our quasi-geoid model computed
without shipboard data with EGG2015 over Belgium
indicates the benefit of accounting for coloured noise in
the altimeter-derived data set. However, the results of
such a comparison for the Netherlands are found to be
less conclusive.

Additionally, it was confirmed that shipboard gravity
measurements relative to altimeter-derived data get higher
weights in quasi-geoid modelling. Furthermore, an expected
higher accuracy of data from the exact repeat radar altime-
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Fig. 12 Spatial rendition of the differences between two quasi-geoid
models. One uses a single ARMA noise model for all radar altimeter
mission phases, whereas the other uses individual ARMA noise models
per mission phase. a shows the differences when shipboard gravity data

ter mission phases as compared to those from the geodetic
mission phases was confirmed.

The study allows us to conclude that when aiming at a
few-centimetre quasi-geoid model, a full noise covariance
matrix for hydrodynamically corrected along-track sea sur-
face height differences should be used if these data comprise
the primary offshore data. If in addition to this dataset, ship-
board gravity data are available, we still advise to use a full
noise covariance matrix, though the impact mainly depends
on the quality and spatial coverage of shipboard gravity data,
and on the target accuracy of the quasi-geoid model.

Finally, a by-product of our analysis revealed that regional
quasi-geoid models compiled in this study as well as
EGG2015 still suffer from notable long-wavelength errors
over Belgium and the Netherlands. Those inaccuracies are
comparable in terms of pattern and size for models produced
in our study and EGG2015. A possible explanation for these
inaccuracies is the presence of significant systematic errors
in the terrestrial gravity data. Further attempts are needed to
either remove these systematic errors or to adopt the stochas-
tic model of noise for terrestrial gravity data.
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