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Summary

This thesis deals with determination of Resistance (R) value and Heat Capacity
of building envelopes in the commonly found residential architecture in
Holland i.e. pitched roof houses. The aim of this thesis is to find an easy
to implement novel method which gives reasonably accurate results. In the
absence of actual sensor data, the data-sets are obtained by modelling the
buildings in EnergyPlus, with the help of Design Builder which provides the
specifications of the buildings and its energy systems. Data-sets obtained via
EnergyPlus provide the heat demand of the buildings. These data-sets, which
are considered to be an approximation of actual data that would be available
in future, is fed into MATLAB to perform the inverse modelling using Genetic
Algorithms (GA) which estimates the unknown parameters by fitting the
energy demand curve. Genetic Algorithms are known to converge to the
global optimum unlike other regression techniques and parameter estimation
methods. The objective function of GA is derived from the most accurate
thermal network model. The equation is an energy balance of the room for the
indoor temperature node which constitutes transmission losses, ventilation
losses, solar gain and internal heat gain.The working and behaviour of Genetic
Algorithms with varying optimisation parameters are thoroughly studied to
make a comprehensive report on the scope of the Algorithm. Artificial Neural
Networks and Hessian Matrix are studied in the course of thesis and are
mentioned briefly in the appendix.
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Chapter 1

Introduction

Built environment which comprises of any form of landscape created for
human interaction, ranges from buildings to gardens. According to European
Commission[1] humans spend 90% of their time indoors. Energy research for
the built environment has a pivotal role to play in today’s scenario.Energy
Research for the Built Environment involves energy analyses of buildings
populated by humans such as offices, classrooms, labs, common rooms
and houses. Energy consumption in houses formed 25.4% of total energy
consumption of Europe in 2015 according to EU commission[1]. The statistical
figures for household energy consumption in Netherlands given by Santin
et al. [2] is much higher and approximated to be around 42%. According
to the study for building stock age in Netherlands by Laure Itard[3], the
building stock percentage for post war construction accounts to 35%. As
post war construction is poorly insulated, there is a high number of buildings
consuming more energy than modern efficient houses and need to be retrofitted.
It is essential to recognise the building envelope’s thermal values to retrofit
accordingly.

Building retrofitting can also introduce considerable amount of flexibility in
energy control in existing building stock. Major proportion of building energy
can be easily regulated using control mechanisms especially if designed taking
into account specific building behaviour. For this reason, there is a constant
need for research on understanding the behaviour of residence buildings. The
work done in this project will focus on inverse modelling of the buildings and
aim on extracting the important building parameters such that the thermal
performance of the building can be understood and predicted. This study will
be founded on studies of thermal networks, parameter estimation methods
and pattern recognition. Hence, this work will be an amalgamation of heat
transfer principles and statistical modelling with the aid of machine learning.
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1.1 Research Objectives

The aim of the thesis is to study a generic reverse modelling method for
existing buildings in the Netherlands. The study will be based on grey box
modelling of the building discussed in Chapter 2 and determining the building
parameters via machine learning algorithm which could provide us with
information on sources of infiltration/ventilation. This study is builds on the
thesis by Vaidehi Parab[4] and will take the work forward towards creating
an algorithm for a typical dutch house with pitched roof. The intermediate
objectives in this study are:

• Experiment with different thermal network models to identify the best
suited RC model for different types of buildings in the building stock.

• Find the best technique for implementation of thermal networks using
genetic algorithms as a parameter estimation technique to provide
physically relevant values of R and Heat Capacity of the building while
retaining ease of implementation.

• Draw up reverse engineering process for energy consumption profile
created by DesignBuilder(DB) to test the technique before application
on real time data collected from houses across Netherlands through
smart meters for Opschaler project.

The report will start with discussing the basic concepts this study is
based on and the associated literature in chapter 2. It will broadly comprise
of mathematical modelling, thermal networks, heat dynamics of buildings
and genetic algorithms(GA). This is followed by brief chapter defining the
methodology employed in this work.
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Chapter 2

Literature

2.1 Mathematical Modelling

Mathematical modelling refers to the depiction of a physical system in the
form of mathematical equations to better study the behaviour of the system.
Governing equations of the mathematical model define the system based on
its parameters and their inter-dependency. It can be applied, in this case,
for extracting information about the indoor dynamics of building systems.
There are a number of ways to classify mathematical models, dynamic or
static models, linear or non linear models, etc., which will be discussed in
the next section. Another important classification is forward modelling or
inverse modelling. The names give a clear indication of the model ideology:
forward modelling is the conventional form where the model parameters are
used to calculate the mathematical response and inverse modelling is when
the response (building energy demand) is known which are correlated using
mathematical models and processed to give the missing causal factors which
produced the corresponding response. The knowledge gained would be in
terms of R and C value of the fabric and in general building behaviour which
could help identify anomalies in the measured output as compared to the
predicted demand for the given building. In this study, the aim is to estimate
the Resistance and the Capacitance of the building given the energy demand
of space. Hence, for the purpose of this thesis inverse modelling is applied.

Inverse modelling has already been used for retrofit buildings in Zhang et
al.[5] in order to make the indoor climate more suitable for the inhabitants,
decrease the electricity bills, model control mechanisms, predict energy usage
and increase energy efficiency of the building. The ideals of Zhang et al.. fall
in the same general category as this study. The process for inverse modelling
is shown in Figure 2.1.
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Figure 2.1: Algorithm for Inverse Modelling [6]

Another important factor to identify in data driven modelling is the
selection of statistical process. ASHRAE classifies them as :

• Empirical or ’black box’ approach: This method applies to cases where
least information about the building is available. The information
available is from the installed sensors and meters possibly about the
temperature, occupancy, humidity and the loads but there is no insight
into the thermal processes occurring inside. Once the approach is
applied, the processes inside can be mapped out and analysed.

• Calibrated Simulation Approach: In this approach, the energy demand
profile of the building is obtained using the energy software available like
Trynsys, EnergyPlus, etc. This profile is plotted against the measured
profile to calibrate the input variables such that the measured and
predicted match as closely as they can. It is a necessary step as a
lot of models require input data which is difficult to obtain and time
consuming to estimate.

• Grey Box Approach: Grey Box modelling is a variation of black box
model with the difference that there is some information available about
the inner dynamics of the building. This approach is mostly used in
buildings where the physical model is partially available in the form of
sensor data or building fabric details etc.

2.2 Modelling Approach

Inverse modelling can take the form of steady state inverse models or dynamic
inverse models. Steady state models are employed when the building at

14



equilibrium is studied whereas the problem statement of the thesis involves
analysis over time(hourly) hence dynamic inverse modelling will be carried
out. Dynamic inverse modelling is one of the branches of inverse modelling
which is based on differential equations of heat transfer mechanisms. Also, the
aim of the project will be to work at the micro level which would include the
transient changes within the space, which falls perfectly under the definition
of dynamic inverse modelling. To further examine dynamic inverse models,
we enumerate the different approaches available.

Zhang et al..[5] compared four traditional identification methods namely
change point model, Gaussian process model, Gaussian mixture model and
artificial neural network. They found the Gaussian mixture to be the most
accurate for limited data availability cases but change point model to be
the optimum model as the lack of accuracy is compensated by the ease of
application. Haberl et al.[7] proposed the hourly bin method which was able
to capture non linear data changes. Wang and Xu[8] have shown good results
with a simple thermal network model. Also Vaidehi Parab[4] has worked
extensively on thermal networks and her work produced interesting results
which could be studied further. Aim of this thesis is to take the work further
by experimenting with thermal networks by trying different and more realistic
thermal network models and studying the energy profile further to identify
irregularities and their causes.

2.3 Parameter Estimation

Parameter estimation is the process of determining unknown parameters of
a distribution with the help of pre-known distribution data. For a given
equation, data becomes the known variables and the unknown variables are
found by search and optimisation algorithms which converge to the most
accurate values by minimising or maximising the objective function. Example
of parameter estimation can be taken as a simple linear line equation y =
mx+ c, where the left hand side(LHS) value of y is known for every right
hand side(RHS) value of x. The unknown parameters of m and c are to be
estimated and for that the objective function, F = (mx+ c)− ymeasured needs
to be minimised. For multiple data sets the objective function can be the
sum of the error functions for each data point.

Parameter estimation in this thesis is used to determine the unknown
coefficients of the mathematical model equation such that the modelled
behaviour replicates the measured behaviour. Glenn[9] has discussed the
most common parameter estimation techniques namely Root Mean Square,
Maximum Likelihood Values using Markov Chain Monte-Carlo Algorithm and
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Bayesian Approach. While root mean square involves a simple formula based
on measuring the difference between the calculations and the observations, ML
method gives the probability of model fitting to the data. Root Mean Square
is a simple method and is used commonly in recent studies whereas likelihood
method is slightly more complicated where the estimators can be achieved by
various sub-methods like Markov Chain Monte Carlo(MCMC) or Bayes. It
can also be implemented using Continuous Time Stochastic Modelling Using
R(CTSM-R)1 tool as covered in the thesis by Vaidehi Parab[4].

Genetic Algorithms have been used for parameter estimation by Wang
et al.[8] and for curve fitting by Messa[10]. Genetic algorithms has been
a subject of discussion for providing an edge over the other algorithms
by showing an inherent ability to solve equations with large number of
unknowns. Goldberg[13] states the strengths of GA which set it apart from
other techniques like the Gradient Descent Methods which determine the
parameter by a point-to-point transition. GA operates on parallel assessment
of points in the database which leads to lesser likelihood of getting stuck
at a local minima. Another feature of GA which aids in convergence to
global optima is the mutation process. As GA is based on probabilistic
approach, it randomly cruises through the search space to find the likely
solution adding a random strength to the process of GA.Another reason for
enhanced practicality of GA is its simplicity in execution compared to a
gradient descent method which requires a differentiable objective function
with respect to the parameter to be optimised. Its not always the case,
especially for error functions, to have a first order derivative with respect to
the parameter to be estimated providing a serious roadblock to application of
these methods. Another major drawback of the gradient descent methodology
is a tendency to get stuck in a local optima instead of identifying the global
optima. Based on the above discussion, GAs might be helpful in solving
under-determined mathematical systems. Under-determined mathematical
systems are a set of equations which constitute more unknowns than the
number of equations - this is the general case for thermal networks. Hence,
Genetic Algorithms have been employed for parameter estimation in this
thesis.

2.3.1 Introduction to Genetic Algorithms

Genetic Algorithms form a branch of evolutionary programming which is
based on the principle of survival of the fittest. Genetic Algorithms were first

1CSTM-R is a software developed by Technical University of Denmark for estimating
parameters in equations based on continuous time mathematical models
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invented by John Holland in the 1960s. The reason that led to Holland’s
discovery of these algorithms was rooted in his scientific curiosity to better
learn about natural adaptation in human evolution. Genetic algorithms
later filled the space for computing algorithms which could abstract the
concept of genetic evolution to other applications and better pave the way
for computers to solve problems using the working knowledge of naturally
occurring systems in the world.Since 1980s, scientists have been working on
mimicking the working of natural processes occurring in the human brain
(neural networks) as well as natural selection (evolutionary programming).
The advancement of both algorithms introduced new and improved methods
for problem solving. While neural networks are extensively used as black
boxes for any problem solving, an associated drawback is their dependence
on hit and trial method for adjusting the coefficients of input parameters
depending on the change in output. Hence, for an ANN, change in output is
the tracker and is thus a necessity which is not for the purpose of this thesis
as it revolves around determination of resistances and capacitances which are
constant for a building. Hence, rendering application of ANN for this case as
null.

2.3.2 Natural Selection and Genetic Algorithms

Lets look into Charles Darwin’s Theory of Evolution to better lay a foundation
for the understanding of GA. Charles Darwin’s Theory of Evolution states
that individuals have a tendency through gene alterations to increase their
fitness with every subsequent generation increasing their ability to reproduce,
compete and survive. This selection process ensures that the subsequent
generation will have higher number of fit individuals than the previous
generation. Starting at the beginning of the human race, the first individuals
would constitute the initial populationAssuming at the start there were two
people, a male ’X’ and a female ’Y’. The two people would constitute the
zeroth generation. The children of X and Y will all be constituted from the
genetic material of parents.Reproduction in humans is based on interaction
of male and female gametes which respectively contain half the number of
chromosomes needed for an offspring. After replication of gametes, they are
crossed and recombined to form four unique half chromosome haploids. These
haploids combine in pairs to generate the genetic makeup of the off-springs.
This process is shown in the following Figure 2.2,

All the children of ’X’ and ’Y’ combined form the first generation. Theory
of the fittest play a role in succeeding generation where in the words of Charles
Darwin, the genetic makeup that provided the strongest offspring in the first
generation will leave more copies of itself in the next generation than the
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Figure 2.2: Process of Meiosis - Biological Reproduction of Crossover and
Mutation

weaker offspring.
To understand how GA is modelled, let’s replace the generation of

individuals with generation of parameter values. Each generation is an
iteration. Each generation has a certain number of people, GA has a certain
number of guesses for all the parameters. Hence, GA is nothing but iterations
of sets of possible solutions until the fittest solution is found. GA goes from
one generation to the next by mutating and crossing the parameters from the
previous generation. For this purpose, GA employs the Schema Theorem. A
’schema’ is a string of bits, (zeros and ones) which can contain a zero, one or
an asterisk as shown in figure 2.3. The asterisk in the schema is an unknown
value which lays the way for chromosome sets. The sets of chromosomes are
better known as instances of a schema or a ’schemata’. As from conventional
bit system, the physical value can be determined by decoding it with a base
of 2. Schemata with their decoding is shown in figure 2.4.

Figure 2.3: Schemata Representation

GA works by experimenting with schemata to achieve the optimal solution.
In natural selection, the chromosomes which make future genes are mutated
and crossed to make the subsequent fitter generation. This process continues
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until the strongest offspring is created. Similarly, when GA is applied to
parameter estimation, the parameters act like the chromosomes which are
varied within the constraints to obtain the optimum result. The algorithm
runs through different parameter values whilst dropping the instances less
likely to contribute to the needed output.

Figure 2.4: Schemata Decoding

The Schema theorem proposed by John Holland states that fitness of the
schemata through the generations can be assessed by the number of instances
present in the particular generation. Also, the probability of the schemata
being present in the next generation can be calculated based on their fitness
ratio as GA selection is based on a general principle of allotting more children
to the fitter schema. An easy example of that will be roulette selection is
which the most fit individual is correspondingly allotted a higher proportion
on the roulette wheel which means that there will be more children of the
most fit individual in the next generation than the relatively less fit parents.

(a) Crossover Representation (b) Mutation Representation

Figure 2.5: Mutation and Crossover in GA

Initialisation of GA requires ’seeds’ which make the first generation for the
algorithm. These seeds form the initial population coded into schemata. Once
coded, the value of the objective function of each entry of the population is
evaluated to find the fittest solution. After dropping the weaker population,
the healthier individual genes are mutated and crossed to generate the next
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generation. Process of mutation and crossover is shown in figure 2.5. The
process continues till the next generation has the same number of individuals
as the initial generation. Process of mutation can be described as introducing
random alterations in the schema. This population is then mated in a way
that if a certain point is chosen for mating then a replication of that point
is first created in the mating pool for the next mating out of the original
pool. Mutation gives GA the unique quality of obtaining global minima as
mutation by definition does not let the population saturate when its close to
the local minima. As mutation introduces random changes in variables, when
GA reaches a local minima, the algorithm does not consider only the data
points near it but also random points which may be far away from the current
optima hence possibly giving a more probable global optima. Crossover can
be described as swapping the bits of the 2 parents at the point of ’break’ to
produce an offspring.

Genetic Algorithm can be depicted by the algorithm shown in figure 2.6,

2.3.3 GA terminology

• Fitness function handle : It is the name of the function file as well as
the function name in the file. This is the objective function that is
calculated for every individual and the aim of the genetic algorithm
is to decrease the objective function hence increasing the fitness of
subsequent generations.

• Constraints : Optimisation problems can be constrained with the help
of linear relations or bounds.

• Population Type : Type can be either bit string (in the form of ones and
zeros) or double vector. A bit is a value of 1 or 0 whereas a combination
of bits can produce more values e.g. 00 = 0, 01 = 1, 10 = 2, 11 =
3 and so on. However, a limiting quality of bit-string is its inability
to define decimal numbers. Double vector is a form of mixed integer
programming where the variables can be decimals.

• Population Size : This can be specified by the programmer. Population
size signifies the number of chromosomes created for each generation.
Population size is an important criteria for achieving the desired result.
There is a general understanding that a bigger population will have
higher odds of achieving the precise solution whilst taking longer time
to converge as compared to a small population GA. Population size also
needs to be increased for a higher mutation rate for optimal results.
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Figure 2.6: Genetic Algorithm Layout

• Creation Function : Creation function determines how the population
is created. It can be ’Uniform’ which creates a uniformly distributed
populations in between the bounds. It can be ’feasible population’
which creates population in bounds and pays attention only to linear
constraints.
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• Scaling Function : Scaling function is used to scale the individual scores
for easier analysis of fitness values. It can either be ’rank’ which ranks
individuals based on their scores. Least score gets rank one, the next
smallest score will get rank two and so on. There is ’top scale’ which
gives the rank 1 to top 40% of the fit individuals and 0 to the rest. Top
linear and proportional both make the scaled value proportional to the
fitness score.

• Selection Function : Selection function determines how the parents of the
present generation are chosen to create the next generation. Principally,
all selection methods follow the rule of creating more off-springs from
the fitter individuals. It can be in the form of roulette where the schema
with higher fitness covers a larger part of the roulette wheel hence
creating more offsprings from the fitter individuals. Stochastic Uniform
uses a line gauge instead of a roulette wheel.

• Reproduction : With the reproduction parameter, the user can specify
the elite count which defines the percentage of individuals which are
guaranteed to last through the next generation i.e. some of the fittest
children that can be produced by the current generation are directly
incorporated in the next generation. Also, we can determine the ratio
of children produced by crossover and mutation.

• Mutation Function : Mutation function determines how the individuals
are mutated. We can choose between Gaussian which alters all the
parameters by a Gaussian distribution value centred around zero,
uniform reduces the value of the chosen gene by a uniform value
which is in range of the bounds, and adaptive feasible which chooses
the value and direction of mutation variation depending on the last
successful generation with in the bounds specified. Gaussian does not
take into account the bounds for the parameters and hence has increased
probability of resulting in non feasible solutions. Mutation fraction is
mostly set to 0.01 to make sure that the optimisation problem does not
suffer from the harmful effects of mutation in which the algorithm might
be distracted from its global minima. However, for some cases, a low
fraction does not provide satisfactory results. Hence in such a case, the
mutation value can be increased, keeping in mind that the population
needs to be increased as the mutation fraction increases. The variation
of mutation rates is also a test for the consistency of the results.

• Crossover Function :Crossover function can be chosen from a variety
of options - It can be a ratio which depends on weighted average
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of the parents; it can be scattered where a crossover vector chooses
which genes are chosen from which parent; single point where the given
value determines which fraction of genes from the second parent are
incorporated; two point uses two splits in the genes mix of the parents;
arithmetic creates children which lie at the arithmetic mean of the
parents; heuristic creates children which lie a small distance away from
the healthier parent.

• Stall Generations : Stall generations are the number of generations
GA will run once the fitness function values change is less than the set
function tolerance value. For more parameters, stall generations need
to be increased to make sure it is not a local minima.

• Objective function : Objective function is the minimisation equation
which seeks to reduce the difference between the measured and calculated
values of the parameters to be optimised/estimated. To determine
building parameters, genetic algorithm is applied with an objective
function representing the error between the measured indoor temperature
and the estimated indoor temperature.It is to be noted that for a genetic
algorithm implementation, objective function and fitness function are
synonymous.

• Average Distance Between Individuals : The parameter of distance
in reference to GA pertains to the variation in input datasets.For
multiple parameters, this distance refers to the summation of distances
for each parameter.For example the distance between individuals for
a constrained problem with bounds[0,0] to [10,10] will be max 20.To
ensure an accurate solution, the distance at the time of convergence
should be small signifying narrowing to the optimal solution. Through
the process of finding the minima, the distance should not be too large
or too small to ensure thorough screening of the input space.

• Fitness Value : Fitness Value is the value of objective function for each
input parameter set.They are also known as scores.Fitness Values are
displayed in terms of best fitness value and mean fitness value at the
time of convergence.A correct measure of a successful result would be
when the mean and best fitness value are close to each other signifying
the converged solution as the best possible solution for the problem.This
is because the closer the mean value is to best fitness value, the more
replicated the population of GA is at the time of convergence hence
there is no expected improvement in results.
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2.3.4 Application of Genetic Algorithms

To introduce the mechanics of GA, consider the simple example of a linear
line equation, y = mx+ c. GA can be applied to estimate the two constants
m and c given 10 data points for x and y. Objective function used for this
example can be formulated as,

A = mx+ c− y (2.1)

A data-set of (x, y) corresponding to m=4 and c=9.6 was used as input
for GA to identify m and c with the initial bounds [1,1] and final bounds
[10,10]. The results are shown in Figure 2.7.

Figure 2.7: GA computed parameters for equation y=mx+c

The above figure shows that GA successfully predicted the value of m
and c in 200 generations. As seen from the first plot, best fitness value is
negligible demonstrating an accurate result. At the same time the mean
distance is low as well which shows that the convergence is not premature.
Second Plot is a bar chart of the best individual according to GA. Average
Distance Between Individuals is shown in the third plot above.It is seen that
the average distance decreased rapidly in the beginning and gradually later as
it became harder to find a better solution.It can be seen that after generation
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25, average distance is almost negligible hence GA has found roughly the
optimal solution area and is now finding the exact solution.Here the stall
generations are set to 50 hence GA will stop only in the case when fitness
value improves lesser than 10−6 for 50 generations. The fourth plot depicts
the worst score/fitness value of the generation in addition to the first plot
information. It is important to note here that the converged generation should
not have the worst score far from the best score.

2.4 Heat Transfer Fundamentals

Having established the principles of GA, it is necessary now to formulate the
accurate objective function for GA to utilise. This requires an understanding
of the thermal behaviour of a building which can be achieved by the study
of heat transfer principles which are enumerated in this section. The main
energy processes taking place in a generic building are; solar influx, ventilation
losses, transmission losses and internal gains. Energy balance is created based
on the interplay between these four processes as shown in Figure 2.8.

Figure 2.8: Heat Balance of a Building[11]

Solar heat gain is the measure of incoming heat from solar radiation
through the building fabric and windows. This phenomena is responsible for
the highest heat input during sunny weather and also leads to stored heat in
the walls resulting in the peculiar dynamics of thermal response which play a
significant role in the overall behaviour of the building.

Transmission losses refer to the heat loss from the indoor environments
to the outer environment due to temperature differences. The mode of heat
transfer is through conduction via wall and convection (high in case of fast
winds). They become significant in case of extreme temperatures differences.
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Ventilation losses occur via convective heat transfer. As there is constant
inflow and outflow of fresh air into the building, there is heat loss between
the inner space and environment based on the number of air changes per
hour between the two - the ventilation system installed plays a distinct role
in defining the number of air changes.

Internal gains are the heat gains in the indoor environments originating
from the occupants, equipment, lighting, etc., which radiate heat due to
internal processes. These gains are significant contributors to the energy
balance during high occupancy or high equipment usage.

For a detailed heat transfer balance, heater output and heat stored in
furniture are included in the dynamics of internal gains. The following
processes determine the overall dynamics of a building (see figure 2.9),

Figure 2.9: Detailed Thermal Processes In the Room[12]

• Conduction through the outer envelope (External Walls, Roof, External
Floor, Windows). This heat transfer will be high for extreme temperature
difference between indoors and outdoors. Also, for an un-insulated
building, the conduction losses will strongly affect the inner dynamics.

• Convection from ambient air to the outer envelope. In the presence of
high winds, convection effects will be higher.
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• Convection from the internal envelope to indoor air. In case of high
mechanical ventilation/infiltration, convection from the inner walls will
be high.

• Convection from the furniture to indoor air.

• Convection from the heater to indoor air. The convective effect from
the heaters will be considerable for a convective heating system. For a
fully convective system, there is no radiation fraction.

• Radiation from the occupants, appliances, lights. There is a radiative
and convective effect of the heat sources which is decided by the
temperatures of the inner surfaces. In case of a heavy built fabric,
the temperature of the wall will be high which will reduce the radiative
effect of the heat sources thereby increasing the convective effect.

• Radiation influx from the sun. The transmitted solar radiation is
absorbed by the inner surfaces of the building and absorbed radiated
fully into the space gradually. The radiation falling on the envelope
outer surface might play an additional role for walls with no insulation.
The solar radiation falling on the outer surface will get stored in the
wall possibly increasing the temperature of the inner surfaces hence
decreasing the radiative effect of the transmitted solar radiation and
the inner heat sources. This will in turn increase the convective fraction
for the solar gains

• Radiation between the wall, heater and furniture

• Heat transfer through infiltration. This heat transfer is a direct measure
of the temperature difference between indoors and outdoor.

The interplay of all these processes determines indoor climate.

2.5 Thermal Networks

Thermal network is a term coined for an electrical network representation of
the various thermal processes described in the previous section. Heat transfer
is based on a fundamental concept that heat flows due to a temperature
difference between thermal boundaries. Heat transfer processes are dictated
by heat transfer properties and geometric framing of the system elements like
heat transfer coefficients, cross sectional areas and specific heat capacities.
Heat transfer processes when mapped to an electrical network will present
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heat transfer coefficients as resistance and heat capacities as capacitance. Heat
sources are formulated as current sources while the temperature difference
which drives the entire process as voltage which drives current in an electrical
circuit.

To explain the element conversions, the principles of a thermal process and
an electrical process are compared. Temperature difference is the acting force
for thermal exchange, which is equivalent to a voltage source which is the
driving force for current. Every node in a thermal network is a component of
the thermal system with a corresponding temperature just like every node in
an electrical circuit has its corresponding voltage. Hence, for thermal network
modelling the thermal behaviour of building, ambient, envelope, indoor air,
and furniture each become nodes of the thermal network. Heat capacity of
a component is given in terms of capacitance as they are both a measure
of energy storage in their respective networks. Thermal heat capacity of
envelope or furniture are parallel processes of heat transfer and hence are
incorporated in parallel with in the thermal network. Sources of heat flux
in a building are depicted as currents in an electrical circuit as heat flux is
a source of heat into the temperature node. Resistance of the walls is the
property which determines the amount of heat allowed indoors through a
given surface equivalent to resistance in an electrical circuit. So, a simple
thermal network can be formulated for heat transfer through the external
wall as shown in figure 2.10

Figure 2.10: Thermal Network-Electric Model Analogy

Nomenclature of a thermal network is given in the form of either xRyC
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(Harb [14]) where x denotes the number of resistances in the thermal network
model and y corresponds to the number of capacitances or TiTjAi (Bacher
[15]) where i, j denote the nodes in the model while Ai represents the areas
of the node.

Harb[14] drew up the most common thermal models of the xRyC type,
namely 1R1C, 3R2C, 4R2C and 8R3C with increasing model complexity -
higher R and C leads to more parameters and hence a more detailed draw
up of the building behaviour. The various models of Harb are shown in
figure 2.11.

Subscript Component
In Interior(Including Walls,Floors,Furniture)
E Exterior(External Surface of Envelope)
Ia Indoor Air
A Ambience

Table 2.1: Harb Model Parameter Nomenclature

Similarly, Bacher formulated models of the TiTjAi type ranging from Ti
model to TiTmTeThTsAe model. These models are shown in Figure 2.13.

Subscript Component
M Medium(Including Internal Walls,Floors,Furniture)
S Sensor
H Heater
E Envelope(External Surface)
I Interior(Indoor Air)
A Ambient

Table 2.2: Bacher Model Parameter Nomenclature

1R1C model is the basic model of Harb. In this model,Tin refers to the
internal thermal mass node. The capacity of all the building components
is represented by one aggregated capacitance. The equivalent resistance
also takes into account all the resistances inside the building. From an
understanding of thermal processes, it can be concluded that the equivalent
capacitance would not be a linear summation of all capacitance but an indirect
combination of them.

Equivalent resistance will represent the resistance of the wall in series with
the convective resistances of the surfaces whilst internal surface resistance
of furniture will be parallel combined with the convective resistance of the
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(a) 1R1C Model by Harb (b) 3R2C model discussed by Harb

(c) 4R2C model discussed by Harb (d) 8R2C model discussed by Harb

Figure 2.11: Thermal Network Models By Harb

internal thermal mass. The series resistance value will be in parallel with the
infiltration resistance. The schematic is shown in Figure 2.12

A point of note is that parameters such as resistances and capacitances in
thermal networks might represent different things for each network as they
develop. Solar heat flux is the heat absorbed by the interior components.

Figure 2.12: Schematic of Resistances

3R2C model splits the internal thermal mass node represented by Tin in
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the previous network to two nodes representing the temperature of external
surface of envelope,Teand internal thermal mass temperature,Tin. This
model divides the equivalent capacitance into envelope capacitance and
capacitance of internal thermal mass which is effectively the capacitance
of the internal surface namely walls, floors and furniture. In this model,
resistance of infiltration is presented separately and resistances between
indoor air and ambient are split in to resistances of the inner, envelope and
outer surfaces of the envelope. Rin,e is the radiative exchange between the
interior components.The effect of solar radiation on the outer surface of
envelope are not taken into account.

4R2C model shown in Figure 2.11c splits the Tin node further to include
a separate node for indoor air, Tia. This leads to separation of resistances
Rin,e to Ria,e and Rin,ia which represent the convection processes from the
internal surfaces to the indoor air which further convects to/from the wall.
In this model, the heat flux from the sun and the heater are applied to the
indoor air and the internal surfaces but not to the external envelope.Indoor air
receives the convective fractions of the heat flux and the radiative fractions are
considered into the envelope node. The radiative effect between the envelope
and the interior components is neglected while incorporating the convective
parts.

8R3C is the most complex model presented by Harb and is shown in
Figure 2.11d. It includes heater as an extra node further complicating the
model and introduces the thermal processes occurring between the heater
node and previously present nodes. Convection and radiation resistances
from the heater are added to the indoor air and all surfaces (external and
internal) respectively. Solar flux is added to the indoor air and internal node
while heat flux is added to the heater node. Capacitance of the heater is
also included in this model while radiative resistances are added between the
external envelope and the internal surfaces.

Ti model by Bacher shown in Figure 2.13a which is his most basic
model with two nodes: Ti representing temperature of the indoor air and
Ta the ambient temperature. This model utilises a combined resistance and
capacitance similar to the 1R1C model of Harb. The solar flux is represented as
a multiplication of effective window area with the measured global irradiance.

TiTe model is shown in Figure 2.13b. It splits the nodes into indoor air
and envelope node. The convective resistance between the indoor air and
ambient air is shown as a series combination of Rie and Rea. Capacitance
of the envelope is also included with Ci representing the capacitance of the
internal thermal mass.

The models shown in Figure 2.13c and 2.13d split the nodes further
to include a node for furniture and sensor. With the addition of these
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(a) Ti Model by Bacher

(b) TiTe Model by Bacher

(c) TiTmTeThTsAeRia Model by Bacher

(d) TiTmTeThTsAe Model by Bacher

Figure 2.13: Thermal Network Models By Bacher
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nodes, corresponding convective resistances and capacitances are added. The
difference between the above two models arises from the presence of Ria,
the infiltration resistance, which is ignored in the TiTmTeThTsAe model.
TiTmTeThTsAe model shown in Figure 2.13d is concluded by Bacher as the
best suited model.

The above circuits can be reduced to a set of differential equations which
describe the thermal process occurring at each node. The equations pertaining
to the models will be discussed in latter topics.

Thermal Networks have been gathering attention lately in the field of
energy modelling of buildings. One extensive work on thermal networks was
by Bacher[15] whose study identifies thermal models in the form of nodes
unlike the former nomenclature elucidated in this section. These models are
variations to the above models ranging from the simplest Ti model to the
most complex model TiTmTeThTsAeRia. The difference between Bacher’s and
Harb’s most complex models is that in 8R3C, the radiation effect of the heater
and the interior furniture is incorporated whereas in TiTmTeThTsAeRia model,
only the convective heat transfer is taken into account. Also in Bacher’s model,
heat capacities of indoor air are taken into account whereas it is ignored in
Harb’s work. It should be noted that the inclusion of indoor air heat capacity
might not be important as it is very low compared to the heat capacity of
the envelope. Also, indoor air flow in and out of the building is constant and
high for purposes of mechanical ventilation. One more significant difference
is that in Harb’s model, the sensor node is not accounted for unlike Bacher’s.

Bacher identifies TiTmTeThTsAe to be the most suitable model as the
house Bacher applied the model to was well insulated hence infiltration
did not play a big role. However, infiltration can affect the performance
of a typical building built in post war era hence for our study inclusion
of infiltration is necessary. Harb concludes 4R2C to be the most suitable
model. The common denominator between the two studies is their conclusion
that the most complex model is not suitable due to introduction of errors
to compensate for determining more parameters. However, Harb’s study is
based on buildings with insulation on the external surface of the building
hence the effect of solar radiation on the external envelope was not included.
However, for houses with less insulation, this factor cannot be ignored.

It can be concluded from the above discussion on thermal networks that
various versions are possible to model a building. It is also possible to improve
the models by using the knowledge on energy building simulation. It is known
from literature that heat capacity of indoor air can be neglected as it does
not play a relatively big role compared to the other capacities in the network.
Also, the effect of solar radiation on the external envelope surface can be
neglected for an insulated building as the transmitted solar gains are the main
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contributors to the indoor climate. In addition, the temperature of envelope
cannot be considered uniform as it varies to a high extent in the presence of
large temperature differences. Heat Capacity of the heater can be neglected
unless the mode of heating is via floor heating.

2.6 Formulation of Differential Models

To derive thermal networks, mathematical equations governing the thermal
processes occurring in buildings are compared to equations governing an
electrical network.

Thermal Process Electrical Process
Rate of Transmission Losses : Q = UwallAdT I = V/R

Rate of Ventilation Losses : Q = mCpdT Q=CV where I = dQ/dt
Heat Flux : Q Q=CV where I = dQ/dt

Rate of Convective Losses :Q = UAdT I = V/R

Table 2.3: Analogy of Thermal and Electrical Processes

It is clear from table 2.3, R (resistance of the thermal network) is the inverse
of heat transfer coefficient multiplied by the area of the wall (R = 1/UA)
and C (Capacitance of a thermal circuit) is the multiplication of mass of the
material with its specific heat capacity(C = mCp).

As thermal networks are drawn in principle parallel to electrical networks,
their equations are derived based on Kirchhof’s Current Law which states
that the sum of currents on each node is zero. Hence for a thermal node, all
the processes occurring with respect to the node can be equated to zero hence
obeying the law of energy conservation.

Lets take an example of the internal envelope node discussed in latter
chapters. The heat transfer processes for this node include the convection to
the ambient node combined with the conduction through the envelope and
the convection to the indoor air node. It also includes the solar gain and heat
flux absorbed by the wall.

0 = Qtran −Qflux

= UAdT −Qflux

=
(Ti − Te)
Rie

+
(Ta − Te)
Rae

− CdTe
(2.2)

∂Te
∂t

=
(Ti − Te)
RieCe

+
(Ta − Te)
RaeCe

, (2.3)
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Every element in the circuit above has a sub circuit containing a capacitance,
resistance and a driving temperature difference. For every node, the above
equation will be modified to correspond to the node and in addition, heat
flux if available will also be considered.

dTi =
1

RieCi

(Te − Ti) dt+
1

Ci

φhdt+
1

Ci

φsAwdt (2.4)

Similarly, the above equation is an example of the equation for the
temperature of internal components inclusive of indoor air and internal
surfaces. Hence, it consists of solar radiation, heater radiation, and envelope
heat transfer which form the major components of heat transfer.

For the purpose of this study, the input will be the energy profile
and the aim will be to compute the building envelope characteristics.
For these results, the parameters needed will be Ta, Ti, Te,Heater
Demand and Solar Radiation.

2.7 List of Symbols for Harb Models

For 1R1C Model,
Rin,a - Equivalent Resistance between Internal Surfaces and Ambient
Cin - Equivalent Capacitance of the Building
Tin -Equivalent Temperature of Internal Surfaces(Internal Walls, Floors,
Furniture)
Ta -Temperature of Ambient

For 3R2C Model,
Rin,a - Infiltration /Ventilation Resistance
Re,a - Resistance between Envelope and Ambient
Rin,e - Radiative Resistance between Internal Surfaces and Envelope
Ce - Capacitance of External Envelope(External Walls, Floors, Roof
Te - Uniform Temperature of Envelope(External Walls, Floors, Roof
Cin - Capacitance of Internal Surfaces(Internal Walls, Floors, Furniture
Tin - Temperature of Internal Surfaces(Internal Walls, Floors, Furniture

For 4R2C Model,
Ria,a - Infiltration/Ventilation Resistance
Ria,e - Convective Resistance between Envelope and Indoor air
Re,a - Convective Resistance between External Surfaces and Ambient
Rin,ia -Convective Resistance between Internal Surfaces and Indoor Air
Ce - Capacitance of Envelope(External Walls, Floors, Roof
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Te - Uniform Temperature of Envelope(External Walls, Floors, Roof
Tia - Temperature of Indoor Air
Cin - Capacitance of Internal Surfaces(Internal Walls, Floors, Furniture
Tin - Temperature of Internal Surfaces(Internal Walls, Floors, Furniture

For 8R2C Model,
Ria,a - Infiltration/Ventilation Resistance
Ria,e - Convective Resistance between Envelope and Indoor air
Re,a - Convective Resistance between Envelope and Ambient
Rin,ia -Convective Resistance between Internal Surfaces and Indoor Air
Rin,e - Radiative Resistance between Internal Surfaces and Envelope
Rh,in -Radiative Resistance between Heater and Internal Surfaces
Rh,e -Radiative Resistance between Heater and External Envelope
Rh,ia -Convective Resistance between Heater and Indoor Air
Ce - Capacitance of Envelope(External Walls, Floors, Roof
Te - Uniform Temperature of Envelope(External Walls, Floors, Roof
Tia - Temperature of Indoor Air
Cin - Capacitance of Internal Surfaces(Internal Walls, Floors, Furniture
Tin - Temperature of Internal Surfaces(Internal Walls, Floors, Furniture
Ch - Capacitance of Heater
Th - Temperature of Heater Surface

2.8 List of Symbols for Bacher Models

For Ti Model,
Ria - Equivalent Resistance between Indoor Air and Ambient
Ci - Equivalent Capacitance(Internal Walls, Floors, Furniture,Envelope)
Ti -Temperature of Indoor Air
Ta -Temperature of Ambient
Aw -Area of External Windows
φs -Global Solar Radiation
φh -Heater Radiation

For TiTe Model,
Rie - Convective Resistance between Indoor Air and Envelope
Rea - Convective Resistance between Envelope and Ambient
Ci - Capacitance of Internal Surfaces(Internal Walls, Floors, Furniture)
Ce - Capacitance of Envelope
Ti -Temperature of Indoor Air
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Ta -Temperature of Ambient
Te -Temperature of Envelope
Aw -Area of External Windows
φs -Global Solar Radiation
φh -Heater Radiation

For TiTmTeThTsAe Model,
Rie - Convective Resistance between Indoor Air and Envelope
Rea - Convective Resistance between Envelope and Ambient
Rih - Convective Resistance between Indoor Air and Heater
Rim - Convective Resistance between Indoor Air and Internal Surfaces
Ris - Convective Resistance between Indoor Air and Sensor
Cm - Capacitance of Internal Surfaces(Internal Walls, Floors, Furniture)
Ce - Capacitance of Envelope
Ch - Capacitance of Heater
Ci - Capacitance of Indoor Air
Cs - Capacitance of Sensor
Ti -Temperature of Indoor Air
Ta -Temperature of Ambient
Te -Temperature of Envelope
Th -Temperature of Heater
Tm -Equivalent Temperature of Internal Surfaces
Ts -Temperature of Sensor
Aw -Area of External Windows
Ae -Area of Envelope
φs -Global Solar Radiation
φh -Heater Radiation

For TiTmTeThTsAeRia Model,
Rie - Convective Resistance between Indoor Air and Envelope
Rea - Convective Resistance between Envelope and Ambient
Ria - Infiltration Resistance
Rih - Convective Resistance between Indoor Air and Heater
Rim - Convective Resistance between Indoor Air and Internal Surfaces
Ris - Convective Resistance between Indoor Air and Sensor
Cm - Capacitance of Internal Surfaces(Internal Walls, Floors, Furniture)
Ce - Capacitance of Envelope
Ch - Capacitance of Heater
Ci - Capacitance of Indoor Air
Cs - Capacitance of Sensor
Ti -Temperature of Indoor Air
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Ta -Temperature of Ambient
Te -Temperature of Envelope
Th -Temperature of Heater
Tm -Equivalent Temperature of Internal Surfaces
Ts -Temperature of Sensor
Aw -Area of External Windows
Ae -Area of Envelope
φs -Global Solar Radiation
φh -Heater Radiation

38



Chapter 3

Methodology

The thesis now delves into discussing the modes of implementation for realising
the theoretical concepts discussed in the previous chapter. In the next chapter,
working of emulation software, DesignBuilder, is described. DesignBuilder is
employed to model the common architectures of residences seen in Holland.
Building models are displayed and their specifications are described in detail
including their construction, installed systems and the building function.
Data emulator has been employed due to lack of availability of sensor data
for the duration of this thesis. The two major case studies introduced are
further examined in chapter 7.

In chapter 5, relevant thermal networks are modelled and explained
with the help of mathematical equations and the underlying heat transfer
fundamentals. These models are discussed in increasing level of complexity
and later applied to the case studies in chapter 7.

Chapter 6 forms the foundation for understanding the mechanisms of
GA. It demonstrates the process of GA with the help of linear polynomial
objective functions increasing in complexity culminating in thermal network
like function. In this chapter, effects of varying input parameters on the
performance of GA are also observed.

The thermal network concepts developed in chapter 5 are implemented
in GA using data-sets obtained from DesignBuilder for the cases defined in
chapter 4 to estimate the unknown building parameters. In the subsequent
chapter, GA is applied in a similar fashion as in chapter 6 to the case studies
in an attempt to understand the possible strengths and limitations of GA
implementation to the building data.

As mentioned in research objectives, this study is a possible stepping stone
for Opschaler project where GA will be implemented to smart meter data
collected from houses all over the Netherlands. The real time data obtained
from smart meters could be noisy and this provides the motivation for chapter
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9 where the effect of noise on GA performance is studied.
In the conclusion, the learning acquired from the thesis is discussed

with respect to the research objectives. It is followed by a section of
recommendations to further the research of the thesis. Possible branches of
study are listed which could improve the results obtained from coupling GA
with thermal networks.

Details of DesignBuilder programming and extraneous results are shown
in Appendix A.
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Chapter 4

Data Emulation - Design
Builder

Design Builder is an accessory software to EnergyPlus[16] (EnergyPlus is a
simulation software for ”building energy” modelling). Design Builder makes
building modelling graphically convenient by providing a pick -and- choose
tool for modelling the building components. It simulates the building taking
into account the construction characteristics, installed equipment and services,
activity, and occupation - controlled via schedules. It is used as an emulator,
producing surrogates for actual data obtained via smart meter. The energy
profile received from EnergyPlus will be used as output and the grey box
approach will be employed on it to determine the building characteristics
using statistical approaches. These values will then be compared to the initial
values given in the software to validate the findings.

This thesis will mainly study a typical Pitched Dutch residential house
along with one study on Twin Houses. They are shown in Figure 4.1.

4.0.1 Layout

Layout of the pitched roof house is shown in Figure 4.1a. The building
comprises of 2 floors and an attic floor. There is a constant 30% glazing ratio
i.e the windows form 30% of the envelope area. The attic has a small window
installed in the tilted roof and the door of the house is facing south. Table 4.1
tabulates the areas of the facades with their orientation. The building is
collectively modelled as one zone. The location is set to Amsterdam and the
ground is modelled as an exterior surface hence it is exposed to the ambient
conditions like the rest of the envelope.This is done to avoid modelling ground
as a separate node. The programmed specifications for both case studies are
shown in Table 4.2, and 4.4.
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(a) A typical Pitched Roof House
Architecture seen in the Netherlands

(b) A typical Twin House Architecture seen in
the Netherlands

Figure 4.1: Residential Architectures in Holland

4.0.2 Heavy Built Uninsulated Building

The modelled building for this case study has a heavy built i.e the materials
used for the construction have high thermal capacity and have the ability
to store high amounts of heat. This also means that the temperature of the
construction components will change slowly increasing the thermal constant for
the building. A high thermal constant indicates lesser temperature fluctuations
throughout the day.

The house is modelled with an Uninsulated template. Though there is
an air gap modelled in each construction component as it can be seen in the
figures 4.2-4.5.
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East West South North Roof Windows Floor OFA OV
43.2 43.2 35.7 35.7 91.46 44.9 73.9 132 336

Table 4.1: Area of Envelope with Orientation of the Facades for a Single
Pitched House (m2). (OFA - Occupied Floor Area; OV - Occupied Volume;)

Parameters Specification

Occupation 0.01 people/m2

Wall Heavy Weight Uninsulated Wall [Rc = 0.663m2K/W ]

Roof Light Weight Uninsulated Roof [Rc = 0.341m2K/W ]

Internal Walls 115mm Single Leaf Brick [Rc = 0.510m2K/W ]

Internal Floor 300mm Concrete Block [Rc = 0.484m2K/W ]

External Floor Heavy Weight Uninsulated[Rc = 0.506m2K/W ]

Infiltration 0.3 ach(Infiltration Case)

Glazing Type Double Glazing 3mm with 3mm spacing[Rc = 0.316m2K/W ]

Heating Boiler with Radiator(Central Heating- Air)

Ventilation Mechanical Ventilation with no Heat Recovery(Ventilation Case)

Schedule 8am to 6pm(Monday to Saturday)

Table 4.2: Experimental Parameters of Heavy Uninsulated House

Figure 4.2: Composition of External Walls - Heavy Uninsulated
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Figure 4.3: Composition of Pitched Roof- Heavy Uninsulated

Figure 4.4: Composition of External Floor- Heavy Uninsulated

Figure 4.5: Composition of Internal Floor- Heavy Uninsulated
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Re Re,ia Re,a Cei Cea Ceqv

(m2K/W ) (m2K/W ) (m2K/W ) (kJ/m2K) (kJ/m2K) (kJ/m2K)
Ext. Walls 0.49 0.13 0.04 13 136 134.8

Roof 0.20 0.1 0.04 4.017 40 4.01
Ext. Floor 0.23 0.17 0.1 32.5 3. 3.9
Int. Floors 0.21 0.1 – 176 176 176

Window 0.31 – – – –
Door 0.17 0.13 0.04 – –

Rf Window 0.31 – – – –

Table 4.3: Heat Transfer Properties of a Pitched Roof Heavy House (Ext
-External, Int -Internal, Rf -Roof)

4.0.3 Light Built and Best Practice Insulation Building

Calculations were also made for a single pitched roof dutch house modelled
as light built and best practice insulation without infiltration.

The modelled building for this case study has a light built hence the
construction does not have a high ability to store heat which leads to quick
changes in the building temperatures. The characteristic of low thermal
constant indicates higher level of temperature fluctuations of the building.

The house is modelled with best practice insulation and contains additional
insulation in the envelope which reduces the effect of outdoor conditions on
the indoor space. The house designed has the specifications shown in Table 4.4.
The house is modelled with no infiltration or mechanical ventilation.

Figure 4.6: Composition of External Walls - Light Best Practice
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Figure 4.7: Composition of External Floor - Light Best Practice

Figure 4.8: Composition of Internal Floor - Light Best Practice

Figure 4.9: Composition of Roof - Light Best Practice

46



Parameters Specification

Occupation 0.01 people/m2

Wall State of the Art Light Weight Wall [Rc = 3.808m2K/W ]

Roof Uninsulated Light Weight Roof [Rc = 0.341m2K/W ]

Internal Floor 100mm Concrete Slab [Rc = 0.484m2K/W ]

External Floor State of the Art Light Weight Floor[Rc = 6.4863m2K/W ]

Infiltration 0.3 ach(Infiltration Case)

Glazing Type Double Glazing 3mm with 3mm spacing[Rc = 0.316m2K/W ]

Heating Boiler with Radiator

Ventilation Mechanical Ventilation with no Heat Recovery(Ventilation Case)

Schedule 8 am to 6 pm (Monday to Saturday)

Table 4.4: Experimental Parameters of Single Pitched Roof -Light House

Re Re,ia Re,a Cei Cea Ceqv

(m2K/W ) (m2K/W ) (m2K/W ) (kJ/m2K) (kJ/m2K) (kJ/m2K)
Ext. Walls 3.63 0.13 0.04 13 7.5 17.26

Roof 0.20 0.13 0.04 4.017 40 4.017
Ext. Floor 6.21 0.17 0.1 0.0039 32.5 6.29
Int. Floors 0.07 0.1 – 176 176 88.2

Window 0.31 – – – –
Door 0.17 0.13 0.04 – –

Rf. Window 0.31 – – – –

Table 4.5: Heat Transfer Properties of a Pitched Roof Light House (Ext
-External, Int -Internal, Rf -Roof)

The EnergyPlus output data-set consists of the variation of indoor temperature,
the transmitted solar radiation through windows, and instantaneous heater
usage through the winter months (Oct 1 to March 31).

The two case studies are programmed such that the heating is switched
on in instances when there is more heat loss from the building than there
is heat gain.As the heating schedule is set to 8 am to 6pm, solar gains are
present throughout the HVAC schedule. For heavy un-insulated case, losses
from the building are higher than the light best practice building with the
same solar gain. Hence, there are more instances of heating in heavy case.
After 6pm, when there is no solar gain or HVAC, heavy building radiates
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heat slowly and steadily in the next hours whereas the light building radiates
more heat in the hours right after sunset and less heat in the later hours.

Figure 4.10: Hourly Outdoor Temperature and Solar Radiation For Winter
Months

The variation of outdoor temperature and solar radiation for the location
of Amsterdam is shown in figure 4.10. The weather file is obtained for the city
of Amsterdam from the EnergyPlus directory. The weather files of EnergyPlus
are available only in an hourly format and this restricts this study to dealing
with hourly analysis of the energy in the building. Design builder can be used
to obtain results in sub hourly format by means of interpolating the weather
file according to the formulae given in the documentation of EnergyPlus.
However, this is a cumbersome process and in addition, the non-linearity of
the weather parameters reduces the accuracy of the interpolation methodology.
Hence, this study focuses only on the available data-set to perform hourly
analyses.

Figure 4.10 shows the output given by Design Builder. Indoor temperature
profile shows that the temperature varies from ∼ 0 °C to ∼ 22 °C which is
appropriate for the outdoor temperature profile of Amsterdam given that
there are no set-points provided. Correspondingly, heater usage shown in
Figure 4.11 is present only during the programmed day schedule and is highest
for the lowest indoor temperature observed in mid February.

Figure 4.12 and 4.13 demonstrate the temperature of internal and external
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Figure 4.11: Hourly Sensible Heating For Winter Months of Heavy
Uninsulated Case

Figure 4.12: Hourly External Surface Temperatures of All Facades of Heavy
Uninsulated Case

surfaces of the house. As seen, the surface temperatures of window, door,
and external ground floor is low at nights and hence if the three components
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Figure 4.13: Hourly Internal Surface Temperatures of All Facades of Heavy
Uninsulated Case

are not considered separately, errors could ensue in the two and three node
networks.
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Chapter 5

Sensible Thermal Networks

This chapter will deal with the formulation of thermal networks to model
the buildings analysed in this thesis. Clarke[17] represents all possible energy
flow-paths for a building in Figure 5.1. The processes shown in the schematic
form the basis for modelling relevant thermal networks in the chapter.

Figure 5.1: Building Energy Flow-paths by Clarke

Thermal networks are formulated by reducing the energy flow-paths to
strictly the major contributors to the dynamics of the building. Hence,
furniture is neglected for the purpose of this study and the entire building is
modelled as one zone to eliminate the energy flows introduced by adjacent

51



zones.In an attempt to simplify the network, the nodes of windows, doors
and floor are included in the envelope node. The floor is assumed to be
exposed to the ambient conditions to aid the integration into the envelope.
The transparent facades are considered to be thin and do not store heat hence
there is no time lag involved for windows.

For the thermal networks modelled in the report, it is assumed that
the indoor air has negligible capacitance because of constant airflow due to
ventilation. It is also assumed that the temperature of envelope is uniformly
distributed in each model. Indoor Air is assumed to be perfectly mixed hence
the indoor conditions are uniform everywhere inside the building. Extra
thermal mass such as the internal walls are accounted for in the heat capacity
and resistance of the envelope. For a three node model, this capacitance and
resistance is combined along with the internal envelope node. The internal
gains by appliances and lighting are neglected for all models.

It is known from literature that the processes occurring between ambient
and indoor air can be roughly displayed in the form of thermal networks as
can be seen in Figure 5.2. The thermal network is based on the lecture by
Laure Itard[18].

Figure 5.2: Thermal Network Presentation of Thermal Processes

As can be seen from figure 5.2, there are four nodes named Ambient
Temperature node(node Ta), Envelope External Surface node (node Tea),
Indoor Air node (node Tia), and Internal Surface of the External Envelope
(node Tei). This model is a more accurate representation owing to the fact
that large temperature differences exist between the temperatures of outer
and inner surfaces of the envelope as the outer surface is at a temperature
close to the ambient temperature and internal surface has a temperature
close to the indoor air temperature. The heat flux received by all these
nodes are also split into their respective elements. Hence, only the convective
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gains of the heat flux are directed to the indoor node while the internal
surfaces of the envelope receive the radiant fraction of the same heat flux.
External surfaces get heat flux from the amount of solar radiation falling on
the surface. Solar flux for the interiors is the transmitted solar gains through
the windows. Nomenclature of the models is based on the amount of thermal
nodes excluding the ambient node as it is the thermal reference node.

The thermal network is redrawn in a more comprehensive format in
Figure 5.3

Figure 5.3: Three Node Thermal Network

However, the focus of this thesis is to apply the model to real life data to
determine building parameters. In view of this, obtaining the temperature
data for three nodes might not be practical.Also, measuring the temperature
of the outdoor envelope may create practical problems especially seeing that
the outdoor radiation may not affect the indoor dynamics to the extent
of the transmitted solar radiation. For that reason, the thermal network is
minimised to a two nodes thermal network shown in Figure 5.4a. This thermal
network has aggregated the internal and external surfaces of the envelope
into one node being the internal surface of the external envelope. Due to the
aggregation, capacitance of the surfaces is now shown by a new equivalent
capacitance which will be some form of average of the capacitance of the outer
and inner surface. Also, the resistance between the ambient and envelope
node is now a summation of the convective resistance and the resistance of
the wall.The radiation from the sun entering the building is considered to be
absorbed by the inner surfaces through radiation and convection increasing
the temperature of the wall. This heat is radiated to the indoor air and
other components. There is also heat radiated and convected from the heater.
Indoor air is assumed to be circulating which convects the heat from the walls.
Finding the correct resistance is more important than capacitance for the
purpose of this thesis as for a yearly data analysis, effects of capacitances are

53



(a) Self Model of Two Node Network

(b) 4R2C Model By Harb

Figure 5.4: Comparison of Self made Model with 4R2C Model by Harb

nullified but resistance effects on the indoor conditions remain. This model
could be ideal towards achieving this goal. However, the preceding three node
model will also be tested to characterise model type and associated accuracy
of results.

It is interesting to note that the three node model is a reduced version of
the 4R2C model. If the interior node of furniture and internal walls is removed
and the capacitance is incorporated in the capacitance of the envelope while
convective resistance is incorporated in the convective resistance between
envelope and indoor air, the models are equivalent.

As enumerated in Section 2.5, the most complex thermal networks do
not work well due to over complications within the model. Similarly, the
simplest model is oversimplified hence lacking the intricacies needed to produce
accurate results. Thus, it is expected that one of the two node or three node
network will produce reasonable results.
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For all thermal networks in this thesis, indoor air node is assumed to
be massless hence it cannot store any heat within and has zero capacitance.
Heater is not considered as a node, with the radiation from the heater being
split into indoor air and envelope respectively. Also the Teq is replaced by Tea
in three node model. A further reduced version of the three node model will
also be tested to check whether the parameters can be obtained with only
data from the indoor air and ambient.

Figure 5.5: Self Made Simplistic Model

The network in figure 5.6 consists of only two nodes, ambient and indoor
air. In this model, the heat flux does not need to be split into its components
as all the effects are aggregated directly on the indoor air node.

5.1 Global RC Network

Now we will discuss the model shown in Fig 5.6.
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Figure 5.6: Self Model of Three Node Network

This network raises the question, what is the physical significance of
equivalent resistance and capacitance? Equivalent resistance is the effective
resistance the building displays to heat transfer between indoors and outdoors.
Hence, a higher resistance would mean there is less exchange of heat and a
better insulation. Also as the effective resistance incorporates the resistance
of all the components of a building carrying their heat transfer in parallel, the
effective resistance is n times smaller (assuming that the n components in the
system have the same resistances). The resistance of the house will then be
the combined resistance of the convective resistances on the inner and outer
surfaces of the external walls along with the heat conductivity of the envelope.
Envelope here will include every component that is responsible for the heat
flux flow to the indoor air, which would be the external walls(exposed to
outdoor air), roof(exposed to outdoor air), windows and doors(exposed to
outdoor air) and ground(exposed to ground temperature). The resistances
of the internal walls and floors will not be a part of equivalent resistance as
these processes are occurring within the system.

Equivalent Capacitance is every surface between the indoors and outdoors
capable of storing heat coming off the solar radiation, heater and internal
gains. Hence, for this particular calculation each of the internal and external
components storing the heat will be included. If in an experiment, it is
assumed that all the heat gains are only interacting only with the floors
(which is a common assumption in classical simulations and a choice in
EnergyPlus Simulations) then the heat capacity of the house will reflect only
the capacitance of the floors. This is because capacitance is a measure of
stored heat. For application of a more detailed thermal network where the
capacitances are dealt with in different equations, Ce would be negligible as
it is not participating in storing heat.
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The node for indoor air includes the equivalent capacitance of the building.
Ra,ia includes the convective resistance of the envelope surfaces and internal
walls in parallel, combined with the resistance of wall in series. Infiltration
resistance is considered separately. There is no need to separate the heat flux
because all of them combine into one node.Ce,in,eq in this case can be reduced
to Ce,eq as there is no furniture or internal thermal mass present for our study.
The governing equations for this model are,

Balance on Tia Node,

A = (Tia,n+1 + Tia,n) +
1

ReqvCe,in,eq

(Ta − Tia)dt+
1

Ce,in,eq

(Qsol +Qh +Qi)dt

(5.1)

Equations for Reqv and Ce,in,eq are ,

Reqv =
(Rwall +Rea,a +Rei,in,ia) ∗Ria,a

(Rwall +Rea,a +Rei,ia +Ria,a)

Ce,in,eq = (Cei + Cint,floor + Croof + Cext,floor)

(5.2)

where,
Tia - Temperature of Indoor Air(K)
Ta - Temperature of Ambient Air(K)
Rei,ia - Convective Resistance between indoor air and inner surfaces of envelope
(K/kW)
Rwall -Resistance of envelope(K/kW)
Rea,a - Convective Resistance between outdoor air and envelope(K/kW)
Qi - The heat gains because of occupants (kW)
Qs - The solar gains transmitted to the indoor air through the window as
well as through envelope radiation(kW)
Qh - The heat supplied by the heating system(kW)
Ce,in,eq - Equivalent Heat Capacity of Interior and Exterior Envelope(kWh/K)
Reqv - Equivalent series resistance of the building(K/kW)

5.2 Two Node Network

In this section, a description of the chosen model (see figure 5.7) is given.
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Figure 5.7: Self Model of Two Node Network

Envelope refers to the external walls, roof and ground floor. Hence, it
exchanges heat by convection with the ambient air and the indoor air. It
absorbs the solar radiation falling on the outer surface and the transmitted
solar gains on the internal surfaces. Other sources of heat like the heater,
internal gains are also major components interacting with the envelope.
Coefficients can be added to all the internal and solar gains to assess the
amount of gains interacting with the envelope.

The governing equations for this model are,
Balance on Tia Node,

0 =
1

Rei,ia

(Tei−Tia)dt+
1

Ria,a

(Ta−Tia)dt+(fconv,sφsol+fconv,hφh+fconv,iQi)dt.

(5.3)
The node for internal envelope surface, Tei, includes the capacitance of

the external surface of envelope. Balance on Tei Node,

dTei =
1

Rei,iaCe,eq

(Tia − Tei)dt+
1

(Rea,a +Rwall)Ce,eq

(Ta − Tei)dt+

1

Ce,eq

(frad,sφsol + frad,hφh + frad,iQi)dt,
(5.4)

Qrad,s = frad,sφsol;

Qrad,h = frad,hφh;

Qrad,i = frad,iQi;

Qconv,s = fconv,sφsol;

Qconv,h = fconv,hφh;

Qconv,i = fconv,iQi;

(5.5)
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where,

Tei - Temperature of Internal Surfaces(K)
fconv,s - convective contribution of incoming solar radiation to the indoor air.
fconv,h - convective contribution of heater flux to the indoor air.
fconv,i - convective contribution of internal gains to the indoor air.
frad,h - Fraction of total heat given by the heater radiated
frad,s - Fraction of total solar gains radiated
frad,i - Fraction of total internal gains radiated
φs - Incoming solar radiation absorbed by internal components(kW)
Qi - The heat gains because of occupants, lighting, catering etc (kW)
φh - The heat supplied by the heating system(kW)
Qconv,s - Convective Fraction of incoming solar radiation absorbed by internal
components(kW)
Qconv,i - Convective Fraction of The heat gains because of occupants, lighting,
catering etc (kW)
Qconv,h - Convective Fraction of The heat supplied by the heating system(kW)
Qrad,s - Radiative Fraction of incoming solar radiation absorbed by internal
components(kW)
Qrad,i - Radiative Fraction of The heat gains because of occupants, lighting,
catering etc (kW)
Qrad,h -Radiative Fraction of The heat supplied by the heating system(kW)

5.3 Three Node Network

Now we will discuss the model shown in figure 5.8.

Figure 5.8: Self Model of Three Node Network
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The additional node Tea refers to the outer surface of the envelope. Hence
,heat processes for this node include the solar radiation falling on the surface
and the convective heat exchange between the ambient and the outer surface.
There is also conduction in between the two envelope surfaces. The same
term for conduction is also added in the Tei node.

The governing equations for this model are,
Balance on Tia Node,

0 =
1

Rei,ia

(Tei−Tia)dt+
1

Ria,a

(Ta−Tia)dt+(fconv,sφsol+fconv,hφh+fconv,iQi)dt

(5.6)
Balance on Tei Node,

dTei =
1

Rei,iaCei

(Tia − Tei)dt+
1

RwallCei

(Tea − Tei)dt

+
1

Cei

(frad,sφsol + frad,hφh + frad,iQi)dt

(5.7)

Balance on Tea Node,

dTea =
1

Ra,eaCea

(Ta−Tea)dt+
1

RwallCea

(Tei−Tea)dt+
1

Cea

(frad,gQsol)dt (5.8)

Qrad,g = frad,gQsol (5.9)

where,

Tea - Temperature of External Envelope(K)
frad,g - Fraction of absorbed solar radiation falling on external envelope
radiated
Qrad,g -Radiative Fraction of the solar radiation falling on the external
envelope(kW)

60



5.4 Summary of Thermal Networks

Global Network Two Node Network Three Node Network
Neq 1 2 3

Nunknowns 2 6 9
AccRes Low High Low

Table 5.1: Summary of Thermal Networks (Neq - Number of equations;
Nunknowns - Number of unknowns; AccRes - Estimated accuracy of results).

We know from table 5.1 that the number of equations and unknowns reflects
on the difficulty in solving the equations. The third row of expected accuracy
demonstrates the interplay of thermal network models with parameter estimation
limitations using GA.

Global Network would theoretically be the easiest to solve, however, global
model might not be the best representation of real values of resistance and
capacitance. This leads to low expected accuracy. Two Node Model has six
unknowns which could be reasonably well predicted by GA and the thermal
model also includes more intricacies of the heat dynamics. The expected
accuracy is hence high. Three Node Model has nine unknowns which could be
difficult to determine for GA especially without narrow bounds, which would
be difficult to provide. The thermal model does include more intricacies but
it is not expected to overcome the estimation challenges.
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Chapter 6

Familiarising with GA

Like every algorithm, GA, despite claims of flexibility to varied problem
statements, has its limitations. One example is an objective function with an
unknown variable without a corresponding coefficient. An example of that
would be a three variable linear equation with a constant. The mathematical
representation is :

A = ax+ by + cz + d (6.1)

where, a, b, c and d are the unknown coefficients to be determined by GA.
Another possible limitation of GA to be explored is the number of variables

GA can predict accurately. It is expected to break down at some point if the
number of unknowns are too large - this occurs due to decreasing accuracy as
an error in one prediction can be compensated by a corresponding negative
error in another variable/variables. Methods to improve the behaviour of
GA under such circumstances will also be tested. The amount of data points
needed by GA for an accurate prediction will also be studied.

The parameters set of GA is as below,
Bounds : Adjusted in Each Case
Population Size : 50
Creation Function : Uniform
Scaling Function : Rank
Selection Function : Stochastic Uniform
Elite Count : 0.05 * Population Size
Crossover Fraction : 0.8
Crossover Function : Scattered
Mutation Function : Adaptive Feasible
Stall Generations : number of variables * 100
Function Tolerance : 1E-06
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6.1 Linear Equation with a Constant

First case study is a linear equation with a constant to analyse GA’s capabilities
to estimate parameters without coefficients (w). In this case, we go a step
further and consider 4 unknowns instead of 2 as taken previously. The
equation to be modelled is given as:

a = xb+ yc+ zd+ w (6.2)

Artificial data corresponding to (w, x, y, z) = (9.6, 4, 5, 6) for the variables
a, b, c, and d is created for 25 points. Data created for a, b, c and d is
created by using a random integer generator function. Final results shown in
figure 6.1 are given bounds of [0,0,0,0] and [10,10,10,10].

Figure 6.1: GA computed parameters for Linear Line with Constant

As it can be seen GA could not converge to the right result.The possible
reasons for the failure is that the parameters x, y and z are adjustable to
any value with the presence of a free variable w. The possible solution could
be to provide more data points and to definitely tighten the bounds whilst
increasing the constraint tolerance to 10−12.
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w x y z
Expected Results 9.6 4 5 6

GA Results 1.681 6.33 6.84 1.432

Table 6.1: Values of GA computed parameters for a Line With Constant

6.2 Linear Equation With 4 Unknowns

This subsection focuses on identifying the limits of GA with respect to the
number of unknowns using a linear equation with 4 unknowns. The equation
considered is similar to the previous case study but for the lack of a variable
without a coefficient. This change allows to better study the behaviour of GA
towards prediction a variable with and without a coefficient. The modelled
equation is given below:

A = aw + bx+ cy + dz (6.3)

Artificial data for the variables a, b, c, d is created for 25 points using
Microsoft Excel. The unknowns GA has to determine are w, x, y, z, the
values for which are respectively set to 29, 5.1, 2.34, 8.5.

These parameters can be taken as default for all further studies unless
specified otherwise.

Figure 6.2: GA computed parameters for Linear Line without Constant

GA converged to perfect results with no final bounds provided. Initial
bounds are given as [0,0,0,0]. The above results show that the algorithm
converged after proper exploration of space as the average distance between
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individuals varied reasonably. The best fitness value is quite low and so is the
mean fitness value. This is also shown in the score plot. Hence, the results
are perfect without any adjustments to GA.

w x y z
29 5.1 2.34 8.5

Table 6.2: Values of GA computed parameters for a Line With No Constant

6.3 Thermal Network Equation With 3 Unknowns

Using Synthetic Data

This case is a thermal network look-alike equation modelled as:

A =
a

xy
+

b

yz
+
c

y
+
d

y
(6.4)

This equation is considered to better understand how the thermal network
equation will behave when modelled with GA. As a thermal network has
unknowns Ri and Ci in the denominator similarly this equation has x, y and
z as unknowns in the denominator. Like the thermal network equations with
temperature differences known, for this case a, b, c and d are known.
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Figure 6.3: GA computed parameters for Thermal Network Equation With
Three Unknowns

Similar to previous case studies, artificial data for the variables a, b, c and
d is created for 25 points and the values for x, y and z are respectively fixed
to 6, 4, 5. Results are shown in Figure 6.3. The results are accurate with no
adjustment and same initial bounds and no final bounds as the last case.

x y z
6 4 5

Table 6.3: Values of GA computed parameters for a Thermal Network Like
Equation With Three Unknowns

6.4 Thermal Network Equation With 6 Unknowns

Using Synthetic Data

To understand whether the higher node models will behave well with GA, the
below equation is modelled with 6 unknowns.

A =
a

uv
+

b

vw
+

c

wx
+

d

xy
+

e

vz
+
f

v
+
g

v
(6.5)
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The values of u, v, w, x, y and z are given in Table 6.4. Bounds are
adjusted to [0,0,0,0,0,0] and [100,100,100,100,100,100]

Figure 6.4: GA computed parameters for Thermal Network Equation (Six
Unknowns) with 2000 Generations

The computed values for the unknowns are u = 6.043, v = 3.955, w
= 5.118, x = 3.014, y = 49.577, z = 26.711. It is also observed that the
algorithm gave premature results as the default number of iterations ran to
the maximum and the algorithm did not converge. A solution to this would
be to increase max generations to 1000 - the algorithm was found to still stop
prematurely. Results for 2000 stall generations are shown in Figure 6.4

GA prediction with increased generations are more accurate with the
following estimated values:

u v w x y z
Expected Results 6 4 5 3 16 25

Default Stall Gen (600) 6.043 3.955 5.118 3.014 49.577 26.711
2000 Stall Gen 6.008 3.993 5.019 3.009 16.924 25.527

Table 6.4: Values of GA computed parameters for Thermal Network
Equation (Six Unknowns) with Increase in Stall Generations

Hence, after adjustment of stall generations ,it can be concluded that GA
can predict nearly perfect values for all 6 variables. To study the effect of
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Population Size, we increase the population to 100, 200, and 300 and compare
the results to identify any improvement due to varied population sizes (see
Figure 6.5 and Table 6.5. Results for 200 and 300 population are shown in
Appendix A.3.2.

Figure 6.5: GA computed parameters for Thermal Network Equation (Six
Unknowns) for Population Size of 100

u v w x y z
Expected Results 6 4 5 3 16 25
100 Population 6.022 3.984 5.043 3.016 18.722 26.06
200 Population 5.99 3.995 5.017 3.006 16.757 25.354
300 Population 6.003 3.996 5.009 3.005 16.437 25.231

Table 6.5: Comparison of Results with Change in Population Size

It can be seen that an increase the population results in a reduced
number of iterations and an improved prediction accuracy.Another important
parameter of GA to study is the number of data points. All previous studies
have been performed with 25 data points. This was augmented with further
studies with 250 data points (see figure 6.6 and 2500 data points, the results
of which are shown in table 6.6. The remaining results for more than 250
data points are shown in Appendix A.3.3.
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Figure 6.6: GA computed parameters for Thermal Network Equation (Six
Unknowns) with 250 Data Points

u v w x y z
Expected Results 6 4 5 3 16 25
250 Data Points 6.0003 3.905 5.001 3.000 15.999 25.007
2500 Data Points 6.0004 3.999 5.000 3.0002 16.012 25.011

Table 6.6: Comparison of Results with Increase in Data Points

A convergence is observed at 250 data points itself, and any further
increase in data points can be deemed irrelevant for this case.

6.5 Effect of Noise in Convergence

One of the most important measures of compatibility of an algorithm for
parameter estimation is its accuracy to a noisy input data.This section is
discussed along with the results in Chapter 9.
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Chapter 7

Implementation of thermal
network in GA

As elucidated in Section 2.3.4, GA estimated the parameters correctly and
provided an insight into the capabilities of GA towards parameter estimation.
Objective function for the determination of thermal parameters of building is
based on the equations shown in Chapter 5.

Genetic Algorithms are modelled in MATLAB by providing data points
which reflect the hourly readings of the outdoor temperature, solar radiation,
sensible heating demand and indoor temperature.
The objective function of GA is the error between the calculated and the
measured indoor temperature of the room. To identify the exact coefficients
of the equation, the measured indoor temperature and the heater demand
are needed which are provided by EnergyPlus results of the building model.
Once the inputs are added into the equation, the unknown coefficients are
determined by GA given the upper and lower bounds of both the variables.

7.1 Overview of Case Studies

7.1.1 Heavy Uninsulated

House modelled in EnergyPlus shown in Figure 4.1a is specified to have a
heavy built and uninsulated pre-templates for construction. The house is
modelled with no infiltration or mechanical ventilation.

Expectations from the behaviour of the building lie in its design. Heavy
built suggests a big heat store in the walls which would imply a slower increase
in wall temperature. As the building is uninsulated, conduction through the
fabric will be high. For the case studies discussed below, there is no infiltration
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or mechanical ventilation but the internal and external coefficients are fixed
to 3 W/m2K and 11.95 W/m2K respectively hence the inner resistance is
expected to be 1/4th of the outer resistance. The profile for heavy uninsulated
building will be such that the indoor temperature will drop quickly after
heating is switched off as the heat conducts through the fabric uninhibited.
High thermal mass helps increase the temperature when it falls. Also , due
to a lack of insulation, the house heats up very quickly during day time
when outdoor temperature rises but walls take longer time to heat. This
phenomena would mean that the radiative effect will be considerable because
of temperature difference of the internal surfaces.

Medium Typical Reference Case Study is shown in Appendix A.4.1.

7.1.2 Light Best Practice

House modelled in EnergyPlus is now specified to have a light built and best
practice insulation pre-templates for construction. The house is modelled
with no infiltration or mechanical ventilation.

Expectations from the behaviour of the building lie in its light built.It
suggests a small heat capacity which would imply a sharp increase in wall
temperature in the presence of heat sources.Similarly, there is a sudden
decrease in temperature at night. This phenomenon is heightened by the
high insulation as heat will not be easily allowed to pass through creating hot
spots. It will further heat up the surfaces leading to higher rise and drop in
the space. For this case study, there is the same inner and outer convective
resistances.

All the results in the chapter are based on data from November
to April because of the phenomena of mid-October summer in
Netherlands. Hence, in order to include October, the equation
would need to include cooling

7.2 Calculation from DB

This section deals with giving insight on the process of determination of
resistances and capacitance required for analysis of GA results.

It is known from Chapter 5, the resistances required are the internal surface
resistance (Rei,ia), external envelope resistance (Rea,a) and the resistance of
the envelope (Re).
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Equivalent Resistance can be calculated by using the relation below,

Ueqv =

n∑
i=1

UiAi

n∑
i=1

Ai

(7.1)

The components considered are the external walls, roof, windows, door, and
ground floor. Internal floors are not included in equivalent calculation as the
building is modelled as one zone. Ui includes the convective, conductive and
radiative heat transfer coefficient on ith surface.

Internal and external resistances can be determined by using the following
equations,

Uei =

n∑
i=1

Ui,inAi

n∑
i=1

Ai

(7.2)

Ui,in is the convective heat transfer coefficient of the inner surface of
component i given by DB.

Uea =

n∑
i=1

Ui,outAi

n∑
i=1

Ai

(7.3)

Ui,out is the convective heat transfer coefficient of the outer surface of
component i given by DB.

Ue,ia and Uea,a are calculated depending on the surfaces they interact with.
Hence, for internal heat coefficient, additional surface of internal floors is
incorporated in the calculation.

Resistance can be calculated by inverting the heat transfer coefficient ,

R =
1

U
(7.4)

Now, determination of capacitance from DB is discussed. Calculation of
Equivalent Capacitance can be carried out by multiplication of internal heat
capacity obtained from Design Builder by the surface area. It should be noted
here that DB provides equivalent internal heat capacity for each component
(walls, floor, roof) in kJ

m2K
. Hence multiplication of this value with the area of

the envelope would include the capacitance on both the surfaces.
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Ceqv = CwallAwall + CroofAroof + Cgr,floorAgr,floor + Cint,floorAint,floor (7.5)

Ci is the equivalent capacitance of the component i given by DB.
Calculating the internal and external capacitance is carried out by assuming

that the thermal penetration depth of the first construction layer.

Cei = Cwall,inAwall,in + Cgr,floor,inAgr,floor,in + 3Cint,floorAint,floor (7.6)

Ci,in is the capacitance of the innermost layer of component i given by DB.
Internal Floor capacitance is added thrice as there are three surfaces exposed
to the indoor space including the ceiling.

Cea = Cwall,outlAwall,out + Croof,outAroof,out + Cgr,floorAgr,floor (7.7)

Ci,out is the capacitance of the outermost layer of component i given by DB.

7.3 Global Model

The objective function for this model from Global Network will have the
following equation after removal of infiltration resistance,

A = (−Tia,n+1 + Tia,n) +
1

X(1)X(2)
(Ta − Tia)dt+

1

X(2)
(Qsol +Qh +Qi)dt

(7.8)
The global model will now be applied first to the heavy built un-insulated

building followed by the light built best practice building and the corresponding
building parameters will be estimated using GA. The order of model application
to the different buildings remains constant for all models.
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7.3.1 Heavy Built Uninsulated Building

Figure 7.1: GA computed parameters for Single Pitched Roof House - Heavy
Weight Uninsulated Global Network

ReA Rei,iaA Rea,aA CeiA CeaA CeqvA
(K/W ) (K/W ) (K/W ) (kWh/K) (kWh/K) (kWh/K)

Exterior Walls 3.76 0.98 0.303 0.642 6.724 4.94
Roof 2.20 1.09 0.43 0.102 1.016 0.10

Ground Floor 3.18 0.32 0.15 0.569 0.06 0.08
Internal Floors 2.89 1.35 – 6.16 – 5.43

Window 7.04 2.89 – – – –
Door 76.52 56.52 17.913 17.39 – –

Roof Window 98.0049 – – – – –
0.83 0.32 0.156 8.47 6.08 10.55

Table 7.1: Calculated Equivalent Heat Transfer Properties for the Pitched
Roof Heavy House
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GA parameter Thermal Parameter GA Value Theoretical Value Error
X(1) Reqv 3.22 K/kW 1.306 K/kW 146%
X(2) Ceqv 10.82 kWh/K 10.55 kWh/K 2.5%

Table 7.2: Analysis of GA computed results for Heavy Uninsulated Model -
Global Network

The fitness value of 30 as shown in Figure 7.1, is for approximately 3000 hours
of data. It suggests that error between measured and calculated temperature
every hour is very low which implies that the result found by GA for the
global network equation is a good fit for the data. Though as it can be seen
the results are not correct hence global network equation is not an accurate
representation of the thermal behaviour of the building.It is also observed that
capacitance was accurately estimated whereas the equivalent resistance has a
large error.This can be due to the objective equation format as it contains
two instances in the denominator for optimising the capacitance but only
one for resistance. In addition, the term including the resistance is in the
form of multiplication hence the resistance parameter has more freedom for
optimisation than the capacitance parameter. It is also seen that the average
distance dropped quickly in this case which can be explained by GA easily
finding the global optima. This can be due to limited number of unknowns.
Plot for Fitness of each individual is displayed to prove convergence of results.
As the fitness of all the individuals in the last generation is equal, this result
cannot be improved further.

7.3.2 Light Built Best Practice Building

Results of GA are obtained with the help of 4100 hours of raw data is shown
in figure 7.2,
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Figure 7.2: GA computed parameters for Single Pitched Roof House - Light
Weight Best Practice Insulation Global Network

ReA Rei,iaA Rea,aA CeiA CeaA CeqvA
(K/W ) (K/W ) (K/W ) (kWh/K) (kWh/K) (kWh/K)

Exterior Walls 27.5 0.98 0.303 0.642 0.37 4.94
Roof 2.205 1.09 0.43 0.102 1.016 0.10

External Ground Floor 84.02 2.29 1.35 0.068 0.56 0.08
Internal Floors 0.96 1.35 – 6.1818 – 5.43

Window 7.04 – – – – –
Door 76.522 0.13 0.04 – – –

Roof Window 98 – – – – –
1.49 0.32 0.156 3.83 1.95 3.57

Table 7.3: Calculated Equivalent Heat Transfer Properties for the Pitched
Roof Light House
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GA parameter Thermal Parameter GA Value Theoretical Value Error
X(1) Reqv 4.96 K/kW 1.96 K/kW 153%
X(2) Ceqv 4.72 kWh/K 3.57 kWh/K 33%

Table 7.4: Analysis of GA computed results for Light Best Practice Model

Similar trend is seen for the results of this case study. The fitness values
are similar to the last case and error between expected and GA results is
considerably high. It can also be seen that results for light case study are
worse than the heavy case study.This can be explained by the fact that there
are higher instances of heating in heavy building because of delayed time
constant. GA similarly gave precedence to capacitance over resistance to
optimise the objective function as it did for the heavy case study.To improve
the results, two node network will be applied which is expected to better
model the thermal behaviour.

7.4 Two Node Model

Implementation of Single Pitched Roof House in Two Node Network :

A = (−Tei,n+1 + Tei,n) +
(Tia − Tei)
X(1)X(2)

+
(Ta − Tei)
X(3)X(2)

+
(X(4)Qsol +X(5)Qh +X(6)Qi)

X(2)
+

(Tei − Tia)
X(1)

+ ((1−X(4))Qsol + (1−X(5))Qh + (1−X(6))Qi)

(7.9)
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7.4.1 Heavy Built Uninsulated Building

Figure 7.3: GA computed parameters for Single Pitched Roof House - Heavy
Weight Uninsulated Insulation Two Node Network

GA parameter Thermal Parameter GA Value Theoretical Value Error
X(1) Ria,ei 0.22K/kW 0.32 31%
X(2) Ceqv 19.35 kWh/K 10.55 84%
X(3) Re +Rea,a 1.02K/kW 0.98 4%
X(4) fsol 0.99 0.99 0%
X(5) fh 1.21E-7 0
X(6) fi 9.3E-9 0

Table 7.5: Analysis of GA computed results for Heavy Uninsulated Model -
Two Node Network

The results display the value of 17 for the best fitness value which is lower
than the fitness value for the global network case. This suggests that there is
an improvement in data fitting. Improvement in results can also be seen in
the decreasing error in the predicted values.

fsol value of 0.99 is justified by the fact that the solar radiation is absorbed
by the internal thermal mass and the solar convective effect is very low as
expected.According to Harb[14], convective effect of solar radiation can be
assumed to be 0.09 which is in line with the results. Low values for fh and fi
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can be explained by the fact that Heating is modelled as fully convective in
the DesignBuilder file and internal gains are reported for zero radiant fraction.

There is a notable error in internal resistance which is due to collective
modelling of windows and floor with the heat storing surfaces.It creates errors
as windows and floor are examined with respect to the calculated Mean
Radiant Temperature (MRT) instead of the measured internal temperature
of the surfaces respectively.

The error in the results can also be explained by the fact that indoor air’s
capacity cannot be neglected for our case studies as there is no infiltration
and ventilation considered for the models.

Apart from the above reasons, it is important to understand that in the
objective equation for the two node network, the term containing (Tei − Ta)
has the largest contribution because of larger temperature differences .This
leads to a higher need for GA to estimate Re +Rea,a accurately. In addition,
the term (Tei−Tia) can produce a bigger bias compared to the heat flux terms
limiting the flexibility of Rei,ia. The remaining parameter of capacitance is
then adjusted more freely to lower the objective function value.

7.4.2 Light Built Best Practice Building

For this case, the node equation for envelope is run for the optimisation and
Matlab Results were found to be reasonably accurate.
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Figure 7.4: GA computed parameters for Single Pitched Roof House Without
Infiltration - Light Weight Best Practice Insulation Two Node Network

GA parameter Thermal Parameter GA Value Theoretical Value Error
X(1) Ria,ei 0.225K/kW 0.32 30%
X(2) Ceqv 8.24 kWh/K 3.57 130%
X(3) Re +Rea,a 2.15K/kW 1.65 30%
X(4) fsol 0.99 0.99 0%
X(5) fh 2.5E-7 0
X(6) fi 4.6E-9 0

Table 7.6: Analysis of GA computed results for Light Best Practice Model -
Two Node Network

The value of fitness function for this case is also observed to be lower
than the global network case suggesting two node network is better suited for
all kinds of buildings. The results given by GA are in accordance with the
reasoning given for the heavy case study.
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7.5 Three Node Model

In the third and final case, we study the three node model.

A =(−Tei,n+1 + Tei,n) +
Tia − Tei
X(1)X(2)

+
Tea − Tei
X(3)X(2)

+
X(7)Qsol +X(8)Qh +X(9)Qint

X(2)

+
Tei − Tia
X(1)

+ (1−X(7))Qsol + (1−X(8))Qh + (1−X(9))Qint−

(−Tea,n+1 + Tea,n) +
Ta − Tea
X(4)X(5)

+
Tei − Tea
X(3)X(5)

+
X(6)Qsol

X(5)
(7.10)

7.5.1 Heavy Built Uninsulated Building

Figure 7.5: GA computed parameters for Single Pitched Roof House Without
Infiltration - Heavy Uninsulated Three Node Network

81



GA parameter Thermal Parameter GA Value Theoretical Value Error
X(1) Ria,ei 0.099K/kW 0.32 69%
X(2) Cei 17.72 kWh/K 8.47 109%
X(3) Re 0.7097K/kW 0.83 14%
X(4) Rea,a 0.34K/kW 0.156 117%
X(5) Cea 4.72kWh/kW 6.08 22%
X(6) xsol,ea 4.17 –
X(7) fsol,ei 0.84 0.99 15%
X(8) fh,ei 1E-4 0
X(9) fint,ei 3.2E-5 0

Table 7.7: Analysis of GA computed results for Heavy Uninsulated Model -
Three Node Network

The converged fitness value for this network is much higher than global and
two node network. Hence, three node network is not a better fit for the data
when compared to the two node network. It can be seen in the error of the
values predicted by GA. The high error in Cei can be explained by the fact
that theoretically the internal capacitance will include the capacitance of the
second layer (concrete) because of thermal penetration depth. Penetration
depth will play a higher role in heavy walls as they have heavy internal
components which contribute to the heat store.

There is also errors in determining the convective resistances on both the
surfaces.It can be due to error in calculation of external envelope surface
temperature. The temperature for outer surface is calculated by area weighted
mean of all surfaces including windows, doors and floor however, it is assumed
that all windows are at the same temperature which could introduce slight
errors.

The objective function for the three node network has nine parameters
hence understanding the possible interplay whilst estimation could be difficult.
However, the results could be explained similarly to the global and two node
network. It is seen that Cea is better estimated than Cei because there is a
presence of a free parameter ,Rea,a in the equation for node Tea. In the node
for Tei, there is no free parameter as both Rei,ia and Re are present in at least
one more term.Though Re is a parameter which needs to be more precise
because of the possibly large bias it could produce leading Rea,a and Cei to
lower accuracy.
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7.5.2 Light Built Best Practice Building

Figure 7.6: GA computed parameters for Single Pitched Roof House Without
Infiltration - Light Weight Best Practice Insulation Three Node Network

GA parameter Thermal Parameter GA Value Theoretical Value Error
X(1) Ria,ei 0.146K/kW 0.32 50%
X(2) Cei 2.54kWh/K 3.83 33%
X(3) Re 2.39K/kW 1.49 60%
X(4) Rea,a 0.34K/kW 0.156 117%
X(5) Cea 2.23kWh/kW 1.956 14%
X(6) xsol,ea 3.7 –
X(7) fsol,ei 0.82 0.99 17%
X(8) fh,ei 2.6E-5 0
X(9) fint,ei 8.1E-5 0

Table 7.8: Analysis of GA computed results for Light Best Practice
Model-Three Node Network
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The results for this case study show less error for Cei as light built does
not have a heat store beyond the first construction layer. Also, when the
resistances are compared for the two cases, it is observed that GA could not
find as good a fit for the data for light building as it did for heavy building.
The lack in fitting is exhibited by higher fitness value. it is seen that there is
a lower error in the values of convective resistances for the light house. Hence
it demonstrates the resistance of envelope plays a bigger role in the building
than the convective resistances as there is larger error present in Re in light
building. It is in line with the fact that without infiltration and ventilation,
the convective resistances do not play a huge part in the inner dynamics.

The difference in results can also be explained by the fact there for an
insulated light fabric ,the temperature differences between the surfaces and
air are much lesser leading to lesser bias produced for the terms containing
the particular temperature differences. Now that there is less dependence on
those terms, the objective function is reduced to a global function look like.
Similar to the reasoning of global network, there is more flexibility for Re

as compared to the capacitance in the equations. Amongst the convective
resistances, Ria,ei requires to be more fixed as it has an independent term to
optimise. The next step is to determine the change in performance of GA
with change in building parameters and input data.
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Chapter 8

GA Performance - Varying
Parameters

An important question to answer before running the algorithm is: which
data points will give the best result? Would it be only the day points when
there is solar radiation? Would it be only when all the HVAC systems are all
operating? Would it be when the house is occupied?Whats the least number of
hours that can be provided such as to produce a good result?Will GA perform
well under changing circumstances like inclusion of ventilation/infiltration.

8.1 Absence Of Solar Gains, Occupancy Gains

and Heater Gains

As the heating and cooling schedule is combined with occupancy, HVAC
Systems are switched off in moments of no occupancy.

Also in this case occupancy is programmed to be in the day time so for a
subset of the occupancy hours, there is always a presence of solar radiation.
The result presented in Figure 8.1 is for the times when none of the gains are
present. The equation should be adjusted to exclude the heating demand,
solar gains and the occupancy gains.

A = (−Tei,n+1 + Tei,n) +
(Tia − Tei)
X(1)X(2)

+
(Ta − Tei)
X(3)X(2)

+

(Tei − Tia)
X(1)

(8.1)

This study is particularly included to note whether the accuracy of results
improve with the night data. At night there is no solar radiation, which would
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exclude one of the important factors in the equation and hence might lead to
better results with lesser input. But the data set for nights will not be able
to give the right results as the equation depends on the dynamic changes in
node temperatures which will be wrong because of transitions between nights
of each day. Also by excluding the day time data sets, we exclude the effect
of heat capacitance in the building. The results added for this section are
based on two node network equation as there was least error observed for
that thermal network in the previous chapter.

Below are some results obtained after running the parameter estimation
of one winter night.

Figure 8.1: GA computed parameters for Single Pitched Roof House For One
Night Data -Heavy Uninsulated Case Two Node Network
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GA parameter Thermal Parameter GA Value Theoretical Value Error
X(1) Ria,ei 0.13K/kW 0.32 59%
X(2) Ceqv 9.92kWh/K 10.82 8%
X(3) Rea,a 1.17K/kW 0.98 19%

Table 8.1: GA computed parameter values for For One Night Data -Heavy
Uninsulated Case

As it can be seen, results are reasonably accurate and provide a good
indication towards the results. Though because of limited input data, GA
converged to plenty of possible results. The above result displayed is one
of the closest results given by GA. In this case, only way to be certain of a
result is to give strict bounds which can aid GA by limiting the search space.
Nevertheless, GA will converge to more than one result which represents a
huge shortcoming for this case. In this case, final bounds are given as [1,20,5].

This method does help to conclude that if data could be obtained when
HVAC Systems are switched off and there is no occupancy, it decreases the
process interdependencies and its easier to realise a good result.

8.2 Data-points

Light Best Practice Case Study is used for this purpose with the following
equation,

A = (−Tei,n+1 + Tei,n) +
(Tia − Tei)
X(1)X(2)

+
(Ta − Tei)
X(3)X(2)

+
(X(4)Qsol +X(5)Qh +X(6)Qi)

X(2)
+

(Tei − Tia)
X(1)

+ ((1−X(4))Qsol + (1−X(5))Qh + (1−X(6))Qi)

(8.2)
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Figure 8.2: GA computed parameters for Single Pitched Roof House - Light
Weight Best Practice Insulation Two Node Network Using 15 Days Data
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Figure 8.3: GA computed parameters for Single Pitched Roof House - Light
Weight Best Practice Insulation Two Node Network Using 3 Months Data

It is to be noted that the cooling is switched off, hence during summers
the equation would not hold true as the heating will not be zero but negative
unlike the results of EnergyPlus. Hence, the study can maximum be applied
to winter months data, the results for which are displayed below,

Ria,e Ceqv Rea,a fsol fh fi Overall Error
Expected 0.32 3.57 1.65 0.99 0 0 –
15 Days 0.279 14.23 1.32 0.96 4.8E-5 1.88E-4 110%

3 Months 0.302 12.78 1.49 0.95 5.3E-5 5.68E-6 90%
Winter 0.225 8.24 2.15 0.99 2.5E-7 4.6E-9 65%

Table 8.2: Variation of Results With Number of Data points

As it can be seen, with more data results are better especially when dealing
with high number of unknowns. It would be ideal if winters months data
from 1 November to 31st March is available for analysis.
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Though, if only the error for resistances is taken into consideration , three
months data produces only an error of 6% hence three months data could be
enough to determine the resistances of the building.

8.2.1 Mechanical Ventilation and Infiltration

The EnergyPlus File belongs to the category of light construction and best
practice insulation. There is inclusion of infiltration of 0.3 air changes per hour
as in and an additional mechanical ventilation as per minimum requirements
per person. The optimisation equation used for mechanical ventilation and
external infiltration will stay the same as two node equation in the previous
section except there will be an addition of infiltration resistance according to
the equation given below.

A = (−Tei,n+1 + Tei,n) +
(Tia − Tei)
X(1)X(2)

+
(Ta − Tei)
X(3)X(2)

+
(X(4)Qsol +X(5)Qh +X(6)Qi)

X(2)
+

(Tei − Tia)
X(1)

+
(Ta − Tia)
X(7)

+ ((1−X(4))Qsol + (1−X(5))Qh + (1−X(6))Qi)

(8.3)
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Figure 8.4: GA computed parameters for Single Pitched Roof House - Light
Best Practice Two Node Network

Rinf =
1

mCp

=
3600

(0.35 ∗ 1.225 ∗ 1.002 ∗ 321)

= 24.91K/kW

(8.4)

GA parameter Thermal Parameter GA Value Theoretical Value Error
X(1) Ria,ei 0.82K/kW 0.32 156%
X(2) Ceqv 9.7 kWh/K 3.57 220%
X(3) Re +Rea,a 2.54K/kW 1.65 54%
X(4) fsol 0.91 0.99 8%
X(5) fh 1.6E-3 0
X(6) fi 0.91 0
X(7) Rinf 24.78 24.91 0.5%

Table 8.3: Analysis of GA computed results for Light Best Practice
Infiltration Ventilation Model - Two Node Network
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The results for this case are observed to be nearly as accurate as the
previous case study. The value of infiltration resistance is determined
precisely to the expected value which is because of a large bias present
in (Ta− Tia) making it imperative for GA to accurately determine infiltration
resistance.This can be very useful in application as infiltration is a difficult
value to estimate for building engineers. This can provide much insight into
the renovation needed for a building to make it energy efficient.

However, addition of infiltration term lead to higher errors in all the other
parameters which is an indication that infiltration cannot be modelled simply
as a term. There are more process interdependencies introduced because of
infiltration which should be included in the thermal networks.
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Chapter 9

Effect of Noise

Effect of Noise is studied for a twin heavy un-insulated case study to increase
the scope of study to another architecture in Holland. The construction
details of construction are same as the single heavy un-insulated house with
an additional presence of internal partitions which add to the capacitance of
the system.The buildings are modelled with addition of lighting and equipment
internal loads. Infiltration of 1 ach and mechanical ventilation is also present
for this case study.

9.1 Global Model

The results of GA for a noiseless input data is given in Figure 9.1. Results
given by GA are R = 0.45, C = 20.4 as compared to the expected values of
R = 0.816 and C = 22.04.

The displayed results are for annual data. They show very low convergence
to results as the fitness values are very high.This can be explained by the fact
that the equation is modelled for heating whereas for six months data cooling
needs to be taken into account as well. Effect of noise is now studied with
respect to this case. To analyse the effect of noise, the equation corresponding
to a global R and global C values discussed in Section 4.0.1 is used. To
assess the performance of GA to noise levels, random noise is added to
the EnergyPlus data of Sensible Heat Gain, Indoor Temperature, Ambient
Temperature and Solar Radiation. Noise is added to the values by using the
random number generator function. The value generated by the function is
added to each of the values after adjusting it for the necessary percentage
of noise needed. Figures 9.2:9.5 depict the results of GA corresponding to a
5%, 11%, 30%, and 60% noise. Figure 9.6 shows the performance of GA with
noise added to all input parameters.
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Figure 9.1: GA computed parameters for Twin Heavy Uninsulated Pitched
Houses- Global Network

Figure 9.2: GA computed parameters for 5% Noisy Heat Demand
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Figure 9.3: GA computed parameters for 11%Noisy Heat Demand

Figure 9.4: GA computed parameters for 30% Noisy Heat Demand
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Figure 9.5: GA computed parameters for 60% Noisy Heat Demand

Figure 9.6: GA computed parameters for Noise in All Variables
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No Noise 5% 11% 30% 60% All Vars 5%
R 0.45 0.391 0.4 0.362 0.307 0.483
C 20.4 24.51 22.12 24.682 27.948 18.09

Overall Error 26% 32% 26% 34% 45% 30%

Table 9.1: Comparison of Results With Variation In Noise

Results for noise when compared to the no noise results show that except
for a very high noise level of 60%, GA gives comparable results. Also as this
is the global network results, they are not expected to give accurate results
hence the error might become less if the values for two node network are
compared.
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Chapter 10

Conclusion

Thermal networks have been successfully coupled with Genetic Algorithms for
determination of Resistances and Capacitance of different types of buildings.
Thermal networks of varied complexity were studied to identify an optimal
network for modelling the thermal behaviour of the indoor space. The results
seen in Chapter 7 suggest that the two node thermal network is optimal for
determining the major resistances and equivalent capacitance of the building.
Two node network has another advantage over the three node network as it
requires less measurements for implementation.Global network was found to
be oversimplified model for the building dynamics and the three node model
was found to produce errors because of combination of nodes which should
be modelled separately.

All three networks’ results reported in the thesis have an inherent error
which is possibly originating from the fact that for a case with no infiltration
and ventilation, the capacity of indoor air can play a role in the dynamics of
the house.

GA is found to be a promising technique for parameter estimation for
thermal network equations with further analysis. GA’s ability to estimate
nine parameters for the three network model demonstrates its strength aptly.
Although the performance of the three node network was slightly below par, it
can be possibly improved by including additional nodes for floor and windows.
In addition, GA estimated the given results with limited time and data. The
results displayed in the thesis were obtained with a optimisation run time
of less than five minutes. Also, as discussed in Section 8.2, considerably
good results for resistance were seen with just three months of data which
is another advantage of using GA. The ease of implementation is an added
asset to GA as a simple addition of individual nodal thermal equations for
multi-objective function provided good results.Also, it can be concluded from
the discussion on GA results that GA does not produce accurate results in
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the presence of ’free’ parameters so it is preferable that the objective function
should have terms where the parameters to be estimated are present in more
than one term and are present in conjunction with another unknown.

Different building architectures were also studied to ensure comprehensive
application to varied constructions. It is concluded that GA provided better
results for heavy built house because of lower differences in temperature
of individual surfaces. Hence, it is necessary to input the temperatures of
transparent facades separately to achieve good results. As GA is a blind
process of finding an optimum within the provided parameter space guided
only by the objective function, it is important that the objective function is
formulated taking into account all the major possible energy flow-paths.The
better results for heavy built are also possible because of higher heat instances
in the heavy building providing GA more instances for data fitting. However,
for better calibration of the results, thermal penetration depth should be
included especially for heavy houses as the ability to store heat transcends
the exposed layers.

Towards facilitating application to a real time scenario, where measurement
of the internal temperature of surfaces and temperature of the indoor air
are necessary which would include noisy biases, the effect of noise is also
studied in this work. The results show that GA can manoeuvre the noisy
input data and produce similar results as with a noise-free data-set. Also,
in the data collected in real houses, presence of infiltration and ventilation
cannot be negated hence, another case is studied in the thesis with inclusion
of air flow paths. GA produced reasonable results for the convective and
conductive resistances and exemplary results for the infiltration resistance
which is a huge advantage of using GA. However, the work done in this thesis
is based on input data generated by an emulation software and presents only
a preliminary study towards the capabilities of GA in application to building
parameter estimation. The results obtained for real time data might not be
similarly accurate and can be established only upon application.
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Chapter 11

Recommendations

The application of Genetic Algorithms for parameter estimation using thermal
networks is largely unexplored. This thesis which delineates a preliminary
application of GA towards building parameter estimation via thermal network
modelling can form the basis for numerous promising avenues of future
research. The work performed in this thesis has covered the basic concepts
of GA and its working principles. The usage of GA coupled with building
simulation data is thoroughly explored with the help of case studies.

Behaviour of every algorithm is expected to vary with different applications.
Hence, the optimal formulation of a problem statement according to the
limitations of GA is important. Further research into defining the limitations
of GA with respect to building data can be useful for future implementation.

A self-coded GA can provide more insight and control on the results as
compared to a black-box optimisation tools such as the GA provided by
MATLAB. However, the optimisation toolbox of MATLAB gives a fair extent
of flexibility in the process. It could be interesting to observe the performance
of GA with dynamic mutation and crossover functions. One avenue would
be to analyse the effect of varying mutation and crossover fractions as a
function of change in fitness functions. This is interesting due to the fact that
decreasing the mutation and increasing the crossover fraction with decreasing
fitness value change would explore the narrow converged parameter space
meticulously at the near end of the algorithm. Under heuristic crossover
function, the next generation parameters will not deviate far from the parent
parameters making it ideal for exploring around a specific global optimum
area. But as mutation can lead the next generation pretty far from its area
owing to random chromosome changes, it should be decreased as we approach
closer to a minimal objective function value.

Aggregation of states can form a very interesting study for thermal
networks. This concept is explained in the Appendix Section A.1.
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In case of unbound/loose bounds, GA is more likely to attain the global
optima but many times it might converge at a local minima. To avoid this,
one option would be to minimise the bounds according to the five fittest
solutions attained after a specific number of runs of GA (say ∼20). This
process could be repeated till GA converges to a certain solution. It could be
useful to verify if such a procedure can lead to a good solution in the absence
of strict limits.

The aim of this thesis was to assess the scope of implementation for GA for
estimating parameters of existing buildings in Holland. The work needs to be
followed by real life implementation of GA using sensor data for temperatures
of facade, ambient, and thermostat temperatures along with heat demand
from smart meters. For the implementation with real time data, GA would
need to perform with a noisy data-set. More study into the performance of
GA in a noisy environment is mandatory. In addition, the data preparation
step would play an important role and could be explored.

One of the defining factors for the success of a novel technique is how it
compares to the results of an established technique for the same application.
Hence, comparison of the results given by GA with linear regression techniques
would be an important step towards establishing the real scope of GA for
building parameter estimation.

In a nutshell, the important areas of research to further the study include

• Modelling a ground exposed to the ground temperature and validate
the results for more accurate results.

• Verify Aggregating of States.

• Check GA Performance with real time sensor data collected from
buildings.

• Compare GA results with Multiple Linear Regression techniques.

• Include Direct Hot Water in Calculations as in smart meters, the heating
value includes the heating needed for DHW.

• Check the improvement in GA with a dynamic mutation function.

• Check the improvement in results by employing a multi-objective
function formulated by method of substitution.

• Extend the three node network to include independent nodes for
windows, doors and floor.

• Evaluate the results for infiltration for real time scenario where it is
affected by the wind velocity.
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Appendix A

A.1 Aggregation of States

The concept of aggregation of states is explored Deng et al.[19].It is a means
for reducing complex networks consisting of various resistances, capacitance
and voltages to simpler low order networks. Their work involves surjection
based on Markov chains. Surjection is the mathematical term of mapping
elements of a given set X onto another set, Y, such that every element in
set Y is equal f(x) for at least one element in set X. They have derived a
process for the reduced matrix elements relating them to the original complex
network elements which are as follows, The principle could be helpful to study
the optimal combination of states and further research could be conducted to
explore the accuracy of the method. If found accurate, it could simplify the
thermal network analysis. The drawback would be that the solutions would
not be directly physically relevant.

step by step process for reduction of models is as follows,

• Construct a Transition Matrix of size n x n, where n is the number of
nodes in the thermal network, A

• Calculate the Probability Matrix P, where P = I + A∆t, ∆t=1(1 hour)

• Determine the π column matrix, π

• Convert the π column matrix to π Diagonal Matrix, πd

• Construct a matrix Q with the relation Q = 1
2
((π0.5

d )P (π−0.5
d ) +

(π−0.5
d )Pt(π

0.5
d ),Pt - Transpose Matrix of P,

• Compute the eigenvector and eigenvalues of matrix Q

• For the case of bi-partitioning the network, choose the second highest
eigenvalue from the eigenvalue matrix
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• Examine the corresponding eigenvector and the sign of the the elements
in the vector determine the grouping of the network into 2 partitions.

• Compute the equivalent temperature, resistance and capacitance values

A.1.1 Creating Transition Matrix

Transmission matrix is a matrix of elements which form the coefficients of
the corresponding nodes in the Thermal Network Equations. For example on
comparison of equation determining Tia and the thermal network,

CiadTia =
1

Ria,e

(Te − Tia)dt+
1

Ria,a

(Ta − Tia)dt+ φh,iadt+ fconvφsoldt (A.1)

Figure A.1: 3R1C Model

where node1 is Ambient, node2 is Envelope and node3 is Indoor Air.
a corresponding elements of transition matrix A,A33 would be the

coefficient of Tia in the Tia equation. Hence, it would be ( 1
Ria,eCia

+ −1
Ria,aCia

).

Similarly

A31 would be the coefficient of Ta in Tia equation which would be ( 1
Ria,aCia

)

and A33) would be ( 1
Ria,eCia

)

A generic formula for the transition matrix elements would hence be,
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Ai,j =
1

Ri,jCi
, i 6= j (A.2)

Ai,j = −
n∑

j=1

1

Ri,jCi
, i= j, n is the number of edges for the corresponding node

(A.3)
For the case of 3R1C model shown in Figure A.1 the transition matrix

would be

A =


−(Ra,e+Ria,a)

(CaRa,eRia,a)
1

(CaRa,e)
1

(CaRia,a)
1

(CeRa,e)
− (Ra,e+Re,ia)

(CaRa,eRe,ia)
1

(CeRe,ia)
1

(CiaRia,a)
1

(CiaRe,ia)
− (Ria,a+Re,ia)

(CiaRia,aRe,ia)


A.1.2 π Matrix

Π matrix is a column matrix of size n x 1 where n is the number of nodes
and πi = Ci

(
n∑

i=1
Ci)

π =
[
C1/(C1 + C2 + C3) C2/(C1 + C2 + C3) C3/(C1 + C2 + C3)

]
A.1.3 π Diagonal Matrix

Conversion of π column matrix to diagonal square matrix is done for ease of
mathematical operations on the matrix.

πD =

C1/(C1 + C2 + C3) 0 0
0 C2/(C1 + C2 + C3) 0
0 0 C3/(C1 + C2 + C3)


A.1.4 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are employed to represent a set of elements in
a more concise and localised area. Eigenvectors retain the direction of the
original subset and eigenvalues scale down the original values which can be
later obtained via linear mapping of the reduced values. To explain, lets take
an example of the case we have to employ them in. For the transmission
matrix A, create a matrix P = I+At as mentioned above. Eigenvalues,λ
would be the mathematical roots of the matrix. As A is a 3x3 matrix it is
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derived from 3 equations and has 3 roots where the determinant is equated
to zero to form the equations. a vector, v, is an eigenvector if
Ae = λe

A.1.5 Equivalent Reduced Matrix Elements

Once the groups are known, the equivalent circuit has to be constructed. The
nodes have been grouped together hence the temperature represented also has
changed and so has the resistive and capacitive values on the edges joining
the nodes. The equivalent ”super-nodes” and the grouped ”super-resistor”
and ”super-capacitor” can be obtained from the original elements using the
relations given as:

For each group,

Ceqv =
n∑
i

Ci, n is the number of elements in the group (A.4)

Ri,j,eqv =
1

Ai,jCi

(A.5)

Ti,eqv =
∑ Ci∑

Ci

Ti (A.6)

Ai,j,eqv =
n∑
i

m∑
j

πiAi,j
n∑
i

πi

, n is the number of elements in the group (A.7)

To determine how to reduce the 3R1C model to global R and global C
model, lets repeat the process while assuming the ratio of resistances and
capacitance from the work of Vaidehi [4]as she also studied an old Dutch
House.

Ra,e = 2.734
Ria,a = 7.676
Re,ia = 0.246
Ca = 12.961
Ce = 987.98
Cia = 12.961

A =

−2.76 0.0305 0.01
0.0003 −2.76 0.0041
0.0109 0.3388 −7.68


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P =

−1.76 0.0305 0.01
0.0003 −1.76 0.0041
0.0109 0.3388 −6.68


π =

[
0.0119 0.97 0.0119

]
Q =

−1.76 0.0034 0.0109
0.0003 −1.76 0.0373
0.0109 0.0373 −6.68


The eigenvalue matrix,

b =

−6.68 0 0
0 −1.76 0
0 0 −1.75


According to the theory the second highest eigenvalue is to be noted which
in this case is -1.76 which is the second column. The second column of
eigenvector matrix will determine the grouping.

The eigenvector matrix,

a =

0.002 −0.72 −0.69
0.007 0.69 −0.72
−0.99 , 0.003 −0.006


From the second column of eigenvector we can conclude that node 1 and

node 2 should be grouped together as they are both positive signed and node
3 should be in another group.

Hence the equivalent circuit for global R and C would be,

Figure A.2: Aggregated Model for 3R3C
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Csuper = f(Ca, Ce) = Ca + Ce

= 1000.94
(A.8)

A1,2,eqv =
2∑
1

∑
3

πiAi,j

2∑
1

πi

=
π1A1,3

π1 + π2
+

π2A2,3

π1 + π2
= 0.004

(A.9)

Rsuper = f(Ra, Re) =
1

AsuperCsuper

= 0.23 (A.10)

Tsuper =
∑ Ca

Csuper

Ta +
∑ Ce

Csuper

Te = 0.987Te + 0.012Ta

A = Tia +
1

RgCg

(Tsuper − Tia)dt+
1

Cg

φhdt +
1

Cg

QsolAwdt+
1

Cg

(φint + φmvent)dt− Tia,n+1

(A.12)

A.2 Artificial Neural Networks

Artificial neural networks is a technique for finding the appropriate conduit for
the parameters to combine to give the desired output. It attempts to mimic
the brain process where information is sent through neurons in the form of
a signal. When the process is applied to parameter estimation, the relation
between the output and the parameters is given by tailing the strongest
signal through the layers. In the first layer, parameters form the neurons
and in the final layer, outputs are the neurons. The algorithm runs from the
parameters combining in different relations through the intermediate layers
consisting of the conditions guiding the decision to the final output. The
solution is chosen based on the strength of the signal. Layout of Artificial
Neural Network(ANN) is shown in Figure A.3 Yang et al. discuss [21]two
ANN dynamic models, Accumulative models and Sliding Window approach.
Former deals with modifying the large data set with few new entries and
retraining the ANN while the latter use the technique of constant data range
which is much smaller than the data set used in accumulative training and
is also constantly updated with newer data. Yang found the sliding window
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approach to be overall better option as it holds up for both real and synthetic
data. Though sliding window approach lacks the ability to predict the seasonal
or annual variations as the data set used for training is small. Yang also
applies Principle Component Analysis to improve the results by choosing only
the parameters which are affecting the result more than 1%.

Figure A.3: Layout of a Neural Network

ANN process mostly can be tweaked by changing the number of neurons,
number of layers, number of iterations and readjusting the weightage of
the neurons. As the number of neurons increase, the complexity of the
network increases thus giving good results for data which is difficult to relate
with a simple network. The results of the fitting problem is measured in
terms of Mean Square Error(MSE) and R(Regression Value). They both
represent how close the target are to the outputs. The closer the R value
is and the lower the MSE value is, the better is the result. The inputs
given to the MATLAB code are normalised so as they are all represented
between 0 and 1. The Neural NetworkToolbox is used to fit the data
to the desired targets by giving maximum amount of inputs consisting
of Qsol, Ta, Tin, Ria, e, Re, a, Rin, ia, Ce, Cin, Rinf to converge to an output of
heater demand.
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Figure A.4: Resulting Regression Plot of the Trained Artificial Neural
Network

Figure A.5: Resulting Error Histogram of the Trained Artificial Neural
Network

From the results shown in Figure A.5 and Figure A.4, it is certain that
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ANN can predict the heater demand well given enough number for input
parameters and data points. It can be seen that the maximum error on the
values are 0.5% which is reasonably accurate. But the inverse process of
determining the Rc value and capacitance of wall is not possible via ANN as
for this case the outputs do not change with inputs and hence the algorithm
has nothing to learn about how the output changes with input parameters.
So there needs to be another approach to inverse modelling where outputs
are constant.

A.3 GA Performance Results-Varying Parameters

In this section, the performance of GA for varying parameters is analysed.

A.3.1 Results for Line With a Constant

The results for GA estimation for a line with a constant is shown in table A.1

X Y Z W Objective Function Value
Bounds Adjusted to [0,0,0,0], [10,10,10,10]

3.332 4.274 8.789 6.201 5.244E-06
3.753 4.257 7.982 7.867 2.4E-09
2.48 7.932 3.176 6.451 2.15E-05
3.398 7.332 2.54 9.523 1.44E-08
2.993 4.207 9.601 4.778 9.57E-06

Bounds Adjusted to [2,4,3,3], [4,6,8,8]
3.357 5.042 7.202 7.071 2.60E-10
3.153 5.089 7.517 6.3 5.40E-09
3.412 5.641 5.895 7.887 1.44E-10
2.66 5.552 7.577 4.791 5.90E-10

Bounds Adjusted to [3.5,5,5,4], [4.5,6.5,8,8]
3.089 5.39 7.041 6.547 4.30E-11
3.221 5.725 6.108 7.209 9.160E-11
3.367 5.165 6.937 7.231 7.6E-12

Bounds Adjusted to [3.5,5,5,4], [4.5,6.5,8,8]
3.089 5.39 7.041 6.547 4.30E-11
3.221 5.725 6.108 7.209 9.160E-11
3.367 5.165 6.937 7.231 7.6E-12

Table A.1: Results for Linear Line with a Constant
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A.3.2 Effect of Population on GA Performance

This section analyses the effect of population size on the performance of GA.

Figure A.6: GA computed parameters for Thermal Network Equation for
Population Size of 200

A.3.3 Effect of 2500 Data Points on GA Performance

Results for 2500 Data points are shown in figure A.8

A.3.4 Pre-Converged Results for Thermal Network Equation
with 6 Variables

Results for 6 parameter thermal network equation is shown in figure A.9.
Results estimated by GA (shown in the graph) can be seen to vary in

accuracy.

u v w x y z
6.043 3.955 5.118 3.014 49.577 26.711

Table A.2: Values of GA computed Premature parameters for Thermal
Network Equation with 2000 Generations
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Figure A.7: GA computed parameters for Thermal Network Equation for
Population Size of 300

Figure A.8: GA computed parameters for Thermal Network Equation with
2500 Data Points
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Figure A.9: GA computed parameters for Thermal Network Equation with 6
Unknowns

A.3.5 Case Study : Heavy Built Uninsulated Twin
Houses

Figure A.10: Composition of External Walls

Pitched Roof - Uninsulated Lightweight is made of 3 layers, Clay Tile(Roofing)
and Roofing Felt(Innermost)

117



Parameters Specification

Occupation 0.01 people/m2

Wall Heavy Weight Uninsulated Wall [Rc = 0.663m2K/W ]

Roof Light Weight Uninsulated Roof [Rc = 0.341m2K/W ]

Internal Walls 115mm Single Leaf Brick [Rc = 0.510m2K/W ]

Internal Floor 300mm Concrete Block [Rc = 0.484m2K/W ]

External Floor Heavy Weight Uninsulated[Rc = 0.506m2K/W ]

Infiltration 0.3 ach(Infiltration Case)

Glazing Type Double Glazing 3mm with 3mm spacing[Rc = 0.316m2K/W ]

Heating Boiler with Radiator(Central Heating- Air)

Ventilation Mechanical Ventilation with no Heat Recovery(Ventilation Case)

Schedule 8am to 6pm(Monday to Saturday)

Table A.3: Experimental Parameters of Heavy Uninsulated House

Figure A.11: Composition of Pitched Roof

Internal Partitions - 115mm single leaf brick(plastered both sides) is made
of 3 layers, Gypsum Plastering(Outermost and Innermost)
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Figure A.12: Composition of Internal Partitions

External Floor - Uninsulated Heavyweight is made of 3 layers, External
Rendering(Outermost) and Timber Flooring( Innermost). The floor is built
to be exposed to ambient conditions.

Figure A.13: Composition of External Floor

Internal Floor - 300mm concrete slab is made of a single layer of Cast
Concrete.

A.4 Working of DesignBuilder

Model Options can be found in the Edit Menu of Design Builder. The
”Model options” menu is the start to any simulation file. It defines the
structure for modelling the working dynamics of the buildings. It has options
to select Construction and Glazing Data to Pre-Design or General. In the
former option, the user can choose the levels of insulation and thermal mass
for the building while the latter loads a generic default template is loaded for
the file. Followed by construction Gains Data can be chosen to be modelled
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in Lumped, Early or Detailed models. In Lumped, all the internal gains are
represented via one value representing the aggregated sums of occupancy,
equipment, lighting gains etc. In Early or Detailed, the user can model the
gains separately according to the specifics needed. Next tab is Timing which
gives the user a choice to select their own schedules or a typical workday
schedule allotted to all the modelling components. In the tab for HVAC,
Simple HVAC can be chosen if the modelling of ideal load based system
is adequate otherwise the user can opt for detailed. Natural Ventilation
and Infiltration can be based on Scheduled or Calculations. For a simple
implementation of fixing a given ventilation rate, scheduled is used. This
rate changes according to the operation of the residence but is unaffected by
pressure coefficients unlike the Calculations model. There are a few more
parameters to be modelled like the simulation tab which can be used to
specify the simulation period, control temperature, time steps per hour and
Solar Distribution.
For our case, control temperature is set to Air Temperature to
model the simulation closer to real life application. To determine the
real life values of R and C, the indoor temperature data would be received
via a thermostat which will record the temperature of the air surrounding it.
Another option is to chose Operative Temperature which is the temperature
felt by the occupant, it would lead to more accurate heating demand but
would not be easy to determine in a house. Solar Distribution is set to Full
Exterior which means that all the transmitted solar gains are assumed to fall
on the floor.

Activity template has further tabs starting from ’All Gains” which is
the window which can be used to specify the aggregated sum of internal gains
from people, lighting and equipment, if the gain options which discussed
before in Model Options is set to ”Lumped”.

If gain options is set to ”Early” to ”Detailed”, the occupancy internal
gains can be specified in the subsequent tab of ”Occupancy”. Schedules for
occupancy can be set according to the schedules template.

The next tab ”Other gains” programs the equipments and lighting gain.
For the equipment the load and radiant fraction can be programmed. Radiant
fraction is the fraction of the load expelled by radiation to the surrounding
surfaces. Convective Fraction is (1− frad) which is the heat gained by the
indoor air via equipment. General Lighting can be switched on in the activity
template but can only be programmed in the main screen.

Environmental Control is the last tab in the activity templates which can
be used to setup the set point temperatures for HVAC Systems.
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Construction template can be set if in the model options, the construction
settings are set to pre defined. The construction template chosen for the
simulation of heavy built uninsulated building is Uninsulated and Heavy
Thermal Mass. The pre-settings in the template is as follows,

External - Wall -Uninsulated- Heavyweight which is made of 4 layers,
Brickwork Outer(Outermost) to Gypsum Plastering(Innermost). The tab of
”Surface Properties” can be used to fix the convective heat transfer coefficients
which can override the surface convection algorithms selected before.The next
tab ”Calculated” is an important tab for our study as this window displays
the calculated heat transfer coefficients used in energy simulations. The values
displayed here are used only if SBEM convection algorithm is employed. For
all other algorithms, the heat transfer is given separately for each surface by
storing output of the surfaces which will be discussed in the outputs sections
of EnergyPlus. If CIBSE algorithm is used the convective heat transfer
coefficients displayed are used.

Internal Thermal Mass is the component which can be used to add extra
internal thermal mass. Thermal mass can represent components like furniture
and internal walls which do not take part in the simulation because of the
setting for solar distribution in the software, which will be discussed in the
”opening” sections of EnergyPlus.

Infiltration can be modelled by the ”airtightness” tab . For the construction
template being discussed, the cracks template preset is poor with 1ac/h
infiltration rate.

Openings tab helps to set a glazing template. Project Glazing Template
has been chosen for the case studies in the thesis, where the glazing
is specified with a 30% glazing ratio.Glazing Type of the external
windows is specified to double glazing 3mm/6mm Air Cavity

Lighting Here is where the lighting can be programmed after checking the
lighting in the activity template. template-No Lighting in included in
the the work

HVAC This is one of the main components as the systems results from this
tab will provide us with a sensible heating demand which is the most important
result for the energy simulation template-Radiator Heating, Boiling Hot
Water, Mech Vent Supply and Extraction with a central heating
system. Heating is specified as a natural gas convective heating
system type.Cooling energy analysis is not a part of this study.
Schedule for HVAC designs was set to 8am to 6pm.
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A.4.0.1 Outputs And Export

Simulation Results include the following categories,

Site Data provides information about the surrounding environmental
conditions for the model. The important data sets mentioned here are
outdoor dry bulb temperature, Wind Speed, Direct Normal Radiation.

Comfort provides the user, information about the comfort of an occupant
in the space which can be assessed by knowing the mean air temperature, the
mean radiant temperature, the mean combined radiant and air temperature

Fabric and Ventilation mentions the heat gains through each component
of the fabric which give the user detailed heat transfer occurring all over
the building. Ventilation provides us with an overview of all exchanges of
air between the indoor and outdoor. The notable parameters dealt with in
this section are External infiltration-The heat gain from the air entering the
zone from outside, Total Air Changes which include mechanical ventilation,
natural ventilation and infiltration.

Internal Gains cover all different aspects of how heat could be gained
in an indoor space. Hence, it includes lighting, occupancy sensible gains
hence it also includes the radiant heat but not the latent, equipment, solar
gains through the windows which is the transmitted solar radiation hence a
convective fraction would be needed for node Tia, zone sensible heating which
includes the heat given by the entire HVAC System. It includes the heat
gained through the mechanical ventilation. As this is also sensible heating,
this value also includes the radiant part of heater.

A.4.1 Hessian MATRIX Approach

Hessian Matrix is a matrix consisting of double derivatives of the objective
function,Hi,j = ∂2f

∂xi∂xj
. It is used to optimise a function f(x, y,..)by determining

the role of all the critical points of the function. It does so by employing
eigenpairs, a scalar value λ and a vector consisting of the same number
of rows as the number of optimising variables. The property it is based
on is that by multiplication of Hessian matrix by the eigenvector equates
the multiplication of the eigenpair. This property makes the calculation of
the matrix much easier. Optimisation of Hessian matrix is carried out by
classifying the eigenvalues at the critical points of function f at all the point
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where df
dxi,j..

is zero. If the matrix at a given point (xi, xj, ..) is positive definite,

the respective points form a local minima. If the matrix is negative definite,
it is a local maxima.

A.5 Machine Learning

A.5.1 Data Mining

Data mining is the process by which the different patterns are inferred from
a given dataset. These patterns can provide an inner glance into the energy
consumption patterns of the building by deriving the occupancy changes,
high equipment usage, and weekly activities like laundry. Data mining can be
used to get information in the form of cluster patterns, outliers or anomaly
detection and parameter inter-relations like pattern mining.

A.5.2 Pattern Recognition

Pattern recognition is forming patterns based on parameter inter-dependencies
with the aim of learning pre defined rules such that if and when applied to
a new set, inferences can be drawn. It can also be used to examine a data
set such that the pattern formed can be used to remove the outliers. Hence,
it is very important to run pattern recognition before removing
outliers because this would be the best way to find anomalies.

There are two branches of pattern recognition, Supervised and Unsupervised
Learning. Supervised learning involves learning a fitting function from an
available data set and using the trends from the dataset to apply to the future
data. This might be very helpful in case of faults and alarms or detecting
unusual activity. Also this might be more useful when it comes to using the
EnergyPlus data and using that for using it as a reference for the real time
data involved. Unsupervised learning caters to the demographic where the
data is fed to the algorithm with no reference but some conditional parameters.
This strategy will be more suited to deduce the schedules of the occupants.
One of the most used method in unsupervised learning is cluster analysis.
The different cluster algorithms have been discussed by Zhun Yu[22],

• CART(Classification and Regression Tree)- This approach deals with
splitting parent nodes into children nodes according to maximum
homogeneity. Each parent node in the tree is the classification condition
on the target variable which then splits into branches which signify the
outcome of the classification condition. The branch further leads to
child node which classifies the data on a subsequent sub-criterion.
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• Cluster Analysis and K means Algorithm- This algorithm is sensitive to
outliers detection(pre cleaning). It clusters data into spherical clusters
on the base of distance. The points closest to each other are in one
cluster, the rest in another. K means algorithm is a type of clustering
where the algorithm divides a given n number of parameters into m
clusters by placing each value into a cluster with the nearest mean
value.

• DBSCAN-This is a non-spherical cluster forming approach. This
approach is less sensitive to outliers and is the base of density clustering.
It clusters according to the maximum number of points in a space and
forms them into a cluster.

Imran et al.[23] compared the three approaches for cluster analysis for
detecting faults and irregularities in lighting use and concluded that CART
is the best of three.
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