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The saddest aspect of life right now is that science gathers knowledge faster than society
gathers wisdom.

Isaac Asimov, 1988

This work is dedicated to my family
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SUMMARY

PARTICIPATION AND INTERACTION IN PROJECTS

A GAME-THEORETIC ANALYSIS

Much of what people, governments and companies do is dividing their time or efforts
between several activities, and we need to help deciding how to divide the efforts most
efficiently. Nice examples of such activities are writing for Wikipedia, authoring papers
and books, sharing files on the Internet or just communicating with colleagues. In the
example of dividing time between writing Wikipedia articles, authoring scientific papers
and a book, the decision may be highly non-trivial. Assume, for instance, that in case of
success, the book is the most cost-efficient enterprise. It can still happen that my efforts
will not be high enough to be included in the list of the co-authors, or that the other
authors will contribute little effort there, and the value of the book will be low. In these
complex activities that depend on what the others do, we look for individually rational
behavior which is also profitable for the whole group.

The ubiquity of such activities urges us to study them, in order to facilitate efficient
effort division. Formally, we want to recommend stable division strategies that result
in high social welfare. Social welfare means the total utility derived by the whole group
of the involved agents (people, governments, etc.) Stability means that no agent can
improve her own utility by doing something new, as long as the others keep doing what
they are doing. This is the famous Nash equilibrium. Since a stable set of strategies
(everyone’s behavior) is a reasonable description of what will happen in the real life, we
look for a Nash equilibrium with as high social welfare as possible.

We concentrate on games modeling dividing efforts between two common sorts of
activities: value-creating activities like writing an article, and activities of interaction,
such as communicating with colleagues. For each game we study the possible Nash
equilibria and their social welfare. If all the Nash equilibria (which can be multiple) turn
out to be socially efficient (which stands for equilibria which have social welfare which
ratio to the maximum possible social welfare is close to 1), then no regulation is required.
If there exist efficient as well as inefficient equilibria, then we may want to convince the
participants to opt for the socially efficient equilibria. In the unlucky case when only
inefficient equilibria exist, we may want to alter the whole situation by, e.g., subsidizing
certain strategies of the agents.

First, we study the value-creating activities where the value of an activity is linear
in the total effort contribution that the activity receives. We assume that this value is
equally divided between all the contributors who have contributed at least the thresh-
old, which is a fraction from the maximum contribution to the activity. This allows us to
model activities like authoring papers, books or participating in a start-up. We find that
for two participants all the Nash equilibria are socially efficient, while for more partici-

xi
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pants, some Nash equilibria are inefficient and regulation is often required to motivate
the agents to divide their efforts in a socially efficient manner.

Consider competitive activities like publishing papers. A paper usually needs to be
of a certain level to get published at a given venue, because a venue may have a quota
on the number of published papers (resulting from the acceptance rate and the total
number of submissions) or a minimum required level. The eternal question is: How can
the venue guarantee the existence of socially efficient equilibria in the game of dividing
effort between papers? We find that having a predefined minimum publication value
is preferable to imposing a quota on the number of papers that are published, since in
order to guarantee the existence of socially optimal Nash equilibria, the latter requires
certain constraints on the effort budgets of the authors. Generally, we model and study
activities where high enough a value has to be achieved in order to survive and actually
attain their value.

The second kind of activities we model is reciprocal interactions. This means inter-
actions where an agent (a person, government, etc.) acts on the other agent reacting on
what the other agent has done to the acting person. This is, for example, the dynamics
in an arms race and interpersonal quarrels. We first prove that such interactions stabi-
lize around some limit value exponentially fast. In many cases, we also provide closed
formulas for the limit of the actions. The limit mostly depends on the agents who act on
more agents and react on how the other agents act on her less, i.e. which are stable.

We then ask how a smart agent can maximize her utility from such an interaction,
defined as what she receives minus the effort incurred by her own actions in the limit.
Since people often act on habits, as Kahneman describes in “Thinking, Fast and Slow”,
we model that the agents always reciprocate, but they can choose their habits of recip-
rocation. A habit is represented by a parameter that defines how an agent reacts on the
others’ actions. We prove that letting the kinder (inherently more positive) agents persist
with acting kindly while letting the less kind agents react on the actions of the kind ones
is beneficial for the acting agents and for the whole society. This is case if acting is easy;
if it is hard, the kind agents should follow the less kind ones. Therefore, when acting is
easy, the personal interests coincide with the social one and therefore, every Nash equi-
librium is socially efficient. However, if we allow defining several habits simultaneously
(by setting several parameters), then also the less efficient equilibria become possible,
requiring wise choice and exemplifying that “where there is great power there is great
responsibility”, like Churchill said.1

Finally, we model dividing effort between several reciprocal interactions. We con-
sider the cases: a) when no contribution threshold exists, b) when achieving a contri-
bution threshold is required to enjoy the interaction, but everyone may interact, and
c) when even interacting is possible only if the contribution threshold is achieved. In
each case, we study the possible Nash equilibria and their social welfare.

To predict more and provide better advice, several directions seem promising. First,
real agents often participate in value-creating, interactive and perhaps other activities.
Our model would become more realistic from modeling these activities in one game. Ad-
ditionally, we would like to model the influence of agents’ participation in one activity on
how the same agents participate in another activity. Many real situations require further

1This quote dates back to the French National Convention, 08/05/1793.
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extensions to the models, such as the fact that colleagues come and go requires having a
dynamically changing set of agents. Second, we may consider other participation mod-
els, such as the current participants in an activity voting on which other agents also may
participate in this activity. The lack of omniscience is life motivates modeling the dy-
namics of knowledge about activities. Finally, real life requires considering many other
aspects of participating in activities, such as the psychological appeal of advice and legal
and social constraints on what people do.

We lay the foundation of realistic mathematical modeling and analysis of effort di-
vision between activities. The above mentioned future research directions can further
facilitate decisions on effort division.





SAMENVATTING

DEELNAME EN INTERACTIE IN PROJECTEN

VANUIT HET OOGPUNT VAN SPELTHEORIE

Mensen, overheden en bedrijven moeten vaak hun tijd of inspanningen verdelen tussen
meerdere activiteiten. Om te beslissen hoe we de inspanning het beste kunnen verdelen,
hebben we hulp nodig. Interessante voorbeelden van dergelijke activiteiten zijn: Wiki-
pedia beschrijvingen maken, artikelen en boeken schrijven, bestanden op internet delen
of met collega’s discussiëren. In het voorbeeld van de tijdverdeling tussen Wikipedia uit-
breiden, wetenschappelijke artikelen schrijven en een boek schrijven, kan de beslissing
vrij ingewikkeld zijn. Bijvoorbeeld, neem aan dat een succesvol boek het meestal kos-
tenefficiënte project zou zijn. Mijn inspanning zou niettemin te laag kunnen zijn om bij
de lijst van de coauteurs terecht te komen. De mogelijkheid bestaat ook dat de andere
auteurs zo weinig zouden bijdragen zodat de waarde van het boek te laag zou zijn. Voor
deze ingewikkelde activiteiten die afhangen van wat de anderen doen, zoeken we gedrag
dat persoonlijk rationeel is en tegelijkertijd ook winst oplevert voor de gehele groep.

We verdelen onze inspanningen vaak tussen verschillende activiteiten. Daarom is
het belangrijk om dit te bestuderen, zodat we een efficiënte inspanningsverdeling kun-
nen vinden. Formeel, willen wij stabiele verdelingstrategieën aanraden aan de samen-
leving die leiden naar een hoge sociale welvaart. Sociale welvaart staat voor het totale
nut dat de hele groep van de betrokken agenten verkrijgt (mensen, overheden, enzo-
voort). Stabiliteit betekent dat geen agent zijn eigen nut kan verhogen door iets nieuws
te doen, terwijl de andere agenten blijven doen wat ze nu doen. Dit is het beroemde
Nash-evenwicht. Aangezien een stabiele verzameling van strategieën (het gedrag van ie-
dereen) een redelijke beschrijving is van het echte leven, zoeken wij een Nash-evenwicht
met de hoogste sociale welvaart mogelijk.

We richten ons op spellen die inspanningsverdeling modelleren tussen twee vaak
voorkomende activiteitssoorten: waardecreërende activiteiten zoals een artikel schrij-
ven, en interactieactiviteiten zoals het communiceren met collega’s. Voor elk spel be-
studeren wij de mogelijke Nash-evenwichten en hun sociale welvaart. In het geval dat
alle Nash-evenwichten (er kunnen meerdere van zijn) sociaal efficiënt blijken (dat staat
voor evenwichten die sociale welvaart hebben die ongeveer 1 geven als we door de maxi-
male mogelijke sociale welvaart delen), is er geen regeling nodig. Als er zowel efficiënte
en niet-efficiënte evenwichten bestaan, kan het zijn dat we de deelnemers ervan willen
overtuigen om voor de sociaal efficiënte evenwichten te kiezen. In het onfortuinlijke ge-
val dat er alleen niet-efficiënte evenwichten bestaan, is het mogelijk wenselijk de gehele
situatie te beïnvloeden door, bijvoorbeeld, bepaalde strategieën te subsidiëren.

Ten eerste bestuderen wij de waardecreërende activiteiten waar de activiteitswaarde
lineair is in de totale inspanningsbijdrage die de activiteit ontvangt. We nemen aan dat

xv
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deze waarde gelijk verdeeld wordt tussen alle bijdragers die ten minste de drempel heb-
ben bijgedragen. De drempel is een fractie van de maximale bijdrage aan de activiteit.
Dit maakt het mogelijk om activiteiten als artikelen en boeken schrijven, of aan een start-
up deelnemen te modelleren. We vinden dat in het geval van twee deelnemers alle Nash-
evenwichten sociaal efficiënt zijn. In het geval van meer deelnemers, daarentegen, zijn
sommige Nash-evenwichten niet-efficiënt en is regeling vaak nodig om de agenten te
motiveren om hun inspanningen te verdelen op een sociaal efficiënte manier.

Neem bijvoorbeeld competitieve activiteiten, zoals het publiceren van artikelen. Een
artikel moet gewoonlijk op een bepaald niveau zijn om gepubliceerd te worden door een
gegeven conferentie, omdat een conferentie een quotum mag hebben op het aantal pu-
blicaties (een resultaat van de acceptatiegraad en het totale aantal submissies) of een
minimaal vereist niveau. De eeuwige vraag is: Hoe kan een conferentie zorgen dat er
sociaal efficiënte evenwichten bestaan in het spel van het inspanningsverdelen tussen
artikelen? We vinden dat een minimale publicatiewaarde hebben voordeliger is dan het
opleggen van een quotum met betrekking tot het aantal publicaties. De reden is: om
het bestaan van een sociaal optimaal Nash-evenwicht te garanderen, vereist de tweede
optie bepaalde beperkingen aan de inspanningsbegrotingen van de auteurs. Samenvat-
tend: wij modelleren en bestuderen activiteiten die een voldoende hoge waarde moeten
hebben om te overleven en werkelijk hun waarde te realiseren.

Het tweede soort van activiteiten dat we modelleren is wederzijdse interacties. Dit
zijn activiteiten waar een agent (een persoon, een overheid, enzovoort) reageert op wat
een andere agent heeft gedaan. Dit is, bijvoorbeeld, de dynamiek binnen een wapen-
wedloop of persoonlijke ruzies. Eerst bewijzen wij dat deze interacties zich rond een
bepaalde limiet stabiliseren, en ze doen dit exponentieel snel. Vaak geven we een geslo-
ten formule voor de limieten van de acties. Deze limiet hangt in grotere mate af van de
agenten die reageren op meerdere anderen en van agenten die minder heftig reageren
op de acties van de anderen (dus, die zich stabiel gedragen).

Daarna vragen we hoe een slimme agent haar nut van zo’n interactie kan maximali-
seren. Het nut is gedefinieerd als de gekregen actie minus de kost van haar eigen acties,
alles in de limiet. Aangezien mensen vaak hun gewoontes volgen, zoals Kahneman in
“Thinking, Fast and Slow” beschrijft, modelleren wij dat de agenten altijd zo’n weder-
zijds gedrag vertonen (reciprocal behavior), maar ze kunnen hun gewoontes qua reac-
ties kiezen. Een gewoonte is vertegenwoordigd door een parameter die definieert hoe
een agent op de acties van de anderen reageert. Wij bewijzen dat als de aardigere (inhe-
rent meer positieve) agenten consequent positieve acties ondernemen terwijl de minder
aardige agenten op de acties van de aardigere reageren, is dit gedrag nuttig zowel voor
de individuele agenten als voor de hele groep. Dat geldt als actie ondernemen makkelijk
is; anders zouden de aardigere agenten de minder aardige volgen. Daarom valt, als ac-
tie ondernemen makkelijk is, de persoonlijke interesse samen met die van de hele groep
en daardoor is elk Nash-evenwicht sociaal efficiënt. Echter, als we meerdere gewoontes
tegelijkertijd definiëren (door middel van meerdere parameters zetten) worden dan ook
de minder efficiënte evenwichten mogelijk. Dit vereist wijs kiezen, want zoals Churchill
zei “Waar grote kracht is, is er tevens grote verantwoordelijkheid”.2

Ten slotte modelleren we de inspanningsverdeling tussen een aantal wederzijdse

2Dit citaat komt oorspronkelijk van de Franse Nationale Conventie, 08/05/1793.
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interacties. We bestuderen de volgende opties: a) er bestaat geen bijdragedrempel,
b) drempel bereiken is noodzakelijk om van de interactie te profiteren, maar allemaal
mogen interacteren, en c) zelfs interacteren is alleen mogelijk als de bijdragedrempel
bereikt is. Voor elke optie, bestuderen wij de mogelijke Nash-evenwichten en hun soci-
ale welvaart.

Om meer te kunnen voorspellen en een beter advies te kunnen geven, lijken een
aantal onderzoeksmogelijkheden veelbelovend. Ten eerste nemen echte agenten vaak
deel aan waardecreërende, interactieve en misschien nog andere activiteiten. Ons mo-
del zou realistischer kunnen worden door deze activiteiten in hetzelfde spel te model-
leren. Daarnaast zouden we de invloed willen modelleren van de afhankelijkheid van
deelname van een agent van deelname in andere activiteiten. Veel situaties in de prak-
tijk vereisen verdere uitbreidingen van het model; bijvoorbeeld, het komen en gaan van
collega’s vereist een dynamische verzameling van agenten. Ten tweede zouden wij an-
dere deelnamemodellen kunnen bestuderen, zoals de bestaande deelnemers aan een
activiteit die stemmen op welke andere agenten ook mogen deelnemen aan deze activi-
teit. Het gebrek aan alwetendheid in de werkelijkheid motiveert het modelleren van de
dynamiek van de kennis over activiteiten. Ten slotte vereist het reële leven dat er reke-
ning gehouden wordt met veel andere aspecten van deelname aan activiteiten, zoals de
psychologische aantrekkelijkheid van advies en de wettelijke en de sociale beperkingen
aan wat mensen doen.

We leggen de basis van realistisch wiskundig modelleren en analyse van inspan-
ningsverdeling tussen activiteiten. De bovengenoemde mogelijkheden voor toekomstig
onderzoek zouden beslissingen over inspanningsverdeling verder kunnen ondersteu-
nen.





PREFACE

This work tackles some of the game theoretic aspects of agents dividing their efforts be-
tween activities we call projects and enjoy the fruit these projects yield. We concentrate
on two major kinds of activities: value-creating activities like writing books and activi-
ties of reciprocal interaction, such as interaction between colleagues of even nations. For
each sort of activities, we study the stable effort division strategies (Nash equilibria) and
their efficiency. The overarching goal is to facilitate decision support about how to divide
effort.

This research was performed at the Algorithmics group in the department of Soft-
ware and Computer Technology, which resides in the faculty of Engineering, Mathemat-
ics and Computer Science (EEMCS) of Delft university of technology. This work consti-
tutes the game-theoretic pillar of the SHINE project.3 SHINE means Sensing Hetero-
geneous Information Network Environment and it supports self-organizing agents in
acquiring on-demand information from heterogeneous sources, like sensors or reports
made by people, and reporting the gathered information in the appropriate form. Our
work supports the project in the following aspects:

1. We facilitate understanding under what conditions people will invest their free
time in the SHINE project by studying value-creating projects.

2. Since the participants in SHINE can both request and provide information, this
forms an interaction network, which we study in detail. Namely, we predict the
reciprocal interaction in such a network and suggest which habits are beneficial
for the individuals and the society. We also consider agents participating in several
such interactive projects.

Gleb POLEVOY
Delft, November 2016

3See http://www.participatorysystems.nl/2013/02/shine/, http://mmi.tudelft.nl/~birna/
projects/projects.html, and http://shine.tudelft.nl/home/.
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1
INTRODUCTION

People are meant to help one another, like
a hand assists a hand, a leg assists a leg and one jaw assists the other one.

Marcus Aurelius

This chapter presents the problem of efficient behavior in sharing effort in projects and
obtaining utility from the projects. The background is presented, together with the main
practical motivation for the research and the gaps it fills. We also describe the relevance
to the SHINE project for self-organizing information acquiring, which is an interesting
concrete case where the theory applies. Then, we pose our research questions, and present
our main contributions, together with the structure of the thesis. A reading guide closes
the chapter.

1
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Everything people, nations, companies, robots, computer programs and even you,
the reader, do constitutes dividing own time or effort between several projects. A project
is an abstraction for activity, which involves several agents, benefiting them all. For
example, a person may work with her colleagues on a study, socialize with friends for
leisure, etc. Other examples include programming projects like Linux [1], writing for
Wikipedia [2], crowdsensing projects [3], co-authoring articles [4], manufacturing cars,
playing sports together, or even driving on the same roads. Every common project con-
stitutes an interaction between the contributors, because their utilities depend on each
other’s contributions. It is crucial to make these ubiquitous interactions more efficient.
We aspire to do this by advising the agents themselves or their manager how to con-
tribute own resources like time and effort to the projects so as to maximize own utility
and the total utility.

Just imagine the difference between a smart person who manages his time well and
a person who does not, or between a well organized distributed system and a messy
one. Predicting such interactions is important for deciding how much to contribute. In
addition, making such advice automatic is important both for devising decision support
systems and for implementing artificial agents that interact with people.

Among the multitude of shared effort projects, we concentrate on projects that yield
a revenue to be shared, and on projects that are reciprocal interactions, i.e. interactions
where agents react to others’ actions. The first kind represents a simple case of creating a
common product and dividing its value between the creators. Such a project can be, for
instance, a project at work, a common homework, an article [4] , a book or Wikipedia [2]
(the utility of Wikipedia is the community’s recognition). We concentrate on project
with a minimum contribution threshold, such that only the agents who contribute at
least this threshold receive a share. In practice, these projects also face requirements:
enterprises need to achieve a minimum profit to survive, papers need to receive a min-
imum grade from the reviewers to get published, etc. We study projects with and with-
out such requirements. There is no analysis of the most efficient ways to contribute to
such thresholded projects, so we advise how much to contribute and how to organize
the whole process, to improve the total well-being. The second kind of projects stands
for many sorts of communication where people are involved, such as politics [5–7] or
relationships with friends and family [8]. We concentrate on the ubiquitous reciprocal
interactions, meaning reactive interactions [9, 10]. Since there is no analysis of how such
a process will unfold and what reciprocation habits are most expedient, we model and
analyze the reciprocation process and strategic choice of habits for this process. We also
advise on dividing one’s efforts between several such reciprocal interactions.

In any kind of projects, assuming that the agents decide rationally on how to divide
their time among the projects and, in the case of reciprocation, also how to recipro-
cate, we employ game theory to model and analyze these interactions. Game theory is
a mathematical approach to study interaction [11], which analyzes rational agents at its
core (though there exist other branches of game theory as well; see [12] for a nice primer,
which is a broad, though not recent, overview). We need game theory, since game the-
ory allows for rigorous analysis and crisp conclusions, and we need crisp results to im-
plement decision support systems. The central model of interaction in game theory is a
game [11, Section 2.1.1], where each of the participants, called players or agents, chooses
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a way of behavior, called strategy. The simultaneously chosen strategies of all the play-
ers together are more or less preferable to a player, and this is modeled by a real utility
function that a player obtains. A central concept in game theory is a Nash equilibrium
(NE) [13], which is a strategy profile that is stable in the sense that no player is able to
strictly improve her utility by deviating, if the others keep their strategies. In order to
predict the situations that will be played and advise on which strategies are individually
and socially efficient, we model the interactions as games, and look at their Nash Equi-
libria and at how large the utilities of the group in these equilibria are relatively to the
maximum utility the group can achieve. Analyzing this allows either stating that no reg-
ulation is required, or, on the other hand, suggesting to the manager (e.g., the boss of
several interacting colleagues) or the government which equilibrium the agents should
choose, to maximize the utility of the group.

Sometimes, game theory recommends to contribute to projects in some way. There
is much research on methods to influence contributions, such as online community par-
ticipation [14] or the motives for contributing to Wikipedia [2]. This research gives hope
that sociologists will suggest the ways to steer agents to act in the recommended way.

In this chapter, we first present the existing work necessary for grasping the contri-
butions of the thesis. This includes the area we concentrate on, which is shared effort in
public projects, and an important sort of common activities we elaborate on, namely re-
ciprocal interactions, where agents repeatedly react to others’ past actions. We describe
an important application of our theory to the SHINE1 project for acquiring information
by self-organizing agents. Then, we pose the research questions this thesis aims to an-
swer. We then present and briefly discuss our contributions and their meaning. Finally,
we provide an efficient reading guide to the reader. We provide a brief introduction to
game theory in the appendix of the chapter.

1.1. RELATED WORK
We are interested analyzing and predicting the behavior of agents who invest effort in
projects and benefit from them. We concentrate on the following projects:

Shared effort games. The agents’ contributions to these projects create a value, which
is subsequently shared between the contributors.

Reciprocal interactions. Instead of being economically rational, people tend to adopt
other ways of behavior [12, 15], not necessarily maximizing some utility function.
People tend to reciprocate, i.e., react on the past actions of others [9, 10, 16, 17].
Since reciprocation is ubiquitous, we study reciprocation as a common project.

1.1.1. SHARED EFFORT IN COMMON PROJECTS

We first present an overview of motives to contribute to projects and of several aspects
of contribution and dividing the revenue. Then, we present several related models and
their analysis, concluding that no analysis of the general setting has taken place, a gap
which we partially fill.

1See http://www.participatorysystems.nl/2013/02/shine/.

http://www.participatorysystems.nl/2013/02/shine/
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Motivation to contribute to public projects, such as cooperative software develop-
ment [18] or quality control in crowdsourcing [19], has been studied. These studies,
especially those concentrating on concrete motivational techniques, are necessary to
implement our recommendations. Wang et al. [20] model motivation to contribute to
online traveling communities and conclude that both practical motives, such as sup-
porting others, building relationships, or hoping for a future repay, as well as internal
drives to participate are important. Forte and Bruckman [2] discuss why people con-
tribute to Wikipedia. By questioning contributors, Forte and Bruckman conclude that
the reasons are similar to those of scientists and include the desire to publish facts about
the world. Bagnoli and Mckee [21] empirically check when people contribute to a pub-
lic good, like building a playground. They find that if people know the threshold for the
project’s success and benefit from collective contributing, then they will contribute, in
agreement with the theory of [22]. Bagnoli and Mckee argue that knowing such informa-
tion is realistic, giving real cases of hiring a lobbyist and paying to a ski club as evidence.
This conclusion supports the rationality assumption. The rewards people obtain from
such contributions can be both extrinsic, like a payment and a record for the CV, and
intrinsic, such as exercising one’s favorite skills [23]. The concrete ways to motivate con-
tribution are discussed as well. For instance, Harper et al. [24] find that explicitly com-
paring a person’s contribution to the contribution that others provide helps focusing on
the desired features of the system, but does not change the interest in the system per se.
The influence of revealing how much people contribute to a movie rating community is
experimentally studied in [14]. Initiating participation in online communities is experi-
mentally studied in [25] on the example of the influence of similarity and uniqueness of
ratings on participation. Such studies and more are necessary to implement recommen-
dations about contribution.

We now discuss various ways of dividing a project’s revenue. Sometimes, the agent
who contributes the most obtains all the revenue (like in political campaigns [26]), some-
times, every agent obtains a revenue, roughly proportional to her contribution (this may
take place in writing columns to a newspaper, every columnist receiving the part of the
newspaper’s fame, proportional to her contribution), while it can be that everyone ob-
tains an equal share (for example, when constructing a public facility or co-authoring
papers). Division of a value is thoroughly researched in the surplus sharing literature,
such as the classical Shapley value [27], or [28]. Unlike this field that devises the division
rules, we take division rules as given and analyze the agents’ strategies in the resultant
game.

We now present existing models of project contribution and dividing the revenue.
While modeling effort sharing as a game, we were inspired by the effort market game
model of Bachrach, Syrgkanis and Vojnović [29], where each agent divides her budget
between the projects available to her, and subsequently all the contributors obtain cer-
tain shares of the project’s revenue. This model, though close to ours, does not allow for
a minimum contribution threshold. A more constrained model, called all-pay auction,
consists of a shared effort game where only the contributor with the highest contribu-
tion obtains the project’s value, while everyone pays. The equilibria of these games have
been studied, for instance, by Baye, Kovenock and de Vries [30]. This work shows cases
where each player obtains the expected payoff of zero, and where the winner obtains
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the difference between the two highest valuations, while the rest obtains zero. All-pay
auctions model lobbying, single-winner contests, political campaigns, striving for a job
promotion (see e.g. [26]) and Colonel Blotto games with two players [31]. In the Colonel
Blotto game, two generals divide their armies between battlefields, and at every battle-
field, the larger force wins. The number of the won battlefields defines the utility of a
general. In this model, there exists the maximum threshold at every battlefield, as the
winner takes all. Roberson [31] analyzes the equilibria of this game and their expected
payoffs. Any outcome is socially optimum, since this is a constant-sum game.

We now present what has been done for models that resemble ours. For a very spe-
cific case (N -approximate Vickrey conditions, which mean that every agent obtains at
least a constant share of her marginal contribution), Bachrach et al. [29] bound the price
of anarchy of shared effort games by the number of players. This work also shows upper
bounds on the PoA for the case of convex project functions, where each player receives
at least a constant share of its marginal contribution to the project’s value. However, this
condition does not hold when a threshold is introduced. Anshelevich and Hoefer [32]
considered an undirected graph model, where the nodes are the players and each player
divides its budget between its adjacent edges in minimum effort games (where the edges
are the 2-player projects), each of which equally rewards both sides by measure of the
project’s success (i.e., duplication instead of division). Anshelevich and Hoefer prove the
existence of equilibria, find the complexity of finding an NE, and find that the PoA is
at most 2. A related setting of multi-party computation games appeared in [33]. There,
the players are computing a common function that requires them to compute a costly
private value, motivating free-riding. The work suggests a mechanism, where honest
computation is an NE. This differs from our work, since Smorodinsky and Tennenholtz
consider cost minimization, and the choice of the players is either honestly computing
or free riding, no choice of projects.

To conclude, no equilibrium efficiency research has been done for sharing with a
general threshold, and therefore we consider this important domain.

In some situations, such as economical investments, the projects obtain their mod-
eled value only if they stand up to a competition. We consider two models for project
competition: a quota or a minimum level-based success, which take place, for example,
in the process of deciding whether to accept or reject a paper [34, 35]. A quota can be ex-
pressed in other ways, such as an acceptance rate. Since our thesis considers efficiency
of equilibria, we naturally look into the influence of a quota or a minimum level on the
prices of anarchy and stability. The price of anarchy is the ratio of the total utility of an
NE with the least total utility and of the largest possible total utility. The price of stability
is the ratio of the total utility of the socially best NE and of of the largest possible total
utility. Since the influence of competition on the efficiency of stable situations (NE) has
not been studied in the context of projects with thresholds, we consider sharing effort
with competition between such projects. This allows to better model investing effort in
firms or investing time in a paper, since both the contributors to a project compete and
a project has to receive enough, to be profitable at all.



1

6 1. INTRODUCTION

1.1.2. RECIPROCAL INTERACTIONS
To predict reciprocation, we need a simple and yet powerful model for reciprocation. We
now describe the two main streams of existent models of reciprocation and afterwards
explain what we contribute.

Existent models of (sometimes repeated) reciprocation can be classified as either ex-
plaining existence or analyzing consequences. The following models consider the rea-
sons for the existence of reciprocal tendencies, grouped by the nature of the reasons.

Direct evolution. The classical works of Axelrod [5, 36] consider discrete reciprocity and
shows that it is rational for egoists, so that species evolve to reciprocate. Evolution-
ary explanation appears also in other places, such as [37, 38]. Axelrod and Hemil-
ton [39] and Fletcher and Zwick [40] consider engendering reciprocation by both
the genetical kinship theory (helping relatives) and by the utility from cooperating
when the same pair of agents interact multiple times. Berg et al. [41] proves that
people tend to reciprocate and considers possible motivations, such as evolution-
ary stability.

Indirectly evolved. Bicchieri [42, Chapter 6], explicitly considers the psychological and
game theoretic aspects of norm emergence and the eventual game theoretic util-
ity of behaving according to the norm. Van Segbroeck et al. [43] consider the evo-
lution of fairness, and pursuing fairness as a motivation for reciprocation. The
famous work of Trivers [44] shows, in much biological detail, that sometimes reci-
procity is rational, and thus, people can evolve to reciprocate. He shows how vari-
ous emotions related to altruism have evolved. For instance, moralistic aggression
and guilt are considered as threats to cheaters. Suspicion has evolved to detect
subtle cheating. He argues that people can find the balance between cheating and
cooperating.

Strong reciprocity. Gintis [45, Chapter 11] considers discrete actions, discussing not
only the rationally evolved tit-for-tat, but also reciprocity with no future inter-
action in sight, what he calls strong reciprocity. He models the development of
strong reciprocity analytically, using societal evolutionary dynamics. Several pos-
sible reasons for strong reciprocity, such as a social part in the utility of the agents
or expressing itself in emotions, are considered in [46].

Axiomatic. Reciprocal behavior is axiomatically motivated in [47], assuming agents care
not only for the outcomes, but also for strategies, thereby pushed to reciprocate.
Under their axioms, Segal and Sobel prove a representation theorem, saying, when
the preferences can be captured by a unique linear combination of the outcome
dependent utilities of the agents.

Another research direction assumes that reciprocal tendencies exist and analyzes
what ways it makes interactions develop, i.e. the consequences of reciprocation. These
models analyze reciprocal interactions by defining and analyzing a game, where the util-
ity function of rational agents directly depends on showing reciprocation [9, 48–50]. The
importance of reward/punishment or of incomplete contracts for the flourishing of re-
ciprocal individuals in the society is shown in [10].
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Since no analysis of uncurling of inborn reciprocation with time considers non-
discrete interactions (unlike, say, the discrete one from Axelrod [5, 36]), we model how
interactions evolve with time, given that people reciprocate, and analyze this process.

Having analyzed a given reciprocation process, we next consider fine-tuning recip-
rocation. Since people tend to act on habits [51], we concentrate on maximizing own
utility by setting own habits of reciprocation. Finally, no analysis of participating in sev-
eral reciprocation projects has been done, from the perspective of stable states and their
efficiency.

1.2. SHINE PROJECT

This research aims to study the strategic aspects of SHINE.2 SHINE, the flagship project
of DIRECT (Delft Institute for Research on ICT at Delft University of Technology), builds a
framework for receiving demands on heterogeneous information (environmental, social
and urban), obtaining the required data and presenting the information to the requester.
In order to be scalable, flexible, and safe from single failures, the system needs to be self-
organizing. Self-organization requires the need to take into account the strategic aspect
of the participants.

This work supports SHINE by concentrating on game theoretic aspects of crowd-
sensing, from motivation to participate in a crowdsensing project to the interpersonal
dynamics between the participants. In order to analyze how to improve participation in
crowdsensing projects, we model several projects where people can contribute to, mak-
ing the projects obtain a value, which is subsequently divided between the contributors.
Once people participate in our project, we want them to interact for everyone’s benefit.
First, we analyze a given reciprocal (reactive) interaction, and then, we model strate-
gic choice of own habits, aimed to interact more efficiently. Finally, we model a person
splitting her time and effort between several reciprocal interactions. In each modeled in-
teraction, we look for Nash equilibria, which are situations where no person can strictly
benefit by changing only her behavior, if the others keep behaving as before. These sit-
uations can be expected to sustain themselves, if they happen to occur. We look which
equilibria are more efficient to the society, to facilitate decision support for choosing to
which projects to contribute and which reciprocation habits to adopt.

The following research questions are relevant to any value-creating and reciprocal
projects and in particular, for the goals of SHINE.

1.3. RESEARCH QUESTIONS
As mentioned at the beginning of the chapter, we model participating in projects and
analyze the stable situations (NE) of this process and their efficiency. This allows for
predicting the situation and advising on the more efficient ways to participate in the
projects. Thus, the highest-level research question is:

What are the Nash equilibria in shared effort games and how efficient are they?

2See http://www.participatorysystems.nl/2013/02/shine/, http://mmi.tudelft.nl/~birna/
projects/projects.html, and http://shine.tudelft.nl/home/.
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Since we concentrate on two kinds of shared effort games, this question decomposes
into the two following groups:

The first group related to projects that create a linear value. As we describe in Sec-
tion 1.1.1, there is no analysis of the thresholded case, so we analyze it.

1. What are the Nash equilibria in shared effort games with equal sharing of a linear
project’s value to everyone who contributes above a threshold? How efficient are
these equilibria?

2. What changes in the answer to question 1, if a project obtains its value only if it
survives a competition between the projects?

Both questions allow for SHINE as a project. The second question models the minimum
level SHINE has to attain in order to survive.

The second group is about reciprocal interaction. The first two questions direct one
interaction but are required to eventually analyze dividing effort between several such
projects.

3. As we explain in the end of Section 1.1.2, there is no simple model of inborn non-
descrete reciprocal actions, so we model it and ask: In reciprocal interaction, what
will the actions become in the long run?

4. Given the above model of reciprocation, we ask: Which habits3 of reciprocation
prove to be most efficient in the long run?

5. Getting back to analyzing projects, the summarizing question is: What are the
Nash equilibria in shared effort games where every project is reciprocal interac-
tion? How efficient are these equilibria?

These questions allow to model the interaction between the participants in SHINE, as a
particular case.

We now describe how we answer these questions.

1.4. THESIS STRUCTURE AND CONTRIBUTIONS
Much of this work is based on published papers. We have modified the original papers
slightly to create a coherent story, and have moved the basic background to this chapter,
while still keeping every chapter from Chapter 2 till including Chapter 6 self-contained.

We concentrate on two prominent classes of projects. First, we consider dividing
effort between projects. A project’s value, linear in the total received contribution, is
divided between the contributors. Some projects, like paper co-authorship, possess a
contribution threshold, necessary to receive a share. The necessary effort of mastering
the interface and the basic rules of Wikipedia is an example of an absolute threshold [52],
while assigning bonus points to students from homework exercises, where one needs to
achieve at least some percentage of the best grade, to obtain the homework’s credits is
an example of a threshold, proportional to the investments in the project.

3For the sake of the presentation, we use the colloquial word “habit” instead of “behavioral pattern”.
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In another project class, every project is a reciprocation, where agents react on each
other’s actions. After analyzing what happens as such a reciprocation uncurls and which
habits agents can choose to gain more utility, we put it in the context of shared effort,
since most people have several interactions on their minds, not one. Here, unlike in
co-authoring a paper, the value is not directly created and subsequently shared, but the
agents obtain value while interacting.

We now present concrete results per chapter. In Chapter 2, we prove that shared
effort games with linear project functions and equal sharing to those who contribute
above the threshold always possess a mixed Nash equilibrium. For pure equilibria, we
first provide sufficient existence conditions of an NE for continuous general shared ef-
fort games. For a thresholded game with linear project functions, we characterize the
existence of an NE for two agents and provide several sufficient conditions for a gen-
eral number of agents. Next, we analyze the efficiency of the NE. In order to analyze the
case of more than two agents, we generalize the fictitious play, originally proposed by
Brown [53], to the shared effort game, and simulate it to find Nash equilibria and their
efficiency. To run this and to eventually check, whether a profile is an NE, we devise an
O(n logn) best response algorithm for 2-project games. For two agents, we prove that
the efficiency is at least half of optimum, so regulation is not really needed. For more
agents, the efficiency drops sometimes to less than a half, so a regulation may be useful.
This chapter is an extended version of paper [54], which was also presented at BNAIC’14
and at the 5th World Congress of the Game Theory Society. The full version is currently
under submission to a journal. This chapter answers research question 1.

Next, in Chapter 3, we model competition between projects as either quota or suc-
cess threshold and provide sufficiency results for the existence of an NE in this more
refined model. We show that setting a success threshold is more powerful than setting
a quota, in order to guarantee that an optimal profile can be an NE. We also see that
the price of anarchy is low but the price of stability is high, so there are inefficient NE,
while there exist also efficient ones, and therefore, regulation impelling the agents to act
efficiently may be expedient. This chapter aims to answer research question 2.

The next step is to consider projects that are more complicated than those yielding
a linear function of the total received contribution, which is equally divided to certain
contributors. In Chapter 4, we analyze a public project of the development of a lengthy
reciprocal interaction. We prove convergence, and in several cases we also find the limit
of the actions. The results show that the interaction in the limit depends on agent’s kind-
ness if he is persistent in the following sense: reacts less to others, but acts according
to her own will, and can act on many agents. The convergence results allude to behav-
ioral styles and to cultures. This chapter appears as an extended abstract at [55] and was
presented at MFSC’15 (collocated with AAMAS’15), and at BNAIC’15. Chapter 4 answers
research question 3.

In Chapter 5, we define utilities in reciprocation and study which habits the par-
ticipating agents can adopt to maximize their utilities. We characterize the NE of this
game and find their efficiencies, expressed as prices of anarchy and stability. We show
that when acting is easy enough, then the less kind agents should be more flexible and
follow the behavior of the kinder ones, explaining why people often become more po-
lite when they grow up. We also prove that when acting is easy enough, then an NE is
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Figure 1.1: A chapter depends on another one, if it points there, directly or not.

optimal to the society, so selfishly reciprocating agents automatically benefit the whole
group. This chapter is an extension of paper [56]. A part of this chapter was presented
at AMEC/TADA’15 (collocated with AAMAS’15) and at BNAIC’16. This chapter answers
research question 4.

Finally, in Chapter 6 we get back to our goal of analyzing shared effort. We model
dividing own effort between several reciprocal interactions as a game. An agent’s utility
is what she obtains from the interactions where she participates. We prove that an equi-
librium exists and find its efficiency, when no threshold for obtaining one’s utility from
reciprocation is present. With a threshold, partial existence and efficiency results are
provided. We also consider the extended game where the agents first divide their time
between interactions, and then choose the habits in every interaction. We provide suf-
ficient conditions for the existence of a subgame perfect equilibrium (SPE). An SPE is a
strategy profile that constitutes an NE at every state of an extensive game. We show that
in the first game, without a threshold, any NE is optimal, so no regulation is required for
the society. This chapter aims to answer research question 5.

We summarize the obtained results and discuss their implications in Chapter 7. We
also propose some interesting directions for further work.

1.5. READING GUIDE
The best reading order is the appearance order in the thesis. However, the only real
dependencies are depicted in the dag in Figure 1.1.

A reader in a hurry is advised to skip the following parts, because they are less central
to the thesis:

1. The related work section, namely Section 6 and the simulation results, Section B,
from the appendix of Chapter 2.

2. Chapter 3.

3. Section 4, Section 6, Section 7, and Section 8 from Chapter 4.

4. Section 5.2, Section 6.2, Section 10.2, and Section 7 from Chapter 5.

5. The thresholded cases, namely Section 5 and Section 6, and the extensive game,
namely Section 7, from Chapter 6.
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APPENDIX

A. A PRIMER ON GAME THEORY
We begin by introducing the general model, the model of non-cooperative games, fol-
lowed by defining the Nash equilibria and their efficiency measures. Finally, we intro-
duce the mixed Nash equilibrium.

A.1. NONCOOPERATIVE GAMES AND NASH EQUILIBRIUM
Game theory studies interaction between agents, like people, countries, companies, or
robots. A game where several agents try to achieve something is a natural metaphor for
an interaction. Concentrating on particular agents which may act on will and have their
own interests usually expresses itself in an explicit modeling of agent’s actions. This is
treated in noncooperative game theory and modeled as a noncooperative game. Such a
game consists of the following parts (see [11, Section 2.1.1]):

1. A set of players N = {1,2, . . . ,n}, which consists of the acting agents. We use “player”
and “agent” interchangeably. A player symbolizes an independent entity.

2. Each player i ∈ N has a set of possible strategies Si ; a strategy si ∈ Si stands for a
way of behavior.

3. Given the simultaneously choice of strategies by all the players s1, s2, . . . , sn , the
resulting situation may be more or less preferable to a given player. This preference
is usually modeled by a personal utility function for each player, assigning a real
value to every combination of the strategies of all the players. Formally, the utility
of player i is ui : S1×S2× . . .×Sn →R. The larger a player’s utility, the better for the
player.

Analyzing such a game allows analyzing the modeled strategic situation. We con-
centrate on finding a Nash equilibrium (NE), in which rational players who do what they
can in order to maximize own utility can stay stable. A Nash equilibrium [13] is a strategy
profile s = (s1, s2, . . . , sn) ∈ S1×S2×. . .×Sn = S, such that no player can strictly improve her
own utility by a unilateral deviation, when the others keep doing what they are doing. In
formulas, the condition for s ∈ S to be an NE is

∀i ∈ N ,∀s′i ∈ Si : ui (s) ≥ ui (s′i , s−i ), (1.1)

where4 s−i
∆= (s1, . . . , si−1, si+1, . . . , sn).

A.2. EFFICIENCY OF NASH EQUILIBRIA
We call the total utility of all the players at strategy profile s ∈ S the “social welfare”, de-

noted SW(s), meaning that SW(s)
∆=∑

i∈N ui (s). The Nash equilibria are the profiles that
fulfill the condition from Formula (1.1). To quantify the loss in the social welfare, result-
ing from constraining the profiles to constitute an NE, the notions of price of anarchy
(PoA) [57, 58] and price of stability (PoS) [59, 60] have been suggested. Formally, the

4We denote “is defined as” by
∆=.
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price of anarchy, PoA, of a game is defined as the ratio of the minimum social welfare in

an NE to the maximum possible social welfare, i.e., PoA
∆= mins is an NE SW(s)

maxs∈S SW(s) . To capture the
other extreme, the price of stability is defined as the ratio of the social welfare in a best

possible NE to the optimum possible social welfare, meaning that PoS
∆= maxs is an NE SW(s)

maxs∈S SW(s) .
Intuitively, the price of anarchy quantifies the worse the society has to endure if its mem-
bers do what they want, while the price of stability refers to the least evil the society has
to take in order to be stable.

The fact that an NE can be inefficient is broadly known, such as in the famous ex-
ample of the prisoner’s dilemma [11, Example 16.2]. Since the introduction of price of
anarchy [57] and price of stability [60], there have been many studies on the matter.

Roughgarden and Tardos [61, Chapter 17] discuss inefficiency of equilibria in non-
cooperative games and consider the examples of network, load balancing and resource
allocation games. The authors argue that understanding exactly when selfish behavior
is socially profitable is important, since in many applications, implementing control is
extremely difficult. Roughgarden and Tardos mention that the use of ratio of the objec-
tives in an equilibrium and in the optimum to measure efficiency (PoA,PoS) constitute
the two most popular approaches to choosing which equilibrium to use. Another possi-
ble approach is average-case analysis, being much more difficult to define and analyze.
When defining the social good of an outcome, the authors mention that not only the sum
of the costs, but also the maximum cost may be of interest. Roughgarden and Tardos also
exemplify the potential function method for efficiency analysis.

A.3. MIXED NASH EQUILIBRIUM
A normal Nash equilibrium defined in Section A.1 is called pure. We now define a mixed
NE. A mixed extension of a game is the same game where the strategies are all the prob-
ability distributions on the strategies of the original game. Formally, if player i ’s original

strategies are Si , then her mixed strategies are
{
α j

} j∈Si , where all α j are nonnegative
and

∑
j∈Si

α j = 1. One can think of the players picking their (pure) strategy according to
this distribution. A Nash equilibrium of a mixed extension of a game is called a mixed
Nash equilibrium of the original game.

The existence of a pure NE implies that of a mixed one, since any pure NE is also
(naturally identified with) a mixed one. When a pure NE may not exist, the question of
the existence of mixed NE becomes interesting. Therefore, we look into mixed NE, when
a pure one may not exist.



2
SHARED EFFORT GAMES

.

Don’t say you don’t have enough time. You have exactly the same number of hours per
day that were given to Helen Keller, Pasteur, Michelangelo, Mother Teresa, Leonardo da

Vinci, Thomas Jefferson, and Albert Einstein.

H. Jackson Brown Jr., 1991

Shared effort games model strategic settings where people invest resources in public
projects and the subsequent share of obtained profits is defined in advance. Such games
model both projects like writing for Wikipedia, where everyone who knows the develop-
ment environment shares the resulting benefits, and all-pay auctions such as contests and
political campaigns, where only the winner obtains a profit. In θ-(equal) sharing (effort)
games, the threshold θ for effort defines which contributors win and then receive their
(equal) share. For public projects θ = 0 and for all-pay auctions θ = 1. Thresholds be-
tween 0 and 1 can model games such as paper co-authorship and shared homework as-
signments, where a minimum positive contribution is required before sharing in the prof-
its. We constructively characterize the conditions for the existence of a pure equilibrium for
two-player shared effort games with project value functions that are linear in the received
contribution and find the prices of anarchy and stability. We provide some existence and
efficiency results for more players as well. In the mixed case, we prove that an equilibrium
always exists and provide results on their social welfare. For more players, generalized
fictitious play simulations are used to show when a pure equilibrium exists and what its
efficiency is. The found equilibria provide the likely strategy profiles and the socially pre-
ferred strategies regarding contributing to public projects. This facilitates setting socially
efficient equilibria.

This chapter is an extended version of paper [1].
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1. INTRODUCTION
We begin our journey by analyzing the common real-world situations that include a
group of people investing resources in several public projects. The revenues from these
projects are typically divided based on the investments. Examples of such situations in-
clude contributions to online communities [2], Wikipedia [3], political campaigns [4],
paper co-authorship [5], or social exchange networks [6]. Projects can be coding Linux,
cleaning the house, and arguing for an important decision. In this chapter we consider
situations where the obtained revenue from such projects is shared equally, but possibly
only among those who contribute at least a certain amount. This threshold can be either
absolute or relative to the other investments. We concentrate on a relative threshold.

Assigning points for an exercise, where a percentage of the perfect work is required to
obtain the (equal) homework’s credits [7] is an absolute threshold example. In this exam-
ple, participants’ utilities (i.e., their gain) are typically equal for anyone who is above the
threshold. An example with a relative threshold is the Colonel Blotto game (see e.g. [8]),
where there are several battlefields over which the Colonel can distribute its forces, and
the number of local victories determines the payoff. This example is “highly thresh-
olded" because only the player whose effort per project (a battlefield) is maximum col-
lects the complete revenue. Another example of a relative threshold is an employee that
obtains decision power or a bonus if she has invested sufficient effort [9]. The following
example is used later to further illustrate the model.

Example 1. Consider two collaborating scientists in a narrow field. They can work on
their papers alone or together. When they collaborate on a paper (a project, in this set-
ting), an author has to contribute at least 0.2 of the work of the other one, in order to be
considered a co-author. The reward, being the recognition, is equally divided among the
authors. Author 1 has the time budget of 5 hours to work, and author 2 has 20 hours.
The value of the reward of the first paper is 4 times the total contribution it receives, while
the less “hot” second paper rewards the contributors with only twice the received contri-
bution. This is illustrated in Figure 2.1. In the figure, the first paper receives the total
contribution of 4+10 = 14, creating the value of 4 ·14 = 56. Both contributors are authors,
since 4 ≥ 0.2·10, and the value is equally divided between them. The second paper receives
1+10 = 11, and yields the value of 2 ·11 = 22. Here, only the contributor of 10 is an au-
thor, since 1 < 0.2 · 10, and he, thus, receives the whole reward of 22. This is not a Nash
equilibrium, since the second contributor would benefit from moving the 1 hour contri-
bution to the first paper. On the other hand, if both authors invest all their time in paper
1, the situation is stable. Indeed, moving a part to paper 2 would benefit nobody, since the
paper is twice less profitable than paper 1, so sharing the value of paper 1 is as good as
contributing alone to paper 2. The social welfare in this equilibrium is maximum possi-
ble, since everyone contributes to the most profitable project. In general, we would like to
find stable contributions, and whether they will be efficient for both authors, relatively to
the maximum possible division of the authors’ time budgets.

A similar example is that of scientists that are working in the same research area, but
do not necessarily publish together. Their profit can be expressed in terms of publica-
tions, citations, and awards. This resembles Kleinberg and Oren [5], though they assume
that a researcher may choose a single project, which revenue may be divided in various
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Figure 2.1: The co-authors invest what is shown in the arrows that go up, every project’s revenue is defined as
the P function of the total contribution, and it is equally shared among the contributors who contribute above
the relative threshold of 0.2. The obtained shares are denoted by the arrows that go down.

manners.
People and organizations often invest resources in several projects and share the ob-

tained revenues. It is thus important to predict stable contributions and suggest the
efficient ones. To this end, we study the Nash equilibria of such games, the ratio of the
least total utility of the players in an equilibrium to the optimum, called the price of an-
archy (PoA) [10], and the ratio of the largest total utility in in equilibrium to the optimal
total utility, called the price of stability (PoS) [11, 12]. If the price of anarchy is close to
1, then all equilibria are good, and we may suggest any equilibrium profile. If the price
of anarchy is low, while the price of stability is high, then we have to regulate the play by
suggesting the efficient equilibria, while if even the price of stability is low, the only way
to make the play socially efficient is changing the game through subsidizing, etc.

This price of anarchy was bounded in [13], but assuming the k-approximate Vickrey
condition, meaning that a player obtains at least 1/kth of her marginal contribution,
which fails to hold in a positively thresholded model. There is no analysis of the existence
of Nash Equilibria (NE) and their efficiency in general shared effort games.

This chapter aims to fill this gap by the following contributions:1

1. a constructive characterization of the existence of pure strategy NE for two players
and linear project values (Theorem 3),

2. the price of anarchy and stability of these equilibria (Theorem 5, Corollary 2,

3. sufficiency results on existence of pure NE for any number of players (Theorem 4),

4. the prices of anarchy and stability for any number of players (Theorem 6),

1Relatively to [1], we extend the theory also for budgets not within a threshold factor from each other (part 1
in the list), substantially extend the simulations (part 9), and prove the existence of an NE in the mixed case,
answering this natural question (part 5).
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5. a proof that any shared effort game with linear project functions and equal (thresh-
old) sharing has a mixed NE (Theorem 7),

6. providing some efficiency bounds on mixed equilibria,

7. a generalization of fictitious play2 to shared effort (infinite) games (Definition 4),

8. an O(n logn) best response algorithm for 2-project multi-player games (Theo-
rem 8),

9. simulation of fictitious play to find pure Nash Equilibria in 2-project multi-player
games, and if an equilibrium is found, a report of its efficiency (Section 5.4).

We assume pure NE, unless explicitly mentioned otherwise. A pure shared effort
game is already uncountably infinite and non-continuous. After defining shared effort
games in the next section, we concentrate on pure strategies in Section 3. We theoreti-
cally treat the existence and efficiency of NE for the games with two players and linear
project values in Section 3.1. Afterwards, we study games with any number of players.
We treat the mixed extension in Section 4, proving the existence of a mixed NE and show-
ing some efficiency bounds of the pure case generalize to the mixed case. Aiming to
further investigate existence and efficiency of pure NE, we employ fictitious play simula-
tions in Section 5. Concretely, we define an Infinite-Strategy Fictitious Play and simulate
it till and if it practically converges within some time. We check whether we have found
an NE and if that is the case, what its efficiency is. We describe the related work in Sec-
tion 6. We conclude and discuss the future work in Section 7. A short primer on mixed
NE appears in Section A.3.

2. MODEL
To model investing effort in shared projects, we define shared effort games, which also
appear in [13]. The games consist of players who contribute to project, and share the
value the projects obtains. Formally, players N = {1, . . . ,n} contribute to projectsΩ. Each
player i ∈ N can contribute to projects in Ωi , where ; ( Ωi ⊆ Ω; the contribution of
player i to project ω ∈ Ωi is denoted by xi

ω ∈ R+; for any ω ∉ Ωi , we write xi
ω = 0. Each

player i has a budget Bi > 0, and the strategy space of player i (i.e., the set of her pos-

sible actions) is3 Si ∆=
{

xi = (xi
ω)ω∈Ω ∈R|Ω|

+ |∑ω∈Ωi
xi
ω ≤ Bi ,ω ∉Ωi ⇒ xi

ω = 0
}

. Denote the

vector of all the contributions by x = (xi
ω)i∈N
ω∈Ω and the strategies of all the players except

i by x−i .
To define the utilities, each projectω ∈Ω is associated with its project function, which

determines its value, based on the total contribution vector xω = (xi
ω)i∈N that the project

receives; formally, Pω(xω) : Rn+ → R+, and every Pω is increasing and differentiable, in
every parameter. When the functions Pω depend only on the

∑
(xi
ω)i∈N , we may write

expressions like Pω(x) = 2x. The project’s value is distributed among the players in Nω
∆=

2The original fictitious play was proposed by Brown [14].
3We denote “defined as” by

∆=.
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{i ∈ N |ω ∈Ωi } according to the following rule. From each project ω ∈Ωi , each player i
gets a share φi

ω(xω) : Rn+ →R+ with free disposal:

∀ω ∈Ω :
∑

i∈Nω

φi
ω(xω) ≤ Pω(xω). (2.1)

We assume that the sharing functions are non-decreasing.
The utility of a player i ∈ N is defined to be

ui (x)
∆= ∑
ω∈Ωi

φi
ω(xω).

The social welfare is defined as the total utility, i.e. SW(x)
∆=∑n

i=1 ui (x).
We now define a specific variant of a shared effort game, called a θ-sharing mech-

anism. This variant is relevant to many applications where a minimum contribution
is required to share the revenue, such as paper co-authorship and homework, and we
study predominantly such games. For any θ ∈ [0,1], define the players who get a share as
those who bid at least a θ fraction of the maximum bid size to ω,

Nθ
ω
∆=

{
i ∈ Nω | xi

ω ≥ θ ·max
j∈Nω

x j
ω

}
.

The θ-equal sharing mechanism equally divides the project’s value between all the users
who contribute at least θ of the maximum bid to the project.

Definition 1. The θ-equal sharing mechanism, denoted by Mθ
eq, is

φi
ω(xω)

∆=
{ Pω(xω)∣∣Nθ

ω

∣∣ if i ∈ Nθ
ω,

0 otherwise.

Reconsider the example from Section 1 to illustrate the above model.

Example 1 (Continued). The scientists N invest in the papers (projects)Ω. Assume that a
paper’s total value for the reputation of its authors is proportional to the total investment
in the paper. That is, the project’s functions Pω are linear. In order to be considered an
author, a minimum threshold θ of the maximum contribution is required, and a paper’s
total contribution to the authors’ reputation is equally divided between all its authors.
This is a shared effort game with a threshold θ ∈ (0,1) and equal sharing.

3. PURE NASH EQUILIBRIUM
In this section, we analyze existence of stable profiles in shared effort games, i.e., the
Nash equilibria. Having analyzed their existence, we analyze, how efficient they are for
the society, relatively to the best possible profiles for the society. This allows predicting
behavior and recommending what to do.

We begin with sufficiency results. Then, we concentrate on the case of linear project
functions, characterizing the existence and efficiency of NE for two players. We follow
with existence and efficiency results for any number of players. In this chapter, some
proofs are deferred to Section A, to make the presentation flow.
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Notice that our (pure) model is not a mixing of the model where a player may invest
in at most one project, because a mixing would extend the profits linearly in the mixing
coefficients, while this is not the case in our model with a positive threshold.

The following theorem proves an NE exists in the convex continuous case.

Theorem 1. Let the strategy sets be non-empty, compact and convex. Then, if each φi
ω is

continuous and concave, a pure NE exists. If we additionally assume that the strategy sets
are equal to all the payers (in particular, allΩi s are the same) and that the utility functions
are symmetric, then we also conclude that a symmetric NE exists.

Proof. Immediate from Proposition 20.3 in [15] (and from Theorem 3 in [16], for the
symmetric case).

For equal division without a threshold, the following existence result is stronger, be-
sides that it does not consider symmetric NE.

Theorem 2. The game with M 0
eq admits a potential function. Therefore, if the functions

Pω are continuous and the strategy spaces are compact, then a pure NE exists.

Proof. The strategy space of player i is Si , and denote S
∆= S1 × . . .×Sn . Define P : S → R

by P (x)
∆=∑

ω∈Ω
Pω(xω)
|Nω| . This is a potential function, because it is equal to the utility of any

player, and therefore, when player i changes her strategy, her utility changes exactly as
the potential does.

The game possesses a pure NE, whenever the potential function admits the maxi-
mum. In our case, as these functions are continuous and the spaces are compact, they
always achieve the maximum (see Lemma 4.3 in [17]).

Here, finding an NE would follow from finding a maximum of function
∑
ω∈ΩPω(xω).

This also maximizes the social welfare. For linear project functions, a profile is an NE if
and only if all the agents contribute to the most profitable projects, dividing their bud-
gets between those projects arbitrarily.

3.1. LINEAR PROJECT FUNCTIONS
We first study equilibrium existence, then moving to efficiency. We begin with two
agents, subsequently generalizing it to any number of agents.

To be able to study the existence of Nash equilibria analytically, this section considers
equal θ-sharing, where all the project functions are linear with coefficientsαm ≥αm−1 ≥
. . . ≥ α1 > 0 (the order is w.l.o.g.) We denote the number of projects with the largest
coefficient project functions by k ∈N, i.e. αm =αm−1 = . . . =αm−k+1 >αm−k ≥αm−k−1 ≥
. . . ≥α1. We call those k projects steep. Assume w.l.o.g. that Bn ≥ . . . ≥ B2 ≥ B1 > 0.

To proceed, we need some definitions. Given a strategy profile, we call a project that
receives no contribution a vacant project. We define players that do not obtain a share
from a given project as dominated at that project. We call them suppressed if they also
contribute to that project. Formally,

Definition 2. The dominated players at a projectω are Dω
∆= Nω\Nθ

ω, and the suppressed

players at a project ω are Sω
∆= {

i ∈ Nω : xi
ω > 0

}
\ Nθ

ω.



3. PURE NASH EQUILIBRIUM

2

23

In an NE, a player is suppressed at a project if and only if it is suppressed at all the
projects where it contributes. This holds since if a player is suppressed at project p but it
also contributes to project q 6= p and is not suppressed there, then it would like to move
its contribution from p to project q .

We first assume 2 players, i.e., n = 2, and completely characterize this case. We intro-
duce Lemmas 1, 2, and 3, before formulating and proving the characterization of an NE.
These lemmas describe what must hold in any NE.

Lemma 1. Consider an equal θ-sharing game with two players with 0 < θ < 1 and linear
project functions.

Then the following hold in any NE:

1. At least one player contributes to a steep project.

2. Suppose that a non-suppressed player, contributing to a steep project, contributes
to a non-steep project as well. Then, it contributes either alone or precisely the least
amount it should contribute to achieve a portion in the project’s value.

The following lemma treats budgets that are close to each other.

Lemma 2. Consider an equal θ-sharing game with two players with 0 < θ < 1 and linear
project functions.

If B1 ≥ θB2, then the following hold in any NE.

1. Each player contributes to every steep project.

2. A non-steep project receives the contribution of at most one player.

We need another definition.

Definition 3. A 2-steep project is a project that is most profitable among the non-steep
ones.

The following lemma treats budgets that are further from each other, than within the
factor of the threshold.

Lemma 3. Consider an equal θ-sharing game with two players with 0 < θ < 1 and linear
project functions.

If B1 < θB2,then the following hold in any NE where no player is suppressed.

1. Player 1 contributes only to non-steep projects.

2. Each player receives a (strictly) positive utility, unless all projects are the same.4

3. Player 2 contributes alone to every steep project, and perhaps to a non-steep project
together with i , the threshold amount.

4. The non-steep and non-2-steep projects receive zero contribution.

4That is, unless k = m.
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5. If player 2 contributes to a 2-steep project, then there exists only a single 2-steep
project.

We are finally ready to characterize the existence of an NE for two players.

Remark 1. From now on we assume thatΩi includes all the steep projects, for each player
i ∈ N , that is {m,m −1, . . . ,m −k +1} ⊆Ωi ,∀i ∈ N .

Theorem 3. Consider an equal θ-sharing game with two players with budgets B1,B2.
W.l.o.g., B2 ≥ B1. Assume 0 < θ < 1, and linear project functions with coefficients αm =
αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1 (the order is w.l.o.g). This game has a
pure strategy NEif and only if one of the following holds.5

1. B1 ≥ θB2 and the following both hold.

(a) 1
2αm ≥αm−k ,

(b) B1 ≥ kθB2;

2. B1 < θB2 and also at least one of the following holds.

(a) B1 < θB2
k and αm−k

αm
≤ min

{
1

1+θ , 2θ
1+θ

}
,

(b) B1 < θB2
k+θ2 and αm−k ≥ 2αm−k−1 and 2θ

1+θ ≤ αm−k
αm

≤ 2(1−θ)
2−θ and m−k is the only

2-steep project,

(c) B1 < θ
|Ω|B2 and all the project functions are equal, i.e. αm =α1.

The idea of the proof is as follows. To show existence of an equilibrium under the as-
sumptions of the theorem, we just provide a strategy profile and prove that no unilateral
deviation is profitable. We show the other direction by assuming that a given profile is
an NE and deriving the asserted conditions. To do this, we first use Lemmas 1, 2 and 3
that describe what holds in an equilibrium, in order to limit the possibilities for an equi-
librium profile.

We prepend the following lemma with a technical statement.

Lemma 4. Consider an equal θ-sharing game with two players with budgets B1,B2.
W.l.o.g., B2 ≥ B1. Assume 0 < θ < 1, and linear project functions with coefficients αm =
αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1 (the order is w.l.o.g). Assume that no
player is suppressed anywhere, and player j does not contribute to a non-steep project p.
Consider player i 6= j .

Then, the following hold.

1. If 1
2αm ≥αp , then it is not profitable for i to move any budget δ> 0 from any subset

of the steep projects to p (or to a set of such projects).

5If αm−k−1 (and) or αm−k does not exist, consider the containing condition to be vacuously true.
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2. If 1
2αm > αp , then it is (strictly) profitable for i to move any budget δ > 0 from p to

any subset of the steep projects. If j is suppressed after such a move, then requiring
1
2αm ≥αp is enough.

3. If 1
2αm <αp and it is possible to move δ> 0 from any subset of the steep projects to

p, such that i received and still receives half of the value of these steep projects, then
it is (strictly) profitable for i .

We are now set to prove the theorem.

Proof. (⇒) We prove the existence of NE under the conditions of the theorem.We begin
with case 1. Supposing that B1 ≥ kθB2 and 1

2αm−k+1 ≥ αm−k . Let both players allocate
1/kth of their respective budgets to each of the steep projects. We prove here that this
is an NE. This profile provides each player with k · 1

2αm · B1+B2
k = 1

2αm · (B1 +B2). For
any player i , moving δ > 0 to some non-steep projects is not profitable, according to
part 1 of Lemma 4. Another possible deviation is reallocating budget among the steep
projects. Since B1 ≥ kθB2, we conclude that B2 ≤ B1

kθ , so 2 is not able to suppress 1 (and
the other way around is clearly impossible, even more so) and therefore, merely real-
locating among the steep projects will not increase the profit. The only deviation that
remains to be considered is simultaneously allocating δ> 0 to some non-steep projects
and reallocating the rest of the budget among the steep ones. Any such potentially prof-
itable deviation can be looked at as two consecutive deviations: first allocating δ > 0 to
some non-steep projects, and then reallocating the rest of the budget among the steep
ones. Part 1 of Lemma 4 shows that bringing back all δ > 0 from non-steep projects to
the steep ones, without getting suppressed anywhere (which is possible since B1 ≥ θB2)
will bear a non-negative profit. Therefore, we can ignore the last form of deviations.
Therefore, this is an NE.

We now move to handle case 2. Case 2a: suppose that B1 < θB2
k and αm−k

αm
≤

min
{

1
1+θ , 2θ

1+θ
}

. Let player 1 invest all its budget in m − k, and let 2 invest B2
k in each

steep project. We prove this is an NE. The only possibly profitable deviation for player
1 is to invest in steep projects. However, since B1 < θB2

k , player 1 would obtain nothing
from the steep projects. Also player 2 would not gain from a deviation, because first,
from our assumption,

αm−k

αm
≤ 1

θ+1
⇐⇒ αm(B1/θ) ≥αm−k (B1(1+1/θ)),

and therefore, player 2 would not profit from suppressing player 1 at project m −k. Sec-
ond, according to our assumption,

αm−k

αm
≤ 2θ

θ+1
⇐⇒ αm(θB1) ≥ αm−k ((1+θ)B1)

2
,

and therefore, player 2 would not profit from getting a half of the value of project m −k.
Thus, no deviation is profitable. Therefore this is an NE.

Case 2b: suppose that B1 < θB2
k+θ2 and αm−k ≥ 2αm−k−1 and 2θ

1+θ ≤ αm−k
αm

≤ 2(1−θ)
2−θ and

m−k is the only 2-steep project. Let player 1 invest all its budget in m−k, and let 2 invest
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θB1 in m −k and B2−θB1
k in each steep project. We prove that this is an NE. The possibly

profitable deviations for player 1 is to invest in steep projects or in project m−k−1. Here,
we show them to be non profitable. First, since B1 < θB2

k+θ2 ⇐⇒ B1 < θ B2−θB1
k , there is no

profit for 1 from investing in a steep project. Second, according to our assumption,

αm−k ≥ 2αm−k−1 ⇐⇒ αm−k (B1(1+θ))

2
≥ αm−k (B1(θ2 +θ))

2
+αm−k−1(B1(1−θ2)),

and therefore, player 1 would not profit from investing in m −k −1. Next, we show that
also player 2 does not have incentives to deviate. Since we can assume that the non-2-
steep projects do not receive any contribution and since the way how the contribution is
divided between the steep projects does not influence the profit, the possible deviations
to improve player 2’s profit are transferring budget from the steep projects to m −k or
the other way around. We show now that they are not profitable. First, according to our
assumption,

αm−k

αm
≤ 2(1−θ)

2−θ ⇐⇒ αm(B1/θ−θB1)+ αm−k (B1(1+θ))

2
≥αm−k (B1(1+1/θ)),

and therefore, player 2 would not profit from suppressing 1 on project m −k. Second,
according to our assumption,

αm−k

αm
≥ 2θ

1+θ ⇐⇒ αm−k (B1(1+θ))

2
≥αm(θB1),

and therefore, player 2 would not profit from moving θB1 from m −k to a steep project.
We have shown that no deviation is profitable. Therefore this is an NE.

Case 2c: suppose that B1 < θ
|Ω|B2 and all the project functions are equal. Then, player

2 investing B2
|Ω| in every project, and player 1 using any strategy is an NE. To see this, no-

tice that player 2 obtains αm(B2 +∑
ω∈Ω x1

ω), that is the maximum possible profit. Player
1 will be suppressed in any attempt to invest, and therefore has no incentive to deviate.
Therefore this is an NE.

(⇐) We show the other direction now. We assume that a given profile is an NE and de-
rive the conditions of the theorem. Assume that a given profile is an NE. We first suppose
that B1 ≥ θB2 and we shall derive that the conditions of 1 hold.

Since B1 ≥ θB2, then according to Lemma 2, each player contributes to every steep
project. Suppose to the contrary that 1

2αm−k+1 <αm−k . Let i be a player who contributes
to m more than its threshold there, and let j be the other player. Then, by part 3 of
Lemma 4, all non-steep projects with coefficients larger than 0.5αm must get a positive
contribution from j , for otherwise i would profit by transferring there part of its budget
from m. Therefore, the non-steep projects with coefficients larger than 0.5αm receive no
contribution from i , according to Lemma 2.

Therefore, at all the steep projects, player j contributes exactly its threshold value,
while i contributes above it. Also, i contributes nothing to any non-steep project: we
have shown this for the non-steep projects with coefficients larger than 0.5αm , now we
show it for the rest. If i contributed to a non-steep project with coefficient at most 0.5αm ,
he would benefit from deviating to a steep one, by part 2 of Lemma 4 (when the coeffi-
cient is exactly 0.5αm , we use the fact that j would be suppressed by such a deviation).



3. PURE NASH EQUILIBRIUM

2

27

We assume that B1 ≥ θB2, and thus, for any i 6= j we have

θB j ≤ Bi ⇐⇒ B j −θBi ≤ Bi

θ
−θBi ⇐⇒ B j −θBi ≤ Bi −θ2Bi

θ
.

Thus, a non-steep project with coefficients larger than 0.5αm receives from j at most
Bi−θ2Bi

θ , and since i can transfer to that project Bi − θ2Bi without losing a share at
the steep projects, i can transfer exactly θ-share of j ’s contribution there and profit
thereby, by part 3 of Lemma 4 (that lemma assumes j does not contribute to those
non-steep projects, but contributing exactly the threshold to such a project is not worse
than alone). This profitable deviation contradicts our assumption and we conclude that
1
2αm ≥αm−k .

It is left to prove that B1 ≥ kθB2. Part 2 of Lemma 4 implies there are no contribu-
tions to non-steep projects, since they would render the deviation to the steep projects
profitable, unless 1

2αm−k+1 = αm−k , in which case a 2-steep project can get a positive
investment from one player. Thus, the players’ utility is at most the same as when each
steep project obtains contributions from both players, and other projects receive noth-
ing. Thus, each player’s utility is at most k · (αm/2)( B1+B2

k ) = (αm/2)(B1 +B2). If 2 could
deviate to contribute all B2 to a steep project while suppressing 1 there, player 2 would
obtain αm(B2 + y), for some y > 0. This is always profitable, since

B2 ≥ B1 ⇒ B2 +2y > B1 ⇐⇒ αm(B2 + y) > (αm/2)(B1 +B2).

Thus, since we are in an NE, 2 may not be able to suppress i and therefore B2 ≤ B1
k

1
θ ⇒

B1 ≥ kθB2. Thus, we have proved that Conditions 1 hold.
Suppose now that B1 < θB2 and we shall derive that Conditions 2 hold.
We exhaust all the possibilities for an NE, as follows: 1 is suppressed, 1 is not sup-

pressed and player 2 does not contribute to non-steep projects, and 1 is not suppressed
and player 2 contributes to non-steep projects. We show that each of this options entails
at least one of the sub-conditions of 2.

First, consider the case when 1 is suppressed.6 Then, 2 invests more than B1/θ at
each project. Therefore, B1 < θ

|Ω|B2. If not all projects were steep, then 2 would profitably
transfer some amount to a steep project from the non-steep ones, while still dominating
1 everywhere. This deviation would contradict the profile being an NE. Therefore, all
projects are steep and condition 2c holds.

Assume now that no player is suppressed. Therefore, according to Lemma 3, player
1 contributes only to the 2-steep projects, and player 2 contributes to all the steep ones,
and perhaps to a 2-steep one as well.

First, we assume that player 2 does not contribute to non-steep projects and show
that it entails condition 2a. Next, we assume that 2 does contribute to non-steep projects
and show that this entails condition 2b.

First, assume that player 2 does not contribute to non-steep projects. Since player 1
does not prefer to deviate by contributing exactly the threshold at a steep project, B1 <
θ B2

k is true. In an NE, player 2 would not profit from suppressing player 1 at a 2-steep
project, and therefore

6See definition 2.
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αm(B1/θ) ≥αm−k (B1(1+1/θ)) ⇐⇒ αm−k

αm
≤ 1

θ+1
.

In addition, in an NE, player 2 would not profit from contributing exactly the thresh-
old at a 2-steep project, and therefore

αm(θB1) ≥ αm−k (1+θ)B1

2
⇐⇒ αm−k

αm
≤ 2θ

1+θ .

Thus, we have proved that condition 2a holds.
Next, assume that player 2 contributes to non-steep projects.
Now, according to Lemma 3, m −k is the single 2-steep project, where player 1 con-

tributes all B1, while player 2 contributes θB1 there, and she divides the rest of her budget
between all the steep projects, yielding a positive contribution to each such project.

Assume that a steep project receives y > 0 (from player 2, of course). If player 1
could achieve the threshold θy , it would deviate, for the following reasons. We have
αm(B1 + y)/2 > αm−k (B1 +θB1)/2, unless, perhaps, if y < θB1. In such a case, however,
1 can suppress player 2 and obtain αm(B1 + y), which is larger than αm−k (B1(1+θ))/2.
Consequently, from the profile being an NE, we conclude that 1 is not able to achieve the
threshold θy , and therefore

B1 < θB2 −θB1

k
⇐⇒ B1 < θB2

k +θ2 .

In addition, since player 1 does not prefer to contribute to m−k only the threshold θ2B1

and move the rest to m −k −1, it must hold that

αm−k (B1(1+θ))

2
≥ αm−k (B1(θ2 +θ))

2
+αm−k−1(B1(1−θ2)) ⇐⇒ αm−k ≥ 2αm−k−1.

Since player 2 does not want to suppress 1 at m −k, we conclude that

αm((B1)/θ−θB1)+ αm−k (B1(1+θ))

2
≥αm−k (B1(1+1/θ)) ⇐⇒ αm−k

αm
≤ 2(1−θ)

2−θ .

Finally, since player 2 does not prefer moving θB1 to a steep project over leaving it at
m −k, it holds that

αm−k(B1(1+θ))

2
≥αm(θB1) ⇐⇒ αm−k

αm
≥ 2θ

1+θ .

Therefore, condition 2b holds. To conclude, at least one of the sub-conditions of 2 holds,
thus finalizing the proof of the other direction of the theorem.

We conclude that besides the equilibria with αm = αm−k , there exists an NE if and
only if αm−k is at most a constant fraction of αm .

Corollary 1. Assume the conditions of Theorem 3 and that there exist two projects. Then,
once all the parameters besides αm−k and αm are set, there exists a C > 0, such that an NE
exists if and only if αm−k

αm
≤C , and, perhaps, if and only if αm−k

αm
= 1.
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Proof. Consider the bounds on the possible values of αm−k
αm

such that at least one NE ex-
ists, besides case 2c. From Theorem 3, the only way that this corollary could be wrong
would require the upper bound on αm−k

αm
from 2a to be strictly smaller than the lower

bound from 2b, while the two bounds on αm−k
αm

from 2b gave a non-empty segment.

These conditions mean that both 1
1+θ < 2θ

1+θ and 2θ
1+θ ≤ 2(1−θ)

2−θ should hold. The first
inequality means θ > 0.5, while the second one means θ ≤ 0.5. Since these conditions
cannot hold simultaneously, the corollary is never wrong.

The proof of the necessity of the conditions of Theorem 3 relies on the lemmas that
describe the structure of an NE, which are not easily generalized for n > 2. However,
some of the sufficiency conditions, namely 1 and 2c, extend for a general n as follows.

Theorem 4. Consider an equal θ-sharing game with n ≥ 2 players with budgets Bn ≥
. . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, and linear project functions with coefficients
αm =αm−1 = . . . =αm−k+1 >αm−k ≥αm−k−1 ≥ . . . ≥α1 (the order is w.l.o.g).

This game has a pure strategy NE, if one of the following holds.7

1. Bn−1 ≥ θBn and the following both hold.

(a) 1
nαm ≥αm−k ,

(b) B1 ≥ kθBn ;

2. Bn−1 < θBn and also the following holds.

(a) Bn−1 < θ
|Ω|Bn and all the project functions are equal, i.e. αm =α1.

Proof. It is analogous to the proof for n = 2, with the following remarks. In case 1, all
the players equally divide their budgets among all the steep projects. In case 2, player n
dominates everyone else.

In order to facilitate decisions, it is important to analyze the efficiency of the various
Nash Equilibria. We aim to find the famous price of anarchy (PoA), which is the ratio of a
worst NE’s efficiency to the optimum possible one, and the price of stability (PoS), which
is the ratio of a best NE’s efficiency to the optimum possible one.

We first completely handle two players.

Theorem 5. Consider an equal θ-sharing game with two players with budgets B1,B2.
W.l.o.g., B2 ≥ B1. Assume 0 < θ < 1, and linear project functions with coefficients αm =
αm−1 = . . . =αm−k+1 >αm−k ≥αm−k−1 ≥ . . . ≥α1 (the order is w.l.o.g).8

1. Assume that B1 ≥ θB2 and the following both hold.

(a) 1
2αm ≥αm−k ,

(b) B1 ≥ kθB2;

7If αm−k does not exist, consider the containing condition to be vacuously true.
8If αm−k does not exist, consider the containing condition to be vacuously true.
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Then, there exists a pure strategy NE and there holds: PoS = PoA = 1.

2. Assume that B1 < θB2 and also at least one of the following holds.

(a) B1 < θB2
k and αm−k

αm
≤ min

{
1

1+θ , 2θ
1+θ

}
.

Then, there exists a pure strategy NE and the following holds. PoS =
αm B2+αm−k B1
αm (B1+B2) . If the case 2b holds as well, then PoA = αm (B2−θB1)+αm−k (B1(1+θ))

αm (B1+B2) ;
otherwise, PoA = PoS.

(b) B1 < θB2
k+θ2 and αm−k ≥ 2αm−k−1 and 2θ

1+θ ≤ αm−k
αm

≤ 2(1−θ)
2−θ and m−k is the only

2-steep project.

Then, there exists a pure strategy NE and the following holds. If
the case 2a holds as well, then PoS = αm B2+αm−k B1

αm (B1+B2) ; otherwise, PoS =
αm (B2−θB1)+αm−k (B1(1+θ))

αm (B1+B2) . In any case, PoA = αm (B2−θB1)+αm−k (B1(1+θ))
αm (B1+B2) .

(c) B1 < θ
|Ω|B2 and all the project functions are equal, i.e. αm =α1.

Then, there exist pure NE and PoS = 1,PoA = B2
B1+B2

.

The proof is in Appendix A. Its idea is to show that some equilibria are the most effi-
cient and some are the least efficient, using Lemmas 2, 3, and 4 to limit the possibilities
for equilibria.

We derive the exact lower bound (infimum) and the maximum of the price of anarchy
and stability.

Corollary 2. Consider an equal θ-sharing game with two players with budgets B1,B2.
W.l.o.g., B2 ≥ B1. Assume 0 < θ < 1, and linear project functions with coefficients αm =
αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1 (the order is w.l.o.g).9 Then, the infi-
mum of PoS over all the cases is k

k+θ (> 0.5), and the maximum is 1. The same holds for
PoA.

We now generalize the efficiency results 1 and 2c of Theorem 5 for a general n ≥ 2.

Theorem 6. Consider an equal θ-sharing game with n ≥ 2 players with budgets Bn ≥
. . . ≥ B2 ≥ B1, 0 < θ < 1 (the order is w.l.o.g.), and linear project functions with coefficients
αm =αm−1 = . . . =αm−k+1 >αm−k ≥αm−k−1 ≥ . . . ≥α1 (the order is w.l.o.g).10

1. Assume that Bn−1 ≥ θBn and the following both hold:

(a) 1
nαm ≥αm−k ,

(b) B1 ≥ kθBn ;

Then, there exists a pure strategy NE and there holds: PoS = 1.

2. Assume that Bn−1 < θBn , Bn−1 < θ
|Ω|Bn and all the project functions are equal,

i.e. αm =α1.

Then, there exist pure NE and the following holds: PoS = 1,PoA = Bn∑
i∈{1,2,...,n} Bi

.

9If αm−k does not exist, consider the containing condition to be vacuously true.
10If αm−k does not exist, consider the containing condition to be vacuously true.
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To summarize the section, for linear project functions and the equal θ-sharing
model, we completely analyze the existence and efficiency of equilibria for 2 agents and
provide some results for n ≥ 2 agents as well. Some other cases are simulated in the next
section.

4. MIXED NASH EQUILIBRIUM
As we show in the previous section, a game may not possess a pure NE. Therefore, we
naturally turn to mixed extensions11 and ask whether a mixed extension always has a
NE. At first, this is unclear. As the game is infinite, the theorem by Nash [18] about the
existence of a mixed NE in finite games is irrelevant. Since the game is not continuous,
even the theorem by Glicksberg [19] about the existence of a mixed NE in continuous
games is not applicable. Fortunately, we answer affirmatively employing a more general
existence theorem by Maskin and Dasgupta [20].

Theorem 7. Any shared effort game with linear project functions and θ-equal sharing has
a mixed Nash equilibrium.

The existence result automatically extends to the solution concepts that include
mixed Nash equilibria, such as correlated [21] and coarse correlated [22] equilibria.
Luckily, not only existence results but also some bounds on the social welfare of solution
concepts extend to the other equilibria as well. An important preliminary observation is
that the maximum social welfare stays the same even when (correlated) randomization
is allowed; it is always αm

∑n
i=1 Bi .

Consider the results of Theorem 6. Its lower bounds on the price of anarchy stem
from the utility that certain players can always achieve, and the bounds, therefore, hold
for mixed, correlated and coarse correlated equilibria as well. Since any pure NE is also a
mixed/correlated/coarse-correlated NE, the rest of the efficiency results, based on pre-
senting an NE, also extend to the other solution concepts.

To conclude, we prove the existence of NE in the mixed case. Then, we show that
the efficiency bounds from Theorem 6 apply to the mixed case as well. This is the only
section dealing with not only pure NE; so the next section already considers pure NE.

5. SIMULATIONS
Theory covers shared effort games with more than two players only partially. To explore
the existence and efficiency of NE in these games, we simulate a variation of fictitious
play [23], which comes to mind for its well-known convergence properties (see Sec-
tion 6.1). At each time step of a fictitious play, each player best-responds to the cumula-
tive strategy of the others.

Since the classical fictitious play is defined for finite games, and we are dealing with
an infinite game, we may not apply fictitious play as is. Therefore, We first adapt the fic-
titious play [14] to our infinite game. Danskin [24] defines the best response to maximize
the average utility against all the previous strategies of the other players, while we, as well
as the original fictitious play, best respond to the cumulative strategy of the others.

11A mixed extension has strategies that are distributions on the pure strategies and the respective utilities are
the expected utilities under these distributions.
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After generalizing the fictitious play, we want to run it. In fictitious play [14], every
player finds a best response to the current strategies of the others at each step, if it exists;
if not, the play is undefined.

We suggest an algorithm for finding a best response, if it exists, for the case of two
projects. This allows implementing the adapted fictitious play.

5.1. INFINITE-STRATEGY FICTITIOUS PLAY FOR SHARED EFFORT GAMES
Since the game is infinite, we do not need mixing to average the strategies. Denote the
set of all the best responses of player i to profile x−i of the others by BR(x−i ).

Definition 4. Given a shared effort game with players N , budget-defined strategies Si ={
xi = (xi

ω)ω∈Ω ∈R|Ω|
+ |∑ω∈Ωi

xi
ω ≤ Bi ,ω ∉Ωi ⇒ xi

ω = 0
}

and utilities ui (x)
∆=∑

ω∈Ωi
φi
ω(xω),

define an Infinite-Strategy Fictitious Play (ISFP) as the following set of sequences. Con-
sider a (pure) strategy in this game at time 1, i.e. (xi (1))i∈N = ((xi (1)ω)ω∈Ω)i∈N , define

X i (1)
∆= {

xi (1)
}
, and define recursively, for each i ∈ N and t ≥ 0, the set if the possible

strategies at time t +1:

X i (t +1)
∆=

{
t xi (t )+br(x−i (t ))

t +1
| xi (t ) ∈ X i (t ),br(x−i (t )) ∈ BR(x−i (t ))

}
. (2.2)

Thus, a fictitious play is a best response to the arithmetic average of the others’ actions
till now.

We say that an ISFP converges to x∗ ∈ R+n if at least one of its sequences converges to
x∗ in every coordinate.

Since BR(x−i (t )) is a set, there may be multiple ISFP sequences. For an ISFP to be
defined, we need that BR(x−i (t )) 6= ;, that is the utility functions attain a maximum.
Since the utility functions are, generally speaking, not upper semi-continuous, they may
sometimes not attain a maximum, rendering the ISFP undefined.

In ISFP, all the plays have equal weights in the averaging. In the other extreme, a
player just best-responds to the previous strategy profile of other players, thereby at-
tributing the last play with the weight of 1 and all the other plays with 0. In general,
we define, for an α ∈ [0,∞], an α− ISFP play as in Definition 4, but with the following
formula instead12

X i (t +1)
∆=

{
αt xi (t )+br(x−i (t ))

αt +1
| xi (t ) ∈ X i (t ),br(x−i (t )) ∈ BR(x−i (t ))

}
. (2.3)

Here, the last play’s weight is 1
αt+1 .

We do not know whether and when any convergence property can be proven for the
generalized fictitious play in shared effort games. In simulations, our generalized ficti-
tious play often converges to a NE. Roughgarden and Tardos [25, Chapter 17] say that a
highly probable convergence to an equilibrium in real life dynamics bolsters the impor-
tance of its efficiency.

Next, we solve the algorithmic problem of finding whether a best response exists, and
if it does, what it is.

12For α=∞, we just obtain a constant sequence.
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5.2. BEST RESPONSE IN A 2-PROJECT GAME

Let the projects be Ω = {
ψ,ω

}
. We would like to find a best response for a player i ∈ N ,

all the other players’ strategies x−i ∈ S−i being fixed. From the weak monotonicity of the
share functions, we may assume w.l.o.g. that a best responding player contributes all her
budget. Then, a strategy is uniquely determined by the contribution to projectψ and we
shall write xi for xi

ψ, meaning that xi
ω = Bi −xi .

We now state the conditions for the following theorem. Consider Mθ
eq sharing and

convex project value functions. Let D i
0 < D i

1 < . . . < D i
m and W i

0 < W i
1 < . . . < W i

l be the

jumps of φi
ψ and φi

ω respectively. (The first points in each list are the minimum contri-
butions to projects ψ,ω, respectively, required for i to obtain a share. The other points
are the points at which another player becomes suppressed at the respective project.)
The possible discontinuity points of the total utility of i are thus D i

0 < D i
1 < . . . < D i

m and
Bi −W i

l < . . . < Bi −W i
1 < Bi −W i

0 . Denote the distinct points of these lists merged in the
increasing order by L. Let all the contributions of the players in N \ {i } be fixed as they
are given, and consider xi as the only variable. Let LBi denote the points of the list L that
are on [0,Bi ], together with 0 and Bi , and let MBi be LBi with an arbitrary point added
between each two consecutive points.

Theorem 8. The maximum of the one-sided limits at the points of LBi and of the values
at the points of MBi yields the utility supremum13 of the responses of player i . This supre-
mum is a maximum (and in particular, a best response exists) if and only if it is achieved
at a point of MBi .

When finding the one-sided limit at a point of LBi takes constant time, the resultant
algorithm runs in O(n logn) time and in linear space.

5.3. THE SIMULATION METHOD
We consider the θ-equal 2-project case with linear project functions, where Theorem 8
supports best responding. For each of the considered shared effort games, we run several
α−ISFPs, for severalαs. If at least once in the simulation process no best response exists,
we drop this attempt. While running an α− ISFP, we stop after a predefined number of
iterations, or if an NE has been found.

We choose an initial belief state about all the players and run the ISFP from this state
on, updating this common belief state at each step by finding a best response of each
player to the current belief state. To increase the chances of finding an existing NE, for
each game, we generate 45 fictitious plays by randomly and independently generating
the initial belief state on each player’s actions, uniformly over the possible histories. We
could have tried more than 45, but it takes too much time, while not helping much; for
example, if we ran 60 fictitious plays, which is 33% more than 45, the leftmost figure on
the first row of Figure 2.3 would change as shown in Figure 2.2, which is not much differ-
ent for such a large increase in the run time. While simulating, when a player has mul-
tiple best responses, we choose a closest one to the current belief state of the fictitious
play, in the sense of minimizing the maximum distance from the last action’s compo-
nents. If we find an NE in at most 50 iterations, we give a positive answer, and otherwise,

13The supremum is the exact upper bound; it always exists.
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this attempt does not solve this game. For each found NE, we calculate its efficiency by
dividing its total profit by the optimum possible total profit and plot it using shades of
gray. When no NE is found, we plot it black.
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Figure 2.2: The existence and efficiency of NE for 2 players as a function of the ratio of the project functions
coefficients and the ratio of the two largest budgets. The right figure is obtained from increasing the number
of plays by 33%, relatively to the left one. Only 1 data point has changed.

5.4. RESULTS AND CONCLUSIONS
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Figure 2.3: The existence and efficiency of NE for 2 players as a function of the ratio of the project functions
coefficients and the ratio of the two largest budgets. The first row plots the results of the simulations, and the
second row shows the theoretical predictions. In the results of the simulations, black color means that Nash
Equilibrium has not been found. For all the other cases, the efficiency, a value in (0,1], is shown by the shade
(from dark gray = 0.0 to white = 1.0). In the plot of the theoretical predictions, black color means that no NE
exists, while white means that a Nash Equilibrium exists.

We present the results representing the trends in the body of the chapter; the reader
can see also other, but similar, results in Section B.

First, to validate our simulations, we compare the results of the simulations to the
theoretically known case of two players. This can be seen in Figure 2.3. We see that the
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Figure 2.4: The existence and efficiency of NE as function of project functions for 2,3,4,5 and 6 players. Black
color means that Nash Equilibrium has not been found. For all the other cases, the efficiency, a value in (0,1],
is shown by the shade (from dark gray = 0.0 to white = 1.0).
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Figure 2.5: The efficiency as a function of project value functions’ ratio for 2,3,4,5 and 6 players. Efficiency
of 0 means that Nash Equilibrium has not been found. For all the other cases, the efficiency, a value in (0,1], is
shown.
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Figure 2.6: The existence and efficiency of NE as function of the largest and the second largest budgets. Black
color means that Nash Equilibrium has not been found, and very dark gray color means the area is not defined,
since the second highest budget may not be larger than the highest one. For all the other cases, the efficiency,
a value in (0,1], is shown by the shade (from dark gray = 0.0 to white = 1.0).
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Figure 2.7: The efficiency as a function of the ratio of the two largest budgets. Efficiency of 0 means that Nash
Equilibrium has not been found, and −0.5 means the the domain is not defined, since the second highest
budget may not be larger than the highest one. For all the other cases, the efficiency, a value in (0,1], is shown.
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simulations are imperfect, since they do find an equilibrium in several cases when no
equilibrium exists. In Figure 2.8 in Section B, we also observe that simulations can fail
to find an existing NE. Nonetheless, they are quite accurate, and therefore, useful for
obtaining an impression on the existence and the efficiency of NE. In particular, for 2
players, where we have a perfect theoretical prediction, we see that the simulations err
for θ = 0.2 in 5 from 10∗10 = 100 points, which constitute 5%. For θ = 0.5, no errors exist,
and for θ = 0.9, the error percentage is 1%.

Besides Figure 2.3, Figure 2.8, and Figure 2.9 in Section B describe the existence and
efficiency of the NE as a function of the ratio of the coefficients of the project functions
and of the ratio of the second highest budget to the highest one, and compare this to
the theoretical predictions. Notice the difference between the areas in Figure 2.3 that
correspond to B1 ≥ θB2 and to B1 < θB2, fitting Theorem 3. For more than two players,
a similar but less sharp difference appears. For more than two players, our theory is not
a complete characterization, and this reason for lack of fit can be exacerbated by the
possible simulation errors, so we do not expect a complete correspondence. We notice
that the area of equilibrium existence is more complicated for multiple players than the
sufficient conditions from Theorem 4 predict, meaning that the simulations find that the
sufficient conditions are not necessary.

For two agents, except for the NE when the two projects are equal, an NE exists for a
budget ratio if and only if the value functions ratio is below a certain value. This is proven
in Corollary 1.

When the project function coefficients are the independent variables, Figure 2.4
presents the NE. Each line of the simulation plots corresponds to a setting for a given
number of players, and within a line, the plots are generated for an increasing sequence
of θ. Mostly, an NE exists except a cone where the project functions are quite close to
each other. Interestingly, sometimes an NE exists also when the project functions are
nearly the same (at ratio 1), or at another constant ratio with each other. In all cases,
the ratio of project functions determines existence of an NE, which, for two players, is
predicted by Theorem 3. Usually, the more there are players, the less settings with an NE
we find.

More results with similar trends appear in Figure 2.10, Figure 2.11 and Figure 2.12
in Section B.

We plot efficiency as a function of the ratio of project functions’ coefficients in Fig-
ure 2.5. Mostly, the efficiency is uniquely determined by the ratio of the project func-
tions, and the function is piecewise linear. Each linear piece is non-decreasing. For two
players, it is linear, in the spirit of Theorem 5. (Though not directly predicted by it, since
the theorem considers extremely efficient or inefficient equilibria, and has several cases,
which imply piecewise linearity.) The larger is the θ, the steeper becomes the piecewise
linear dependency. More results with similar trends appear in Figure 2.13, Figure 2.14
and Figure 2.15 in Section B.

When the largest and the second largest budgets are the independent variables, Fig-
ure 2.6 presents the equilibria. (The budgets of the other players are spread on equal
intervals). Each line of the plot corresponds to a setting of project function coefficients
for a given number of players, and within a line, the plots are generated for an increasing
sequence of θ. Whether we find an NE almost always depends on the ratio of the second
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highest budget to the highest one. For two players, this fits Theorem 3. More results with
similar trends appear in Figure 2.16 in Section B.

Figure 2.7 plots efficiency as a function of the ratio of the two largest budgets. Effi-
ciency is determined by the ratio of the second highest to the highest budgets. For two
agents, this is in the spirit of Theorem 5. More results with similar trends appear in Fig-
ure 2.17 in Section B.

To summarize, the existence of NE is related to the ratio of project function coeffi-
cients and the budget ratio being in some limits, limits that in particular depend on the
threshold. This is in the spirit of Theorems 3 and 4. Based on Theorem 3, Corollary 1,
and the simulation results, we hypothesize that an NE exists if and only if at least one
of several sets of conditions on the ratio of the budgets holds, and for every such con-
dition, several conditions of being smaller or equal to a function of the threshold (and
not the budgets) on the ratio of project function coefficients hold together. Therefore,
the more players exist, the more conditions on the budgets have to hold simultaneously,
and therefore, the less NE exist. We also observe that when only the project function co-
efficients change, there can sometimes be an NE in the case of project coefficients being
at a single given ratio, and besides this case, an NE exists if and only if the ratio of the
smaller coefficient to the larger one is at most some value.

The efficiency of the NE that we find depends on the ratio of the project function
coefficients and on the ratio of the budgets, in the spirit of Theorems 5 and 6. Based
on Theorem 5 and the simulation results, we hypothesize that the price of anarchy and
stability of a shared effort game depends piecewise linearly on the project function co-
efficients ratio and (in some other manner) on the budget ratio. In each linear piece, the
dependency on the project function coefficients is non-decreasing with θ.

6. RELATED WORK
Most of the relevant related work is presented in Section 1.1.1. We do repeat some parts
here, to keep this chapter self-contained, and we also elaborate on some points, relevant
to this chapter. We first present a model, resembling ours, but quite different. Then,
we present the area of efficiency of Nash equilibria, and proceed to what has been said
about the existence and efficiency of NE for shared effort, concluding that no analysis
of the general setting has taken place, a gap which we partially fill. In Section 6.1, we
motivate our usage of the fictitious play.

Zick, Elkind and Chalkiadakis [26, 27] suggest a model, which is reminiscent of ours,
but expressed in the terms of cooperative games, where every coalition of players has
a value. Contributing to a coalition can be considered as contributing to a project in a
shared effort game, and in both cases players have budgets and obtain revenues. Despite
these similarities, the model of Zick et al. is not a game in our sense, since it does not
define profits. Moreover, even if we consider a shared effort game as a particular case
of their model, a positive threshold can vitiate individual rationality, since a player who
obtains a positive profit when she is the only contributor to a project may obtain nothing
when others contribute to the same project.

An NE can be inefficient, such as in the famous example of the prisoner’s
dilemma [15, Example 16.2]. Since the introduction of price of anarchy [28] and price
of stability [12], there have been many studies on the matter.
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Roughgarden and Tardos [25, Chapter 17] discuss inefficiency of equilibria in non-
cooperative games and consider the examples of network, load balancing and resource
allocation games. They argue that understanding exactly when selfish behavior is so-
cially profitable is important, since in many applications, implementing control is ex-
tremely difficult. Roughgarden and Tardos mention that the use of ratio of the objectives
in an equilibrium and in the optimum to measure efficiency (PoA,PoS) constitute the
two most popular approaches to choosing which equilibrium to use. The price of anar-
chy measures the best guarantee on an NE, while the price of stability measures the cost
of leading the game to a specific equilibrium. Another possible approach is average-
case analysis, being much more difficult to define and analyze. We now present what
has been said about the efficiency of games, similar to ours.

Let us present the related models. Shared effort games where only the contribu-
tor with the highest contribution obtains the project’s value, while everyone pays, are
called all-pay auctions, and their equilibria have been studied, for instance, by Baye,
Kovenock and de Vries [29]. All-pay auctions model lobbying, single-winner contests,
political campaigns, striving for a job promotion (see e.g. [4]) and Colonel Blotto games
with two players [8]. In a Colonel Blotto game, two generals divide their armies between
battlefields, and at every battlefield, the larger force wins. The overal number of the
won battlefields defines the utility of a general. Roberson [8] analyzes the equilibria of
this game and their expected payoffs. Any outcome is socially optimum, since this is a
constant-sum game.

For shared effort games, under very specific conditions (obtaining at least a constant
share of one’s marginal contribution to the project’s value and θ = 0), Bachrach et al. [13]
have shown that the price of anarchy (PoA) is at most the number of players. This work
also shows upper bounds on the PoA for the case of convex project functions, where
each player receives at least a constant share of its marginal contribution to the project’s
value. In this paper, we study more general θ ∈ [0,1] sharing mechanisms without these
conditions, provide precise conditions for existence of NE, and find their efficiency. An-
shelevich and Hoefer [30] considered an undirected graph model, where the nodes are
the players and each player divides its budget between its adjacent edges in minimum
effort games (where the edges are the 2-player projects), each of which equally rewards
both sides by measure of the project’s success (i.e., duplication instead of division). An-
shelevich and Hoefer prove the existence of equilibria, find the complexity of finding
an NE, and find that the PoA is at most 2. A related setting of multi-party computa-
tion games appeared in [31]. There, the players are computing a common function that
requires them to compute a costly private value, motivating free-riding. The work sug-
gests a mechanism, where honest computation is an NE. This differs from our work,
since Smorodinsky and Tennenholtz consider cost minimization, and the choice of the
players is either honestly computing or free riding, no choice of projects.

To conclude, there has been no research of the NE of our problem in the general case.

6.1. FICTITIOUS PLAY

We generalize and employ fictitious play, introduced by Brown [14], to find equilibria in
simulations. It has been widely researched. In this play, each player best-responds to
the product of cumulative marginal histories of the others’ actions at every time step. It
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is a myopic learning process, where each player always best responds to the other play-
ers’ strategies at every time step. If the game is finite, then if a fictitious play converges,
then the distribution in its limit is an NE [32]. Conversely, a game is said to possess the
fictitious play property if every fictitious play approaches equilibrium in this game [33].
Many researchers show games that possess this property, for example, two-person zero-
sum games [23] and finite weighted potential games [33]. A famous example for a game
without such property is a 3×3 game by Shapley [34]. In this game, there is a cyclic ficti-
tious pay that plays each strategy profile for at least an exponentially growing number of
times, and therefore, does not converge at all. Moreover, even its subsequences do not
converge to an NE.

7. CONCLUSIONS AND FUTURE WORK
This chapter considers shared effort games where the players contribute to the given
projects, and subsequently share the profits of these projects, conditionally on the allo-
cated effort. We study existence and efficiency of the NE, arriving at the following.

A pure NE exists if the utility functions are continuous and concave, and the strategy
sets are non-empty, compact and convex. We first characterize the existence and effi-
ciency of pure NE for shared effort games with two players and linear project functions.
When a NE exists and the budgets are close to each other, all the NE are socially opti-
mal.When the budgets are further apart, in the sense that smallest budget is less than
threshold times the largest one, the efficiency depends on the ratio of the budgets and
of the two or three largest projects’ coefficients and is always greater than half of the
optimum.

When the budgets are close, we demonstrate an optimal NE where everyone equally
spreads her budgets between the most profitable projects. This motivates the organizers
of a project to make it most profitable possible. Even second best can be no good.

For arbitrarily many players, we find socially optimal pure equilibria in some cases.
When all the projects are equivalent and the largest budget is much larger than the rest
together, then every NE is nearly optimal. This bound also holds for the mixed extension,
where we show that an NE always exists.

For more than two players, we simulate fictitious play, to study the existence of NE.
To this end, we generalize fictitious play to infinite strategy spaces and describe some of
the best responses of a player to the other players’ strategies. In the cases where we find
a NE, we also estimate its efficiency. All the theoretical predictions about the simulated
cases have been corroborated. For more than three players, the efficiency of a NE can be
suboptimal, as we see in Section 5.4. The most important factor for existence and effi-
ciency of an equilibrium is the ratio of the largest to the second largest project function
coefficients and of the largest to the second largest budgets. Therefore, to influence the
projects and the agents to some extent, one should better influence the projects with the
highest revenues and the agents with the largest abilities (budgets).

Consider some directions for future work. Mixed equilibria model randomization
over pure strategies. Since randomization can be undertaken in practice, we would like
to find concrete mixed equilibria to be able to advise on playing them, like we do here for
the pure equilibria. Second, we would like to extend our complete theoretical character-
ization of the existence of (pure) NE to more than two players and to non-linear project
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functions. Next, extending simulations to more than two projects would improve our
understanding of the various NE that are not yet analyzed analytically.

The theoretical analysis of efficiency implies that for two players with close budgets,
no coordination is needed, since the price of anarchy is 1. The price of anarchy is close to
1 also for two players with budgets that are far from each other, and it is more than half.
For three or more players, some coordination may improve the total utility, though we
have seen many cases with efficiency above 0.75. We have provided conditions for a gen-
eral number of players where every equilibrium is almost optimal, so no coordination is
required. To conclude, we have analyzed when contributions to public projects are in
equilibrium and what is lost in these equilibria relatively to the best possible contribu-
tion profiles. In the scenarios where much is lost, coordination may improve efficiency.
We have assumed every project yields some value. In reality, however, a project often
needs to meet certain requirements to obtain any utility altogether. These additional
requirements are modeled in the following chapter.
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APPENDIX

A. OMITTED PROOFS
We give the previously omitted proofs here, in the order of appearance.

We shall now prove Theorem 7. To remain self-contained, before proving the theo-
rem, we bring here the necessary definitions used by [20]. Given player i with the strategy

set Ai ⊆Rm , define A
∆= A1 × . . .× An .

Definition 5. For each pair of agents i , j ∈ 1, . . . ,n, let D(i ) be a positive natural, and for a
d ∈ {1, . . . ,D(i )}, let f d

i , j : R→ R be continuous, such that ( f d
i , j )−1 = f d

j ,i . For every player i ,

we define

A∗(i )
∆= {(a1, . . . , an) ∈ A | ∃ j 6= i ,∃k ∈ {1, . . . ,m} ,∃d ∈ {1, . . . ,D(i )} ,

such that a j ,k = f d
i , j (ai ,k )}. (2.4)

http://dx.doi.org/ http://dx.doi.org/10.1006/jeth.1996.0014
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We now define weakly lower semi-continuity, which intuitively means that there is a
set of directions, such that approaching a point from any of these directions never causes
the function to jump upward.

Definition 6. Let B m ∆= {
z ∈Rm |∑m

i=1 zl
2
}= 1, meaning it is the surface of the unit sphere

centered at zero. Let e ∈ B m and θ > 0. Function gi (ai , a−i ) is weakly lower semi-
continuous in the coordinates of ai if for all âi there exists an absolutely continuous mea-
sure ν on B m , such that for all a−i , we have∫

B m

{
liminf
θ→0

gi (âi +θe, a−i )dν(e)

}
≥ gi (âi , a−i ).

Finally, we are ready to prove Theorem 7.

Proof. We show now that all the conditions of Theorem 5∗ from [20] hold. First, the
strategy set of player i is simplex, and as such, it is non-empty, convex and compact.
The utility function of player i is discontinuous only at a threshold of one of the projects.
These point belong to the set A∗(i ), defined in Formula (2.4), if we take

D(i )
∆= 2;

f 1
i , j (y)

∆= y

{
θ if i < j ,

1/θ if i > j ;

f 2
i , j (y)

∆= y

{
θ if j < i ,

1/θ if j > i .

The sum of all the utilities is a continuous function. In addition, the utility of player i
is bounded by the largest project’s value when all the players contribute their budgets
there. It is also weakly lower semi-continuous in i ’s contribution, since if we take the

measure ν to be ν(S)
∆=λ(S ∩B m+), where λ is the Lebesgue measure on B m and B m+ ∆={

z ∈ B m | zl ≥ 0,∀l = 1, . . . ,m
}
, we obtain an absolutely continuous measure ν, such that

the integral sum only the convergences to a point from the positive directions, and such
convergences will never cause a jump up, since our model causes jumping only down
when reducing contributions.

We have shown that all the conditions of Theorem 5∗ hold, which implies that a
mixed NE exists.

The proof of Lemma 1 follows.

Proof. First, at least one player contributes somewhere, since otherwise any positive
contribution would be a profitable deviation for every player (Recall that all αi s and B j s
are positive.) Moreover, at least one of the players contributes to a steep project, for the
following reasons. If only the non-steep projects receive a contribution, then take any
such project p. If a single player contributes there, then this player would benefit from
moving to contribute to a vacant steep project. If both players contribute to p, then if
one is suppressed, it would like to deviate to any project where it would not be sup-
pressed, and if no-one is suppressed, then a player who contributes not less would like
to contribute to a vacant steep project instead.
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We prove part 2 now. Let i ∈ N be any non-suppressed player among those who
contribute to a steep project, w.l.o.g. – to project m. Assume first that player j 6= i is
not suppressed. Then, for any non-steep project where i contributes, i contributes ei-
ther alone or precisely the least amount it should contribute to achieve a portion in the
project’s value, because otherwise i would like to increase its contribution to m on the
expense of decreasing its contribution to the considered non-steep project.

Now, consider the case where j is suppressed. Then, even if j contributes to a non-
steep project where i contributes (and is suppressed there), i still will prefer to move
some budget from this project to m, since i receives the whole value of m as well. Thus,
this cannot be an NE.

The proof of Lemma 2 appears now.

Proof. Since B1 ≥ θB2, no player is suppressed, because any player prefers not being
suppressed, and at any project, a player who concentrates all its value there is not sup-
pressed.

Every steep project receives a positive contribution from each player, for the follow-
ing reasons. If only a single player contributes to a steep project, then the player who
does not contribute there will profit from contributing there exactly the threshold value,
while leaving at least the threshold values at all the projects where it contributed. There
is always a sufficient surplus to reach the threshold because B1 ≥ θB2. If no player con-
tributes to a steep project p, then there exists another steep project q , where two players
contribute, according to part 1 of Lemma 1 and what we have just described. The player
who contributes there strictly more than the threshold would profit from moving some
part of his contribution form q to p, still remaining not less than the threshold on p,
contradictory to having an NE.

We next prove the second part of the lemma. Since both players are non-suppressed
contributors to steep projects, then, according to part 2 in Lemma 1, we conclude that
there exist no non-steep projects where j and i contribute together.

We now present the proof of Lemma 3.

Proof. We prove part 1 first. Consider an NE profile. Assume to the contrary that player
1 contributes to a steep project, w.l.o.g., to project m. Since B1 < θB2 and no player is
suppressed, player 2 could transfer to m budget from other projects, such that at each
project, where 2 was obtaining a share of a revenue, 2 still obtains a share, and 2 sup-
presses 1 at m. This would increase 2’s utility, contrary to the assumption of an NE.

Now, we prove parts 2 and 3. Since 1 does not contribute to steep projects, part 1
of Lemma 1 implies that 2 contributes to a steep project (say, 2 contributes y > 0 to
project m), and part 2 of Lemma 1 implies that if 2 contributes to a non-steep project,
it contributes there either alone or precisely the least amount it should contribute to
achieve a portion in the project’s value. Since contributing alone is strictly worse than
contributing this budget to a steep project, 2 may only contribute together with 1, the
threshold amount. Therefore, 1 receives a positive value in this profile, and we have
part 2. The only thing left to prove here is that 2 contributes to each steep project. If not, 1
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would prefer to move some of its contribution there, in contradiction to the assumption
of an NE.

We prove part 4 now. Assume to the contrary that a non steep and non 2-steep project
receives a contribution. We proved in part 3 that 1 contributes there, alone or not. For
her, moving a small enough utility to a 2-steep project would increase her utility, regard-
less whether 2 contributes to any of those projects. This is so because if 2 contributes
together with 1, it contributes precisely the threshold amount, according to part 3. This
incenvtive to deviate contradicts the assumption of an NE.

We prove part 5 now. If 2 contributes to a 2-steep project p, then there may not exist
another 2-steep project, since otherwise 1 would like to transfer a small amount from p
to another 2-steep project q , such that without losing a share of the value of p, player 1
gets the whole value of project q .

The proof of Lemma 4 appears now.

Proof. Before moving, player i ’s utility is
∑

q∈Ω ( 1
2 or 1)αq ·

(
x1

q +x2
q

)
.

We begin by proving part 1. Assume 1
2αm ≥ αp . If i moves δ > 0 from the steep

projects to p, then its utility from the steep projects decreases by at least 0.5αmδ, and its
utility from p increases byαpδ. The total change is (−0.5αm+αp )δ, and since 1

2αm ≥αp ,
this is non-positive.

We prove part 2 now. Moving δ from p to a subset of the steep projects decreases the
utility of i by αpδ and increases it by at least 0.5αmδ. Since 1

2αm >αp , the sum of these
is (strictly positive). If this move suppresses j , then the increase is more than 0.5αmδ,
thus requiring 1

2αm ≥αp is enough.

To prove part 3, assume that 1
2αm <αp and we can take δ> 0 from some of the steep

projects where i receives half of the value so as to keep receiving a half of the new value.
Then, moving this δ to p decreases i ’s utility from the steep projects by 0.5αmδ and its
utility from p increases byαpδ. The total change is (−0.5αm+αp )δ, and since 1

2αm <αp ,
this is (strictly) positive.

We prove Theorem 5 now.

Proof. We first prove case 1. Consider any NE. By Lemma 2, each player contributes to all
steep projects and if it contributes to a non-steep project, then it is the only contributor
there. Take any non-steep project p, where someone contributes, say player i . Consider
moving all what player i contributes to p to a steep project. If the other player gets sup-
pressed as a result of this move, then, according to part 2 of Lemma 4, there could be
no contribution to p, since this move is profitable. If the other player does not get sup-
pressed as a result of this move, then according to part 1 of Lemma 4, this move is weakly
profitable. Since we began at an NE, this move does not change the social welfare. This
can be done for any contribution to non-steep projects, and therefore, PoA = 1. We have
fully proven case 1.

Consider case 2a now. From the proof of the existence on an NE in this case, we
know that 1 investing all its budget in m −k and 2 dividing its budget equally between
the steep project constitute an NE. Thus, PoS ≥ αm B2+αm−k B1

αm (B1+B2) . Since αm−k
αm

≤ 1
1+θ , not
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all the projects have equal value functions. Therefore, in an NE no player is suppressed,
since if 2 dominated 1, then 2 would have to invest more than B1/θ in each project, and 2
would like to deviate to contribute to steep projects more. Since no player is suppressed,
we conclude from part 1 of Lemma 3 that player 1 never contributes to a steep project in
an NE, and thus PoS = αm B2+αm−k B1

αm (B1+B2) .
Next, let us approach the price of anarchy. According to Lemma 3, the only way to

reduce the efficiency relatively to the price of stability is for 2 to invest a 2-steep project.
If this happens, then we obtain that case 2b must hold, exactly as it is done in the proof
of the other direction of Theorem 3. Therefore, if this case does not hold, then PoS = PoS.
If it does, then we have the NE when 2 invests θB1 in project m −k (and 1 invests all its
budget there, and 2 equally divides the rest of its budget between the steep projects),

which yields the price of anarchy of αm (B2−θB1)+αm−k (B1(1+θ))
αm (B1+B2) .

We prove case 2b now. We show in the proof of case 2b of Theorem 3, player 1 in-
vesting all its budget in m −k and 2 investing θB1 in m −k and uniformly dividing the

rest between the steep projects is an NE. Thus, PoS ≥ αm (B2−θB1)+αm−k (B1(1+θ))
αm (B1+B2) . Since

αm−k
αm

≤ 2(1−θ)
2−θ , we conclude analogously to what we did in the proof of the previous case

that no player is suppressed. Thus, Lemma 3 implies that the only way to achieve a more
efficient NE is for 2 to contribute only to the steep projects. If this is an NE, then we
obtain that case 2a must hold, exactly as it is done in the proof of the other direction

of Theorem 3. Therefore, if this does not hold, we have PoS = αm (B2−θB1)+αm−k (B1(1+θ))
αm (B1+B2) . If

case 2a does hold, then we know that the profile where 1 invests all its budget in m−k and
2 divides its budget between the steep projects is an NE, and thus PoS = αm B2+αm−k B1

αm (B1+B2) .
We turn to the price of anarchy now. According to Lemma 3, the NE with player

1 investing all its budget in m − k and 2 investing θB1 in m − k and uniformly di-
viding the rest between the steep projects is the worst possible NE, and thus PoA =
αm (B2−θB1)+αm−k (B1(1+θ))

αm (B1+B2) .
Finally, in the case 2c we know that 2 dividing its budget equally and 1 contributing

all its budget is an NE, and therefore PoS = 1. To find the price of anarchy, recall that if
2 does as before while 1 invests nothing at all, it still is an NE, and thus PoA ≤ αm B2

αm (B1+B2) .
Since 2 always gets at least αmB2 in any NE, the price of anarchy cannot decrease below
it, and thus PoA = αm B2

αm (B1+B2) .

Let us now prove Corollary 2.

Proof. The maxima are obtained in case 1 of Theorem 5.
To find the infima, find the infimum in every case, substituting the extreme values in

the expressions for PoS and PoA. We begin with the PoS. In case 2a, the infimum of the
PoS is obtained for αm−k = 0 and B1 = θB2

k , and it is k
k+θ . In case 2b, the infimum of the

PoS is the minimum of the following two expressions

1. αm B2+αm−k B1
αm (B1+B2) when αm−k = 2θ

1+θαm and B1 = θB2
k+θ2 , which is

k+θ2+ 2θ2

1+θ
k+θ+θ2 .

2. αm (B2−θB1)+αm−k (B1(1+θ))
αm (B1+B2) when αm−k = 2θ

1+θαm and B1 = θB2
k+θ2 , which is k+2θ2

k+θ+θ2 .
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The minimum of these expressions is k+2θ2

k+θ+θ2 . Finally, the infimum of the price of stability
in case 2c is 1. The absolute infimum is the minimum of these three expressions, which
is k

k+θ .
We consider now the infimum of the price of anarchy. In case 2a, the infimum of the

PoA is obtained as follows:

1. If also case 2b holds, then it is the value of αm (B2−θB1)+αm−k (B1(1+θ))
αm (B1+B2) when αm−k =

2θ
1+θαm and B1 = θB2

k+θ2 , which is k+2θ2

k+θ+θ2 .

2. Otherwise, PoA = PoS, and so the infimum is k
k+θ .

The minimum of these two expressions is k
k+θ . In case 2b, the infimum of the PoA is

αm (B2−θB1)+αm−k (B1(1+θ))
αm (B1+B2) when αm−k = 2θ

1+θαm and B1 = θB2
k+θ2 , which is k+2θ2

k+θ+θ2 . In case 2c

it is B2
B1+B2

when B1 = θ
m B2, which is m

m+θ . Therefore, the infimum of the price of anarchy

is k
k+θ .

We now present the proof of Theorem 6.

Proof. We first prove case 1. According to proof of case 1 in Theorem 4, equally dividing
all the budgets between the steep projects is an NE. Therefore, PoS = 1.

We consider case 2 now. We know that n dividing its budget equally and all the other
players contributing all their budgets is an NE, and therefore PoS = 1. To find the price
of anarchy, recall that if n does as before while all the other players invest nothing at all,
it still is an NE, and thus PoA ≤ αm Bn

αm (
∑

i∈{1,2,...,n} Bi ) . Since n always gets at least αmBn in any

NE, the price of anarchy cannot decrease below it, and thus PoA = αm Bn
αm (

∑
i∈{1,2,...,n} Bi ) .

The proof of Theorem 8 is presented now.

Proof. The utility of i is ui (xi ) = φi
ψ(xi )+φi

ω(Bi − xi ). Consider the open intervals be-

tween the consecutive points of LBi . On each of these intervals, the function φi
ψ(xi )

is convex, being proportional to the convex project value function, and φi
ω(Bi − xi ) is

convex because the function Bi − x is convex and concave and φi
ω is convex and weakly

monotone. Therefore, the utility is also convex, as the sum of convex functions.
Therefore, the utility’s supremum of the closure of such a convexity interval is at-

tained as the one-sided limit of at least on of its edge points. This supremum can be a
maximum if and only if it is not larger than the maximum of the utility at an interval edge
point or at an internal point of an interval (in the last case, the convexity implies that the
utility is constant on this interval).

B. SIMULATION RESULTS
We now present some additional simulation results; they further support the conclu-
sions of Section 5.4. First, we run over the ratios of the project function coefficients and
the ratios of the two largest budgets. Then, we go over the the project coefficients, and
finally, we go over the two largest budgets.
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First, we plot the existence and efficiency of NE as function of the ratio of the project
function coefficients and of the ratio of the two largest budgets. We compare these pre-
dictions with the theoretical predictions, which are precise only for two players, and oth-
erwise, they just show when we definitely have an NE, while stating nothing about the
other cases. The first row is contains the simulation results, and the second row plots the
theoretical predictions. The case of 3 players is shown in Figure 2.8, and 4 are given in
Figure 2.9.
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Figure 2.8: The existence and efficiency of NE for 3 players as a function of the ratio of the project function
coefficients and the ratio of the two largest budgets. The first row plots the results of the simulations, and the
second row shows the theoretical predictions. In the results of the simulations, black color means that Nash
Equilibrium has not been found. For all the other cases, the efficiency, a value in (0,1], is shown by the shade
(from dark gray = 0.0 to white = 1.0). In the plot of the theoretical predictions, black color means that we do not
know, while white means that a Nash Equilibrium exists.

We now present some more experiments where project coefficients are being run
over. The existence and efficiency is shown in Figure 2.10, Figure 2.11, and Figure 2.12,
and the efficiency in plotted as a function of the ratio of the project coefficients in Fig-
ure 2.13, Figure 2.14, and Figure 2.15.

We now show some more experiments where the two largest budgets are being run
over, and the rest are spread on equal distances. The existence and efficiency is shown
in Figure 2.16, and the efficiency in plotted as a function of the ratio of the two largest
budgets in Figure 2.17.
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Figure 2.9: The existence and efficiency of NE for 4 players as a function of the ratio of the project function
coefficients and the ratio of the two largest budgets. The first row plots the results of the simulations, and the
second row shows the theoretical predictions. In the results of the simulations, black color means that Nash
Equilibrium has not been found. For all the other cases, the efficiency, a value in (0,1], is shown by the shade
(from dark gray = 0.0 to white = 1.0). In the plot of the theoretical predictions, black color means that we do not
know, while white means that a Nash Equilibrium exists.
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Figure 2.10: The existence and efficiency of NE as function of project functions for 2 and 3 players. Black color
means that Nash Equilibrium has not been found. For all the other cases, the efficiency, a value in (0,1], is
shown by the shade (from dark gray = 0.0 to white = 1.0).
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Figure 2.11: The existence and efficiency of NE as function of project functions for 4 players.
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Figure 2.12: The existence and efficiency of NE as function of project functions for 5 and 6 players.
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Figure 2.13: The efficiency as a function of project values’ ratio for 2 and 3 players. Efficiency of 0 means that
Nash Equilibrium has not been found. For all the other cases, the efficiency, a value in (0,1], is shown.
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Figure 2.14: The efficiency as a function of project values’ ratio for 4 players.
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Figure 2.15: The efficiency as a function of project values’ ratio for 5 and 6 players.
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Figure 2.16: The existence and efficiency of NE as function of the largest and the second largest budgets. Black
color means that Nash Equilibrium has not been found, and very dark grey color means the area is not defined,
since the second highest budget may not be larger than the highest one. For all the other cases, the efficiency,
a value in (0,1], is shown by the shade (from dark gray = 0.0 to white = 1.0).
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Figure 2.17: The efficiency as a function of the ratio of the two largest budgets. Efficiency of 0 means that Nash
Equilibrium has not been found, and −0.5 means the the domain is not defined, since the second highest
budget may not be larger than the highest one. For all the other cases, the efficiency, a value in (0,1], is shown.



3
COMPETITION BETWEEN

COOPERATIVE PROJECTS

Time is what we want most, but what we use worst.

William Penn, 1693

A paper needs to be good enough to be published; a grant proposal needs to be sufficiently
convincing compared to the other proposals, in order to get funded. Papers and proposals
are examples of cooperative projects that compete with each other and require effort from
the involved agents, while often these agents need to divide their efforts across several such
projects. We aim to provide advice how an agent can improve her utility and how the
designer of such a competition (e.g., the program chairs or funding agency) can create
the conditions under which a socially optimal outcome can be obtained. We therefore
extend a model for dividing effort across projects with two types of competition: a quota
or a success threshold. For these two types of games we prove conditions for equilibrium
existence and efficiency. Additionally we find that competitions using a success threshold
can more often have an efficient equilibrium than those using a quota. We also show that
when a socially optimal Nash equilibrium exists, there exist inefficient equilibria as well.
Therefore, regulation may be needed to choose the efficient equilibrium.
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1. INTRODUCTION
The previous chapter considers shared effort in projects. In this chapter we extend the
model by incorporating the requirements that such projects face. Now, a project ob-
tains ists value only if it stand up to certain requirements, such as being one of the best
projects or being at least at a given level.

Cooperative projects often are in competition with each other. For example, a paper
needs to have a certain quality, or to be among a certain number of the best papers to
be published, and a grant needs to be one of the best to be awarded. Generally speak-
ing, either only projects that achieve a certain minimum level, or those that are among
a certain quota of the best projects attain their value. A quota can be expressed in other
ways, such as a success rate and the number of the total projects. Agents endowed with a
resource budget (such as time) need to divide this resource across several such projects.
In this chapter we consider so-called public projects where agents may contribute re-
sources to create something together. If such a project stands up to competition, its
rewards are typically divided among the contributors based on their individual invest-
ments.

We often see agents who divide effort across competing projects. In addition to co-
authoring articles or books [1–3] and research proposals, examples include participat-
ing in crowdsensing projects [4] and online communities [5]. Examples of quotas for
successful projects include supporting politicians being elected to a fixed-size commit-
tee [6], or investing effort in manufacturing several products, where the market becomes
saturated with a certain amount of products. More examples of success thresholds are
investing in start-ups, where a minimum investment is needed to survive, or contribut-
ing to educational projects, where a minimum level is required for a project to succeed.

The ubiquity and the complexity of such competing projects calls for a decision-
support system, helping agents to divide their efforts wisely. Assuming rationality of
all the others, an agent would like to know how to behave, and the designer of the com-
petition would like to know which rules lead to better results. In the language of game
theory, for each setting, we are interested in the equilibria and their efficiency.

Chapter 2 uses the model of Bachrach, Syrgkanis and Vojnović [7] of a shared effort
game, where each player has a budget to divide among a given set of projects. The game
possesses a contribution threshold θ, and the project’s value is equally shared among the
players who invest above this threshold. They analyzed Nash equilibria (NE) and their
price of anarchy (PoA) and stability (PoS) for such games.1 However, they ignored that
there may be competition between the projects. In order to model this aspect, we extend
their model by allowing the projects only to obtain their modeled value if they stand up
to a competition.

Another related model, called an all-pay auction, is a constrained model where only
one contributor benefits from the project. Its equilibria are analyzed by Baye, Kovenock
and de Vries [12] and studied by many others. A famous example is the colonel Blotto
game with two players [13], where these players spread their forces among several bat-
tlefields, winning a battle if allocating it more forces than the opponent does. The relative

1The price of anarchy [8, 9] is the ratio of the minimum social welfare in a Nash equilibrium to the maximum
possible social welfare. The price of stability [10, 11] is the ratio of the maximum social welfare in a NE relative
to the maximum possible social welfare.
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number of won battles determines the player’s utility. Anshelevich and Hoefer [14] gen-
eralize this by modeling many of such two-player games by an undirected graph where
nodes are the players, and edges are the projects. A project, being an edge, obtains con-
tributions from two players. They especially concentrated on minimum-effort projects.
Their work proves the existence of an NE and shows that the price of anarchy is at most
2 in such bilateral projects.

In the context of publishing papers, Batchelor [15] states that high standards are im-
portant to the scientific progress, and that “an appreciable proportion of those that do
find their way into the scientific literature are not worthy of publication”, that is, that
the standards would better be increased. However, in addition to maximizing the total
value of the published papers, he considers goals such as reducing the amount of noise
(low quality publications). In order to characterize the influence of a quota or a suc-
cess threshold on the efficient strategies for the individual agents and their society, we
analyze the NE and their efficiency in the modeled games. Discovering the structure of
equilibria in various quotas or success thresholds can bear significant impacts on the
efficiency of investing time and effort in the mentioned enterprises and, therefore, on a
sizable part of life.

Compared to Kleinberg and Oren [3], we model contributing to more than one
project by an agent, and concentrate on the competition, rather than on sharing a
project’s utility. We also emphasize that unlike devising division rules to make people
contribute properly, studied in cooperative game theory (see Shapley value [16] for a
prominent example), we model given division rules and analyze the obtained game.

We allow any number of agents to contribute to projects, and we introduce two mod-
els of competition, a quota or a success threshold.

1. Given a quota q , only q projects receive their value. This models the limit on the
number of papers to be accepted for a presentation, the number of politicians in a
city counsel, or the number of projects an organization can fund.

2. There exists a success threshold δ, such that only the projects that have a value of
at least δ actually receive their value. This models a paper or proposal acceptance
process that is purely based on quality.

For these two types of games we prove conditions for equilibrium existence. A crucial
question that we then answer is how adjusting such a quota or a success threshold can
influence the efficiency of the investments, and thereby the social welfare of the partici-
pants. We can then conclude that competitions using a success threshold have efficient
equilibria more often than those using a quota.

In order to make things more clear, we use the following running example:

Example 2. Consider scientists (agents) investing time and effort from their time/effort
budget in writing papers. A paper attains its value (representing acknowledgment and all
the related rewards) if it stands up to the competition with other papers. The competition
can mean either being one of the q best papers, or achieving at least the minimum level
of δ, depending on the circumstances. A scientist is rewarded by a paper by becoming its
co-author if she has contributed enough to that paper.
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We formally define the above-mentioned models in Section 2, analyze the Nash equi-
libria of the first model and their efficiency in Section 3, and analyze the second model
in Section 4. Having analyzed both models of competition between projects, we com-
pare their characteristics, the possibility to influence authors’ behavior through tuning
the acceptance criteria or to influence the political supporters by changing the rules of
elections, and draw further conclusions in Section 5.

2. MODEL
We build our model on that from Section 2 of Chapter 2, since that is a model of in-
vestment in common projects with a general threshold. We, therefore, first present the
model from Section 2 of Chapter 2 for shared effort games, which also appears in [7].
From Definition 8 on, we introduce competition between the projects.

There are n players N = {1, . . . ,n} and a set of projects Ω. Each player i ∈ N can con-
tribute to any of the projects in Ωi , where ; ( Ωi ⊆ Ω; the contribution of player i
to project ω ∈ Ωi is denoted by xi

ω ∈ R+. Each player i has a budget Bi > 0, so
that the strategy space of player i (i.e., the set of her possible actions) is defined as{

xi = (xi
ω)ω∈Ωi ∈R|Ωi |+ |∑ω∈Ωi

xi
ω ≤ Bi

}
. Denote the strategies of all the players except i

by x−i .
The next step to define a game is defining the utilities. Associate each project ω ∈Ω

with its project function, which determines its value, based on the total contribution
vector xω = (xi

ω)i∈N that it receives; formally, Pω(xω) : Rn+ → R+. The assumption is that
every Pω is both increasing in every parameter. The increasing part stems from the idea
that receiving more effort does not make a project worse off. When we write a project
function as a function of a single parameter, like Pω(x) = αx, we assume that project
functions Pω depend only on the

∑
i∈N (xi

ω), which is denoted by xω as well, when it is
clear from the context. However, by default, Pω(xω) is a function of the whole contribu-
tion vector, meaning that Pω(xω) : Rn+ →R+. The project’s value is distributed among the

players in Nω
∆= {i ∈ N |ω ∈Ωi } according to the following rule. From each project ω ∈Ωi ,

each player i gets a share φi
ω(xω) : Rn+ →R+ with free disposal:

∀ω ∈Ω :
∑

i∈Nω

φi
ω(xω) ≤ Pω(xω). (3.1)

We assume that the sharing functions are non-decreasing. The non-decreasing assump-
tion fits the intuition that contributing more does not get the players less.

Denote the vector of all the contributions by x = (xi
ω)i∈N
ω∈Ω. The utility of a player i ∈ N

is defined to be

ui (x)
∆= ∑
ω∈Ωi

φi
ω(xω).

Consider the numerous applications where a minimum contribution is required to
share the revenue, such as paper co-authorship and homework. To concentrate on these
applications and to analyze them, we define a specific variant of a shared effort game,
called a θ-sharing mechanism. This variant is relevant to many applications, including
co-authoring papers and participating in crowdsensing projects. For any θ ∈ [0,1], the
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players who get a share are defined to be

Nθ
ω
∆=

{
i ∈ Nω|xi

ω ≥ θ ·max
j∈Nω

x j
ω

}
,

which are those who bid at least θ fraction of the maximum bid size toω. Now, define the
θ-equal sharing mechanism as equally dividing the project’s value between all the users
who contribute to the project at least θ of the maximum bid to the project.

The θ-equal sharing mechanism, denoted by Mθ
eq, is

φi
ω(xω)

∆=
{ Pω(xω)∣∣Nθ

ω

∣∣ if i ∈ Nθ
ω,

0 otherwise.

Similarly to Section 2 of Chapter 2, to enable theoretical analysis, we now consider
θ-equal sharing, where all the project functions are linear with coefficientsαm ≥αm−1 ≥
. . . ≥α1. We denote the number of projects with the largest coefficient project functions
by k ∈ N, i.e. αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1. We call those
projects steep. Assume w.l.o.g. that Bn ≥ . . . ≥ B2 ≥ B1.

We shall need the following definitions from Chapter 2. We call a project that receives
no contribution in a given profile a vacant project.

Definition 7. A player is dominated at a project ω, if it belongs to the set Dω
∆= Nω \ Nθ

ω. A

player is suppressed at a project ω, if it belongs to the set Sω
∆= {

i ∈ Nω : xi
ω > 0

}
\ Nθ

ω. That
is, a player who is contributing to a project but is dominated there.

We now depart from Section 2 of Chapter 2 and model competition in two different
ways.

Definition 8. In the quota model, given a natural number q > 0, only the q highest valued
projects actually obtain a value to be divided between their contributors. The rest obtain
zero. In the case of ties, all the projects that would have belonged to the highest q under
some tie breaking rule receive their value; therefore, more than q projects can receive their
value in this case. We say a project is in the quota, if its value is among the q highest
valued projects; a project is out of the quota otherwise.

The second model is called the success threshold model.

Definition 9. In the success threshold model, given a threshold δ, only the projects with
value at least δ obtain a value, while the rest obtain zero.

We use Example 2 to illustrate this model.

Example 2 (Continued). Figure 3.1 depicts a success threshold model, where paper C does
not make it to the success threshold, and is, therefore, unpublished, and the contribu-
tion it has received is lost. The other two papers are above the success threshold, and
get published; such a paper’s recognition is equally divided between the contributors who
contribute at least θ of the maximum contribution to the paper, and become co-authors.
The stars denote scientists that contribute to papers A, B or C. We assume that the success
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Figure 3.1: Scientists contribute time to papers (in black), and share the value of the accepted ones (in blue).
Paper C does not reach the success threshold of 5 and therefore has no value to be shared.

threshold for a paper to be published is 5, and that the minimum contribution ratio to
become a co-author of a paper is θ = 0.75. Given this, paper A receives the total contribu-
tion of 18, yielding the value of 18 and thereby passing the success threshold, i.e. getting
published. Its value is equally divided between both contributors, since both become co-
authors, because 8 ≥ θ10. Paper B receives the contribution of 11, yielding the value of
2 · 11 = 22, which lies above the success threshold, causing B’s publication. This value is
equally divided between the two agents who contribute 4, since 1 and 2 are below θ4, and
thus are not co-authors. As to paper C, it receives 3 and, therefore, yields 1.5·3 = 4.5, which
is below the success threshold, so C is not published at all.

Let us apply the other definitions. In this example, B is the only steep project, thus
k = 1. No project is vacant, since every paper receives some contribution. At paper A, scien-
tists 2,4 and 5 are dominated, but no-one is suppressed, because only the non-contributing
to paper A scientists are dominated. At paper B, on the other hand, scientists 1,2 and 4 are
dominated, while scientists 1 and 2, who contribute there, are also suppressed.

3. THE QUOTA MODEL
In this section, we study the equilibria of shared effort games with a quota and their
efficiency. We first give an example of an NE, and generalize it to a general theorem.
Then, we use Theorem 4 on page 29 and Theorem 6 on page 30 from Chapter 2 as a
basis for new existence and efficiency theorems for the quota model. We analyze the
implications of these results on achieving efficiency at the end.

We need the following definition, generalizing Definition 2 on page 22 from Chapter 2
of a suppressed player.

Definition 10. A player is wasted at a project if it is suppressed there or if the project is out
of the quota, but the player contributes there positively.

We demonstrate this on Example 2.

Example 2 (Continued). Assuming quota q = 2, no scientist is wasted at paper A, since
no-one is suppressed there and A is in the quota. B is also in the quota, but scientists 1



3. THE QUOTA MODEL

3

67

and 2 are suppressed there, and thus wasted there. C is outside the quota, and therefore,
its contributors, namely 4 and 5, are wasted there.

In an NE, a player is wasted at a project if and only if it is wasted at any project where
it contributes. This is true since if a player is wasted at project p but it also contributes
to project q 6= p and is not wasted there, then it would like to move its contribution from
p to project q .

First, we provide sufficient conditions for having an NE, which lets us estimate the
efficiency. Then, we analyze, how the organizers can choose the quota to influence the
behavior in NE. The intuition is that the additional condition enables more NE to exist,
which increases the price of stability but decreases the price of anarchy. On the other
hand, a profile that is an NE in the model from Section 2 of Chapter 2 can cease being so
in our model, since some projects may obtain no value because of the quota.

Now, we show that having a quota can lead to counter-intuitive results. In the fol-
lowing example, there can be an NE where no steep project obtains a contribution. The
idea is that any deviation from the project where everyone contributes is non-profitable,
because it would still leave the other projects out of quota.

Example 3. Given projects 1 and 2, such that α2 > α1, assume that all the players con-
tribute all their budgets to project 1. If α2Bn < α1

∑n−1
i=1 Bi and q = 1, then no player can

deviate to project 2, as this would still leave that project out of the quota, and therefore,
this profile is an NE.

In this NE, the social welfare is equal to α1
∑

i∈N Bi . The optimal social welfare,
achieved if and only if all the players contribute all their budgets to project 2, is equal
to α2

∑
i∈N Bi . The ratio between the social welfare in this NE and the optimal one is α1

α2
.

That ratio is an upper bound on the price of anarchy of this game. In addition, since the
optimal profile is also an NE, the price of stability is 1.

The price of anarchy is smaller than α1
α2

if and only if some agents do not contribute all
their budgets. This can only happen in an NE if θ is positive, and if this is the case, then we
can have arbitrarily low price of anarchy, down to the case when only agent n contributes,
if θBn > Bn−1, and then, PoA = α1Bn

α2
∑

i∈N Bi
.

The ideas of this example yield the following theorem about possible Nash equilibria.

Theorem 9. Consider a θ-equal sharing game with n ≥ 2 players with budgets Bn ≥ . . . ≥
B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions with coefficients αm =
αm−1 = . . . =αm−k+1 >αm−k ≥αm−k−1 ≥ . . . ≥α1 (the order is w.l.o.g.), and quota q.

This game has a pure strategy NE, if q = 1 and αmBn <α1
∑n−1

i=1 Bi . In addition, PoA ≤
α1
αm

and PoS = 1. The exact expression for the price of anarchy is
α1

∑
i : Bi ≥θBn Bi

αm
∑

i∈N Bi
.

Proof. If all the players contribute to a single project, then since αmBn <α1
∑n−1

i=1 Bi , no
player can deviate to any project, because this would still leave this project out of the
quota. Therefore, this profile is an NE.

In particular, when all the players invest all their budgets in project m, it is an NE, and
thus, PoS = 1. When all the players invest in 1, it also is an NE, showing that PoA ≤ α1

αm
.

To find the exact expression for the price of anarchy, notice that the worst equilibrium
for the social welfare is when everyone contributes to the least profitable project, and
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only those who have a reason to do so contribute. Having an incentive means being not
below the threshold amount, θBn . This equilibrium yields α1

∑
i : Bi≥θBn Bi .

This theorem, in accord with the intuition above, shows that reducing the quota can
either facilitate an optimal NE, or a very inferior NE. Actually, every efficiency of the form
αi
αm

is possible at equilibrium.
We now present an existence theorem, extending Theorem 4 on page 29 from Chap-

ter 2 to the quota model. The theorem presents possible equilibria, providing advice on
possible stable states. The theorem afterwards compares the efficiencies of these states.

Theorem 10. Consider an equal θ-sharing game with n ≥ 2 players with budgets Bn ≥
. . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions with coefficients
αm =αm−1 = . . . =αm−k+1 >αm−k ≥αm−k−1 ≥ . . . ≥α1 (the order is w.l.o.g.), and quota q.

This game has a pure strategy NE, if one of the following holds.2

1. B1 ≥ kθBn and all of the following hold.

(a) if k ≤ q, then 1
nαm−k+1 ≥αm−k ,

(b) if k > q, then Bn <∑n−1
j=1 Bi /q;

2. Bn−1 < θ
|Ω|Bn and all the project functions are equal, i.e. αm =α1.

The proof provides an equilibrium profile and shows that no deviation is profitable.

Proof. To prove part 1, distinguish between the case where k ≤ q and k > q . If k ≤ q ,
then the profile where all the players allocate 1/kth of their respective budgets to each of
the steep projects is an NE for the same reasons that were given for the original model,
since here, the quota’s existence can only reduce the motivation to deviate.

If, on the other hand, k > q , consider the profile where all the players allocate 1/qth
of their respective budgets to each of the q steep projects m,m−1, . . . ,m−q+1. This is an
NE, since the only deviation that is possibly profitable, besides reallocating between the
non vacant projects, is a player moving all of her contributions from some projects to one
or more of the vacant projects. This cannot bring profit, because these previously vacant
projects will be outside of the quota, since Bn < ∑n−1

j=1 Bi /q . As for reallocating between
the non-vacant projects, this is not profitable, since B1 ≥ kθBn means that suppressing
is impossible. Therefore, this is an NE.

We now prove part 2. Let every player divide her budget equally among all the
projects. No player wants to deviate, for the following reasons. All the projects obtain
equal value, and therefore are in the quota. Player n suppresses all the rest and obtains
her maximum possible profit,αm(

∑
i∈N Bi ). The rest obtain no profit, since they are sup-

pressed whatever they do.

We now prove an efficiency result, similar to Theorem 6 on page 30 from Chapter 2.
The result is based on the equilibria from Theorem 10.

2If αm−k does not exist, consider the containing condition to be vacuously true.
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Theorem 11. Consider an equal θ-sharing game with n ≥ 2 players with budgets Bn ≥
. . . ≥ B2 ≥ B1, 0 < θ < 1 (the order is w.l.o.g.), linear project functions with coefficientsαm =
αm−1 = . . . =αm−k+1 >αm−k ≥αm−k−1 ≥ . . . ≥α1 (the order is w.l.o.g).3, and quota q.

1. Assume that B1 ≥ kθBn and all of the following hold.

(a) if k ≤ q, then 1
nαm−k+1 ≥αm−k ,

(b) if k > q, then Bn <∑n−1
j=1 Bi /q;

Then, there exists a pure strategy NE and there holds: PoS = 1.

2. Assume that Bn−1 < θ
|Ω|Bn and all the project functions are equal, i.e. αm =α1.

Then, there exists a pure strategy NE and the following holds: PoS = 1,PoA =
Bn∑

i∈{1,2,...,n} Bi
.

Proof. We first prove part 1. According to proof of part 1 of Theorem 10, equally dividing
all the budgets among min

{
k, q

}
steep projects is an NE. Therefore, PoS = 1.

Part 2 is proven analogously to how it is proven for Theorem 6 from Chapter 2. We
repeat the proof to be self-contained. For part 2, recall that in the proof of part 2 of
Theorem 10, we show that everyone equally dividing the budgets between all the projects
is an NE. This is optimal for the social welfare, and so PoS = 1. We turn to find the price of
anarchy now. If player n acts as just mentioned, while the other players do not contribute
anything, then this is an NE, since all the projects are equal and therefore, in the quota,
and players 1, . . . ,n − 1 will be suppressed at any contribution. An NE cannot have a
lower social welfare, since n gets at least αmBn in any NE, since this is obtainable alone.
Therefore, the fraction between the two social welfare values, namely αm Bn

αm
∑

i∈{1,2,...,n} Bi
, is

the PoA.

For practical purposes, such as organizing elections, we would like to know how
quota can be chosen to improve the behavior of the players (supporters, in the elections
example). Theorem 9 implies that if no player has a budget as large as the total budget of
all the other players times α1/αm , then by choosing q = 1, many equilibria, including an
optimal one, can be achieved. A possible problem with such an optimal equilibrium is
that all the players will invest in the same project, which is unrealistic in some applica-
tions, such as conferences. It is still realistic in elections or funding large projects. From
the proof of part 1 of Theorem 10 follows that applying a quota can force the agents to
concentrate on less projects than they would concentrate on without the quota, if they
follow the NE from the proof. Theorem 11 provides optimal Nash equilibria, though they
may be not the only possible ones.

Additionally, the condition “k > q ⇒ Bn < ∑n−1
j=1 Bi /q” in Theorem 11 implies, by

taking the contrapositive, that if the largest budget can be much larger than the rest,
then at least k projects have to be successful, if one wants our optimum NE to be
guaranteed. When there are many equally glorious projects to contribute to, mean-
ing that k is large, this constraint becomes non-trivial to implement. The condition

3If αm−k does not exist, consider the containing condition to be vacuously true.
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“k ≤ q ⇒ 1
nαm−k+1 ≥ αm−k ” in Theorem 11 implies, by looking at the contrapositive,

that if the difference between the two largest projects is not big enough, then the quota
has to be less than k if one wants our optimum NE to be guaranteed. This becomes
non-trivial when the number of the most glorious (steep) projects is small.

4. THE SUCCESS THRESHOLD MODEL
In this section, we consider shared effort games with a success threshold, studying the
existence and efficiency of their Nash equilibria. We assume that the success threshold
δ is always at most the sum of all the budgets times αm , to allow for at least one project
to be accepted, in at least one strategy profile. Similarly to the previous section, we be-
gin by giving an example, which inspires a theorem, and then we provide existence and
efficiency theorems, based on such theorems from Chapter 2.

We call a project that has a value of at least the threshold in a given profile an accepted
project, and we call it unaccepted otherwise. We shall need the following definition, gen-
eralizing Definition 2 on page 22 from Chapter 2 of a suppressed player.

Definition 11. A player is blank at a project if it is suppressed there or if the project is
unaccepted, but the player contributes there positively.

Let us refer to Example 2 again.

Example 2 (Continued). The accepted papers are A and B. Therefore, the blank scientists
at each paper are those we describe as wasted after Definition 10.

In an NE, a player is blank at a project if and only if it is blank at any project where
it contributes. This is true since if a player is blank at project p but it also contributes to
project q 6= p and is not blank there, then it would like to move its contribution from p
to project q .

The goal is to estimate the efficiency of the possible equilibria. Then, we analyze how
organizers can choose the success threshold to influence the behavior in NE. The main
intuitive difference between a quota and a success threshold is that a quota is about
relative project values, while a success threshold is absolute.

Similarly to what we saw with quota, success threshold can cause counter-intuitive
results. In the following example, there can be an NE where no steep project obtains a
contribution.

Example 4. Given the projects 1 and 2, such thatα2 >α1, assume that all the players con-
tribute all their budgets to project 1. If δ > α2Bn , then no player can deviate to project 2,
as this would leave that project unaccepted, and therefore, this profile is an NE.

The conclusions about the prices of anarchy and stability are the same as in Example 3.

The ideas of this example yield the following theorem.

Theorem 12. Consider an equal θ-sharing game with n ≥ 2 players with budgets Bn ≥
. . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions with coefficients
αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1 (the order is w.l.o.g.), and success
threshold δ.

This game has a pure strategy NE, if αmBn < δ. In addition, PoA ≤ α1
αm

and PoS = 1. If
α1

∑n
i=1 Bi < δ, then PoA = 0.
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Proof. If all the players contribute to a single project, then sinceαmBn < δ, no player can
deviate to any project, because this would still leave that project unaccepted. Therefore,
this profile is an NE.

In particular, when all the players invest all their budgets in project m, it is an NE, and
thus, PoS = 1. When all the players invest in 1, it also is an NE, showing that PoA ≤ α1

αm
,

and if α1
∑n

i=1 Bi < δ, then PoA = 0.

This theorem, in accord with the intuition above, shows that increasing the success
threshold can either facilitate an optimal NE, or an inferior NE. Actually, every efficiency
of the form

α j

αm
, for j ≥ min

{
i :αi

∑n
l=1 Bl ≥ δ

}
, is possible at an equilibrium.

Next, we provide sufficient conditions for the existence of an NE, extending Theo-
rem 4 on page 29 from Chapter 2 to the success threshold model as follows.

Theorem 13. Consider an equal θ-sharing game with n ≥ 2 players with budgets Bn ≥
. . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions with coefficients
αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1 (the order is w.l.o.g.), and success
threshold δ.

This game has a pure strategy NE, if one of the following holds.4

Define p
∆=

⌊
αm

∑
i∈N Bi
δ

⌋
; intuitively, it is the number of the projects that can be ac-

cepted.

1. B1 ≥ kθBn and all of the following hold.

(a) If k ≤ p, then 1
nαm−k+1 ≥αm−k ,

(b) If k > p ≥ 1, then αmBn < δ;

2. Bn−1 < θ
|Ω|Bn , all the project functions are equal, i.e. αm =α1, and θ ≤αm .

Proof. To prove part 1, we distinguish between the case where k ≤ p and k > p. If k ≤ p,
then the profile where all the players allocate 1/kth of their respective budgets to each of
the steep projects is an NE for the same reasons that were given for the original model,
since here, the requirement to be not less than the success threshold can only reduce the
motivation to deviate.

If, on the other hand, k > p, consider the profile where all the players allocate 1/pth
of their respective budgets to each of the p steep projects m,m−1, . . . ,m−p+1. This is an
NE, since the only deviation that is possibly profitable, besides moving budgets between
the non vacant projects, is a player moving all of her contributions from some projects
to one or more of the vacant projects. This cannot bring profit, because these previously
vacant projects will be unaccepted, since αmBn < δ. Additionally, any reallocating be-
tween the non-vacant projects is not profitable, since B1 ≥ kθB2 means that suppressing
is impossible. Therefore, the current profile is an NE.

We now prove part 2. The proof distinguishes between the case where the condition
p ≥ |Ω| holds or not. If p ≥ |Ω|, then the proof continues as in the case of part 2 of
Theorem 10, where every player divides her budget equally among all the projects. All
the projects are accepted, so no new deviations become profitable.

4If αm−k does not exist, consider the containing condition to be vacuously true.
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In the case that p < |Ω|, consider the profile where all the players allocate 1/pth of
their respective budgets to each of the p projects m,m −1, . . . ,m −p +1. This is an NE,
since the only deviation that is possibly profitable is some player j < n moving all her
budget to a vacant project. However, this is not profitable, since the project would be
unaccepted, because B j ≤ Bn−1 < θ

|Ω|Bn < θδ/αm ≤ δ. The penultimate inequality stems

from p < |Ω| ⇐⇒ αm
∑

i∈N Bi
|Ω| < δ, and the final one results from the assumption that

θ ≤αm . Therefore, this is an NE.

We now prove an efficiency result, inspired by Theorem 6 on page 30 from Chapter 2.

Theorem 14. Consider an equal θ-sharing game with n ≥ 2 players with budgets Bn ≥
. . . ≥ B2 ≥ B1, 0 < θ < 1 (the order is w.l.o.g.), linear project functions with coefficients
αm =αm−1 = . . . =αm−k+1 >αm−k ≥αm−k−1 ≥ . . . ≥α1 (the order is w.l.o.g).5, and success
threshold δ.

Define p
∆=

⌊
αm

∑
i∈N Bi
δ

⌋
, as in Theorem 13.

1. Assume that B1 ≥ kθBn and all of the following hold.

(a) If k ≤ p, then 1
nαm−k+1 ≥αm−k ,

(b) If k > p ≥ 1, then αmBn < δ;

Then, there exists a pure strategy NE and there holds: PoS = 1.

2. Assume Bn−1 < θ
|Ω|Bn , all the project functions are equal, i.e. αm =α1, and θ ≤αm .

Then, there exists a pure strategy NE and PoS = 1, If, an addition, αmBn ≥ δ, then
PoA = Bn∑

i∈{1,2,...,n} Bi
.

Proof. We first prove part 1. According to proof of part 1 in Theorem 13, equally dividing
all the budgets among min

{
k, p

}
steep projects is an NE. Therefore, PoS = 1.

Part 2 is proven as follows. Since all the players dividing their budgets equally be-
tween any min

{
p,m

}
projects constitutes an NE, we have PoS = 1.

To discuss of the price of anarchy, we define the number of projects that player n

can make accepted on her own, r
∆=

⌊
αm

Bn
δ

⌋
, and distinguish between the case where

m ≤ r and m > r . If m ≤ r , consider the profile where player n divides her budget equally
between all the projects, while the other players contribute nothing at all. This is an NE,
because all the projects are accepted, player n cannot increase her profit and any other
player will be suppressed, if she contributes anything anywhere. On the other hand, if
m > r , consider the profile where player n divides her budget equally between m,m −
1, . . . ,m − r + 1, while the other players contribute nothing at all. This is an NE, since
the only possible deviation is player j < n contributing to a vacant project. However, we
have B j ≤ Bn−1 < θ

|Ω|Bn < θδ/αm ≤ δ. This means that the project would be unaccepted.
Therefore, this is an NE.

Therefore, PoA ≤ αm Bn
αm (

∑
i∈N Bi ) . Since αmBn ≥ δ, at any NE, player n receives at least

αmBn , and therefore, PoA = Bn∑
i∈{1,2,...,n} Bi

.

5If αm−k does not exist, consider the containing condition to be vacuously true.
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For practical purposes, such as organizing elections or a conference, we would like to
know how to choose the success threshold to improve the behavior of the players. The-
orem 12 implies that by choosing a success threshold that disables any player to make
a project successful on her own, the optimum social welfare can be achieved in equi-
librium. The first problem of this approach is that it also allows very inefficient profiles
constitute equilibria, and the second problem is that the discussed equilibria have all the
players investing in the same project, which is unreasonable to applications like confer-
ences, though possible in other applications, such as sponsorship of elections. From the
proof of both parts of Theorem 13 follows that applying a success threshold can force the
agents to concentrate on less projects than without the threshold, if they follow the NE
from the proof. Theorem 14 provides optimal NE, though they are not the only ones, so
regulation may be needed to ensure that those equilibria are indeed chosen.

In addition, the condition “If k ≤ p ⇒ 1
nαm−k+1 ≥ αm−k ” in Theorem 14 implies, by

its contrapositive, that if the second best project is close to a best one, then the threshold
should be big enough, for at least our optimum NE to be guaranteed. The contrapositive
of the condition “k > p ⇒ αmBn < δ” implies that if the biggest player is able to make
a project succeed on her own, then the threshold should be small enough so that p is
at least the number of the most profitable projects, for at least our optimum NE to be
guaranteed.

5. CONCLUSIONS AND FURTHER RESEARCH
This chapter analyzes the possible stable investments in projects, where a project has to
comply to certain requirements to obtain its value. The goal is to advise which invest-
ments are individually and socially preferable. In order to model common resource allo-
cation to competing projects, such as paper co-authorship and investment in firms, we
model agents contributing to several projects. Each agent has a budget of effort, which
she freely divides between the projects. A project that succeeds in the competition ob-
tains a value, which is divided between the contributors who have contributed at least
a given fraction of the maximum contribution to the project. Although in practice the
exact thresholds are usually not known, the results we obtain are general and therefore
meaningful in such unknown settings.

We model succeeding in a competition either by a quota of projects that actually ob-
tain their value, or by a success threshold on the value of projects that do. Comparing
these models, we see from Theorems 9 and 12 that the success threshold allows ensuring
that there exists a socially optimal equilibrium while the quota requires also assuming
that the largest effort budget is less than the sum of the other ones times α1/αm . In
addition, comparing Theorems 11 and 14 shows that provided the smallest budget is at
least a certain fraction of the largest one, the following holds: Large enough a threshold
guarantees that an optimal profile will be an equilibrium, while choosing small enough
a quota guarantees the existence of an optimum equilibrium provided that the largest
budget is less than the sum of the other ones. Unlike in the described cases, where suc-
cess threshold seems stronger than quota, we notice that the second part of Theorem 14
actually contains an additional condition, relatively to the second part of Theorem 11,
but since the second parts refer to the case of a single agent being able to dominate
everyone everywhere and all the projects being equally rewarding, this is less practical
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anyway. To conclude the comparison, choosing success threshold has more power, since
choosing quota needs to assume an additional relation between the budgets, in order to
guarantee that socially optimal Nash equilibria exist. Intuitively, this stems from a quota
needing an assumption on what the players are able to do to increase their utility, given
the quota, while providing a success threshold can be done already with the budgets in
mind.

Interestingly, both a quota and a success threshold create equilibria where the agents
contribute to less projects than without any of these conditions. This is a concentrating
effect.

We conclude that both models allow to guarantee that an optimum profile is an NE,
though no guarantee is provided as to inefficient profiles being an NE as well. Therefore,
some coordination may be required to actually achieve an efficient profile.

There are many interesting directions to expand this research. First, real papers,
books, and many other common projects have an upper bound on the maximal number
of participants. Analogously, a person has an upper bound on the maximal number of
projects she can contribute to. The model should account for these bounds. Another
point is that competition can be of many sorts. For instance, a project may need to
have a winning coalition of contributors, in the sense of cooperative games. The fate
of the projects that fail the competition can also vary; for example, their value can be
distributed between the winning projects. We have managed to extend the sufficiency
results for existence from Section 3.1 of Chapter 2, but the necessity seems hard for an-
alytical analysis. Other analytical approaches or simulations may be tried to delineate
the set of Nash equilibria more clearly. Naturally, project functions do not have to be lin-
ear, so there is a clear need to model various non-linear functions. Such a more general
model will make the conclusions on scientific investments, paper co-authorship, elec-
tions, and the many other application domains more precise, and enable us to further
improve the advice to participants as well as organizers.

Having modeled and analyzed projects that yield a revenue to be shared, we turn
next to reciprocal interactions. This kind of projects is quite complex, so we will study
a single reciprocation in the following chapter, as a preparation for considering sharing
effort between such projects.
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4
TOWARDS DECISION SUPPORT IN

RECIPROCATION

Life cannot subsist in society but by reciprocal concessions.

Samuel Johnson, 1774

People often interact repeatedly: with relatives, through file sharing, in politics, etc. Many
such interactions are reciprocal: reacting to the actions of the other. In order to facilitate
decisions regarding reciprocal interactions, we analyze the development of reciprocation
over time. To this end, we propose a model for such interactions that is simple enough to
enable formal analysis, but is sufficient to predict how such interactions will evolve. In-
spired by existing models of international interactions and arguments between spouses,
we suggest a model with two reciprocating attitudes where an agent’s action is a weighted
combination of the others’ last actions (reacting) and either i) her innate kindness, or ii)
her own last action (inertia). We analyze a network of repeatedly interacting agents, each
having one of these attitudes, and prove that their actions converge to specific limits. Con-
vergence means that the interaction stabilizes, and the limits indicate the behavior after
the stabilization. For two agents, we describe the interaction process and find the limit val-
ues. For a general connected network, we find these limit values if all the agents employ
the second attitude, and show that the agents’ actions then all become equal. In the other
cases, we study the limit values using simulations. We discuss how these results predict the
development of the interaction and can be used to help agents decide on their behavior.

An extended abstract is published at [1] as “The Convergence of Reciprocation”. Most parts of this chapter
appear at http://arxiv.org/abs/1601.07965.
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1. INTRODUCTION
In the previous chapters we analyzed participating in projects that yield values. Now, we
consider another kind of projects, namely, interaction. Interaction is central in human
behavior, e.g., at school, in file sharing, in business cooperation and political struggle.
We aim at facilitating decision support for the interacting agents (how to act) and for the
outside observers (how to influence the acting agents). To this end, we want to predict
interaction. In this and the next chapter we study a single interaction project in detail,
and in Chapter 6, we model agents dividing their efforts between multiple interaction
projects.

Instead of being economically rational, people tend to adopt ways of behavior [2, 3]
not necessarily maximizing some utility function. Furthermore, people tend to recip-
rocate, i.e., react on the past actions of others [4–7]. Reciprocation is also important
for engineering computer systems that represent people or interact with people, such
as service robots owned by people or software agents using clouds. Since reciprocation
is ubiquitous, predicting such behavior will allow predicting many real-life interactions
and advising on how to improve them. Therefore, we need a model for agents reciprocat-
ing for a long time with certain reciprocal habits that is amenable to theoretical analysis
and precise enough to predict such interactions. Understanding such a model would
also help understanding how to improve personal and public value of such interactions.

A broad overview of the existing models appears in Section 1.1.2. Here we take a
quicker look, and conclude that none of the existing work fits our goals. The literature
has two major kinds of models of (sometimes repeated) reciprocation: models that ex-
plain the existence of reciprocation and those analyzing its consequences. We begin by
looking at the first kind of models. There are several kinds of models that explain why
reciprocation has come to being. First, there are the models explaining how reciproca-
tion could have directly evolved, such as the famous research of Axelrod [8, 9], show-
ing that reciprocating is expedient to self-interested agents, or papers that take into ac-
count helping genetic relatives as well [10, 11]. Other works advocate less evident ways
of evolution of reciprocation. For example, Van Segbroeck et al. [12] argue that fairness
motivates reciprocation, and investigate the evolution of fairness. Trivers [13] demon-
strates how emotions sustaining reciprocation, like moralistic aggression and guilt, have
evolved. Reacting to past actions without any hope to gain from it, called strong reci-
procity, is modeled and analyzed by Gintis [14, Chapter 11]. Some explanation for it
appears in Fehr, Fischbacher and Gachter [15]. Segal and Sobel [16] assume that agents
care not only about the outcomes but also about the strategies, and provide conditions
for the utility being represented by a unique linear combination of the outcome depen-
dent utilities of the agents.

On another research avenue, given that reciprocal tendencies exist, the following ar-
ticles analyze what ways it makes interactions develop. Falk and Fischbacher, Rabin’s
and others [4, 17–19] model and analyze games where the utility function of rational
agents positively depends on showing reciprocation. The role of institutions in how well
reciprocation pays off is studied in [5].

None of the above research directions satisfies our need to model a lengthy recipro-
cal process with actions from a continuous domain, given that reciprocation takes place.
Reciprocity is seen as an inborn quality [13, 15], which has probably been evolved from
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rationality of agents, as was shown by Axelrod [8]. In addition, predicting reciprocal pro-
cesses would be in the spirit of the call to consider various repercussions of reciprocity
from [20]. For lack of analysis of non-discrete lengthy interactions, caused by inborn
reciprocation, we model and study how reciprocity makes interaction evolve with time.

Since we are interested in the extent of actions, we represent actions by weight, where
a bigger value means a more desirable contribution to its recipient or, in the interper-
sonal context, investment in the relationship. In our model, agents reciprocate both to
the agent they are acting on and to their whole neighborhood. We model reciprocity by
two reciprocation attitudes, an action’s weight being a convex combination of i) one’s
own kindness or ii) one’s own last action, and the other’s and neighborhood’s last actions
on the acting agent. A convex combination, having its weights nonnegative and sum up
to 1, represents a whole being assembled from fractions. When determining an action,
the whole past should be considered, but to facilitate analysis, we assume that the last
actions represent the history well enough. The motivation for defining an action (or how
much it changes) or a state by a linear combination of the other side’s actions and own
actions and qualities comes from similar models of arms race [21, 22] and spouses’ inter-
action [23] (piecewise linear in this case). Attitude i) depending on the (fixed) kindness
is called fixed, and ii) depending on one’s own last action is called floating. Given this
model, we study its behavioral repercussions.

We now demonstrate reciprocal interaction in daily life.

Example 5. Consider n = 4 colleagues 1,2,3,4, who can help or harm each other. Let the
possible actions be: giving bad work, showing much contempt, showing little contempt,
supporting emotionally a little, supporting emotionally a lot, advising, and let their re-
spective weight be a point in [−1,−0.5), [−0.5,−0.2), [−0.2.0), (0,0.4), [0.4,0.7), [0.7,1].
Assume that each person knows what the other did to him last time. The social climate,
meaning what the whole group did, also influences behavior. However, we may just con-
centrate on a single pair of even-tempered colleagues who reciprocate regardless of the
others.

Our major contributions are proving when the reciprocation process converges and
finding the limit of convergence. A limit when time approaches infinity describes what
actions will take place once they have stabilized. These results predict reciprocation
and explain the above mentioned phenomena. In particular, exponential convergence
means a rapid stabilizing, and it explains acquiring personal behavioral styles, which is
often seen in practice [24]. We prove that when at most one agent is fixed, the limits of
the actions of all agents are the same; this explains formation of organizational subcul-
tures, known in the literature [25]. We also find that only the kindness values of the fixed
agents influence the limits of the various actions, thereby explaining that persistence
(i.e., being faithful to one’s inner inclination) makes interaction go one’s own way. The
fact that persistence allows determining the extent of interaction is known in daily life;
for instance, the recommendations to reject undesired requests by firmly repeating the
reasons for rejection [26, Chapter 1] and [27, Chapter 8] basically recommend to persist.

We first consider two agents in Section 3 and Section 4, assuming their interaction is
independent of other agents, or that the total influence of the others on the pair is neg-
ligible. The main convergence theorems we use when analyzing strategic choices of re-
ciprocation habits in Chapter 5 are Theorems 15, 16 and Corollary 3. In the synchronous
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case, the limits for two agents will also follow from a general convergence result that is
presented later, unless both agents are fixed. We still present them with the other results
for two agents for the completeness of Section 3. We study interaction of many agents,
where the techniques we used for two agents are not applicable, in Section 5. In the cen-
tral convergence Theorem 20, we find the limit when all the agents act synchronously
and at most one has the fixed reciprocation attitude. Section 6 simulates cases that we
have not analyzed analytically.

2. MODELING RECIPROCATION

2.1. BASICS

We begin by modeling agents, actions and times, providing the notation necessary for
the following definition of reciprocation, such as the inner parameters of an agent. We
conclude the section by sharpening the model and providing explanatory examples.

Let N = {1,2, . . . ,n} be n ≥ 2 interacting agents. There is a given undirected interac-
tion graph G = (N ,E), such that agent i may act on j and vice versa if and only if (i , j ) ∈ E .
The actions change, but the actors and those acted upon remain the same. Denote the
degree of agent i ∈ N in G by d(i ). This allows for various topologies, including hetero-
geneous ones.1 We need to distinguish between the actions of agent i on agent j and
the other way around. To be able to mention directed edges, we shall treat this graph
as a symmetric directed one, meaning that for every (i , j ) ∈ E , we have ( j , i ) ∈ E . Time is

modeled by a set of discrete moments t ∈ T
∆= {0,1,2, . . .}, defining a time slot whenever at

least one agent acts. Agent i acts at times Ti
∆= {

ti ,0 = 0, ti ,1, ti ,2, . . .
}⊆ T , and ∪i∈N Ti = T .

We assume that all agents act at t = 0, since otherwise we could not sometimes con-
sider the last action of another agent, which would force us to complicate the model
and render it even harder for theoretical analysis. If all agents always act at the same
times (T1 = T2 = . . . = Tn = T ), we say they act synchronously. Throughout the whole
dissertation, relatively to the synchronous case, analyzing the general model does not
add much game theoretic interest. The general, not necessarily synchronous, model is
practically important, on the expense of adding quite some complexity, so we do analyze
it. However, a purely theoretically inclined reader may safely assume synchroneity, skip-
ping the excessive discussion necessary only for the general case, such as, for instance,
Lemma 5 and Section 4.

For the sake of asymptotic analysis, we assume that each agent gets to act an infinite
number of times; that is, Ti is infinite for every i ∈ N . Any real application will, of course,
realize only a finite part of it, and infinity models the unboundedness of the process in
time.

When (i , j ) is in E , we denote the weight of an action by agent i ∈ N on another agent
j ∈ N at moment t ∈ Ti by xi , j : Ti → R. To extend xi , j to the whole T, we first define the
last action time si (t ) : T → Ti of agent i as the largest t ′ ∈ Ti that is at most t . Since 0 ∈ Ti ,

this is well defined. Now, we extend xi , j to T by xi , j (t )
∆= xi , j (si (t )), and we have defined

xi , j (t ) : T → R. So, xi , j is the last action of agent i on (another) agent j . For example,
when interacting by file sharing, the actions of sending a valid piece of a file, nothing,

1I.e., with various degrees.
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or a piece with a virus are decreasing in weight. Since only the weight of an action is
relevant, we usually write “action” while referring to its weight.

We denote the total received contribution from all the neighbors N(i ) at their last

action times not later than t by goti (t ) : T →R; formally, goti (t )
∆=∑

j∈N(i ) x j ,i (t ).

2.2. RECIPROCATION
We now define two reciprocation attitudes, which define how an agent reciprocates.
In order to model the inner inclination of an agent to act and the readiness to react,
we need the following notions. The kindness of agent i is denoted by ki ∈ R; w.l.o.g.,
kn ≥ . . . ≥ k2 ≥ k1 throughout the thesis. Kindness models inherent inclination to help
others; in particular, it determines the first action of an agent, before others have acted.
We model agent i ’s inclination to mimic a neighboring agent’s action and the actions of
the whole neighborhood in G by reciprocation coefficients ri ∈ [0,1] and r ′

i ∈ [0,1] re-
spectively, such that ri + r ′

i ≤ 1. Here, ri is the fraction of xi , j (t ) that is determined by

the last action of j upon i , and r ′
i is the fraction that is determined by 1

|N(i )| th of the total
contribution to i from all the neighbors at the last time. Conceptually, reacting to last
actions, one reacts to the actor, since “who you are is what you do” [28].

Intuitively, with the fixed attitude, actions depend on the agent’s kindness at every
time, while the floating attitude is loose, moving freely in the reciprocation process, and

kindness directly influences such behavior only at t = 0. In both cases xi , j (0)
∆= ki .

Definition 12. For the fixed reciprocation attitude, agent i ’s action on another agent j is
determined by the other agent’s action weighted by ri , by the total action of the neighbors
weighted by r ′

i and divided by the number of the neighbors, and by the agent’s kindness
weighted by 1− ri − r ′

i . That is, for t ∈ Ti ,

xi , j (t )
∆= (1− ri − r ′

i ) ·ki + ri · x j ,i (t −1)+ r ′
i ·

goti (t −1)

|N(i )| .

Definition 13. In the floating reciprocation attitude, agent i ’s action is a weighted aver-
age of that of the other agent j , of the total action of the neighbors divided by the number
of the neighbors, and of her own last action. To be precise, for t ∈ Ti ,

xi , j (t )
∆= (1− ri − r ′

i ) · xi , j (t −1)+ ri · x j ,i (t −1)+ r ′
i ·

goti (t −1)

|N(i )| .

The relations are (usually inhomogeneous) linear recurrences with constant coeffi-
cients, but many variables. We could express the dependence of xi , j (t ) only on xi , j (t ′)
with t ′ < t , but then the coefficients would not be constant, besides the case of two fixed
agents. We are not aware of a method to use the general recurrence theory to improve
our results.

The notation is summarized in Table 4.1.

2.3. CONTEXT AND EXAMPLES
We emphasize that compared to the other reciprocation models, our model takes recip-
rocal actions as given and looks at the process, while other models either consider how
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Term: Meaning:
Ti The time moments when agent i acts.
Synchronous T1 = T2 = . . . = Tn .
si (t ) : T → Ti max

{
t ′ ∈ Ti |t ′ ≤ t

}
.

xi , j (t ) : T →R The action of i on another agent j at time si (t ).
goti (t ) : T →R

∑
j∈N(i ) x j ,i (t ).

ki The kindness of agent i .
ri ,r ′

i ∈
[0,1],ri +r ′

i ≤ 1
The reciprocation coefficients of agent i .

Agent i has
the fixed re-
ciprocation
attitude, j is
another agent

At moment t ∈ Ti ,

xi , j (t )
∆=


(1− ri − r ′

i ) ·ki + ri · x j ,i (t −1)

+r ′
i ·

goti (t−1)
|N(i )| t > ti ,0

ki t = ti ,0 = 0.

Agent i has
the floating
reciprocation
attitude, j is
another agent

At moment t ∈ Ti ,

xi , j (t )
∆=


(1− ri − r ′

i ) · xi , j (t −1)

+ri · x j ,i (t −1)+ r ′
i ·

goti (t−1)
|N(i )| t > ti ,0

ki t = ti ,0 = 0.

Table 4.1: The notation used throughout the thesis.

reciprocation originates, such as the evolutionary model of Axelrod [8], or take it as given
and consider specific games, such as in [4, 17–19].

There are several reminiscent but different models. The floating model resembles
opinions that converge to a consensus [29–32], while the fixed model resembles converg-
ing to a general equilibrium of opinions [33]. Of course, unlike the models of spreading
opinions, we consider different actions on various neighbors, determined by direct reac-
tion and a reaction to the whole neighborhood. Still, because of some technical reminis-
cence to our models, we do use [29, Theorem 2] to prove Proposition 6. Another similar
model is that of monotonic concession in negotiation [34] and that of bargaining over
dividing a pie between two agents [35]. The main difference is that in those models, the
agents decide what to do, while in our case, they follow the reciprocation formula. This
reciprocal reaction fits the large body of literature on reciprocation, and we concentrate
on what will occur, if the agents decide to concede reciprocally.

We now illustrate the model on Example 5.

Example 5 (Continued). Let (just here) n = 3 and the reciprocation coefficients be r1 =
r2 = 0.5,r ′

1 = r ′
2 = 0.3,r3 = 0.8,r ′

3 = 0.1. Assume the kindness to be k1 = 0,k2 = 0.5 and
k3 = 1. Since this is a small group, all the colleagues may interact, so the graph is a clique.2

At t = 0, every agent’s action on every other agent is equal to her kindness value, so agent

2A clique is a fully connected graph.
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1 does nothing, agent 2 supports emotionally a lot, and 3 provides advice. If all agents act
synchronously, meaning T1 = T2 = T3 = {0,1, . . .} , and all agents get carried away by the
process, meaning that they forget the kindness in the sense of employing floating recipro-
cation, then, at t = 1 they act as follows: x1,2(1) = (1−0.5−0.3)·0+0.5·0.5+0.3· 0.5+1

2 = 0.475
(supports emotionally a lot), x1,3(1) = (1−0.5−0.3) ·0+0.5 ·1+0.3 · 0.5+1

2 = 0.975 (provides
advice), x2,1(1) = (1−0.5−0.3) ·0.5+0.5 ·0+0.3 · 0+1

2 = 0.25 (supports emotionally a little),
and so on. Please note that now, unlike at t = 0, agent 1 acts on different agents differently.

Consider modeling tit for tat [9]:

Example 6. In our model, a tit for tat agent with two options: cooperate or defect is easily
modeled with ri = 1, ki = 1, meaning that the original action is cooperating (1) and the
next action is the current action of the other agent. If one of two tit-for-tat agents makes a
mistake and begins with defection (k2 = 0), acting synchronously, then they will alternate.

If the agents are human, this example predicts an indefinitely long alternation, which
seems unrealistic to us. Similarly, an agent that sticks to his actions regardless the other
seems highly implausible. This provides evidence that extreme values of the reciproca-
tion coefficients are uncommon in life.

3. PAIRWISE INTERACTION
We now consider an interaction of two agents, 1 and 2, since this assumption allows
proving more than we can in the general case. We assume that the pair has no other
neighbors. This allows to also assume that r ′

1 = r ′
2 = 0, since now, ri and r ′

i play the same
role.

To predict behavior, this section studies reciprocation mainly by proving conver-
gence and finding its limit, which represents the actions after stabilizing. This section
considers three sets of reciprocation attitudes: both agents are fixed, both are floating,
and one is fixed while the other one is floating. For each such setting, we study conver-
gence, properties of the sequence of an agent’s actions and the relationship between the
actions of the two agents.

If T1 contains exactly all the even numbered slots and T2 contains zero and all the
odd ones, we say that the agents alternate. Since agent 1 can only act on agent 2 and vice
versa, we write x(t ) for x1,2(t ) and y(t ) for x2,1(t ).

To formally discuss the actions after the interaction has stabilized, we consider the
limits (if exist)3 limp→∞ x(t1,p ), and limt→∞ x(t ), for agent 1, and limp→∞ y(t2,p ) and
limt→∞ y(t ) for agent 2. Since the sequence {x(t )} is

{
x(t1,p )

}
with finite repetitions,

the limit limt→∞ x(t ) exists if and only if limp→∞ x(t1,p ) does. If they exist, they are

equal; the same holds for limt→∞ y(t ) and limp→∞ y(t2,p ). Denote Lx
∆= limt→∞ x(t ) and

Ly
∆= limt→∞ y(t ).

3.1. Fixed RECIPROCATION
In this section we prove that if both agents are fixed and at least one of them does not
just mimic the other, but considers own kindness, then their action sequences converge;

3Agent i acts at the times in Ti =
{

ti ,0 = 0, ti ,1, ti ,2, . . .
}
.
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we also find the limits. We also show each sequence of actions alternates and that the
relative positions between the two sequences of the two agents can be that one is always
greater than the other or not.

In order to prove this theorem, we first show that it is sufficient to analyze the syn-
chronous case, i.e., T1 = T2 = T .

Lemma 5. Consider a pair of interacting agents. Denote the action sequences that would
result in case both agents acted synchronously, (i.e., if held T1 = T2 = T ), by

{
x ′(t )

}
t∈T

and
{

y ′(t )
}

t∈T , respectively. Then, the action sequences4
{

x(t1,p )
}

p∈N and
{

y(t2,p )
}

p∈N are

subsequences of
{

x ′(t )
}

t∈T and
{

y ′(t )
}

t∈T , respectively, besides that a repetition streak in{
x(t1,p )

}
p∈N and

{
y(t2,p )

}
p∈N may be represented by a single element in

{
x ′(t )

}
t∈T and{

y ′(t )
}

t∈T .

The proof follows from Definition 12 by induction on time steps.

Proof. We prove by induction that for each p > 0, the sequence x(t1,0), x(t1,1), . . . , x(t1,p )
is a subsequence of the x ′(0), x ′(1), . . . , x ′(t1,p ) and the sequence y(t2,0), y(t2,1), . . . , y(t2,p )
is a subsequence of the y ′(0), y ′(1), . . . , y ′(t2,p ), perhaps, with removing some repetitions.

For p = 0, this is immediate, since ti ,0 = 0.
For the induction step, assume that the lemma holds for p −1 and prove it for p > 0.

By definition, x(t1,p ) = (1−r1) ·k1+r1 · y(t1,p −1), and since by the induction hypothesis,
y(t1,p −1) is an element in the sequence

{
y ′(t )

}
, we conclude that x(t1,p ) is an element

in the sequence
{

x ′(t )
}
. Moreover, in

{
x ′(t )

}
this element comes after (or coincides with)

x(t1,p−1), because either x(t1,p−1) = x(0) = x ′(0) or x(t1,p−1) = (1− r1) ·k1 + r1 · y(t1,p−1 −
1) and y(t1,p−1 − 1) precedes (or coincides with) y(t1,p − 1) in

{
y ′(t )

}
by the induction

hypothesis. This proves the induction step for agent 1, and it is proven by analogy for
2.

We now assume the synchronous case and prove that the action sequences oscillate.
Oscillation is an interesting property of the convergence process on its own right and is
also helpful to prove convergence.

Lemma 6. In the synchronous case, for every t > 0 : x(2t − 1) ≥ x(2t + 1), and for every
t ≥ 0 : x(2t ) ≤ x(2t +2) ≤ x(2t +1). By analogy, ∀t > 0 : y(2t −1) ≤ y(2t +1), and ∀t ≥ 0 :
y(2t ) ≥ y(2t +2) ≥ y(2t +1). All the inequations are strict if and only if 0 < r1,r2 < 1,k2 >
k1.5

Since x(2t ) ≤ x(2t +2) ≤ x(2t +1) ⇒ x(2t ) ≤ x(2t +1), we obtain for t > 0 : x(2t −1) ≥
x(2t +1) ≥ x(2t ), and for every t ≥ 0 : x(2t ) ≤ x(2t +2) ≤ x(2t +1). By analogy, ∀t > 0 :
y(2t − 1) ≤ y(2t + 1) ≤ y(2t ), and ∀t ≥ 0 : y(2t ) ≥ y(2t + 2) ≥ y(2t + 1). Intuitively, this
means that the sequence {x(t )} is alternating while its amplitude is getting smaller, and
the same holds for the sequence

{
y(t )

}
, with another alternation direction. The intuitive

reasons are that first, agent 1 increases her action, while 2 decreases it. Then, since 2
has decreased her action, so does 1, while since 1 has increased hers, so does 2. This

4Agent i acts at the times in Ti =
{

ti ,0 = 0, ti ,1, ti ,2, . . .
}
.

5Recall that we always assume that k2 ≥ k1.
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alternating process is going on, and the amplitude subsides, since the changing part is
convexly combined with the constant one.

We now prove the lemma by induction on time.

Proof. For t = 0, we need to show that x(0) ≤ x(2) ≤ x(1) and y(0) ≥ y(2) ≥ y(1). We
know that x(0) = k1, x(1) = (1− r1) ·k1 + r1 ·k2, and y(0) = k2, y(1) = (1− r2) ·k2 + r2 ·k1.
Since y(1) ≤ k2, we have x(2) = (1− r1) ·k1 + r1 · y(1) ≤ x(1). Since y(1) ≥ k1, we also have
x(2) = (1− r1) ·k1 + r1 · y(1) ≥ x(0). The proof that y(0) ≥ y(2) ≥ y(1) is analogous.

For the induction step, for any t > 0, assume that the lemma holds for t −1, which
means x(2t−3) ≥ x(2t−1) (for t > 1), x(2t−2) ≤ x(2t ) ≤ x(2t−1), and y(2t−3) ≤ y(2t−1)
(for t > 1), y(2t −2) ≥ y(2t ) ≥ y(2t −1).

We now prove the lemma for t . By Definition 12, x(2t −1) = (1− r1)k1 + r1 y(2t −2)
and x(2t +1) = (1−r1)k1+r1 y(2t ). Since we assume y(2t −2) ≥ y(2t ), we have x(2t −1) ≥
x(2t +1). By analogy, we can prove that y(2t −1) ≤ y(2t +1).

By definition, x(2t ) = (1− r1)k1 + r1 y(2t − 1) and x(2t + 2) = (1− r1)k1 + r1 y(2t + 1).
Since y(2t −1) ≤ y(2t +1), we have x(2t ) ≤ x(2t +2). By definition, x(2t +1) = (1−r1)k1+
r1 y(2t ). Since y(2t ) ≥ y(2t −1), we conclude that x(2t +1) ≥ x(2t ). By analogy, we prove
that y(2t + 1) ≤ y(2t ). From this and from the recursive definitions, we conclude that
x(2t +2) ≤ x(2t +1), and we have shown that x(2t ) ≤ x(2t +2) ≤ x(2t +1). By analogy, we
prove that y(2t ) ≥ y(2t +2) ≥ y(2t +1).

The equivalence of strictness in all the inequations to 0 < r1,r2 < 1,k2 > k1 is proven
by repeating the proof with strict inequalities, and by noticing that not having one of the
conditions 0 < r1,r2 < 1,k2 > k1 implies equality in at least one of the statements of the
lemma, while if all these conditions hold, then the strictness holds.

With these results we now prove the following central theorem regarding conver-
gence.

Theorem 15. If the reciprocation coefficients are not both 1, which means r1r2 < 1, then

we have, for i ∈ N : limp→∞ xi , j (ti ,p ) = (1−ri )ki+ri (1−r j )k j

1−ri r j
.

The idea is to prove monotonicity and boundedness, drawing convergence. The lim-
its are found by substituting the limits to Definition 12.

Proof. Using Lemma 5, we assume the synchronous case. We first prove convergence,
and then find its limit. For each agent, Lemma 6 implies that the even actions form a
monotone sequence, and so do the odd ones. Both sequences are bounded, which can
be easily proven by induction, and therefore each one converges. The whole sequence
converges if and only if both limits are the same. We now show that they are indeed the
same for the sequences {x(2t −1)} and {x(2t )}; the proof for

{
y(2t −1)

}
and

{
y(2t )

}
is
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Figure 4.1: The limit of the actions of agent 1 as a
function of the reciprocity coefficients, for a Fixed-
fixed reciprocation, k1 = 1,k2 = 2. Given r1, agent 2
receives most when r2 = 0.
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Figure 4.2: The limit of the actions of agent 2 as a
function of the reciprocity coefficients, for a Fixed-
fixed reciprocation, k1 = 1,k2 = 2. Given r2, agent 1
receives most when r1 = 1.

analogous.

x(t +1)−x(t )

= (1− r1)k1 + r1 y(t )− (1− r1)k1 − r1 y(t −1)

= r1(y(t )− y(t −1)) = r1r2(x(t −1)−x(t −2)) = . . .

= (r1r2)bt/2c
{

x(1)−x(0) t = 2s, s ∈N
x(2)−x(1) t = 2s +1, s ∈N.

As r1r2 < 1, this difference goes to 0 as t goes to ∞. Thus, x(t ) converges (and so does
y(t )). To find the limits Lx = limt→∞ x(t ) and Ly = limt→∞ y(t ), notice that in the limit
we have (1− r1)k1 + r1Ly = Lx and (1− r2)k2 + r2Lx = Ly with the unique solution: Lx =
(1−r1)k1+r1(1−r2)k2

1−r1r2
and Ly = (1−r2)k2+r2(1−r1)k1

1−r1r2
.

Remark 2. If, unlike the theorem assumes, r1r2 = 1, then since r1r2 = 1 if and only if
r1 = r2 = 1, in the synchronous case, each agent just repeats what the other one did last
time, thereby interchangeably playing k1 and k2. In particular, unless k1 = k2, then no
convergence takes place. If the synchroneity breaks by agent i acting alone, then both
agents will act ki from this time on.

The theorem’s assumption that not both reciprocation coefficients are 1 and the sim-
ilar assumptions in the following theorems (such as 0 < ri < 1) mean that the agent nei-
ther ignores the other’s action, nor does it copy the other’s action. These are to be ex-
pected in real life, as we also mention in Example 6. The limits of actions as functions
of the reciprocation coefficients are shown in Figures 4.1 and 4.2. We see that given r1,
agent 2 receives most when r2 = 0, and given r2, agent 1 receives most when r1 = 1. This
fits the intuition, that the kinder agent 2 increases interaction by not reacting to the less
kind agent 1, while the opposite holds for agent 1. We now reconsider Example 5 for two
agents.

Example 5 (Continued). if agents 1 and 2 employ fixed reciprocation, r1 = r2 = 0.5,r ′
1 =

r ′
2 = 0.0 and k1 = 0,k2 = 0.5, then we obtain Lx = 0.5·(1−0.5)0.5

1−0.5·0.5 = 1/6 and Ly = (1−0.5)·0.5
1−0.5·0.5 =

1/3.

We see that Lx ≤ Ly , which is intuitive, since the agents are always considering their
kindness, so the kinder one acts with a bigger weight also in the limit. When this limit
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Figure 4.3: Simulation of actions for the syn-
chronous case, with r1 + r2 < 1, r2 = 0.5 on the left,
and r1 + r2 > 1, r2 = 0.9 on the right. This is a fixed-
fixed reciprocation, with k1 = 1,k2 = 2,r1 = 0.3.
Each agent oscillates, while converging to her limit.
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Figure 4.4: The common limit of the actions as a
function of the reciprocity coefficients, for a float-
ing-floating reciprocation, k1 = 1,k2 = 2. Given r2,
agent 1 receives most when r1 = 1, and given r1,
agent 2 receives most when r2 = 0.

inequality is strict, we have x(t ) < y(t ) for all t ≥ t0 for some t0. To find when it is strict,
consider the following:

(1− r1)k1 + r1(1− r2)k2

1− r1r2
= (1− r2)k2 + r2(1− r1)k1

1− r1r2

⇐⇒ (1− r1)(1− r2)k1 = (1− r1)(1− r2)k2

⇐⇒ r1 = 1∨ r2 = 1∨k1 = k2,

and thus, it is strict if and only if r1 < 1∧r2 < 1∧k1 < k2. Even when the limit inequality is
strict, x(t ) < y(t ) may hold only from some time on, and not all the way. For illustration,
in the simulation of the actions over time in Figure 4.3, on the left, y(t ) is always larger
than x(t ), and on the right, they alternate several times before y(t ) becomes larger. We
observe oscillations, predicted by Lemma 6, and rapid convergence, which will ensue
from Theorem 20.

3.2. Floating RECIPROCATION
We first prove convergence, and later we analyze the relative position between the two
sequences of actions and the monotonicity of each of these sequences.

If both agents have the floating reciprocation attitude, their action sequences con-
verge to a common limit, as the following important theorem states.

Theorem 16. If the reciprocation coefficients are neither both 0 nor both 1, which means
0 < r1 + r2 < 2, then, as t → ∞, x(t ) and y(t ) converge to a common limit. In the syn-
chronous case (T1 = T2 = T ), they both approach

1

2

(
k1 +k2 + (k2 −k1)

r1 − r2

r1 + r2

)
= r2

r1 + r2
k1 + r1

r1 + r2
k2.

The common limit of the actions is shown in Figure 4.4. As in the fixed, fixed case,
we observe that to boost cooperation, the kindest should be stable, while the less kind
should mimic the kindest.

In Example 5, we have the following.

Example 5 (Continued). if agents 1 and 2 employ floating reciprocation, r1 = r2 = 0.5,r ′
1 =

r ′
2 = 0.0 and k1 = 0,k2 = 0.5, then we obtain Lx = Ly = (1/2) ·0+ (1/2) ·0.5 = 0.25.
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The idea of the proof is to show that
{
[min

{
x(t ), y(t )

}
,max

{
x(t ), y(t )

}
]
}∞

t=1 is a nested
sequence of segments, which lengths approach zero, and therefore, {x(t )} and

{
y(t )

}
converge to a common limit. Finding this limit stems from finding limt→∞

(
x(t )+ y(t )

)
.

Throughout the section, whenever we need concrete T1,T2, we consider the syn-
chronous case. The alternative case is fully handled in Section 4.

Proof. We first prove that the convergence takes place.
If both agents act at time t > 0, then y(t )−x(t )

= x(t −1)(r2 −1+ r1)+ y(t −1)(1− r2 − r1)

= y(t −1)(1− r1 − r2)−x(t −1)(1− r1 − r2)

= (1− r1 − r2)(y(t −1)−x(t −1)). (4.1)

Since 0 < r1 + r2 < 2, we have |(1− r1 − r2)| < 1.
If only agent 1 acts at time t > 0, then y(t )−x(t )

= y(t −1)(1− r1)−x(t −1)(1− r1)

= (1− r1)(y(t −1)−x(t −1)). (4.2)

If r1 > 0, then |(1− r1)| < 1. Similarly, if only agent 2 acts, then

y(t )−x(t ) = (1− r2)(y(t −1)−x(t −1)). (4.3)

Since r1 + r2 > 0, either r1 or r2 is greater than 0, and since each agent acts an in-
finite number of times, we obtain limt→∞

∣∣y(t )−x(t )
∣∣ = 0. Since ∀t > 0 : x(t ), y(t ) ∈

[min
{

x(t −1), y(t −1)
}

,max
{

x(t −1), y(t −1)
}
], we have a nested sequence of segments,

which lengths approach zero, thus x(t ) and y(t ) both converge, and to a common limit.
Assuming T1 = T2 = T now, we find the common limit. For all t > 0,

x(t )+ y(t ) = x(t −1)(1− r1 + r2)+ y(t −1)(r1 +1− r2)

= x(t −1)+ y(t −1)+ (r1 − r2)(y(t −1)−x(t −1))

⇒ lim
t→∞x(y)+ y(t ) = k1 +k2 +

∞∑
t=0

(r1 − r2)(y(t )−x(t ))

(4.1)= k1 +k2 + (r1 − r2)
∞∑

t=0
(1− r1 − r2)t (k2 −k1)

geom. series→︸ ︷︷ ︸
t→∞

k1 +k2 + (r1 − r2)
k2 −k1

r1 + r2
= k1 +k2 + (k2 −k1)

r1 − r2

r1 + r2
.

Since we have shown that both limits exist and are equal, each is equal to half of
k1 +k2 + (k2 −k1) r1−r2

r1+r2
.

Remark 3. If, unlike the theorem assumes, r1 + r2 = 0, then since r1 + r2 = 0 if and only if
r1 = r2 = 0, each agent keeps doing the same thing all the time: agent 1 does k1 and 2 does
k2. If, unlike the theorem assumes, r1+r2 = 2, then since r1+r2 = 2 if and only if r1 = r2 = 1,
in the synchronous case, each agent just repeats what the other one did last time, thereby
interchangeably playing k1 and k2. In particular, unless k1 = k2, then no convergence
takes place. If the synchroneity breaks by agent i acting alone, then both agents will act ki

from this time on.
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The following gives the relation between x(t )s and y(t )s.

Proposition 1. If r1 + r2 ≤ 1, then, for every t ≥ 0 : y(t ) ≥ x(t ).
If r1 + r2 ≥ 1, then the following holds. y(0) ≥ x(0). For every t > 0, t ∈ T1 ∩T2, we have

y(t −1) ≥ x(t −1) ⇒ y(t ) ≤ x(t ), and y(t −1) ≤ x(t −1) ⇒ y(t ) ≥ x(t ). For any other t , we
have y(t −1) ≥ x(t −1) ⇒ y(t ) ≥ x(t ), and y(t −1) ≤ x(t −1) ⇒ y(t ) ≤ x(t ). In words, x(t )s
and y(t )s alter their relative positions if and only if both act.

Proof. Consider the case r1 + r2 ≤ 1 first. We employ induction. The basis is t = 0, where
y(0) = k2 ≥ k1 = x(0).

For the induction step, we assume the proposition for all the times smaller than t > 0
and prove it for t . If only 1 acts at t , then y(t ) = y(t−1) and x(t ) = (1−r1)x(t−1)+r1 y(t−1).
Therefore, y(t ) ≥ x(t ) if and only if y(t−1) ≥ (1−r1)x(t−1)+r1 y(t−1), which is equivalent
to (1−r1)y(t −1) ≥ (1−r1)x(t −1), which holds by the induction hypothesis. If only agent
2 acts at t , then x(t ) = x(t −1) and y(t ) = (1− r2)y(t −1)+ r2x(t −1). Therefore,

y(t ) ≥ x(t ) ⇐⇒ (1− r2)y(t −1)+ r2x(t −1) ≥ x(t −1) ⇐⇒ (1− r2)y(t −1) ≥ (1− r2)x(t −1),

which is true by the induction hypothesis.
If both agents act at t , then x(t ) = (1− r1)x(t −1)+ r1 y(t −1) and y(t ) = (1− r2)y(t −

1)+r2x(t −1). Therefore, y(t ) ≥ x(t ) if and only if (1−r2)y(t −1)+r2x(t −1) ≥ (1−r1)x(t −
1)+ r1 y(t −1) if and only if (1− r1 − r2)y(t −1) ≥ (1− r1 − r2)x(t −1), which is true by the
induction hypothesis and using the assumption r1 + r2 ≤ 1.

Consider the case r1 + r2 ≥ 1 now. We employ induction again. The basis is t = 0,
where y(0) = k2 ≥ k1 = x(0).

For the induction step, assume the proposition for all values smaller than t > 0 and
prove it for t . The cases where only agent 1 acts at t and where only 2 acts at t are shown
analogously to how they are shown for the case r1+r2 ≤ 1. If both agents act at t , then we
have shown that y(t ) ≥ x(t ) if and only if (1− r1 − r2)y(t −1) ≥ (1− r1 − r2)x(t −1), which
means that y(t −1) ≥ x(t −1) ⇒ y(t ) ≤ x(t ) and y(t −1) ≤ x(t −1) ⇒ y(t ) ≥ x(t ), assuming
r1 + r2 ≥ 1.

We now discuss the question of monotonicity of action sequences.

Proposition 2. Assume r1 < 1,r2 < 1. Then, if r1 + r2 ≤ 1, then {x(t )} do not decrease and{
y(t )

}
do not increase. On the other hand, if r1 + r2 > 1, then both {x(t )} and

{
y(t )

}
are

not monotonic, unless T1∩T2 = {0}, in which case they are monotonic. In the action times
alternate, then each agent’s actions alternate in positions.

Proof. The proposition implies that if r1 + r2 ≤ 1, then {x(t )} do not decrease and
{

y(t )
}

do not increase, since the next x(t ) (or y(t )) is either the same or a combination of the
last one with a higher value (lower value, for y(t )).

For r1+r2 > 1, both {x(t )} and
{

y(t )
}

are not monotonic, unless T1∩T2 = {0}, in which
case they are monotonic, for the reason above (in this case we always have y(t ) ≥ x(t )).
For T1∩T2 6= {0}, take any positive t in T1∩T2. Then the larger value at t −1 becomes the
smaller one at t , thereby getting smaller, and the smaller value gets larger analogously.
In the future, the new smaller will only grow and the new larger will decrease, thereby
behaving non-monotonically. In particular, in the alternating case, each agent’s actions
alternate.
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Figure 4.5: Simulation results for the synchronous case, r1 + r2 < 1 (left) and r1 + r2 > 1 (right). We assume a
floating-floating reciprocation, k1 = 1,k2 = 2,r1 = 0.3. In the left graph, r2 = 0.5, while in the right one, r2 = 0.9.
In the left graph, agent 1’s actions are smaller than those of 2; agent 1’s actions increase, while those of agent 2
decrease. In the right graph, the actions of the agents alter their relative positions at each time step, and each
agent’s actions go up and down.

Some examples are simulated in Figure 4.5, fitting Theorem 16 and showing mono-
tonicity and the actions of agent 2 being larger in case r1 + r2 ≤ 1.

3.3. Fixed AND Floating RECIPROCATION

We prove monotonicity, and subsequently use it to establish convergence. Finally, we
analyze the relative position between the two sequences of actions.

Assume that agent 1 employs the fixed reciprocation attitude, while 2 acts by the
floating reciprocation. We will show the convergence Theorem 17 using the following
lemma, proving monotonicity of the action sequences from some time on.

Lemma 7. If r2 > 0 and r1 + r2 ≤ 1, then, for every t ≥ t1,1 : x(t +1) ≤ x(t ), and for every
t ≥ 0 : y(t +1) ≤ y(t ).

This lemma assumes the agents do not react too strongly, since r1 + r2 is at most 1.
We now prove this lemma by induction on t , using the definition of reciprocation.

Proof. We employ induction. The basis consists of the following subcases: t = 0,0 < t <
t1,1 and t = t1,1. For t = 0, we have either y(1) = y(0) or y(1) = (1−r2)k2+r2k1 ≤ k2 = y(0).

For any 0 < t < t1,1, we have either y(t +1) = y(t ) or y(t +1) = (1−r2)y(t )+r2k1
k1≤y(t )≤

(1− r2)y(t )+ r2 y(t ) = y(t ).
For t = t1,1, we either have x(t1,1 +1) = x(t1,1) or x(t1,1 +1) = (1−r1)k1 +r1 y(t1,1), and

anyway x(t1,1) = (1−r1)k1+r1 y(t1,1−1) by the definition of t1,1. Since y(t1,1) ≤ y(t1,1−1)
by the induction hypothesis, we have x(t1,1 + 1) ≤ x(t1,1). As to y(t )s, we have either
y(t1,1 +1) = y(t1,1) or

y(t1,1 +1) = (1− r2)y(t1,1)+ r2x(t1,1)

⇒ y(t1,1 +1) ≤ y(t1,1)
r2>0⇐⇒ x(t1,1) ≤ y(t1,1).
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Either y(t1,1) = y(t1,1 −1) or y(t1,1) = (1− r2)y(t1,1 −1)+ r2k1. In the first case,

x(t1,1) ≤ y(t1,1) ⇐⇒ (1− r1)k1 + r1 y(t1,1 −1) ≤ y(t1,1 −1)

⇐⇒ (1− r1)k1 ≤ (1− r1)y(t1,1 −1),

which always holds. In the second case,

x(t1,1) ≤ y(t1,1) ⇐⇒ (1− r1)k1 + r1 y(t1,1 −1) ≤ (1− r2)y(t1,1 −1)+ r2k1

⇐⇒ (1− r1 − r2)k1 ≤ (1− r1 − r2)y(t1,1 −1),

which is true, since k1 ≤ y(t1,1 −1) and (r1 + r2) ≤ 1. Thus, the basis is proven.
For the induction step, for any t > t1,1, assume that x(t ) ≤ x(t −1) ≤ . . . ≤ x(t1,1), and

y(t ) ≤ y(t −1) ≤ . . . ≤ y(0).
We now prove the lemma for t . If x(t +1) = x(t ), then trivially x(t +1) ≤ x(t ). Other-

wise, x(t +1) = (1− r1)k1 + r1 y(t ) ≤ (1− r1)k1 + r1 y(s1(t )−1) = x(t ), where the inequality
stems from the induction hypothesis. For y(t )s, if y(t +1) = y(t ), then trivially y(t +1) ≤
y(t ). Otherwise, y(t +1) = (1− r2)y(t )+ r2x(t ) ≤ (1− r2)y(s2(t )−1)+ r2x(s2(t )−1) = y(t ).
The above inequality stems from the induction hypothesis, if s2(t )−1 ≥ t1,1, so that the
induction hypothesis for x(t )s holds as well as the one for y(t )s. Otherwise (s2(t ) ≤ t1,1),
the above inequality is proven as follows:

(1− r2)y(t )+ r2x(t ) ≤ (1− r2)y(s2(t )−1)+ r2x(s2(t )−1)

⇐⇒
(1− r2)(y(t )− y(s2(t )−1)) ≤ r2(x(s2(t )−1)−x(t )) = r2(k1 −x(t )).

Notice that (y(t )− y(s2(t )−1)) = y(s2(t ))− y(s2(t )−1)
s2(t )≤t1,1= (1− r2)y(s2(t )−1)+ r2k1 −

y(s2(t )−1) = r2(k1 − y(s2(t )−1)). Thus, continuing the above chain of equivalences,

(1− r2)(y(t )− y(s2(t )−1)) ≤ r2(k1 −x(t ))

⇐⇒ (1− r2)r2(k1 − y(s2(t )−1)) ≤ r2(k1 −x(t ))
r2>0⇐⇒ (1− r2)(k1 − y(s2(t )−1)) ≤ (k1 −x(t )) ⇐⇒ x(t )− r2k1 ≤ (1− r2)y(s2(t )−1). (4.4)

To show this, notice that s2(t ) ≤ t1,1 < t ⇒ s2(t )+1 ≤ t . In addition, agent 2 acts at time
slot t1,1−1 (since 1 does not), and therefore s2(t ) ≥ t1,1−1. Therefore, using the induction
hypothesis for x(t )s we obtain

x(t )
t≥s2(t )+1≥t1,1≤ x(s2(t )+1) = (1− r1)k1 + r1 y(s2(t )),

where the equality stems from the fact that if s2(t )+1 ∉ T1, then it is in T2, and therefore,
t = s2(t ), a contradiction. Therefore,

x(t )− r2k1 ≤ (1− r1 − r2)k1 + r1 y(s2(t )) ≤ (1− r1 − r2)y(s2(t ))+ r1 y(s2(t ))

= (1− r2)y(s2(t )) ≤ (1− r2)y(s2(t )−1),

and (4.4) has been proven. The chain of equivalences that ends with (4.4) begins with
(1−r2)y(t )+r2x(t ) ≤ (1−r2)y(s2(t )−1)+r2x(s2(t )−1), and we have y(t+1) = (1−r2)y(t )+
r2x(t ) ≤ (1− r2)y(s2(t )−1)+ r2x(s2(t )−1) = y(t ), completing the induction step.
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This lemma provides monotonicity from some point on, enabling us to prove the
convergence of the process when the agents react mildly.

Theorem 17. If r2 > 0 and r1 + r2 ≤ 1, then, limt→∞ x(y) = limt→∞ y(t ) = k1.

Proof. We first prove that the convergence takes place, and then find its limit. For each
agent, Lemma 7 implies that her actions are monotonically non-increasing. Since the
actions are bounded below by k1, which can be easily proven by induction, both action
sequences converge.

To find the limits, notice that in the limit we have

(1− r1)k1 + r1Ly = Lx (4.5)

(1− r2)Ly + r2Lx = Ly . (4.6)

From (4.6), we conclude that Lx = Ly , since r2 > 0. Substituting this to (4.5) gives us
Lx = Ly = k1, since r2 > 0 and r1 + r2 ≤ 1 together imply r1 < 1.

Remark 4. If, unlike the theorem assumes, r2 = 0, then agent 2 keeps doing the same thing
all the time: k2, and agent 1 keeps doing (1−r1)k1+r1k2 all the time when t > 0. If, unlike
the theorem assumes, r1 + r2 > 1, but the rest holds, then it is still open what happens.

The relation between the sequences of x(t )s and y(t )s is given by the following
proposition (also covering the case r1+r2 ≥ 1, when agents react actively too each other).

Proposition 3. If r1 + r2 ≤ 1, then for every t ≥ 0 : y(t ) ≥ x(t ).
If r1 + r2 ≥ 1, then y(0) ≥ x(0). For every t > 0 such that t ∈ T1 ∩T2, we have y(t −1) ≤

x(t −1) ⇒ y(t ) ≥ x(t ). For any t ∈ T1 \ T2, we have y(t ) ≥ x(t ), and for any t ∈ T2 \ T1, we
have y(t −1) ≥ x(t −1) ⇒ y(t ) ≥ x(t ), and y(t −1) ≤ x(t −1) ⇒ y(t ) ≤ x(t ).

Proof. Consider the case r1 + r2 ≤ 1 first. We employ induction. The basis is t = 0, where
y(0) = k2 ≥ k1 = x(0).

For the induction step, we assume the proposition for all values smaller than t > 0
and prove the proposition for t . If only agent 1 acts at t , then y(t ) = y(t −1) and x(t ) =
(1− r1)k1 + r1 y(t −1). Therefore,

y(t ) ≥ x(t ) ⇐⇒ y(t −1) ≥ (1− r1)k1 + r1 y(t −1)

⇐⇒ (1− r1)y(t −1) ≥ (1− r1)k1,

which is true.
If only agent 2 acts at t , then x(t ) = x(t − 1) and y(t ) = (1− r2)y(t − 1)+ r2x(t − 1).

Therefore,

y(t ) ≥ x(t ) ⇐⇒ (1− r2)y(t −1)+ r2x(t −1) ≥ x(t −1)

⇐⇒ (1− r2)y(t −1) ≥ (1− r2)x(t −1),

which is true by the induction hypothesis.
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If both agents act at t , then x(t ) = (1− r1)k1 + r1 y(t −1) and y(t ) = (1− r2)y(t −1)+
r2x(t −1). Therefore,

y(t ) ≥ x(t ) ⇐⇒ (1− r2)y(t −1)+ r2x(t −1) ≥ (1− r1)k1 + r1 y(t −1)

⇐⇒ (1− r1 − r2)y(t −1) ≥ (1− r1)k1 − r2x(t −1).

Since x(t−1) ≥ k1, it is enough to show that (1−r1−r2)y(t−1) ≥ (1−r1)x(t−1)−r2x(t−1) =
(1− r1 − r2)x(t −1), which is true by the induction hypothesis and using the assumption
r1 + r2 ≤ 1. Thus, the case r1 + r2 ≤ 1 has been proven.

Consider the case r1 + r2 ≥ 1 now. We employ induction. The basis is t = 0, where
y(0) = k2 ≥ k1 = x(0).

For the induction step, we assume the proposition for all values smaller than t > 0
and prove the proposition for t . The cases where only agent 1 acts at t and where only
2 acts at t are shown by analogy to how they are shown for the case r1 + r2 ≥ 1. If both
agents act at t , then we have shown that

y(t ) ≥ x(t ) ⇐⇒ (1− r1 − r2)y(t −1) ≥ (1− r1)k1 − r2x(t −1). (4.7)

Now, if y(t−1) ≤ x(t−1), then (1−r1−r2)y(t−1) ≥ (1−r1−r2)x(t−1) ≥ (1−r1)k1−r2x(t−1),
and from (4.7) we have y(t ) ≥ x(t ).

We have not seen yet whether Theorem 17 holds for strong reactions (r1 + r2 > 1).
Nonetheless, we do know that monotonicity from some time on (Lemma 7) does not
hold. We also know that y(t ) being always at least as large as x(t ) or the other way around
fails to hold in this case. As a counterexample for both of them, consider the case of
r2 = 1,0 < r1 < 1,k2 > k1. One can readily prove by induction that for all t we have x(2t +
1) > x(2t ) = x(2t +2) and y(2t ) > y(2t −1) = y(2t +1), and thus both sequences are not
monotonic. In addition, one can inductively prove that x(2t+1) > y(2t+1), x(2t ) < y(2t ),
and therefore no sequence is always larger than the other one.

Figure 4.6 shows how the actions evolve over time, fitting Theorem 17, Lemma 7 and
Proposition 3 for r1 + r2 ≤ 1. The actions seem to converge also in the unproven case
r1 + r2 > 1.

In the case of the mirroring assumption that agent 1 acts according to the floating
reciprocation attitude, while 2 acts according to the fixed reciprocation, we can obtain
the following similar results by analogy.

Theorem 18. If r1 > 0 and r1 + r2 ≤ 1, then, limt→∞ x(t ) = limt→∞ y(t ) = k2.

The proof is analogous, with the lemma being

Lemma 8. If r1 > 0 and r1 + r2 ≤ 1, then, for every t ≥ t2,1 : y(t +1) ≥ y(t ), and for every
t ≥ 0 : x(t +1) ≥ x(t ).

Remark 5. If, unlike the theorem assumes, r1 = 0, then agent 1 keeps doing the same thing
all the time: k1, and agent 2 keeps doing (1−r2)k2+r2k1 all the time when t > 0. If, unlike
the theorem assumes, r1 + r2 > 1, but the rest holds, then it is still open what happens.

Regarding the relation between x(t )s and y(t )s, we prove the following, by analogy to
how Proposition 3 is proven:
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Figure 4.6: Simulation of actions for the synchronous case, with r1 + r2 < 1, r2 = 0.5 on the left, and r1 + r2 > 1,
r2 = 0.9 on the right. This is a fixed-floating reciprocation, with k1 = 1,k2 = 2,r1 = 0.3. In the left graph, agent
1’s actions are smaller than those of 2; agent 1’s actions decrease after t = 1, while those of agent 2 decrease all
the time. The value of the common limit fits the theorem’s prediction.

Proposition 4. If r1+r2 ≤ 1, then for every t ≥ 0 : y(t ) ≥ x(t ). If r1+r2 ≥ 1, then, y(0) ≥ x(0).
For every t > 0, such that t ∈ T1 ∩T2, we have y(t −1) ≤ x(t −1) ⇒ y(t ) ≥ x(t ). For any t ∈
T2 \T1, we have y(t ) ≥ x(t ), and for any t ∈ T1 \T2, we have y(t −1) ≥ x(t −1) ⇒ y(t ) ≥ x(t )
and y(t −1) ≤ x(t −1) ⇒ y(t ) ≤ x(t ).

To solve the case of r1 + r2 > 1, we will prove the following crucial corollary from
Proposition 7. This corollary is used further, rather than the limited Theorem 17.

Corollary 3. Consider pairwise interaction, where one agent i employs fixed reciprocation
and the other agent j employs the floating one, and every agent acts at least once every q
times. Assume that ri < 1 and r j > 0. Then, both limits exist and are equal to ki . The
convergence is geometrically fast.

We omit the proof at this stage.
For all the considered cases, we have the following

Proposition 5. If both Lx and Ly exist, then Lx ≤ Ly .

We now continue to study alternating pairwise interaction.

4. PAIRWISE INTERACTION: ALTERNATING CASE
In the previous section, we sometimes show more when assuming that the interaction
is synchronous. However, Theorem 16 can be extended for the alternating case (T1 con-
tains precisely all the even times and T2 contains zero and all the odd ones) as follows:

Theorem 19. In the case where agents act alternately, which is when T1 contains precisely
all the even times and T2 contains zero and all the odd ones, they both approach

1

2

(
k1 +k2 + (r1 − r2 − r1r2)

r1 + r2 − r1r2
(k2 −k1)

)
= r2

r1 + r2 − r1r2
k1 + r1 − r1r2

r1 + r2 − r1r2
k2.

The idea of the proof is proving that x(t )+y(t ) approach k1+k2+ (r1−r2−r1r2)
r1+r2−r1r2

(k2−k1).



5. MULTI-AGENT INTERACTION

4

95

Proof. We now assume the alternating case. Consider the behavior of x(t )+ y(t ). For an
even t > 0, only agent 1 acts and we have

x(t )+ y(t ) = x(t −1)+ y(t −1)+ (r1)(y(t −1)−x(t −1)).

For an odd t , only 2 acts and we have

x(t )+ y(t ) = x(t −1)+ y(t −1)+ (−r2)(y(t −1)−x(t −1)).

And therefore, we have

⇒ lim
t→∞x(y)+ y(t ) = k1 +k2 +

∞∑
t=0

(−r2)(y(2t )−x(2t ))+
∞∑

t=0
(r1)(y(2t +1)−x(2t +1))

(4.2),(4.3)= k1 +k2 − (r2) ·
∞∑

t=0
((1− r1)t (1− r2)t )(k2 −k1)+ (r1) ·

∞∑
t=0

((1− r1)t (1− r2)t+1)(k2 −k1)

= k1 +k2 +
∞∑

t=0
(1− r1)t (1− r2)t (r1 − r2 − r1r2))(k2 −k1)

geom. series→︸ ︷︷ ︸
t→∞

k1 +k2 + (r1 − r2 − r1r2)(k2 −k1)
1

1− (1− r1)(1− r2)

= k1 +k2 + (r1 − r2 − r1r2)

r1 + r2 − r1r2
(k2 −k1).

Since we have shown that both limits exist and are equal, each equals to half of k1 +
k2 + (r1−r2−r1r2)

r1+r2−r1r2
(k2 −k1).

Remark 6. If, unlike the theorem assumes, r1+r2 = 2, then since r1+r2 = 2 ⇐⇒ r1 = r2 =
1, in the alternating case, agent 2 plays at time 1 the strategy of agent 1 at time 0, which is
k1, and since then, each player plays it.

Having dealt with the pairwise interaction, we move to the general case.

5. MULTI-AGENT INTERACTION
Continuing predicting reciprocal interaction to facilitate decision support, we now ana-
lyze the general reciprocal interaction, when agents interact with many agents. To for-
mally discuss the actions after the interaction has settled down, we consider the limits
(if exist)6 limp→∞ xi , j (t1,p ), and limt→∞ xi , j (t ), for agents i and j . Since the sequence{

xi , j (t )
}

is
{

xi , j (t1,p )
}

with finite repetitions, the limit limp→∞ xi , j (t1,p ) exists if and only

if limt→∞ xi , j (t ) does. If they exist, they are equal. Denote Li , j
∆= limt→∞ xi , j (t ).

We first provide general convergence results, and then we find the common limit for
the case when at most one agent is fixed and synchronous in Theorem 20. This allows
concluding about how an agent can maximize the common value by picking her recip-
rocation coefficient. Finally, we prove convergence for the general case of any acting
dynamics described by a contraction (see Definition 15). In this section, the ambivalent
case of ri + r ′

i = 1, which can be taken as either fixed or floating, is taken to be floating.
First, we have convergence for the case of floating agents.

6Agent i acts at the times in Ti =
{

ti ,0 = 0, ti ,1, ti ,2, . . .
}
.
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Proposition 6. Consider a connected interaction graph, where all the agents are floating
and for every agent i , ri + r ′

i < 1. Then, for all pairs of agents i 6= j such that (i , j ) ∈ E, the
limit Li , j exists; all these limits are equal to each other.

Proof. Follows directly from [29, Theorem 2]. This article and similar articles on multia-
gent coordination [30, 31] prove convergence when all the agents are floating.

We now show convergence, when some agents are fixed.

Proposition 7. Consider a connected interaction graph, where for all the agents i , r ′
i > 0.

Assume that at least one agent employs the fixed attitude and every agent acts at least once
every q times, for a natural q > 0. Then, for all pairs of agents i 6= j such that (i , j ) ∈ E, the
limit Li , j exists. The convergence is geometrically fast.

The proof expresses the dependency of actions on the previous actions as a matrix
multiplication and directly proves convergence.

Proof. We express how each action depends on the actions in the previous time in matrix
A(t ) ∈R+|E |×|E |, which, in the synchronous case, is defined as follows:

A(t )((i , j ), (k, l ))
∆=


(1− ri − r ′

i ) if k = i , l = j ;

ri + r ′
i

1
|N+(i )| if k = j , l = i ;

r ′
i

1
|N+(i )| if k 6= j , l = i ;

0 otherwise,

(4.8)

where the first line is missing for the fixed agents, since for them, own behavior does
not matter. If, for each time t ∈ T , the column vector ~p(t ) ∈ R+|E | describes the actions
at time t , in the sense that its (i , j )th coordinate contains xi , j (t ) (for (i , j ) ∈ E), then we

have ~p(t+1) = A(t+1)~p(t )+~k ′, where ~k ′ is the relevant kindness vector, formally defined
as

k ′(t )((i , j ))
∆=

{
(1− ri − r ′

i )ki if i is fixed;

0 otherwise.

In a not necessarily synchronous case, only a subset of agents act at a given time t . For
an acting agent i , every A(t )((i , j ), (k, l )) is defined as in the synchronous case. For a
non-acting agent i , we define

A(t )((i , j ), (k, l ))
∆=

{
1 if k = i , l = j ;

0 otherwise.
(4.9)

The kindness vector is defined as

k ′(t )((i , j ))
∆=

{
(1− ri − r ′

i )ki if i is fixed and acting;

0 otherwise.

By induction, we obtain ~p(t ) = ∏t
t ′=1 A(t ′)~p(0)+∑

~k ′∈K

{(∑
l∈S~k′ (t )

∏t
t ′=l A(t ′)

)
~k ′

}
, where

K is the set of all possible kindness vectors and S~k ′ (t ) is a set of the appearance times of
~k ′, which are at most t .
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We aim to show that ~p(t ) converges. First, defining ri (M) to be the sum of the i th
row of M , note [36, Eq. 3], namely

ri (AB) =
n∑

k=1

n∑
j=1

ai , j b j ,k =
n∑

j=1

n∑
k=1

ai , j b j ,k =
n∑

j=1
ai , j r j (B). (4.10)

Since the sum of every row in any A(t ) is at most 1, we conclude that if B ≤ βC , Ci , j ≡ 1,
then also A(t )B ≤βC .

We now prove that an upper bound of the form βC on the entries of
∏s

t=p A(t ) con-
verges to zero geometrically. We have just shown that this bound never increases. First,
A(p) ≤ C , yielding the bound in the beginning. Now, let i be a fixed agent, and assume
he acts at time t . Thus, each row in A(t ) which relates to the edges entering i sums to
less than 1, and from (4.10) we gather that the upper bound on the appropriate rows in
A(t )B decreases relatively to the bound on B by some constant ratio. Since the graph
is connected, for all agents i , r ′

i > 0, and every agent acts every q times, we will have,
after enough multiplications, that the bound on all the entries will have decreased by a
constant ratio.

Every agent acts at least once every q times, so we gather that for some q ′ > 0, ev-
ery q ′ times, the product of matrices becomes at most a given fraction, say α ∈ (0,1),
of the product q ′ times before. This implies a geometric convergence of

∏t
t ′=1 A(t ′). As

for
∑

l∈S~k′ (t )
∏t

t ′=l A(t ′), we use the just proven exponential upper bound on the prod-

uct of A(t )s, and obtain
∑

l∈S~k′ (t )
∏t

t ′=l A(t ′) ≤ ∑
l∈S~k′ (t )α

[
t−l+1

q′
]
C ≤ ∑

l∈S~k′ (t )α
t−l
q′ −1

C =

α
t

q′ −1
(∑

l∈S~k′ (t )α
−l
q′

)
C

≤
geom. seq. α

t
q′ −1

1−α
1

q′
C , proving a geometric convergence of the series∑

l∈S~k′ (t )
∏t

t ′=l A(t ′). Therefore, ~p(t ) converges, and it does so geometrically fast.

As an immediate conclusion of this proposition, we can finally prove Corollary 3,
generalizing Theorem 17 for the case r1 + r2 > 1.

Corollary 3. Consider pairwise interaction, where one agent i employs fixed reciprocation
and the other agent j employs the floating one, and every agent acts at least once every q
times. Assume that ri < 1 and r j > 0. Then, both limits exist and are equal to ki . The
convergence is geometrically fast.

Proof. If ri > 0, then Proposition 7 implies geometrically fast convergence. We find the
limits as in the proof of Theorem 17.

On the other hand, if ri = 0, then agent i constantly acts ki , and j acts, at any t ∈ T j ,
x j ,i (t ) = (1− r j )x j ,i (t − 1)+ r j ki . We have x j ,i (t )− ki = (1− r j )x j ,i (t − 1)+ r j ki − ki =
(1− r j )(x j ,i (t −1)−ki ). Since r j > 0, this converges exponentially to zero, and therefore,
x j ,i (t ) converges exponentially to ki .

Remark 7. If, unlike the corollary assumes, ri = 1, then, if r j < 1, then we know from the

float-float case that both action sequences approach
r j

1+r j
ki + 1

1+r j
k j . If ri = r j = 1, then

in the synchronous case, each agent just repeats what the other one did last time, thereby
interchangeably playing k1 and k2. In particular, unless k1 = k2, then no convergence
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takes place. If the synchroneity breaks by agent i acting alone, then both agents will act
ki from this time on. If, unlike the corollary assumes, r j = 0, then, agent i constantly acts
(1− ri )ki + ri k j and j constantly acts k j .

We now turn to finding the limit. We manage to do this in the synchronous case,
when all the agents are floating or all the fixed agents have the same kindness. For all
reciprocation attitudes, the following central theorem also provides an alternative proof
of convergence in the synchronous case.

Theorem 20. Given a connected interaction graph, consider the synchronous case where
for all agents i , r ′

i > 0. If there exists a cycle of an odd length in the graph (or at least one
agent i employs floating reciprocation and has ri + r ′

i < 1), then, for all pairs of agents
i 6= j such that (i , j ) ∈ E, the limit Li , j exists, and the convergence is geometrically fast.
Moreover, if all the agents employ floating reciprocation, then all these limits are equal to
each other and it is a convex combination of the kindness values, namely7

L =
∑

i∈N

(
d(i )

ri+r ′i
·ki

)
∑

i∈N

(
d(i )

ri+r ′i

) . (4.11)

If at least one agent is fixed, then each Li , j is a positive combination of all the kindness
values of the agents who are fixed. Moreover, if, all the fixed agents have the same kindness
k, then all these limits are equal to k.

In any case, when not all the agents are floating, then changing only the kindness of
the floating agents does not change the limits (also follows from the limits being positive
combinations of all the kindness values of the agents who are fixed).

Let us say several words about the assumptions. If all the agents are fixed, we
can prove that the actions are subsequences of the actions in the synchronous case (a
straightforward generalization of Lemma 5.) Thus, the synchronous case represents all
the cases in the limit, when all the agents are fixed. The assumption of a cycle of an
odd length virtually always holds, since three people influencing each other form such a
cycle.

Equation (4.11) means that the limit is a weighted average of the kindness values, the
weight of ki being the number of i ’s neighbors divided by the sum of her reciprocation
coefficients. Intuitively, the influence of an agent’s kindness is proportional to her in-
fluence and inversely proportional to her responsiveness. An obvious conclusion of the
theorem is that the fixed agents are, intuitively spoken, more important than the floating
ones, at least their kindness is.

We finally prove Theorem 20. The idea is to express how each action depends on the
actions in the previous time in a dynamics matrix A, and prove the theorem by applying
the famous Perron–Frobenius theorem [37, Theorem 1.1, 1.2] to this matrix.

Proof. We first prove the case where all the agents use floating reciprocation. We now

7d(i ) denotes the degree of i ∈ N in the interaction graph.
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define the dynamics matrix A ∈R+|E |×|E |:

A((i , j ), (k, l ))
∆=


(1− ri − r ′

i ) if k = i , l = j ;

ri + r ′
i

1
|N+(i )| if k = j , l = i ;

r ′
i

1
|N+(i )| if k 6= j , l = i ;

0 otherwise.

(4.12)

According to the definition of floating reciprocation, if for each time t ∈ T the column
vector ~p(t ) ∈R+|E | describes the actions at time t , in the sense that its (i , j )th coordinate
contains xi , j (t ) (for (i , j ) ∈ E), then ~p(t +1) = A~p(t ). We then call ~p(t ) an action vector.
Initially, ~p(i , j )(0) = ki .

Further, we shall need to use the Perron–Frobenius theorem for primitive matrices.
We now prepare to use it, and first we show that A is primitive. First, A is irreducible
since we can move from any (i , j ) ∈ E to any (k, l ) ∈ E as follows. We can move from an
action to its reverse, since if k = j , l = i , then A((i , j ), (k, l )) = ri + r ′

i
1

|N+(i )| > 0. We can

also move from an action to another action by the same agent, since we can move to any
action on the same agent and then to its reverse. To move to an action on the same agent,
notice that if l = i , then A((i , j ), (k, l )) ≥ r ′

i
1

|N+(i )| > 0. Now, we can move from any action

(i , j ) to any other action (k, l ) by moving to the reverse action ( j , i ) (if k = j , l = i , we are
done). Then, follow a path from j to k in graph G by moving to the appropriate action by
an agent and then to the reverse, as many times as needed till we are at the action (k, j )
and finally to the action (k, l ). Thus, A is irreducible.

By definition, A is non-negative. A is aperiodic, since either at least one agent i has
ri +ri < 1, and thus the diagonal contains non-zero elements, or there exists a cycle of an
odd length in the interaction graph G . In the latter case, let the cycle be i1, i2, . . . , ip for an
odd p. Consider the following cycles on the index set of the matrix: (i , j ), ( j , i ), (i , j ) for
any (i , j ) ∈ E and (i2, i1), (i3, i2), . . . , (ip , ip−1), (i1, ip ), (i2, i1). Their lengths are 2 and p, re-
spectively, which greatest common divisor is 1, implying aperiodicity. Being irreducible
and aperiodic, A is primitive by [37, Theorem 1.4]. Since the sum of every row is 1, the
spectral radius of A is 1.

According to the Perron–Frobenius theorem for primitive matrices [37, Theorem 1.1],
the absolute values of all the eigenvalues except one eigenvalue of 1 are strictly less
than 1. The eigenvalue 1 has unique right and left eigenvectors, up to a constant fac-
tor. Both these eigenvectors are strictly positive. Therefore, [37, Theorem 1.2] im-
plies that limt→∞ At = ~1~v ′, where ~v ′ is the left eigenvector of the value 1, normal-
ized such that ~v ′~1 = 1, and the approach rate is geometric. Therefore, we obtain
limt→∞ ~p(t ) = limt→∞ At~p(0) =~1~v ′~p(0) =~1∑

(i , j )∈E v ′((i , j ))ki . Thus, actions converge

to~1 times
∑

(i , j )∈E v ′((i , j ))ki .

To find this limit, consider the vector v ′ defined by v ′((i , j )) = 1
ri+r ′i

. Substitution

shows it is a left eigenvector of A. To normalize it such that ~v ′~1 = 1, divide this vector
by the sum of its coordinates, which is

∑
i∈N

d(i )
ri+r ′i

, obtaining v ′((i , j )) = 1∑
i∈N

d(i )
ri +r ′

i

· 1
ri+r ′i

.

Therefore, the common limit is

∑
i∈N

(
d(i )

ri +r ′
i
·ki

)
∑

i∈N

(
d(i )

ri +r ′
i

) .
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We now prove the case where at least one agent employs fixed reciprocation. We
define the dynamics matrix A analogously to the previous case, besides that the first
line from (4.12) is missing for the fixed agents, since for them, own behavior does not
matter. In this case, we have ~p(t + 1) = A~p(t ) + ~k ′, where ~k ′ is the relevant kindness
vector, formally defined as

k ′((i , j ))
∆=

{
(1− ri − r ′

i )ki if i is fixed;

0 otherwise.

By induction, we obtain ~p(t ) = At~p(0)+ (∑t−1
l=0 Al

)
~k ′.

Analogically to the previous case, A is irreducible, non-negative and aperiodic.
Therefore A is primitive. Since at least one agent employs fixed reciprocation, at least
one row of A sums to less than 1, and therefore the spectral radius of A is strictly less
than 1.

Now, the Perron–Frobenius implies that all the eigenvalues are strictly smaller than
1. Since we have limt→∞~p(t ) = limt→∞ At~p(0)+ (

limt→∞
∑t−1

l=0 Al
)
~k ′, [37, Theorem 1.2]

implies that this limit exists (the first part converges to zero, while the second one is a
series of geometrically decreasing elements.) Since A is primitive,

(
limt→∞

∑t−1
l=0 Al

)> 0.
When all the fixed agents have the same kindness k, we now find the limits. Tak-

ing the limits in the equality ~p(t + 1) = A~p(t )+ ~k ′ yields (I − A) limt→∞~p(t ) = ~k ′. [37,
Lemma B.1] implies that I − A is invertible and therefore, if we guess a vector~x that ful-
fills (I − A)~x = ~k ′, it will be the limit. Since the vector with all actions equal to k satisfies
this equation, we conclude that all the limits are equal to k. In any case, when there ex-
ists at least one fixed agent, changing only the kindness of the floating agents will not
change the (unique) solution of (I − A)~x = ~k ′, and, therefore, will not change the limits.

This theorem in particular states that when all the agents are floating, the limit does
not depend on who acts on whom, but only on how many one acts. This implies that
when a manager thinks about how a group of co-workers will work together, she should
only care about the numbers of connections, ignoring who is connected to whom.

Remark 8. The proof of the case of at least one fixed agent easily extends to the combined
reciprocation attitude, defined as follows.

Definition 14. In the combined reciprocation attitude, agent i is characterized by the
parameters ki ,ri ,r ′

i , and r ′′
i , such that ri + r ′

i + r ′′
i ≤ 1. Agent i ’s action on another agent j

is determined by the other agent’s action weighted by ri , by the total action of the neighbors
weighted by r ′

i and divided by the number of the neighbors, by the agent’s own last action
weighted by r ′′

i , and by her kindness, weighted by 1− ri − r ′
i − r ′′

i . That is, for t ∈ Ti ,

xi , j (t )
∆= (1− ri − r ′

i − r ′′
i ) ·ki + r ′′

i · xi , j (t −1)+ ri · x j ,i (t −1)+ r ′
i ·

goti (t −1)

|N(i )| .

The extension of the convergence proof is straight-forward.

In order to understand the implications of the limit of actions in practically impor-
tant cases, let us consider several examples of (4.11).
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Example 7. If the interaction graph is regular, meaning that all the degrees are equal to

each other, we have L =
∑

i∈N

(
ki

ri +r ′
i

)
∑

i∈N

(
1

ri +r ′
i

) . This holds for cliques, modeling small human collec-

tives or groups of countries, and for cycles, modeling circular computer networks. Here,
only reciprocation coefficients determine, who influences the limit more. The number of
connections does not change the limit, as long as this number is the same for everyone.

Example 8. For star networks, modeling networks of a supervisor of several people or

entities, assume w.l.o.g. that agent 1 is the center, and we obtain L =
n−1

r1+r ′1
·k1+∑

i∈N \{1}

(
ki

ri +r ′
i

)
n−1

r1+r ′1
+∑

i∈N \{1}

(
1

ri +r ′
i

) .

In determining the limit, the central agent has n − 1 times more weight than any other
agent does.

We now conclude about the optimal reciprocation, which goes back to providing de-
cision support. This topic is discussed much more in the following chapter.

Proposition 8. If (4.11) holds, then agent i who wants to maximize the common value
L, and who can choose either ri or r ′

i , in certain limits [a,b], for a > 0, should choose
either the smallest possible or the largest possible coefficient, as follows. We assume we
choose ri , but the same holds for r ′

i with the obvious adjustments. She should set ri to b,

if
∑

j∈N \{i }

(
d( j )

r j +r ′j
·k j

)
−ki

(∑
j∈N \{i }

(
d( j )

r j +r ′j

))
is positive, to a, if that is negative, and to an

arbitrary value, if zero. When the discriminating expression is not zero, only these choices
are optimal.

Proof. Consider the derivative:

∂L

∂(ri )
=

−d(i )ki
(ri+r ′i )2

(∑
j∈N

(
d( j )

r j +r ′j

))
+∑

j∈N

(
d( j )

r j +r ′j
·k j

)
d(i )

(ri+r ′i )2(∑
j∈N

(
d( j )

r j +r ′j

))2

=
d(i )

(ri+r ′i )2

(∑
j∈N

(
d( j )

r j +r ′j
·k j

)
−ki

(∑
j∈N

(
d( j )

r j +r ′j

)))
(∑

j∈N

(
d( j )

r j +r ′j

))2

=
d(i )

(ri+r ′i )2

(∑
j∈N \{i }

(
d( j )

r j +r ′j
·k j

)
−ki

(∑
j∈N \{i }

(
d( j )

r j +r ′j

)))
(∑

j∈N

(
d( j )

r j +r ′j

))2 .

Therefore, the derivative is zero either for all ri or for none. In any case, the maximum is
attained at an endpoint. To avoid complicated substitution, we consider the derivative
sign instead:

∂ui

∂ri
≥ 0 ⇐⇒ ∑

j∈N \{i }

(
d( j )

r j + r ′
j

·k j

)
−ki

( ∑
j∈N \{i }

(
d( j )

r j + r ′
j

))
≥ 0,
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and so when
∑

j∈N \{i }

(
d( j )

r j +r ′j
·k j

)
−ki

(∑
j∈N \{i }

(
d( j )

r j +r ′j

))
is nonnegative, i should choose

the largest ri , which is b, and she should choose ri = a otherwise. When the derivative is
not zero, these choices are the only optimal ones.

We can also prove a general convergence result, allowing agents to act in a more gen-
eral way than modeled above. We need the following definition:

Definition 15. Given a metric space (X ,d), function f : X → X is called contraction, if for
any x1, x2 ∈ X , we have d( f (x1), f (x2)) ≤ qd(x1, x2), for some q ∈ (0,1).

Theorem 21. Given an interaction graph, assume the synchronous case, where every
agent acts in the following way. Let S ⊆R be a compact set. Similarly to the proof of Theo-
rem 20, assume that for each time t ∈ T , the column vector ~p(t ) ∈ S|E | describes the actions
at time t , in the sense that its (i , j )th8 coordinate contains xi , j (t ), and that there exists a
contraction f : S|E | → S|E | with respect to the Euclidean metric, such that ~p(t+1) = f (~p(t )).
Initially, ~p(i , j )(0) = ki . Then, for all pairs of agents i 6= j such that (i , j ) ∈ E, the limit Li , j

exists. The convergence is geometrically fast.

This theorem is not a generalization of Theorem 20, since matrix in A in the proof of
Theorem 20 needs not be a contraction.

Proof. By definition of action, ~p(t ) = f t ( ~p(0)), and using Banach’s fixed point theo-
rem [38, Exercise 6.88], we know that f t ( ~p(0)) converges to the unique fixed point of
f in S|E |, with a geometrical speed, thereby proving the theorem.

This theorem means that absolutely any interaction that brings the actions closer
becomes stable exponentially quickly.

We have studied some properties of interaction theoretically, and we now turn to the
not yet understood properties and analyze them using simulations.

6. SIMULATIONS
Since we have managed to find limits for interaction of n agents only if at most one agent
is fixed, we now analyze the model with simulations. We start by corroborating the theo-
retical results from the previous sections. Then, we analyze the dependency of the limits
of actions on the reciprocation coefficients and test whether Proposition 5 generalizes
for any number n of agents. We employ MatLab simulations, running at least 100 syn-
chronous rounds, which allows achieving practical convergence.

We first study the case of three agents who can influence each other, meaning that
the interaction graph is a clique. We begin by corroborating the already proven result
that when at least one fixed agents exists, then the kindness of the floating agents does
not influence the actions in the limit. This means that changing the kindness leaves the
limits without change, and it is indeed what we have observed. Another proven thing we
corroborate is that when exactly one fixed agent exists, then all the actions approach her
kindness as time approaches infinity. Indeed, when the actions are plotted as functions
of time, we obtain graphs such as those in Figure 4.7, demonstrating convergence to the

8For (i , j ) ∈ E .
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kindness of the only fixed agent. The left graph on that figure demonstrates, that expo-
nential convergence may be quite slow, and this is a new observation we did not know
from the theory. We also corroborate that the limiting values of the actions depend lin-
early on the kindness values of all the fixed agents, the proportionality coefficients be-
ing independent of the other kindness values. This means that the limits of actions as
functions of kindness look like the graphs in Figure 4.8. In order to reasonably cover
the sampling space, all the above-mentioned regularities have also been automatically
checked for the combinations of kindness values of 1,2,3,4,5, over ri and r ′

i values of
0.1,0.3,0.5,0.7,0.9, such that ri + r + i ′ ≤ 1, and over all the relevant reciprocation atti-
tudes. The checks were up to the absolute precision of 0.01.

We do not know the exact limits when there exist two or more fixed agents with dis-
tinct kindness values. We do know that the dependencies on the kindness values are
linear, but we lack theoretical knowledge about the dependencies of the limits of actions
on the reciprocation coefficients, and this is relevant to maximizing the limits of the ac-
tions. This find this dependency, we simulate the interaction for various reciprocation
coefficients, obtaining monotonic graphs like those in Figure 4.9 and in Figure 4.10. Note
that we can have both increasing and decreasing graphs in the same scenario, and also
convex and concave graphs. The observed monotonicity has been automatically veri-
fied for all the above-mentioned combinations of parameters. This monotonicity means
that if an agent wants to maximize the limit of the actions of some agent on some other
agent, she can do this by choosing an extreme value of ri or r ′

i . This is in line with the
more concrete maximization rules from Proposition 8.

A natural question is whether Proposition 5 can be extended for more than two
agents. Since the kindness of the floating agents does not effect the limits, this sort of
monotonicity with respect to kindness would require all the limits of the actions to be
the same. We therefore ask whether the monotonicity holds at least for the actions of the
fixed agents. The answer is negative, as Figure 4.12 shows.

The next thing we study is regularity in how the degree of a fourth agent influences
the limits of the actions. We consider the limits of the actions as functions of the fourth
agent’s degree, obtaining graphs like those on in Figure 4.11. We find no regularity in
these graphs; in particular, no monotonicity holds in the general case.

To summarize, we have studied reciprocation theoretically, completing the gaps in
theory with simulations. In the next section, we look back at the model and consider a
possible generalization.

7. OPINIONS
When defining the reciprocal reaction, we used the last action of the other agent to
model the opinion about the other agent. In this section, we consider a more general
modeling of opinions, to obtain a better understanding of our model and to see what
extensions are possible to our model.

We can explicitly define the opinion of agent i about another agent j at time t ,

opini , j : Rt+1 → R, as opini , j (t )
∆= x j ,i (t ), which is the last action of j upon i . Then, we

obtain that in the fixed reciprocation attitude, for t > 0, xi , j (t )
∆= (1 − ri − r ′

i ) · ki + ri ·
opini , j (t − 1)+ r ′

i ·
∑

j∈N(i ) opini , j (t−1)

|N(i )| , and in the floating reciprocation attitude, for t > 0,



4

104 4. TOWARDS DECISION SUPPORT IN RECIPROCATION

0 50 100 150

time

1

1.2

1.4

1.6

1.8

2
w

ei
gh

t o
f a

ct
io

ns
agent 1 on 2
agent 1 on 3
agent 2 on 1
agent 2 on 3
agent 3 on 1
agent 3 on 2

0 50 100 150

time

1

1.5

2

2.5

3

3.5

4

4.5

5

w
ei

gh
t o

f a
ct

io
ns

agent 1 on 2
agent 1 on 3
agent 2 on 1
agent 2 on 3
agent 3 on 1
agent 3 on 2

Figure 4.7: Simulation results for the synchronous case, with one fixed and two floating agents, for r1 = 0.1,r2 =
0.1,r3 = 0.1,r ′1 = 0.5,r ′2 = 0.1,r ′3 = 0.1. In the left graph, k1 = 1,k2 = 1,k3 = 2, while in the right one, k1 = 3,k2 =
1,k3 = 5. The common limits, which are equal to the kindness of agent 1, fit the prediction of Theorem 20.
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Figure 4.8: Simulation results for the synchronous case, where the limits of actions are plotted as functions of
the kindness of a fixed agent 1, for r1 = 0.2,r2 = 0.1,r3 = 0.6,r ′1 = 0.1,r ′2 = 0.4,r ′3 = 0.1, k2 = 2,k3 = 3. In the left
graph, agent 1 is the only fixed agent, in the middle graph, both 1 and 2 are fixed, while in the right one, all the
agents are fixed. The linear dependencies on the kindness of agent 1 fit the prediction of Theorem 20.

xi , j (t )
∆= (1− ri − r ′

i ) · xi , j (t −1)+ ri ·opini , j (t −1)+ r ′
i ·

∑
j∈N(i ) opini , j (t−1)

|N(i )| .
Naturally, a more general definition of opinion is possible. To this end, we define the

temporal distance in Ti , for an i ∈ N , which designates how many times agent i acted
between two given times in Ti . Formally,

Definition 16. For an i ∈ N and two times ti ,l , ti ,m ∈ Ti , we define dTi : T 2
i → R+ by

dTi (ti ,l , ti ,m)
∆= |l −m|.

Now, we define opinion.

Definition 17. Define the cumulative opinion of i about j at time t to be opini , j (t )
∆=∑

t ′∈T j ,t ′≤t δi (dT j (t ′, s j (t ))+1) · x j ,i (t ′), where δi (p) : R+ →R+ is the discount function, ex-
pressing how much the passed time influences the importance of an action.

The current model fits in this definition as follows.



8. RELATED WORK

4

105

0 0.2 0.4 0.6 0.8 1

r
1

1

1.5

2

2.5

3
w

ei
gh

t o
f a

ct
io

n 
lim

its
agent 1 on 2
agent 1 on 3
agent 2 on 1
agent 2 on 3
agent 3 on 1
agent 3 on 2

0 0.2 0.4 0.6 0.8 1

r
1

1.5

2

2.5

3

3.5

4

4.5

w
ei

gh
t o

f a
ct

io
n 

lim
its

agent 1 on 2
agent 1 on 3
agent 2 on 1
agent 2 on 3
agent 3 on 1
agent 3 on 2

0 0.2 0.4 0.6 0.8 1

r
1

1.5

2

2.5

3

3.5

4

4.5

w
ei

gh
t o

f a
ct

io
n 

lim
its

agent 1 on 2
agent 1 on 3
agent 2 on 1
agent 2 on 3
agent 3 on 1
agent 3 on 2

Figure 4.9: Simulation results for the synchronous case, where the limits of actions are plotted as functions of
r1, for r2 = 0.1,r3 = 0.6,r ′1 = 0.1,r ′2 = 0.4,r ′3 = 0.1, k1 = 3,k2 = 1,k3 = 5. In the left graph, agent 3 is the only
floating agent, in the middle graph, all the agents are fixed, while in the right one, 1 is the only floating agent.
All the graphs exhibit monotonicity.
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Figure 4.10: Simulation results for the synchronous case, where the limits of actions are plotted as functions
of r ′1, for r1 = 0.2,r2 = 0.1,r3 = 0.6,r ′2 = 0.4,r ′3 = 0.1, k1 = 3,k2 = 1,k3 = 5. In the left graph, agent 3 is the only
floating agent, in the middle graph, all the agents are fixed, while in the right one, 1 is the only floating agent.
All the graphs exhibit monotonicity.

Remark 9. Our definition of opinion as opini , j (t ) = x j ,i (t ) is a particular case of this

model, where the discount function is δi (p) =
{

1 p = 1,

0 otherwise.

We now put our work in the context of the related literature.

8. RELATED WORK
We now further motivate our model and place it among works of others. We now de-
scribe works that motivate and inspire our model, beyond the main motivation, pre-
sented in Section 1 and Section 2.3. Then, we describe other works that use convex com-
bination to model behavior.

In Section 1, we present the main reasons for predicting reciprocation and for mod-
eling it as we do. In addition to the direct motivation for our model, presented in Sec-
tion 1, we were inspired by Trivers [13] (a psychologist), who describes a balance be-
tween an inner quality (immutable kindness) and costs/benefits when determining an
action. This idea of balancing the inner and the outer appears also in our model. Trivers
also discusses a naturally selected complicated balance between altruistic and cheat-
ing tendencies, which we model as kindness, which represents the inherent inclination
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Figure 4.11: Simulation results for the synchronous case, where the limits of actions are plotted as functions
of the degree of agent 4, for r1 = 0.2,r2 = 0.1,r3 = 0.6,r4 = 0.5,r ′1 = 0.1,r ′2 = 0.4,r ′3 = 0.1,r ′4 = 0.2, k1 = 2,k2 =
1,k3 = 4,k4 = 2. In the left graph, all the agents are fixed, while in the right one, 4 is the only floating agent. No
regularity observed.

to contribute. The balance between complying and not complying is mentioned in the
conclusion of [27], motivating the convex combination between own kindness or action
and others’ actions.

Additional motivation stems from the bargaining and negotiation realm, where
Pruitt [39] mentions that in negotiation, cooperation often takes place in the form of
reciprocation and that personal traits influence the way of cooperation, which corre-
sponds in our model to the personal kindness and reciprocation coefficients.

The idea of humans behaving according to a convex combination resembles another
model, that of the altruistic extension, like [40–42], and Chapter iii.2 in [43]. In these
papers, utility is often assumed being a convex combination, while we consider a mech-
anism of an action being a convex combination.

We have presented and fully analyzed the model, and it remains to conclude.

9. CONCLUSIONS AND FUTURE WORK
This section summarizes the chapter, draw conclusions and presents the possibilities to
aim to in the future.

We consider networks of interacting agents. This models ubiquitous situations, such
as file sharing networks and interacting colleagues. In order to facilitate behavioral deci-
sions for people and agents owned by people, we need to predict what interaction a given
setting will engender. To this end, we model two reciprocation attitudes in this chapter,
where a reaction is a weighted combination of the action of the other player, the total
action of the neighborhood and either one’s own kindness or one’s own last action. This
combination’s weights are defined by the reciprocation coefficients. For a pairwise inter-
action, we show that actions converge, find the exact limits, and show that if you consider
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Figure 4.12: Simulation results for the synchronous case, with three fixed agents, for r1 = 0.5,r2 = 0.2,r3 =
0.1,r ′1 = 0.3,r ′2 = 0.5,r ′3 = 0.2, k1 = 1,k2 = 5,k3 = 2. We observe that k1 < k3, but limt→∞ x1,2(t ) >
limt→∞ x3,2(t ).

your kindness while reciprocating (fixed), then, asymptotically, your actions values get
closer to your kindness than if you consider it only at the outset. For a general network,
we prove convergence and find the common limit if all agents act synchronously and
consider their last own action (floating), besides at most one agent. Dealing with the
case when multiple agents consider their kindness (fixed) is mathematically hard, so we
use simulations.

To illustrate the implication of our results, consider Example 5.

Example 5 (Continued). Like in Section 2, assume that all the agents employ floating
reciprocation, n = 3, and everyone may act on everyone else. Let the kindness values be
k1 = 0,k2 = 0.5 and k3 = 1, and let the reciprocation coefficients be r1 = r2 = 0.5,r ′

1 = r ′
2 =

0.3,r3 = 0.8,r ′
3 = 0.1. Then, (4.11) implies that all the actions approach 25/52 in the limit,

meaning that all the colleagues support each other emotionally a lot.

In addition to predicting the development of reciprocal interactions, our results ex-
plain why persistent agents have more influence on the interaction. An expression of the
converged behavior is that while growing up, people acquire their own style of recipro-
cating with acquaintances [24]. In organizations, many styles are often very similar from
person to person, forming organizational cultures [25].

We saw in theory and we know from everyday life that the reciprocation process may
seem confusing, but the exponential convergence promises the confusion to be short.
Actually, we can have a moderately rapid exponential convergence, such as observed in
the left graph in Figure 4.7, but mostly, the process converges quickly. Another impor-
tant conclusion is that employing floating reciprocation makes us achieve equality. In
the synchronous case, to achieve a common limit it is also enough for all the fixed agents
to have the same kindness. We also show that if all agents employ floating reciprocation
and act synchronously, then the influence of an agent is proportional to her number of
neighbors and inversely proportional to her tendency to reciprocate, that is, the stabil-
ity. Therefore, facilitating kinder agents to act on more agents and impeding the less kind
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ones from acting on others will increase cooperation. We prove that in the synchronous
case, the limit is either a linear combination of the kindness values of all the fixed agents
or, if all the agents are floating, a linear combination of the kindness values of all the
agents. Thus, an agent’s kindness influences nothing, or it is a linear factor, thereby en-
abling a very eager agent to influence the limits arbitrarily, by having the fixed attitude
and the appropriate kindness.

As we see in examples, real situations may require more complex modeling, motivat-
ing further research. For instance, the following directions are interesting.

1. Modeling interactions with a known finite time horizon.

2. Merging the two reciprocation attitudes by allowing an agent’s action depend on
both own kindness and previous own action. It is easy to extend the convergence
from Theorem 20 to this case, as we mention is remark 8, but finding the limit is
still open.

3. Since people may change while reciprocating, modeling changes in the reciprocity
coefficients and/or reciprocation attitude is important. In addition, groups of
colleagues and nations get and lose people, motivating modeling a dynamically
changing set of reciprocating agents. Even with the same set of agents, the inter-
action graph may change as people move around.

4. Though it seems extremely hard, it would be nice to consider our model in the
light of a game theoretic model of an extensive form game, such as [18].

5. An agent could have different kindness values towards different agents, to repre-
sent her prejudgement. Another extension would be allowing the same action be
perceived differently by various agents.

6. We used others’ research, based on real data, as a basis for the model; actually eval-
uating the model on relevant data, like the arms race actions, may be enlightening.

We study interaction processes where agents reciprocate with some given parame-
ters, and show that maximizing L would require extreme values of reciprocation coeffi-
cients. In the next chapter, we aim to predict real situations better and to provide con-
structive advice about what parameters and attitudes of the agents are most efficient. To
this end, we define utility functions to the agents and consider the game where agents
choose their own parameters before the interaction commences. Changing habits is in-
deed hard, but people are able to change their behavior. The agents’ strategic behavior
may come at a cost with respect to the social welfare, so considering price of anarchy [44]
and stability [45] of such a game is in order. For practical uses, considering how to influ-
ence agents to change their behavior is also relevant.

The chapter analyzes reciprocation process analytically and with simulations. This
allows estimating whether an interaction will be profitable to a given agent and lays the
foundation for further modeling and analysis of reciprocation, in order to anticipate and
improve the individual utilities and the social welfare.



REFERENCES

4

109

REFERENCES
[1] G. Polevoy, M. de Weerdt, and C. Jonker, The convergence of reciprocation, in Pro-

ceedings of the 2016 International Conference on Autonomous Agents and Multia-
gent Systems, AAMAS ’16 (International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 2016) pp. 1431–1432.

[2] M. A. Raghunandan and C. A. Subramanian, Sustaining cooperation on networks:
An analytical study based on evolutionary game theory, in Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems - Volume
2, AAMAS’12 (2012) pp. 913–920.

[3] A. Rubinstein, Modeling Bounded Rationality, 1st ed., Vol. 1 (The MIT Press, 1997).

[4] A. Falk and U. Fischbacher, A theory of reciprocity, Games and Economic Behavior
54, 293 (2006).

[5] E. Fehr and S. Gächter, Fairness and retaliation: The economics of reciprocity, Jour-
nal of Economic Perspectives 14, 159 (2000).

[6] W. Güth, R. Schmittberger, and B. Schwarze, An experimental analysis of ultimatum
bargaining, Journal of Economic Behavior & Organization 3, 367 (1982).

[7] J. Sobel, Interdependent preferences and reciprocity, Journal of Economic Literature
43, 392 (2005).

[8] R. Axelrod, The emergence of cooperation among egoists, American Political Science
Review 75, 306 (1981).

[9] R. Axelrod, The evolution of cooperation, Basic books (Basic Books, 1984).

[10] R. Axelrod and W. Hamilton, The evolution of cooperation, Science 211, 1390 (1981),
http://www.sciencemag.org/content/211/4489/1390.full.pdf .

[11] J. A. Fletcher and M. Zwick, Unifying the theories of inclusive fitness and reciprocal
altruism, The American Naturalist 168, 252 (2006).

[12] S. Van Segbroeck, J. M. Pacheco, T. Lenaerts, and F. C. Santos, Emergence of fairness
in repeated group interactions, Phys. Rev. Lett. 108, 158104 (2012).

[13] R. L. Trivers, The evolution of reciprocal altruism, The Quarterly Review of Biology
46, 35 (1971).

[14] H. Gintis, Game Theory Evolving: A Problem-centered Introduction to Modeling
Strategic Behavior, Economics / Princeton University Press (Princeton University
Press, 2000).

[15] E. Fehr, U. Fischbacher, and S. Gächter, Strong reciprocity, human cooperation, and
the enforcement of social norms, Human Nature 13, 1 (2002).

[16] U. Segal and J. Sobel, Tit for tat: Foundations of preferences for reciprocity in strategic
settings, Journal of Economic Theory 136, 197 (2007).

http://dl.acm.org/citation.cfm?id=2937029.2937195
http://dl.acm.org/citation.cfm?id=2937029.2937195
http://dl.acm.org/citation.cfm?id=2937029.2937195
http://dl.acm.org/citation.cfm?id=2343776.2343827
http://dl.acm.org/citation.cfm?id=2343776.2343827
http://dl.acm.org/citation.cfm?id=2343776.2343827
http://EconPapers.repec.org/RePEc:mtp:titles:0262681005
http://dx.doi.org/http://dx.doi.org/10.1016/j.geb.2005.03.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.geb.2005.03.001
http://dx.doi.org/ 10.1257/jep.14.3.159
http://dx.doi.org/ 10.1257/jep.14.3.159
http://dx.doi.org/ http://dx.doi.org/10.1016/0167-2681(82)90011-7
http://dx.doi.org/10.1257/0022051054661530
http://dx.doi.org/10.1257/0022051054661530
http://dx.doi.org/10.2307/1961366
http://dx.doi.org/10.2307/1961366
http://books.google.nl/books?id=zurtAAAAMAAJ
http://dx.doi.org/10.1126/science.7466396
http://arxiv.org/abs/http://www.sciencemag.org/content/211/4489/1390.full.pdf
http://dx.doi.org/ 10.1103/PhysRevLett.108.158104
http://www.jstor.org/discover/10.2307/2822435?uid=36499&uid=3738736&uid=2&uid=3&uid=67&uid=5911848&uid=62&uid=36497&sid=21102045316341
http://www.jstor.org/discover/10.2307/2822435?uid=36499&uid=3738736&uid=2&uid=3&uid=67&uid=5911848&uid=62&uid=36497&sid=21102045316341
http://books.google.nl/books?id=XuqhzQb3pmgC
http://books.google.nl/books?id=XuqhzQb3pmgC
http://dx.doi.org/10.1007/s12110-002-1012-7
http://dx.doi.org/ http://dx.doi.org/10.1016/j.jet.2006.07.003


4

110 REFERENCES

[17] J. C. Cox, D. Friedman, and S. Gjerstad, A tractable model of reciprocity and fairness,
Games and Economic Behavior 59, 17 (2007).

[18] M. Dufwenberg and G. Kirchsteiger, A theory of sequential reciprocity, Games and
Economic Behavior 47, 268 (2004).

[19] M. Rabin, Incorporating fairness into game theory and economics, The American
Economic Review 83, pp. 1281 (1993).

[20] M. A. Nowak and K. Sigmund, Evolution of indirect reciprocity, Nature 437, 1291
(2005).

[21] W. J. Dixon, Reciprocity in United States-Soviet relations: Multiple symmetry or issue
linkage? American Journal of Political Science 30, pp. 421 (1986).

[22] M. D. Ward, Modeling the USA-USSR arms race, Transactions of The Society for
Modeling and Simulation International 43, 196 (1984).

[23] J. Gottman, C. Swanson, and J. Murray, The mathematics of marital conflict: Dy-
namic mathematical nonlinear modeling of newlywed marital interaction, Journal
of Family Psychology 13, 3 (1999).

[24] B. W. Roberts, K. E. Walton, and W. Viechtbauer, Patterns of mean-level change in
personality traits across the life course: a meta-analysis of longitudinal studies. Psy-
chological bulletin 132, 1 (2006).

[25] G. Hofstede, Culture and organizations, International Studies of Management & Or-
ganization 10, 15 (1980).

[26] P. Breitman and C. Hatch, How to Say No Without Feeling Guilty: And Say Yes to More
Time, More Joy, and what Matters Most to You (Broadway Books, 2000).

[27] W. Ury, The Power of a Positive No: How to Say No and Still Get to Yes (Random House
Publishing Group, 2007).

[28] H. McAllister, Who You Are Is What You Do: Making Choices About Life After School,
illustrated ed. (Wilkins Farago Pty Ltd, 2013).

[29] V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis, Convergence in multiagent
coordination, consensus, and flocking, in Decision and Control, 2005 and 2005 Eu-
ropean Control Conference. CDC-ECC ’05. 44th IEEE Conference on (2005) pp. 2996–
3000.

[30] L. Moreau, Stability of multiagent systems with time-dependent communication
links, Automatic Control, IEEE Transactions on 50, 169 (2005).

[31] J. Tsitsiklis, D. Bertsekas, and M. Athans, Distributed asynchronous deterministic
and stochastic gradient optimization algorithms, Automatic Control, IEEE Transac-
tions on 31, 803 (1986).

http://dx.doi.org/ http://dx.doi.org/10.1016/j.geb.2006.05.001
http://dx.doi.org/ http://dx.doi.org/10.1016/j.geb.2003.06.003
http://dx.doi.org/ http://dx.doi.org/10.1016/j.geb.2003.06.003
http://www.jstor.org/stable/2111103
http://dx.doi.org/10.1177/003754978404300407
http://dx.doi.org/10.1177/003754978404300407
http://dx.doi.org/10.1037//0893-3200.13.1.3
http://dx.doi.org/10.1037//0893-3200.13.1.3
http://www.jstor.org/stable/40396875
http://www.jstor.org/stable/40396875
http://books.google.nl/books?id=OnLsAAAAMAAJ
http://books.google.nl/books?id=OnLsAAAAMAAJ
http://books.google.nl/books?id=HSb5KTf_-eEC
http://www.amazon.com/Who-You-Are-Is-What/dp/0980607027
http://dx.doi.org/10.1109/CDC.2005.1582620
http://dx.doi.org/10.1109/CDC.2005.1582620
http://dx.doi.org/10.1109/TAC.2004.841888


REFERENCES

4

111

[32] M. H. DeGroot, Reaching a consensus, Journal of the American Statistical Associa-
tion 69, 118 (1974).

[33] D. Bindel, J. Kleinberg, and S. Oren, How bad is forming your own opinion? in Foun-
dations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on (2011)
pp. 57–66.

[34] J. S. Rosenschein and G. Zlotkin, Rules of Encounter: Designing Conventions for Au-
tomated Negotiation Among Computers (MIT Press, Cambridge, MA, USA, 1994).

[35] A. Rubinstein, Perfect equilibrium in a bargaining model, Econometrica 50, 97
(1982).

[36] B. K. Butler and P. H. Siegel, Sharp bounds on the spectral radius of nonnegative
matrices and digraphs, Linear Algebra and its Applications 439, 1468 (2013).

[37] E. Seneta, Non-negative Matrices and Markov Chains, Springer Series in Statistics
(Springer, 2006).

[38] E. Hewitt and K. Stromberg, Real and Abstract Analysis: A Modern Treatment of the
Theory of Functions of a Real Variable, Graduate Texts in Mathematics (Springer
New York, 1975).

[39] D. Pruitt, Negotiation Behavior, Library and Information Science (Academic Press,
1981).

[40] P.-A. Chen, B. de Keijzer, D. Kempe, and G. Schäfer, The robust price of anarchy
of altruistic games, in Internet and Network Economics, Lecture Notes in Computer
Science, Vol. 7090, edited by N. Chen, E. Elkind, and E. Koutsoupias (Springer Berlin
Heidelberg, 2011) pp. 383–390.

[41] M. Hoefer and A. Skopalik, Altruism in atomic congestion games, ACM Trans. Econ.
Comput. 1, 21:1 (2013).

[42] M. Rahn and G. Schäfer, Bounding the inefficiency of altruism through social contri-
bution games, in Web and Internet Economics, Lecture Notes in Computer Science,
Vol. 8289, edited by Y. Chen and N. Immorlica (Springer Berlin Heidelberg, 2013)
pp. 391–404.

[43] J. O. Ledyard, Public Goods: A Survey of Experimental Research, Public Economics
9405003 (EconWPA, 1994).

[44] E. Koutsoupias and C. Papadimitriou, Worst-case equilibria, in 16th Annual Sympo-
sium on Theoretical Aspects of Computer Science (Trier, Germany, 1999) pp. 404–413.

[45] E. Anshelevich, A. DasGupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden,
The price of stability for network design with fair cost allocation, in Foundations of
Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on (2004) pp.
295–304.

http://www.jstor.org/stable/2285509
http://www.jstor.org/stable/2285509
http://dx.doi.org/10.1109/FOCS.2011.43
http://dx.doi.org/10.1109/FOCS.2011.43
http://www.jstor.org/stable/1912531
http://www.jstor.org/stable/1912531
http://dx.doi.org/ http://dx.doi.org/10.1016/j.laa.2013.04.029
http://books.google.nl/books?id=hsE0__8frPoC
http://books.google.nl/books?id=fonaFiw02xoC
http://books.google.nl/books?id=fonaFiw02xoC
http://books.google.nl/books?id=hvx9AAAAMAAJ
http://dx.doi.org/ 10.1007/978-3-642-25510-6_33
http://dx.doi.org/10.1145/2542174.2542177
http://dx.doi.org/10.1145/2542174.2542177
http://dx.doi.org/10.1007/978-3-642-45046-4_32
http://ideas.repec.org/p/wpa/wuwppe/9405003.html
http://dx.doi.org/10.1109/FOCS.2004.68
http://dx.doi.org/10.1109/FOCS.2004.68




5
THE GAME OF RECIPROCATION

HABITS

.

An eye for an eye will make the whole world blind.

Graham , 1914

People often act on reciprocal habits, almost automatically responding to others’ actions.
A robot who interacts with humans may also reciprocate, in order to come across nat-
ural and to be predictable. We aim to facilitate a decision support system that advises
on utility-efficient habits in these ubiquitous interactions. To this end, given a model for
reciprocation behavior with parameters that represent habits, we define a game that de-
scribes what habit one should adopt to increase the utility of the process. The used model
specifies an agent’s action as a weighted combination of the others’ previous actions (react-
ing) and either i) her innate kindness, or ii) her own previous action (inertia). We analyze
reciprocation attitude change only for a pairwise interaction, and the coefficient change
for any number of agents. For the case of two agents, to analyze what happens when every-
one reciprocates rationally, we define a game where an agent may choose her habit, which
is either her reciprocation attitude (i or ii), or both her reciprocation attitude and weight.
For a general connected network, when all agents have attitude ii), we define a game where
an agent chooses her weights. We characterize the Nash equilibria of these games and con-
sider their efficiency. We find that the less kind agents should adjust to the kinder agents
to improve both their own utility as well as the social welfare. This constitutes advice on
improving cooperation and explains real life phenomena in human interaction, such as
the societal benefits from adopting the behavior of the kindest person, or becoming more
polite as one grows up.

This chapter is an extended version of paper [1].
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1. INTRODUCTION
In the previous chapter, we started studying reciprocal interactions. We modeled it
as a predefined process and predicted its development. This chapter models strategic
choices an agent can take regarding her own habits before such an interaction com-
mences. By habits we mean parameters of agent’s behavior. Since people tend to re-
ciprocate on habits, a way to optimize one’s behavior is choosing one’s own habits.

We now review the previous knowledge of reciprocation and then present the new
work. Interaction is central in human behavior, e.g., at school, in file sharing over net-
works, and in business cooperation. While interacting, people tend to reciprocate, i.e.,
react on the past actions of others [2–4]. Imagine software agents owned by individuals
repeatedly competing with the same people online. People expect reciprocal behavior
and tend to behave so themselves. Consider virtual assistants. They need to be recipro-
cal in order to be credible. Think of countries at an arms race or about arguing friends.
They also tend to be nicer if the other side is nicer [5–7]. In these and other cases of re-
peated interaction, we can help people and artificial agents obtain more from the inter-
action by providing decision support. The decision is how to reciprocate. Reciprocating
efficiently includes defining to one’s software agent or other artificial agents how to re-
ciprocate with humans. In order to help people strategically choose efficient approaches
for reciprocating, and to predict that strategic choice of how to reciprocate, a model is
needed that is theoretically approachable and has enough predictive power.

We now elaborate on some examples, starting with an arms race.

Example 9. Consider n countries 1,2, . . . ,n; each country can put a certain arsenal of
weapons at the border with its neighbors, or point some amount of missiles at her po-
tential enemies. What a country approximately does with respect to another country at a
given year is what was done in the previous year, adjusted to react to what the other coun-
tries did. If they armed themselves against us, we also will, and if the others aimed at us
less, so shall we. This process is often reciprocal with linear reactions [5, 6]. Perhaps, one
reason for that is that politicians can explain a reciprocal action as a proper reaction to
the nation. A crucial question is how to make this process efficient, so that one’s country,
and, preferably, everyone incurs the least possible cost.

Till now in this example, an action had a negative influence on the other country.
We can also consider a positive influence on the other side in this context; for instance, a
concession.

Software agents can reciprocate automatically.

Example 10. Consider software agents that run on computers in a cloud, and they need to
agree on how much resources each is allocated. Since their owners may want to be nice to
others reciprocally, it is reasonable to make them reciprocate. Naturally, everyone wants
her agent to reciprocate as efficiently as possible, and also the society can save much money
by efficient reciprocation.

Companies can reciprocate while achieving mutual gain.

Example 11. Reciprocation is useful in business life [8]. Reciprocating means helping
the other, for example, by redirecting potential clients to another company. It is definitely
economically important to make this reciprocation efficient.
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The existent studies of reciprocation (sometimes repeated) either attempt to explain
why reciprocation is there in the first place [9–12], or, given that reciprocation exists, they
analyze what happens in a short interaction where being reciprocal pays off [2, 13, 14].
We, on the other hand, consider a lengthy interaction, that is (naturally) bound to be
reciprocal, but changing the approach of reciprocation is possible, in order to receive
more and do less.

To study such interactions, we employ the model from the previous chapter, which
formally modeled and analyzed repeated intrinsic reciprocation, to understand how
reciprocity makes interaction evolve with time. We briefly summarize the model. Ac-
tions, which are influences of an agent on another one, are represented by weight, where
a higher value means a more desirable contribution to its recipient. That model was
mainly inspired by arms race models [5, 6] and a model of spouses arguments [7]. Given
the model, the previous chapter analyzes the interaction it engenders. This model con-
sists of two reciprocation attitudes, where the action of an agent is a convex combina-
tion1 between i) one’s own kindness or ii) one’s own last action (mental inertia), and the
other’s last action (reaction). The combination is determined by the agent’s reciproca-
tion coefficient. Since the last own action is, recursively, a product of previous actions, it
represents the agent at a given time, including her history. Attitude i), which is connected
to kindness, is called fixed, and ii) depending on one’s own last action is called floating.
We concentrate, for technical reasons, on two agents, like two rival superpowers.

Such a reciprocation process converges, and in many cases, the actions in the limit
are known from the previous chapter; the required previous results are summarized in
the next section. A natural question to ask next in order to provide decision support and
predict the strategic reciprocation is in what way the agents can strategically influence
the reciprocation process for their own good, and what will the social welfare become
when every individual behaves strategically. Setting one’s way of reciprocating resembles
Mastenbroek’s [15, Chapter 14] recommendation to know one’s own negotiating style
and adjust it. Assuming that people strategically choose each action is unrealistic, since
people usually act on habits [16], and a strategic choice consists of choosing a habit for
the reciprocal interaction. Here, the habit, chosen after deliberation, can be the balance
between reacting and being faithful to oneself, as defined in the model. It is also easy to
prescribe a “habit” to a robot.

Choosing habits resembles bounded rationality, especially that of procedures of
choice [17, Chapter 2]. Indeed, our agent follows the procedure of rationally choosing
among the possible habits. The difference is that choosing a habit does include a ratio-
nal step, and is, therefore, amenable to a standard game-theoretic analysis, like NE and
price of anarchy and stability. Choosing habits resembles metagames as well, when an
agent chooses a representative to play the underlying game for her. For instance, Rubin-
stein [17, Chapter 8] and [18, Chapter 9] define a machine game, where an agent wants a
well-paying strategy that is simple to implement. This tradeoff is modeled by choosing
a finite deterministic automaton to play the repeated game, where the agent’s utility in-
creases in the utility of the underlying game and decreases in the number of the states of
the chosen automaton. The game’s equilibria are studied. The equilibria in this game
are found for the case of the utility of the repeated game being defined as the limit-

1A combination is convex if it has nonnegative weights that sum up to 1.
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of-means or with discounting in [19]. Various combinations between the utility of the
repeated game and the complexity are studied; for instance, lexicographic utilities are
studied in [20] and [21]. A player in a machine game chooses a finite automaton, while
our player chooses a habit. Choosing an automaton, however, considers the bounding
effect of finiteness and attempt to minimize the automaton’s state space, while we sim-
ply consider a best possible habit, all habits being equally simple. Therefore, our model
neither generalizes theirs nor is our model generalized by theirs. Additionally, no finite
automaton is able to model reciprocation, though any degree of approximation is, of
course, possible by extending the state space of such an automaton.

To model strategically setting one’s habits, we first define the utility of an agent as
the value an agent receives for the action by the other agent minus the cost of the ac-
tion contributed by herself. Then, we consider the one-shot game of setting one’s own
reciprocation attitude or coefficient, each of which represents a habit.

All the agents choose their reciprocation habits and then the reciprocation process
plays itself. Our contributions include a characterization of this game’s Nash equilibria
(NE) and a discussion of their efficiencies. We consider only pure NE in this chapter.
Analyzing this game provides an insight into how people and machines could change
their behavior to achieve a more desirable behavior in the limit of the interaction pro-
cess. This desirability can be to themselves or to the society. In addition to predicting
the strategically reciprocal behavior and advising on what to do, the analysis explains
the following known phenomena. First, in reciprocation, we often notice that when the
example of the kindest person is followed by others, it makes the group more success-
ful [22]. We also notice that people generally tend to become more polite as they grow
up [23], which is yet another example of the utility of learning from the behavior of the
kindest.

To make this chapter reasonably self-contained, Section 2 provides other necessary
background about the previous chapter. Please skip this section if you have read that
chapter. Using our definition of utility from Section 3, we analyze setting one’s own re-
ciprocation attitude or coefficient to maximize own utility from the reciprocation. We
analyze changing reciprocation attitude for a pairwise interaction. Pairwise interactions
still allow for many agents provided assuming that the agents do not mix one relation-
ship with the other ones. Therefore, we first consider the case of pairwise interaction,
and the game of choosing the reciprocation attitude in sections 3, 4 and 5, proving the
central Theorems 22 and 23. We also model in Section 6 what happens if an agent can
choose both own attitude and reciprocation coefficient. The answers are given in the key
Theorems 24 and 25.

Then, we consider the general case of agents interacting with many agents. Here, we
are able to analyze the game of choosing the balance between being faithful to her inner
self and reacting. We consider the best reaction of an agent to a given choice of the other
agents in Section 8. In order to analyze the general situation, when everyone recipro-
cates optimally, we consider the game of simultaneously choosing the balance and the
Nash equilibria of this game in Section 10, summarizing our findings in Theorem 26. To
study whether the various Nash equilibria are good or bad for the society, we calculate
their efficiency relatively to the optimum possible situations, which requires finding the
optimum total utility in Section 9.
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2. BACKGROUND
For the self-containment of this chapter, we restate some definitions and results from
the previous chapter. We begin by presenting the model. Then, we mention the conver-
gence results for pairwise interaction, and finally, provide a theorem for n agents. The
numeration of the statements copies the original one from Chapter 4.

Recall that an agent i ∈ N acts at the times in Ti ⊆ {0,1,2, . . .}. Agent i has kindness
ki , defining her inner inclination to act on others, and reciprocation coefficients ri ,r ′

i ∈
[0,1], defining what fraction of her action is reciprocal. Therefore, ri + r ′

i ≤ 1. W.l.o.g.,

kn ≥ . . . ≥ k2 ≥ k1. We define the total received action by goti (t )
∆= ∑

j∈N(i ) x j ,i (t ). There

are two reciprocation attitudes, as follows. In both cases xi , j (0)
∆= ki .

Definition 12. For the fixed reciprocation attitude, agent i ’s reaction on the other agent j
and on the neighborhood is determined by the agent’s kindness weighted by 1− ri − r ′

i , by
the other agent’s action weighted by ri and by the total action of the neighbors weighted
by r ′

i and divided by the number of the neighbors: That is, for t ∈ Ti ,

xi , j (t )
∆= (1− ri − r ′

i ) ·ki + ri · x j ,i (t −1)+ r ′
i ·

goti (t −1)

|N(i )| .

Definition 13. In the floating reciprocation attitude, agent i ’s action is a weighted av-
erage of her own last action, of that of the other agent j and of the total action of the
neighbors divided by the number of the neighbors: To be precise, for t ∈ Ti ,

xi , j (t )
∆= (1− ri − r ′

i ) · xi , j (t −1)+ ri · x j ,i (t −1)+ r ′
i ·

goti (t −1)

|N(i )| .

We prove the following convergence theorems, representing what takes place once
the actions have stabilized. For two agents, we assume, w.l.o.g., that r ′

i = 0.
For two fixed agents, we prove:

Theorem 15. If the reciprocation coefficients are not both 1, which means r1r2 < 1, then

we have, for i ∈ N : limp→∞ xi , j (ti ,p ) = (1−ri )ki+ri (1−r j )k j

1−ri r j
.

For two agents, in the floating case, we show:

Theorem 16. If the reciprocation coefficients are neither both 0 and nor both 1, which
means 0 < r1 + r2 < 2, then, as t →∞, x(t ) and y(t ) converge to a common limit. In the
synchronous case (T1 = T2 = T ), they both approach

1

2

(
k1 +k2 + (k2 −k1)

r1 − r2

r1 + r2

)
= r2

r1 + r2
k1 + r1

r1 + r2
k2.

For a fixed and a floating agent, the following corollary shows convergence:

Corollary 3. Consider pairwise interaction, where one agent i employs fixed reciprocation
and the other agent j employs the floating one, and every agent acts at least once every q
times. Assume that ri < 1 and r j > 0. Then, both limits exist and are equal to ki . The
convergence is geometrically fast.
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For multiple agents, we prove the following:

Theorem 20. Given a connected interaction graph, consider the synchronous case where
for all agents i , r ′

i > 0. If there exists a cycle of an odd length in the graph (or at least one
agent i employs floating reciprocation and has ri + r ′

i < 1), then, for all pairs of agents
i 6= j such that (i , j ) ∈ E, the limit Li , j exists, and the convergence is geometrically fast.
Moreover, if all the agents employ floating reciprocation, then all these limits are equal to
each other and it is a convex combination of the kindness values, namely2

L =
∑

i∈N

(
d(i )

ri+r ′i
·ki

)
∑

i∈N

(
d(i )

ri+r ′i

) .

If at least one agent is fixed, then each Li , j is a positive combination of all the kindness
values of the agents who are fixed. Moreover, if, all the fixed agents have the same kindness
k, then all these limits are equal to k.

In any case, when not all the agents are floating, then changing only the kindness of
the floating agents does not change the limits (also follows from the limits being positive
combinations of all the kindness values of the agents who are fixed).

We next begin by analyzing strategic behavior in pairwise interaction.

TWO AGENTS
We begin with considering the case of a pairwise interaction with agents setting their
reciprocation attitude.

3. TWO AGENTS: UTILITY MAXIMIZATION
As a first step to analyzing strategic choices, we now define the utility of an agent and
consider how an agent can maximize her utility by choosing either her reciprocation
coefficient or reciprocation attitude, before the interaction begins. This can be expected
from a rational agent, who reciprocates, but chooses her reciprocation habits. Since in
reality the behavioral parameters of others are unknown, choosing an optimal behavior
will probably be harder, through trial and error, and the theory predicts the trend of these
choices.

3.1. UTILITY DEFINITION FOR n AGENTS

An agent’s utility at a given time moment is the action one receives minus the effort in-
curred by the action one performs. Colloquially, this is what the agent gets minus what
she gives. Modeling the effect of own actions on the actor’s utility, besides the incurred
effort, is an interesting direction to model. This classical way of defining utility is ex-
pressed, for instance, in the quasilinear preferences of auction theory [24, Chapter 9.3].
Formally,

2d(i ) denotes the degree of i ∈ N in the interaction graph.
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Definition 18. The utility of agent i at moment t , ui ,t : Rdeg(i ) ×Rdeg(i ) →R, is defined as

ui ,t
(
xi , j (t ), x j ,i (t )

) ∆= ∑
j∈N(i )

x j ,i (t )−βi
∑

j∈N(i )
xi , j (t ),

where βi is the relative importance of the performed actions for i ’s utility. The personal
price of acting is higher, equal or lower than of receiving an action, if β is bigger, equal or
smaller than 1, respectively.

In particular, for two agents, we denote x(t )
∆= x1,2(t ) and y(t )

∆= x2,1(t ). Thus, agent
1’s utility at time t is y(t )−β1x(t ) and 2’s utility at time t is x(t )−β2 y(t ).

Remark 10 (Signs). We take acting with a minus sign, to account for the effort it takes
(unless βi is negative, which would mean that the agent enjoys making effort). According
to this formula, when βi > 0, a negative action would suddenly contribute to the utility;
we needed to take the absolute value. Instead, we will assume that actions are always non-
negative, which is equivalent to all kindness values being non-negative. We still can have
negative influence, we have simply mathematically transformed all the original kindness
values by adding a sufficiently large number so that they all have become nonnegative.

To model the utility in the long run, we give the following

Definition 19. Define the asymptotic utility, or just the utility, of agent i , ui :
(
Rdeg(i )

)∞×(
Rdeg(i )

)∞ → R, as ui
(⋃∞

t=0

{
xi , j (t ), x j ,i (t )

}) ∆= limt→∞ ui ,t
(
xi , j (t ), x j ,i (t )

)
. When the pa-

rameters in the parentheses are clear from the context, we may omit them.

Remark 11 (Other definitions). This is the utility we consider in the paper by default. The
utility might be defined otherwise, like a discounted sum, though since we have an expo-
nential convergence, it is possible to simplify it to looking at the limit, assuming that the
discounting is not extremely quick. A more elaborate discussion of this question appears
at Section 11.1, after Proposition 21.

3.2. CHOOSING RECIPROCATION BEHAVIOR FOR TWO AGENTS
In order to analyze strategic choice of reciprocation habits, we consider how an agent
can maximize its utility by choosing how to reciprocate. In Example 5 on page 79, this
models a colleague changing her behavior to improve her own well-being as a result of
a psychologist’s advice. In the case of Example 9, this models a country setting a smart
foreign policy with respect to arming. First, suppose that the only available option of
agent i to modify the process is by setting its reciprocation coefficient ri . We therefore
analyze how i ’s utility depends on ri . Choosing the reciprocation attitude is studied
afterwards. In the results of this section, the asymmetry of the agents stems from k2 ≥ k1.

For the fixed reciprocation attitude, we prove:

Proposition 9. In the fixed reciprocation attitude, the following holds: If r2 < 1 and agent
1 wants to maximize his utility by choosing his reciprocation coefficient r1, then he should

set r1 to be


1 if r2 >β1,

anything r2 =β1,

0 r2 <β1.
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If r1 < 1 and agent 2 wants to maximize his utility by choosing his reciprocation coef-

ficient r2, then he should set r2 to be


0 if r1 >β2,

anything r1 =β2,

1 r1 <β2.

These choices are the only utility maximizing ones.

The idea of the proof is to express the utility of an agent and differentiate it by her re-
ciprocation coefficient, to find candidates for the extrema. We obtain that the maximum
value is attained at an endpoint, and try both endpoints to find a maximum.

Proof. Let us prove for agent 1 choosing r1. We first express 1’s utility and then maximize
it. Since r2 < 1, we have r1r2 < 1, and from Theorem 15 on page 85,

lim
t→∞x(t ) = (1− r1)k1 + r1(1− r2)k2

1− r1r2
,

lim
t→∞ y(t ) = (1− r2)k2 + r2(1− r1)k1

1− r1r2

⇒ u1 = (1− r2)k2 + r2(1− r1)k1

1− r1r2
−β1

(1− r1)k1 + r1(1− r2)k2

1− r1r2
.

To find a maximum point of this utility as a function of r1, we differentiate:

∂(u1)

∂(r1)
= . . . = (r2 −β1)(1− r2)

(1− r1r2)2 (k2 −k1).

Therefore, if r2 = β1, then the derivative is zero, and the utility is constant. Otherwise,
the maximum is attained only at a single endpoint: at the right endpoint, if the r2 > β1,
and at the left endpoint if r2 <β1.

The case of agent 2 choosing r2 is proven by analogy.

For the floating reciprocation attitude, we prove:

Proposition 10. In the floating reciprocation attitude in a synchronous3 recip-
rocation, the following holds: If r2 < 1 and agent 1 wants to maximize his
utility by choosing his reciprocation coefficient r1, then he should set r1 to be

1 if r2 > 0 and β1 < 1,

0 if r2 > 0 and β1 > 1,

anything if r2 > 0 and β1 = 1,

0 if r2 = 0 and β1 > 0,

anything positive if r2 = 0 and β1 < 0,

anything if r2 = 0 and β1 = 0.

3That is, T1 = T2 = T , i.e. both agents act at all times.
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If r1 < 1 and agent 2 wants to maximize his utility by choosing his reciprocation coef-

ficient r2, then he should set r2 to be



0 if r1 > 0 and β2 < 1,

1 if r1 > 0 and β2 > 1,

anything if r1 > 0 and β2 = 1,

anything positive if r1 = 0 and β2 > 0,

0 if r1 = 0 and β2 < 0,

anything if r1 = 0 and β2 = 0.
These choices are the only utility maximizing ones.

The idea of the proof is as in the previous proof.

Proof. Let us prove for agent 1. We first express 1’s utility and then maximize it. Assume
first that 0 < r2 < 1, and therefore 0 < r1+r2 < 2. Therefore, from Theorem 16 on page 87,

lim
t→∞x(t ) = lim

t→∞ y(t ) = 1

2

(
k1 +k2 + (k2 −k1)

r1 − r2

r1 + r2

)
⇒ u1 = (1−β1)

1

2

(
k1 +k2 + (k2 −k1)

r1 − r2

r1 + r2

)
.

To find a maximum point of this utility as a function of r1, we differentiate:

∂(u1)

∂(r1)
= . . . = (1−β1)(k2 −k1)r2

(r1 + r2)2

Therefore, the derivative is zero for 1 = β1, positive for 1 > β1, and negative for 1 < β1,
and we have proven the proposition for the choice of agent 1, when r2 > 0.

In the case of r2 = 0, notice that r1 = r2 = 0 results in u1 = k2 −β1k1, while for r1 > 0,
Theorem 16 implies that u1 = k2 −β1k2. Consequently, if β1 > 0, only r1 = 0 is optimal
for agent 1’s utility, if β1 is zero, u1 ≡ k2 regardless r1, and β1 < 0 implies that any positive
r1 is optimal.

The case of agent 2 choosing r2 is proven by analogy.

Remark 12 (An intuitive case). For β1 =β2 = 0, which is the case when both agents want
only to receive more action weight, both results are very intuitive, since the agent with the
smaller original kindness should choose to be very reciprocating, while the other agent
should choose to be completely non-reciprocating, thereby remaining kind and pulling
the other agent to act more.

For synchronous interaction with fixed and floating attitudes, we prove:

Proposition 11. In the case of synchronous interaction, if agent i employs the fixed and
j the floating attitude, the following holds: Given any r j < 1, agent i can maximize her

utility by setting ri to be


1 r j > 0 and (1−βi )ki ≤ (1−βi )k j ,

Any value < 1 r j > 0 and (1−βi )ki ≥ (1−βi )k j ,

0 r j = 0 and k j ≥βi ki ,

1 r j = 0 and k j ≤βi ki .
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If ri < 1, and agent j wants to maximize her utility, she should set r j to be{
0 (ri −β j )(k j −ki ) ≥ 0,

Anything positive otherwise.
These choices are the only utility maximizing ones.

The idea is to use Corollary 3 from page 94 to find the possible utilities and to com-
pare them.

Proof. If, in addition to being smaller than 1, we also have that r j > 0, then Corollary 3
implies that any ri < 1 makes both limits be ki . Since ri = 1 allows us assume both agents
are floating, Theorem 16 on page 87 gives the common limit of

r j

1+r j
ki + 1

1+r j
k j . This is at

least as good to i as ki is if and only if

(1−βi )ki ≤ (1−βi )(
r j

1+ r j
ki + 1

1+ r j
k j ) ⇐⇒ (1+ r j )(1−βi )ki ≤ (1−βi )(r j ki +k j )

⇐⇒ (1−βi )ki ≤ (1−βi )k j .

On the other hand, if r j = 0, then i acts (1− ri )ki + ri k j and j acts k j , and we have ui =
k j −βi ((1− ri )ki + ri k j ) = (1− ri )(k j −βi ki ). Therefore, the sign of k j −βi ki determines
which ri is optimal.

Assume ri < 1 now. Then, if r j > 0, both action sequences converge to ki , by Corol-
lary 3, thus u j = (1−β j )ki . If r j = 0, then i constantly acts (1−ri )ki+ri k j and j constantly
acts k j , and so u j = (1− ri )ki + ri k j −β j k j . Comparing the utilities, we obtain that the
first one is greater than the second one if and only if (ri −β j )(ki −k j ) > 0.

If the kindness values and reciprocation coefficient are set, and an agent may only
choose between fixed or floating reciprocation, we prove:

Proposition 12. In a synchronous reciprocation, if 0 < r1,r2 < 1, then, if agent 1 wants to
maximize her utility, and she may only choose whether to employ fixed or floating recip-
rocation, then she should choose{

fixed if (agent 2 plays fixed∧{
β1 ≥ r2

}
)∨ (agent 2 plays floating∧{

β1 ≥ 1
}
),

floating if (agent 2 plays fixed∧{
β1 ≤ r2

}
)∨ (agent 2 plays floating∧{

β1 ≤ 1
}
).

If agent 2 wants to maximize his utility by choosing fixed or floating reciprocation,
then he should choose{

floating if (agent 1 plays fixed∧{
β2 ≥ r1

}
)∨ (agent 1 plays floating∧{

β2 ≥ 1
}
),

fixed if (agent 1 plays fixed∧{
β2 ≤ r1

}
)∨ (agent 1 plays floating∧{

β2 ≤ 1
}
).

Supposing k1 < k2, an attitude choice given in this proposition is the only best one if
and only if the relevant inequality on the right-hand side of the conditions holds strictly.

The idea of the proof is to compare the possibilities, to see when which option is best.
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Proof. First, consider the choice of agent 1. We compare all the reciprocation attitudes
of 1, to see which one yields her the larger utility. Assume first that 2 plays fixed. Then,
1 playing fixed yields u1 = (1−r2)k2+r2(1−r1)k1

1−r1r2
−β1

(1−r1)k1+r1(1−r2)k2
1−r1r2

, and 1 playing floating
yields u1 = (1−β1)k2. We compare these utilities now.

(1− r2)k2 + r2(1− r1)k1

1− r1r2
−β1

(1− r1)k1 + r1(1− r2)k2

1− r1r2
≥ (1−β1)k2 ⇐⇒ . . .

⇐⇒ (1− r1)(β1 − r2)k2 ≥ (1− r1)(β1 − r2)k1.

Since r1 < 1 ⇒ (1− r1) > 0, we conclude that fixed is preferable if and only if β1 − r2 ≥ 0.
The only remaining thing to show about the choice of 1 the case when 2 plays floating.

When agent 2 plays floating, 1 playing fixed yields u1 = (1−β1)k1, and 1 playing float-
ing yields u1 = (1−β1)(αk1+βk2), for someα,β≥ 0,α+β= 1, because the common limit
is in [k1,k2]. Since r1 + r2 ≤ 1, the floating reciprocation process is monotonic and since
min{r1,r2} > 0, the agents move from their original acts in the process, so that α,β > 0.
We compare these values now. Since (αk1 +βk2) > k1, floating is preferable if and only if
1−β1 ≥ 0. The choice of agent 1 has been fully shown.

We prove now for the choice of agent 2. Assume first that agent 1 plays fixed. Then,
2 playing fixed yields u2 = (1−r1)k1+r1(1−r2)k2

1−r1r2
−β2

(1−r2)k2+r2(1−r1)k1
1−r1r2

, and 2 playing floating
yields u2 = (1−β2)k1. We compare these values now.

(1− r1)k1 + r1(1− r2)k2

1− r1r2
−β2

(1− r2)k2 + r2(1− r1)k1

1− r1r2
≥ (1−β2)k1 ⇐⇒ . . .

⇐⇒ (1− r2)(r1 −β2)k2 ≥ (1− r2)(r1 −β2)k1.

Because (1− r2) > 0, fixed is preferable if and only if (r1 −β2) ≥ 0. The only remaining
thing to show about the choice of agent 2 is the case when 1 plays floating.

When 1 plays floating, 2 playing fixed yields u2 = (1−β2)k2, and 2 playing floating
yields u2 = (1−β2)(αk1 +βk2), for some α,β ≥ 0,α+β = 1. Actually, since r1 + r2 ≤ 1,
the floating reciprocation process is monotonic and since min{r1,r2} > 0, we get that
the agents move from their original acts, so that α,β> 0. We compare these values now.
Since (αk1 +βk2) < k2, fixed is preferable if and only if 1−β2 ≥ 0. The choice of agent 2
has been fully shown.

Remark 13 (An intuitive case). For β1 =β2 = 0, which is the case when both agents want
only to receive more, this result is intuitive, since a less kind agent aligns to the kinder one,
and the kinder one lets the other agent align to himself.

We exemplify the results using Example 9.

Example 9 (Continued). If countries 1 and 2 have r1 = r2 = 0.5,r ′
1 = r ′

2 = 0,β1 = 0,β2 = 0.2
(acting is cheap), then, whatever attitude 2 employs, 1 should employ floating, to maxi-
mize its utility.

We have prepared the analysis of the game of choosing reciprocation habits. To pre-
pare the ground for analyzing the efficiency of NE, our next step will be finding how the
social welfare can be maximized.
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4. TWO AGENTS: MAXIMIZING SOCIAL WELFARE
Maximizing the social welfare is relevant for analyzing the whole interaction of agents
maximizing their own utilities as a game, to see how good equilibria are for the society
relatively to the best possible social welfare. Regardless of the game, the manager (say,
the boss of a group of interacting workers) wants to maximize the social welfare by influ-
encing agents’ behavior through propaganda or an incentive mechanism.

Before maximizing the social welfare, we formally define it, beginning with the case
of n agents.

Definition 20. The social welfare at time t (SWt : R|E | →R) is defined as the sum of utilities
at time t , i.e.,

SWt
∆= ∑

i∈N
ui ,t =

∑
i∈N , j∈N(i )\{i }

(1−βi )xi , j (t ). (5.1)

In particular, for two agents,

SWt
∆= u1,t +u2,t = (1−β1)x(t )+ (1−β2)y(t ). (5.2)

For the whole process,

Definition 21. We define the (asymptotic) social welfare, SW:
(
R|E |)∞ → R, as SW

∆=
limt→∞ SWt .

Let us reconsider Example 5 on page 79 and Example 9.

Example 5 (Continued). Changing behavioral parameters to increase the social welfare
models the boss trying to spread the good practices among the colleagues, by conducting
psychological seminars and personal talks.

Example 9 (Continued). Changing the behavioral parameters to increase the social wel-
fare models the United Nations trying to spread good practices among countries.

We now consider optimizing the social welfare for two agents. We first suppose that
the only available option to influence the interaction network is through choosing the
reciprocation coefficients of the agents, and ask what is the most efficient setup of the
r1,r2 parameters. Afterwards, we consider setting the reciprocation attitudes. To this
end, we now analyze how the asymptotic social welfare depends on these parameters.
For given reciprocation attitudes (not necessarily the same attitudes for both agents), we
prove

Proposition 13. We can maximize the social welfare by setting r1 and r2 to

r1 = 1,r2 = 0 if max
{
β1,β2

}≤ 1,

r1 = 0,r2 = 1 if min
{
β1,β2

}≥ 1,

r1 = r2 = 0 if β1 ≥ 1,β2 ≤ 1,

r1 = 1,r2 = 0 if β1 ≤ 1,β2 ≥ 1,β1 +β2 ≤ 2,

r1 = 0,r2 = 1 if β1 ≤ 1,β2 ≥ 1,β1 +β2 ≥ 2.

(5.3)
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The idea of the proof is to consider, what limits should be maximized, to maximize
the social welfare.

Proof. If max
{
β1,β2

} ≤ 1, then if we maximize both limt→∞ x(t ) and limt→∞ y(t ), we
maximize the social welfare. For r1 = 1,r2 = 0, we obtain4 limt→∞ x(t ) = k2 and
limt→∞ y(t ) = k2, which are the maximum possible. Thus, r1 = 1,r2 = 0 maximizes the
social welfare.

If min
{
β1,β2

} ≥ 1, then if we minimize both limt→∞ x(t ) and limt→∞ y(t ), we maxi-
mize the social welfare. For r1 = 0,r2 = 1, we obtain4 limt→∞ x(t ) = k1 and limt→∞ y(t ) =
k1, which are the minimum possible. Thus, r1 = 0,r2 = 1 maximizes the social welfare.

Ifβ1 ≥ 1,β2 ≤ 1, then if we minimize limt→∞ x(t ) and maximize limt→∞ y(t ), we max-
imize the social welfare. For r1 = r2 = 0, we obtain4 limt→∞ x(t ) = k1 and limt→∞ y(t ) =
k2; that is, limt→∞ x(t ) is the minimum possible and limt→∞ y(t ) is the maximum possi-
ble. Thus, r1 = r2 = 0 maximizes the social welfare.

If β1 ≤ 1,β2 ≥ 1, we first express the social welfare in a handier form, and subse-

quently show how we can maximize it. Denote δ
∆= 1−β1 ⇒ δ ≥ 0 and ε

∆= 2−β1 −β2.
Then, we have 1−β2 = −(δ− ε) and SW = (1−β1) limt→∞ x(t )+ (1−β2) limt→∞ y(t ) =
δ limt→∞ x(t )− (δ−ε) limt→∞ y(t ) = δ(limt→∞ x(t )− limt→∞ y(t ))+ε limt→∞ y(t ).

Now, if β1 +β2 ≤ 2, then ε ≥ 0 and thus, if we maximize limt→∞ x(t )− limt→∞ y(t )
and limt→∞ y(t ), we maximize the social welfare. For r1 = 1,r2 = 0, we obtain4

limt→∞ x(t ) = limt→∞ y(t ) = k2, thus maximizing the first (since by Proposition 5 on
page 94, limt→∞ xi , j (t ) ≤ limt→∞ x j ,i (t ), the first is non-positive) and the second. Thus,
r1 = 1,r2 = 0 maximizes the social welfare.

Now, if β1 +β2 ≥ 2, then ε ≤ 0 and thus, if we maximize limt→∞ x(t )− limt→∞ y(t )
and minimize limt→∞ y(t ), we maximize the social welfare. For r1 = 0,r2 = 1, we obtain4

limt→∞ x(t ) = limt→∞ y(t ) = k1, thus maximizing the first and minimizing the second.
Thus, r1 = 0,r2 = 1 maximizes the social welfare.

Remark 14 (Usage domain). Notice that this proposition holds also if we may influence
both r1,r2 and the attitudes of the agents, since the proof maximizes and minimizes ex-
pressions for any possible attitudes.

Consider an intuitive case.

Remark 15 (free actions). For β1 =β2 = 0, this result is intuitive, since the agent with the
smaller original kindness is set to be very reciprocating, while the other agent is set to be
non-reciprocating, thereby pulling the other agent to act more.

Suppose now that the reciprocation coefficients are set, and the manager only
chooses whether the agents employ fixed or floating reciprocation.

Proposition 14. If 0 < r1,r2 < 1 and every agent acts at least once every q times5, then the

4This is evident from the definition of fixed or floating reciprocation, without a convergence theorem.
5We do not require synchroneity, since Theorem 16 from page 87 is used without using the value of the com-

mon limit.
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r1 − 1/r2(β1 − 1) 1 − r1(β1 − 1)

1 plays floating, 2 fixed. Both play fixed. 1 plays fixed, 2 floating.
β2

2 − β1

1 plays floating, 2 fixed. 1 plays fixed, 2 floating.
β2

Figure 5.1: The upper figure is for β1 −1 ≥ 0, and the lower figure is for β1 −1 < 0. The strategy profile written
above denotes a profile to maximize the social welfare, based on where the value of β2 resides.

social welfare is maximal by reciprocating as follows:
1 floating, 2 fixed. if β2 ≤ 1−max

{
1
r2

(β1 −1),β1 −1
}

,

1 fixed, 2 fixed. if 1−1/r2(β1 −1) ≤β2 ≤ 1− r1(β1 −1),

1 fixed, 2 floating. if β2 ≥ 1−min
{
r1(β1 −1),β1 −1

}
.

The statement of the proposition can be expressed geometrically. We can maximize
the social welfare depending on the real interval where β2 is: Figure 5.1 shows a profile
to maximize the social welfare, based on the segment where the value of β2 belongs.

The idea of the proof is to express the social welfare in each case, characterize when
the social welfare in one case is larger than in the other one, and conclude, how to maxi-
mize the social welfare.

Proof. The social welfare in each case is as follows:

SW(1 plays fixed, 2 fixed)

Theorem 15= (1−β1)
(1− r1)k1 + r1(1− r2)k2

1− r1r2
+ (1−β2)

(1− r2)k2 + r2(1− r1)k1

1− r1r2

= . . . = (1− r1)(1+ r2 −β1 −β2r2)

1− r1r2
k1 + (1− r2)(1+ r1 −β1r1 −β2)

1− r1r2
k2.

SW(1 plays fixed, 2 floating)
Corollary 3= (1−β1)k1 + (1−β2)k1 = (2−β1 −β2)k1.

SW(1 plays floating, 2 fixed)
Corollary 3= (1−β1)k2 + (1−β2)k2 = (2−β1 −β2)k2.

SW(1 plays floating, 2 floating)

Theorem 16= (1−β1)(αk1 +βk2)+ (1−β2)(αk1 +βk2) = (2−β1 −β2)(αk1 +βk2),

for some α,β≥ 0,α+β= 1.
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We first show that SW(1 plays floating, 2 floating) is not a candidate for the
maximum social welfare. Since αk1 + βk2 is a convex combination of k1 and k2,
we have the following: If (2 − β1 − β2) ≥ 0, then SW(1 plays floating, 2 fixed) ≥
SW(1 plays floating, 2 floating), and otherwise SW(1 plays fixed, 2 floating) ≥
SW(1 plays floating, 2 floating).

Next, we characterize for each pair of the remaining three candidates, who is bigger
in the pair and on what condition.

SW(1 plays fixed, 2 fixed) ≥ SW(1 plays fixed, 2 floating)

⇐⇒ . . . ⇐⇒ 1−β2 ≥ r1(β1 −1).

SW(1 plays fixed, 2 fixed) ≥ SW(1 plays floating, 2 fixed)

⇐⇒ . . . ⇐⇒ 1

r2
(β1 −1) ≥ 1−β2.

SW(1 plays fixed, 2 floating) ≥ SW(1 plays floating, 2 fixed)

⇐⇒ . . . ⇐⇒ β1 −1 ≥ 1−β2.

Therefore, if 1
r2

(β1 − 1) ≥ 1 − β2 ≥ r1(β1 − 1), then SW(1 plays fixed, 2 fixed) is the

largest. If 1−β2 ≤ min
{
r1(β1 −1),β1 −1

}
, then SW(1 plays fixed, 2 floating) is the largest.

If 1−β2 ≥ max
{

1
r2

(β1 −1),β1 −1
}

, then SW(1 plays floating, 2 fixed) is the largest. These

conclusions constitute the statement of the proposition.

A remarkable case follows.

Remark 16 (Free actions). For β1 = β2 = 0, this result (agent 1 plays floating, 2 fixed) is
intuitive, since the less kind agent aligns to the kinder one.

By now, the preparation for analyzing the whole interaction as a game has been com-
pleted, so we proceed to define and to analyze the game.

5. TWO AGENTS: RECIPROCATION ATTITUDE GAME
We have considered an agent choosing her reciprocation coefficient or her fixed or float-
ing reciprocation attitude, each choice yielding certain (asymptotic) utility to the agent.
This situation is naturally modeled as a game where the strategies of each agent are the
above choices and the respective utility is the asymptotic utility of the interaction. Recall
that the utility of agent i is limt→∞

{
x j ,i (t )−βi xi , j (t )

}
. This is a one-shot game, the atti-

tude being chosen once, before the interaction commences. Analyzing this game allows
predicting the situation, supplying some advice to an external party (such as the boss
who wants to influence her employees) or to the agents themselves. As explained after
Example 6 from page 83, human agents usually neither completely mimic the others’
behavior, nor do they completely ignore it, which means 0 < r1,r2 < 1. For simplicity, we
also assume that all agents act synchronously. We call this game the reciprocation atti-
tude game (RAG). The central Theorems 22 and 23 summarize our findings about RAG.

We first characterize the existence of pure NE in this game and subsequently look
into their efficiency. We assume that k2 > k1 (strictly) in this section because if the kind-
ness is equal, everyone just keeps acting with this equal value.
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Theorem 22. The Nash equilibria of RAG are characterized as follows:

(fixed, fixed) is an NE ⇐⇒ β1 ≥ r2 and β2 ≤ r1.
(float, fixed) is an NE ⇐⇒ β1 ≤ r2 and β2 ≤ 1.
(fixed, float) is an NE ⇐⇒ β1 ≥ 1 and β2 ≥ r1.
(float, float) is an NE ⇐⇒ β1 ≤ 1 and β2 ≥ 1.

The proof utilizes Proposition 12 about utility maximization to see when no deviation
is profitable.

Proof. Assume that β1 ≥ r2 and β2 ≤ r1. If the strategy profile is (fixed, fixed), then, ac-
cording to Proposition 12, no agent will have an incentive to unilaterally deviate, mean-
ing this strategy profile is indeed an NE.

Assume now that (fixed, fixed) is an NE. We prove that β1 ≥ r2 and β2 ≤ r1 by contra-
diction. If β1 < r2, then Proposition 12 would imply that agent 1 would like to deviate,
contradictory to the profile being an NE. If β2 > r1, then Proposition 12 would imply that
2 would like to deviate, contradictory to the NE.

Assume next that β1 ≤ r2 and β2 ≤ 1. If the strategy profile is (float, fixed), then, ac-
cording to Proposition 12, no agent will have an incentive to unilaterally deviate, mean-
ing this strategy profile is indeed an NE.

Assume now that (float, fixed) is an NE. We prove that β1 ≤ r2 and β2 ≤ 1 by contra-
diction. If β1 > r2, then Proposition 12 would imply that 1 would like to deviate, con-
tradictory to the profile being an NE. If β2 > 1, then Proposition 12 would imply that 2
would like to deviate, contradictory to the profile being an NE.

Assume next that β1 ≥ 1 and β2 ≥ r1. If the strategy profile is (fixed, float), then, ac-
cording to Proposition 12, no agent will have an incentive to unilaterally deviate, mean-
ing this strategy profile is indeed an NE.

Assume now that (fixed, float) is an NE. We prove that β1 ≥ 1 and β2 ≥ r1 by con-
tradiction. If β1 < 1, then Proposition 12 would imply that 1 would like to deviate, con-
tradictory to the profile being an NE. If β2 < r1, then Proposition 12 would imply that 2
would like to deviate, contradictory to the profile being an NE.

Assume next that β1 ≤ 1 and β2 ≥ 1. If the strategy profile is (float, float), then, ac-
cording to Proposition 12, no agent will have an incentive to unilaterally deviate, mean-
ing this strategy profile is indeed an NE.

Assume now that (float, float) is an NE. We prove that β1 ≤ 1 and β2 ≥ 1 by contradic-
tion. If β1 > 1, then Proposition 12 would imply that 1 would like to deviate, contradic-
tory to the profile being an NE. IF β2 < 1, then Proposition 12 would imply that 2 would
like to deviate, contradictory to the profile being an NE.

Remark 17 (Existence of NE). If no characterizing condition holds, then no NE exists. For
example, no characterizing condition holds when β1 = 0.8,β2 = 0.9,r1 = 0.5,r2 = 0.2, so
no pure NE exists in this case. Since the game is finite, a mixed NE always exists by the
classical result by Nash [25].

We now illustrate the theorem for certain parameter values.
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Example 12. Let β1 = 0.3,β2 = 0.6. Then, Theorem 22 states that

(fixed, fixed) is an NE ⇐⇒ 0.3 ≥ r2 and 0.6 ≤ r1.
(float, fixed) is an NE ⇐⇒ 0.3 ≤ r2.

(fixed, float) is never an NE.
(float, float) is never an NE.

5.1. PoA AND PoS
The manager or the government may want to know how far the social welfare in an equi-
librium is from the maximum possible social welfare. To this end, we consider the fa-
mous measures of the efficiency of an equilibrium, namely price of anarchy [26] (PoA)
and price of stability [27] (PoS). PoA is the smallest ratio of a social welfare in an NE to
the optimum social welfare, and PoS is the largest such ratio.

Using Theorem 22, we know for each given set of parameters what all the NE are. Us-
ing Proposition 14, we know for each given set of parameters what the maximum social
welfare is. Calculating the social welfare at each of the Nash equilibria and finding its
ratio to the optimum social welfare enables us to find the price of anarchy and stability
in the following theorem.

Theorem 23. The efficiency of the equilibria is as follows:

Conditions: PoA = PoS:{
1+ r2 − r2β2 >β1 > r2

}
and

{
β2 < r1

} ∑
i=1,2; j 6=1 (1−βi )

(1−ri )ki +ri (1−r j )k j
1−ri r j

(2−β1−β2)k2{
1+1/r1 −β2/r1 >β1 > 1+ r2 − r2β2

}
and

{
β2 < r1

}
1{

β1 > 1+1/r1 −β2/r1
}

and
{
β2 < r1

} ∑
i=1,2; j 6=1 (1−βi )

(1−ri )ki +ri (1−r j )k j
1−ri r j

(2−β1−β2)k1{
β1 < r2

}
and

{
β2 < 1

}
1{

β1 > 1
}

and
{

1+ r1 −β1r1 >β2 > max
{

1+ 1
r2
−β1,r1

}}
(2−β1−β2)k1∑

i=1,2; j 6=1 (1−βi )
(1−ri )ki +ri (1−r j )k j

1−ri r j{
β1 > 1

}
and

{
β2 > max

{
1+ r1 −β1r1,r1

}}
1{

β1 < 1
}

and
{
2−β1 >β2 > 1

} r2
r1+r2

k1
k2

+ r1
r1+r2{

β1 < 1
}

and
{
β2 > 2−β1

} r2
r1+r2

+ r1
r1+r2

k2
k1

In the case of equality in the conditions, the highest entry from our conditions that border
the equal value is the price of stability in this case, and the lowest entry is the price or
anarchy.

Proof. First, if equality in the conditions holds, then several equilibria exist, and we
therefore take the best one for the price of stability and the worst one for the price of
anarchy. The proof goes over all the cases from Theorem 22, split further into subcases,
if Proposition 14 requires so.

If β1 > r2 and β2 < r1, Theorem 22 implies that the only NE is (fixed, fixed). To find
the optimal social welfare, we now look at several cases that fit Proposition 14. If β1 ≤ 1,
then β1 −1 ≤ 0, and Proposition 14 splits into 2 cases: β2 ≤ 2−β1 and β2 ≥ 2−β1. Since
β2 ≤ r1 < 1 ≤ 2−β1, Proposition 14 implies that (floating, fixed) is optimal for the social
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welfare. If, on the other hand, β1 ≥ 1, then β1 − 1 ≥ 0, and Proposition 14 splits into 3
cases: β2 ≤ 1+1/r2−(1/r2)β1, 1+r1−r1β1 ≥β2 ≥ 1+1/r2−(1/r2)β1, and 1+r1−r1β1 ≤β2.
In the first case, (floating, fixed) is optimal for the social welfare, and together with the
option β1 ≤ 1 above, this yields the first row in the table of the theorem’s statement. If
1+ r1 − r1β1 ≥ β2 ≥ 1+1/r2 − (1/r2)β1, then (fixed, fixed) is optimal, yielding the second
row. If, finally, 1+ r1 − r1β1 ≤ β2 holds, then (fixed, floating) is optimal, and this gives us
the third row.

If β1 < r2 and β2 < 1, then (float, fixed) is the only NE, according to Theorem 22.
Since β1 −1 < 0 and β2 < 1 < 2−β1, Proposition 14 implies that (float, fixed) maximizes
the social welfare, and we have proven the fourth row.

If β1 > 1,β2 > r1, then Theorem 22 states (fixed, float) is the only NE. Regarding the
social welfare, we look at Proposition 14. We have β1 −1 ≥ 0, and we consider 3 cases:
β2 ≤ 1+ 1/r2 −β1/r2, 1+ 1/r2 −β1/r2 ≤ β2 ≤ 1+ r1 −β1r1, and β2 ≥ 1+ r1 −β1r1. The
first case is empty, since 1+1/r2 −β1/r2 < r1. In the second case, (fixed, fixed) is optimal
for the social welfare, yielding the fifth row. Finally, the optimum for the third case is
obtained at (fixed, floating), and this is also an NE, and we have the sixth row.

If β1 < 1,β2 > 1, then (float, float) is the only NE. As for the social welfare, since β1 −
1 < 1, Proposition 14 gives us two cases: β2 ≤ 2−β1 and β2 ≥ 2−β1. In the first case,
(floating, fixed) is optimal, and we obtain the penultimate row. On the other hand, if
β2 ≥ 2−β1, then (fixed, floating) maximizes the social welfare, and we get the last row.

In particular, if β1 < r2,β2 < 1, then PoA = PoS = 1. We now illustrate the efficiency
ranges on Example 12.

Example 12 (Continued). Recall that β1 = 0.3,β2 = 0.6. For these values, Theorem 23
implies the following.

Conditions: Price of anarchy and stability:

{0.3 > r2} and {0.6 < r1}

∑
i=1,2; j 6=1 (1−βi )

(1−ri )ki +ri (1−r j )k j
1−ri r j

1.1k2

{0.3 < r2} 1

Consider Example 5 on page 79.

Example 5 (Continued). If colleagues 1 and 2 have r1 = r2 = 0.5,r ′
1 = r ′

2 = 0, β1 = 0,β2 =
0.2 (acting is cheap), then, as just mentioned, PoA = PoS = 1 and the only NE is (float,
fixed). This is intuitive, since colleague 1 will align to the kinder 2, thereby each colleague
maximizes the total action and, since acting is cheap, also her own utility and the social
welfare.

5.2. CONVERGING TO NE
To analyze the stability of a Nash equilibrium, we recall the famous best response dy-
namics [18, Section 2.2], where each agent best responds to the current profile of the
others. We prove that given an NE and any profile, we can let each agent simultaneously
choose her reciprocation attitude to maximize her utility, such that it ends up in this NE.

Proposition 15. Given a Nash equilibrium in a reciprocation attitude game, for any strat-
egy profile there exists a succession of profiles starting from it and terminating at the given
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NE, such that each profile in this succession is an optimum reaction of each agent to the
other one’s strategy in the previous profile.

The idea of the proof is to use Theorem 22 to obtain information about the parame-
ters, assuming that a given profile is an NE. Then, Proposition 12 is used to leverage the
obtained information and show how to begin at any profile and end up at the considered
NE.

Proof. We prove the proposition by showing such a succession of profiles for each possi-
ble NE and each starting profile. We denote by arrows → the transition from one profile
to another one, where the next profile is an optimum reaction of each agent to the other
one’s strategy in the previous profile. When we write a profile, in which we do not men-
tion the strategy of an agent, we write a question mark instead, such as in (?, fixed).

(fixed, fixed) is an NE ⇐⇒ β1 ≥ r2 and β2 ≤ r1, according to Theorem 22. The suc-
cessions to this NE from various profiles follow:

(fixed, float)
Proposition 12→ (?, fixed)

Proposition 12→ (fixed, fixed).

(float, fixed)
Proposition 12→ (fixed, fixed).

(float, float)
Proposition 12→ (?, fixed)

as above→ (fixed, fixed).
And we have proven for the case when (fixed, fixed) is an NE.
(float, fixed) is an NE ⇐⇒ β1 ≤ r2 and β2 ≤ 1, according to Theorem 22. The succes-

sions to this NE from various profiles follow:

(float, float)
Proposition 12→ (float, fixed).

(fixed, fixed)
Proposition 12→ (float, ?)

as above→ (float, fixed).

(fixed, float)
Proposition 12→ (float, ?)

as above→ (float, fixed).
And we have proven for the case when (float, fixed) is an NE.
(fixed, float) is an NE ⇐⇒ β1 ≥ 1 and β2 ≥ r1, according to Theorem 22. The succes-

sions to this NE from various profiles follow:

(fixed, fixed)
Proposition 12→ (fixed, float).

(float, fixed)
Proposition 12→ (fixed, ?)

as above→ (fixed, float).

(float, float)
Proposition 12→ (fixed, ?)

as above→ (fixed, float).
And we have proven for the case when (fixed, float) is an NE.
(float, float) is an NE ⇐⇒ β1 ≤ 1 and β2 ≥ 1, according to Theorem 22. The succes-

sions to this NE from various profiles follow:

(float, fixed)
Proposition 12→ (?, float)

Proposition 12→ (float, float).

(fixed, float)
as above→ (float, float).

(fixed, fixed)
Proposition 12→ (?, float)

as above→ (float, float).
And we have proven for the case when (float, float) is an NE.

This completes the analysis of the agents setting their own reciprocation attitudes.
The next section considers agents who set both their own reciprocation attitudes and
coefficients.
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6. TWO AGENTS: RECIPROCATION ATTITUDE AND COEFFI-
CIENT GAME

In the previous section we looked at the game of choosing a reciprocation attitude. It
is also natural to consider what happens when the other habit, namely, the reciproca-
tion coefficient, is chosen as well. Analyzing this game allows predicting the situation
of more choice than the situation analyzed in RAG; for instance, the participants have
more willpower or are just more knowledgeable than in RAG. As before, this is a one-shot
game, the attitude and reciprocation coefficient being chosen once, before the interac-
tion commences. As we did for RAG, since people usually neither completely mimic the
others’ behavior, nor do they completely ignore it, we assume 0 < r1,r2 < 1. For simplic-
ity, we also assume that all agents act synchronously. We call this game the reciprocation
attitude and coefficient game (RACG). This game is analyzed in the central Theorems 24
and 25.

We first characterize the existence of pure NE in this game and subsequently look
into their efficiency, by finding the price of anarchy and stability. Then, we consider the
best response dynamics. We assume that k2 > k1 (strictly) in this section.

Theorem 24. The only Nash equilibria of RACG are characterized as follows:

(fixed, fixed, r1 =β2,r2 =β1) is an NE ⇐⇒ 0 <β1,β2 < 1.
(float, fixed, 0 < r1,r2 < 1,β1 ≤ r2) is an NE ⇐⇒ β1 < 1 and β2 ≤ 1.
(fixed, float, 0 < r1,r2 < 1,r1 ≤β2) is an NE ⇐⇒ β1 ≥ 1 and β2 > 0.

(float, float, 0 < r1,r2 < 1) is an NE ⇐⇒ β1 =β2 = 1.

The proof is based on Theorem 22, which narrows down the set of possible Nash
equilibria, on Proposition 9 and Proposition 10 about utility maximization, and on con-
vergence results from the previous chapter (See Section 2.)

Proof. We go over all the NE for RAG from Theorem 22 and look at all the possible choices
of r1 and r2 to have an equilibrium in the new game. No other equilibria exist, since if no
condition of Theorem 22 is satisfied, then even deviating by changing only the attitude
is possible.

We begin with (fixed, fixed), an NE in RAG if and only if β1 ≥ r2 and β2 ≤ r1. Given
these reciprocation attitudes, Proposition 9 implies that to prevent the only best choice
of r1 being 0 or 1, we must have (r2 −β1) = 0, and to avoid the situation where the only
best choice of r2 is 0 or 1, we must have (β2 − r1) = 0. This implies the necessity of the
conditions for an NE with fixed attitudes. Theorem 22 and Proposition 9 imply that these
conditions are also sufficient to prevent deviations of only the attitude or only the recip-
rocation coefficient. If agent j simultaneously deviates to another attitude and r j , then
Corollary 3 on page 94 implies that any r j > 0 yields the same utility, and therefore, this
deviation may be considered to consist of attitude only, which is known to be not prof-
itable. This proves the sufficiency.

Consider the profile (float, fixed) now, an NE in RAG if and only if β1 ≤ r2 and β2 ≤ 1.
Since r2 < 1, we conclude that β1 ≤ r2 < 1, and we have the necessity of the conditions
for an NE with floating and fixed attitudes. Theorem 22 implies that deviating in atti-
tude only is not profitable. According to Corollary 3, any r1,r2 ∈ (0,1) suffice for a best
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response, and so deviating in reciprocation coefficient only is not profitable as well. Con-
sider a deviation of an agent to another attitude and reciprocation coefficient simulta-
neously. Unless this includes r2 becoming less than β1, we still know from what we have
just proven that for this new profile, a deviation by the attitude only would not benefit
agent 2, and since changing r2 has not been profitable, the whole deviation is not prof-
itable. The only remaining option is agent 2 becoming floating and changing r2 to be
less than β1. This would yield agent 2 the utility of (1−β2)( r2

r1+r2
k1 + r1

r1+r2
k2), by Theo-

rem 16 on page 87, while he previously had, by Corollary 3, (1−β2)k2. Since 1−β2 ≥ 0
and k2 > k1, the previous profit is not smaller than the new one.

Consider the profile (fixed, float), which is an NE in RAG if and only if β1 ≥ 1 and β2 ≥
r1. Since r1 > 0, we conclude that β2 ≥ r1 > 0, and the necessity of the conditions for an
NE with fixed and float attitudes is proven. As always in this proof, Theorem 22 implies
that deviating in attitude only is not profitable. According to Corollary 3, any r1,r2 ∈
(0,1) suffice for a best response, and so deviating in reciprocation coefficient only is not
profitable as well. Consider a deviation of an agent to another attitude and reciprocation
coefficient simultaneously. Unless this includes r1 becoming greater than β2, we still
know from what we have just proven that for this new profile, a deviation by the attitude
only would not benefit agent 1, and since changing r1 has not been profitable, the whole
deviation is not profitable. The only remaining option is agent 1 becoming floating and
changing r1 to be more than β2. This would yield agent 1 the utility of (1−β1)( r2

r1+r2
k1 +

r1
r1+r2

k2), by Theorem 16, while he previously had, by Corollary 3, (1−β1)k1. Since 1−β1 ≤
0 and k2 > k1, the previous profit is not smaller than the new one.

Finally, look at (float, float), an NE in RAG if and only if β1 ≤ 1 and β2 ≥ 1. Given
these reciprocation attitudes, Proposition 10 implies that we must have β1 = 1, in order
to prevent the only best choices of r1 from being 0 or 1, and β2 = 1, to avoid the same
problems with the best choices of r2. This proves the necessity. We prove the sufficiency
now. Theorem 22 implies that deviating in attitude only is not profitable, and Proposi-
tion 10 shows that deviating in only the reciprocation coefficient is not profitable either.
Finally, consider a deviation of agent i in both attitude and ri . Then, Corollary 3 on
page 94 implies that any r j > 0 yields the same utility, and therefore, this deviation may
be considered to consist of attitude only, which is known to be not profitable. This proves
the sufficiency.

Remark 18 (Existence of NE). When no characterizing condition holds, no NE exists. For
instance, if β1 < 1 < β2, no characterizing condition holds, and therefore, no (pure) NE
exists.

Let us exemplify the theorem for the parameter values from Example 12.

Example 12 (Continued). For β1 = 0.3,β2 = 0.6, there exist two equilibria: (fixed, fixed,
r1 = 0.6,r2 = 0.3) and (float, fixed, 0 < r1,r2 < 1,0.3 ≤ r2).

6.1. PoA AND PoS
We now look at the efficiency of these equilibria, proving the following key result.
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Theorem 25. The efficiency of the equilibria is as follows:

Conditions: PoA : PoS :

0 <β1,β2 < 1

∑2
i=1; j 6=i (1−βi )

(1−β j )ki +β j (1−βi )k j
1−β j βi

(2−β1−β2)k2
1{

β1 < 1
}∧{

β2 ≤ 1
}∧¬{

0 <β1,β2 < 1
}

1 1{
β1 ≥ 1

}∧{
0 <β2 ≤ 1

}∧¬{
β1 =β2 = 1

} (1−β1−β2)k1
(1−β1)k1+(1−β2)k2

(1−β1−β2)k1
(1−β1)k1+(1−β2)k2{

β1 ≥ 1
}∧{

β2 > 1
}

1 1
β1 =β2 = 1 1 1

We find the possible NE from Theorem 24, and compare their social welfare with
the optimal social welfare, found based on the proof of Proposition 13. We only use the
ideas of what one should minimize or maximize to maximize the social welfare from the
proof of Proposition 13, since the proposition sets reciprocation coefficients to 0 and 1,
so we cannot use it directly. To calculate the social welfare, we employ the definition of
utility and the limit values from Theorem 15 on page 85, Theorem 16 on page 87, and
Corollary 3 on page 94.

Proof. If 0 < β1,β2 < 1, Theorem 24 implies that there exist exactly two Nash equilibria,
namely (fixed, fixed, r1 = β2,r2 = β1) and (float, fixed, 0 < r1,r2 < 1,β1 ≤ r2). For the
optimal social welfare, we need to maximize both limt→∞ x(t ) and limt→∞ y(t ), as does,
for instance, the second NE above, yielding the social welfare of (2−β1 −β2)k2. Taking
the ratios of the social welfare values gives row one in the table from the statement of the
theorem.

If β1 < 1 and β2 ≤ 1 but not 0 < β1,β2 < 1, then there exists only the NE (float, fixed,
0 < r1,r2 < 1,β1 ≤ r2), according to Theorem 24. As to the optimal social welfare, we
need to maximize both limt→∞ x(t ) and limt→∞ y(t ), and since the only NE does this,
PoA = PoS = 1.

If β1 ≥ 1 and 1 ≥ β2 > 0 but not β1 = β2 = 1, then the only NE, accordig to The-
orem 24, is (fixed, float, 0 < r1,r2 < 1,r1 ≤ β2). To maximize the social welfare, we
need to minimize limt→∞ x(t ) and maximize limt→∞ y(t ); obtaining the social welfare
of (1−β1)k1 + (1−β2)k2. Taking the ratio of the social welfare values in the equilibria to
(1−β1)k1 + (1−β2)k2, we obtain the third row.

If β1 ≥ 1 and β2 > 1, Theorem 24 states that the only NE is (fixed, float, 0 < r1,r2 <
1,r1 ≤ β2). As to maximizing the social welfare, we need to minimize both limt→∞ x(t )
and limt→∞ y(t ), and since the only NE does this, PoA = PoS = 1, implying the penulti-
mate row of our table.

If β1 = β2 = 1, Theorem 24 implies that there exist exactly the following NE: (fixed,
float, 0 < r1,r2 < 1,r1 ≤ β2) and (float, float, 0 < r1,r2 < 1). The social welfare is always
zero, regardless of the strategy profile, and so every NE is optimal, i.e. PoA = PoS = 1.

And again, we exemplify the theorem for Example 12.

Example 12 (Continued). For β1 = 0.3,β2 = 0.6, there exist two equilibria: (fixed, fixed,
r1 = 0.6,r2 = 0.3) and (float, fixed, 0 < r1,r2 < 1,0.3 ≤ r2). The price of stability is 1, since
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the NE (float, fixed, 0 < r1,r2 < 1,0.3 ≤ r2) is socially optimal. The equilibrium (fixed,
fixed, r1 = 0.6,r2 = 0.3) is not optimal, causing the price of anarchy to be

0.7 0.4k1+0.6·0.7k2
0.82 +0.4 0.7k2+0.3·0.4k1

0.82

(2−0.3−0.6)k2
= 0.36

k1

k2
+0.63.

This example shows that for small k1/k2, there exists a socially inefficient equilib-
rium. In general, for a reciprocation attitude game, Theorem 23 implies that small
enough β1,β2 guarantee that all the NE are optimal. In RACG, however, when 0 <
β1,β2 < 1, we see in the proof of Theorem 25 that along with a socially optimal NE,
the social welfare of the NE (fixed, fixed, r1 = β2,r2 = β1) relative to the optimum is∑

i=1,2; j 6=i (1−βi )
(1−β j )ki +β j (1−βi )k j

1−β j βi

(2−β1−β2)k2
. The limit of this expression when the efforts of acting ap-

proach zero for both agents is

lim
β1→0,β2→0

∑
i=1,2; j 6=i (1−βi )

(1−β j )ki+β j (1−βi )k j

1−β jβi

(2−β1 −β2)k2
=

∑
i=1,2; j 6=i ki

2k2
= k1 +k2

2k2
= 1

2
(

k1

k2
+1).

That is, allowing more freedom (setting own reciprocation attitude and coefficient), we
may lose up to half of the efficiency, if k1/k2 is small. However, Theorem 25 leaves a
sparkle of hope: if at least one agent acts completely effortlessly or even enjoys it, mean-
ing that βi ≤ 0, then all the NE are socially optimal. In this case, the only equilibrium is
(float, fixed, 0 < r1,r2 < 1,β1 ≤ r2), so the less kind agent 1 mimics the kinder agent 2.

6.2. CONVERGING TO NE
In Section 5.2, we show that in RAG, the best response dynamics can move to any NE
from any strategy profile. We want to prove an analogous proposition for RACG, but
now, the non-compactness of the domain does not allow a best response to always exist.
To show this, consider the following example. Pick β1,β2 such that 1 > β2 > β1 > 0.
Theorem 24 says that (fixed, fixed, β2,β1) is an NE. We show now that where exists a
profile that does not possess a best response. Pick r2 such that β1 > r2 > 0, and consider
the profile where agent 2 plays fixed,r2. We now look what a best response of 1 would
be. If agent 1 plays fixed, then Proposition 9 implies that he should also play r1 = 0.
This yields her the utility of (1− r2)k2 + (r2 −β1)k1. Since r1 = 0 is not an option, we
understand this as a limit. If agent 1 plays floating, she obtains the utility of (1−β1)k2,
which is (strictly) smaller than (1− r2)k2 + (r2 −β1)k1. Consequently, there is no best
response, since playing fixed and choosing r1 that is approaching 0 is the best.

Having analyzed games of two agents, we next turn to the case of n agents.

7. n AGENTS
From now on, we handle the general case of agents interacting with many agents. We
aim to model and analyze the game of setting own reciprocation coefficients. To find the
equilibria of this game, we find best responses, and to quantify their efficiency we need
to maximize the social welfare.

Let us warm up with the following example about the reactive agents following the
stable ones. The reader is advised to skip the proof at the first reading.
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Example 13. Assume the interaction graph G to be a clique. Assume that the agents act
synchronously. If for all agents i ∈ C ⊆ N ,C 6= ;, we have ri = r ′

i = 0, and for all agents
j ∉C we have r ′

j = 1 (⇒ r j = 0),6 then for each j ∉C and ( j ,k) ∈ E, the limit L j ,k exists and

is equal to
∑

i∈C ki
|C | .

This case does not fit the conditions of Theorem 20 on page 98, so that even the
existence of the limits has to be proven here. The statement states that the agents in
C are asymptotically determining for the other agent, in the sense that all the rest will
asymptotically act as the arithmetic average of the agents in C . The idea of the proof is
to first look at the limit of the sum of all the actions at time t , then at limt→∞ got j (t ), and
these imply the statement.

Proof. Since ri +r ′
i = 0, agent i ∈C will always act ki on any agent. We assumed 0 < |C | ≤

n. If |C | = n, we have nothing to prove, so assume that 0 < |C | < n.

Denote the sum of all the actions at time t as S(t )
∆= ∑

i , j∈N xi , j (t ). We first show

that limt→∞ S(t ) = n(n − 1)
∑

i∈C ki
|C | . Since for every agent besides those in C the sum of

her actions is equal to the sum of the previous actions upon it, the total sum can only
change because of the agents in C . At any time t ∈ T , the sum of all the actions besides
those done by agents in C is S(t ) −∑

i∈C (n −1)ki and therefore any agent i in C gets
S(t )−∑

i∈C (n−1)ki
n−1 +∑

l∈C \{i } kl = S(t )
n−1 −∑

i∈C ki +∑
l∈C \{i } kl , while her own actions always

sum up to (n −1)ki . Thus, after time t the difference from |C |S(t ) to n(n −1)
∑

i∈C ki has
changed by |C |·(∑i∈C (n −1)ki−(|C | S(t )

n−1−|C |∑i∈C ki+(|C |−1)
∑

l∈C kl )) = |C |·((n−1+|C |−
|C |+1)

∑
i∈C ki −|C | S(t )

n−1 ) = |C | · ((n)
∑

i∈C ki −|C | S(t )
n−1 ) = |C | · ( (n)(n−1)

∑
i∈C ki−|C |S(t )

n−1 ). Thus,

after each time slot, exactly n−1−|C |
n−1 of the difference (n)(n−1)

∑
i∈C ki −|C |S(t ) remains,

and therefore, limt→∞ |C |S(t ) = n(n −1)
∑

i∈C ki ⇒ limt→∞ S(t ) = n(n −1)
∑

i∈C ki
|C | .

Consider any agent j not in C now. We now prove that limt→∞ got j (t ) = (n−1)
∑

i∈C ki
|C | .

For any positive ε, consider a time t , such that from this time on S(t ) is in the ε-

environment of its limit, namely of n(n − 1)
∑

i∈C ki
|C | . At time t , j ’s total actions sum up

to got j (t −1), and therefore it receives then
S(t )−got j (t−1)

n−1 , which is in the ε-environment

of n
∑

i∈C ki
|C | − got j (t−1)

n−1 . Thus, got j (t ) − got j (t − 1) is in the ε-environment of n
∑

i∈C ki
|C | −

got j (t−1)n

n−1 = n
n−1 ((n−1)

∑
i∈C ki
|C | −got j (t −1)). Thus, the difference (n−1)

∑
i∈C ki
|C | −got j (t −1)

changes such that only 1
n−1 of its absolute value remains and the sign changes, all up to

ε. Since the ε is arbitrary, this implies that limt→∞ got j (t ) = (n −1)
∑

i∈C ki
|C | .

Since every agent acts the same on all the neighbors, for any j ∉ C and any l 6= j

we have x j ,l + got j (t ) = S(t )
n−1 and therefore, limt→∞ S(t ) = n(n − 1)

∑
i∈C ki
|C | together with

limt→∞ got j (t ) = (n −1)
∑

i∈C ki
|C | imply that L j ,l exists and is equal to

∑
i∈C ki
|C | .

8. UTILITY MAXIMIZATION
As the first step to studying strategic choice reciprocation habits, to be able to facilitate
these decisions, we consider what reciprocation strategy an agent should adopt to max-

6With these reciprocation parameters, all the agents can be considered as either fixed or floating.
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imize her utility. In the case of example 5 on page 79, this models a colleague changing
her behavioral habits, to improve her own well-being, as a result of a psychologist’s ad-
vice, for instance. In the case of example 9, this models a country choosing her defence
policy, to improve her own well-being, as a result of a specialist’s or a decision system’s
advice, for instance. We now analyze how i ’s utility depends on ri , assuming that the
other parameters are set. Recall that ri is the fraction of an agent’s action, determined by
responding to the previous action of the other agent she acts on. When all agents employ
floating reciprocation, we prove:

Proposition 16. Given a connected interaction graph with an odd cycle, where all agents
act synchronously and with floating reciprocation, assume that for all agents i , r ′

i > 0.
Then, each i can maximize her utility by setting ri to 1− r ′

i , if

(1−βi )

( ∑
j∈N

(
d( j )

r j + r ′
j

·k j

)
−ki

( ∑
j∈N

(
d( j )

r j + r ′
j

)))
(5.4)

is positive, to 0 if negative, and to an arbitrary value if zero. When this expression is not
zero, these choices are the only optimal ones.

Equivalently, we may have looked at the sign of (1−βi )(L−ki ), where L is the common
limit from Theorem 20 on page 98.

As mentioned after Theorem 20, we almost always have an odd cycle, by having three
people acting on each other. Assuming the positivity of r ′

i is also very realistic, since
completely ignoring the other side is rare.

The idea of the proof is maximizing the expression for i ’s utility.

Proof. According to Theorem 20, all the actions converge to a common limit L =∑
i∈N

(
d(i )

ri +r ′
i
·ki

)
∑

i∈N

(
d(i )

ri +r ′
i

) . The utility of i is thus (d(i )L)−βi (d(i )L) = (1−βi )d(i )L. The derivative

is

∂ui

∂ri
= (1−βi )d(i ) ·

−d(i )ki
(ri+r ′i )2

(∑
j∈N

(
d( j )

r j +r ′j

))
+∑

j∈N

(
d( j )

r j +r ′j
·k j

)
d(i )

(ri+r ′i )2(∑
j∈N

(
d( j )

r j +r ′j

))2

= (1−βi )d(i ) ·
d(i )

(ri+r ′i )2

(∑
j∈N

(
d( j )

r j +r ′j
·k j

)
−ki

(∑
j∈N

(
d( j )

r j +r ′j

)))
(∑

j∈N

(
d( j )

r j +r ′j

))2

= (1−βi )d(i ) ·
d(i )

(ri+r ′i )2

(∑
j∈N \{i }

(
d( j )

r j +r ′j
·k j

)
−ki

(∑
j∈N \{i }

(
d( j )

r j +r ′j

)))
(∑

j∈N

(
d( j )

r j +r ′j

))2 .

Therefore, the derivative is zero either for all ri or for none. In any case, the maximum is
attained at an endpoint. To avoid a complicated substitution, we consider the derivative
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sign:

∂ui

∂ri
≥ 0 ⇐⇒ (1−βi ) ·

( ∑
j∈N \{i }

(
d( j )

r j + r ′
j

·k j

)
−ki

( ∑
j∈N \{i }

(
d( j )

r j + r ′
j

)))
≥ 0,

and so when (1−βi )
∑

j∈N \{i }

(
d( j )

r j +r ′j
·k j

)
− ki

(∑
j∈N \{i }

(
d( j )

r j +r ′j

))
is nonnegative, i should

choose the largest ri , which is 1 − r ′
i , and she should choose 0 otherwise. When the

derivative is not zero, these choices are the only optimal ones.

Remark 19 (Free actions). For βi = 0, which is the case when i just wants to receive more
action weight, and does not mind acting herself, the result has the following intuitive ap-
peal: The agents with original kindness smaller than the weighted average of the kindness
values should choose to be very reciprocating, while the other agents should choose to be
completely non-reciprocating, thereby remaining kind and pulling the other agents to act
more.

The next section looks into maximizing the social welfare. This is interesting both
to advise the manager how to do it and to subsequently quantify the efficiency of the
equilibria of the game of choosing interaction habits.

9. MAXIMIZING SOCIAL WELFARE
We now analyze how the manager can maximize the total utility by setting the ri coeffi-
cients. This allows for advising managers and for analyzing the efficiency of equilibria in
the next section. Recall that we assume w.l.o.g., that kn ≥ . . . ≥ k1.

When all agents employ floating reciprocation, we provide a way to maximize the
social welfare.

Proposition 17. Given a connected interaction graph with an odd cycle, where all agents
act synchronously and employ floating reciprocation, assume that for all agents i , r ′

i > 0.
We can maximize the social welfare by the following procedure. First, set all ri to 1− r ′

i .
Order the agents in a non-increasing (non-decreasing, for

∑
i∈N , j∈N(i )\{i }

(
1−βi

)≤ 0) order
of kindness; w.l.o.g., let the obtained order be n,n−1, . . . ,1. Set rn to zero. Go over the other
agents in this order, and as long as( ∑

j∈N

(
d( j )

r j + r ′
j

·k j

)
−ki

( ∑
j∈N

(
d( j )

r j + r ′
j

)))

is negative (positive, for
∑

i∈N , j∈N(i )\{i }
(
1−βi

)≤ 0), set ri to zero.

Equivalently, we may have looked at the sign of (L −ki ), for the L from Theorem 20
on page 98.

The conditions r ′
i > 0 and the connected graph having an odd cycle (say, a triangle)

are met in any reasonable setting where every agent reacts to the others, and there are at
least 3 agents who directly influence each other.

The proof is by induction on the suggested procedure.
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Proof. All the actions converge to a common limit L =
∑

i∈N

(
d(i )

ri +r ′
i
·ki

)
∑

i∈N

(
d(i )

ri +r ′
i

) , by Theorem 20.

The social welfare is SW = L
∑

i∈N , j∈N(i )\{i } (1−βi ). Thus, we need to maximize
L, if

∑
i∈N , j∈N(i )\{i } (1−βi ) ≥ 0, and minimize it otherwise. W.l.o.g., assume that∑

i∈N , j∈N(i )\{i }
(
1−βi

)≥ 0; in the other case, the proof is analogous.
We now prove that the described procedure maximizes the social welfare by induc-

tion on the handled agents. The induction basis is agent n, which, being the kindest,
should obviously receive the highest weight. At an induction step, we compare the next
agent, say i , to the weighted average of the other agents, and if ki is larger, we assign ri

to zero. This maximizes the common limit L. The assignment ri = 0 does not change the
optimal assignment to the previous agents, since they are all at least as kind as i is. At an
induction step where the first time an agent, say l , is not assigned rl = 0, and, therefore,
remains to be 1− r ′

l , the weighted average of the other agents was not smaller than kl ,
so, to maximize L, kindness kl should have received the minimum possible weights. The
rest of the agents are not kinder than l , so by leaving them with the current reciproca-
tion coefficient, the social welfare keeps being maximized. We conclude that the final
assignment of reciprocation coefficients maximizes the social welfare.

Remark 20 (Intuition for free actions). For β1 = β2 = . . . = βn = 0, the result is intuitive,
since the less kind agents are set to reciprocate as much as possible, while the kinder agents
are set to reciprocate as little as possible, thereby remaining kind and pulling the other
agents to act more.

In Section 8 we analyze utility maximization by an agent, which is required for ana-
lyzing NE. The current section allows for analyzing the efficiency of equilibria relatively
to the maximum possible social welfare. Both topics are studied in the following section.

10. RECIPROCATION COEFFICIENT GAME
We have considered an agent choosing her reciprocation coefficient, each choice yield-
ing certain (asymptotic) utility to the agent. Therefore, the situation is naturally modeled
as a game where the strategies of each agent are the choices of her reciprocation coef-
ficient and her utility is the asymptotic utility of the interaction. Recall that the utility
of agent i is limt→∞

{∑
j∈N(i ) x j ,i (t )−βi

∑
j∈N(i ) xi , j (t )

}
. This is a one-shot game, the atti-

tudes being chosen once, before the interaction commences. Analyzing this game allows
predicting the situation, useful for supplying some advice to an external party (such as
the manager who wants to influence the agents) or the agents themselves. Since usually
at least three completely connected agents exist, and people do not ignore the others
completely, we always assume we are given a connected interaction graph with an odd
cycle, and for all agents i , r ′

i > 0. To be able to analyze the process, we assume that all
agents act synchronously and employ floating reciprocation. We call this game the re-
ciprocation coefficient game (RCG) and summarize its analysis in Theorem 26.

We first characterize the existence of pure NE in this game and subsequently look
into their efficiency, by finding the price of anarchy and stability. Proposition 16 allows
us to characterize the existence of pure NE in this game, as follows.
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Theorem 26. The profile (r1,r2, . . . ,rn) is a Nash equilibria of reciprocation coefficient
game if and only if for every i ∈ N there holds

ri = 1− r ′
i ⇐⇒ (1−βi ) ·

( ∑
j∈N

(
d( j )

r j + r ′
j

·k j

)
−ki

( ∑
j∈N

(
d( j )

r j + r ′
j

)))
> 0.

ri = 0 ⇐⇒ (1−βi ) ·
( ∑

j∈N

(
d( j )

r j + r ′
j

·k j

)
−ki

( ∑
j∈N

(
d( j )

r j + r ′
j

)))
< 0.

If (1−βi )

(∑
j∈N

(
d( j )

r j +r ′j
·k j

)
−ki

(∑
j∈N

(
d( j )

r j +r ′j

)))
= 0, then any ri ∈ [0,1− r ′

i ] is satisfactory.

There always exists a pure NE, by Proposition 20.3 in [18].

10.1. PoA AND PoS
We now find how far the social welfare in an equilibrium is from the maximum possi-
ble social welfare. This indicates whether regulation is required. To this end, consider
the famous measures of the efficiency of an equilibrium, namely price of anarchy [26]
(PoA) and price of stability [27] (PoS). Using Theorem 26, we know for each given set of
parameters whether a profile is an NE or not. Using Proposition 17, we know for each
given set of parameters what the maximum social welfare for a given set of parameters
is. Calculating the social welfare at each of the Nash equilibria and finding its ratio to the
optimum social welfare enables us to find the price of anarchy and stability, to measure
efficiency. We first prove that all the NE are optimal for similar βi s, and then we prove
that in any case, the best and the worst equilibria have the same social welfare, meaning
that PoA = PoS.

First, we show the optimality of the NE for similar βi s.

Proposition 18. If all 1−βi s have the same sign, then a profile maximizes the social wel-
fare if and only if it is an NE. In particular, PoA = 1.

Proof. Since all 1−βi s have the same sign, then either all the agents need to maximize or
they all need to minimize the common limit in order to maximize their utility. This im-
plies that being socially optimal is equivalent to being individually optimal for everyone.
This means that every social welfare maximizing profile is an NE. Additionally, the proof
of Proposition 17 demonstrates that if a profile is not optimal for the social welfare, then
there exists an agent, whose utility can be unilaterally increased. Therefore, an NE has to
be socially optimal.

On the way to prove that PoA = PoS, we are going to prove that exactly one NE exists,
up to agents with borderline kindness. First, we denote the agents with nonnegative

1−βi by P and the rest by M
∆= N \ P . We begin by making the following observation.

Observation 9. In an NE with the common limit L, all the agents i ∈ P with ki less than
L play ri = 1− r ′

i , while all i ∈ P with ki larger than L play ri = 0. Anti-symmetrically, all
the agents i ∈ M with kindness less than L play ri = 0, and all i in M with kindness larger
than L play ri = 1−r ′

i . The agents with kindness equal to L can play arbitrarily, preserving
the equilibrium.
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Proof. Directly from Theorem 26.

Now, we prove the uniqueness:

Proposition 19. Given a RCG, it has a single equilibrium, up to arbitrary strategies of the
agents with kindness values equal to the common limit L of the equilibrium.

Proof. The observation we have just proven implies it is enough to prove the uniqueness
of the common limit L. Assume to the contrary that two equilibria with L′ > L exist. If
now all the agents of M adopt their strategy in the NE with L, then their utility will not
increase, and it definitely will not increase if then all the agents in N best respond by
adopting their strategy in the NE with L, which contradicts the decrease in the common
limit.

This essential uniqueness on NE immediately yields

Corollary 4. PoA = PoS.

Let us demonstrate our results on Example 9.

Example 9 (Continued). Assume there are n = 3 neighboring countries where everyone
acts on everyone else, and that r ′

1 = r ′
2 = 0.3,r ′

3 = 0.1, β1 = 0,β2 = 0.2,β3 = 0.1 (acting is
cheap), k1 = 0,k2 = 0.5,k3 = 1. In addition, all the countries act synchronously and employ
floating reciprocation. By Proposition 19 and Proposition 18, the only NE is optimal. Let
us find the NE directly, to exemplify how things work. By Proposition 17, to maximize the
social welfare, we should make the countries choose (0.7,0.7,0). Consider an NE (r1,r2,r3)
in this 3-player game. Since Formula (5.4) is positive for i = 1, we conclude that r1 =
1− r ′

1 = 0.7. Since Formula (5.4) is negative for i = 3, and we have r3 = 0. Now, we see that
Formula (5.4) is positive, and we conclude that r2 = 0.7. Thus, (0.7,0.7,0) is the only NE,
and we obtain again that PoA = PoS = 1.

10.2. CONVERGING TO NE
In order to show stability of an equilibrium, we prove that the best response dynamic
can converge to the NE from any starting profile, similarly to Proposition 15.

Proposition 20. For any strategy profile there exists a succession of profiles starting from
it and terminating at the (essentially) single NE, such that each profile in this succession
is an optimum reaction of each agent to the others’ strategies in the previous profile.

The idea of the proof is that the limits L monotonically approach that of the NE. It
has to stop, and once it does, we are at an equilibrium.

Proof. Analogically to Observation 9, in any best response to a profile with the common
limit L, all the agents i ∈ P with ki less than L play ri = 1−r ′

i , while all i ∈ P with ki larger
than L play ri = 0. Anti-symmetrically, all the agents i ∈ M with kindness less than L play
ri = 0, and all i in M with kindness larger than L play ri = 1−r ′

i . The agents with kindness
equal to L can play arbitrarily, preserving the equilibrium.

We now look at a process of best responses. Once the common limit does not change,
an NE has been achieved. We now show that the common limit changes monotonically.
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Given any starting profile, let the agents best respond, obtaining a common limit L1. In
the second best response, assume, w.l.o.g. that the new common limit L2 is larger than
L1. Assume to the contrary that the common limit after the third best response, L3, is
smaller than L2. The agents in M will prefer the profile where the agents in P move to
their strategies after the second best response, and even more if then the agents in M
themselves move to play what they did after the second best response. As this contra-
dicts L2 > L3, we conclude that the common limits may change only monotonically. The
structure of best responses we described in the beginning of the proof implies that the
changes are discrete. Since the common limit is bounded by the extremal kindness val-
ues, the process stops in finite time. As we note before, this is an NE.

Remark 21 (Other strategy spaces). If, instead of choosing ri s, the agents could choose
their r ′

i s in some [a,1−ri ], for a positive a, all the analysis of the game and the efficiency of
its equilibria would be completely analogous, because of the symmetry of Equation (4.11)
from page 98.

To summarize, we have analyzed stable states (NE) of choosing habits and their im-
pact on the social welfare (PoA and PoS). It is now reasonable to look back at the model
we have been analyzing.

11. DISCUSSION OF THE MODEL
This section discusses reasonable changes to several definitions of our modeling. It is an
explanation of what we do and what else can be done. We first look into the definition
of utility in the theoretically infinite interaction, and then consider the habits that are
being set.

11.1. UTILITY AGGREGATION
In all the games we consider, we model utility as the limit of the utility at time t . This is
a far-sighted model, though the exponential convergence makes the required sight not
so “far”. Our game is not repeated, since the choice is made before the repeated interac-
tion commences; still, utility is obtained at each interaction in a repeated manner. It is
therefore interesting to compare the utility modeling in our model with the traditional
modeling of preferences comparison in repeated games, like that in Osborne and Rubin-
stein [18, Chapter 8.3]. They consider the following three options:

Discounting with a factor δ ∈ (0,1), where ui
∆= (1 − δ)

∑
t=0δ

t ui ,t . The factor 1 − δ
promises that if ui ,t ≡ 1, then ui = 1.

Limit of (arithmetic) means, where utility sequence ui ,t is said to be strictly preferred

to vi ,t , if liminfT→∞
∑T−1

t=0 (ui ,t−vi ,t )
T is positive.

Overtaking, where they do not define utilities, and ui ,t is preferred to vi ,t , if
liminf

∑T
t=0

(
ui ,t − vi ,t

)
is positive.

As Osborne and Rubinstein mention, if one sequence of utilities ui ,t is strictly pre-
ferred to another sequence vi ,t in the limit of means, then there exists large enough
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δ ∈ (0,1), such that ui ,t is also strictly larger in the sense of discounting with this δ. We
prove now that our definition is not really different from these other ones.

Proposition 21. Given a pair of converging sequences
{
ui ,t

}∞
t=0 and

{
vi ,t

}∞
t=0, regardless

whether they can be obtained in some reciprocation process, the following relations hold
between our model and the models above:

1. Preference in our model is equivalent to preference is the sense of limit of mean and
in the sense of overtaking.

2. A strict preference in our model implies that there exists large enough δ ∈ (0,1), such
that the same preference in discounting holds. We can say nothing if equality holds
in our model. In reverse, if a preference in discounting holds for every δ ∈ (a,1), for
some a ∈ (0,1), then the same preference or equality holds in our model.

3. For some values of δ, our model can neither imply discounting, nor be implied by it.

Proof. Assume that sequence ui ,t is strictly preferred to another sequence vi ,t in our
model, that is limt→∞ ui ,t > limt→∞ vi ,t . Therefore, limt→∞ ui ,t − vi ,t > 0. Convergence
of a sequence implies the convergence of the sequence of its arithmetic means to the

same limit (see, for instance, Example 1 on pp. 95 of [28]), so limT→∞
∑T−1

t=0 (ui ,t−vi ,t )
T exists

and is positive, which means the preference in the limit of means. By the remark above,
this implies preference in discounting, for large enough δ ∈ (0,1). To prove preference in
overtaking as well, we write

lim
T→∞

T−1∑
t=0

(
ui ,t − vi ,t

)= lim
T→∞

∑T−1
t=0

(
ui ,t − vi ,t

)
T

T ,

and since limT→∞
∑T−1

t=0 (ui ,t−vi ,t )
T > 0, the result is infinitely large, proving preference in

overtaking.
By now, we have shown what our model implies in part 1 and part 2, if the original

preference is strict. If the limits are equal then the analogous proof goes through, be-
sides the case of discounting. If the limits are equal, the discounting utility can be either
way. For example, the limits of {1,1,1, . . . ,1, . . .} and {1.5,0,1,1, . . . ,1, . . .} are both 1. The
discounted utilities differ only in their first part, which is (omitting q −δ) 1+δ and 1.5,
respectively. The comparison here depends on the comparison between δ and 1.5.

To prove the other direction, notice that since we assume convergence, every model
provides some preference, strict or not. Therefore, the second direction ensues from the
already shown direction of the implications together with the symmetry of the larger and
smaller options, besides, perhaps, the case of being given a preference in the discounted
model. In that case, the proved implication of strict preferences implies that if sequence{
ui ,t

}∞
t=0 is strictly preferred to sequence

{
vi ,t

}∞
t=0 in the discounted sense for any large

enough δ ∈ (0,1), then limt→∞ ui ,t ≥ limt→∞ vi ,t , since other wise,
{
ui ,t

}∞
t=0 would be

strictly worse than
{

vi ,t
}∞

t=0, by the already proven. However, the example above demon-
strates that the equality can indeed take place. Finally, if the discounting model gives us
equality, then so does our model, because otherwise, we have proven that the discounted
model would not give equality. This completes the other direction of parts 1 and 2.
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In order to show part 3, consider the following example. For a positive b, let one
sequence be

{
ui ,t

}∞
t=0 = (M ,1,1, . . . ,1, . . .) and the other one

{
vi ,t

}∞
t=0 = (1+ b,1+ b,1+

b, . . . ,1+b, . . .). The discounted utility of
{
ui ,t

}∞
t=0 is M + δ

1−δ , and the utility of
{

vi ,t
}∞

t=0 is
1+b
1−δ . For any δ, if M is large enough, the first sum will be larger, despite that its limit is 1,
which is smaller than the limit of the second sequence, 1+b > 1.

Parts 1 and 2 of Proposition 21 imply that when interaction converges, our utility
aggregation indicates the other possible aggregations well, especially if the discounting
is slow enough. We thus conclude that our definition is a good fit to the existing practices.

11.2. STRATEGY SPACE
When modeling games, we define, alongside with utilities, also the possible strategies,
meaning the domain of parameters. We now discuss other possible models.

In a reciprocation attitude and coefficient game (RACG), we allow choosing ri in
(0,1). The whole segment [0,1] is, as we explain, often unrealistic; in addition, the re-
ciprocation process may not converge at the edges. However, we can choose a closed
segment [a,b], for any 0 < a < b < 1. This would limit the domain, but the compact-
ness of the domain may facilitate existence of NE. This is an possible direction for future
work. On the other hand, allowing the extreme points ri = 0 or 1 with a proper handling
of the cases of no convergence is also an alternative.

For two agents we are able to analyze the game of choosing the reciprocation coeffi-
cient for the not floating case too. However, analyzing all the possibilities would be too
lengthy and would not convey new ideas.

Even more directions for continuing the research refer to the reciprocation coeffi-
cient games (RCG), where agent i chooses ri ∈ [0,1− r ′

i ]. As we mention at the end of
that section, we can instead allow choosing r ′

i in some [a,1− ri ], for a positive a, and
obtain the symmetrical results. However, choosing r ′

i in the half-open segment (0,1−ri ]
may be another story, where the lack of compactness jeopardizes the existence of NE.
Another possible game would be allowing to choose ri and ri simultaneously.

We can never cover every possible model, but we believe our model sheds light on
the general phenomena.

12. CONCLUSIONS AND FUTURE WORK
We first summarize the chapter and present its main conclusions, continuing to several
interesting directions for future research.

We aim to predict and advise on strategic behavior in reciprocation, in both human-
to-human and human-to-machine interactions. A reciprocal action is modeled as a bal-
ance between the inner self and a reaction to others’ actions. We define an agent’s util-
ity asymptotically and prove the equivalence of this definition to slowly discounted and
other classical utilities. We then consider choosing the reciprocation attitude or coeffi-
cient to maximize her own utility. We finally model the strategic behavior of the recip-
rocating agents in several games, characterize the NE and their efficiency. We also show
that NE may always be achieved by a natural process, the best response dynamics [18,
Section 2.2], besides in a RACG. This gives hope for achieving a situation that is stable to
unilateral deviations without any regulation.
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Our main advice is that both for maximizing own utility and for maximizing the social
welfare, if contributing is cheaper than receiving, then, both in choosing the reciproca-
tion attitude and coefficient, the kinder agent should be most stable (be fixed or have
the reciprocation coefficient ri = 0), and the opposite should be done if contributing
is costlier than receiving. When contributing is much cheaper than receiving (βi s are
smaller than all the other parameters), then, for the reciprocation attitude game and for
the reciprocation coefficient game, the price of anarchy is 1, so rationally reciprocating
agents will play socially optimally. In such equilibria, the kinder agents are stable and
the less kind agents follow the kinder ones. For the reciprocation attitude and coeffi-
cient game, the price of stability is 1, but the price of anarchy is positive, meaning that
rationally reciprocating agents may play socially optimally, but may also play subopti-
mally, so that coordination would be useful.

Comparing Theorem 23 for choosing only the reciprocation attitudes to Theorem 25
for choosing the coefficients as well, we observe that more freedom of choice allows for
a socially suboptimal equilibrium, achieving as little as about half of the optimal so-
cial welfare, if the kindness values are very different. This is an important pitfall, which
emphasizes the importance of cooperation when more freedom and power lies at our
disposal. Like Churchill said7: “Where there is great power there is great responsibility”.

The analysis also relates to some real-life phenomena. Our results regarding maxi-
mizing utility and social welfare show why in life, if acting is not too hard, then follow-
ing the example of the kindest makes the individuals and the society thrive, which has
already been observed [22]. Since being polite usually consists of words and simple ges-
tures, and is therefore quite easy for many people, this explains why people choose this
strategy with experience, becoming more polite, as is indeed observed [23]. In diplo-
macy, such as in Example 9, these results predict that diplomats will be polite to each
other, since this does not take much effort. Being polite benefits the individual and the
society by making people feel better easily.

We show that if the agents in some subset do not reciprocate at all, while the rest
have perfect reciprocation to the neighborhood, then the actions will converge to the
average of the kindness values of the non-reciprocal agents. This is a formal way to say
that steadfast individuals can set the eventual group behavior at will, if the rest are not
stable but follow others’ behavior.

The current results inspire considering the games of choosing both r,r ′ or choosing
the kindness. Changing kindness is less reasonable, since this seems a very basic quality
of an agent, harder to change than how she reacts to others.

Many interesting directions for further research exist:

1. Modeling changes in the reciprocity coefficients, attitudes, or βs during the inter-
action and not only before it starts.

2. Modeling probabilistic reaction.

3. Looking how the manager can really influence the behavior of the agents.

4. Real agents often join and leave the interaction dynamically. For example, people

7This quote dates back to the French National Convention, 08/05/1793.
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get born and immigrate to a country, some die and emigrate. Therefore, dynamic
interaction is very interesting.

5. Another important question is how influential various agents are on the other
agents.

6. We used others’ research, based on real data, as a basis for the model. Therefore,
verifying the model on relevant data, like the arms race actions, would be interest-
ing.

Analyzing the strategic reciprocation analytically provides behavioral advice, pre-
dicts and explains reciprocation phenomena. It lays the foundation for more detailed
modeling and analysis of reciprocation, required to even better anticipate and improve
the individual utilities and the social welfare. Analyzing a single reciprocal interaction
also serves as a building block for analyzing effort sharing between several such interac-
tions, which we undertake in the following chapter.
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6
RECIPROCATION EFFORT GAMES

Commerce, trade and exchange make other people more valuable alive than dead, and
mean that people try to anticipate what the other guy needs and wants. It engages the
mechanisms of reciprocal altruism, as the evolutionary biologists call it, as opposed to

raw dominance.

Steven Pinker

Consider people dividing their time and effort between friends, interest clubs, and read-
ing seminars. Consider computers dividing efforts between participating in several net-
work calculations. These are all reciprocal interactions, and these processes eventually
determine the utilities of the agents from these interactions. We prove that each of these
processes converge, and using the converged values, we determine existence and efficiency
of Nash equilibria of the game of allocating effort to such projects. We show that when
no minimum effort is required to receive reciprocation, an equilibrium always exists, and
if acting is either easy to everyone, or hard to everyone, then every equilibrium is socially
optimal. If a minimal effort is needed to participate, we prove that not contributing at all
is an equilibrium, and for two agents, also a socially optimal equilibrium can be found.
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1. INTRODUCTION
In the last two chapters, we modeled and analyzed a reciprocation process and strate-
gic approach to this process. Now, we finally combine this to analyzing dividing effort
between several such processes.

In many real-world situations people invest effort in several interactions, where they
have an effort budget they may use, such as in discretionary daily activities [1], daily
communication between school pupils, sharing files over networks, or in business co-
operation. In such an interaction, people tend to reciprocate, i.e., react on the past ac-
tions of others (sometimes, only if a certain minimum effort is invested) [2–4]. Interac-
tion is an important sort of common projects, different from the classical value-creating
projects. The classical projects obtain a value that is typically divided based on the in-
dividual investments, such as contributions to online communities [5], Wikipedia [6],
political campaigns [7], paper co-authorship [8]. Interaction projects, where mutual ac-
tions are the main aspect, are also frequent in life, e.g., at daily communication between
school pupils, when sharing files over networks, or in business cooperation.

In order to recommend how to divide one’s limited efforts efficiently, we aim to pre-
dict stable strategies for these settings and estimate their efficiency. We study settings
with and without a threshold for effort required to participate.

Dividing a budget of effort is studied in so-called shared effort games [10]. In these
games players contribute to various projects, and given their contributions, each project
attains a value, which is subsequently divided between the contributors. In order to sup-
port decisions regarding individually and publicly good stable strategy profiles in these
games, the social welfare (total utility) of strategy profiles is important, and in partic-
ular of Nash equilibria (NE). For this, the price of anarchy (PoA) [11, 12] and stability
(PoS) [13, 14] are the most famous efficiency measures of Nash equilibria. The social
welfare of a strategy profile is the total utility in this profile. The price of anarchy is the
ratio of the least social welfare in an equilibrium to the optimal social welfare, and the
price of stability is the ratio of the social welfare in a best NE to the optimal social welfare.

Bachrach, Syrgkanis and Vojnović [10] bind the price of anarchy in shared effort
games, but only when a player obtains at least a constant share of her marginal con-
tribution to the project’s value, which does not hold for a positive threshold. Chapter 2
analyzes the Nash equilibria, and price of anarchy and stability also in the case with a
threshold. When the threshold is equal to the highest contribution, such shared effort
games are equivalent to all-pay auctions. In all-pay auctions, only one contributor ben-
efits from the project. Its equilibria are analyzed by Baye, Kovenock and de Vries [15] and
many others. A famous example of an all-pay auction is the colonel Blotto game with two
players [16], where the players spread their forces between several battlefields, winning a
battle if having allocating it more forces than the opponent. The relative number of won
battles determines the player’s utility. Anshelevich and Hoefer [17] study an undirected
graph, where nodes are the players that divide effort between the incident edges, which
represent projects that reward the incident players equally. They especially concentrate
on minimum-effort projects. The work proves the existence of an NE and shows that the
price of anarchy is at most 2. To conclude, the models of [10] and Section 2 of Chap-
ter 2 are the only general ones, the model of Section 2 being the only relevant analysis
with a threshold. Therefore, we base the model of investing effort in reciprocal interac-
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tions on the model of Section 2 of Chapter 2. In most existing work on contributing to
projects, the value of a project is directly defined based on the contributions, such as
in contributions to online communities [5], Wikipedia [6], political campaigns [7], and
paper co-authorship [8]. In this paper we model the interaction within the projects and
the result thereof explicitly.

Existing models of reciprocation (sometimes repeated) often consider why recipro-
cation has emerged. Other models assume reciprocation and study how reciprocation
influences interactions. The following works consider the emergence of reciprocation.
Some works, such as the famous works by Axelrod [18, 19], study and motivate direct
evolution of reciprocal behavior. Others consider a more elaborate evolution, like Bic-
chieri’s work on norm emergence [20, Chapter 6] or Van Segbroeck et al. [21], who study
the evolution of fairness, which, in turn, engenders reciprocation. The classical work of
Trivers [22] takes a detailed biological approach, describing how altruism-related emo-
tions like guilt and suspicion have evolved. There are also other approaches to the na-
ture of reciprocation, such as the strong reciprocation, where intricate social or emo-
tional drives are considered [23]. Some other works take reciprocal behavior to be given,
and analyze the development of certain interactions, modeling them as appropriate
games [2, 24–26]. However, there was no model of reciprocal actions of various extent,
before the model from Chapter 4.

The approach In Chapter 4, partially published in [27], we assume agents reciprocate
and formally model and analyze lengthy repeated reciprocation. That chapter analyzes
convergence in this model. This model is mainly inspired by similar models used to an-
alyze arms race [28, 29] and spouses’ interaction [30]. The model defines an action on
an agent as a convex combination1 between one’s own last action, the considered other
agent’s and all the other agents’ last actions. This is called the floating reciprocation at-
titude. The idea of humans behaving according to a convex combination appears also
in other contexts, such as modeling altruism in several papers, like [31–34], and Chap-
ter iii.2 of [35]. In Chapter 5, the utility of a reciprocating agent is defined as what an
agent gets minus the effort her actions incur. That chapter analyzes strategical setting of
reciprocation habits to maximize utility.

Summarizing, existing work on sharing effort concentrates on the case of equal shar-
ing of linear project’s value between all agents who contribute above the threshold, and
this does not include the case when each project constitutes a network of reciprocal
agents. Therefore, the area of dividing effort between reciprocal interactions, such as
meeting friends or mutual advising, is yet to be modeled and analyzed. We now aim to
model lengthy interactions with actions of various extent, as in [27].

We want to predict dividing efforts between reciprocal interactions to be able to rec-
ommend an efficient way to do it. We consider contributing to several interactions, and
analyze the Nash equilibria and their efficiency. We also model first dividing effort be-
tween several interactions and then deciding how to reciprocate. In this case, we analyze
the subgame perfect equilibria. We consider only pure equilibria throughout the chap-
ter, even when we do not mention this explicitly. Since the strategies include all the ways
to divide budget among the interactions, the set of pure strategies is already uncountably
infinite.

1A combination is convex if it has nonnegative weights that sum up to 1.
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We define a model of several reciprocal interactions in Section 2, taking into account
the fact that the maximum capacity of an agent to invest in the various projects may
be not enough to satisfy the definition of every reciprocal interaction. This forces the
agent to curb her investments in some interactions, complicating the process. We prove
convergence of such an interaction with curbing in Section 3.

Next, to have an exact formula for the limits, we assume for the rest of the chapter
that the maximum capacity for an agent to invest under the requirement of the recip-
rocation model is big enough, so no curbing is required. This assumption allows us-
ing the formula for the common limit (4.11) on page 98 from Chapter 4 and analyzing
the situation. We model the minimum contribution threshold in three different ways,
defining three games: one without a threshold, where an agent’s utility from an inter-
action is simply her utility from the respective interaction, and two another ones with
a threshold. In the second game, only those who contribute above the threshold obtain
the utility from the interaction, but all the agents participate in all the interactions. In the
third game, those who are below the threshold in an interaction, are not even allowed to
participate in the respective interaction. The model to use depends on the concrete sit-
uation at hand. We characterize the equilibria of the first game, and find their efficiency
in Section 4. Then, we analyze the second and third games in Section 5 and Section 6,
respectively.

We finally define an extensive game that models dividing the capacity between
the interaction and subsequently deciding how to behave in each ensuing interaction
(choosing habits as in Chapter 5). We provide sufficient conditions for the existence of a
subgame perfect equilibrium in this game. Section 8 concludes and outlines new inter-
esting research directions.

2. MODEL
This section models dividing effort between reciprocal interactions. Inspired by the
shared effort games models from [10] and Chapter 2, and adopting the reciprocation
model from Chapter 4, we define a reciprocation effort game. First, we define a recipro-
cal process and the agents’ utilities in this process. Next, we define a reciprocation effort
game, comprising several such processes. The game includes dividing one’s budget be-
tween these processes and curbing the reciprocal actions, if an agent’s effort does not
suffice the requirements of the reciprocation. Afterwards, we define two thresholded
variations on this game, to model the minimal required investment. We conclude by
defining a two-level extended game, which models dividing effort between interactions
and then choosing the interaction habits.

Remark 22 (Notation). As we mentioned in the beginning of the dissertation, there ex-
ist some notational differences between the comprising publications. Since letters x are
used in this chapter to denote contribution, analogically to Chapter 2 and Chapter 3, we
use another notation for actions, namely act. This is different from the notation of x for
actions, employed Chapter 4 and Chapter 5.

We begin by defining the reciprocation model from Chapter 4. Given agents N =
{1, . . . ,n}, at any time t ∈ T

∆= {0,1,2, . . .}, every agent acts on any other agent. Denote the
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weight of the action by agent i ∈ N on another agent j ∈ N at moment t by acti , j (t ) : T →
R. Since only the weight of an action is relevant, we usually write “action” while referring
to its weight. For example, when interacting with colleagues, the weights of the actions
of helping, nothing, or insulting are in the decreasing order.

In order to define how agents reciprocate, we need the following notation. We denote
the total received action from all the other agents at time t by goti (t ) : T → R; formally,

goti (t )
∆= ∑

j∈N act j ,i (t ). The kindness of agent i is denoted by ki ∈ R. Kindness models
constant inherent inclination to help others; in particular, it determines the first action
of an agent, before others have acted. We model agent i ’s inclination to mimic another
agent’s action and the actions of all the other participants in the project by reciprocation
coefficients ri ∈ [0,1] and r ′

i ∈ [0,1] respectively, both staying constant for all interactions.
ri is the fraction of acti , j (t ) that is determined by the previous action of j upon i , and r ′

i
is the fraction that is determined by 1

n−1 th of the total contribution to i from all the other
agents at the previous time. Consequently, ri + r ′

i ≤ 1.
We now define the actions. First, there is nothing to react to, so the kindness deter-

mines the action: acti , j (0)
∆= ki .

Definition 22. Agent i ’s action is a weighted average of her own last action (inertia), of
that of the other agent j (direct reaction) and of the total action of the other agents divided
over all the others (social reaction):

act
i , j

(t )
∆= (1− ri − r ′

i ) ·act
i , j

(t −1)+ ri ·act
j ,i

(t −1)+ r ′
i ·

goti (t −1)

n −1
.

An agent’s utility from a given reciprocation project at a given moment is the action
one receives minus effort to act, following Chapter 5. This is classical (see, for example,
the quasilinear preferences of auction theory [36, Chapter 9.3]). Formally, define the
utility of agent i at time t , ui ,t : Rdeg(i ) ×Rdeg(i ) →R, as

ui ,t

(
act
i , j

(t ),act
j ,i

(t )

)
∆= ∑

j∈N
act
j ,i

(t )−βi
∑
j∈N

act
i , j

(t )

where the constant βi ∈R is the relative importance of the performed actions for i ’s util-
ity. The personal price of acting is higher, equal or lower than of receiving an action, if β
is bigger, equal or smaller than 1, respectively. The minus in front of i ’s actions subtracts
the effort of acting from one’s utility (unless βi is negative, where that is added). Since
the presence of negative actions would mess up this logic, by contributing to the utility,
we assume that actions are always non-negative, which occurs if and only if all kindness
values are non-negative. We can have negative influence, but we assume having added
large enough a constant to all the actions, to avoid negative actions.

Every such interaction converges, as shown in Chapter 4. To model the utility in the
long run, we define the asymptotic utility, or just the utility, of agent i , as the limit of her
utilities as the time approaches infinity. In formulas, ui :

(
Rdeg(i )

)∞× (
Rdeg(i )

)∞ → R, as

ui

(⋃∞
t ′=0

{
acti , j (t ),act j ,i (t )

}) ∆= limt→∞ ui ,t
(
acti , j (t ),act j ,i (t )

)
. This is the utility we con-

sider in the chapter. When the parameters in the parentheses are clear from the context,
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we may omit them. This definition of the utility of a process is equivalent to the dis-
counted sum of utilities when the discounting is slow enough, as we prove in Section 11.1
of Chapter 5.

We are now ready to define a reciprocation effort game. Consider n players N =
{1, . . . ,n} and m interactions Ω = {1,2, . . . ,m}. Intuitively, the strategies are the contri-
butions, and they determine the kindness values. Definition 22 describes the reciprocal
processes. If the sum of an agent’s actions exceeds the budgets at some time, then the
actions are curbed as defined below. Interaction determines the utilities.

The reciprocation coefficients of the players, ri ,r ′
i , and the βi are given. The contri-

bution of player i ∈ N to interaction project j ∈Ω at time t ∈ T is defined as the sum of

her actions in that interaction at that time, i.e. xi
j (t )

∆= ∑
j∈N \{i } acti , j (t ). Player i ’s kind-

ness ki at the reciprocal interaction called project ω is determined by her contribution
to that interaction at time zero, called just “the contribution”, divided by the number of
other agents who participate in the interaction at ω, to act on everyone else. Therefore,
the sum of all the actions of agent i at time t = 0 is equal to her contributions to all the re-
ciprocation projects, which are bounded by her budget bi . This completes the definition
of reciprocal interactionsΩ.

An agent invests something in the beginning of a reciprocation, and from that time
on it aims to proceed according to Definition 22. We naturally require that not only the
sum of the contributions at t = 0, but also the sum of the contributions at any time t > 0
is within the acting agent’s budget. Each player i has a normal budget bi > 0 (or just
a budget) to contribute from at t = 0 and an extended budget Bi ≥ bi that can be used
when the actions are required by the reciprocation process at t > 0, perhaps resulting in
a higher summarized contribution than the voluntarily chosen at t = 0. We differentiate
between these two budgets, since the need to reciprocate urges people to act [23]. Given
this extended budget limitation on the actions at any time t > 0, if the total contribution
of an agent required for the actions according to the reciprocation model exceeds her
budget, then they will be curbed as follows. For every project j , agent i has curbing co-
efficient c i

j , expressing how much she values this project. If, at time t > 0, the interaction

model predicts contribution y i
j to project j , then the actual contribution xi

j (t ) will be the

proportional normalization of y i
j , meaning that

xi
j (t )

∆= Bi ·
c i

j y i
j∑

l=1,...,n c i
l y i

l

.

Note that
∑

j∈Ω xi
j (t ) = Bi , as required in a normalization to Bi . The normalization co-

efficients are proportional to the curbing coefficients c i
1, . . . ,c i

m . When these coefficients
are all equal, we get the usual normalization, which is

xi
j (t )

∆= Bi ·
y i

j∑
l=1,...,n y i

l

.

The so curbed contribution to a project is divided between the actions on the other
agents proportionally to the actions predicted by the reciprocation model. The idea
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of a limited budget and of curbing actions to fit the budget comes from the time-
displacement hypothesis [1, 37], which discusses taking time from one activity for
the other. These works also mention that different activities get curbed in different
rates, generally speaking: the discretionary activities like hobbies of meeting friends get
curbed much more than the other ones, like work.

Formally, the strategy space of player i (i.e., the set of her possible actions) consists
of her contributions (at time zero), determining her kindness values, and of her curbing

coefficients:
{

xi = (xi
ω)ω∈Ω ∈R|Ω|

+ |∑ω∈Ω xi
ω ≤ bi

}
∪

{
c i

1, . . . ,c i
m |c i

j ≥ 0
}

. The contributions

at positive times will not be discussed, so saying “contribution” we always mean the con-
tribution at t = 0. The utility agent i obtains from participating in project ω is defined
as her asymptotic utility from the interaction with the other agents in that project. The
utility ui (x) of a player i ∈ N is defined to be the sum of the utilities it obtains from the
various projects, completing the definition of a reciprocation effort game.

The convergence of the normal reciprocation is proven in Section 5 of Chapter 4,
and we prove the convergence of the curbed reciprocation in Section 3. Afterwards,
to be able to analyze the NE and efficiency of the problem, we simplify it by assum-
ing that all the extended budgets Bi are big enough to prevent curbing at all. Therefore,
the curbing coefficients become irrelevant, and we assume that the strategies are only{

xi = (xi
ω)ω∈Ω ∈R|Ω|

+ |∑ω∈Ω xi
ω ≤ bi

}
. Please note that an agent does not have to use up

all her budget, so that the inequality
∑
ω∈Ω xi

ω ≤ bi may be strict. The strategies of all
the players except i are denoted x−i . We denote the vector of all the contributions by
x = (xi

ω)i∈N
ω∈Ω.

We now define two variations on a shared effort game with reciprocation. First, fol-
lowing Section 2 of Chapter 2, we define a θ-sharing mechanism. This is relevant to many
applications, like a minimum invested effort to be considered a coauthor, or a minimum
effort to master a technology before working with it. Define, for every θ ∈ [0,1], the play-
ers who get a share from project ω

Nθ
ω
∆=

{
i ∈ N |xi

ω ≥ θ ·max
j∈N

x j
ω

}
,

which are those who bid at least θ fraction of the maximum contribution to ω.
We now define a thresholded reciprocation effort game, as a reciprocation effort game,

where only the agents in Nθ
ω obtain the above utility from project ω; other agents ob-

tain nothing from that project. All agents interact, but only those who invest above the
threshold obtain the revenue. The second variation we define is an exclusive thresholded
reciprocation effort game, as a reciprocation effort game, where exclusively the agents in
Nθ
ω interact. Others do not obtain utility and do not even interact. If an agent ends up

participating alone at a project, he obtains zero utility from that project, since no inter-
action occurs.

The thresholded games model the fact that an agent needs to invest at least some
minimum effort to have a fruitful interaction. Thresholded reciprocation effort games
model situations where every agent interacts with everyone else, but she may keep the
obtained utility only if she contributes above the threshold. This may happen in file
sharing, or in any environment where agent accumulate utility, but may sometimes not
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Figure 6.1: People divide their own effort between various interactions.

be able to use it up, such as in accumulating reputation in some area. Exclusive thresh-
olded reciprocation effort games model situations when merely joining an interaction
requires contributing enough, like the initial effort it takes to learn the required technol-
ogy to contribute to Wikipedia.

We now give a concrete example of the model.

Example 14. Consider people choosing between the following activities for free time: Go-
ing to interest club, meeting friends, or going to a scientific reading seminar. This is illus-
trated in Figure 6.1. Each of these projects can be modeled as interaction, in the following
way. Going to an interest club involves communication, which is interaction. Meeting
friends means obviously interacting. At a reading seminar, people help each other un-
derstand science, though they may also influence each other in other ways, such as en-
couraging or insulting. A person divides her limited effort budget between these activities,
in attempt to get as much as possible. Some people find helping others hard, while oth-
ers do not, which is modeled by large or little β. If every contribution counts, without
thresholds, we model the situation as a reciprocation effort game. If a minimal effort is
required, and even mere participation requires overcoming the threshold, model this as
an exclusive thresholded reciprocation effort game. Analyzing the games for existence of
equilibria allows predicting whether a stable state exists, and looking into the efficiency of
the equilibria provides some insight into how efficient these stable states are and whether
the agents would benefit from regulation.

Finally, we model first dividing the budget and then deciding on how to interact
in each given interaction as an extended reciprocation effort game. This is an exten-
sive game with simultaneous moves, where at the root all the agents choose how to
divide their budgets, and at the obtained subgames they choose the reciprocation co-
efficients ri , to determine how to reciprocate. This models that once an agent sees what
are the kindness values of the other agents, she chooses, how to reciprocate. In the ex-
ample above, once a person has allotted some amount of effort to an activity and she
sees how the others act, she decides on how to react to their actions from that time on.
We do not allow a threshold in the extensive games, since this may leave us with only two
agents interacting, and then, there is no convergence if ri = r2 = 1.

We analyze convergence in the next section, which is basic for all the variations of
the defined games.
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3. GENERAL CONVERGENCE
In this section, we consider dividing effort between reciprocal projects, with or with-
out threshold. In order to study asymptotic behavior, we ask whether the actions in all
interactions converge, as time approaches infinity. The convergence of the normal re-
ciprocation is proven in Chapter 4, and we now prove the convergence of the curbed
reciprocation. Consider the undirected interaction graph G = (N ,E) of an interaction
project, such that agent i can act on j and vice versa if and only if (i , j ) ∈ E . In our
model, we assume that this graph is a clique, but this is not necessary for the following
theorem.

Theorem 27. Consider dividing effort between reciprocal interactions, where every inter-
action has some connected interaction graph, and for all agents i , r ′

i > 0. At every interac-
tion, if there exists a cycle of an odd length in the interaction graph, or or at least one agent
i has ri + r ′

i < 1, then, for all pairs of agents i 6= j , the limit Li , j exists.
This result holds for any curbing, not only the one defined in Section 2.

In our model, we assume a completely connected graph, so if at least 3 agents inter-
act, we have an odd cycle, namely a triangle. Therefore, then we only need to assume
that for all agents i , r ′

i > 0.
The proof expresses the dynamics as matrix multiplication. Without the curbing,

the convergence of the powers of matrices is proven using the Perron-Frobenius theo-
rem. Keeping convergence when curbing can occur requires the following definition and
lemma.

Definition 23. We remind that a square non-negative matrix A is called primitive, if there
exists a positive l , such that Al > 0 (see [38, Definition 1.1]).

The following lemma, used to prove the theorem, has a value of its own as well. Given
a convergent sequence of primitive matrices, the lemma shows that arbitrary squeezing
the matrices keeps the convergence.

Lemma 10. Given a vector p(0) ∈ Rd , a primitive matrix A ∈ Rd 2
, such that limt→∞ At

exists, and a sequence of diagonal matrices {D(t )}∞t=0, D(t ) = diag(λ1(t ), . . . ,λd (t )), where

each λi (t ) ∈ (0,1], define the sequence
{

p(t )
}∞

t=0 by p(t )
∆= D(t )AD(t −1)A . . .D(1)Ap(0).

Then, limt→∞ p(t ) exists.

A particular case can be strengthened and be proven easily.

Remark 23. If all the D(t ) matrices are scalar, meaning that for all t , λ1(t ) = λ2(t ) =
. . . = λn(t ), then the lemma holds even without requiring that A is primitive. This simply
follows by the fact that scalar matrices commute with any matrices, and therefore,

p(t ) =
(

t∏
t ′=1

D(t ′)

)
At p(0).

The scalar matrix
(∏t

t ′=1 D(t ′)
)

has on its diagonal the product
∏t

t ′=1λi (t ). This product
forms a nondecreasing and bounded from below sequence, and therefore, it converges.
Since we assume that

{
At

}
t∈N converges, we conclude that their matrix product, being a

sum of products of the elements, converges as well.
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We now prove the original lemma.

Proof. Assume to the contrary, that
{

p(t )
}

diverges. Define the sequence
{

p ′(t )
}∞

t=0 by

p ′(t )
∆= At p(0). Since

{
p(t )

}
diverges and

{
p ′(t )

}
converges, they differ at some point,

intuitively speaking. We now formalize this argument. Since
{

p(t )
}

diverges and the
space is complete, it is not a Cauchy sequence, and so there exists a positive ε, such
that for each N > 0 there exist n,m > N , such that

∣∣p(n)−p(m)
∣∣ > ε. Since

{
p ′(t )

}
converges, it is a Cauchy sequence, so there exists N > 0, such that for all n,m > N
we have

∣∣p ′(n)−p ′(m)
∣∣ < ε/2. If

∣∣p(n)−p(m)
∣∣ > ε and

∣∣p ′(n)−p ′(m)
∣∣ < ε/2, we can-

not both have
∣∣p(n)−p ′(n)

∣∣< ε/4 and
∣∣p(m)−p ′(m)

∣∣< ε/4. Therefore, for some integer
l ,

∣∣p(l )−p ′(l )
∣∣ > δ, for some δ > 0, depending solely on ε. Since the product defining

p(l ) is like that of p ′(l ), but with more D(t ) matrices, and D(t ) = diag(λ1(t ), . . . ,λd (t )),
where each λi (t ) ∈ (0,1], we have 0 ≤ p(l ) ≤ p ′(l ). Remembering this, and that matrix
A is primitive, thereby propagating a change of an entry to every entry, we can choose l
such that every coordinate of p(l ) will be at most α fraction of the corresponding coor-
dinate of p ′(l ), for some α< 1. The α can be made to depend solely on ε, because of the
boundedness of all the relevant vectors. So, we have p(l ) ≤αAl p(0).

By reiterating the same argument with p ′
1(t )

∆= At p(l ) and p1(t )
∆= p(t + l ), we find

l1 > 0, such that p1(l1) ≤ αAl1 p(l ). Thus, p(l1 + l ) = p1(l1) ≤ αAl1 p(l ) ≤ αAl1αAl p(0) =
α2 Al1+l p(0).

Continuing in this manner, and remembering the boundedness of
{

At p(0)
}
, which

stems from its convergence, we prove that
{

p(t )
}

converges to zero, contradictory to the
assumption.2

We are now ready to prove the theorem.

Proof. We consider one interaction and extend the proof of Theorem 20 on page 98. We
recapitulate the used properties from there, to stay self-contained.

Basically, we express how each action depends on the actions in the previous time in
a matrix, and prove the theorem by applying the famous Perron–Frobenius theorem [38,
Theorem 1.1, 1.2] to this matrix, using the above lemma to cover the case of curbing
actions. We define the dynamics matrix A ∈R+|E |×|E | as

A((i , j ), (k, l ))
∆=


(1− ri − r ′

i ) k = i , l = j ;

ri + r ′
i

1
|N+(i )| k = j , l = i ;

r ′
i

1
|N+(i )| k 6= j , l = i ;

0 otherwise.

(6.1)

Assume that for each time t ∈ T , the column vector ~p(t ) ∈ R+|E | describes the actions
at time t , in the sense that its (i , j )th coordinate contains acti , j (t ) (for (i , j ) ∈ E). Then,
~p(t + 1) = D(t )A~p(t ), where D(t ) is the diagonal matrix, describing the normalization,
thus D(t ) = diag(λ1, . . . ,λ|E |). We call ~p(t ) an action vector. Initially, ~p(i , j )(0) = ki .

Further, we shall need to use the Perron-Frobenius theorem for primitive matrices.
We now prepare to use it, and first we show that A is primitive. In the proof of Theorem 20

2The actual limit does not have to be zero; zero is just a result from the contradictory assumption.
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from in Chapter 4, it is shown that A is irreducible and aperiodic, and therefore primitive
by [38, Theorem 1.4]. Since the sum of every row is 1, the spectral radius is 1.

According to the Perron-Frobenius theorem for primitive matrices [38, Theorem 1.1],
the absolute values of all the eigenvalues except one eigenvalue of 1 are strictly less
than 1. The eigenvalue 1 has unique right and left eigenvectors, up to a constant fac-
tor. Both these eigenvectors are strictly positive. Therefore, [38, Theorem 1.2] implies
that limt→∞ At =~1~v ′, where~v ′ is the left eigenvector of the value 1, normalized such that
~v ′~1 = 1.

Now, Lemma 10 implies that Li , j exists.

This section analyzed convergence in the general case. From the next section on,
we analyze a subcase of the situation, which lends itself to precise analysis and allows
predicting the interaction and recommending how to divide one’s effort. We consider
three variations in the role of a contribution threshold, and then we analyze the extended
version of the situation.

4. RECIPROCATION EFFORT GAME
This section studies existence and efficiency of Nash equilibria in the setting without
a threshold. This analysis allows predicting behavior and recommending on the best
practice.

From here and for the rest of the chapter, we assume that all the extended budgets
Bi are big enough to prevent curbing.

We first completely analyze existence of NE, and then we find all the prices of anarchy
and stability. This theorem characterizes the existence of equilibria.

Theorem 28. Assume that for any agent i , r ′
i > 0, and in addition, either n > 2 or r1+r ′

1+
r2 + r ′

2 < 2. The set of all the NE is exactly all the strategy profiles where every agent with
βi < 1 somehow divides all her budget among the projects {1, . . . ,m}, and every agent with
βi > 1 contributes nothing. These strategies are also dominant.

Proof. Consider an arbitrary player l , and let her strategy (her contributions3) be x l =
(x l

1, . . . , x l
m). According to Formula (4.11) on page 98, her utility from this strategy is

(n −1)(1−βl )


(

1
rl+r ′l

· (x l
1 + . . .+x l

m)
)

∑
i∈N

(
1

ri+r ′i

) +C

 ,

for C that is independent of l ’s strategy. Therefore, if βl < 1, then l ’s strategy is a best
response to others’ strategies if and only if l arbitrarily divides all her budget among the
projects {1, . . . ,m}. On the other hand, if βl > 1, then a strategy is a best response if and
only if all the contributions are zero. This is true for every agent l , proving that this is an
NE. Since each agent is independent of the others, these strategies are also dominant.

We immediately conclude the following about the existence of a NE.

3Contributions by default refer to the contributions at time zero.
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Corollary 5. There always exists an NE.

The possible variations in an NE profile are what the agents with β = 1 do. This
is important for analyzing the efficiency of the NE.4 To analyze efficiency, we define:

N< ∆= {
i ∈ N :βi < 1

}
, N≤ ∆= {

i ∈ N :βi ≤ 1
}
, N= ∆= {

i ∈ N :βi = 1
}
. We now analyze the ef-

ficiency of the most and the least efficient equilibria, comparing their social welfare to
the maximum possible social welfare.

Proposition 22. Under the assumptions of the theorem, if (n > ∑
i∈N βi ), we have PoA =∑

i∈N<
(

1
ri +r ′

i
·bi

)
∑

i∈N

(
1

ri +r ′
i
·bi

) , and the PoS is given by the same expression, where we use N≤ instead of

N<. If (n =∑
i∈N βi ), we have PoA = PoS = 1. If (n <∑

i∈N βi ), then:

If N< 6= ;, then we have PoA = PoS =−∞.

If N< =;, but N≤ 6= ;, then PoA =−∞, but PoS = 1.

If N≤ =;, then PoA = PoS = 1.

Proof. The possible social welfare values that an NE can achieve are exactly

(n −1)(n − ∑
i∈N

βi )

∑
i∈N<

(
1

ri+r ′i
·bi

)
+∑

i∈N=
(

1
ri+r ′i

· xi
)

∑
i∈N

(
1

ri+r ′i

) ,

where 0 ≤ xi ≤ bi . The optimum social welfare is

(n −1)(n − ∑
i∈N

βi )

∑
i∈N

(
1

ri+r ′i
·bi

)
∑

i∈N

(
1

ri+r ′i

) ,

if (n >∑
i∈N βi ), and 0 otherwise.

Thus, if (n >∑
i∈N βi ), we have

PoA =
∑

i∈N<
(

1
ri+r ′i

·bi

)
∑

i∈N

(
1

ri+r ′i
·bi

) , and PoS =
∑

i∈N+
(

1
ri+r ′i

·bi

)
∑

i∈N

(
1

ri+r ′i
·bi

) .

If (n =∑
i∈N βi ), we have PoA = PoS = 1, since the social welfare is always zero.

If (n <∑
i∈N βi ), then we may get negative social welfare, since zero is optimal, while

some NE yield a negative social welfare. Concretely, we have the following subcases:

If N< 6= ;, then we have PoA = PoS = −∞, because any NE has the social welfare of at
most

(n −1)(n − ∑
i∈N

βi )

∑
i∈N<

(
1

ri+r ′i
·bi

)
∑

i∈N

(
1

ri+r ′i

) .

4One usually does not consider PoA and PoS for negative utilities, but we do.
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If N< =;, but N+ 6= ;, then PoA = −∞ but PoS = 1. The reason is that an NE can
havethe social welfare of because any NE has the social welfare from zero and
down to

(n −1)(n − ∑
i∈N

βi )

∑
i∈N+

(
1

ri+r ′i
·bi

)
∑

i∈N

(
1

ri+r ′i

) .

If N+ =;, then PoA = PoS = 1, since an NE has the social welfare of zero.

In particular, we have shown that if all the agents find acting easy (i.e., all βi < 1), or
if all agents really do not like acting (i.e., all βi > 1), then PoA = PoS = 1, meaning that
any NE is optimum for the society. Intuitively, this is because here, all the agents have
similar preferences: either everyone wants to contribute and receive, or no one does.
If the average agent finds non acting as important as being acted upon (i.e.,

∑
i∈N βi =

n), every equilibrium is trivially optimal, since the agents do not care. We have also
shown, that if the average agent finds not contributing more important than receiving
(i.e.,

∑
i∈N βi > n), but still βi < 1 for some agent i , then PoA = PoS = −∞, so any NE

is catastrophic to the society. Intuitively, this stems from the differences in the agents’
preferences. Finally, we see that if

∑
i∈N βi > n, some agents have βi = 1, but none have

β1 < 1, then PoA =−∞ but PoS = 1. Here, regulation may help to play the optimal NE.
Theorem 28 implies that if all the projects have β ≤ 1, then any dividing of all the

budget in cooperating is always an NE. This is unintuitive, since usually, some groups
are more efficient to interact with than some other groups. The reason for this is that
the model assumes that all agents always interact at every projectω ∈ {1, . . . ,m}, and only
their kindness depends on the strategy. The following section analyzes the more realistic
model with a threshold.

5. THRESHOLDED RECIPROCATION EFFORT GAME
After analyzing the simpler non-thresholded case, we now turn to analyze the thresh-
olded case, where everyone participates in all the interactions, but a agent receives her
utility from reciprocation only if she contributes at least the threshold. In this section,
we assume w.l.o.g. that bn ≥ . . . ≥ b1.

Before characterizing the existence of NE, we first provide some auxiliary definitions.
Then, we use this fairly complex characterization to provide several sufficient conditions
for the existence of an NE. We follow the existence results up with several efficiency re-
sults.

To characterize the set of all NE, we need several definitions. We say that agent l
covers projectω ∈ {1, . . . ,m}, if l ’s contribution toω is at least the minimum contribution,
required for l to obtain utility from this project (given the threshold).

Recall the famous KNAPSACK problem [39]. There, we are given a knapsack size S > 0
and a set of items {1, . . . ,n}, each item attributed with a positive size si and a positive
value vi , and we have to choose a subset of all items E ⊆ {1, . . . ,n}, such that

∑
i∈E si ≤ S,

while maximizing for
∑

i∈E vi . KNAPSACK is weakly NP-hard, which intuitively means
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that it is hard only is the involved numbers are large. We therefore do not use KNAPSACK

as evidence of hardness, but simply as a known problem.
Consider any agent l in a profile, and attribute her with the following KNAPSACK

problem, we call l-KNAPSACK. The items are the projects {1, . . . ,m}, project ω’s size de-
fined as the minimum contribution x l

ω, required for l to cover this project, and ω’s value

defined as the total contributions of other agents toω:
∑

i∈N \{l }

(
1

ri+r ′i
· xi

ω

)
. The knapsack

size S is defined to be bl . Then, a strategy of an agent can be looked at as a feasible so-
lution of l-KNAPSACK, if we consider projects that l covers to be chosen. Intuitively, this
problem is to choose the best projects for l to cover.

We now characterize the set of all the NE.

Theorem 29. Assume that for any agent i , r ′
i > 0, and in addition, either n > 2 or r1 +

r ′
1 + r2 + r ′

2 < 2. The set of all the NE is exactly all the strategy profiles where the strategy
of every agent l with βl < 1 is an optimum solution to the appropriate l-KNAPSACK, and
all bl is divided among the covered projects (no requirement, if no project can be covered),
and every agent with βi > 1 covers no project with a positive contribution.

Proof. First, consider agent l with βl < 1. Since at any covered project j , contribution x l
j

enters the utility from the project as

(n −1)(1−βl )


(

1
rl+r ′l

· (x l
j )

)
∑

i∈N

(
1

ri+r ′i

)
 ,

there is no difference, to which project to contribute, besides getting above the threshold
and using others’ contributions as well. Thus, getting as much as possible from various
interactions is exactly solving the appropriate l-KNAPSACK optimally and contributing
everything to the covered projects only (unless l cannot cover any project, in which case
he will obtain zero utility anyway).

Consider now agent p with βp > 1. Since covering any project with positive con-
tribution would result in negative utility, she may not cover any project with a positive
contribution. This guarantees the maximum possible utility for her.

Notice, that this statement coincides with Theorem 28 when all thresholds are zero,
as required. KNAPSACK is NP-hard [39], and therefore, finding a best response strategy
is NP-hard. This might seem to justify the hardness of deciding where to invest one’s ef-
fort. However, the existence of a fully polynomial time approximation scheme for KNAP-
SACK [39] invalidates this justification.

A natural question is whether there always exists an NE. We answer affirmatively for
the case where the threshold is not too large, for the case where the budgets are close,
and for the case of two agents. We begin with the case of the threshold being at most
half.

Proposition 23. Under the assumptions of the theorem, and assuming also that θ ≤ 0.5,
there always exists an NE, such that the agents with the largest budget among those with
βl < 1 contribute equally to all the projects {1, . . . ,m}, each agent withβl > 1 does whatever
we choose, as long as she covers no project with a positive contribution, and the agents
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with β= 1 do whatever we choose. Moreover, such an NE can be computed in time O(nt ),
where t is the time to calculate a best response of an agent.

Proof. We provide the following algorithm, which arrives at such an NE. We begin by
letting every agent with βl < 1 spread her budget equally between the projects {1, . . . ,m},
every agent l with βl > 1 covers no project with a positive contribution, and every agent
l with βl = 1 contributes whatever we choose. Now, order the agents with βl < 1 in any
order such that the ones with the largest budget come last.

For each agent with βl < 1 on order, besides the ones with the largest budget, we
deal with each one as follows. Let the agent change her strategy, so as to best respond
to the others’ strategies. Since θ ≤ 0.5, it is possible to do this without contributing more
than bn

m to a single project, because a contribution of at least 0.5 bn
m to a project can be

used to cover another project. This condition ensures that the strategy of the agents we
have dealt with remains a best response to the rest, since a project that receives more
contribution does not cease being covered, if it was covered before, and a project that
loses contribution is not easier to cover than before, since there is more contribution
there from the agents with largest budget, i.e. bn .

By induction on the algorithm, all the agents we have dealt with best respond. The
agents with the largest budget among those withβl < 1 are always best responding, since
they always cover all the projects. The agents with βl ≥ 1 best respond as well. In conclu-
sion, this algorithm arrives at a situation where all the agents best respond, which means
that it arrives at an NE. Since we have not altered the strategies of the agents with βl < 1
with the largest budget, they contribute equally to all the projects {1, . . . ,m}.

We now prove the case of close budgets.

Proposition 24. Under the assumptions of the theorem, assume also that for any two
agents k < l (implying bk ≤ bl ) with βk < 1,βl < 1 we have bk ≥ θbl . Then, there always
exists an NE, where all the agents with βl < 1 spread their budgets equally among the
projects {1, . . . ,m}, each agent with βl > 1 does whatever we choose, as long as she covers
no project with a positive contribution, and the agents with β= 1 do whatever we choose.

Proof. Since the budgets of any two agents with β < 1 are in the factor of θ within each
other, by spreading her budget equally between {1, . . . ,m}, each agent with β < 1 covers
all the projects {1, . . . ,m}. Since every agent with βi > 1 covers no project with a positive
contribution, Theorem 29 implies that the profile is an NE.

This is the case of one budget being much larger than all the rest.

Proposition 25. If βn ≤ 1, then, under the assumptions of the theorem, if θbn > mbn−1,
then there exists an NE.

Proof. Consider the profile when all the agents besides n contribute arbitrarily, while
agent n spreads bn equally between all the projects.

This is an NE, for the following reasons. Agent n is obviously getting her best possible
utility. All the other agents do not want to deviate, because they would not be able to
contribute enough to reach the threshold anyway.
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The following proposition proves the existence of an NE for two agents.

Proposition 26. Under the assumptions of the theorem, and assuming also that n = 2,
there always exists an NE. If both agents have βi ≤ 1, we can ensure an NE such that
the agent with the largest budget covers all the projects, while the other agent covers all
projects but one.

Proof. If at least one of the agents has βi > 1, let her contribute nothing, and the other
agent may divide her budget optimally for herself, resulting in an NE.

Assume now that both agents have βi ≤ 1. If b1 ≥ θb2, then our proposition immedi-
ately stems from Proposition 24. Otherwise, let agent 1 contribute whole b1

m−1 to projects

1, . . . ,m − 1, and let agent 2 contribute 1
θ

b1
m−1 to each of these projects and b2 − 1

θb1 to
project m. Now, agent 2 covers everything, and thus obtains the maximum possible util-
ity. Agent 1 obtains the maximum possible utility as well, since she cannot cover all
projects, and the all besides one projects that she covers have the highest possible limit
of the actions. Therefore, this is an NE.

The next question is the efficiency of the equilibria. Since the characterization of an
NE is not simple, we can only prove the following partial results. First, we analyze the
case of close budgets.

Proposition 27. Under the assumptions of the theorem, and assuming also that b1 ≥ θbn

and ∀l ∈ N :βl ≤ 1, we have PoS = 1.

Proof. Consider the NE from Proposition 24, where all the agents equally spread their
budget among the projects {1, . . . ,m}. Since b1 ≥ θbn , all the agents cover all these
projects, and thus, the optimum social welfare of

(n −1)(n − ∑
i∈N

βi )

∑
i∈N

(
1

ri+r ′i
·bi

)
∑

i∈N

(
1

ri+r ′i

)
is achieved. Therefore, we have PoS = 1.

Now, we consider the case of one budgets being much larger than all the rest.

Proposition 28. Under the assumptions of the theorem, and assuming also that βn ≤ 1

and θbn > mbn−1, we have PoS = 1 and PoA =
1

ri +r ′
i

bn∑
i∈N

1
ri +r ′

i
bi

.

Proof. Consider the proof of Proposition 25. The maxim social welfare is achieved when
every agent spreads her budget equally, yielding the price of stability of 1. The minimum
social welfare is achieved when agent n spread her budget equally and the rest contribute

nothing, yielding the price of anarchy of PoA =
1

ri +r ′
i

bn∑
i∈N

1
ri +r ′

i
bi

.

An finally, we analyze case of two agents.
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Proposition 29. Assume the theorem, and that n = 2.
If for every i = 1,2 we have βi > 1, then PoA = PoS = 1.
If βl ≤ 1, but βp > 1, then

PoA = PoS =


1

rl +r ′
l
·(bl )∑2

i=1
1

ri +r ′
i
·bi

if β1 +β2 ≤ 2,

−∞ otherwise.

If both βi ≤ 1, then PoS = 1, and

PoA =



(1−β2)

(
1

r2+r ′2
b2

)
(1−β1)

(
1

r1+r ′1
b1+ 1

r2+r ′2
b1
θ

)
+(1−β2)

(∑2
i=1

1
ri +r ′

i
bi

) if b1 < θb2
m ,

(1−β1)

(
1

r1+r ′1
b1+ 1

r2+r ′2
θb1

)
+(1−β2)

(∑2
i=1

1
ri +r ′

i
bi

)
(1−β1)

(
1

r1+r ′1
b1+ 1

r2+r ′2
b1
θ

)
+(1−β2)

(∑2
i=1

1
ri +r ′

i
bi

) if θb2
m ≤ b1 < θb2,

1 otherwise.

Proof. First, assume that for every i , βi > 1. Then, the only NE has both agents con-
tributing nothing, and this is optimal, implying PoA = PoS = 1.

Next, assume that βl ≤ 1, but βp > 1. In any NE, agent p contributes nothing, while
agent l divides her budget in a way that is optimal to her. This achieves the social welfare
of

(n −1)(2−β1 −β2)

 1
rl+r ′l

· (bl )∑
i∈N

(
1

ri+r ′i

)
 .

The optimal social welfare depends on whether β1 +β2 ≤ 2. If yes, it is

(n −1)(2−β1 −β2)


∑2

i=1
1

ri+r ′i
·bi∑

i∈N

(
1

ri+r ′i

)
 ,

and if not, then it is zero. Dividing the social welfare in an NE by the optimal one yields
the result.

We finally prove the case that both β1 ≤ 1. Let us handle the price of stability first.
Consider the equilibria in the proof of Proposition 26. If b1 ≥ θb2, then we achieve the
maximum possible social welfare. If b1 < θb2, then we also achieve the maximum pos-
sible social welfare, since 2 covers everything, and 1 covers the maximum it ever can.
Thus, these NE there are optimal, and thus, PoS = 1.

Consider now the price of anarchy. If b1 < θb2
m , then in any NE, agent 2 covers

all the projects. This minimum bound on social welfare is achieved in the NE where
agent 2 contributes b2

m to every project, and agent 1 contributes nothing, since he
cannot achieve the threshold anywhere. Thus, the minimum social welfare at an NE

here is (n − 1)(1 − β2)

(
1

r2+r ′2
b2

)
∑

i=1,2
1

ri +r ′
i

. If θb2
m ≤ b1 < θb2, then in any NE, agent 2 covers
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all the projects, and agent 1 covers at least one project, and the contribution from 2
at the projects that 1 covers is at least θb1. This minimum bound on social welfare
is achieved in the NE where agent 1 contributes all b1 to project 2 and agent 2 con-
tributes there θb1, while contributing the rest to project 1. Thus, the minimum social

welfare at an NE here is (n − 1)(1 −β1)

(
1

r1+r ′1
b1+ 1

r2+r ′2
θb1

)
∑

i=1,2
1

ri +r ′
i

+ (n − 1)(1 −β2)

(∑
i=1,2

1
ri +r ′

i
bi

)
∑

i=1,2
1

ri +r ′
i

.

To compute the price of anarchy, note that the optimum social welfare for b1 < θb2 is

(n−1)(1−β1)

(
1

r1+r ′1
b1+ 1

r2+r ′2
1
θ

b1

)
∑

i=1,2
1

ri +r ′
i

+(n−1)(1−β2)

(∑
i=1,2

1
ri +r ′

i
bi

)
∑

i=1,2
1

ri +r ′
i

. Dividing the minimum val-

ues of social welfare in an NE by this optimum, we obtain the price of anarchy.
If b1 ≥ θb2, then both agents cover every project in any NE, so PoA = 1.

The different prices of anarchy and stability shown in Propositions 28 and 29 indicate
that regulation may improve the social welfare.

In the next section, we analyze the case where not only obtaining utility, but even
participating requires contributing at least the threshold.

6. EXCLUSIVE THRESHOLDED RECIPROCATION EFFORT GAME
We now analyze the case where only the agents who contribute at least the threshold
may interact. This models the situations when a minimum effort in necessary, such as
becoming a member of a file sharing community or starting a firm. In this section, we
assume w.l.o.g. that bn ≥ . . . ≥ b1 and all βi ≤ 1. We first observe that existence of an
equilibrium is easy, since no-one contributing constitutes an NE. Then, we show that
less trivial equilibria exist as well. Finally, the harder question of equilibrium efficiency
is answered for two agents.

We first notice a trivial equilibrium.

Observation 11. The profile where all agents contribute nothing is an NE.

Proof. In this profile, any agent who deviates by contributing a positive amount to a
project will be the only one to interact there, so her utility will still be zero.

We call an NE where at any project, at most one agent interacts (reaches the thresh-
old) and positively contributes there, a Zero NE. There may be multiple Zero NE. We
have just shown that a Zero NE always exists. A natural question is whether there exist
non-Zero NE as well. We answer affirmatively.

Theorem 30. Assume that all agents have βi ≤ 1. Assume that for any agent i , r ′
i > 0

and in addition, for any pair of agents i , j we have ri + r ′
i + r j + r ′

j < 2. There exists a
non-Zero NE.

Proof. Consider the profile where all agents 1, . . . ,n−1 contribute their whole respective

budgets to project 1, and agent n contributes min
{

bn , bn−1
θ

}
to project 1, and nothing to

other projects.
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This is an NE, for the following reasons. Any agent would be alone at any project
other than 1. At project 1, the only agent who perhaps can increase her contribution is
n, but she will stay alone, if she does.

The next question is the efficiency of the equilibria. Since we always have the
Zero NE, and by contributing to the same project the same positive amounts we achieve
a positive social welfare, we always have PoA = 0. Regarding the price of stability, we im-
mediately know that it is positive, since there always exists a non-Zero NE. We now show
that the price of stability for two agents is 1, meaning that there exists a socially optimal
NE.

Proposition 30. For n = 2 and under the assumptions of the theorem, PoS = 1.

Proof. When we have only two players, we can assume w.l.o.g. that in a profile with max-
imum social welfare, a project that receives a positive contribution, receives it from both
agents. Therefore, social welfare is maximized by maximizing the total contribution to
the projects where interaction occurs.

Then, the following profile maximizes the social welfare. Agent 1 spreads her budget
equally between all the projects. If b1 ≥ θb2, then agent 2 divides her budget equally
between all the projects, and otherwise, she contributes 1

θ
b1
m to every project. Since this

profile constitutes an NE, we conclude that PoS = 1.

Till now, we analyzed dividing the budget between reciprocal interactions. We now
turn to analyze dividing the budget and then deciding on the interaction habits.

7. EXTENSIVE RECIPROCATION EFFORT GAME
We want to analyze the situation in more detail, explicitly modeling the process of effort
dividing and deciding on a reciprocation habit. To this end, we consider extensive recip-
rocation effort games, where no threshold exists. At the root of the game, all the agents
divide their budgets, defining the kindness at the various interactions, and subsequently
choose the reciprocation coefficient ri , separately for each interaction. This models the
situation, when people divide effort between several interactions, and once they find
themselves in an interaction, each player chooses her reciprocation habits. Since we al-
low choosing reciprocation coefficients ri , we cannot guarantee that ri +r ′

i < 1 for at least
one player, and to have convergence, we therefore need to have at least 3 participants in
each interaction, which create an odd cycle, namely a triangle, in the interaction graph.
Otherwise, we may have no convergence, and thus, a meaningless game. We, therefore,
analyze the non-thresholded case, and assume that n ≥ 3.

This is an extensive-form game, since the game has two stages, and we therefore
consider its subgame-perfect equilibria (SPE). An SPE is a strategy profile, such that at
each possible stage of playing, no player has an incentive to deviate.

Analyzing the existence of SPE requires the following definition, adapted from Chap-
ter 2.4 of [40].

Definition 24. Utility function ui in a game (N , (Ai ) , (ui )) is quasi-concave, if for every

a∗ ∈ A
∆=×n

i=1 Ai , the set
{

ai ∈ Ai : ui (ai , a∗
−i ) ≥ ui (a∗)

}
is convex.
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We prove the existence of an SPE under a condition on what the agents perceive as
their utility at the beginning (root) of the game. The existence of an SPE without this
condition is left open.

Theorem 31. Assume that for any agent i , r ′
i > 0, and in addition, n ≥ 3. If all 1−βi s

have the same sign, and the agents perceive their utility at the root of the game tree as
quasi-concave (instead of ui , they perceive it as fi (ui ), for a continuous fi , and fi (ui ) is
quasi-concave), then there always exists an SPE in the extensive reciprocation effort game.

The proof first constructively finds a NE in each subgame, and then employs Propo-
sition 20.3 from [40] to prove that also the root of the game tree possesses a Nash equi-
librium.

Proof. We begin by defining the Nash equilibria in each subgame. In any subgame
obtained after dividing efforts between the interactions, a player faces m independent
choices, each choice being a choice or her reciprocation coefficient ri for an interaction
project. At any project, consider the profile that maximizes the social welfare, described
in Proposition 17 on page 138 of Chapter 5. Since all 1−βi s have the same sign, Proposi-
tion 18 on page 140 states that any social welfare maximizing profile is also an NE. This
provides an NE in each subgame.

To complete an SPE profile, it now remains to find an NE in the root of the game
tree. We prove its existence using Proposition 20.3 from [40]. First, the set of actions
of a player consists of all the divisions of her budget between the project, which is a
nonempty, compact and convex. Since the equilibria we consider are the largest pos-
sible convex combinations of the kindness values, attainable with ri s in the segments[
0,1− r ′

i

]
, the original utility ui of an agent from a project depends continuously on her

kindness in that project, and since fi is continuous function, the perceived utility fi (ui )
is continuous as well. Since we assume that at the root of the game, agents perceive their
utilities as quasi-concave, Proposition 20.3 from [40] implies the existence of an NE. This
completes the statement that an SPE exists.

This section finalizes our analysis of dividing effort between reciprocal interactions.

8. CONCLUSIONS AND FURTHER RESEARCH
In order to predict investing effort in several reciprocal interactions, we define a game
that models dividing efforts between several reciprocal projects. We allowed for either
having no contribution threshold, or for a threshold required to obtain utility or even to
participate in an interaction.

We first recapitulate the results of the chapter and emphasize the important conclu-
sions. Then, we provide some ideas on the future extensions of this research.

We show that any effort dividing between reciprocal interactions results in conver-
gent interactions, regardless how actions are curbed to fit the budgets. Then, we assume
that no curbing is required, and analyze the existence and efficiency of Nash equilibria
of the game. We prove that when no contribution threshold exists, there always exists an
equilibrium, and if acting is easy to everyone (for all i , βi < 1) or hard to everyone (for all
i , βi > 1), then every NE is socially optimal.
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We also show that any dividing of all the budget when acting is easy to everyone is
a Nash equilibrium. The result may seem surprising. Intuitively, this happens because
everyone participates in each interaction, and the concrete dividing of the budget does
not matter to the social welfare. However, life does not often provide such situations.

If a minimum contribution is required to enjoy reciprocation, but everyone may par-
ticipate, then we prove that there exists an equilibrium, if the threshold is at most half, or
if the budgets are in the threshold factor from each other, or if only two agents exits. For
close budgets, a socially optimal NE exists. In the case of two agents, the gap between
the optimal and the suboptimal NE can be large, so regulation may be instrumental to
play the efficient equilibrium, and not the less efficient ones.

If a minimum contribution is necessary even to participate in interaction, we show
that the situation where no-one contributes is an equilibrium. This models the case
where people are very passive, and no-one can start interaction project on his own. In
addition to this trivial equilibrium, we find an equilibrium where all the agents con-
tribute to the same project. This describes the case when people interact with each other
on the same topic. Such a situation is clearly not the only option, since people often have
many friendships [41]. Indeed, for two agents, there exists an equilibrium which is so-
cially optimal.

In several cases, we see that the choices of strategies by the agents who are indifferent
significantly influence the social welfare. For instance, this happens in the case without
threshold to agents for whom acting and receiving action are equally important. Making
such agents do what benefits the society can increase the social welfare.

We model the process of first dividing the effort and once everyone has invested in
the projects, setting the reciprocation habit, as an extensive game. We provide a suffi-
cient condition for the existence of a subgame perfect equilibrium.

There are many more interesting directions to extend the research. First, we know
that the curbed interactions converge, while their equilibria remain veiled. In the ex-
tensive game setting, the existence proof lays the basis to continue and analyze the effi-
ciency of the subgame perfect equilibria. Second, looking at interactions in large groups
where not everyone can act on everyone else would be a natural generalization of our
work. We assumed that two agents who interact in multiple projects, interact in these
projects independently. Modeling the dependency between these interactions is inter-
esting. Since reality contains not only reciprocation projects, analyzing a mixed set of
projects, only some of which are interaction projects, would model reality better.

As for the complexity of finding an NE, we have shown that for thresholded recip-
rocation effort games, finding a best response is NP-hard, and we conjecture that the
seemingly similar problems of finding a (pure) NE or even determining whether it exists
is NP-hard as well.

This work models and analyzes a ubiquitous class of interactions and lays the basis
for further research, aimed to provide more advice to the agents and to the manager who
wants to maximize the social welfare.
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7
CONCLUSION

It is not the strongest or the most intelligent who will survive
but those who can best manage change.

Leon C. Megginson, 1963

We first describe the general topic of investing in projects, our answers to the research
questions presented in Section 1.3 of Chapter 1, and our main conclusions from the con-
ducted research. The conclusions that are especially relevant to the SHINE project are ex-
plained as well. We proceed to suggest extensions to our work and further directions and
approaches to research in the area of participation in projects.
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1. MAIN RESULTS
This thesis studies the ubiquitous domain of investing in projects. In particular, we con-
sider value-creating projects, where a value is created and shared among the contribu-
tors, and interaction projects, where the participants gain or lose by reciprocating. The
value-creating projects model, for example, writing for Wikipedia [1] and co-authoring
articles [2]. The reciprocation projects model interactions such as arguing people [3] and
superpowers involved in an arms race [4–6].

Our main goal is to analyze investment in projects by rational self interested agents.
This allows to both understand existing phenomena, such as the fact that following the
kindest person often brings prosperity to the group, and to advise on how to invest in
the projects in order to maximize the individual utility and the social welfare. The social
welfare is the sum of all the individual utilities. We approach this task by looking at the
stable states of the investment, where no investor has an incentive to change her current
investments. These states are to be reasonably expected to occur, motivating our interest
in them. These states, called Nash equilibria [7], are the most famous stable states in
game theory. In order to advise how to maximize the social welfare, we look for the stable
states that have high social welfare, i.e. that are socially efficient.

Therefore, the main research question, presented in Section 1.3, is what the Nash
equilibria (NE) and their efficiencies are. This research question decomposes to further
questions about the existence and efficiency of NE is games with value-creating projects
and in games with reciprocation projects. In addition, investment of effort in recipro-
cation projects initiates several questions about reciprocation; namely, we ask how it
uncurls and what are the equilibria and their efficiencies for the game of agents who set
their habits or reciprocation before the interaction begins. The general approach to an-
swering these questions is modeling the situation as a game and looking for NE. Study-
ing the efficiency translates to analyzing the prices of anarchy (PoA) [8, 9] and stability
(PoS) [10, 11]. Recall that the price of anarchy is the ratio of the socially least profitable
NE to the maximum possible social welfare, while the price of stability is the ratio of the
socially best equilibrium to the optimal social welfare. We now describe how we answer
each of the research questions from Section 1.3 in detail. Together, these answers de-
scribe when agents act optimally for the society whenever they are in an equilibrium,
when their actions may need a regulation to be socially efficient, and which regulation
they need then.

The first research question (question 1 on page 8 from Section 1.3) is: “What are
the NE of shared effort games with equal sharing of a linear project’s value to everyone
who contributes above a threshold? How efficient are these equilibria?” Here, the agents
contribute by dividing their budgets between the projects. Each project obtains a value
defined by the appropriate project function coefficient times the total contribution it
receives. Aiming to answer this question, Chapter 2 characterizes the existence of NE for
two agents. We show that any NE attains more than a half of the optimal social welfare,
so regulation is not desperately needed here. For the case of more than two agents, we
employ a fictitious play similar to the one originated by Brown [12], searching for Nash
equilibria. Only the ratio of the largest (linear) project function coefficients and the ratio
of the two highest budgets determine the existence and efficiency of NE. Thus, only these
ratios need to be modified if someone wants to influence the existence and efficiency
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of equilibria. The efficiency depends on the ratio of the project coefficients piece-wise
linearly, the slope increasing with the threshold. For more than two agents, the efficiency
is sometimes less than half, so regulation would be useful. We hypothesize that an NE
exists if and only if at least one of several sets of certain conditions on the ratio of the
budgets holds, and for every such condition, some conditions of being smaller or equal
to a function of the threshold (and not of the budgets) on the ratio of project function
coefficients hold together.

The second question (question 2 from Section 1.3) refers to requirements that
projects have to face, in order to obtain their value. It is: “What changes in the answer to
the first question, if a project obtains its value only if it survives a competition between
the projects?” Aiming to answer this, Chapter 3 extends Chapter 2 by modeling quota
and success threshold on the projects. A quota is the number of the projects with the
highest values that actually obtain their value, and a success threshold is the threshold
such that only the projects with at least this value obtain their values. We provide suf-
ficient conditions for having an NE and analyze their efficiency. We show that setting
an appropriate success threshold is a more powerful tool to guarantee that an optimal
profile can be an equilibrium, than setting a quota. This is an important guide to confer-
ence organizers, though since the optimality promise on the NE refers only to the price
of stability, while the price of anarchy is small, additional regulation is required to avoid
inefficient equilibria. The found equilibria partially answer question 2 from Section 1.3.

At this point, we start treating reciprocation projects, since this is the second im-
portant class of projects we consider. The first two research questions refer to a single
reciprocal interaction. This is relevant both as a preparation to analyzing dividing time
between several reciprocal interactions and as analyzing reciprocation by itself. First, we
analyze a single process and its limits, and then we consider strategic choice of recipro-
cation habits. Finally, we consider dividing effort between several reciprocation projects,
similarly to what we do with value receiving projects.

We model agents, each of which is endowed with internal inclination, called kind-
ness and reciprocation coefficients, defining the extent of reaction to the others’ actions.
An agent can be either fixed, where she reacts to others’ actions and takes into account
own kindness, or floating, where she also reacts to the others’ actions but takes into ac-
count last own action instead of own kindness. The fixed attitude models being loyal to
one’s own inclinations, while the floating agents get carried away with the process. Each
agent influences a subset of other agents, defined by her neighborhood in the interaction
graph.

Question 3 is what the actions will become in a reciprocal interaction in the long run.
We answer this in Chapter 4, where we prove exponential convergence of reciprocation
and find the limits for pairwise interaction and for the case where at most one agent
has the fixed reciprocation attitude. In the latter case, the limit is common to all the
actions of all the agents. The results show that persistence (either in the sense of being
fixed or having a low reciprocation coefficient) causes the interaction to resemble one’s
kindness. The same effect of setting the tone of the interaction occurs from being able to
influence many agents. Interestingly, converging to a limit resembles converging to own
style of behavior, known in life [13], and a common limit represents an organizational
culture [14]. These results answer question 3.
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Next, we study question 4, which inquires which reciprocation habits are the most
efficient in the long run. A habit is modeled by the reciprocation attitude and/or coef-
ficient of the agent. Thus, aiming to analyze reciprocation from a strategic perspective,
Chapter 5 defines the utilities of the interacting agents and suggests the exact habits that
maximize one’s utility. When the agents choose either the reciprocation attitude or coef-
ficient, then both for maximizing own utility and the social welfare, the less kind agents
should be more flexible (which means employ the floating attitude or have a large recip-
rocation coefficient), if acting is cheaper than receiving actions, and that otherwise, the
reverse holds. This fits the intuition that the kinder/less kind agents should pull the less
kind/kinder ones to act more/less, thereby increasing the utility and the social welfare,
when acting is easy/hard. This explains why following the kindest brings prosperity [15].
If acting is much cheaper than being acted upon, then the price of anarchy is 1, so agents
act optimally in any NE. If the agents may choose both attitude and coefficient, then an
optimal equilibrium indeed exists, but also a suboptimal one does, requiring regulation.
The described results answer research question 4.

Finally, incorporating reciprocation in shared effort games, question 5 asks which
Nash equilibria exist in the games of dividing effort between reciprocal interactions, and
how efficient they are. Chapter 6 studies this. Among other results, in the case where
no threshold of investment in a reciprocation project exists, we show that an NE always
exists, and if acting is cheaper than receiving an action, then any NE is optimal. This
means that provided no requirements exist on minimum effort in interaction, regula-
tion is not required for optimality. Furthermore, modeling the process of first dividing
own efforts between the interactions, and subsequently choosing the reciprocation coef-
ficients at each interaction, we prove the existence of a subgame perfect equilibrium [16]
in this extensive game, motivating future research of this two-step process. The results
of Chapter 6 answer question 5 about existence and efficiency of NE for the analyzed
important cases.

As we have discussed, we answer all the research questions by discovering the Nash
equilibria and their efficiencies; sometimes, the answers only pertain to subcases of the
model. This partially answers the overarching research question regarding the Nash
equilibria and their efficiencies in project participation, advising on the need for regula-
tion as follows. When the best efficiency of an equilibrium, which is the price of stability
(PoS), is low, then the only way to improve the social welfare is to force the agents to go
against their interest or to fundamentally change the situation. When the price of stabil-
ity is high but the price of anarchy (PoS) is low, then we only need to regulate so that the
agents play the efficient NE. On the other hand, when even the PoA is high, no regulation
is needed, besides, perhaps, suggesting (any) NE to the participants.

We find many stable situations and their efficiencies in the studied scenarios and
provide a solid piece of advice on what an agent or the manager needs to do. We still
leave some space for extensions, some of which appear in the next section. But first we
show some conclusions about the SHINE project, which was an important inspiration to
our research questions.
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1.1. THE CONNECTION TO THE SHINE PROJECT

The SHINE1 project for information requiring and gathering by self-organizing agents
is described in Section 1.2. It can be roughly modeled as a value-creating project, as
well as an interaction, the actions being information providing. Let us see which general
conclusions are especially interesting with relation to SHINE.

Assume first every SHINE-like crowdsourcing project is modeled as a value-creating
project. Regarding putting effort in and sharing rewards from crowdsourcing projects,
we provide conditions for the existence of socially optimal equilibria. For instance, un-
der certain conditions, Section 3 of Chapter 2 shows that people would benefit from
equally participating in the most promising projects, which gives yet another motiva-
tion to make our project be the best. A second place can be no good. If such projects
need to be in the quota of a certain number of the best projects in order to remain ac-
tive, then we saw in Section 3 of Chapter 3 that there are many stable situations, some of
which may be very efficient, like everyone participating in a most profitable project, but
some may be very inefficient, such as everyone participating in a least profitable project.
Therefore, good media coverage that will explain which projects are most profitable is
crucial for making the society play the efficient equilibria.

A crowdsourcing project like SHINE constitutes an interaction between its partici-
pants. Providing correct information is a positive act by the provider on the requester,
while providing wrong information is a negative act. To model interaction in a crowd-
sourcing project, we model and predict the uncurling of a reciprocation process. In Sec-
tion 5 of Chapter 4, we prove that the eventual influence of one’s kindness is directly
proportional to the number of people she influences and inversely proportional to her
reactiveness. Therefore, to design a system that maximizes mutual help, the kinder per-
sons should be able to interact with as many people as possible. Once the designers of
SHINE have somehow found the kinder persons, these persons can be given more peers
to ask and to provide information to.

Regarding strategic choice of reciprocation habits, when everyone wants to have
more help around, then Section 5, Section 6, and Section 10 of Chapter 5 show that
the kinder people should keep helping, while “pulling” the less kind ones to help others
more. Public campaign for this goal would facilitate interaction. If helping is easy and
every person chooses only one habit of hers, then Section 5 and Section 10 of Chapter 5
demonstrate that any Nash equilibrium is socially optimal, so regulation is not needed
here. however, when one can choose several of her habits at once, then Section 6 of
Chapter 5 shows that there can be suboptimal Nash equilibria as well, so the system sug-
gesting to act according to the optimal equilibrium may be expedient.

Consider people who split efforts between several interactions where we do model
these projects as interactions, and helping is easy for most people, but some people find
helping as hard as not being helped. Then, convincing these people to still help others
will improve the social welfare, as Chapter 6 shows.

1See http://www.participatorysystems.nl/2013/02/shine/, http://mmi.tudelft.nl/~birna/
projects/projects.html, and http://shine.tudelft.nl/home/.

http://www.participatorysystems.nl/2013/02/shine/
http://mmi.tudelft.nl/~birna/projects/projects.html
http://mmi.tudelft.nl/~birna/projects/projects.html
http://shine.tudelft.nl/home/
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2. FUTURE RESEARCH
We lay the foundation of studying investment in several projects. We have concentrated
on projects with a minimum threshold required to receive utility from them. Further
steps of modeling and predicting participation in projects on top of our work are de-
scribed next.

2.1. EXTENSIONS

Aiming to the goal of analyzing investing in projects, our work models two crucial kinds
of projects, motivating further analysis of these kinds of projects and modeling and anal-
ysis of other kinds as well. First, it would be nice to complete the characterizations of the
existence and the efficiency of equilibria that we have done. By characterizing the effi-
ciency of equilibria we mean, for instance, finding the price of anarchy and stability, as
they define the least and the most efficient NE. An interesting direction for future work
is to model personal interactions between the agents, based on what they contribute to
the various projects. This would allow the investments in distinct projects by the same
agents to influence each other. We now go over the individual chapters and describe
what can be extended in each chapter.

In Chapter 2, we form the basis of investing in projects by characterizing the exis-
tence of NE for 2 agents, for a thresholded equal sharing of projects with values linear in
the total contribution. For more agents, we provide sufficient existence conditions. Ex-
tending the model to other, non-thresholded-equal-value-sharing sharing mechanisms,
and to non-linear project functions would allow modeling a wider range of real projects.
For example, the sharing of the value of a project can be proportional to the individual
investments [17]. In addition, the value of a project can depend on the total investment
in a exponential manner, like the hardness of a code depends on the number of digits in
the key.

Chapter 3 expands on the model from Chapter 2, and this complication allows for
fewer theoretical results: we find sufficient conditions for NE, instead of characteriza-
tions. Analyzing these models further is an interesting direction to go to. Moreover, still
more refinements can facilitate modeling the following scenarios even further. For ex-
ample, projects like papers and books often have an upper bound on the maximal num-
ber of participants. For instance, writing a paper with ten co-authors is quite compli-
cated, though not impossible. Furthermore, agents like people can only contribute to
only a reasonably bounded number of projects, as we all have natural limitations. Mod-
eling these upper bounds can improve the predictive power of our results; for instance,
a bound on the number of the contributors to a project would rule out the equilibria
where everyone invests in the same project.

Chapters 4 and 5 thoroughly analyze our model of reciprocation. This model is very
basic and general, therefore allowing for many extensions, as we now present.

1. Introducing new parameters to the model allows modeling certain situations more
precisely:

(a) We model reciprocation. One could also model more complicated motives
to act, such as liking one’s photo on a social medium because of both recip-
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rocating and actually finding the photo likeable. An action here is a combi-
nation of reacting and liking.

(b) It would be also interesting to model agents with different kindness values to-
wards different agents, and even different reciprocation coefficients, to rep-
resent the personal preferences.

(c) We have considered actions to be absolute. Allowing actions to be interpreted
differently by different agents may fit to situations where various agents in-
terpret or experience actions differently.

2. Adding dynamics and probabilistic behavior can improve the modeling of situa-
tions where parameters change and are not certain:

(a) Another interesting venue would be changing the reciprocation parameters
(aka habits) multiple times in the process, to model the people or countries
changing while reciprocating. This requires time-dependent parameters.

(b) Considering a dynamically changing set of reciprocating agents is also im-
portant, since in life, people join groups (like the colleagues at a workplace
who are hired and dismissed) and leave them.

(c) Noisy interaction may benefit from a probabilistic modeling of the reactions.
This models real reactions, which usually are not fully predictable.

3. We may also ask how much influence various agents have on the total interaction.
We have indeed seen that when everyone is floating (taking into account last own
action instead of own kindness), then the share of one’s kindness in the common
limit is proportional to the number of agents she acts on and reversely propor-
tional to the sum of one’s reciprocation coefficients, i.e. how reciprocal she is. We
have also seen that when fixed (taking into account own kindness instead of last
own action) agents exist, then the kindness of the floating agents does not matter.
Nonetheless, the exact influence of the fixed agents on the limits of the actions is
yet to be discovered.

Chapter 6 considers an interesting kind of public projects, namely reciprocation, rep-
resenting meeting friends of playing group sports. In life, there are many kinds of public
projects, with various rules for each project, so modeling them would be the next step.

A basic approach of our research is that we sometimes take the sociological and be-
havioral knowledge as an inspiration for modeling a part of reality, and afterwards, we
compare our results with the existing behavioral knowledge. For instance, we used the
models of arguing people as an inspiration of the model of reciprocation. Conducting an
experimental study to check the models and their predictions in details would allow to
delineate where our work is applicable. An experimental analysis of how people, coun-
tries and other agents behave can also suggest how the model should be refined to allow
for analyzing certain applications.

In addition to directly extending our models, we next discuss further approaches of
investing in projects for practical usage. These directions are reminiscent of what we
have done, but model other situations.
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2.2. OTHER DIRECTIONS
This work models agents who divide their budgets of efforts between projects and gain
from these projects. We now consider two other avenues of modeling investment in
projects. The first avenue is a complementary — almost dual — modeling where the
roles change, and next, we introduce dynamics to the model. The dual models look at
the process from another angle, and the dynamic extensions allow for a more realistic
modeling of the changes in time.

Consider the following dual points of view on investing in projects:

1. Projects select the agents who may participate. This can be done by an approval
voting, conducted among the current participants in the project.

2. This thesis assumes a given definition of utilities and analyzes the resulting strate-
gies. Another option would be to consider how to divide a project’s profits so
that the agents do not want to contribute differently, similarly to the model of co-
operative games. Cooperative games with distributing resources among several
coalitions have been considered in [18–20], and one can augment that model with
project-dependent value functions.

Additionally, one can consider the following models that progress over time:

1. Introducing the time dimension to the model, where agents plan their investments
ahead, in a repeated game. The information about a project becomes known to an
agent only once she has invested there. This models the experience agents gain
with learning.

2. Considering the evolutionary dynamics of several projects types and several agent
types. A project type defines the project function that defines the value of the
project based on the investments it receives, and an agent type defines the agent’s
investment policy. Similarly to the real life, the best projects and agents survive
and continue to the next round.

2.3. OTHER APPROACHES TO PARTICIPATION IN PROJECTS
We have looked at project participation from the game-theoretic point of view. Based on
this strategic analysis, let us now glance at some other aspects of investing effort that are
practically important.

A natural question is whether our research can facilitate investing in certain projects
in practice. The answer should be affirmative for the projects that are properly captured
by our models. However, we have to consider the human factor. The optimistic point is
that people do incorporate time management advice they get [21]. However, an impor-
tant obstacle still remains to be overcome, namely, the personal predisposition to time
management influences the actual management [22]. Therefore, psychologists may help
with assisting people to properly realize the scientific recommendations.

We modeled people who are free to divide their efforts, bounding sometimes only
the set of the addressed projects. In reality, investment in projects may have to face
legal requirements, and modeling and analyzing these is a necessary element of practical
deployment of any ideas. Another practical consideration is the public opinion, which
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may have effects on the emotional part of the project values: people enjoy contributing
to a project about which they and most others feel good.

To conclude, this thesis predicts the development of scenarios of dividing resources
between common projects and rigorously advises how to act there efficiently. Such ad-
vice can be used by people, by automatic decision support systems, or interacting com-
puters. This modeling and analysis provides many insights and lays the basis for further
modeling and analysis, which will allow providing even better advice.
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