
FATE
Fuzzing for Adversarial exam-
ples in Tree Ensembles
Cas Bilstra





FATE
Fuzzing for Adversarial examples in Tree

Ensembles
by

Cas Bilstra
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Monday July 12, 2021 at 10:00 AM.

Student number: 4381084
Project duration: November 9, 2021 – July 12, 2021
Thesis committee: Dr. ir. S. E. Verwer, TU Delft, supervisor

Dr. C. B. Poulsen, TU Delft
D. A. Vos MSc, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract

Machine learning models are increasing in popularity and are nowadays used in a wide range of critical appli-
cations in fields such as Automotive, Aviation and Medical. Among machine learning models, tree ensemble
models are a popular choice due to their competitive performance and high degree of explainability. Like
most machine learning models they however suffer from adversarial examples: slightly perturbed input for
which the model makes an unexpected prediction. These can be seen as bugs in the model and in critical
applications such a bug may have high impact. We investigate if fuzzers, a popular and effective tool for
identifying bugs in software, can be used for finding bugs (adversarial examples) in tree ensemble models as
well.

We introduce FATE, a tool based on grey-box fuzzers that is able to find adversarial examples on a multi-
tude of datasets. Using a custom mutator that leverages domain information as well as model-specific infor-
mation such as splitting thresholds and dataset-specific information such as training samples, FATE is able
to find good adversarial examples: for non-image classification models they are within 1 percent-point dif-
ference from examples generated by the state-of-the-art (Zhang et al., [48]). However, the coverage-guidance
of grey-box fuzzers actually limits the performance of FATE: running the mutator of FATE as a (1+1) Evolu-
tionary Algorithm makes FATE show competitive performance to the state-of-the-art, even outperforming it
on some datasets.

iii





Preface

This MSc Thesis describes work I have conducted at the Cyber Analytics lab at the TU Delft. Machine Learn-
ing models are increasing in popularity and are nowadays being deployed in safety-critical applications such
as automotive and aviation. The safety and security aspects of these models are however easily overlooked. I
am proud to have developed a novel method with which the robustness of machine learning models can be
evaluated.

Graduating during the Covid-19 pandemic was an extra challenge. Studying sessions that we were able to
organize towards the end of the lockdown, show the value of being able to discuss your project and have
some fun with other students. Nevertheless I learned a lot and enjoyed the project. I would like to thank
my supervisor Sicco Verwer for his enthusiasm, critical attitude and creative ideas. Furthermore, I would like
to thank Daniël Vos for his ideas, conversations and help in understanding the field of adversarial machine
learning for tree ensemble models. Thanks to Max and Dennis for their reviews of this thesis. Finally, I would
like to thank my family for their endless support and my friends for providing some essential distractions
from this project.

Cas Bilstra
Delft, July 2021

v





Contents

Abstract iii

Preface v

1 Introduction 1
1.1 Contributions and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Decision-tree based models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Adversarial examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Adversarial examples for tree ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.1 Adversarial examples for tree ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 Coverage-guided fuzzing for verifying (D)NN . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology 13
3.1 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Tree ensemble model to source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Processing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Fuzzing for adversarial examples 19
4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Fuzzer configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Custom mutator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Compiler optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Improving FATE by fuzzing smarter 27
5.1 Sources of information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 FATE with different fuzzing engines 35
6.1 AFL++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 libFuzzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Honggfuzz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



viii Contents

7 Fuzzing Efficiency 41
7.1 Coverage guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Seed selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4 FATE in comparison with the state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.4.1 FATE on unseen datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.5 FATE as standalone Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Conclusion 53
8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.1.1 Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.3 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 57

A Training Procedure 61

B Extra visualisations and tables 63

C Datasets 65
C.1 Breast-cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.2 Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.3 IJCNN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C.4 Covertype Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C.5 Webspam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
C.6 Higgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
C.7 MNIST 2 vs 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
C.8 Vowel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
C.9 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.10 FMNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

D Full fuzz target 71
D.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
D.2 Adversarial Example handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
D.3 Predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

D.3.1 Random Forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
D.4 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

D.4.1 AFL++ mutation library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
D.5 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
D.6 Fuzz function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D.6.1 AFL++ persistent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
D.7 Standalone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



1
Introduction

Machine learning (ML) has shown wide adoption in both research and industrial fields. It has shown to be
competent at complex tasks such as image recognition and is used in critical applications such as Automo-
tive, Aviation and Medical [23, 49]. Among the many kinds of machine learning algorithms, tree ensembles
are a popular choice for their competitive performance and high degree of explainability [24]. Although ma-
chine learning models often have high accuracy on their training- and test data, they have shown to be very
susceptible to noise in the input. This is not only the case for tree ensembles [11, 24, 48], but also for other
machine learning algorithms, such as the widely used Neural Network [38]. Through exploiting this suscep-
tibility for noise, an adversary can create an Adversarial Example (AE): by adding a small amount of forged
noise to benign input, it can make the model predict an unexpected class. An example of such an adversarial
example for a model trained to recognise digits (0 to 9) can be seen in Figure 1.1. On the first look both images
look similar. However when looking closer, small noise can be identified in the left image, making the model
predict the left image as an 8 instead of a 1. This can have potentially disastrous consequences when used
in critical applications. For example, researchers were able to make the Tesla autopilot switch lanes through
stickers on the road [1], or to trick a Tesla into speeding much above the speed limit [34]. Other use cases
for adversarial examples may for example be detection evasion in malware classifiers or ML-based Intrusion
Detection Systems. It is an active field in research how to create machine learning models that more robust
against these adversarial examples. In order to train and evaluate the robustness of machine learning models,
fast methods are necessary to create adversarial examples.

Figure 1.1: An adversarial example. Left: 8 (zoom in to
see the noise). Right (original): 1

The presence of a good adversarial example can be seen as a
bug in the model: for a certain input, the model produces unex-
pected output. Why not use one of the most effective tools for
finding bugs in software to find adversarial examples: a fuzzer.
Starting from a corpus of initial seeds (inputs), fuzzers feed big
amounts of randomly or evolutionary generated inputs to a tar-
get program. By monitoring which path through the source
code or binary is followed, the fuzzer determines if the input
reached previously unreached states in the target application.
If so, the input is deemed "interesting" and saved. By combin-
ing and mutating previously saved seeds it tries to penetrate
deep into the target application, with the goal of reaching as
many program states as possible to discover potential bugs. Fuzzers may use deep inspection of the target
or its execution to guide the mutation of input, by for example monitoring values used in compare instruc-
tions or by performing symbolic execution. Many fuzzers also allow the specification of a "custom mutator"
through which users get complete control over the mutation; allowing to incorporate domain knowledge into
the mutator. This way, many invalid inputs can be avoided (such as inputs requiring checksum fields) and
inputs can be created that are more likely to reach new states in the target.

Because of the high degree of efficiency with which the fuzzer can mutate inputs and execute the target pro-
gram, it can explore inputs and find paths that would be impractical to test using a traditional test suite.

1



2 1. Introduction

Fuzzers have shown to be very competent in finding bugs in code. For example, Googles "OSS-Fuzz" project
[19], which uses different kinds of fuzzers to search for bugs, has found over 25,000 bugs in 375 open source
projects from 2016 till January 2021. The famous "Heartbleed" bug in OpenSSL can for example be found by
a fuzzer within seconds. Apart from finding bugs, fuzzers have shown to be applicable to other problems as
well such as testing Neural Networks [32, 43] and attacking web-services [40].

1.1. Contributions and objectives
The main goal of this research is to reduce the problem of finding adversarial examples to a fuzzing problem.
We propose FATE: a tool to translate tree ensemble models such as Gradient Boosting and Random Forests to
(C++) code which can then be fuzzed by modern Fuzzing engines such as libFuzzer [29] and AFL++ [16, 46].
We show how FATE efficiently finds good adversarial examples on multiple datasets used in related literature
[2, 11, 48]. We improve the performance of FATE by exploiting information contained in the tree ensemble
models, training set and through information gathered during execution: for example, we use the splitting
thresholds from the decision tree nodes to mutate right on the decision boundaries of single trees, initialize
the fuzzer with forged samples using the training set and we bias the (magnitude of) features which should be
mutated based on runtime information. We show that the performance of FATE is close to the performance
of the current state-of-the-art adversarial example generation method (Zhang et al., [48]) for tree ensembles.
However, we show that the performance of FATE depends on its custom mutator instead of the fuzzing archi-
tecture itself. The performance of FATE when executing it as a standalone evolutionary algorithm is better
than executing it inside a fuzzer and can produce adversarial examples that improve upon the current state-
of-the-art. Finally, we show that fuzzers are able to find adversarial examples using their built-in mutators as
well using libFuzzer, honggfuzz ([21]) and AFL++. This thesis is divided into the following research questions:

RQ 1 How can Fuzzers be used to generate adversarial examples for Tree Ensembles? To use the strength of
fuzzers to find bugs in software, a reduction from machine learning model to source code should be
developed that can be fed to fuzzing engines such that they can identify adversarial examples.

RQ 2 How can Fuzzing for adversarial examples in Tree Ensembles be improved by leveraging information
sources? Fuzzing can be sped up considerably by writing a custom mutator and supplying it with good
initial input [25]. We achieve this through leveraging information from various sources and show how
this impacts the performance of FATE.

RQ 3 How does FATE perform with different fuzzing engines? FATE is developed around libFuzzer, but in this
research question we evaluate how FATE performs with different fuzzing engines.

The main contributions of this thesis towards the field are the following:

• A public implementation1 of FATE.
• We show that adversarial examples within 1 percent-point difference from the state-of-the-art can be

found by FATE using fuzzers, however this is mainly due to the smart mutator in FATE and not due to
the added benefits of using grey-box fuzzers, such as their coverage-guidance mechanism.

• We provide evidence that running the mutator of FATE in a black-box setting as a standalone (1+1)
Evolutionary Algorithm yields competitive performance to the state-of-the-art white-box LT-attack for
tree ensembles ([48]). As previous black-box attacks performed worse compared to the LT-attack when
used on tree ensembles ([48]), this opens up future research on the performance of this black-box at-
tack, which can be tested on other types of machine learning models such as Neural Networks as well.

1.2. Outline
In chapter 2 we provide a background in Fuzzing, adversarial examples and tree ensembles and show the
status of related work on the topic. In chapter 3 we introduce FATE. In chapter 4 we show that FATE is able
to find adversarial examples on a multitude of datasets and in chapter 5 we improve the adversarial exam-
ple generation strategy by improving the custom mutator and fuzzer initialization. chapter 6 explores the
performance of FATE using various fuzzing engines. In chapter 7 we investigate the influence of the coverage
guidance mechanism of grey-box fuzzers on the performance of FATE, we show our main results in section 7.4
and we validate the performance of FATE on two unseen datasets. Furthermore, in section 7.5 we show that
FATE has competitive performance to the state-of-the-art when executed as a standalone (1+1) Evolutionary
Algorithm. We conclude in chapter 8 with a discussion, conclusion and description of future work.

1https://github.com/cbilstra/FATE

https://github.com/cbilstra/FATE


2
Background

In this section we will provide an introductory background in tree ensemble models, we will discuss what it
means to search for adversarial examples in tree ensemble models and we establish a background on fuzzers.
We also describe the related work including the current state-of-the art for finding adversarial examples.

2.1. Decision-tree based models

Figure 2.1: A simplified decision tree that predicts main
occupation based on age and income

Decision trees are deterministic classifiers that are
fast to train and have a high degree of explainabil-
ity and interpretability. They are a popular choice
in both academic and industrial fields [24]. They
have the structure of a tree with at each node a split-
ting condition, which determines if either the left or
right branch of the node should be followed. The
leaves of the tree contain the prediction of the de-
cision tree and can be reached through providing
input within a certain range. For example in Fig-
ure 2.1, the left-most leaf will be reached for any in-
put that has a value <= 25 for the age feature. Un-
fortunately, decision trees suffer from both bias (un-
derfitting through being unable to grasp the relation
between features and the target output) and vari-
ance (overfitting on the training data through sen-
sitivity for small perturbations in the data). Apart
from classification, decision trees can also be used
for regression tasks. For example, based on age and
profession a decision tree could estimate the income of a person.

To combat the bias and/or variance of individual decision trees, they are often combined in tree ensemble
models, where multiple decision trees are trained and combined in a specific way. Through creating multiple
decision trees as smaller individual estimators and combining their predictions, the classifier becomes more
robust to small perturbations in the input. Random Forests and Gradient Boosting are the most popular types
of tree ensembles.

A Random Forest is an ensemble of decision trees where each tree is learned on a subset of the training
data and a subset of the available features (a bagging approach to reduce variance). As a prediction, the out-
put of the individual classifiers is combined, which makes the classifier more robust.

Gradient Boosting is an extension over normal boosting (where weak learners are iteratively added to the
classifier, focusing on examples that were misclassified by the classifier in the last iteration to reduce bias). It
uses a gradient descent algorithm to optimize a differentiable loss function. Individual decision trees are built

3



4 2. Background

one by one on different subsets of the training set, where the next tree is trained on the regression error of the
previously trained trees. In Gradient Boosting, trees are thus used as regressors that predict values instead of
probabilities. The initial prediction is modeled as for example the average value of the target column of the
training data. For multi-class classification, at each step a tree is trained for each class separately as a one vs
all classifier. The output is produced by summing the predictions (scaled by a learning rate) of the individual
decision trees. A value below 0 means a higher probability that the input belongs to class 0 (binary classifica-
tion) or a high probability that the input does not belong to a specific class (multi-class classification).

2.2. Adversarial examples
An Adversarial Example (AE) is a perturbed instance x ′ which differs a small amount from victim x (the
original data point), but when fed to a classifier C , the output for both instances differ, e.g. C (x) 6= C (x ′).
Finding the best possible adversarial example, i.e.

r∗ = mi nx′ d(x, x ′) |C (x) 6=C (x ′) (2.1)

with distance function d is NP-complete for tree ensembles [24]. Generating good adversarial examples is
important for assessing the robustness of ML models against unexpected input. It can also assist in adver-
sarial training, which helps making ML models more robust. Furthermore, it can be interesting to visualise
concrete adversarial examples to get an understanding for how a model makes its decisions.

Adversarial Attacks are algorithms that have the goal of finding a concrete solution r̄ which is an upper-
bound of r∗. Unless solving r∗ exactly, which is usually slow due its NP-completeness, attack algorithms
cannot provide any formal guarantee on model robustness other than the model not being robust to pertur-
bations bigger than the smallest r̄ found.

Robustness Verification algorithms try to find r∗ or a lowerbound r for a large set of victims. This guar-
antees that no adversarial examples exist within r distance from x. This is important for fields where machine
learning algorithms are used for safety-critical tasks, such as the control system of a self-driving car or for
aircraft control systems, where small adversarial perturbations may have fatal results [23].

An adversarial example can be found for any victim: if infinite adjustment is allowed, any point can be
changed to any point belonging to another class. It is thus important that the features of an adversarial ex-
ample do not differ too much from the features of the victim, i.e. they should be similar to each other. The
following measures are the most popular for quantifying distance [24] (with x f feature f of data point x and
x ′ an adversarial example for x):

1. L0 distance: the amount of changed features, also called Hamming distance. |{ f | x f 6= x ′
f }|.

2. L1 distance: the sum of differences of features.
∑

f |x f −x ′
f |

3. L2 distance: euclidean distance.
√∑

f (x f −x ′
f )2

4. L∞ distance: maximum difference of features. max f |x f −x ′
f |

When optimizing for a different distance measure, the generated adversarial example will often also be dif-
ferent. For example, L0 distance encourages a small amount of (large) perturbations, whilst L∞ encourages
(a large amount of) small perturbations.

Adversarial attacks can generally be split into two types. Decision-based attacks [6, 12, 15], often black-box
attacks, only observe the output (e.g. predicted class) of a target program or model. They typically start with
an initial adversarial example with large distance and try to minimize the adversarial perturbation along the
decision boundary. Due to black-box attacks not being dependent on the internals of the model, they can be
used to attack any kind of model. For tree ensembles they are usually ineffective due to the discrete nature of
tree ensemble models (many plateaus in the input space), while requiring a large number of queries [48].

Gradient-based attacks cast the attack into an optimization problem on a specially designed loss function,



2.2. Adversarial examples 5

where the gradient is deduced from either back-propagation (in Neural Networks) or based on soft-label out-
put such as confidence scores. A popular approach to generate adversarial examples in Neural Networks is to
use the gradient of the loss function, but this is impossible for tree ensembles: For each leaf of a decision tree
the prediction is deterministic and constant. This does not change when combining decision trees in a forest.
This makes the decision function a non-continuous step function, which means the gradient cannot be esti-
mated because every point in the input space is situated at a "plateau" where the decision does not change.
Gradient-based attacks are usually a white-box attack, due to the required information from the model, and
are thus often specific to a certain type of ML model.

2.2.1. Adversarial examples for tree ensembles

(a) The victim (black dot; original
class: benign, predicted class: benign)

(b) Failed attempt to create an
adversarial example (green dot)

(c) Adversarial example (green dot) (d) Optimal adversarial example
(e) Simple decision tree to attack

Figure 2.2: Adversarial Examples for a simple decision tree

Figure 2.3: Decision regions of a simple Random
Forest

Figure 2.3 shows the decision regions of a Random Forest
trained on a simple toy dataset with only two features. Blue
examples are "benign" while red examples are "malicious".
Likewise, blue regions are regions in the input space where
"benign" is predicted, while in red regions "malicious" is pre-
dicted. Finding the optimal adversarial example for a victim
means finding the closest boundary of the closest decision
region predicting another class and moving just beyond that
boundary. We demonstrate this in Figure 2.2 for a single deci-
sion tree: the victim x (lying close to a decision boundary) is
shown in 2.2a. A perturbed instance x ′ based on x is shown
in 2.2b. This instance lies close to x, it is however not mis-
classified and is thus not an adversarial example. The attack
algorithm continues searching for adversarial examples and at
some point finds 2.2c. This is an adversarial example for x as it
lies in a decision region where another class is predicted, how-
ever it is not the best adversarial example that can be found.
The best adversarial example would be 2.2d, having the short-
est possible L∞ distance to x while having a different predic-
tion.

Looking at the decision tree (Figure 2.2e) that produces the decision regions, the victim lies in leaf 1 (X < 5,
Y < 3). The adversarial example from 2.2c lies in leaf 2 (X < 5, Y > 3) and the optimal adversarial example from
2.2d lies in leaf 3 (X > 5). Note that each leaf in the decision tree determines the prediction for inputs in a part
of the input space. The path to each leaf poses constraints on possible inputs through which that leaf can be
reached. These constraints determine the boundaries of a region in the input space, called a decision region
or bounding box. Searching for adversarial examples in a decision tree thus means moving around the input



6 2. Background

space through adding perturbations to inputs, with the goal of discovering new leaves (decision regions) in
the decision tree that lie close (in feature space) to the leaf of the victim, while predicting another class than
the original class of the victim.

The victim we just attacked lied very close to a decision region predicting other classes, which means it
could be attacked by only modifying its features (moving around the victim) just a little bit. When victims
lie further away from decision regions predicting other classes, a larger perturbation is necessary to find an
adversarial example and it might thus be more difficult to attack such victims.

Finding adversarial examples for tree ensembles works similar to finding adversarial examples for deci-
sion trees. The difference is that for ensembles the decision regions are not determined by single leafs, but by
a combination of leaves: the prediction is made collectively through combining the predictions for the leaves
that are triggered in each tree t . Each tree (leaf) restricts the input to lie in a certain bounding box in input
space. The intersection of the bounding boxes for all leaves that are triggered determines the decision region
in which the input lies. Such a decision region exists for each combination of leaves in the ensemble that
can be reached, that is, when there is a non-empty intersection of the bounding boxes for that combination
of leaves. Each decision region of a tree ensemble classifier thus consists of a combination of leaves from
the ensemble. A new combination of leaves generally means a change in class-probability prediction. If this
prediction changes sufficiently, an other class will be predicted and an adversarial example is found.

Robust training can be used to make it harder to attack victims. Where normally Tree (Ensemble) training
algorithms determine the best splitting conditions based on the Gini impurity or Information Gain criterion,
some robust training algorithms also take into account that an adversary can perturb instances when calcu-
lating this criterion (Vos et al., [41]; Chen et al., [10]). They optimize for accuracy under attacker influence
while determining the best split. TREANT [8] optimizes any convex loss-function under attacker influence
but is more costly in runtime because it repeatedly applies a numerical solver. Andriushchenko et al. ([2])
derive a strict upper bound on the robust test error and show how provably robust tree ensembles can be
created in epsilon radius with respect to L∞ norm perturbations. Kantchelian et al. ([24]) use a form of adver-
sarial training by inserting adversarial instances (with the same label as the victim) with small distance to the
training points during each training iteration of Gradient Boosting models. However, by hardening the model
for L_0 norm perturbations this way, the model became more susceptible for L1,L2 and L∞ perturbations.

2.2.2. Images
Where small perturbations to continuous features may often not make the input invalid, images have the
characteristic that adversarial perturbations can alter the image significantly. Even if one perturbation (mu-
tation) may keep the image semantics, sequential mutations (which happens when fuzzing) can still make
the image "invalid". [43] performed a user study between perturbing with the L∞ norm and their proposed
conservative setting. Although their conservative setting yielded more valid images, L∞ turns out to be still
quite effective for images. They show that careful design and parameter tuning of the mutation strategy can
also help to reduce image invalidity ratio for particular application scenarios.

2.3. Search algorithms
To find adversarial examples, the input space should be searched for inputs that trigger new decision regions.
As the input domains are often large and multi-dimensional, performing a depth- or breadth-first exhaustive
search is often infeasible. When through the use of a heuristic (fitness function) the fitness of an input sam-
ple can be determined, algorithms can be used that are more efficient than performing an exhaustive search,
though they cannot guarantee that an optimal solution is found:

Hillclimbing is a local search method that gradually climbs the solution space to an optimal solution. It
repeatedly queries the fitness function to determine which neighbour of a point is the best, until no better
point can be found (the local optimum is reached). This is only possible for a continuous fitness function
that changes its output for any change in the input. Because of only evaluating its direct neighbours, this lo-
cal search algorithm generally only works well when the neighbourhood is well defined and not too large [47].

Randomized Hillclimbing is an extension to the Hillclimbing search method that changes it to global search:
instead of looking at all direct neighbours of an input, the input is mutated slightly and the mutated input
is then compared with the original input through the fitness function, continuing with the better of the two.



2.4. Fuzzing 7

It is important that through applying mutation successively, theoretically every point in the input space can
be reached in order to be able to find the optimal value. On the other hand the mutations should be small
enough such that an input is not completely replaced, which would result in random search. A mutation
should thus constitute a reasonable change to an individual that still maintains most of its traits [47].

Randomized Hillclimbing is otherwise known as the (1+1) Evolutionary Algorithm. Evolutionary algorithms
try to mimic the natural processes of evolution. DNA (the input) can mutate, and generally the strongest
strains (those with the highest fitness) will survive. This improves the general fitness of the population, which
will generally increase until some optimum. The (1+1) Evolutionary Algorithm is a specific case in which
there is a population size of 1 which produces 1 new mutation.

The most common evolutionary algorithm however is the Genetic Algorithm, which is based on the intuition
that problem solutions can be genetically encoded. Each part of the input describes a feature of the individ-
ual (e.g. hair color, or in the case of machine learning the general sense of a feature). Either through crossover
(combining, removing or adding pieces of strains) or mutating features from individuals, new individuals are
created which are then evaluated against the fitness function, keeping only the fittest few individuals. Both
crossover and mutation are probabilistic actions, which mean they may or may not happen and the outcome
will be different each time. A genetic algorithm is a global search algorithm, as through mutation it can reach
all possible inputs. Genetic Algorithms are flexible and generally scale well to larger test problems [47].

2.4. Fuzzing
Fuzzing is a concept first introduced by Miller et al. ([30]) in 1990. They showed that by feeding a lot of
random inputs to UNIX utilities, a lot of them would crash due to unexpected inputs. Since the introduction
in 1990 a lot of improvements have been proposed and fuzzers have shown their added value in finding bugs
in code [19]. Fuzzing is an active field of research, as shown by the amount of papers that propose or study
improvements to fuzzers discovered by recent literature studies ([9, 25]).

Figure 2.4: The high-level architecture of a typical fuzzer

Modern fuzzers such as AFL [46] and LibFuzzer [29] and their derivatives all use a similar structure [25],
which is summarised in Figure 2.4. The fuzzer first chooses the next input to mutate from the corpus, which
is in the ideal case seeded with example inputs before the first execution. This input is then mutated, either
by adding noise (mutation) or by combining the input with another input from the corpus by performing
crossover (inserting, deleting or swapping parts of the input). The new input is then fed to the target program
and executed. This execution is monitored by the fuzzer, which determines if the input was interesting (when
new behavior is discovered) through e.g. inspecting code coverage, output or instrumentation. If the input
was interesting, it is saved in the corpus to be fed in mutated form to the target application again later on.
Modern (grey-box) fuzzing can be seen as a genetic algorithm with the corpus being the population and code
coverage being the fitness function. Fuzzers are designed to detect bugs and crashes in software that are trig-
gered by unexpected input.

Access models Fuzzers can be divided based on the amount of information and access they use from the tar-
get application. Black-box fuzzers only monitor input/output behaviour such as crashes, timeouts and used
instrumentation. The typically only have access to the binary to be fuzzed. White-box fuzzers in contrary,
use heavy-weight program analysis, constraint solving and fine-grained execution monitoring [31]. They im-
prove mutation and monitoring by exploiting the semantics of the target application. Grey-box fuzzers are
a trade-off between black- and white-box fuzzers. They generally act on source code and use lightweight
program analysis techniques such as code coverage tracing and try to maintain the high execution rates of



8 2. Background

black-box fuzzers. Grey-box fuzzers are the type most commonly used, with popular examples being AFL
[46], LibFuzzer [29], VUzzer [35] and honggfuzz [21].

In general, fuzzers make a trade-off between better executions (e.g. by better estimating which inputs will
trigger new code coverage) and a higher number of executions per second. For example, in the time it takes
for a Directed Symbolic Execution fuzzer to execute a single input, a grey-box fuzzer can execute several or-
ders of magnitude more inputs [4]. Below, we describe the core components of a fuzzer in more detail.

2.4.1. Corpus
The corpus is a set of inputs (seeds) that the fuzzer has saved. These inputs should be as good as possible
at achieving the objective the fuzzer aims to reach. These inputs are often saved as files, such that they can
be shared between fuzzing runs. The corpus is initialized with initial seeds, arrays of bytes that ideally follow
interesting paths through the code. The quality of the initial seeds is very important for the performance of
fuzzers, and individual runs can differ a lot based on the initial seeds used [25, 28]. The seed should be both
small (not contain unnecessary information) and valid, to make sure they pass the input parsing stage which
is part of most applications and rejects most input. Fundamentally, a fuzzer can also be used without initial
inputs, but depending on the complexity of the input the fuzzer may have a lot of difficulty at penetrating
deeper into the target application (e.g. passing the parser).

Improving input selection can aid the performance of a fuzzer. For example [5, 7, 33] assign different en-
ergy values to seeds, increasing the chance that seeds are mutated that show interesting behavior. A concrete
implementation of [5] is available directly as an option for LibFuzzer. Based around the intuition that new
behaviour equals a gain in information, they use Shannon’s entropy to qualify how much is learned from new
behaviour. More energy is assigned to seeds that provided more information as it is more likely that mutating
those will also reveal more information. This energy determines the probability that a seed is chosen as the
next input for mutation. Odena et al. ([32]) show that uniform random seed selection worked acceptably well,
but in some cases fuzzing was sped up considerably by favoring more recently discovered corpus elements,
prioritizing the exploration of points further from the initial seed.

2.4.2. Mutation
The mutator of a fuzzer generates new input based on an existing seeds which can then be fed to the target
application. Its mutation strategies can be generalised into Mutation-based and Generation-based.

Mutation-based strategies are generally simple, fast and rely on random mutations and genetic operators
(crossover). Most fuzzers are mutation-based out-of-the-box because of their universal applicability [31].
This type of mutation may however cause the input to be rejected early if the generated input deviates too
much from the expected input format (e.g. when input files require a special structure that is parsed in the
target). Mutation-based fuzzers have been used extensively for security testing of applications [9].

Generation-based strategies can take into account the complexity of the input format and can therefore dras-
tically improve fuzzing performance. Examples of generation-based strategies are grammar-based mutation,
where "words" that can be present in the input which would be difficult for the fuzzer to find by itself are
supplied to the fuzzer. This speeds up the fuzzing drastically, especially for short runs [22]. Structure-aware
fuzzing uses custom mutators that implement the specific input format of the target application, thereby
allowing to for example provide correct checksum information, upon which the target application would
otherwise often fail. Others generate inputs according to a model or block [9] or train a Neural Network to
generate seeds with complex input format [18, 50]. Mutation strategies can also be combined by "stack-
ing": combining structural (high-level) and bit-level (low-level) operators together to generate interesting
inputs [33]. Generation-based mutation usually requires a new mutator or grammar to be implemented for
each new input format, which can be time-consuming or difficult due to complex input formats. In practise,
generation-based strategies may also be too slow for efficient fuzzing [44].

2.4.3. Monitoring
Monitoring is critical for a modern fuzzer as a way to provide some kind of fitness to inputs. Whereas simply
feeding random input to a target program can theoretically unmask any bug, chances that exactly the correct
input is guessed may be very small. Building upon an input that is known to have progressed towards the



2.4. Fuzzing 9

Figure 2.5: An example of a CFG of basic blocks

objective of the fuzzer intuitively improves upon starting with a clean sheet every execution. Different kinds
of fuzzers have different objectives and monitoring strategies.

bool FuzzMe(const uint8_t *Data ,
size_t Size) {

// Branch 0
if (Size == 3) {

// Branch 1
if (Data [0] == ’H’) {

// Branch 2
if (Data [1] == ’i’) {

return Data [2] == ’!’;
}

}
}
return false;

}

Listing 2.1: Example fuzz target

Coverage-guided fuzzing records which code re-
gions (basic blocks) are reached by inputs. Using
a control-flow graph (CFG) such as in Figure 2.5, it
can identify basic blocks in the target that have not
yet been reached by previous executions. The goal
of a coverage-guided fuzzer is to cover every edge
in the CFG, which corresponds to visiting every ba-
sic block from every basic block from which it can
be reached. Through instrumentation inserted at
compile-time the fuzzer tracks if new edges in the
CFG have been covered during execution [29]. If so,
the coverage-increasing input is saved to the corpus.
An example fuzz target can be seen in Listing 2.1.
A coverage-guided fuzzer will for example remem-
ber input which satisfied the condition of branch 0,
with the goal to satisfy branch 1 and further. This
allows the fuzzer to progress further in the source
code step by step. This way the fuzzer can generate
fairly structured inputs, although fields like checksums will be very difficult for a standard coverage-guided
fuzzer.

Coverage-guided fuzz testing is more effective in improving coverage than random testing [32], especially
for criteria that are difficult to cover [43]. Furthermore, coverage-guided fuzzing is generally more scalable
than techniques like symbolic execution (which can also solve path constraints) because the time for one test
depends on the execution time of the program rather than the size or complexity of its input [3]. This high ef-
ficiency of coverage-guided fuzzing strongly contributes to its performance [4]. In addition, coverage-guided
fuzzing is highly parallelizable because the seed files represent the internal state of the program, without
any required additional synchronization between fuzzing instances. For grey-box coverage-guided fuzzers,
coverage tracing is generally the most time-consuming task [31].

Böhme et al. ([7]) show that there are high- and low density regions in the code coverage exercised by
a fuzzer. Most inputs exercise a few high-frequency paths, which is often the path taken for invalid inputs.
Just 10% of all paths are exercised by only a few inputs. These represent the valid and interesting inputs.
Approaches such as AFLFast [7] prioritize fuzzing low-frequency paths with the goal of discovering more in-
teresting inputs.

Directed fuzzers aim to reach specific locations (code regions) in the target, contrary to coverage-guided
fuzzers which aim to reach every code region in the target. The rationale behind directed fuzzers is that it is
wasteful to allocate resources to reach code regions which are not interesting or unrelated to finding bugs.
They change the fitness function from code-coverage to (basic-block) distance to the target location. When



10 2. Background

only a small set of pre-determined parts of the code needs to be tested directed fuzzing can greatly speed up
the fuzzing process.

Symbolic Execution can be used to aid in traversing conditional guards that are difficult for the fuzzer to
guess. For example conditions that contain "magic numbers" may otherwise be difficult to guess for a mutation-
based fuzzer: if in Listing 2.1 branch 1 would be if (x == 42.6662997), a fuzzer which does not use some
kind of magic number analysis might not find an input with x == 42.6662997 quickly. Symbolic execution
is then used to determine how x can get the value 42.6662997. When using symbolic execution in combina-
tion with SMT solvers, the amount of coverage-increasing inputs can be significantly increased at the cost of
much lower execution speed of the target [31].

Next to observing code coverage, fuzzing approaches may also observe instrumentation to qualify inputs, or
observe any output given by the target (e.g. crashes, return codes, runtime of an input), especially in black-
box settings where the source code is not available. Rawat et al. ([35]) use static analysis to assign different
rewards to program locations to be reached based on how deep that location resides in the CFG and how likely
it is that traveling through that location will result in a triggered vulnerability (through error-handling block
detection). They combine static analysis (constant string extraction and the basic block weight calculation)
with dynamic taint analysis and basic block tracing, which has a lot less overhead than symbolic execution
but achieves similar goals. Chen et al. ([13]) try to improve on symbolic execution fuzzing in solving path con-
straints by byte-level taint tracking, context-sensitive branch count, path constraint search based on gradient
descent and input length exploration.

2.5. Related work
In this section we discuss the state of the art for generating adversarial examples for tree ensembles. We also
discuss recent usages of fuzzers for verifying other types of machine learning models.

2.5.1. Adversarial examples for tree ensembles
Kantchelian et al. ([24]) developed a formulation to find optimal adversarial examples using a MILP solver.
This formulation is the current state-of-the-art for finding optimal adversarial examples for tree ensemble
models. They encode the predicates (if a splitting condition is either true or false), the leaf variables (whether
a prediction leaf is active) and an objective variable for the L∞ norm. They enforce consistency in the en-
semble (e.g. the predicates leading to a leaf should be satisfied if that leaf is active, exactly one leaf should be
active per tree) using constraints. To find adversarial examples, a constraint is added that the victim should
be mislabeled. E.g. if the victim belongs to class 0, the sum of the leaves of the perturbed instance x ′ should
be bigger than 0 (for binary-class gradient boosting). This formulation is then solved using a branch-and-
bound approach by a MILP solver. All variables of the formulation are linear except the variables that decode
if a node is part of the path to the currently activated leaf. These are first set to linear variables 0 ≤ pi ≤ 1
and solved quickly using Linear Programming. This yields approximate answers for which the approach is
executed again using Mixed Integer Linear Programming (MILP), encoding p as a binary variable again (val-
ues close to 0 will be treated as 0 and values close to 1 will be treated as 1). The solver proves optimality by
approaching the problem from two sides: it finds valid adversarial examples using the Primal while trying to
prove that the adversarial example cannot be improved upon using the Dual. The Dual proves that the clas-
sification of a victim cannot be changed without perturbing the features with a certain distance. When the
primal and dual solution are equal, e.g. an adversarial example is found with distance 0.12 and it is proven
that the minimal adversarial perturbation should be 0.12 as well, an optimal adversarial example is found.
This approach however takes exponential running time, as Kantchelian et al. showed by a reduction to the
NP-complete 3-SAT problem. The runtime of this algorithm can be potentially improved by only calculating
the Primal and returning if no improved adversarial example is found within some amount of time.

Zhang et al. ([48]) transform the input space Rd to a discrete Leaf-tuple space {1,2, ..., N }K with N the maxi-
mum number of leaves per tree and K the number of trees. Each leaf poses constraints on the possible values
of features required for reaching that leaf, corresponding to a bounding box in input space. The bounding
box of a leaf tuple is defined as the cartesian product of the bounding boxes of the individual leaves. Within
that bounding box, the closest possible point x ′ based on distance measure d is selected with regards to the
victim x. With the number of trees that have different prediction leaves as distance measure, they search the



2.5. Related work 11

neighbourhood with distance 1 of each tuple, i.e. all leaf combinations with one different prediction leaf that
are valid (when there exists a point x ∈ Rd that can trigger that leaf combination). Doing this naively, e.g.
using a model query to determine if a leaf tuple is valid for each possible tuple, is too costly. They utilize the
fact that only the leaves of trees that are bounding x ′ (when the selected leaf of tree t is constraining the value
of x ′ to move in at least one direction) need to be changed. This way they only need to investigate a subset of
the neighborhood at each iteration.

Their LT-attack consists of an outer loop (iterating until no better adversarial example is found) and an
inner loop (generating and searching the bound neighborhood with hamming distance 1). The Inner loop
computes the trees that are currently bounding x ′ and runs a top-down traverse for each bound tree with
the intersection of the other bounding boxes B−(t ). A leaf of that tree forms a valid tuple if it has non-empty
intersection with B−(t ). B−(t ) can be efficiently obtained through caching the K bounding boxes in B’ and
maintaining a sorted list of right and left bounds. The attack then enumerates all leaf tuples in the bound
neighborhood, thus the complexity of the algorithm depends on the size of this neighborhood. They show
that the size of this neighborhood is generally acceptably small for real-world datasets.

They seed the algorithm with n random initial adversarial points, which are first improved by a fine-
grained binary search. In theory, through multiple smaller neighbourhood updates an adversarial example
far away can be reached. Their method can be adapted to any distance metric and is next to the attack from
[24] the only white-box attack specifically designed for tree ensembles. By also searching in neighborhoods
with larger hamming distances, optimal adversarial examples can be found. This however greatly increases
computational time.

Andriushchenko et al. ([2]) propose the CUBE attack, a randomized hillclimbing (1+1 Evolutionary Algo-
rithm) black-box approach for L∞ norm distances. At every iteration a random subset of the features is
mutated with ±2ε with probability p, and afterwards projected such that the new data point x ′ lies within
a ball with radius ε from victim x. Fitness is calculated by the functional margin, which they minimize (thus
working towards an adversarial example of which the classifier is more and more certain it must belong to a
different class than the original class). Adversarial examples are always situated at the corner of the feasible
set, which is also the disadvantage of CUBE. They however empirically show that in practise not many deci-
sion regions are missed because of the small size of the L∞ balls.

Cheng et al. ([15]) introduced Sign-OPT, a query-efficient decision-based black-box (hard-label) attack. They
use the formulation of [14], that allows the problem of finding the minimum adversarial perturbation to be
reformulated as another optimization problem which often has a smooth boundary. Cheng improves this by
proposing an evaluation of the sign of the directional derivative which only uses a single query, resulting in
an attack that is extremely query efficient.

Chen et al. ([12]) introduce the HopSkipJumpAttack (HSJA), another query-efficient decision-based black-
box attack. It uses binary search to identify the decision boundary between two points from different classes,
and by leveraging gradient estimation of the decision boundary it is able to find adversarial examples with a
small amount of queries. It generally performs better (mainly time-wise) than Sign-OPT [48].

Yang et al. ([45]) proposed RBA-Appr. The attack is developed around the fact that for e.g. k-NN and Random
Forest classifiers, decision regions can be decomposed in convex sets. The intuition behind the attack itself
is that when the closest decision region in the decomposition that predicts another class than the original
class of the victim can be identified, an optimal adversarial example can be found. They develop an exact
algorithm that searches over all decision regions, however this algorithm is very slow at it solves an NP-hard
problem (as shown by Kantchelian et al., [24]). Decision regions predicting other classes reside around train-
ing samples of other classes than the class of the victim. They thus perform a search over training points
close (in Lp distance) to the victim, creating a subset S′ ⊆ S of all polyhedrons. These polyhedrons are then
attacked with the exact algorithm, resulting in a much lower (and feasible) running time of the attack.

Comparing all these attacks, Zhang et al. ([48]) show that their LT-attack finds the best adversarial exam-
ples (not taking into account the exact MILP attack of [24]) on a wide variety of datasets, while generally also
having the fastest runtime.



12 2. Background

2.5.2. Coverage-guided fuzzing for verifying (D)NN
Fuzzers have been used before to test machine learning models, namely (Deep) Neural Networks. Odena et
al. ([32]) created TensorFuzz, a coverage-guided fuzzing framework for discovering errors in Neural Networks
that occur for rare inputs. They show that trivial coverage metrics are too simple for measuring coverage
in Neural Networks, so they used an Approximate Nearest Neighbour algorithm to measure coverage. They
combine this with Property-Based Testing through objective functions to for example identify broken loss
functions.

Xie et al. ([43]) also created a coverage-guided Fuzzing framework for testing DNN. They perform better than
TensorFuzz on their datasets for image recognition. They focused specifically on images, and showed that
through combining multiple Lp norms images can be generated that have a higher validity ratio than only
using the L∞ norm. They experimented with multiple seed selection algorithms as well as different coverage
measures. For their approach Probabilistic seed selection works best.



3
Methodology

Figure 3.1: A high-level overview of FATE

In this section we introduce FATE, a tool to translate tree en-
semble models to a C++ target which can then be fuzzed for
adversarial examples by general-purpose fuzzers. We custom
design all parts of the fuzzer that are most important for good
fuzzing efficiency ([25, 27]): the initial seeds, the mutator and
the way we test the target through an objective function. A
high-level overview of the architecture of FATE can be seen in
Figure 3.1. A tree ensemble model is first trained on the train-
ing data. We use scikit-learn for this step, but models can also
be trained using other libraries such as XGBoost [42]. This
model is loaded into FATE which translates the model to source
code, combining it with an objective function that identifies
and saves adversarial examples. This source code is then fed to
a fuzzing engine which starts searching for adversarial exam-
ples for victims in the testing set that are correctly classified by
the model (otherwise the victim itself would be an adversarial
example). The fuzzing engine keeps generating large amounts
of inputs while the objective function that we injected into the
source code checks if the input resembled an adversarial exam-
ple. The fuzzing engine keeps running until instructed to stop
by FATE. FATE then processes all adversarial examples found by the fuzzer, keeping the best adversarial ex-
ample per victim. The overview shows that FATE is agnostic of training procedure or dataset, although we
assume all data used for training and testing is in the range [0, 1] to maintain general applicability between
datasets. FATE is designed using libFuzzer [29] as a fuzzing engine, but other fuzzers are evaluated as well in
chapter 6. The individual components of FATE are discussed in more detail below. Implementation details of
the fuzz target itself together with textual explanations are provided in Appendix D.

3.1. Fuzzing
Although fuzzers exist that are designed specifically for certain frameworks, such as TensorFuzz [32] which is
designed to be used solely with TensorFlow, we created an approach which is easily transferred between dif-
ferent fuzzers such that FATE can easily make use of new breakthroughs in fuzzing through changing fuzzers
in the future if necessary. Fuzzers generally act on either binary programs or source code. When the source
code for an application is available that option is preferred, as that gives more options to the fuzzer for e.g.
instrumentation. We translate the tree ensemble model that should be fuzzed to C++ source code because
popular fuzzers are generally able to fuzz C++ source code directly. Also, C++ is renowned for its speed.

We develop FATE around libFuzzer, a fuzzer that is subject to recent research ([25], [5]), under active
development [29] and successful in identifying bugs [19]. For example AFL(++) also satisfies these criteria,
but in general libFuzzer is a bit faster in execution speed, despite requiring more setup [22].

Grey-box fuzzers such as libFuzzer try to penetrate deeper in the target through continuously mutating

13



14 3. Methodology

seeds that previously increased basic block coverage. In the source code we generate, increasing basic block
coverage should thus be strongly related to finding more and better adversarial examples such that the ob-
jective the fuzzer tries to optimize strongly resembles finding good adversarial examples. Recalling from
chapter 2, coverage in the tree ensemble is necessary for finding adversarial examples, but also for improving
them. A substantial part of the coverage that can be reached in the target should thus be basic-block coverage
in the tree ensemble.

For all but the smallest models, the most basic blocks (up to 44 MB of source code for the biggest models)
in the produced C++ code are part of the tree ensemble. Code branches other than the ones in the tree
ensemble mainly reside in the objective function (ca 450 lines of code) and in the functions used for mutating
and producing the correct output of the tree ensemble (ca 400 lines of code). Increasing code coverage thus
mainly means that more leaves of the tree ensemble are explored.

3.2. Tree ensemble model to source code
Tree ensembles consist of multiple decision trees as weak learners, which are trained and combined in differ-
ent ways. We thus need to rewrite both the single decision trees and the way they are combined to C++ code.
Translating a single decision tree to a function is trivial: each splitting condition produces an if-else branch,
with the leaves determining the values returned from the function. Figure 3.2 shows a simple decision tree
(out of a Random Forest) with the produced C++ code next to it. As all data is pre-processed to be in range
[0, 1] per feature, age 25 equals a feature value of 0.25 in the first split (the age column has range [0, 100])
and an income of 200 equals a feature value of 0.04 in the second split (The income column has range [0,
5000]). Each of the leaves returns a probability that the input belongs to either one of the classes (Student,
Unemployed, Employed).

double* tree_0(double features []) {
static double res [3];
// splitting threshold 1
if (features [0] <= 0.25) {

// leaf 1
res [0] = 0.8; res [1] = 0.1;
res [2] = 0.1; return res;

} else {
// splitting threshold 2
if (features [1] <= 0.04) {

// leaf 2
res [0] = 0.3; res [1] = 0.7;
res [2] = 0.0; return res;

} else {
// leaf 3
res [0] = 0.3; res [1] = 0.0;
res [2] = 0.7; return res;

}
}

}

Figure 3.2: Simple decision tree as code

To create a functional tree ensemble model in C++, we need to combine the outputs of these decision
trees in the correct way. Please refer to section D.3 for the actual C++ implementation. For Random Forests,
the class-probability outputs of the individual decision trees are summed and the class with the highest sum
of probabilities is predicted.

For Gradient Boosting, the outputs of the decision trees are single values as the decision trees are now
used as regressors. Outputs of single trees are scaled by a learning rate and added to the initial prediction.
The class with the highest sum s is predicted. For binary classification, the class-output probabilities are
calculated as [1− l , l ] with l = es

1+es . For multi-class classification, for each iteration (tree) a separate decision
tree is trained for each class as a one-vs-all classifier. Each of these sub-trees thus computes the regression



3.3. Mutation 15

value for one class. For class i , the prediction for each tree ti is scaled by the learning-rate and summed to
zi . The probability of the input belonging to class i is then calculated with a softmax function σi = ezi∑

j e
z j .

These are the default combination techniques for scikit-learn [36], which we used to train our models. Other
combination techniques are currently not supported, but can be easily added to FATE.

3.3. Mutation
The input to the fuzzer is a list of bytes (doubles) representing the values of single features. This can be seen
as a sequence genetic encoding with the features being the genes. Grey-box fuzzers like libFuzzer act like a
genetic algorithm. They randomly mutate the genes (bytes) and code coverage acts as the fitness function:
when new coverage is discovered the seed is saved as a member of the population to be mutated later. This
allows the fuzzer to explore beyond the nearest neighbours of seeds: larger steps can be taken around the
input space. This is necessary because the decision surface of tree ensembles has a lot of regions (plateaus)
in which the decision is not altered by moving towards the direct neighbours of a point: the discrete steps of
the single trees combined together form a bounding box which produces the same output.

Fuzzers generally mutate bytes in the input randomly or using information gathered from either the
source code of the target or previous executions. For example, some fuzzers are able to record which val-
ues are used for compare instructions and can insert those values at the correct locations in the input to try
to penetrate deeper into the source. As we a creating the target ourselves, we already have more knowledge
than the fuzzer beforehand though: as all input resides in the domain [0, 1] for each feature, we can already
improve the fuzzing a lot by only searching on that interval instead of also investigating values outside that
domain. To this extend, fuzzers such as libFuzzer allow "custom mutators" that give all the control of mu-
tating bytes to the user. Writing a custom mutator allows us to incorporate knowledge about the model and
victim during mutation which we explore in chapter 5. The mutator can either be used in a white-box setting,
where we can use information specific to a certain type of model such as splitting thresholds for tree ensem-
ble models, or in a black-box setting where we cannot use this model-specific information and only execute
(query) the model and observe the hard-label (prediction) and soft-label (class probabilities) output. Apart
from section 7.5, throughout this thesis the white-box setting is assumed. In chapter 7 we further explain
what information of the model we use in the white-box setting. Below, we introduce the baseline mutator of
FATE. As we only test with L∞ distance, the mutation function is also optimized for this distance measure.
Some of these optimizations may not apply for other distances and when testing with a different distance it
could be beneficial to adjust the mutation function or settings.

3.3.1. Baseline

Figure 3.3: Gaussian distribution with µ= 0,σ= 0.34

We implement a generation-based mutator: We use
the domain knowledge that all data should be in the
range [0, 1] to only mutate features within this valid
range. Each feature (gene) is mutated with a proba-
bility p which is a common approach [47]. p is ini-
tially set to 0.1 such that an input will generally not
change too much during a mutation. It is unnec-
essary to mutate features that never occur in split-
ting conditions: their value does not influence the
outcome of the model. We exclude those features
from mutation as their original value will be the best
value. Fuzzers consecutively apply mutations for 1
to mutation-depth times randomly. For libFuzzer,
mutation-depth = 5 by default. This, together with
mutating each feature with chance p, allows muta-
tions of multiple features at the same time such that the fuzzer can more easily jump over local extremes in
the decision surface. Mutations are drawn from a Gaussian distribution (µ= 0,σ= 0.34, shown in Figure 3.3)
to favor smaller mutations such that the mutation will create new individuals that mostly maintain its orig-
inal traits [47], while also allowing to explore points further away with a smaller probability. The standard-
deviation is chosen as 0.34 such that it is just possible to have a complete mutation of a feature (±1), although
with a very small probability.

In this work we concentrate on fuzzing datasets consisting of continuous features, even though fuzzing



16 3. Methodology

discrete features could also be suitable for a fuzzer due to the limited amount of possible values per feature.
The L∞ norm is less meaningful for discrete features though: what would be the distance between two dis-
crete choices? For attacking discrete features refer to [26]. We also implement an ε restriction, which limits
all mutations to be within an ε radius around the input. To recall, a mutation of 0.1 resembles a 10% point
difference of the feature. An ε value of 0.1 thus restricts mutations to 10% point from the seed that is mutated.
The neighbourhood N of seed s is thus bounded by md consecutive ε-balls, with a much higher probability
that the mutated input will reside close to the center of the first ε-balls because of the Gaussian distribution.
Through continuously applying mutations on top of each other, theoretically inputs over the whole input
space can be reached. As seeds are saved when they discover new coverage in the source code, mutations can
gradually explore the input space by continuously mutating the newly found seeds.

Fuzzers, like genetic algorithms, also use crossover functions. The built-in crossover function of libFuzzer
inserts, deletes and combines bytes of seeds. For our use-case, inserting or deleting bytes has no meaning,
as the input always needs to resemble n features. Insertion and deletion are thus removed and the crossover
function only splits and combines two seeds at a random feature index. The crossover function allows com-
bining features of two different seeds which potentially discovers completely different combinations of leaves
in the Forest.

3.4. Objective function
Fuzzers generate large amounts of mutated inputs, and we need to distinguish which of these resemble ad-
versarial examples. Odena et al. ([32]) used an objective function to assess whether the neural network they
were testing reached some particular erroneous state. This can be seen as a form of Property-Based Testing
with the property being violated the behaviour we are interested in. FATE uses such an objective function to
identify adversarial examples. As fuzzers such as libFuzzer try to optimize basic-block coverage, the objective
function plays an important role in translating basic-block coverage into finding (better) adversarial exam-
ples. First of all, much coverage in the objective function should generally mean finding a good adversarial
example. Furthermore, the objective function should give a kind of "directedness" to the fuzzer: the fuzzer
saves inputs that reach new code branches and those branches should work towards an optimal adversarial
example. The fuzzer must also always have the current best adversarial example in its corpus such that it
can mutate further on that example. The objective function used by FATE achieves these goals and is shown
simplified in Figure 3.4. For the actual code please refer to section D.5. The objective function first calcu-

void check(double fuzzed_features [], double original_features [],
int fuzzed_class) {

double distance = l_inf(fuzzed_features , original_features);
if (fuzzed_class != original_class) {

if (distance <= 1.0) {
dummy_var = 0;
if (distance < 0.99) {

dummy_var = 1;
...

if (distance < 0.01) {
dummy_var = 7;

}
...

}
}

}
if (distance < best_distance) {

best_distance = distance;
interval = round(distance , 5);
write_if_not_exist(interval , fuzzed_features);

}
}

Figure 3.4: Objective function



3.4. Objective function 17

lates the distance between the current features and the victim. If the current input is an adversarial example
(fuzzed_class != original_class), the seed triggers different distance branches with decreasing adver-
sarial distance. If the distance is lower than previously seen, a new branch will be triggered and the input
saved by the fuzzer. The best known adversarial example will thus always be known as a seed by the fuzzer
and when the fuzzer reaches more coverage in this objective function, it per definition finds better adver-
sarial examples. In chapter 5 we experiment with different intervals between the distance branches; this is
a trade-off between the amount of seeds in the corpus (if a very small improvement triggers an input to be
saved the size of the corpus can grow very quickly) and accuracy (the fuzzer will probably find better adver-
sarial examples when the best known adversarial seed is close to the actual best adversarial example found by
the fuzzer). In every branch a dummy variable is referenced. We do this to make sure the distance branches
are not simplified when the compiler optimizes the code. This dummy variable is printed in a piece of code
(shown in section D.6) that the fuzzer will never reach, which the compiler cannot know.

The created adversarial examples need to be saved for later processing in FATE. Fuzzers expect the target
to be stateless: saving these adversarial examples in the fuzzing engine itself and communicating them to
FATE after execution would require alteration of the fuzzer engine itself and would make the approach much
less transferable between different fuzzers. One option is to parse all seeds in the corpus, as the best known
adversarial example is just a seed in the corpus. This is however problematic as some of the seeds may not
be adversarial examples because new coverage can originate from e.g. new coverage in the forest branches as
well. Running all the seeds through the model again to check if they are adversarial examples is costly: there
can be tens of thousands of seeds. We can however initialize a bit of memory in the target - before the fuzzer
starts testing different inputs - where all individual fuzzing runs can read from and write to. We leverage this
to save the distance of the current best adversarial example. A newly discovered adversarial examples is then
only saved to a file if it improves upon the current best known adversarial example. Saving the best known
adversarial example introduces state in the fuzzer which should generally be avoided. For our use case this
works though as we only fuzz each victim with one thread at a time, so concurrent memory writes are not
possible. Furthermore, the amount of information we save is limited to a double only.

Our hypothesis is that the directedness of the structure of the objective function towards finding smaller
adversarial examples may be very suitable for directed fuzzers. When setting the target of a directed fuzzer to
the branch with the smallest adversarial distance, the fuzzer will prioritize seeds that work towards triggering
that branch. This way coverage-guidance in the Forest can still improve the fuzzing performance, but cov-
erage in branches of the forest that do not influence the capability to trigger the target branch (a very small
adversarial example) will distract the fuzzer less. The potential use-case for a directed fuzzer is also why the
if-branches are nested. The if-branches do not necessarily have to be nested: for normal fuzzers the same
result will be achieved by just putting the if-statements below each other on the same level. However, the
nesting can tell a directed fuzzer an accurate basic-block distance from the current best known adversarial
example to the target branch. This structure is thus favored for future tranferability to a directed fuzzer. We
run all of our experiment for L∞ distance, but the structure of the objective function works for any kind of
monotonically decreasing distance measure: if the distance is lower than previous inputs the input will be
saved and improved upon. FATE is extensible for different distance measures.

Saving all adversarial examples the fuzzer discovers can put too much stress on the file-system though and
may become a bottleneck. adversarial examples are thus only saved if their distance to the victim (rounded)
has not been saved before. This can be easily verified by making the filename of an adversarial example
deterministic. By performing a quick (this can easily be executed more than a million times per second on
a laptop) stat call (requires a POSIX-compliant system) in the write_if_not_exists function the target
knows whether to perform the more expensive file-write or not. Our objective function thus keeps expensive
file-write operations at a minimum while only examples that improve the best known adversarial example
will saved to the corpus. Other layouts for the objective are also possible, which we describe and experiment
with in chapter 4.

The objective function as specified above acts on one side of the decision surface: when an adversarial
example is found. But when finding an adversarial example is difficult, the fuzzer will spend a lot of time
performing a random search until the first adversarial example is found. To solve this, an extra descent can be
added based on the probability of input belonging to the original class. The rationale behind this is that when
the probability of the input belonging to the original class decreases, the probability of the input belonging
to one of the other classes will per definition increase. This will thus move the fuzzer towards finding an
adversarial example. Pseudocode of the descent is shown in Figure 3.5. The descent acts on the else branch
of the statement if (fuzzed_class != original_class) of the objective function from Figure 3.4. A



18 3. Methodology

potential drawback of this approach is that it does not take into account the distance between the current
seed and the victim, which means seeds with very bad adversarial distance may be saved by the fuzzer. Again,
a dummy variable (printed in a piece of code the fuzzer will never reach) is referenced in each branch to make
sure the compiler will not optimize the structure of the branches. Different approaches will be tested and
described in chapter 5.

void check(double fuzzed_features [],
double original_features [],
int fuzzed_class ,
double proba_original) {

// ...
else {

if (proba_original <= 1.0) {
print_this = 0;
if (proba_original < 0.95) {

print_this = 1;
// ...
if (proba_original < 0.01) {

// Something that will not
// be compiled away
print_this = 6;
write_if_not_exist("p0.txt")

}
}

}
}

}

Figure 3.5: Descent on probability of the sample belonging to the original class

In conclusion, the objective function will assist the fuzzer into finding adversarial examples, but it cannot
guarantee that it will find an adversarial example as the fuzzer still depends on random mutations. The fuzzer
is thus sound, but incomplete. The objective function can be easily modified or changed to test the model for
different objectives. It can for example be changed to do a targeted attack by changing if (fuzzed_class
!= original_class) to if (fuzzed_class == target_class).

3.5. Processing results
Adversarial examples identified by the fuzzer are saved to files, which are processed to provide statistics about
their quality afterwards. For each victim, the best adversarial example is selected based on L∞ distance. After
each fuzzing run, basic block coverage is measured through SanitizerCoverage feedback (The clang/LLVM
method of providing coverage information, also used by libFuzzer) and saved. We verified that the C++ target
and the scikit-learn model produce the same predictions. It turns out that very rarely (generally « 1% of
all examples) an example that is found is not adversarial due to floating-point inconsistencies between the
scikit-learn model and the fuzzing target. We allow these floating-point misclassifications as it must mean
that an adversarial example can be created by changing one or more features by a negligible amount. We also
allow these float misclassifications for the methods we are comparing against.



4
Fuzzing for adversarial examples

In this chapter we verify that with FATE as introduced in chapter 3 adversarial examples can be found for
most victims on a multitude of datasets used in related work. We identify a good basic setup for the fuzzer,
such as what the initial seeds should be. Grey-box fuzzers act like Genetical Algorithms, for which it is typical
to require hyper-parameter tuning. We thus identify the default parameters for settings such as mutation
depth.

4.1. Experimental setup
All experiments are conducted on a HP Zbook studio G5 x360 laptop with an Intel i7-8750H CPU @ 2.20GHz (6
cores, 12 threads). Unless mentioned otherwise, experiments are repeated 5 times for the same 50 victims per
dataset. Victims are only attacked if they are correctly classified by the model: as models often do not have
100% accuracy, some testing set samples are misclassified with their original features which would make
them an adversarial example of itself. Repeating the experiments is important to attribute for OS noise and
randomness in the fuzzer. To reduce the influence of OS noise even more, 10 threads are used such that 2
threads stay available to handle general system tasks. The datasets are introduced in Appendix C. They are
selected based on their occurrence in related work [11, 48] and vary in the size of their respective models,
number of features and number of classes. An overview of the training procedure for the models is shown in
Appendix A.

Most experiments are deducted on the Gradient Boosting models only. We show the performance of the
Random Forest models only for the final setup in chapter 7 to limit the number of experiments that needs to
be executed. Multiple victims are attacked concurrently on m threads. When a victim is fuzzed for s seconds,
the average execution time shown is calculated as s

m as in s seconds m victims can be attacked simultane-
ously. In the tables showing the experimental results in this and the following chapters, r̄ shows the average
L∞ norm adversarial distance over the victims that were attacked, with a lower r̄ meaning that on average
better adversarial examples are found. The value reported is the average adversarial distance over 5 runs. n
shows the number of victims that could be attacked, again averaged over 5 runs.

Table 4.1: Baseline performance

Baseline

Dataset r̄ n
Breast-cancer 0.2244 50
Diabetes 0.095 50
IJCNN1 0.1756 50
Covertype 0.2229 50
Higgs 0.1563 50
MNIST 2 vs 6 0.5113 22.8
MNIST 0.538 38.2
FMNIST 0.5537 20.2
Average 0.3097 41.4

In this chapter we will tweak basic settings of FATE. We start
using a baseline with sensible default values:

• Mutation chance: 0.1 (to keep most traits of an input)
• Mutation depth: 5 (default of libFuzzer)
• Epsilon radius: 0.5 (a trade-off between being able to at-

tack many victims but with not too large adversarial dis-
tances)

• Custom Mutation and crossover functions as described
in chapter 3

• Corpus initialization with the victim features only
• Gaussian mutation distribution
• Distance intervals of 0.005 for the objective function for

fine-grained directedness in this function.
All datasets are fuzzed for 2 seconds per victim except MNIST

19



20 4. Fuzzing for adversarial examples

and MNIST 2 vs 6 which are fuzzed for 10 seconds due to their
higher difficulty and larger size. The performance of the base-
line is shown in Table 4.1.

4.2. Objective function
As explained in chapter 3, the objective function plays a role in directing the fuzzer towards good adversarial
examples. The layout and performance of this function are thus important for the performance of FATE. We
experiment with three different layouts:

Listing 4.1 shows "Include else branches" where else branches are included in the distance descent.
A drawback of this structure is that when an adversarial example is found with distance < 0.005, but not yet
within 0.015 < distance < 0.01, the fuzzer will try to find an adversarial example within that range, even though
we have already found a better adversarial example.

Listing 4.2 shows the "Write in each branch" layout where the redundant else branches are not present,
but the drawback now is that write_if_not_exist is called in each branch, potentially forming a bottleneck
for the execution speed.

Listing 4.3 shows "Only write if better"; the best of both worlds, without the redundant else branches
and with only one call to write_if_not_exist. This call is optimized further by only calling this function
if the previous best adversarial example is improved upon by the current input. This is possible through
saving the current best adversarial example distance in memory which is initialized before the fuzzer calls
the LLVMFuzzerTestOneInput function as described in chapter 3.

Looking at the results in Table 4.2, it is clear that "Write in each branch" performs much worse than the
other two layouts. Upon inspecting the results, this layout takes a big performance hit compared to the other
two layouts with only 80.000 executions per second for the Breast-cancer dataset. The other two layouts
perform similar, but as the "Only write if better" layout has higher executions per second (380.000) compared
to the "Include else branches" (300.000), and the fuzzer will not spend its time on unimportant branches in
the objective function, the "Only write if better" layout should thus be used.

Through increasing or decreasing the stepsize between the branches (0.005 in the previous examples),
one can make a trade-off between the number of branches (and thus the amount of seeds in the corpus)
and the accuracy at which new branches are triggered for better adversarial examples. The experiments in
Table B.3 (Appendix) show that a different step size does not impact the performance significantly. We also
experiment with different intervals, starting from distance 0.8 instead of 1.0 with increasing accuracy. For
example, the "distance decreasing ++" setup shown in Table B.4 (Appendix) uses the intervals [0.8, 0.7, 0.6,
0.59, ..., 0.25, 0.249, ..., 0.002, 0.0019, ..., 0.0001]. Diabetes is the only dataset that seems to benefit from this
decreasing step size, so we keep the distance intervals at 0.005. This has the added benefit that the accuracy
for finding adversarial examples is equal throughout the distance range [1, 0], thus working equally well for
models that have higher average adversarial distance. We add an extra branch 0.000001 as last step, such that
the fuzzer will keep trying to trigger new branches in the objective function for datasets which have very small
adversarial distances, such as Higgs.

Table 4.2: Different layouts of the objective function

Include else
Branches

Write in each
Branch

Only write
If better

Dataset r̄ n r̄ n r̄ n

Breast-cancer 0.1579 42.2 0.2508 42.8 0.1523 42
Diabetes 0.0776 50 0.177 50 0.0739 50
IJCNN1 0.0839 50 0.1509 50 0.086 50
Covertype 0.1085 50 0.1718 50 0.1069 50
Higgs 0.069 50 0.123 50 0.069 50
MNIST 2 vs 6 0.259 21 0.3138 21.2 0.2595 21
MNIST 0.2865 46.4 0.335 46.4 0.289 46.8
FMNIST 0.2877 44.2 0.3431 44.8 0.2953 45
Average 0.1663 44.2 0.2332 44.4 0.1665 44.4



4.2. Objective function 21

distance = calculate_distance ()
...
if (distance < 0.01) {

if (distance < 0.005) {
write_if_not_exist (0.005 ,

fuzzed_features);
} else {

write_if_not_exist (0.01 ,
fuzzed_features);

}
} else {

write_if_not_exist (0.015 ,
fuzzed_features);

}
...

Listing 4.1: Objective function with else branches

distance = calculate_distance ()
...
if (distance < 0.015) {

write_if_not_exist (0.015 ,
fuzzed_features);

if (distance < 0.01) {
write_if_not_exist (0.01 ,
fuzzed_features);
if (distance < 0.005) {

write_if_not_exist
(0.005 ,
fuzzed_features);

}
}

}
Listing 4.2: Objective function that writes adversarial examples in

each branch

distance = calculate_distance ()
...
if (distance < 0.01) {

dummy_var = 1;
if (distance < 0.005) {

dummy_var = 2;
}

}
if (distance < best_ae_dist) {

best_ae_dist = distance;
dist_interval = round(distance , 5);
write_if_not_exist(dist_interval ,

fuzzed_features);
}

Listing 4.3: Only write if better

For some datasets it is difficult for the fuzzer to find adversarial examples. To counter this we add the
descent from Figure 3.5 based on class-output probabilities. The fuzzer reaches this descent when the current
seed is not an adversarial example. By looking for input for which the model is less sure that the input belongs
to the original class of the victim, the fuzzer will come closer to an adversarial example: if the probability of
the current input belonging to the original class is sufficiently low, an adversarial example will eventually be
found (the sum of class probabilities is always 1). This climbs the other side of the decision surface: from the
side where input is not an adversarial example.

Only looking at a decreasing probability of the input belonging to the original class does however not take
into account the adversarial distance of such an example, which may become very large. In Listing 4.5 we
add the class output probabilities to the adversarial distance to make the distance-descent dependent on the
probability and distance at the same time.

When the model receives input that is not similar to input it was trained on, the model will generally be
less sure what to predict. Looking at Figure 7.3, adversarial examples are often samples that are not similar
to samples from the training set, as the decision regions around samples from the training set should be
evaded. The model will often be less sure about the right prediction for adversarial examples than for normal
samples, as it did not have a chance to train on similar examples. We are thus looking for input for which the
fuzzer predicts another class, but the class probabilities of the input belonging to the original class and the
input belonging to the adversarial class should be close to each other. In Listing 4.6 we show an approach
that only looks at the difference between the two largest class probabilities. If this difference is small enough
(optionally also taking into account the adversarial distance), the seed is saved.



22 4. Fuzzing for adversarial examples

...
else {

if (proba_original <= 1.0) {
print_this = 0;
if (proba_original < 0.95) {

print_this = 1;
// ...
if (proba_original < 0.01) {

// Something that will not
// be compiled away
print_this = 6;
write_if_not_exist("p0.txt");

}
}

}
}

Listing 4.4: Probability steps

distance = calculate_distance ();
proba_original = probabilities[

original_class ];
distance += proba_original;
if (original_class !=

fuzzed_class) {
if (distance < 1.0) {
dummy_var = 0;

if (distance < 0.995) {
dummy_var = 1;
...

}
}

}

Listing 4.5: Combine distance and probability

probabilities.sort("descending")
if (distance < ...) { // either 1.0 or epsilon

if (probs [0] - probs [1] < 0.2) {
print_this = 0;
...
if (probs [0] - probs [1] < 0.01) {

print_this = 7;
}

}
}

Listing 4.6: Catch input close to resembling an adversarial example

The results of the approaches for taking into account class probabilities are shown in Table 4.3. To increase the
influence of the probability steps, coverage was enabled for only the objective function for this experiment.
Seeds are thus only saved if new coverage is triggered in the objective function. Combining distance and
probability clearly performs worse than not using probability information. The probability descent makes it
easier to attack the image datasets while not increasing the adversarial distances for the other datasets too
much. When starting this descent from 0.5 instead of 1.0, thus not taking into account high original class
probabilities, the added value of the probability descent of being able to attack more victims for the image
datasets mostly disappears. However, intuitively, seeds for which the original class probability is high are not
valuable to be saved by the fuzzer as they will not be close to resembling an adversarial example. It may be
the case that saving these seeds helps in exploring more leaves of the forest thus enabling the fuzzer to attack
more victims. Another explanation is that it is difficult for the fuzzer to find original class probabilities lower
than 0.5 for the victims that are difficult to attack, thus performing better when seeds with higher probabilities
of belonging to the original class are saved as well.

Adding the branches that act on small probability differences mainly improves the amount of victims that
can be attacked for the Breast-cancer dataset. Limiting these branches to a distance within epsilon generally
works best. Using these branches within limited epsilon distance is the best trade-off between adversarial
distance and the amount of victims that can be attacked.

4.3. Fuzzer configuration
There are many settings and opportunities for custom implementations in fuzzers such as libFuzzer. Through
experimentation we define an acceptable baseline for the fuzzer configuration.

In Table 4.4 experimental results for different fuzzer configurations are shown. For the "empty seed"
configuration we initialize the corpus with one seed containing the value 0.0 for each feature, as at least
one input is required by the fuzzer and the mutator expects input with the correct length. The fuzzer shows
clearly worse distances than the baseline for this configuration, while finding adversarial examples for almost



4.3. Fuzzer configuration 23

Table 4.3: Taking into account soft-label output

No probability
Branches

Combine distance
And probability

Probability
Descent

Probability
descent

From 0.5

Small proba
Difference

Small proba
Difference limited

Dataset r̄ n r̄ n r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.1272 20.4 0.1343 21.4 0.1556 36.6 0.1248 20.4 0.1562 34.8 0.1552 36.6
Diabetes 0.0644 49.4 0.1109 49.4 0.0648 50 0.0636 49.4 0.0637 49 0.0629 49.4
IJCNN1 0.0529 50 0.0821 50 0.0512 50 0.0518 50 0.0534 49.8 0.0515 50
Covertype 0.0614 48.4 0.1042 48.2 0.068 50 0.0624 48.2 0.0637 48.6 0.0635 48.6
Higgs 0.0223 50 0.062 50 0.0233 50 0.0227 50 0.0263 50 0.0226 50
MNIST 2 vs 6 0.1797 22.8 - - 0.2151 30.4 0.1794 22.4 0.1813 22.4 0.1738 22.2
MNIST 0.1948 43.4 - - 0.2264 48.2 0.2084 43 0.2061 43.8 0.1911 43.8
FMNIST 0.2105 44.4 - - 0.2338 48.2 0.2275 44.8 0.2191 45 0.2066 44.4
Average 0.1142 41.1 0.0987 43.8 0.1298 45.4 0.1176 41.0 0.1212 42.9 0.1159 43.1

all victims. The 0 initialization is probably either already an adversarial example by itself (although a very bad
one) or very close to an adversarial example. This explains why almost all victims can be attacked with high
distances for the image datasets, as often a pixel that would otherwise be white is now completely 0 (black).

For "no custom mutate", the built-in libFuzzer mutator was tested with the rest of the code being equal
to the baseline. The built-in mutator mutates bytes of the input (instead of features), which results in input
that can be far outside the original input domain [0, 1]. Most input will thus be treated as either 0.0 or 1.0 by
the forest. Although the fuzzer is still able to find some adversarial examples, they are clearly worse and not
all victims can be attacked, even for the easier datasets.

For "Uniform random" we change the Gaussian distribution (µ= 0,σ= 0.34) to a uniform random distri-
bution on the interval [-1, 1]. This results in a larger mutation on average, which we can see back in higher
adversarial distances, although also more victims are attacked for the image datasets.

For "No crossover" we remove the crossover capabilities from the fuzzer, so it can only mutate and not
combine seeds. This changes the fuzzing process from a Genetic Algorithm to an Evolutionary Algorithm
approach. This generally produces higher distances compared to the baseline, although again it is easier to
attack the image datasets. Apparently the unnatural looking images that crossover will generate confuse the
fuzzer.

We keep the baseline configuration, as the other configurations yielded no (clear) improvements in both
adversarial distance and number of victims attacked.

Table 4.4: Different fuzzer configurations

Baseline Empty seed
No custom
mutate

Uniform random No crossover

Dataset r̄ n r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2244 50 0.2547 50 0.5417 35.8 0.2318 50 0.2202 50
Diabetes 0.095 50 0.1094 50 0.3712 45.6 0.1039 50 0.0852 50
IJCNN1 0.1756 50 0.4317 50 0.65 48.4 0.2889 50 0.1998 50
Covertype 0.2229 50 0.6487 50 0.9522 25.8 0.372 50 0.2579 50
Higgs 0.1563 50 0.7258 50 0.6436 25.8 0.2535 50 0.1781 50
MNIST 2 vs 6 0.5113 22.8 0.9957 50 0.9993 9.4 0.7949 33.6 0.5726 25.2
MNIST 0.538 38.2 0.9964 50 0.9992 20 0.7492 45.8 0.5658 44.6
FMNIST 0.5537 20.2 0.9668 47.8 0.9756 13.8 0.7667 32.4 0.6048 32.4

4.3.1. Custom mutator
The custom mutator is important for supplying the fuzzer with domain knowledge. We discuss settings which
are generally defined for such mutators.

Each feature is mutated with a certain chance. This chance can greatly influence fuzzing performance



24 4. Fuzzing for adversarial examples

as can be seen in Table 4.5. We can see a trade-off between average adversarial distance and the ability to
attack victims for the image datasets: Average distances are lowest for the smallest mutation chance, while
for the highest mutation chance the most victims can be attacked for the image datasets. Apart from the easy
Breast-cancer and Diabetes datasets the average distance rises drastically for higher mutation chances. Using
mutation chance 0.1 seems a good default trade-off between distance and the average number of victims that
is attacked, but ideally this chance should be set to a higher value when attacking image datasets and a lower
value for the other datasets (except Breast-cancer). A possibility to determine a good value for the mutation
chance for a certain dataset would be to try multiple values for the mutation chance on a subset of all victims
before starting the actual execution of FATE. For now we use 0.5 for Breast-cancer and the image datasets and
0.05 for the other datasets.

Table 4.5: Mutation chance

0.05 0.1 0.2 0.3 0.5
Dataset r̄ n r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2294 50 0.2244 50 0.2224 50 0.2229 50 0.223 50
Diabetes 0.0994 50 0.095 50 0.0913 50 0.0923 50 0.0943 50
IJCNN1 0.1536 50 0.1756 50 0.2113 50 0.2413 50 0.2849 50
Covertype 0.1847 50 0.2229 50 0.2719 50 0.3011 50 0.3438 50
Higgs 0.1344 50 0.1563 50 0.1891 50 0.2146 50 0.2596 50
MNIST 2 vs 6 0.4923 21.4 0.5113 22.8 0.6007 24.8 0.6537 26.6 0.7013 28
MNIST 0.4701 18 0.538 38.2 0.5885 47.6 0.6143 48.4 0.6562 49.8
FMNIST 0.5067 9.2 0.5537 20.2 0.6199 39.4 0.6395 44.4 0.6612 46
Average 0.283825 37.325 0.30965 41.4 0.3493875 45.225 0.3724625 46.175 0.4030375 46.725

Another option is to set the mutation depth, the maximum number of consecutive mutations before feed-
ing the input to the target. This changes the potential neighborhood of an input seed. By default this is set
to "5" for libFuzzer, which means that randomly 1 to 5 mutations are performed. Table 4.6 shows results for
different mutation depths. The best result per dataset is shown in bold. For IJCNN1, Covertype and Higgs
a mutation depth of 1 seems to provide a little better results than higher mutation depths, but for the other
datasets higher numbers of mutations are better. The differences in r̄ and n are often small, and may very
well be contributed to the randomness of fuzzers. We decided to keep the mutation depth on the default
value of "5".

Table 4.6: Mutation depth

Depth 1 Depth 3 Depth 5 Depth 7 Depth 10
Dataset r̄ n r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2317 50 0.2255 50 0.2244 50 0.2218 50 0.2226 50
Diabetes 0.097 50 0.0921 50 0.095 50 0.0879 50 0.0891 50
IJCNN1 0.1594 50 0.1742 50 0.1756 50 0.1742 50 0.177 50
Covertype 0.21 50 0.2154 50 0.2229 50 0.2261 50 0.2301 50
Higgs 0.1489 50 0.153 50 0.1563 50 0.1535 50 0.1569 50
MNIST 2 vs 6 0.5361 24.2 0.5445 25.8 0.5113 22.8 0.5562 26 0.5436 24.8
MNIST 0.5378 39.8 0.5521 38.8 0.538 38.2 0.5527 38.8 0.5366 36
FMNIST 0.5433 19.6 0.5525 21.8 0.5537 20.2 0.5698 21.2 0.5682 20.6

In FATE we allow to restrict the size of mutations using an ε value. All mutations are scaled by this ε, such
that mutations lie in a ball with radius ε around the input s that is currently being mutated. For example when
ε= 0.2, only adversarial examples that have L∞ distance < 0.2 to s can be reached within this mutation. Set-
ting ε= 1.0 removes this restriction. Smaller values of ε thus make the neighbourhood, all possible inputs that
can be "reached" when mutating s, smaller. This increases the similarity between s and its mutations. Results
for different epsilon values are shown in Table 4.7. Again we can see a trade-off between average adversarial
distance and the number of victims that can be attacked. adversarial examples with smaller distances are
found for smaller ε values, while more victims can be attacked (mainly for the image datasets) with higher



4.4. Compiler optimization 25

epsilon values. The breast-cancer model performs significantly worse for smaller epsilon values, both on dis-
tance and the amount of victims attacked. Due to the small model size for this dataset, probably no other
leaves of the forest can be reached for some victims within the smaller epsilon ranges, which means that they
cannot be attacked. Manual investigation also shows that optimal adversarial examples can have a distance
as much as 0.6 for Breast-cancer. It is very difficult or impossible to reach such adversarial examples by con-
tinuously mutating with a Gaussian distribution in neighbourhoods with epsilon radius 0.05 or 0.1. ε = 0.2
seems the best trade-off between the average adversarial distance and number of victims attacked. However,
like for the mutation chance hyper-parameter, the epsilon value should ideally be tweaked per dataset that is
being attacked.

Table 4.7: Different ε values

0.05 0.1 0.2 0.3 0.5 0.7 1.0
Dataset r̄ n r̄ n r̄ n r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.6313 21 0.3809 38.6 0.2855 50 0.2576 50 0.2266 50 0.2289 50 0.2378 50
Diabetes 0.067 50 0.0711 50 0.0788 50 0.0851 50 0.0962 50 0.1052 50 0.1132 50
IJCNN1 0.0698 50 0.0646 50 0.0902 50 0.1196 50 0.1706 50 0.2248 50 0.2809 50
Covertype 0.0526 48.2 0.0745 49.6 0.1101 50 0.1487 50 0.2258 50 0.3034 50 0.3995 50
Higgs 0.0255 50 0.043 50 0.0749 50 0.1031 50 0.1565 50 0.1977 50 0.2554 50
MNIST 2 vs 6 0.0851 3.2 0.1514 16.2 0.2415 20.4 0.3272 21 0.5204 22.8 0.713 28.6 0.8971 30.8
MNIST 0.0591 7 0.1127 10.8 0.2275 21 0.3421 29.4 0.5388 38 0.7134 43 0.9153 47.6
FMNIST 0.0616 4 0.1197 6.4 0.2314 9.8 0.3421 12.8 0.5554 19.6 0.7167 26.4 0.909 34.2
Average 0.1315 29.2 0.1272 34.0 0.1675 37.7 0.2157 39.2 0.3113 41.3 0.4004 43.5 0.5010 45.3

The previous results have shown that generally we need small mutations for small distances, but some-
times we need a large mutation to be able to attack the victim at all. We try to solve this problem by squaring
the draw from the Gaussian distribution, keeping the sign: if the draw would originally be −0.08, we change
this to −0.08∗−0.08 = 0.0064, but keeping the minus sign of the original mutation such that the new mutation
becomes −0.0064. Larger mutations can now still happen, only with a much smaller likelihood. We show the
results for different ε values in Table 4.8. None of these results are better than the results with ε = 0.2 from
Table 4.7, so this option will not be used.

Table 4.8: Different ε values combined with a steeper mutation curve

0.2 0.5 1.0
Dataset r̄ n r̄ n r̄ n

Breast-cancer 0.2797 50 0.2176 50 0.2214 50
Diabetes 0.0736 50 0.0809 50 0.0876 50
IJCNN1 0.0684 50 0.1025 50 0.168 50
Covertype 0.0838 50 0.1419 50 0.2412 50
Higgs 0.0456 50 0.088 50 0.1364 50
MNIST 2 vs 6 0.2323 12.8 0.4638 21.8 0.751 24.8
MNIST 0.1711 9 0.4635 18.2 0.8234 32
FMNIST 0.2061 3.6 0.4958 9.4 0.8105 9.4
Average 0.1451 34.4 0.2568 37.4 0.4049 39.5

4.4. Compiler optimization
To improve the speed with which the fuzzer can execute the target, we experiment with always enabling the
optimization options of the compiler through the "-O3" option instead of not allowing optimization ("-O0").
The reason not to use optimization options of the compiler by default is that compilation takes longer if
optimization is enabled as can be clearly seen in Table 4.9 in the tc columns: compilation takes on average
for about 4 times longer than without optimization enabled. As expected, the executions per second are
higher when optimization is enabled, which mainly makes a big difference in the number of executions per
second for the image datasets. This results in a small number of extra victims that can be attacked. The



26 4. Fuzzing for adversarial examples

difference in the quality of the adversarial examples found is not big, but if the compilation time is not an
issue enabling optimization should improve the performance of FATE a bit through higher execution speeds.
If runtime is of importance though, the optimization option should not be used. We did a best-effort to
verify the branches in the objective function are not compiled away when the optimization option is used,
but this required inserting print statements which of course can also make the compiler not optimize away
the branches. However, as a variable is set in the branches of the objective function that is printed after the
branches are visited (see section D.6), the compiler should not optimize this structure.

Table 4.9: Difference between always/never optimize

Never optimize Always optimize
Dataset r̄ n exec/s tc (s) r̄ n exec/s tc (s)

Breast-cancer 0.2870 50 90985 1.0 0.2942 50 105339 1.9
Diabetes 0.0727 50 63223 1.2 0.0713 50 85723 2.1
IJCNN1 0.0704 50 22075 2.1 0.0665 50 25502 7.2
Covertype 0.0978 50 7500 2.9 0.0949 50 9774 10.0
Higgs 0.0588 50 999 5.0 0.0589 50 1147 22.1
MNIST 2 vs 6 0.2337 21.6 663 3.0 0.2248 21.2 1115 9.7
MNIST 0.2521 39.4 9.5 48.7 0.2486 41.4 17.0 235.5
FMNIST 0.2691 39.6 9.1 54.2 0.2624 43.6 17.9 244.0
Average 0.1688 43.8 21638 14.8 0.1668 44.5 26509 66.6

4.5. Conclusion
We showed that FATE is able to find adversarial examples with reasonable average adversarial distances on
datasets used in related work. We verified the design of the objective function of FATE. The search for ad-
versarial examples was extended by including a search on the non-adversarial example side of the decision
function through the use of class-output probabilities. The custom mutator is important for the performance
of FATE, with the mutation_chance and ε hyper-parameters strongly influencing the quality and quantity of
adversarial examples. A mutation chance of 0.5 for the image datasets and 0.1 for the other datasets was
chosen as a default, and ε is set to 0.2. We also enable compiler optimization to achieve a higher number of
executions per second. The performance of the new baseline is shown in Table 4.10. The performance of this
new baseline is better on all datasets except for Breast-cancer, where the adversarial distance is lower but not
all victims could be attacked.

Table 4.10: Performance after defining the basic setup for FATE

New Baseline Old Baseline
Dataset r̄ n r̄ n

Breast-cancer 0.1511 46 0.2244 50
Diabetes 0.0652 50 0.095 50
IJCNN1 0.0703 50 0.1756 50
Covertype 0.085 50 0.2229 50
Higgs 0.0482 50 0.1563 50
MNIST 2 vs 6 0.2238 21.4 0.5113 22.8
MNIST 0.2854 46.4 0.538 38.2
FMNIST 0.2917 45.2 0.5537 20.2
Average 0.1526 44.9 0.3097 41.4



5
Improving FATE by fuzzing smarter

We identify three possible sources of extra information with which we can potentially improve the perfor-
mance of FATE: the training set, the model itself, and information from single executions of the fuzzer. Through
experimentation we identify which of this information is usable and we show the performance improvements
of FATE when using this information.

5.1. Sources of information
In this section we briefly identify possible sources of information and how they can be used. The different
possible ways to use this information are further explained later in this chapter.

The Training set gives information about benign samples with which the model is trained. It contains
samples of points of the same class as the victim, but also points that belong to other classes. This means we
can initialize the fuzzer with adversarial examples: every point (correctly classified as) belonging to another
class will already be an adversarial example. Statistics and heuristics can be calculated for these subsets: for
example we can calculate the average member of each adversarial class. As we can only assume access to the
training set, the testing set cannot be used for this type of information.

The model is the most fundamental source of information as we are fuzzing it directly. Because of the white-
box access model we use, we have full access to all information contained in the model. In the model itself
there are splitting conditions at each non-leaf node we call thresholds (if (feature <= threshold)). The
values of these thresholds determine the borders of bounding boxes around decision regions. Mutating to-
wards a value right at this border will produce the best possible adversarial example within that decision
region. Some training artifacts are contained in the model as well, for example how important each feature
is for classifying the input correctly based on impurity during training. An alternative for measuring feature
importance is counting the feature occurrence: how often each feature is used in a splitting condition.

Another artifact from training is the number of training samples in each leaf, which could potentially be
used as a measure of the importance of a leaf. It is out of the scope of this project to identify individual leaves
to target, so we do not use this information. The model also gives information about its layout, size and the
depth of each leaf but we do not see a clear way to leverage this kind of information. Lastly, the models allows
us to inspect the decision path followed to classify an input example, potentially enabling us to only enable
coverage-guidance in nodes close (in feature distance) to the path followed when classifying the victim. As
coverage information is inserted at compile-time, this would require us to compile the target for each victim,
which would be very time-consuming. We thus choose not to use this information.

Lastly, information about the current execution can be recorded. For example, when mutating we can take
into account the differences in features between the current input and the victim, allowing to influence which
features are mutated and with which magnitude, should the current input be an adversarial example. Also,
previously found adversarial examples for similar victims can be used to initialise future runs of the fuzzer.
We decided to opt for the simpler approach to initialize with adversarial examples through variations on near-
est neighbours of other classes in the training set, as this can be computed beforehand which simplifies the
execution process and decreases the execution time of the fuzzer. The fuzzer also gives heuristics about an

27



28 5. Improving FATE by fuzzing smarter

execution such as the reached coverage, and can produce detailed coverage information for single runs. This
information could be used in the runs after the first victim is attacked, but it can be very complex to use this
information. For example, we would need to know which branches/leaves are actually important for finding
adversarial examples. Also, this would require a lot of processing in FATE between fuzzing runs which would
make the management of the execution more complex.

5.2. Training set

Table 5.1: Initial adversarial example quality with
different distance measures

Dataset L1 L2

Breast-cancer 0.8667 0.7800
Diabetes 0.3541 0.2734
IJCNN1 0.3286 0.2783
Covertype 0.5183 0.4711
Higgs 0.6844 0.5546
MNIST 2 vs 6 1.0 1.0
MNIST 1.0 1.0
FMNIST 0.9954 0.9932

A seed is a file consisting of bytes that resemble "interesting"
inputs to the fuzzer. The performance of individual fuzzing
runs can differ a lot based on the initial seeds used [25, 28].
By default we only provide the victim point as an input to the
fuzzer. This way the fuzzer knows the original path through the
tree ensemble and will search for adversarial examples using
the victim features as a starting point. At the start the fuzzer will
thus explore leaves relatively close to the original path through
the forest. The best adversarial example will look much like the
victim, and by providing the victim to the fuzzer the fuzzer is
already close to the optimal solution.

We develop several other corpus initialization strategies us-
ing the samples from the training set. They allow the fuzzer to
be initialized with an adversarial example, instead of having to
look for one using random mutation until a first adversarial ex-
ample is found. The fuzzer then thus starts in the distance-descent of the objective function right away.
Results for the following strategies are shown in Table 5.2.

1. Providing the k approximate closest points from other classes: k AE. This way the fuzzer already starts
with some (hopefully good) adversarial examples and can spend its time on improving those. Com-
puting the exact k closest instances is computationally expensive due to quadratic complexity. We thus
use the k-ANN (Approximate Nearest Neighbour) implementation Annoy ([37]) to find the approximate
closest neighbours. This strategy guarantees that the fuzzer is always initialized with a true adversarial
example. However, the model may predict this adversarial example wrongly thus we cannot guarantee
that an adversarial example will always be identified by the fuzzer. We test with k ∈ {1,5,10}. Annoy does
not support L∞ distance, however they do support L0,L1 and L2. For the image datasets the distance
between two features is often 1, as often a pixel will either be filled (1) or not (0). For the image datasets
we thus use L0 distance (hamming distance) and argue that the images with the least different pixels
will look most similar. For the other datasets, we experimented with both L1 and L2, both of which pro-
duced similar results for the adversarial examples FATE finds. However, as can be seen in Table 5.1, the
L2 distance produces better initial adversarial examples (distances noted with the L∞ norm). As the L2

distance also resembles L∞ distance the most, we use the L2 distance. Producing the ANN lookup also
takes time as shown in Table 7.4 (Lookup init, next chapter). The time it takes to initialize the lookup
mainly depends on the size (number of features) and amount of samples, both of which are big for
the image datasets. The time it takes to initialize the lookup for the image datasets is still reasonable
however, and for the other datasets it is negligible.

2. Providing all training points of opposite classes: "Full train set". This way the fuzzer knows right from
the start how to reach a lot of the leaves in the tree ensemble that predict other classes. We limit this to
5000 instances, to not overload the corpus.

3. Providing the average adversarial example: "Average AE". For the binary classification datasets we
calculate the average value a of the samples from the opposite class. Note that a is not guaranteed to
be classified as an adversarial example by the model.

4. "Double fuzz". This is a hybrid approach where the fuzzing is started without any adversarial examples
and if the fuzzer is able to find no adversarial example for a victim, which mainly happens for the image
datasets, the victim is fuzzed again but now initialized with an adversarial example, guaranteeing that
the victim will be attacked.



5.2. Training set 29

Table 5.2: Initialization with adversarial examples

Baseline 1 AE 5 AE 10 AE Full train set Double Fuzz Average AE
Dataset r̄ n r̄ n r̄ n r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2841 50 0.2813 50 0.2327 50 0.2336 50 0.2367 50 0.2867 50 0.2542 50
Diabetes 0.0697 50 0.0745 50 0.0735 50 0.0745 50 0.0768 50 0.072 50 0.0722 50
IJCNN1 0.0713 50 0.0722 50 0.0757 50 0.0773 50 0.1184 50 0.0717 50 0.0866 50
Covertype 0.0844 50 0.088 50 0.096 50 0.1014 50 0.2326 50 0.0866 50 0.1039 50
Higgs 0.0562 50 0.0639 50 0.0861 50 0.0943 50 0.3213 50 0.0548 50 0.0652 50
MNIST 2 vs 6 0.259 21.8 0.7195 50 0.7915 50 0.8182 50 0.9589 50 0.6834 50 0.6533 50
MNIST 0.2781 37.6 0.7377 50 0.8307 50 0.9011 50 - - 0.5018 50 - -
FMNIST 0.2925 36 0.669 50 0.7075 50 0.7847 50 - - 0.5235 50 - -
Average 0.1744 43.2 0.3383 50 0.3617 50 0.3856 50 - - 0.2851 50 - -

For "k AE" we see that initializing the fuzzer with adversarial examples is beneficial for the image datasets
where no adversarial examples can be found for many victims in the baseline setup. The more adversarial
examples are fed to the fuzzer though, the worse the average distance gets for all datasets.

Due to the slow execution speed of (F)MNIST (see chapter 4), it took very long to initialize the fuzzer with
the full training set of the opposite class for these datasets. Those runs were thus canceled and this setting is
deemed infeasible. Providing the full training set also yielded clearly worse results than the baseline for the
other datasets.

Providing the average adversarial example also decreased performance for most datasets. Double fuzz
is the only feasible option, providing baseline performance when adversarial examples can be found and
having the benefit of finding adversarial examples for each victim. This does take more time though, as some
victims are now fuzzed twice.

Feeding more adversarial examples to the fuzzer generally made average distance much worse. This may
be the case because decision regions around samples in the training set are generally well-defined, as the
model was trained using those samples. The fuzzer may now thus get distracted by seeds that are not worth
the time investment. We thus try to improve the adversarial example: instead of only providing an adver-
sarial example a we also provide the point exactly in between a and the victim v : a1 = a+v

2 . This will either
be a better adversarial example or be an example that is closer than the victim to the decision region of the
nearest training sample of another class. Table 5.3 shows the results of this approach. "5 AE +" means that
5 approximate Nearest Neighbours are identified, and that they are used, together with the 5 artificial points
and the victim, as initial seeds.

Table 5.3: Adversarial example initialization with an artificial point

Baseline 1 AE + 5 AE + 10 AE +
Double Fuzz

10 AE+
Dataset r̄ n r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2841 50 0.2831 50 0.2314 50 0.2342 50 0.2845 50
Diabetes 0.0697 50 0.0709 50 0.0715 50 0.0716 50 0.0688 50
IJCNN1 0.0713 50 0.0679 50 0.0663 50 0.068 50 0.071 50
Covertype 0.0844 50 0.0865 50 0.085 50 0.0869 50 0.0858 50
Higgs 0.0562 50 0.0656 50 0.0788 50 0.0821 50 0.0552 50
MNIST 2 vs 6 0.259 21.8 0.6308 50 0.6289 50 0.584 50 0.5317 50
MNIST 0.2781 37.6 0.5657 50 0.5152 50 0.4963 50 0.3422 50
FMNIST 0.2925 36 0.5847 50 0.5294 50 0.5035 50 0.3856 50
Average 0.1744 43.2 0.2944 50 0.2758 50 0.2658 50 0.2281 50

Generally this approach improves a lot upon simply providing the adversarial example itself. It is now ben-
eficial to provide more adversarial examples to the fuzzer, contrary to previous results. Feeding this kind of
adversarial example is now even beneficial for some of the non-image datasets such as IJCNN1 and Breast-
cancer. We further experiment, also providing adversarial examples a2 in between a1 and v and a3 in be-



30 5. Improving FATE by fuzzing smarter

tween a1 and a in Table 5.4. For "10 AE ++", the input corpus now exists of 10(ANN)∗4+1 (the victim) = 41
inputs. This further improves the performance. Double fuzzing with 10 adversarial examples and its artificial
in-between points will be used in FATE. It seems to work very well for all datasets except Breast-cancer and
IJCNN1, that perform best when always seeded with multiple adversarial examples.

Table 5.4: Adversarial example initialization with multiple artificial points

Baseline 1 AE ++ 5 AE ++ 10 AE ++
Double Fuzz
10 AE++

Dataset r̄ n r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2841 50 0.2795 50 0.2258 50 0.2303 50 0.2815 50
Diabetes 0.0697 50 0.069 50 0.0691 50 0.0694 50 0.069 50
IJCNN1 0.0713 50 0.0636 50 0.0635 50 0.0632 50 0.0711 50
Covertype 0.0844 50 0.0801 50 0.084 50 0.0844 50 0.085 50
Higgs 0.0562 50 0.0623 50 0.0662 50 0.0706 50 0.0561 50
MNIST 2 vs 6 0.259 21.8 0.5901 50 0.5462 50 0.5051 50 0.4735 50
MNIST 0.2781 37.6 0.4998 50 0.3928 50 0.3575 50 0.3189 50
FMNIST 0.2925 36 0.5103 50 0.4605 50 0.4179 50 0.3841 50
Average 0.1744 43.2 0.2693 50 0.2385 50 0.2248 50 0.2174 50

5.3. Model
The thresholds in a decision tree specify the boundary values of decision regions within decision trees. We
consider all threshold values T f for feature f . For Gradient boosting, we take into account all sub-trees that
are produced in each iteration. After producing a mutated value m f , it can be optimized by moving it towards
the first threshold t between m f and the original value for that feature o f without changing the prediction.
E.g. with e =small_perturbation_threshold:

• If m f < o f : mutate to t −e with t = the smallest threshold t ∈ T f | m f <= t < o f .
• If m f > o f : mutate to t +e with t = the largest threshold t ∈ T f | o f < t < m f .

When such a threshold t cannot be found, mutate to o f . The addition or subtraction of e is performed to
eliminate potential floating-point inconsistencies due to different precision between the thresholds in the
model and the thresholds that are injected in the C++ target. Looking at Table 5.6, the produced adversarial
distances are marginally better using the thresholds for mutation.

Looking at Table 5.5, there can be as many as 2198 thresholds per feature (for the Higgs dataset). This
means mutated values will generally only be moved towards the nearest threshold very slightly, thus resulting
in only a small difference in the created adversarial examples. We investigated if using these thresholds has a
negative impact on the number of executions per second for the Covertype, Higgs and MNIST datasets. Only
for MNIST there is a significant difference in the number of executions per second: 124.6 without thresh-
olds and 96.8 with thresholds enabled, a 28.7% difference. To try to improve the performance we remove all
thresholds which are within 0.0001 from each other (using a bigger interval would counter the effect of using
the thresholds at all). This only marginally increases the number of executions per second for MNIST. For
Covertype this removes almost half of the thresholds for some features, but again the number of executions
per second is not impacted. Using thresholds generally means that the adversarial examples become slightly
better, which can help in finding the optimal adversarial example for a victim. We thus enable the thresholds
by default, keeping in mind that they may impact the number of executions for (F)MNIST.

Feature importances. Some features may be more important than others for classifying input. When looking
at Figure 5.1 which visualises how often a feature is used for classification on the MNIST 2 vs 6 dataset, it can
be clearly seen that there is a limited amount of features that is used extensively, a larger amount of features
that is sometimes used, and a lot of features that are never used for classification at all. This visualisation was
created with the number of occurrences of a feature in a splitting condition, but some training algorithms,
such as the ones in scikit-learn, also record (impurity-based) feature importances. These are measures on
how important a feature is for distinguishing inputs belonging to other classes. Using these feature impor-

tances i , we calculate the chance to mutate feature f as
i f∑n−1

j=0 i j
.



5.4. Execution 31

Table 5.5: Number of thresholds per feature

Dataset Min Max Average Median Std

Breast-cancer 0 11 3.4 2 3.2
Diabetes 9 57 28.6 23 18.4
IJCNN1 1 1008 314.9 311 342.3
Covertype 0 1978 125.2 1 401.7
Higgs 3 2198 1275.1 1308 589.7
MNIST 2 vs 6 0 108 7.0 3 10.8
MNIST 0 492 198.8 197 166.0
FMNIST 0 450 275.5 309 110.4

Using the feature importance metric to bias which features should be mutated improves the performance
on most datasets as can be seen in Table 5.6. Worth noting is that the Covertype dataset has a lot of features
(38) with only one threshold. Using the feature importance metric, FATE can make a better prediction if
mutating these features is worth it or not. Much less victims can be attacked for (F)MNIST. For MNIST 2 vs 6
using the feature importances results in slightly better adversarial distances, though not more victims could
be attacked than with the baseline. Using feature importance is a better metric for FATE than using feature
occurrence as the adversarial distances are generally lower with at least as many victims that can be attacked.

Figure 5.1: Feature occurrence in a splitting condition for MNIST 2 vs 6

5.4. Execution
Not all mutations will be equally interesting. It is important that as many mutations as possible examine new
regions of the input space that are beneficial for finding good adversarial examples, and the mutations should
thus be small enough not to change too much of the current seed/victim. We implement different mutation
strategies that adjust the neighbourhood of a seed s if it already is an adversarial example, keeping in mind
that we test with the L∞ distance, which only depends on the feature with the largest difference d between
the adversarial example and the victim. These strategies should help in exploring leaves closer to the victim
and biasing the mutation of the most important features:

1. Bias large differences. As it is more likely that the features with large differences between the mutated
and the victim point will have to be mutated to reach a lower adversarial distance (as L∞ only depends
on the feature with the largest perturbation), we adjust the chance of mutating a feature with difference

δ f by adding an extra factor
δ f∑
j δ j

to the default mutation chance.

2. Mutate all largest differences. When an adversarial example is found, not mutating the feature which
has the largest distance to the victim will never result in finding a better adversarial example, as the L∞
norm distance is equal to the feature with the largest distance d . With probability 0.5, we mutate all



32 5. Improving FATE by fuzzing smarter

Table 5.6: Using model information

Baseline Thresholds Feature importance Feature occurrence
Dataset r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2841 50 0.289 50 0.2692 50 0.2854 50
Diabetes 0.0697 50 0.0676 50 0.0703 50 0.0699 50
IJCNN1 0.0713 50 0.0698 50 0.0643 50 0.0675 50
Covertype 0.0844 50 0.0818 50 0.0747 50 0.0781 50
Higgs 0.0562 50 0.0554 50 0.0465 50 0.0503 50
MNIST 2 vs 6 0.259 21.8 0.2285 21.2 0.2378 21 0.2428 21
MNIST 0.2781 37.6 0.2717 36 0.2466 21.6 0.2439 19
FMNIST 0.2925 36 0.2922 35.2 0.2629 19.6 0.2516 17
Average 0.1744 43.2 0.1695 42.8 0.1590 39.0 0.1612 38.4

features that have distance > d −0.01. The term 0.01 is necessary because when only the feature with
the largest difference is mutated, it is likely that the objective function will not signal an improved ad-
versarial example because other features close to the largest feature will then determine the adversarial
distance, due to the nature of the L∞ norm.

3. Mutate less when closer. For adversarial examples, the maximum mutation distance is scaled with
the largest difference δ of any feature with the victim, allowing for smaller mutations when a good
adversarial example was found already, thus decreasing the neighborhood of a victim and increasing
precision.

4. Only mutate towards victim. For adversarial examples, all features are only mutated towards the victim
features, allowing for mutations "past" the victim features but with smaller difference than the original
difference of the feature. Mutual exclusive with the previous strategy.

Table 5.7 shows experiments with the mutation bias strategies mentioned above. Biasing mutating the
features with the largest difference with the original features performs a bit better than the baseline, and
will thus be used. Mutating less when closer to the victim does not seem to benefit the performance and is
thus not used. Mutating all largest differences clearly benefits the performance for most datasets. The "Only
mutate towards victim" strategy mainly improves the performance for the image datasets, but will be used.
We also tested with all mutation bias strategies enabled, which has good performance but at the cost of some
victims that cannot be attacked for the image datasets and will thus not be used.

Table 5.7: Mutation Bias

Baseline Bias largest diffs
Mutate less
when closer

Mutate all largest
Mutate

towards victim
All

Dataset r̄ n r̄ n r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2841 50 0.2872 50 0.2989 50 0.2857 50 0.298 50 0.286 50
Diabetes 0.0697 50 0.0679 50 0.0717 50 0.0639 50 0.0681 50 0.066 50
IJCNN1 0.0713 50 0.0671 50 0.0699 50 0.0585 50 0.0694 50 0.0575 50
Covertype 0.0844 50 0.0819 50 0.0857 50 0.0687 50 0.0827 50 0.0691 50
Higgs 0.0562 50 0.0519 50 0.0521 50 0.0485 50 0.0536 50 0.0458 50
MNIST 2 vs 6 0.259 21.8 0.2491 21.4 0.2452 21.2 0.215 21.4 0.2225 21.4 0.2105 21
MNIST 0.2781 37.6 0.2701 34.6 0.2744 33.6 0.2636 37.2 0.2558 33.8 0.2598 32.4
FMNIST 0.2925 36 0.2872 33.8 0.2909 35 0.2843 35.4 0.2814 34 0.2833 29.8
Average 0.1744 43.2 0.1703 42.5 0.1736 42.5 0.1610 43 0.1664 42.4 0.1598 41.7

Only using the biased mutation strategies when the current input is an adversarial example requires a
model query for each mutation that is performed, which can be up to mutation_depth times per run (5). This
can negatively impact the executions per second, mainly for the big models such as (F)MNIST. We imple-
mented different adversarial example recognition systems in Table 5.8. Model Query performs a model query
each time the mutator is called for an input. Save last prediction saves the last prediction such that an input



5.5. Conclusion 33

is identified as adversarial example if the last input that was fed to the objective function was an adversarial
example. This may produce a wrong result if it is not the previous input that is being mutated but a different
seed from the corpus. In "AE chance 0.5" we model that an input resembles an adversarial example with
probability 0.5. In "Always AE" we treat every input as an adversarial example and in "Never AE" we treat
every input as not being an adversarial example, thus not performing the biased mutation techniques. The
most precise approach of performing a model query for every input performs the best. The performance
penalty in executions per second is not significant for the Breast-cancer dataset while MNIST performs 17%
more executions (116 vs 99) per second when using "Save last prediction". The performance on MNIST is
however better when performing a model query each mutation, so we keep using that exact approach.

Table 5.8: Adversarial example identification techniques in the mutator

Model query Save last prediction AE chance 0.5 Always AE Never AE
Dataset r̄ n r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2123 50 0.2119 50 0.2119 50 0.2114 50 0.2141 50
Diabetes 0.06 50 0.0604 50 0.0602 50 0.0606 50 0.0643 50
IJCNN1 0.0503 50 0.0504 50 0.0502 50 0.0477 50 0.0629 50
Covertype 0.0567 50 0.0583 50 0.0604 50 0.0585 50 0.0748 50
Higgs 0.0314 50 0.0338 50 0.033 50 0.0605 50 0.0441 50
MNIST 2 vs 6 0.3618 49.8 0.3874 48.6 0.4174 48.6 0.4517 50 0.4576 49
MNIST 0.2468 50 0.2597 50 0.2611 50 0.3593 49.4 0.2876 50
FMNIST 0.2695 48.8 0.2856 49.4 0.2818 48.8 0.3955 48.8 0.2988 49.6
Average 0.1611 49.8 0.1684 49.8 0.1720 49.7 0.2057 49.8 0.1880 49.8

5.5. Conclusion
We identified three sources of information: the training set, the model and information directly from the exe-
cution of the fuzzer. We showed that with each of these types of information FATE can be improved. Through
making use of samples in the training set the fuzzer can be initialized with both adversarial examples and
forged input. This guarantees that every victim can be attacked through using double fuzzing if the first run
did not produce an adversarial example. The model allows us to use both feature importance and threshold
information, which both improve the performance of FATE. Through using information from current execu-
tions, we are able to improve the mutations that are made in FATE thus improving the created adversarial
examples. When an adversarial example is found we bias mutating features with bigger distances to the orig-
inal victim feature, we mutate only towards the victim and with probability 0.5 we mutate all features that are
limiting the current seed to its distance branch in the objective function.

We test the influence of coverage guidance with the updated setup. The results are shown in Table 5.9.
Using coverage guidance only in the objective function is clearly the best option: it attacks the most victims
with the smallest adversarial distances for all datasets except the two easiest datasets. In chapter 7 we further
investigate the influence of coverage guidance.

Comparing the performance of FATE before (old baseline) and after leveraging more information (FATE
smarter) in Table 5.10, leveraging more information is clearly beneficial for FATE. For all datasets except
MNIST 2 vs 6 and Breast-cancer the average adversarial distance is better while attacking all victims. For
breast-cancer and MNIST 2 vs 6 the average adversarial distance has increased because the last victims that
can now be attacked have a high adversarial distance. For easy comparison we also show FATE final (the final
default setup for FATE) in this table, where coverage guidance is enabled only in the objective function. The
performance is a little worse for the easy Breast-cancer and Diabetes datasets compared to FATE smarter, but
the performance on the other datasets has clearly improved.



34 5. Improving FATE by fuzzing smarter

Table 5.9: Influence of coverage guidance for FATE when using the final custom mutator

Full coverage
Coverage in
The Forest

Coverage in the
objective function

No coverage
Instrumentation

Dataset r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2123 50 0.2114 50 0.2194 50 0.2181 50
Diabetes 0.06 50 0.0637 50 0.0619 50 0.0672 50
IJCNN1 0.0503 50 0.0539 50 0.0442 50 0.0496 50
Covertype 0.0567 50 0.064 50 0.0515 50 0.0584 50
Higgs 0.0314 50 0.0365 50 0.0132 50 0.0171 50
MNIST 2 vs 6 0.3618 49.8 0.4071 49.2 0.2233 49.8 0.4301 48.2
MNIST 0.2468 50 0.2492 50 0.1234 50 0.2386 50
FMNIST 0.2695 48.8 0.2669 49.4 0.1284 49.8 0.2701 49.8
Average 0.1611 49.8 0.1691 49.8 0.1082 50.0 0.1687 49.8

Table 5.10: Performance improvement of FATE when fuzzing smarter

Old Baseline FATE smarter FATE final
Dataset r̄ n r̄ n r̄ n

Breast-cancer 0.1511 46 0.2123 50 0.2194 50
Diabetes 0.0652 50 0.06 50 0.0619 50
IJCNN1 0.0703 50 0.0503 50 0.0442 50
Covertype 0.085 50 0.0567 50 0.0515 50
Higgs 0.0482 50 0.0314 50 0.0132 50
MNIST 2 vs 6 0.2238 21.4 0.3618 49.8 0.2233 49.8
MNIST 0.2854 46.4 0.2468 50 0.1234 50
FMNIST 0.2917 45.2 0.2695 48.8 0.1284 49.8
Average 0.1526 44.9 0.1611 49.8 0.1082 50



6
FATE with different fuzzing engines

In this section we compare the performance of FATE when fuzzing with AFL++, honggfuzz and libFuzzer.
These are all grey-box coverage guided fuzzers, however they differ slightly in their approaches of executing
the target, the way they mutate input in their mutators, and in the way coverage is recorded. Also, they
perform differently when searching for bugs in open-source libraries as shown by fuzzbench 1. In the previous
chapters we concluded that the performance of FATE heavily depends on its custom mutator. We explore if
finding adversarial examples is also possible with the built-in mutators of fuzzers. When fuzzing with the
built-in mutators, "Double fuzz" is turned off: It may well be the case that the adversarial examples with
which the fuzzer is initialized will be the best adversarial examples the fuzzer finds, such that the performance
of the mutator will depend on the initial adversarial examples instead of the performance of the mutator.
To be able to better compare the built-in mutators of the fuzzers with each other, the fuzzers are executed
without any initial adversarial examples or "double fuzzing".

6.1. AFL++
AFL++ ([17]) is a fork of the popular AFL ([46]) fuzzer which incorporates recent advances in fuzzing research
such as the ability to use custom mutators and different seed selection schedules. By default AFL++ feeds the
fuzzed inputs via stdin or files that can be parsed by the target. For extra speedup, we implement their persis-
tent mode, which skips many calls to the forkserver and passes mutated inputs via an in-memory buffer. The
custom mutator is provided through their custom mutator API, which does not support crossover. Another
difference with other fuzzers is that the mutator should be compiled and supplied as a separate library.

AFL divides mutations in two categories: "deterministic" and "havoc". The deterministic stage performs
single deterministic mutations on the input seed. In the havoc stage, mutations are randomly stacked and
also change the size of the testcase. AFL++ applies bit/byte flips, insertion of interesting words/bytes (through
a dictionary), arithmetic operations such as addition or subtraction on integers, randomly adjusting bytes,
block deletion and duplication and crossover [13]. Edge coverage is measured directly and stored in an ap-
proximate hash table along with coarse branch-taken hit counts [31].

AFL++ recommends making use of afl-clang-lto with CMPLOG functionality. This logs the operands of
the last 256 executions for each comparison in a shared table between the target and the fuzzer. The CM-
PLOG functionality however introduces a serious memory leak when starting and stopping many fuzzing
instances as we need to do with FATE, and can thus not be used. Instead, we use the Dict2File feature
(AFL_LLVM_DICT2FILE=dict_path) that records interesting words during compilation and saves them to
a file that can be used to guide mutation. We furthermore enable the splitting of comparison operations
(AFL_LLVM_LAF_ALL=1) for floats, integers and strings as well as the splitting of switch statement in smaller
sub-steps such that coverage guidance can be used to tackle these statements step by step. Every fuzzing
instance is started as a Master without any Slave processes. When we fuzz with timeout the environment
variable AFL_FAST_CAL=1 is used to speedup the calibration stage of AFL++. When fuzzing with the custom
mutator trimming is disabled (AFL_DISABLE_TRIM=1) because the testcases should maintain their length.

The performance of AFL++ is shown in Table 6.1. The performance of the baseline setup using AFL++ is
generally worse than the performance of the baseline using libFuzzer. It is likely that a lower execution speed

1https://www.fuzzbench.com/reports/2021-04-11/index.html

35

https://www.fuzzbench.com/reports/2021-04-11/index.html


36 6. FATE with different fuzzing engines

is the cause of the worse performance: for the Breast-cancer dataset the execution speed is 12800 compared
to 127000 for libFuzzer. Also for MNIST AFL++ is slower: 67 compared to 85 for libFuzzer. Extra tests with
different power schedules (we use the default ’fast’) did not increase the number of executions per second.
AFL++ does perform better than libFuzzer on the Higgs dataset though, and it has comparable performance
on the IJCNN1 dataset. The running times t are higher due to more victims being "double fuzzed".

For the no timeout setting, AFL++ was instructed to stop if no new paths were found for 6 seconds (60
seconds for the image datasets) with a maximum of 200 seconds per victim. The fuzzer keeps on finding new
paths for a long time: for many datasets the timeout of 200 seconds is reached. Except for MNIST 2 vs 6,
the performance is better than when fuzzing shorter for all datasets as expected. The performance without
timeout is worse for MNIST 2 vs 6 because the fuzzer is now able to attack many victims on its first run with
high adversarial distances. Not attacking some victims and performing "double fuzz" while initializing the
fuzzer with an adversarial example performs better for these victims.

We also test AFL++ with only out-of-the-box features and mutator, so we disable the custom mutator
of FATE and "double fuzz". It stands out that this improves the average adversarial distance on the Higgs
dataset compared to the baseline, however when allowing the baseline to also run without timeout the base-
line performs better. Nevertheless, it is impressive that the built-in mutator can find adversarial examples
within 3 percent-point difference from the optimal adversarial examples (0.0022), as it does not have any do-
main knowledge. For the other datasets, the performance is clearly worse when using the built-in mutator of
AFL++. AFL++ has problems in finding additional coverage for the Covertype dataset as the runtime for this
dataset is quite low compared to the other datasets, which means that generally early on no new paths could
be explored for 6 seconds and the fuzzer quits.

Table 6.1: AFL++ performance

Baseline (libFuzzer) AFL++ AFL++ no timeout
AFL++ no custom

mutator no timeout
Dataset r̄ n t r̄ n t r̄ n t r̄ n t

Breast-cancer 0.275 50 0.21 0.3575 50 0.31 0.228 50 6.60 0.3072 43.6 7.42
Diabetes 0.0645 50 0.21 0.0942 50 0.36 0.0671 50 8.91 0.101 50 8.72
IJCNN1 0.054 50 0.21 0.0572 50 0.33 0.0519 50 18.58 0.0753 50 14.18
Covertype 0.0636 50 0.22 0.0848 50 0.37 0.0629 50 20.25 0.1074 50 3.52
Higgs 0.0382 50 0.21 0.0289 50 0.31 0.019 50 20.26 0.0295 49.8 20.24
MNIST 2 vs 6 0.4284 50 2.00 0.5659 50 2.71 0.8287 50 17.17 - 0 20.12
MNIST 0.3408 50 2.09 0.3607 50 2.75 0.3322 50 43.37 - 0 20.17
FMNIST 0.3877 50 2.23 0.4356 50 2.70 0.3652 50 45.32 - 0 20.17
Average 0.2065 50.0 0.92 0.2481 50.0 1.23 0.2444 50.0 22.56 0.1241 30.4 10.85

6.2. libFuzzer
LibFuzzer is an in-process (it operates entirely in memory), coverage-guided evolutionary fuzzing engine
([29]). It is part of the LLVM project and ships directly with recent versions of Clang. LibFuzzer requires a bit
of setup: at least the LLVMFuzzerTestOneInput function should be implemented that feeds input generated
by libFuzzer to the program under test. This input is then executed and coverage information is provided
through SanitizerCoverage ([39]) instrumentation. Coverage-increasing seeds are saved to the corpus with
the goal to penetrate deeper into the source code.

The built-in mutator of libFuzzer performs several mutations:

• EraseBytes removes bytes from the input thus decreasing the size of the seed
• InsertByte inserts a byte and thus increases the size of the input
• InsertRepeatedBytes inserts multiple bytes to the input
• ChangeBit flips one of the bits in the input
• ChangeByte replaces one of the bytes with a random byte
• ShuffleBytes is a crossover function that randomly re-arranges the bytes of the current input
• ChangeASCIIInteger randomly adjust an ASCII integer in the input
• ChangeBinaryInteger randomly adjust a binary integer in the input
• CopyPart returns only a part of the current input



6.3. Honggfuzz 37

• Crossover combines the current input with a random input from the corpus or from itself
• CMP adds values of a CMP instruction to the dictionary
• AddWordPersistAutoDict replaces a part of the input with that of a seed that previously increased code

coverage.
• AddWordTempAutoDict replaces a part of the input with that of a seed that recently increased code

coverage.
• AddWordFromTORC replaces a part of the input with the contents of a recently executed compare in-

struction

The target is compiled using clang++-11 with the -fsanitize=fuzzer -fbracket-depth=1100 -
fsanitize-coverage=bb,trace-cmp command-line arguments. The increased bracket depth is nec-
essary for some layouts of the objective function where the bracket depth can become more than
1000. The ’bb’ in the sanitize-coverage argument stands for instrumentation on the basic-block
level (instead of function/edge) and the trace-cmp flag adds instrumentation around comparison in-
structions and switch statements. The trace-cmp flag is a recommended option by the creators of
libFuzzer [29]. The command-line arguments supplied to the binary compiled as fuzz target all
have to do with the input and its length: -reduce_inputs=0 such that the fuzzer will not try to
minimize testcases, -reload=0 such that the fuzzer will not periodically reload the corpus as this
is unnecessary as we only fuzz the same corpus with one instance, -max_len=(num_features *
BYTES_PER_FEATURE) - the expected number of input bytes, -prefer_small=0 as we always look for
inputs with max_len bytes and -len_control=0 such that inputs up to max_len are tried right away.

Figure 6.1: Best adversarial example produced by
libFuzzer for FMNIST. Original (right): Ankle boot.

Adversarial example (left): Bag

We test the performance of libFuzzer with their out-of-the-box
mutator and ’without a timeout’. Because libFuzzer has no sup-
port to quit the fuzzer when for a certain amount of time no
new paths are found, like AFL++ does, we set the timeout to 200
seconds per victim, which is 100x as long as the default fuzzing
time of 2 seconds. We also set the use_value_profile=1 flag,
which collects values profiles for the parameters of compare in-
structions and treats some new values as new coverage. We also
set the -use_cmp=1 flag, which is similar to the LAF feature of
AFL++. Lastly, we also enable the entropic power schedule such
that the setup is mostly similar to AFL++, only an alternative for
their autodict feature is missing from the libFuzzer setup.

Experimental results are shown in Table 6.2. Using "no timeout" improves the performance of FATE as
expected. For each dataset the average distance if smaller while attacking all victims. The out-of-the-box
mutator is able to find adversarial examples for most of the victims. The average distances are much worse
though than with the custom mutator and not all victims can be attacked. For the image datasets only ad-
versarial examples with very high distance can be found. We show one of the created adversarial examples in
Figure 6.1. It looks like the example is generated by performing crossover, possibly with itself. The generated
example is clearly different from the original and may not be recognised as being an ankle boot by humans
either.

6.3. Honggfuzz
Honggfuzz is a security oriented, feedback-driven and evolutionary fuzzer [21]. Like libFuzzer, it uses the
LLVMFuzzerTestOneInput and LLVMFuzzerInitialize APIs for testing a target. Coverage feedback is
received through SanitizerCoverage’s compile-time instrumentation. Honggfuzz adds a layer over Clang
and automatically adds the -fsanitize-coverage=trace-pc-guard,indirect-calls,trace-cmp argu-
ments to the fuzzer that instrument comparison instructions, indirect calls, and add a guard variable to each
edge. Next to inputs that increase code coverage, honggfuzz also identifies inputs that increase instruc-
tion/branch counters and edge coverage is measured indirectly using basic block coverage. In contrast to
AFL++ (which implements multiple types of schedules) and libFuzzer (with an entropic seed schedule), seeds
are selected randomly from the in-memory corpus. Honggfuzz does not support the custom mutator API like
libFuzzer, however it does support custom mutation through calling a script that mutates input files. The cur-
rent version (2.4) has a bug for this feature though where the file provided to the mutator is non-existent, so
we do not test with the custom mutator. We set --mutations_per_run 5 (the mutation depth) to the same



38 6. FATE with different fuzzing engines

Table 6.2: libFuzzer performance

Baseline
(Custom Mutator)

Custom mutator
No timeout

No custom mutator
No timeout

Dataset r̄ n t r̄ n t r̄ n t

Breast-cancer 0.2750 50 0.21 0.2157 50 20.11 0.4764 37.2 20.11
Diabetes 0.0645 50 0.21 0.0596 50 20.11 0.2677 49.2 20.11
IJCNN1 0.0540 50 0.21 0.0463 50 20.13 0.2119 50.0 20.12
Covertype 0.0636 50 0.22 0.0548 50 20.15 0.4000 43.6 20.13
Higgs 0.0382 50 0.21 0.0235 50 20.17 0.1368 50.0 20.14
MNIST 2 vs 6 0.4284 50 2.00 0.2672 50 34.61 0.9973 41.8 20.12
MNIST 0.3408 50 2.09 0.2227 50 24.33 0.9981 30.2 20.28
FMNIST 0.3877 50 2.23 0.2421 50 24.34 0.9707 25.8 20.29
Average 0.2065 50 0.92 0.1415 50 22.99 0.5574 41.0 20.16

value of libFuzzer and -F (num_features * BYTES_PER_FEATURE) to specify the maximal (and expected)
input size. Honggfuzz does not support exiting when no paths are found for n seconds like AFL++, so similar
to libFuzzer we set the timeout to 200 seconds.

Honggfuzz produces a lot of adversarial examples with non-finite input, which means the produced fea-
tures are NaN (Not a Number), ∞ or −∞. This input is discarded by FATE, so many inputs that reached
new coverage in the target are inputs that are actually invalid. This decreases the performance of honggfuzz.
Results are shown in Table 6.3. Honggfuzz is able to attack most victims, and the adversarial distances are
similar to libFuzzer and worse than AFL++. This is true especially for the image datasets, where the distances
are close to 1 which means that every feature can be adjusted over almost the whole feature range. The best
adversarial example found by honggfuzz for FMNIST is shown in Figure 6.2. One can argue that this could
still be a usable adversarial example in the real world: for example putting some tape over a shirt at the right
location might trick the model into classifying wrong. This adversarial example shows that using the builtin
mutators, it might be more feasible to attack models on L_0 distance. Many of their operators consist of re-
moving or changing bytes which result in big changes in single features and thus large L∞ distances, but not
necessarily many features that are changed at one time which is important for the L0 norm.

Table 6.3: Honggfuzz performance

No custom mutator
No timeout

Dataset r̄ n t

Breast-cancer 0.4627 36.4 20.1032
Diabetes 0.2029 49.4 20.1021
IJCNN1 0.2745 50 20.1356
Covertype 0.3039 49.2 20.1751
Higgs 0.1078 50 20.2654
MNIST 2 vs 6 0.9961 48.2 20.139
MNIST 0.9961 49.4 20.2309
FMNIST 0.909 47.4 20.2954
Average 0.5316 47.5 20.18

6.4. Conclusion
In this chapter we showed that FATE is not limited to using libFuzzer as a fuzzing engine. FATE does however
perform best when using libFuzzer, both when fuzzing with or without timeout. The reason for this is the
much lower number of executions per seconds that is reached when fuzzing with AFL++ (while implementing
all performance boosting options that they offer through their "Persistent mode" fuzzing). LibFuzzer, AFL++
and honggfuzz are all able to find adversarial examples using their built-in mutators, however the adversarial
examples that are found are generally much worse than when using the custom mutator. This is no surprise:



6.4. Conclusion 39

Figure 6.2: Best adversarial example produced by honggfuzz for FMNIST. Original (right): t-shirt. Adversarial example (left): shirt/top

the custom mutator incorporates domain knowledge that the default mutators do not have. Considering the
default mutators, AFL++ finds the best adversarial examples on the datasets we are testing with, however
it is unable to find adversarial examples for the image datasets where libFuzzer and honggfuzz are able to
find adversarial examples for these datasets. The clearly worse performance with the built-in mutators for all
these fuzzers shows the importance of the custom mutator of FATE.





7
Fuzzing Efficiency

In previous chapters we showed how fuzzers can be used to find adversarial examples in tree ensembles using
FATE and how the performance of FATE can be improved by leveraging information from various sources. In
this chapter we investigate how efficient it is to fuzz for adversarial examples: is the objective grey-box fuzzers
try to optimize, code coverage, equal to finding more and better adversarial examples? Also we investigate the
scalability of FATE for the various model sizes in our datasets and show our main results through comparing
the performance of FATE with the state-of-the-art in section 7.4. We verify the performance of FATE on two
previously unseen datasets. Finally, we execute FATE as a standalone Evolutionary Algorithm to investigate if
FATE will perform better without fuzzing overhead and coverage-guidance distractions.

7.1. Coverage guidance
Fuzzers aim to increase code coverage. As mentioned in chapter 3, for FATE this should be strongly related to
finding better adversarial examples. For all but the smallest models, the most basic blocks in the produced
C++ code are part of the individual decision trees. Increasing code coverage thus mainly means that more
leaves of the tree ensemble are explored. Recalling from chapter 2, coverage in the tree ensemble is necessary
for finding adversarial examples, but also for improving them. We investigate the relation of code coverage
and adversarial example quality & quantity using the Breast-cancer dataset. The Breast-cancer dataset is a
fairly easy dataset to attack so for readability of the plot the ε value was set to 0.1 which makes it more difficult
for the fuzzer to find new leaves. The fuzzing target was executed with increasing amounts of runs in the range
[1.000, 800.000]. After each number of runs, the adversarial examples are removed and the fuzzer is started
with a clean sheet. At each run one mutated input is generated (through up to 5 consecutive calls to the
mutator). 1.000 runs thus equal 1.000 mutated inputs which are tested against the tree ensemble. Figure 7.1
shows the development of the quality and quantity of adversarial examples over the amount of fuzzing runs.
It also shows the Approximate Nearest Neighbour distance to samples from the training set.

The curves showing the approximate closest distances to other instances show that the examples the
fuzzer finds are quite different from samples in the training set. This is expected as the fuzzers needs to evade
the decision regions around points in the training set where the model is quite certain what the prediction
should be. In the plot we see that forged adversarial examples generally lie closer to points from the original
class of the victim (distance to own class) than to points of other classes (distance to other classes). Intuitively,
good adversarial examples look as much like the victim (and other points of the victim class) as possible as
that generally means the distance to the victim is as small as possible. For optimal adversarial examples for
the Breast-cancer dataset, the average distance to the nearest sample of the class of the victim is 0.287 and the
average distance to samples from the other class is 0.415, so also the optimal adversarial examples are quite
different from instances from the training set.

It seems that more coverage means an higher number of successfully attacked victims and a lower average
L∞ distance. We further explore these relations. The relation between L∞ distance and coverage is shown in
Figure 7.2a. The figure shows the average coverage and L∞ distance over the breast-cancer test-set. We show
different coverage levels through increasing the number of runs (which on average corresponds to increasing
the coverage). Lower coverage generally means a higher L∞ distance. This will never be a perfect correlation
though: because the fuzzer makes random mutations, it is possible that the fuzzer discovers a good/optimal

41



42 7. Fuzzing Efficiency

Figure 7.1: Fuzzing progress over an increasing amount of runs for the Breast-cancer dataset (ε= 0.1)

(a) Relation between L∞ distance and coverage

(b) Relation between points attacked and coverage

Figure 7.2: Coverage guidance for the Breast-cancer dataset (ε= 0.1)

adversarial example right at one of the first mutations. The coverage will then still be low, with a relatively
good L∞ distance. This variance is limited through taking the average of the whole test-set. This makes
the relation for the breast-cancer dataset quite clear: higher coverage generally means a lower adversarial
distance.

The average number of points attacked and average coverage show an even clearer relation (Figure 7.2b).
Again, coverage was increased by increasing the amount of runs. This relation is expected as the more (com-
binations of) leaves of the tree ensemble are explored, the more victims can be attacked.

We show the same plot as Figure 7.1 but with settings that easily generate optimal adversarial examples for
the breast-cancer dataset in Figure 7.3. The optimal approach produces not only adversarial examples with
much lower average distance, it is also a lot more consistent (this plot shows 5 separate executions as well).
The fuzzer is now able to attack each victim much easier, thus relying less on the randomness of the fuzzer.
The optimal setup reaches high coverage much quicker: already after for about 50.000 runs optimal adver-
sarial examples are found where the previous setup stopped improving after about 600.000 runs while not
producing optimal adversarial examples. The average percentage of coverage reached is also much higher:
around 85% versus a little over 50%. The average L∞ distance that is decreasing at the beginning of the plot
and then increasing again can be explained by the lower amount of victims that can be attacked for the lower



7.1. Coverage guidance 43

Figure 7.3: Fuzzing progress over an increasing amount of runs for the optimal Breast-cancer setup (ε= 0.4)

number of runs: some victims with high optimal adversarial distance (up to 0.61) could not yet be attacked
after that limited amount of runs. The lines describing the average distances to other instances deviate a
small bit (especially the distance to other classes line at 400.000 runs). This can be explained by the fact that
two adversarial examples with equal adversarial distance can theoretically be located at completely different
locations in the input space, thus having different distances to instances of the training set. These lines can
thus deviate without the optimal adversarial example distance changing significantly.

We investigate the added value of coverage guidance further by instructing the compiler to either compile
coverage guidance for the full target, only for the forest, only for the objective function or not at all. The
results are shown in Table 7.1. On the breast-cancer dataset the performance of FATE is best when using
coverage guidance as expected with the previous findings. It is however remarkable that using no coverage
guidance at all drastically improves the performance for the IJCNN1, Covertype and Higgs datasets with the
current setup. When no coverage guidance is used, the fuzzer spends all of its time fuzzing the initial seed,
which is the victim point. When the fuzzer is able to find an adversarial example this way, the distance of
this adversarial example to the victim will generally be relatively small because the adversarial example will
directly originate from the victim features itself. This also explains why less victims could be attacked for the
more difficult image recognition datasets when no coverage guidance is used: it is difficult to mutate exactly
the right combination of features with the right perturbation starting from the victim features itself.

Because seeds that trigger new branches in the forest are also saved to the corpus for further mutation
when using coverage guidance in the forest, the fuzzer is able to explore more combinations of leaves in the
forest and is thus able to attack more victims. This is however at the cost of the average adversarial example
distance for the other datasets, which is generally clearly worse compared to using no coverage guidance: the
fuzzer is distracted by the seeds that trigger additional coverage in the forest (which may be far away from the
victim) and thus spends less time fuzzing seeds that actually resemble good adversarial examples. Coverage
guidance in the objective function only also improves the average adversarial distance compared to full cov-
erage guidance, although the improvement is smaller than when using no guidance at all. Coverage guidance
only for the objective function still has the problem of not being able to successfully attack most victims for
the image datasets, because it can only explore a limited amount of combinations of leaves in the forest.

We further investigate the influence of coverage guidance on the IJCNN1 dataset, which performed clearly
better without coverage guidance for the baseline setup as shown in Table 7.1. Maybe the custom mutator
and crossover functions do not produce the right mutations with the baseline setup, which makes saving
seeds that trigger new coverage less powerful as those seeds might be worse starting points than the victim
itself. In Figure 7.4 we show results for the IJCNN1 dataset with a much better setup for the mutator (as iden-
tified in chapter 5). The differences in produced average adversarial examples are now much smaller: 0.0517
(full coverage guidance), 0.0554 (coverage guidance in the forest only), 0.0470 (coverage guidance for the ob-
jective function only) and 0.0535 (without coverage guidance). Coverage guidance in the objective function



44 7. Fuzzing Efficiency

Table 7.1: Coverage Guidance

Full guidance Guidance in Forest
Guidance in

objective function
No guidance

Dataset r̄ n r̄ n r̄ n r̄ n

Breast-cancer 0.2189 50 0.2325 50 0.2174 50 0.2329 50
Diabetes 0.0841 50 0.1058 50 0.0796 50 0.0811 50
IJCNN1 0.194 50 0.2036 50 0.115 50 0.0591 50
Covertype 0.2565 50 0.2755 50 0.1691 50 0.0723 50
Higgs 0.1603 50 0.1592 50 0.1361 50 0.0306 50
MNIST 2 vs 6 0.4988 23.4 0.5247 24.2 0.4709 20 0.4037 19.2
MNIST 0.5251 44.6 0.5214 44.8 0.5225 35.2 0.4433 34.6
FMNIST 0.5329 45.2 0.5258 44.4 0.5202 32 0.4436 31.8
Average 0.3088 45.4 0.3186 45.4 0.2789 42.2 0.2208 42.0

thus helps for finding better adversarial examples when the fuzzer makes the right mutations. There are
big differences in the coverage that the fuzzer reaches with the different coverage guidance setups: enabling
coverage-guidance in the forest results in a higher percentage of basic blocks covered (around 50%) versus
30% when fuzzing without coverage guidance. As coverage guidance in the forest does not assist the fuzzer
with finding better adversarial examples, we can conclude that the fuzzer in that case spends its execution
time on exploring irrelevant cases. In the plots in Figure 7.4 the fuzzer in general spends much of its effort in
trying to trigger branches that do not aid in finding better adversarial examples as coverage increases much
more than the quality of the created adversarial examples.

(a) IJCNN1 with coverage guidance over the full target (b) IJCNN1 with coverage guidance in the Forest

(c) IJCNN1 with coverage guidance in the objective function (d) IJCNN1 without coverage guidance

Figure 7.4: Coverage guidance influence on IJCNN1 (ε= 0.2)

We investigate the development of the coverage curve (green line) when the quality of the created ad-



7.2. Seed selection 45

versarial examples increases in Figure 7.5. The upper two figures (medium setup) produce examples with
adversarial distances that are worse (0.06) than the distances in the lower two figures (0.045). The entropic
power schedule in the right two figures can be neglected for now, it is introduced in the next section. In the
figure we can clearly see that the relation between adversarial example quality and coverage does not hold:
the upper figures reach more coverage than the lower figures. More coverage can thus actually mean that the
best adversarial examples are worse. This means that the branches the fuzzer is investigating are not working
towards the goal of finding better adversarial examples and can actually distract the fuzzer from identifying
the most important combinations of branches. Similar results can be seen for the Covertype dataset in Fig-
ure B.2 (Appendix). The influence of the coverage that is reached depends per dataset: for the breast-cancer
dataset the average coverage is quite high for the optimal adversarial examples and quite low for setups that
produce worse examples (Figure B.1, Appendix). The trick for performance seems to be to generate the least
amount of coverage for which all victims can still be attacked.

(a) IJCNN1 medium setup no entropic power schedule (b) IJCNN1 medium setup with entropic power schedule

(c) IJCNN1 good setup no entropic power schedule (d) IJCNN1 good setup with entropic power schedule

Figure 7.5: Performance of FATE over increasing runs for different setups on the IJCNN1 dataset

7.2. Seed selection
When investigating coverage we have to keep in mind that between different runs, 30% coverage does not
necessarily mean that the same 30% of the leaves is covered. Because the fuzzer makes random mutations,
different inputs will be found for each run, resulting in different leaves being triggered. Also, for some victims
much more coverage may be achieved than for other victims. One reason that the relation between coverage
and the number of victims attacked is so clear may be that taking the average over attacking multiple victims
counters the variance in coverage between individual runs. Another explanation that this relation is so clear
could be that certain leaves are more difficult to reach in the tree ensemble than others. Easy-to-reach leaves
(given certain areas of seed input) will be quickly discovered by every fuzzing run, whereas difficult-to-reach
leaves will generally take more time. If these leaves are necessary to attack a certain victim, the increased
coverage, increased by more runs, also increases the number of victims that can be attacked. If this is true,
there will be certain paths through the tree ensemble that are occurring often, whereas other paths will be



46 7. Fuzzing Efficiency

much rarer. This phenomenon is known to occur when fuzzing normal code as well [7, 33].
LibFuzzer has an option to enable an entropic power schedule as described in [5], which assigns more

energy to seeds that maximize information. That is, the entropy (information gain) is small when the fuzzer
exercises mostly the same few program transitions, whereas if the input triggered previously unseen program
behaviors (branches) the entropy is high and these inputs will generally be better at discovering new behav-
iors (branches). Using an entropic power schedule, priority will thus be given to seeds that are more likely to
discover new program paths and less time will be spent on the "uninteresting" members of the population
that generally follow the same paths. Table 7.2 shows the results of using an entropic power schedule. Us-
ing such a schedule clearly improves fuzzing compared with the baseline for non-image datasets. For image
datasets less victims can be attacked.

Table 7.2: Entropic power schedule

Baseline
Entropic power

Schedule
Dataset r̄ n r̄ n

Breast-cancer 0.2189 50 0.2186 50
Diabetes 0.0841 50 0.0771 50
IJCNN1 0.194 50 0.1439 50
Covertype 0.2565 50 0.1894 50
Higgs 0.1603 50 0.1151 50
MNIST 2 vs 6 0.4988 23.4 0.4463 21.8
MNIST 0.5251 44.6 0.5076 27.2
FMNIST 0.5329 45.2 0.529 27.2
Average 0.3088 45.4 0.2784 40.8

Looking at Figure 7.5 though, conversely to what
we would expect the entropic power schedule does
not necessarily increase coverage. Inspecting the
difference between Figure 7.5a and Figure 7.5b, the
setup with the entropic power schedule enabled ac-
tually reaches lower coverage. We further investi-
gate the use of the entropic power schedule with a
better setup in Table 7.3. We can clearly see why the
entropic power schedule performs worse for the im-
age datasets than without the entropic power sched-
ule: the executions per second are drastically lower.
It takes too much time to compute the entropy for
the large models of the image datasets. It is interest-
ing to note that the entropic power schedule has a
lot of impact on the number of executions per sec-
ond on other datasets as well. For example, for the
IJCNN1 and MNIST 2 vs 6 datasets the number of executions per second is much higher which generally
means less coverage-increasing test-cases are found: As we see in section 7.3, the coverage tracing mecha-
nism of libFuzzer much time, and the entropic schedule impacts how many test-cases coverage should be
traced. The idea of this schedule is that coverage should be traced for more inputs, which would result in
a lower amount of executions per second, but as can be seen in the higher executions per second for some
datasets, this is not always the case.

Table 7.3: Entropic power schedule with a better setup

No entropic Entropic
Dataset r̄ n exec/s r̄ n exec/s

Breast-cancer 0.1618 44.2 283393 0.1715 45.2 282702
Diabetes 0.0605 50 202144 0.0611 50 182490
IJCNN1 0.0532 50 17978 0.0506 50 24954
Covertype 0.0616 50 22808 0.0576 50 20154
Higgs 0.0368 50 4346 0.0295 50 2928
MNIST 2 vs 6 0.1223 21 1699 0.1267 21.6 2263
MNIST 0.2167 43.4 99 0.2271 33.8 16
FMNIST 0.2401 43.4 91 0.2392 33.2 20
Average 0.1191 44.0 66570 0.1204 41.7 64441

7.3. Scalability
Following the rationale of Böhme et al. ([4]), the efficiency with which fuzzers can execute targets is very im-
portant and a main reason why grey-box fuzzing works so well. Table 7.4 shows the influence of model size
on C++ file generation, ANN-lookup creation (used in chapter 5) and compilation times. It also shows how
many runs per thread per second the fuzzer is able to perform on the generated C++ file. Size is calculated by



7.3. Scalability 47

t ∗2d ∗c with t the number of trees, d the maximum depth of the tree (2d resembles the maximum amount of
nodes per tree) and c the number of trees per iteration (1 for Random Forests and binary-classification Gra-
dient Boosting, num_classes for multi-class Gradient boosting). This is just an estimation, as for unbalanced
trees the maximum depth may not be reached for all leaves, thus resulting in less nodes. We can see that the
file generation and compilation times are not completely linear in the size of the model, but there is a clear re-
lation. The Lookup initialization depends on the number of samples in the lookup and the size of the sample
(number of features). The image datasets have a lot of features (784) which explains the higher initialization
times for those datasets. The number of executions per second per thread in the last column is very low for
both MNIST and FMNIST. For MNIST 2 vs 6, the standard deviation is quite high, but this remained when
performing the test again. The reason for this can be a big difference in the amount of new coverage found,
which influences the runtime (through the fuzzer needing to trace where the increased coverage is located).
The number of executions per second for MNIST 2 vs 6 thus depends a lot on the mutations made by the
fuzzer. We investigate the executions per second for MNIST as 99 is (probably) too low for FATE to find good

Table 7.4: Influence of model size

Dataset
Approximate

model size
File Size

File generation
(s)

Compilation
(s)

Lookup init
(s)

Exec/s

Breast-cancer 256 48.4 kB 0.019 1.33 0.003 283393 (11937)
Diabetes 640 82 kB 0.023 1.46 0.003 202144 (7236)
IJCNN1 15360 871.6 kB 0.13 4.40 0.027 17978 (264)
Covertype 20480 1.4 MB 0.21 2.22 0.053 22808 (892)
Higgs 76800 3.6 MB 0.48 3.94 0.026 4346 (173)
MNIST 2 vs 6 16000 1.3 MB 0.18 2.28 0.41 1699 (583)
MNIST 1024000 44.5 MB 6.0 40.1 3.5 99.5 (3)
FMNIST 1024000 48.1 MB 6.3 42.5 3.5 90.6 (4)

adversarial examples in a reasonable time. We have to keep in mind that this resembles the number of exe-
cutions per second per thread, so the actual executions per second is 10 times higher as we use 10 concurrent
threads.

We tried to improve the execution speed inside the fuzzer in several ways. In chapter 5 we showed how
calls to predict can be faked to remove the necessity to query the model for each mutation. While increas-
ing the execution speed, the results were actually better by using the exact model query. Furthermore, in
chapter 4 we improved how often a call to write_if_not_exist needs to be performed and always turn on op-
timization. This resulted in a 71% speedup and when using no coverage instrumentation even a speedup of
650% (598 exec/s), but these are still quite low numbers of executions per second. The MNIST model contains
530865 leaves that can be reached, with only 400 (trees)∗10 (number of classes) = 4000 leaves triggered with
the first seed and each execution changing only a number of leaves. The (F)MNIST models should thus be
fuzzed longer, to make up for the low amount of executions per second.

When executing FATE as a standalone Evolutionary Algorithm, as we show later in this chapter, the num-
ber of executions per second is also limited and similar to executing FATE inside a fuzzer. It is thus not the
fuzzer that produces a lot of overhead, but the model size that is very big or unnecessary complexity in the
source code. Recalling from chapter 2, the main benefit of fuzzers is the efficiency with which they generate
and execute new test input. It might be the case that currently these models are too large to be used efficiently
with FATE.

However, executing the important parts of the target outside the fuzzer as standalone programs (e.g. by
calling the predict and mutation functions on random features) yields much higher executions per second.
Predicting the outcome for random features in python (model in memory) for example gives 3095 predictions
per second. To test if writing the model to source code decreased performance we call the target with a forged
main function calling LLVMFuzzerTestOneInput with Data consisting of random features in the range [0, 1].
This produces an even higher amount of 10781 predictions per second. Producing the output of the tree
ensemble is thus not likely to be a bottleneck. Another possibility is that the mutation functions are the
bottleneck. Like before, we execute the target within a main function that calls mutate and crossover on
random features repeatedly. This target is able to consecutively perform mutation and crossover 5028 times
per second on the MNIST data. The mutations functions are thus also not a bottleneck. One reason why
calling these functions "standalone" performs much better is that these experiments were only executed on



48 7. Fuzzing Efficiency

one thread instead of 10 threads. This allows the CPU to "Turbo-boost" one CPU core which improves the
performance. This is however unlikely to attribute for the big difference in executions per second. Another
possible explanation is that caching plays an important role. These results however show that performance
improvements may be possible, and would benefit FATE a lot.

FATE can be executed with a virtually unlimited amount of concurrent threads. Table 7.5 shows the
number of executions per second per thread for the Breast-cancer dataset on the Gradient Boosting model.
FATE scales well with the number of threads. These experiments are performed on a laptop with 6 cores (12
threads), which explains the drop in performance from 6 to 12 threads as multiple threads have to be exe-
cuted on the same core. Fuzzing with one thread is faster because of less overhead and probably also because
the processor can "Turbo-boost" when only a small number of cores is under load. The total executions per
second, multiplying the executions per second per thread with the number of threads, grows steadily with a
larger number of threads.

Table 7.5: Multithreading scalability

Number of
Threads

Executions per second
per thread

Total executions
per second

1 182773 182773
6 139282 835692
10 107212 1072120
12 100343 1204116

7.4. FATE in comparison with the state-of-the-art
We show our main results through comparing the Performance of FATE with both the exact best solution
(MILP approach) [24] and the state-of-the-art LT-attack for tree ensembles by Zhang et al. ([48]). The MILP
implementation is taken from 1, which is an adapted version of the MILP formulation of [24] implemented
by Hongge Chen at 2. This formulation is solved using the Gurobi solver [20].

The LT-attack implementation is compiled from source using the most recent commit on main from their
github page 3. We changed one line: in their version they seed the random generator in NormalRandom-
Point with the same seed each run, which means that the same initial points will be generated for each run.
This may produce seeds that either consistently improve of decrease performance. As we repeat our exper-
iments 5 times, we added a random device for the generator in NormalRandomPoint (neighbour_attack.cc
line 1283/1288) to make sure new random points are generated each run thus allowing for a fair comparison.
For FATE we discard all adversarial examples with distance > 0.9 as not having identified an adversarial ex-
ample. This is reasonable, as a value of 0.9 would mean we would be able to almost completely change any
victim.

Table 7.6 shows the performance of default FATE on Gradient Boosting models. We increase the number
of victims to 500 (previous experiments were conducted on 50 victims, see chapter 4). This is used in related
work as well ([48]) and further decreases the possibility that we get invalid results due to attacking victims
that are especially suitable for one of the attacks. The Breast-cancer and Diabetes test-sets do not contain
500 valid (the victims should be correctly classified by the model) victims, so we tested on all available valid
victims (133 and 124 respectively). Entries with (*) in the MILP column are not repeated due to long running
times, while entries with (**) are not repeated and only executed for 50 victims due to very long running times.
The tables mention the average adversarial example found (r̄ ), the execution time per victim (t ) and possibly
also the number of victims that could be attacked (n). Standard deviations are mentioned in brackets behind
individual values for the tables containing the main results. This value represents the standard deviation
in the result of 5 different runs. For example, FATE may find average adversarial distances {0.1957, 0.1962,
0.1967, 0.1962, 0.1962} in the different runs. The standard deviation is then 0.0004.

FATE is able to find adversarial examples for all victims and its performance is a clear improvement over
the baseline performance (Table 4.10). The adversarial distances are not yet on par though with the MILP and

1https://github.com/tudelft-cda-lab/GROOT
2https://github.com/chenhongge/RobustTrees
3https://github.com/chong-z/tree-ensemble-attack

https://github.com/tudelft-cda-lab/GROOT
https://github.com/chenhongge/RobustTrees
https://github.com/chong-z/tree-ensemble-attack


7.4. FATE in comparison with the state-of-the-art 49

LT-attack attacks, which are generally better with around 1% point for the non-image datasets. The perfor-
mance of FATE on the image datasets is much worse. For (F)MNIST the reason is that these models are too
big to be fuzzed efficiently. The various datasets need different settings for FATE to perform optimally.

Table 7.6: Main result: performance of FATE compared to the state of the art on Gradient Boosting models

MILP LT-attack FATE
Dataset r∗ t r̄ t r̄ t

Breast-cancer 0.1957 0.0070 (0.0001) 0.1957 (0) 0.0008 (0) 0.1962 (0.0005) 0.237 (0.008)
Diabetes 0.0627 0.11 (0.004) 0.0656 (0.0008) 0.0015 (0.0001) 0.0687 (0.0005) 0.231 (0.0001)
IJCNN1 0.0337 24.6 (4.8) 0.0387 (0.0001) 0.011 (0.0006) 0.0453 (0.0002) 0.209 (0.0001)
Covertype 0.0416 50.0 (*) 0.0442 (0.0002) 0.017 (0.0006) 0.0507 (0.0003) 0.207 (0.0001)
Higgs 0.0022 (**) 667 (**) 0.0037 (0) 0.034 (0.0006) 0.0147 (0.0002) 0.206 (0.002)
MNIST 2 vs 6 0.0532 (**) 24.3 (**) 0.0837 (0.0004) 0.476 (0.002) 0.213 (0.003) 1.63 (0.01)
MNIST - - 0.0246 (0.0003) 0.919 (0.004) 0.141 (0.002) 1.31 (0.01)
FMNIST - - 0.0253 (0.0001) 2.00 (0.02) 0.123 (0.0009) 1.21 (0.01)

Table 7.7 shows that FATE benefits from longer fuzzing times. For "long", victims were fuzzed 5 to 10 times
longer than for "short". As expected, this improves the performance of FATE, although the performance is still
not on par with the LT-attack.

Table 7.7: Performance of FATE when increasing fuzzing time

Short Long
Dataset r̄ n t r̄ n t

Breast-cancer 0.1962 133 0.24 0.1957 133 1.25
Diabetes 0.0687 124 0.23 0.0667 124 1.16
IJCNN1 0.0453 500 0.21 0.0427 500 1.10
Covertype 0.0507 500 0.21 0.0476 500 1.11
Higgs 0.0147 500 0.21 0.0115 500 1.10
MNIST 2 vs 6 0.213 499.2 1.63 0.166 500 14.8
MNIST 0.141 499.2 1.31 0.111 500 11.5
FMNIST 0.123 499.6 1.21 0.099 500 10.9

We also investigate how FATE performs on Random Forest models compared to the state-of-the-art. As
the setup is tweaked based on the Gradient Boosting models, FATE may perform slightly worse relative to the
state-of-the-art. The results in Table 7.8 show that FATE is able to find good adversarial examples on Random
Forests as well, and is able to find better adversarial examples than the LT-attack for the Covertype dataset.
Entries with (**) are executed only once and for 50 victims, entries with (***) are executed only once for 25
victims due to very long running times. The performance of MNIST for the RF model is much better than the
performance for the GB model. Because the RF model has only 1 tree per iteration instead of num_classes
trees per iteration for the GB models, the execution speed of the RF model is also much higher due to the
smaller model size: 4940 executions per second.

Adversarial examples FATE generated for the image datasets are shown in Figure 7.6. The optimal adver-
sarial example FATE has found is shown on the right together with the optimal adversarial L∞ distance.

7.4.1. FATE on unseen datasets
To validate if FATE can also find adversarial examples on datasets that were not used to tweak its parameters,
we perform experiments on two "unseen" datasets. We choose webspam, the only dataset used in related
work that was not used to tweak FATE. The second dataset is Vowel, a multi-class classification problem that
is not based around image recognition, such that we can show that multi-class classification also works for
datasets that are not based around image recognition. Both datasets are described in Appendix C and the
training of their models in Appendix A. The results for these datasets for both Random Forest (RF) and Gra-
dient Boosting (GB) models are shown in Table 7.9. The adversarial distances for the Vowel dataset are close
to the adversarial distances the LT-attack produces for both the RF and GB models. The webspam dataset



50 7. Fuzzing Efficiency

Table 7.8: Performance of FATE compared to the state-of-the-art on Random Forest models

MILP LT-attack FATE
Dataset r∗ t r̄ t r̄ t

Breast-cancer 0.2405 0.010 (0.0003) 0.246 (0.001) 0.0008 (0) 0.260 (0.004) 0.277 (0.007)
Diabetes 0.0692 0.98 (0.02) 0.0713 (0.0003) 0.0023 (0) 0.079 (0.0005) 0.239 (0.0003)
IJCNN1 0.0560 (**) 125 (**) 0.0517 (0) 0.020 (0.0005) 0.059 (0.0004) 0.216 (0.003)
Covertype 0.0777 (**) 566 (**) 0.098 (0.001) 0.104 (0.002) 0.095 (0.001) 0.219 (0.002)
Higgs 0.0084 (***) 2134 (***) 0.0125 (0) 0.062 (0.001) 0.020 (0.0004) 0.207 (0.002)
MNIST 2 vs 6 0.0570 (**) 83.3 (**) 0.1454 (0.0001) 0.462 (0.004) 0.283 (0.003) 1.65 (0.01)
MNIST - - 0.032 (0.0005) 0.90 (0.02) 0.079 (0.003) 1.22 (0.002)
FMNIST - - 0.0457 (0.0003) 1.72 (0.01) 0.125 (0.002) 1.29 (0.0002)

is more difficult for FATE, probably because the average adversarial distances are very small which would
require both the ε value to be tweaked. For MILP, (*) means 50 victims are attacked instead of 500.

Table 7.9: Performance of FATE for unseen datasets compared to the state-of-the-art

MILP LT-attack FATE
Dataset Model type r̄ t r̄ t r̄ t

Vowel GB 0.0417 38.6 0.0436 (0.0003) 0.047 (0.004) 0.0451 (0.0002) 0.206 (0.0002)
Vowel RF 0.0372 68.0 0.0387 (0.0001) 0.025 (0.0006) 0.0422 (0.0002) 0.208 (0.0001)
Webspam GB 0.002844 (*) 89.5 (*) 0.0037 (0) 0.048 (0.008) 0.031 (0.001) 0.211 (0.004)
Webspam RF 0.003565 (*) 113 (*) 0.0054 (0) 0.094 (0.003) 0.028 (0.0004) 0.236 (0.003)

7.5. FATE as standalone Evolutionary Algorithm
FATE can also be executed outside fuzzers as a standalone Evolutionary Algorithm. A simple main function
was developed that saves the best population_size examples and randomly chooses one of the samples in
the population to mutate using the custom mutator of FATE. The objective function is used to identify and
save adversarial examples, but the structure of this objective function does not influence the result as we
do not perform coverage-guided fuzzing anymore. Likewise, the descent on the class-output probabilities
from the objective function will not be used anymore and no alternative was implemented for the stan-
dalone algorithm. Crossover is implemented between members of the population. However, with a small
chance crossover is executed by combining the current seed with random features in the interval [0, 1] to
escape local minima. The exact same functions are called as when libFuzzer fuzzer would be used for ex-
ecution (LLVMFuzzerCustomMutator, LLVMFuzzerCustomCrossOver and LLVMFuzzerTestOneInput).
A feature missing from the standalone implementation is the ability to initialize the execution with data
points other than the original features of the victim: the "corpus initialization". This would help for being
able to attack most victims (as the execution can be seeded with adversarial examples) and could also im-
prove the adversarial examples found (as seen in chapter 5).

FATE by default adopts a white-box approach where information specific to the type of model is used. In
our case this is information about the splitting thresholds and feature importances that are specific to tree
ensemble models. FATE can be applied in a black-box setting as well where only the model can be executed
("queried") and its output observed (class-output probabilities and prediction). This makes the approach
"portable": any model (i.e. Neural Networks) can be attacked this way as the black-box method does not de-
pend on model internals. We note that the black-box approach still uses the translation from tree ensemble
to source code which would fall under the white-box model as this is specific to tree ensembles. This en-
ables "compilation" of the model and high execution speeds. We thus argue that FATE standalone can be a
well-performing black-box attack, should it be possible to efficiently query the model, like we are able to do
through the compilation of the model. The translation to source code itself, and thus a white-box approach,
is by no means necessary for FATE to work.

Through experimentation, a good baseline for FATE standalone is identified: mutation chance = 0.5,
ε = 0.1, population size = 1 (only mutating the best known adversarial example and thus disabling normal



7.5. FATE as standalone Evolutionary Algorithm 51

(a) Original (right): 4; adversarial example (left): 6
(b) Original (right): 6; adversarial example (left): 2

(c) Original (right): 1; adversarial example (left): 7;
L∞ = 0.010

(d) Original (right): Pullover; adversarial example
(left): shirt (e) Original (right): Sneaker; adversarial example

(left): bag
(f) Original (right): Coat; adversarial example (left):

Shirt; L∞ = 0.009

(g) Original (right): 6; adversarial example (left): 2
(h) Original (right): 2; adversarial example (left): 6

(i) Original (right): 6; adversarial example (left): 2;
L∞ = 0.002

Figure 7.6: Adversarial examples generated by FATE for MNIST (first row), FMNIST (second row) and MNIST 2 vs 6 (Third row)

crossover as there are no samples in the population to perform crossover with), crossover with random fea-
tures chance = 0.001. The performance of FATE as standalone Evolutionary Algorithm is shown in Table 7.10.
The number of victims that could be attacked (n) is also mentioned, as not all victims can be attacked due
to the absence of "double fuzz": FATE standalone does not support corpus initialization. White-box long (†),
which is executed for about 5 to 10 times longer than the normal variants, was only executed once due to
time constraints. It is important to keep in mind that the mutation chance and epsilon are not tweaked for
the individual datasets, which could potentially improve performance.

Both the black-box and white-box versions of FATE standalone are competitive with the LT-attack for
the non-image datasets, finding adversarial examples with comparable distances while even finding better
adversarial examples for the Diabetes dataset. The adversarial distances between the white-box and black-
box approaches are very similar, with the black-box approach even being able to attack more victims for the
MNIST dataset. Both the black- and white-box attacks are unable to attack more than around 50% of the vic-
tims for the MNIST 2 vs 6 dataset. This is due to the absence of "double fuzz" (that seeds the execution with
adversarial examples, see chapter 5). To solve this, we tried increasing the chance that crossover with random
features occurs for this dataset such that more parts of the input space are explored. This however did not
increase the number of victims that can be attacked for MNIST 2 vs 6. Note that potentially adversarial exam-
ples were found for the other victims (especially when the input consists of many random features through
random crossover), but FATE discards all adversarial examples with distance r > 0.9 as mentioned before.

When allowing FATE standalone to run longer (only executed for the white-box approach), even adversar-
ial examples with better distances than the state-of-the-art LT-attack on the Diabetes, IJCNN1 and Covertype
datasets can be found. As we have established in section 2.5, the LT-attack performs much better than previ-
ous black-box approaches on tree ensembles. The comparable performance of FATE standalone (black-box)
with the LT-attack suggests that FATE standalone black-box can improve upon currently known black-box
attacks for tree ensembles.

We provide the differences between FATE executed in a fuzzer and as standalone Evolutionary Algorithm
in Table 7.11. The standalone approach consistently produces better adversarial distances. Note that for the
image datasets less victims can be attacked, again due to the absence of "double fuzz".

The distributions of the adversarial distances for the different models for both FATE and FATE standalone
are shortly described in Appendix B.



52 7. Fuzzing Efficiency

Table 7.10: Important results: performance of variants of FATE standalone vs the LT-attack

Black-box White-box White-box long (†) LT-attack
Dataset r̄ n t r̄ n t r̄ n t r̄ n t

Breast-cancer 0.1958 133 0.213 0.1957 133 0.213 0.1957 133 1.16 0.1957 133 0.001
(0) (0) - (0)

Diabetes 0.0627 124 0.212 0.0629 124 0.212 0.0627 124 1.16 0.0656 124 0.002
(0) (0.0001) - (0.0008)

IJCNN1 0.0398 500 0.203 0.0395 500 0.203 0.0386 500 1.10 0.0387 500 0.011
(0) (0.0001) - (0.0001)

Covertype 0.0443 500 0.205 0.0449 500 0.208 0.0431 500 1.10 0.0442 500 0.017
(0) (0.0003) - (0.0002)

Higgs 0.0077 500 0.203 0.0079 500 0.204 0.007 500 1.10 0.0037 500 0.034
(0) (0) - (0)

MNIST 2 vs 6 0.0399 258.2 1.10 0.0362 257.2 1.10 0.0332 261 10.1 0.0837 500 0.476
(0) (0.0003) - (0.0004)

MNIST 0.062 497 1.11 0.0517 466 1.11 0.0434 500 10.1 0.0246 500 0.919
(0.0006) (0.0007) - (0.0003)

FMNIST 0.0411 461.8 1.11 0.0414 457 1.11 0.0324 462 10.1 0.0253 500 2.00
(0) (0.001) - (0.0001)

Table 7.11: Performance of FATE when executed inside a fuzzer and as standalone Evolutionary Algorithm on both Gradient Boosting
(GB) and Random Forest (RF) models

Fuzzer GB
Standalone

black-box GB
Fuzzer RF

Standalone
black-box RF

Dataset r̄ n r̄ n r̄ n r̄ n
Breast-cancer 0.1962 133 0.1958 133 0.2601 135 0.2426 135
Diabetes 0.0687 124 0.0627 124 0.079 121 0.0699 121
IJCNN1 0.0453 500 0.0398 500 0.059 499.4 0.0539 500
Covertype 0.0507 500 0.0443 500 0.0954 499.6 0.0918 490.4
Higgs 0.0147 500 0.0077 500 0.0202 500 0.0152 500
MNIST 2 vs 6 0.2133 499.2 0.0399 258.2 0.2828 493.4 0.0463 252.8
MNIST 0.1411 499.2 0.0619 497 0.0792 496.6 0.0133 457
FMNIST 0.1231 499.6 0.0411 461.8 0.1253 497.8 0.0564 464.2

7.6. Conclusion
In this chapter we have shown that increased code coverage over the full fuzz-target does not imply improved
adversarial example distance. There is however a relation between increased coverage and the ability to attack
more victims. Using the coverage-guidance of grey-box fuzzers over the full source code to identify interesting
seeds increases the average distance of adversarial examples and should thus not be used. Enabling coverage
guidance only for the objective function does improve the adversarial examples. This however reduces the
fuzzing approach to a normal Evolutionary Algorithm where the increased coverage in the objective func-
tion (when a better adversarial example is found) determines the population and the mutation and crossover
functions determine the new species. Furthermore, a seed selection algorithm using entropy as a measure of
importance was deployed and found effective in improving adversarial examples for the non-image datasets.
A limitation of FATE was identified: FATE is less suitable to attack models that are very big due to low exe-
cutions per second. When only enabling coverage for the objective function running FATE inside a fuzzer
is unnecessary as increased "coverage" can then be much more efficiently determined by simply compar-
ing the distance of an adversarial example with the best known (k) distances directly. Running FATE as a
standalone Evolutionary Algorithm performs clearly better than when executing FATE inside a fuzzer and
comparable with the state-of-the-art LT-attack. Using FATE in a black-box setting, thus disabling features
that use knowledge specific to tree ensemble models, FATE standalone performs comparable with using the
white-box access model and allows FATE standalone to be used to attack other machine learning models as
well.



8
Conclusion

8.1. Discussion
To the best of our knowledge, with FATE we have created the first approach that uses fuzzers to find adversar-
ial examples in machine learning models. FATE has shown the versatility of fuzzers: even without providing
domain knowledge, fuzzers are able to find adversarial examples using their built-in mutators through the
high rate of model queries that can be performed when compiling machine learning models as source code.
Incorporating domain knowledge through a custom mutator however greatly improves the performance of
FATE. By leveraging model information such as decision thresholds and feature importances, smart initial-
ization using training-set samples and mutation guidance based on the current adversarial examples, FATE
is able to efficiently find good adversarial examples.

Fuzzers optimize code coverage, and there is a strong relation between increasing code coverage and find-
ing more adversarial examples. However, increasing code coverage does not imply finding better adversarial
examples. In contrary, we show that lower code coverage is sometimes beneficial for finding better adversar-
ial examples. The fuzzer then puts too much effort in investigating seeds that are not contributing towards
finding better adversarial examples. This is partly due to the limited time available: when allowing the fuzzer
to run for an unlimited amount of time, at some point exploring all branches in the forest will benefit the
quality of the adversarial examples. Experiments however showed that even when allowing much more time
than other methods take for finding adversarial examples, (close to) optimal adversarial examples can still
not be found.

By only enabling code coverage in the objective function of FATE, adversarial examples are created that
are close to state-of-the-art LT-attack [48]. This however reduces fuzzing to a Genetic Algorithm which can
also be executed outside fuzzing engines. We explored this with FATE standalone. Through slightly changing
the mutator, FATE standalone can be cast into a black-box attack, allowing it to attack other machine learning
models as well. FATE standalone (black-box) shows competitive performance with the LT-attack and is able to
improve upon its adversarial examples, even finding optimal adversarial examples for the Breast-cancer and
Diabetes models. Because of its competitive performance with the white-box LT-attack, which has shown to
perform much better than previous black-box attacks when attacking tree ensemble models, there is evidence
that FATE standalone can be a well-performing generic black-box attack. The approach of this black-box
attack is different than many other black-box attacks that focus on query efficiency; we argue that the number
of queries is not important for investigating model robustness when a query can be performed quick enough.

A benefit of FATE over the state-of-the-art is that it allows any kind of perturbation and distance norm,
which enables property-based testing and restricting mutations in any way. Odena et al. ([32]) showed the
potential of this through Property-Based Testing on Neural Networks. Due to time constraints, experiments
were only conducted on the generated L∞ norm distances. A drawback of FATE is that is requires compi-
lation of the fuzzing target which can be as much as 4 minutes for the largest models we have tested with
((F)MNIST). In general, FATE also requires more running time than the current state-of-the-art.

8.1.1. Limitations
While producing valid and reasonably good adversarial examples, FATE has a number of limitations. Its
performance depends a lot on hyper-parameters, which can be cumbersome to tune for each dataset in-

53



54 8. Conclusion

dividually. We define an acceptable baseline for the parameters but performance may be much better with
hyper-parameters that are tweaked to the respective dataset. Furthermore, finding the right combination of
parameters and settings is very much a "chicken and egg" problem: the performance of the mutator depends
on fuzzer settings such as mutation depth, but the right mutation depth depends on the performance of the
mutator. It may thus be that other default parameters will perform better. The parameters were tweaked on
the Gradient Boosting models, but it may be the case that FATE will perform better with different parameters
on the Random Forest models.

Fuzzing depends a lot on the quality of random mutations. Through repeating experiments multiple
times and for a multitude of victims we tried to limit the influence of this randomness, but it can always be
the case that a result is either much better or worse than it would be on average. Furthermore, experiments
were conducted on a laptop. Laptops are not the most ideal machines to conduct experiments on due to their
cooling problems and resulting CPU throttling. When possible, extra airflow was created by lifting the laptop
to limit the cooling problems. To conclude, performance was tested on a wide variety of datasets, validating
its performance on datasets that were not used for tweaking its settings. However, it can still be the case that
FATE will not perform well on different (types of) datasets.

8.2. Conclusion
To answer "How can Fuzzers be used to generate adversarial examples for Tree Ensembles?" we introduced
FATE, a tool to reduce the problem of finding adversarial examples in tree ensembles to a fuzzing problem.
FATE is able to find adversarial examples for all victims on datasets that are commonly used in the field,
while being able to find optimal adversarial examples for the Breast-cancer dataset. Although for the rest of
the datasets the adversarial examples FATE creates are comparable to the state-of-the-art in distance, they
generally have a slightly increased distance and take more time to compute. FATE has a clear limitation on
model size: the very large (F)MNIST models have very low execution speeds resulting in high adversarial
distances (0.13 vs 0.025).

How can Fuzzing for adversarial examples in Tree Ensembles be improved by leveraging information
sources? Three potential sources of information were identified: the model itself, the training set and infor-
mation from the execution. FATE was improved by initializing the fuzzer with adversarial examples through
searching over samples of the opposite class with an ANN approach. Splitting condition information was used
to move mutations right to decision boundaries and feature importances are used to bias mutation. During
execution information about the current input and features of the victim are used to bias (the magnitude of)
mutations of features.

How does FATE perform with different fuzzing engines? FATE was tested with AFL++, libFuzzer and
honggfuzz. All mentioned fuzzing engines are able to find adversarial examples using their built-in muta-
tors, which inspect the source code at compilation time for interesting input and use information (such as
input used for comparison instructions) from single runs to guide mutation. The fact that adversarial exam-
ples can be found using the built-in mutator shows that breakthroughs in fuzzing engines may improve the
performance of FATE in the future. The created adversarial examples are generally much worse though than
when using the custom mutator of FATE while AFL++ was not able to attack the image datasets. LibFuzzer
and AFL++ are compared when using the custom mutator, with libFuzzer yielding the best results because of
a much higher number of executions per second. Running the fuzzer longer per victim improves the created
adversarial examples for both fuzzers.

8.3. Future Work
Currently additional coverage in the fuzz-target does not necessarily contribute towards finding better adver-
sarial examples: additional code coverage can even mean worse adversarial examples. This is problematic,
as fuzzers optimize code coverage. Future work can focus on developing a metric to determine if a leaf is
worth the time investment for the fuzzer to try to reach. This way coverage guidance in the forest can be
beneficial as well. Through dividing the tree into branches that are "interesting" and "uninteresting", all
uninteresting parts of the tree can be put in separate functions that are excluded from coverage guidance
at compile-time through SanitizerCoverage’s __attribute__((no_sanitize("coverage"))). A potential
metric can be the probability p of input belonging to the original class (for Random Forests), leaves are then
interesting if p < t (experiment with different values) or as an alternative when the highest probability of the
input belonging to another class is close to the probability of the input belonging to the original class. For
Gradient Boosting the equivalent of this would be the regression value r <−t (for original class 1) or r > t (for



8.3. Future Work 55

original class 0). This can be combined with an ε criterion that only instruments the leaves that are within
an ε ball around the victim. The metric of reached coverage will now tell if all interesting leaves could be
reached and thus also how far the fuzzer has progressed. This approach would however require a new target
to be compiled for every victim, which can be too time-consuming. Ideally, an approach should thus be cre-
ated that can change coverage guidance for branches in the forest at runtime, allowing a single target to be
compiled for all victims.

Furthermore, some of the models (at least MNIST and FMNIST) are too big to be efficiently executed by
the fuzzer as overhead (coverage tracing) takes too much time. Future work could try to attack these models
in smaller steps, such as attacking the model per tree, and then combine these sub-results in a final stage,
leaving the fuzzer to perform expensive computations on the complete model for a shorter amount of time.
A way to limit execution time that can be added can be to implement an early time-out mechanism, for
example when no better adversarial example was found for t milliseconds.

FATE is dependent on many hyper-parameters. Through experimentation a baseline setup was identified,
but results show that the quality of the generated adversarial examples is still very dependent on both the
chance that a single feature is mutated and the ε restriction of mutations. Through performing a search over
these parameters on a small subset of all victims, good parameters can be determined that then can be used
to fuzz all victims. This would make FATE generally applicable without the need for parameter tuning by the
user.

Directed fuzzers are designed to designate most execution time (energy) towards seeds that seem to con-
tribute towards reaching certain targets in the code. When appointing the branch in the objective function
with the lowest adversarial distance as target, priority will be given to seeds that seem to contribute towards
finding better adversarial examples. This currently is a bottleneck for FATE is shown by the performance
difference between FATE and FATE standalone. FATE standalone only mutates the best currently known ad-
versarial example, while FATE also mutates examples that were previously saved to the corpus. FATE was
implemented for AFLGo ([4]), the current baseline for directed fuzzers. AFLGo does however not support
custom mutators which is essential for good performance of FATE, so this approach was abandoned. Future
work can either merge AFLGo with for example AFL++ such that custom mutators can be used or implement
directed fuzzing in a different fuzzer that supports custom mutators to investigate if this can give FATE the
performance boost it needs to improve upon the state-of-the-art.

FATE allows for any type of perturbation or distance norm. Using the objective and mutation functions,
only specialized and restricted mutations can be allowed for finding adversarial examples. This can be useful
for validating robustness of models for which only certain type of input is possible or allowed. Future work
can focus on investigating how this can be beneficial for testing real-world applications. Also, performance
of FATE and FATE standalone for different distance norms such as L2,L1andL0 can be tested.

We conclude with the black-box approach of FATE standalone, that shows competitive performance on
multiple datasets to the white-box LT-attack. As the LT-attack performed better than multiple previous black-
box attacks, FATE standalone is a promising new black-box attack. The most promising direction for future
work would be to see how FATE standalone performs on the popular Neural Networks, where gradient-based
methods (that may take a long time) are the current baseline attack methods.





Bibliography

[1] Evan Ackerman. Three small stickers in intersection can cause tesla autopilot to swerve into wrong lane,
04 2019. URL https://spectrum.ieee.org/cars-that-think/transportation/self-driving/
three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane. Ac-
cessed on 2021-03-12.

[2] Maksym Andriushchenko and Matthias Hein. Provably robust boosted decision stumps and trees
against adversarial attacks. arXiv preprint arXiv:1906.03526, 2019.

[3] Marcel Böhme and Soumya Paul. A probabilistic analysis of the efficiency of automated software testing.
IEEE Transactions on Software Engineering, 42(4):345–360, 2015.

[4] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. Directed greybox
fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’17, page 2329–2344, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450349468. doi: 10.1145/3133956.3134020. URL https://doi.org/10.1145/3133956.3134020.

[5] Marcel Böhme, Valentin JM Manès, and Sang Kil Cha. Boosting fuzzer efficiency: An information theo-
retic perspective. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, pages 678–689, 2020.

[6] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable at-
tacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

[7] M. Böhme, V. Pham, and A. Roychoudhury. Coverage-based greybox fuzzing as markov chain. IEEE
Transactions on Software Engineering, 45(5):489–506, 2019. doi: 10.1109/TSE.2017.2785841.

[8] Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa Abebe, and Salvatore Orlando.
Treant: training evasion-aware decision trees. Data Mining and Knowledge Discovery, 34(5):1390–1420,
2020.

[9] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqian Liu. A systematic re-
view of fuzzing techniques. Computers & Security, 75:118–137, 2018. ISSN 0167-4048. doi: https:
//doi.org/10.1016/j.cose.2018.02.002. URL https://www.sciencedirect.com/science/article/
pii/S0167404818300658.

[10] Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. Robust decision trees against adversarial
examples. In International Conference on Machine Learning, pages 1122–1131. PMLR, 2019.

[11] Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane Boning, and Cho-Jui Hsieh. Robustness verification of
tree-based models. In Advances in Neural Information Processing Systems, pages 12317–12328, 2019.

[12] Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hopskipjumpattack: A query-efficient
decision-based attack. In 2020 ieee symposium on security and privacy (sp), pages 1277–1294. IEEE,
2020.

[13] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled search. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 711–725. IEEE, 2018.

[14] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query-efficient
hard-label black-box attack: An optimization-based approach. arXiv preprint arXiv:1807.04457, 2018.

[15] Minhao Cheng, Simranjit Singh, Patrick Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh. Sign-opt: A
query-efficient hard-label adversarial attack. arXiv preprint arXiv:1909.10773, 2019.

[16] Marc Heuse et al. Aflplusplus, 2021. URL https://aflplus.plus/. Accessed on 2021-05-28.

57

https://spectrum.ieee.org/cars-that-think/transportation/self-driving/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane
https://doi.org/10.1145/3133956.3134020
https://www.sciencedirect.com/science/article/pii/S0167404818300658
https://www.sciencedirect.com/science/article/pii/S0167404818300658
https://aflplus.plus/


58 Bibliography

[17] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. AFL++: Combining incremental steps
of fuzzing research. In 14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX Associa-
tion, August 2020.

[18] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning for input fuzzing. In
2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 50–59.
IEEE, 2017.

[19] Google. Oss-fuzz: Continuous fuzzing for open source software, 06 2020. URL https://github.com/
google/oss-fuzz. Accessed on 2020-11-25.

[20] LLC Gurobi Optimization. Gurobi - the fastest solver, 2021. URL https://www.gurobi.com/. Accessed
on 2021-06-04.

[21] Hongfuzz. Honggfuzz, 02 2021. URL https://github.com/google/honggfuzz. Accessed on 2021-
03-12.

[22] Noora Hyvärinen. Super awesome fuzzing, part one, 06 2017. URL https://blog.f-secure.com/
super-awesome-fuzzing-part-one/. Accessed on 2021-03-12.

[23] Kyle D Julian, Shivam Sharma, Jean-Baptiste Jeannin, and Mykel J Kochenderfer. Verifying aircraft
collision avoidance neural networks through linear approximations of safe regions. arXiv preprint
arXiv:1903.00762, 2019.

[24] Alex Kantchelian, J Doug Tygar, and Anthony Joseph. Evasion and hardening of tree ensemble classifiers.
In International Conference on Machine Learning, pages 2387–2396, 2016.

[25] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. Evaluating fuzz testing. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 2123–
2138, 2018.

[26] Bogdan Kulynych, Jamie Hayes, Nikita Samarin, and Carmela Troncoso. Evading classifiers in discrete
domains with provable optimality guarantees. arXiv preprint arXiv:1810.10939, 2018.

[27] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity, 1(1):1–13, 2018.

[28] Daniel Liew, Cristian Cadar, Alastair F Donaldson, and J Ryan Stinnett. Just fuzz it: solving floating-
point constraints using coverage-guided fuzzing. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 521–532, 2019.

[29] LLVM. libfuzzer – a library for coverage-guided fuzz testing, 2021. URL https://llvm.org/docs/
LibFuzzer.html. Accessed on 2021-03-10.

[30] Barton P Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability of unix utilities.
Communications of the ACM, 33(12):32–44, 1990.

[31] Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing fuzzing overhead through coverage-
guided tracing. In 2019 IEEE Symposium on Security and Privacy (SP), pages 787–802. IEEE, 2019.

[32] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. Tensorfuzz: Debugging neural
networks with coverage-guided fuzzing. In International Conference on Machine Learning, pages 4901–
4911. PMLR, 2019.

[33] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and A. Roychoudhury. Smart greybox fuzzing. IEEE
Transactions on Software Engineering, pages 1–1, 2019. doi: 10.1109/TSE.2019.2941681.

[34] Katyanna Quach. Researchers trick tesla into massively breaking the speed limit by sticking a 2-inch
piece of electrical tape on a sign, 02 2020. URL https://www.theregister.com/2020/02/20/tesla_
ai_tricked_85_mph/. Accessed on 2021-03-21.

[35] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In NDSS, volume 17, pages 1–14, 2017.

https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.gurobi.com/
https://github.com/google/honggfuzz
https://blog.f-secure.com/super-awesome-fuzzing-part-one/
https://blog.f-secure.com/super-awesome-fuzzing-part-one/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.theregister.com/2020/02/20/tesla_ai_tricked_85_mph/
https://www.theregister.com/2020/02/20/tesla_ai_tricked_85_mph/


Bibliography 59

[36] scikit learn. scikit-learn: Machine learning in python, 01 2021. URL https://scikit-learn.org/
stable/. Accessed on 2021-03-25.

[37] Spotify. Annoy, 2021. URL https://github.com/spotify/annoy. Accessed on 2021-05-03.

[38] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[39] The Clang Team. Sanitizercoverage - clang 13 documentation, 2021. URL https://clang.llvm.org/
docs/SanitizerCoverage.html. Accessed on 2021-06-15.

[40] Hoang Ngoc Thanh and Tran Van Lang. Evaluating effectiveness of ensemble classifiers when detecting
fuzzers attacks on the unsw-nb15 dataset. Journal of Computer Science and Cybernetics, 36(2):173–185,
2020.

[41] Daniël Vos and Sicco Verwer. Efficient training of robust decision trees against adversarial examples.
arXiv preprint arXiv:2012.10438, 2020.

[42] XGBoost. Xgboost documentation, 2020. URL https://xgboost.readthedocs.io/en/latest/. Ac-
cessed on 2021-03-25.

[43] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong
Yin, and Simon See. Deephunter: A coverage-guided fuzz testing framework for deep neural networks. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
146–157, 2019.

[44] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in c compilers.
In Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implemen-
tation, pages 283–294, 2011.

[45] Yao-Yuan Yang, Cyrus Rashtchian, Yizhen Wang, and Kamalika Chaudhuri. Robustness for non-
parametric classification: A generic attack and defense. In International Conference on Artificial In-
telligence and Statistics, pages 941–951. PMLR, 2020.

[46] Michal Zalewski. american fuzzy lop (2.52b), 2021. URL https://lcamtuf.coredump.cx/afl/. Ac-
cessed on 2021-03-10.

[47] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler. Search-based
fuzzing. In The Fuzzing Book. Saarland University, 2019. URL https://www.fuzzingbook.org/html/
SearchBasedFuzzer.html. Retrieved 2019-12-21.

[48] Chong Zhang, Huan Zhang, and Cho-Jui Hsieh. An efficient adversarial attack for tree ensembles. Ad-
vances in Neural Information Processing Systems, 33, 2020.

[49] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning testing: Survey, landscapes and
horizons. IEEE Transactions on Software Engineering, 2020.

[50] Xiaogang Zhu, Shigang Liu, Xian Li, Sheng Wen, Jun Zhang, Camtepe Seyit, and Yang Xiang. Defuzz:
Deep learning guided directed fuzzing. arXiv preprint arXiv:2010.12149, 2020.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://github.com/spotify/annoy
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://xgboost.readthedocs.io/en/latest/
https://lcamtuf.coredump.cx/afl/
https://www.fuzzingbook.org/html/SearchBasedFuzzer.html
https://www.fuzzingbook.org/html/SearchBasedFuzzer.html




A
Training Procedure

Table A.1: Details of the trained models

Trees Depth Test accuracy
Dataset features classes RF GB RF GB RF GB

Breast-cancer 10 2 4 4 6 6 0.985 0.971
Diabetes 8 2 25 20 8 5 0.786 0.805
IJCNN1 22 2 100 60 8 8 0.946 0.957
Covertype 54 2 160 80 10 8 0.791 0.877
Higgs 28 2 300 300 8 8 0.702 0.725
MNIST 2 vs 6 784 2 1000 1000 4 4 0.984 0.998
MNIST 784 10 400 400 8 8 0.93 0.978
FMNIST 784 10 400 400 8 8 0.824 0.899
Webspam (unigram) 256 2 100 100 8 8 0.960 0.989
Vowel 10 11 50 50 10 10 0.574 0.450

Before training, the data is scaled per column to the range [0, 1]. For the image data (MNIST, FMNIST
and MNIST 2 vs 6) the scaling was performed over all columns at the same time, as the feature ranges are
equal across the columns. We assume the absolute highest and lowest values per feature are present in
the training set. When no separate training/testing sets are specified, 20% of the data was used for test-
ing, the rest for training. For both Gradient Boosting and Random Forest min_samples_leaf are set to 5 and
min_samples_split to 10. We consider this good practise, to make the classifier a bit more robust (there will
be less very small high-confidence decision regions that make adversarial attacking easier). For Gradient
Boosting, the learning_rate is set to 0.1. The models with which we are testing are trained with scikit-learn
[36], but FATE can for example also handle Random Forests in the XGBoost [42] JSON format. Support for
models trained with different methods can be added easily. Details about the created models can be found in
Table A.1. We can see that the Gradient Boosting models generally have a little higher accuracy on the testing
set than the Random Forests models. There is a notable difference between Random Forest (RF) and Gradient
Boosting (GB) accuracy for the Covertype dataset.

61





B
Extra visualisations and tables

Interesting to note is the distribution of the distances of adversarial examples, which we show for 50 victims
in Table B.1 for FATE and Table B.2 for FATE standalone. These tables show the minimal, maximal, mean,
median and standard deviation for the adversarial distances of 50 victims. The median generally lies (much)
lower than the mean, which means that there are generally more victims that can be attacked with lower
adversarial distance with fewer victims that require larger perturbations to attack. Looking at the table for
FATE standalone, we can see that for most datasets at least one victim could be attacked with maximal 0.5%
point difference of features. Only MNIST 2 vs 6 requires a larger perturbation of around 3% point.

Table B.1: Distribution of the identified adversarial examples for FATE

Dataset Min Max Mean Median Std

Breast-cancer 0.0041 0.6111 0.2159 0.1667 0.1644
Diabetes 0 0.1885 0.0601 0.0594 0.0425
IJCNN1 0.0026 0.1678 0.0445 0.0308 0.0376
Covertype 0.0003 0.2884 0.0507 0.0398 0.0521
Higgs 0.0001 0.0475 0.014 0.0119 0.0093
MNIST 2 vs 6 0.041 0.8549 0.2216 0.1794 0.171
MNIST 0.0235 0.4549 0.1217 0.0873 0.1088
FMNIST 0.0294 0.6059 0.1318 0.1098 0.1092

Table B.2: Distribution of the identified adversarial examples for FATE standalone

Dataset Min Max Mean Median Std

Breast-cancer 0.0041 0.6111 0.2115 0.1668 0.1595
Diabetes 0 0.1884 0.057 0.0528 0.0408
IJCNN1 0.0014 0.1559 0.0394 0.025 0.0338
Covertype 0.0003 0.2742 0.0458 0.0315 0.0496
Higgs 0.0002 0.0189 0.0072 0.0062 0.0046
MNIST 2 vs 6 0.029 0.0649 0.0451 0.042 0.0116
MNIST 0.0053 0.5557 0.0654 0.0401 0.0924
FMNIST 0.0046 0.1171 0.0399 0.0414 0.0252

63



64 B. Extra visualisations and tables

(a) Breast-cancer curve with sub-optimal setup (b) Breast-cancer curve with a setup producing optimal Adversarial examples

Figure B.1: Coverage curves with optimal and less optimal setups for the Breast-cancer dataset

(a) Covertype curve with sub-optimal setup (adversarial example distance
≈ 0.098)

(b) Covertype curve with a setup producing good Adversarial examples
(adversarial example distance ≈ 0.053)

Figure B.2: Coverage curves with optimal and less optimal setups for the Covertype dataset

Table B.3: Different step sizes for the distance descent

0.001 0.005 0.01 0.1
Dataset r n r n r n r n

Breast-cancer 0.1566 43 0.1523 42 0.1577 43 0.1568 42.2
Diabetes 0.0726 50 0.0739 50 0.0711 50 0.08 50
IJCNN1 0.0843 50 0.086 50 0.0851 50 0.0858 50
Covertype 0.1102 50 0.1069 50 0.1098 50 0.1091 50
Higgs 0.0691 50 0.069 50 0.0709 50 0.0678 50
Average 0.0986 48.6 0.0976 48.4 0.0989 48.6 0.0999 48.4

Table B.4: Different step intervals

Decreasing Decreasing + Decreasing ++
Dataset r n r n r n

Breast-cancer 0.1551 42.6 0.1557 43 0.1537 42.6
Diabetes 0.0678 50 0.0709 50 0.0662 50
IJCNN1 0.0828 50 0.0848 50 0.0834 50
Covertype 0.1101 50 0.109 50 0.1097 50
Higgs 0.0682 50 0.0658 50 0.0673 50
Average 0.0968 48.5 0.0972 48.6 0.0961 48.5



C
Datasets

The following datasets were mainly selected because they were used in related work [11, 48]. It is a combina-
tion of binary and multi-class datasets with varying amounts of features and model sizes. The Breast-cancer
and Diabetes datasets are very small and generally easy to attack. MNIST 2vs 6, MNIST and FMNIST are im-
age recognition datasets and have a lot of features (784). They have the largest models and are generally the
most difficult to attack for FATE.

C.1. Breast-cancer
Link: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#breast-cancer.
Winsconcin Breast-Cancer database. The dataset consists of 546 samples in the training set and 137 samples
in the testing set. There are 2 classes and each sample has 10 features. The distribution of samples among the
classes can be seen in Figure C.1.

Figure C.1: Distribution of class labels for Breast-cancer

C.2. Diabetes
Link: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#diabetes. AIM
’94 Diabetes dataset. The dataset consists of 614 samples in the training set and 154 samples in the testing
set. There are 2 classes and each sample has 8 features. The distribution of samples among the classes can be
seen in Figure C.2.

65

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#breast-cancer
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#diabetes


66 C. Datasets

Figure C.2: Distribution of class labels for Diabetes

C.3. IJCNN1

Link: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1. IJCNN
2001 neural network competition dataset. The dataset consists of 49990 samples in the training set and 91701
samples in the testing set. There are 2 classes and each sample has 22 features. The distribution of samples
among the classes can be seen in Figure C.3.

Figure C.3: Distribution of class labels for IJCNN1

C.4. Covertype Binary

Link: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#covtype.binary.
The dataset consists of 464809 samples in the training set and 116203 samples in the testing set. There are
2 classes and each sample has 54 features. The distribution of samples among the classes can be seen in
Figure C.4.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#covtype.binary


C.5. Webspam 67

Figure C.4: Distribution of class labels for Covertype Binary

C.5. Webspam
Link: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#webspam. Uni-
gram (occurrences of single words) over web pages that are created to manipulate search engines and deceive
web users by De Wang, Danesh Irani, and Calton Pu. "Evolutionary Study of Web Spam: Webb Spam Corpus
2011 versus Webb Spam Corpus 2006". In Proc. of 8th IEEE International Conference on Collaborative Com-
puting: Networking, Applications and Worksharing (CollaborateCom 2012). Pittsburgh, Pennsylvania, United
States, October 2012. The dataset consists of 280000 samples in the training set and 70000 samples in the test-
ing set. There are 2 classes and each sample has 256 features. The distribution of samples among the classes
can be seen in Figure C.5.

Figure C.5: Distribution of class labels for webspam

C.6. Higgs
Link: https://www.openml.org/d/23512. The original, full Higgs dataset is too big for our hardware to
train a model. We thus used this smaller version with 98050 instances. The dataset consists of 78440 samples
in the training set and 19610 samples in the testing set. There are 2 classes and each sample has 28 features.
The distribution of samples among the classes can be seen in Figure C.6.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#webspam
https://www.openml.org/d/23512


68 C. Datasets

Figure C.6: Distribution of class labels for Higgs

C.7. MNIST 2 vs 6

MNIST with only the digits ’2’ and ’6’. Easier to classify and more difficult to attack than the original MNIST
dataset. The dataset consists of 11876 samples in the training set and 1990 samples in the testing set. There
are 2 classes and each sample has 784 features. The distribution of samples among the classes can be seen in
Figure C.7.

Figure C.7: Distribution of class labels for MNIST 2 vs 6

C.8. Vowel

Link: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#vowel. The
dataset consists of 528 samples in the training set and 462 samples in the testing set. There are 11 classes and
each sample has 10 features. The distribution of samples among the classes can be seen in Figure C.8.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#vowel


C.9. MNIST 69

Figure C.8: Distribution of class labels for Vowel

C.9. MNIST

Link: https://deepai.org/dataset/mnist. Image recognition / Digit classification challenge. The dataset
consists of 60000 samples in the training set and 10000 samples in the testing set. There are 10 classes and
each sample has 784 features. The distribution of samples among the classes can be seen in Figure C.9.

Figure C.9: Distribution of class labels for MNIST

C.10. FMNIST

Link: https://github.com/zalandoresearch/fashion-mnist. More difficult drop-in replacement for
MNIST created by Zalando Research. The dataset consists of 60000 samples in the training set and 10000
samples in the testing set like MNIST. There are 10 classes and each sample has 784 features. The distribution
of samples among the classes can be seen in Figure C.10.

https://deepai.org/dataset/mnist
https://github.com/zalandoresearch/fashion-mnist


70 C. Datasets

Figure C.10: Distribution of class labels for FMNIST



D
Full fuzz target

This chapter shows the target (based on the Gradient Boosting model for the Breast-cancer dataset) as gen-
erated by FATE for libFuzzer. Some parts of the code are re-ordered for readability; some code will occur in a
different order in the generated C++ file. Also, in the code a structure like "{% if pred%} ... " may be present.
This signals that the respective code is only included if "pred" is True; it may also include an else branch.
The breast-cancer dataset has 10 features and 2 classes. Its model consists of 4 trees.

D.1. Initialization
This part of the code (shown in Listing D.1) consists of including the required headers, initializing some vari-
ables and processing information about the victim that is currently being fuzzed. The feature importances,
thresholds and prior mutate chances are determined by FATE and inserted on compile-time. As we fuzz one
victim at a time, not all information that is needed about the victim can be compiled into the program. In
LLVMFuzzerInitialize we read the id of the victim (check_num), its original class and its original features. We
also initialize the thresholds_per_feature vector. The arguments to the fuzzer are then updated to be used
further by libFuzzer/honggfuzz itself. AFL++ does not have the same initialization interface as libFuzzer and
honggfuzz. The information about the victim is thus initialized via an alternative method described in sub-
section D.6.1, and the thresholds are initialized in the mutator (Listing D.6).

#include <stdint.h>
#include <math.h>
#include <stdio.h>
#include <array >
#include <stdlib.h>
#include <stddef.h> // size_t
#include <string >
#include <sys/types.h>
#include <sys/stat.h> // check if file exists
#include <unistd.h> // POSIX OS API
#include <dirent.h> // access to directories

#include <iostream >
#include <fstream >
#include <random >
#include <sstream >
#include <iterator >

#include <chrono >
#include <ctime > // time

#include <bits/stdc ++.h> // all standard headers and STL include file
using namespace std;

71



72 D. Full fuzz target

int ppp = 0; // is set in the probability steps to avoid simplification
by the optimizer

int ddd = 0; // is set in the distance steps to avoid simplification by
the optimizer

double min_e = 1e-05; // minimal perturbation from the feature
threshold

vector <double > original_features; // victim features , set on init
int check_num; // id of the victim
int original_class; // original class of the victim
double best_ae_dist = 1.1; // all AE will have distance < 1.0
double cur_ae_dist = 1.1; // special value that resembles "no

AE"

// feature importances as probabilities with sum 1
double feature_importances [] = {0.02051328891276369 ,

0.013680900869554249 ,
0.7984335118650101 ,

0.06693435249146118 ,
0.003751919312307732 ,

0.014649060041497394 ,
0.07321704078129188 ,

0.004224237171287643 ,
0.004595688554826086 , 0.0};

// 0 if feature is not used in a splitting condition ,
// else DEFAULT_MUTATE_CHANCE
double prior_mutate_chances [] = {0.1, 0.1, 0.1, 0.1, 0.1,

0.1, 0.1, 0.1, 0.1, 0};

// for producing semi random numbers
std:: default_random_engine en;
// used whn something should happen with a certain chance
std:: uniform_real_distribution <double > uniform_dist (0, 1);
// in general , abs(draw) < 1
std:: normal_distribution <double > mutation_dist (0, 0.34);
// at which index to combine two victims
std:: uniform_int_distribution <int > crossover_dist (0, 10);

// initialized in LLVMFuzzerInitialize
vector <vector <double >> thresholds_per_feature;
vector <double > th_f_0 = {0.0721409 , 0.0767784 , 0.0813804 ,

0.0845354 , 0.0848987 ,
0.0853971 , 0.0862544 , 0.0868369 ,
0.0916151 , 0.0916932 , 0.0925671};

vector <double > th_f_1 = {0.5, 0.6111111};
vector <double > th_f_2 = {0.1666667 , 0.3888889};
vector <double > th_f_3 = {0.0555556 , 0.1111111 , 0.1666667};
vector <double > th_f_4 = {0.0555556 , 0.5};
vector <double > th_f_5 = {0.1666667 , 0.2777778};
vector <double > th_f_6 = {0.0555556 , 0.1666667 , 0.2777778 ,

0.3888889 , 0.5, 0.7222222 , 0.8333333};
vector <double > th_f_7 = {0.2777778 , 0.3888889 , 0.6111111};
vector <double > th_f_8 = {0.1666667 , 0.3333333};
// feature 9 is never used as splitting condition for this model



D.2. Adversarial Example handling 73

vector <double > th_f_9 = {};

// initialization function used for initializing the thresholds vector
// and reading information about the victim from the supplied arguments
extern "C" int LLVMFuzzerInitialize(int *argc , char *** argv)
{

thresholds_per_feature.push_back(th_f_0);
thresholds_per_feature.push_back(th_f_1);
thresholds_per_feature.push_back(th_f_2);
thresholds_per_feature.push_back(th_f_3);
thresholds_per_feature.push_back(th_f_4);
thresholds_per_feature.push_back(th_f_5);
thresholds_per_feature.push_back(th_f_6);
thresholds_per_feature.push_back(th_f_7);
thresholds_per_feature.push_back(th_f_8);
thresholds_per_feature.push_back(th_f_9);

int num_args = *argc;
char **args = *argv;
check_num = atoi(args [1]);
int num_features = atoi(args [2]);
original_class = atoi(args [3]);
int start_index = 4;
int num_fuzzer_args = num_args - num_features - start_index;
vector <double > original(num_features , 0.0);

for (int i = start_index; i < start_index + num_features; i++)
{

original[i - start_index] = atof(args[i]);
}
original_features = original;

char ** new_argv = 0;
new_argv = new char *[ num_fuzzer_args + 1];
new_argv [0] = args [0];
for (int i = 0; i < num_fuzzer_args; i++)
{

new_argv[i + 1] = args[start_index + num_features + i];
}

*argv = new_argv;
*argc = num_fuzzer_args;

return 0;
}

Listing D.1: Initialization

D.2. Adversarial Example handling
When an adversarial example is found, it is saved to a file. Recalling from chapter 3, saving all adversarial
examples we find would overflow the OS I/O system: tens of thousands of adversarial examples can be gen-
erated in short periods of time. We thus save adversarial examples only if an adversarial example was found
in a new interval. As the filename for an interval is consistent, the fuzzer can this way determine if a similar
adversarial example was found already in an earlier run. The stat method of file_exists is very fast: it can easily
stat more than 1 million times per second so this will not likely form a bottleneck. The adversarial features
are written with 15 digits of precision, to limit floating-point inconsistencies between the scikit-learn and C++



74 D. Full fuzz target

models as much as possible. Also the class probabilities are written to the output file for debugging purposes.

// returns true if name exists
inline bool file_exists(const std:: string &name)
{

struct stat buffer;
return (stat(name.c_str (), &buffer) == 0);

}

// function that writes an AE (and some debugging info) to filename
// if filename does not yet exist
void write_if_not_exist(const std:: string &filename , double fuzzed[],

int expected , int actual ,
int num , double probs [])

{
std:: string filebase = ".ADVERSARIAL_EXAMPLES/";
std:: string full_filename = filebase.append(filename);
if (file_exists(full_filename))
{

return;
}

ofstream myfile;
myfile.open(full_filename);
for (int i = 0; i < 10; i++)
{

myfile << std:: setprecision (15) << fuzzed[i] << ",";
}
myfile << to_string(expected) << "," << to_string(actual)
<< "," << to_string(num);

for (int i = 0; i < 2; i++)
{

myfile << "," << std:: setprecision (15) << probs[i];
}
myfile.close();

}
Listing D.2: Adversarial Example handling

D.3. Predict
Listing D.3 shows the code required to resemble a prediction from a Gradient Boosting model. It shows the
binary classification case, for multi-class classification tree_n is represented by multiple one-vs-all sub-trees
which are combined in tree_n such that num_classes values can be returned. For binary classification the
probabilities are calculated using the log-likelihood, for multi-class classification a softmax function is used.
For brevity, only a part of tree_0 is shown while for the other trees only the signature is shown. The return
value for each leave is either a class probability (Random Forest) or a regression values (Gradient Boosting,
combined into a list of num_classes regression values for multi-class classification).

// predicts a class from raw probabilities
int predict(double probs [])
{

double greatest_sum = probs [0];
int greatest_class = 0;
for (int i = 0; i < 2; i++)
{

if (probs[i] > greatest_sum)



D.3. Predict 75

{
greatest_sum = probs[i];
greatest_class = i;

}
}
return greatest_class;

}

// return np.exp(val)/(1+np.exp(val))
double log_likelihood(double v)
{

double e = exp(v);
return e / (1 + e);

}

// s = sum([np.exp(v) for v in vals])
// return [np.exp(v)/s for v in vals]
double *softmax(double *decisions)
{

static double res [{{nc}}];
double s = 0.0;
for (int i = 0; i < {{nc}}; i++)
{

s = s + exp(decisions[i]);
}
for (int i = 0; i < {{nc}}; i++)
{

res[i] = exp(decisions[i]) / s;
}
return res;

}

// returns class probabilities from raw predictions
double *calc_class_prob(double **arr , int num_trees)
{

double decisions [1] = { -0.5718681934644387}; // the initial
prediction

for (int i = 0; i < num_trees; i++)
{

auto counts = arr[i];
for (int ii = 0; ii < 1; ii++)
{

decisions[ii] = decisions[ii] + (0.1 * counts[ii]);
}

}

// For multiclass classification , a softmax function is used
double l = log_likelihood(decisions [0]);
static double sums [2];
sums [0] = 1.0 - l;
sums [1] = l;
return sums;

}



76 D. Full fuzz target

// a part of tree_0 (for brevity)
double *tree_0(double fs[])
{

// res has size num_classes. In the case of binary
// classification , one spot is redundant
static double res [2];
if (fs[2] <= 0.1666667)
{

if (fs[6] <= 0.5)
{

if (fs[1] <= 0.5)
{

if (fs[6] <= 0.3888889)
{

if (fs[0] <= 0.0848987)
{

res [0] = -1.5644699140401146;
return res;

}
else
{

if (fs[0] <= 0.0862544)
{

res [0] = -1.5644699140401148;
return res;

}
else
{

res [0] = -1.5644699140401142;
return res;

}
}

}
...

}
}

}
}

double *tree_1(double fs[]) { ... }
double *tree_2(double fs[]) { ... }
double *tree_3(double fs[]) { ... }

// predict class probabilities for fuzzed_features
double *predict_probs(double fuzzed_features [])
{

double ** tree_outputs = 0;
tree_outputs = new double *[4];
tree_outputs [0] = tree_0(fuzzed_features);
tree_outputs [1] = tree_1(fuzzed_features);
tree_outputs [2] = tree_2(fuzzed_features);
tree_outputs [3] = tree_3(fuzzed_features);
auto probs = calc_class_prob(tree_outputs , 4);
delete [] tree_outputs;
return probs;



D.4. Mutation 77

}
Listing D.3: Predict outcome

D.3.1. Random Forest
When fuzzing Random Forest models, the calc_class_prob function is different as shown in Listing D.4.

double* calc_class_prob(double ** arr , int num_trees) {
// Insert all elements in hash.
static double sums [{{ num_classes }}];
for (int i = 0; i < {{ num_classes }}; i++) {

sums[i] = 0.0;
}

for (int i = 0; i < num_trees; i++) {
auto counts = arr[i];
for (int ii = 0; ii < {{ num_classes }}; ii++) {

sums[ii] = sums[ii] + (counts[ii] / (double)
num_trees);

}
}
return sums;

}
Listing D.4: Random Forest predict

D.4. Mutation
Listing D.5 shows the custom-mutator (LLVMFuzzerCustomMutator) and crossover (LLVMFuzzerCustom-
CrossOver) functions for libFuzzer. There are two helper functions that mutate the actual features: mutate
(performs normal Gaussian mutation) and mutate_towards_original (only mutates towards the victim, typi-
cally only used when the fuzzed features already resemble an adversarial example). The find_closest_threshold
function is a function that moves a mutated value towards a better position in the current bounding box as
described in chapter 5. The custom-mutator function first unpacks the input data into doubles. It then either
mutates all features with the biggest distances from the victim towards the victim, or it mutates single fea-
tures with a certain chance. This chance can be influenced by multiple settings. The basic chance is defined
by the prior_mutate_chances variable as inserted by FATE. If feature importances are used to guide mutation,
the mutation chance is biased by adding the feature importance (scaled such that the sum of all feature im-
portances is 1) to the basic chance. Likewise, the chance to mutate a feature can be influenced by how large
the difference is between the fuzzed and original features. The basic chance is then divided by the amount
of sub-chances it consists of which results in a probability 0.0 <= p f <= 1.0 to mutate feature f . The feature
is mutated with chance 0.5 towards the victim if AE_MUTATE_TOWARDS_VICTIM is true or otherwise scaled
by both epsilon and biggest_dist when MUTATE_LESS_WHEN_CLOSER is true or just within epsilon range
otherwise. For honggfuzz, fuzzing with custom mutators is not supported by FATE, so the CustomMutator
and CustomCrossover functions and their helper functions are excluded in that case.

// crossover function combines Data1 and Data2 on a random index
extern "C" size_t LLVMFuzzerCustomCrossOver(const uint8_t *Data1 ,

size_t Size1 ,
const uint8_t *Data2 ,

size_t Size2 ,
uint8_t *Out , size_t

MaxOutSize ,
unsigned int Seed)

{
en.seed(Seed);
int split_index = crossover_dist(en);
int split_length = split_index * sizeof(double);



78 D. Full fuzz target

memcpy(Out , Data1 , split_length);
memcpy(Out + split_length , Data2 + split_length , Size2 - split_length

);
return Size2;

}

// finds first threshold between the mutated and original value ,
// looking from the mutated value
double find_closest_threshold(double mutated , int fi)
{

vector <double > thresholds = thresholds_per_feature[fi];
double original = original_features[fi];
if (mutated < original)
{

for (double threshold : thresholds)
{

if (threshold > original)
{

break;
}
if (mutated < threshold - min_e && threshold - min_e < original)
{

return threshold - min_e;
}

}
return original;

}
else if (mutated > original)
{

for (auto thres = thresholds.rbegin ();
thres != thresholds.rend(); ++thres)

{
if (*thres < original)
{

break;
}
if (original < *thres + min_e && *thres + min_e < mutated)
{

return *thres + min_e;
}

}
return original;

}
else
{

return original;
}

}

// mutates original scaled by biggest_dist
double mutate(double original , int index , double biggest_dist , bool

is_ae)
{

double md = mutation_dist(en);

// if STEEP_CURVE



D.4. Mutation 79

double m = pow(md, 2.0);
if (md < 0)
{

m = -m;
}
// else
double m = md;

// mutating 1.0 up has no effect
if (original > 0.9999)
{

m = -abs(m);
}
// mutating 0.0 down has no effect
if (original < 0.0001)
{

m = abs(m);
}

double mutated = original + m * biggest_dist * 0.1; // 0.1= epsilon
mutated = min(( double)1.0, mutated);
mutated = max(( double)0.0, mutated);

if (is_ae)
{

double nearest_threshold = find_closest_threshold(mutated , index);
return nearest_threshold;

}
return mutated;

}

// similar to mutate , but only allows mutations towards the victim
feature

// if the current features are an AE
double mutate_towards_original(double f_mutated , double f_original ,

int index , bool is_ae)
{

// 2 * difference because it may be the case
// that we have to "overshoot" the original
double perturbation = abs(mutation_dist(en)) * 0.1 * 2

* abs(f_mutated - f_original);
double mutated;
if (f_original > f_mutated)
{

mutated = f_mutated + perturbation;
}
else
{

mutated = f_mutated - perturbation;
}
mutated = min(( double)1.0, mutated);
mutated = max(( double)0.0, mutated);

if (is_ae)
{

double nearest_threshold = find_closest_threshold(mutated , index);



80 D. Full fuzz target

return nearest_threshold;
}
return mutated;

}

// Calculates the sum of differences between the fuzzed and original
features

double sum_distance(double fuzzed [])
{

double summed = 0.0;
for (int i = 0; i < 10; i++)
{

double f_original = original_features[i];
double f_fuzzed = fuzzed[i];
double diff = abs(f_original - f_fuzzed);
summed += diff;

}
return summed;

}

// l_inf norm distance function
double distance_linf(double fuzzed [])
{

double max_diff = 0.0;
for (int i = 0; i < 10; i++)
{

double f_original = original_features[i];
double f_fuzzed = fuzzed[i];
double diff = abs(f_original - f_fuzzed);
if (diff > max_diff)
{

max_diff = diff;
}

}
return max_diff;

}

// mutates all fuzzed features that have difference > (biggest_diff -
0.01)

// with the original features
double *mutate_biggest_diff_features_l_inf(double fs[], double

biggest_diff)
{

for (int i = 0; i < 10; i++)
{

double f_original = original_features[i];
double f_mutated = fs[i];
double diff = abs(f_original - f_mutated);
if (diff > (biggest_diff - 0.01))
{

// In this function , it is always an AE to is_ae is set to true
double better = mutate_towards_original(f_mutated , f_original , i,

true);
fs[i] = better;

}
}



D.4. Mutation 81

return fs;
}

// function recognized by libFuzzer as the custom mutator , mutates *
Data

extern "C" size_t LLVMFuzzerCustomMutator(uint8_t *Data , size_t Size ,
size_t MaxSize , unsigned int

Seed)
{

en.seed(Seed);

// Sanity check
if (Size != MaxSize)
{

// the first run is always without input ,
// so make sure we do not crash on no input
if (Size != 0)
{

printf("size␣%ld\n", Size);
abort(); // sanity check

}
return Size;

}

// Unpack data to doubles
double fs[10];
for (int i = 0; i < 10; i++)
{

fs[i] = *( double *)(Data + i * sizeof(double));
}

bool is_ae = false; // default

// the following lines are only inserted when necessary
auto probs = predict_probs(fs);
int fuzzed_class = predict(probs);
is_ae = fuzzed_class != original_class;

double biggest_dist = 1.0; // default

// only use biggest_dist for scaling when necessary
if (is_ae)
{

biggest_dist = distance_linf(fs);
}

// total difference
double sum_of_dist = sum_distance(fs);
double mutate_biggest_chance = 0.5; // setting in constants.py
if (is_ae && biggest_dist > 0.001 && uniform_dist(en) <

mutate_biggest_chance)
{

// with mutate_biggest_chance , we mutate all biggest differences
mutate_biggest_diff_features_l_inf(fs , biggest_dist);
for (int i = 0; i < 10; i++)
{



82 D. Full fuzz target

(( double *)(Data + i * sizeof(double)))[0] = fs[i];
}

}
else
{

for (int i = 0; i < 10; i++)
{

// We treat each feature separately
double chance = prior_mutate_chances[i];
double chance_count = 1.0;

// If USE_FEATURE_IMPORTANCES
chance_count ++;
chance += feature_importances[i];

// If BIAS_MUTATE_BIG_DIFFS
if (is_ae && biggest_dist > 0.00001)
{

chance_count ++;
double diff = abs(fs[i] - original_features[i]);
chance += diff / sum_of_dist;

}
// recalculate mutation chance based on biases introduced above
chance = chance / chance_count;
if (uniform_dist(en) < chance)
{

double mutated_val;

// if MUTATE_LESS_WHEN_CLOSER
mutated_val = mutate(fs[i], i, biggest_dist , is_ae);
// elif AE_MUTATE_TOWARDS_VICTIM
if (is_ae)
{

mutated_val = mutate_towards_original(fs[i],
original_features[i],

i, is_ae);
}
else
{

mutated_val = mutate(fs[i], i, 1, is_ae);
}
// else
mutated_val = mutate(fs[i], i, 1, is_ae);
// update Data with mutated feature i
(( double *)(Data + i * sizeof(double)))[0] = mutated_val;

}
}

}
return Size;

}

Listing D.5: Mutation

D.4.1. AFL++ mutation library
When fuzzing using AFL++ with the custom mutator, the custom mutator is compiled into a separate mu-
tation library which does not support crossover functionality. Because we now do not have access to the



D.4. Mutation 83

predict functions, we mimic the is_ae check of LLVMFuzzerCustomMutator: with probability 0.5, the input is
treated as an adversarial example. Apart from the code shown in Listing D.6, the code from Listing D.5 is also
included (with the LLVMFuzzerCustomMutator signature changed to:

extern "C" size_t afl_custom_fuzz(void *mutator_instance , uint8_t *
Data , size_t Size , uint8_t **outData , uint8_t *additional_buf ,
size_t add_buf_size , size_t MaxSize)

). Because the command-line arguments to not reach the AFL++ mutation library, information about the
victim is communicated through environment variables.

std:: string getEnvVar( std:: string const & key ) {
char * val = getenv( key.c_str() );
return val == NULL ? std:: string("") : std:: string(val);

}

template <typename Out >
void split(const std:: string &s, char delim , Out result) {

std:: istringstream iss(s);
std:: string item;
while (std:: getline(iss , item , delim)) {

*result ++ = item;
}

}

std::vector <std::string > split(const std:: string &s, char delim) {
std::vector <std::string > elems;
split(s, delim , std:: back_inserter(elems));
return elems;

}

extern "C" void *afl_custom_init(void *param , unsigned int seed) {
en.seed(seed);

// Thresholds are initialize here if USE_THRESHOLDS
thresholds_per_feature.push_back(th_f_0);
thresholds_per_feature.push_back(th_f_1);
thresholds_per_feature.push_back(th_f_2);
thresholds_per_feature.push_back(th_f_3);
thresholds_per_feature.push_back(th_f_4);
thresholds_per_feature.push_back(th_f_5);
thresholds_per_feature.push_back(th_f_6);
thresholds_per_feature.push_back(th_f_7);
thresholds_per_feature.push_back(th_f_8);
thresholds_per_feature.push_back(th_f_9);

check_num = stoi(getEnvVar("CHECK_NUM"));
int num_features = stoi(getEnvVar("NUM_FEATURES"));
original_class = stoi(getEnvVar("ORIGINAL_CLASS"));
auto of = getEnvVar("ORIGINAL_FEATURES");
auto splitted_of = split(of, ’␣’);
vector <double > original(num_features , 0.0);

for (int i = 0; i < num_features; i++) {
original[i] = stod(splitted_of[i]);

}
original_features = original;
return calloc(1, sizeof(double)); // Initialize some dummy memory



84 D. Full fuzz target

}

extern "C" void afl_custom_deinit(void *data) {}

Listing D.6: AFL mutation library

D.5. Objective function
The objective function is shown in Listing D.7, with only a subset of the distance- and probability steps for
brevity. To make sure the individual branches are not optimized away by the compiler, the ddd variable is
set and printed in a part of the code that will never be reached (although the compiler cannot know that).
Furthermore, a file is written in the last branch, again to make sure the code will not be optimized. We do the
same for the probability branches with the ppp variable and a file write.

// the objective function
void check_for_ae(double fuzzed_features [], int fuzzed_class , double

probs [])
{

int num_features = 10;
double proba_original = probs[original_class ];
// For comparing the highest two probabilities in the probability

descent
std::sort(probs , probs+2, std::greater <double >{});
std:: string check_base = "check_";
std:: string file_base = check_base.append(to_string(check_num)).

append("-");
double distance = distance_linf(fuzzed_features);
if (fuzzed_class != original_class){

cur_ae_dist = distance;
} else {
cur_ae_dist = 1.1;

}
if (fuzzed_class != original_class)
{

if (distance <= 1.0)
{

ddd = 0;
if (distance < 0.995)
{

ddd = 1;
if (distance < 0.99)
{

ddd = 2;
if (distance < 0.985)
{

...
ddd = 5;
if (distance < 0.01)
{

ddd = 6;
if (distance < 0.005)
{

ddd = 7;
if (distance < 1e-06)
{



D.6. Fuzz function 85

write_if_not_exist(file_base.append("1e-06. txt"),
fuzzed_features , original_class , fuzzed_class ,
check_num , probs);

}
}

}
}

}
}

}
if (distance < best_ae_dist)
{

best_ae_dist = distance;
double new_dist = (double) round(distance *100000.0) / 100000.0;
std:: stringstream ss;
ss << std:: fixed << std:: setprecision (5) << new_dist;
std:: string new_dist_str = ss.str();
write_if_not_exist(file_base.append(new_dist_str).append(".txt"),

fuzzed_features , original_class , fuzzed_class , check_num ,
probs);

}
}
else
{

if (probs [0] < probs [1]) {abort();} // sanity check , should not
happen

if (distance < 0.2)
{

if (probs [0] - probs [1] < 0.2)
{

ppp = 0;
if (probs [0] - probs [1] < 0.19)
{

ppp = 1;
...
if (probs [0] - probs [1] < 0.01)
{

ppp = 2;
write_if_not_exist(file_base.append("probasmall.txt"),

fuzzed_features ,
original_class ,

fuzzed_class , check_num , probs);
}

}
}

}
}

}
Listing D.7: Objective function

D.6. Fuzz function
The fuzz function is the function that is repeatedly called by the fuzzer. For AFL++ the signature is slightly
different than for libFuzzer but it is similar in nature, while honggfuzz uses the same function signature as
libFuzzer for this function. The function first checks if we are dealing with input that has the correct length. If



86 D. Full fuzz target

not, we simply return right away. When the custom mutator option is used, we also add a sanity check: if the
size of the input is not the expected size or 0 (libFuzzer always first executes the target with an empty seed),
we add a crash (abort()). The fuzzer will quit when this happens so that we know something went wrong in
the mutator, that is responsible for keeping the length of the input equal between runs. The fuzz function fur-
thermore produces the prediction of the Tree Ensemble for the current input and calls the objective function
that checks for Adversarial Examples.

// the function that actually fuzzes an input
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data , size_t Size)
{

if (Size != 80)
{

if (Size != 0)
{

printf("size␣%ld\n", Size);
abort(); // this line is a sanity check; it is removed
// when the custom mutator is not used

}
}
double fuzzed_features [10];
int count = 0;
while (count < Size / sizeof(double))
{

fuzzed_features[count] = *( double *)(Data + count * sizeof(double))
;

count ++;
}

auto probs = predict_probs(fuzzed_features);
int fuzzed_class = predict(probs);

check_for_ae(fuzzed_features , fuzzed_class , probs);

// The following never happens , but is used such that the structure
// of the objective function and the variables ppp and ddd will not
// be compiled away or optimized
if (( double) fuzzed_class - probs [0] == -10000.42)
{

printf("never␣happens␣%d\n", ppp);
printf("never␣happens␣2␣%d\n", ddd);

}
return 0;

}

Listing D.8: Fuzz function

D.6.1. AFL++ persistent mode
AFL++ features a "persistent mode" that can drastically improve performance by supplying mutated input
through in-memory buffers and by only initializing the target once every 1000 runs. Listing D.9 shows how
the persistent mode is implemented in FATE. For AFL++ the information about the victim is passed as en-
vironment variables instead of command-line arguments, as this is needed for the AFL++ mutator anyway
(see subsection D.4.1). ORIGINAL_FEATURES is a string with the original features separated by a space. After
__AFL_LOOP is executed 1000 times, the target is fully re-initialized to e.g. combat memory leaks. The code
in the loop is similar to the code from the libFuzzer/honggfuzz LLVMFuzzerTestOneInput function.

int main() {



D.6. Fuzz function 87

check_num = stoi(getEnvVar("CHECK_NUM"));
int num_features = stoi(getEnvVar("NUM_FEATURES"));
original_class = stoi(getEnvVar("ORIGINAL_CLASS"));
auto of = getEnvVar("ORIGINAL_FEATURES");
auto splitted_of = split(of, ’␣’);
vector <double > original(num_features , 0.0);

for (int i = 0; i < num_features; i++) {
original[i] = stod(splitted_of[i]);

}
original_features = original;

#ifdef __AFL_HAVE_MANUAL_CONTROL
__AFL_INIT (); // This is where AFL++ initializes
// after __AFL_LOOP iterations

#endif
unsigned char *Data = __AFL_FUZZ_TESTCASE_BUF;
while (__AFL_LOOP (1000)) {

int Size = __AFL_FUZZ_TESTCASE_LEN;

if (Size != 80) {
{% if not use_custom_mutator %}
continue;
{% else %}
if (Size != 0) {

printf("size␣%d\n", Size);
printf("digit␣%d\n", ddd);
abort();

}
{% endif %}

}

double fuzzed_features [10];
int count = 0;
while (count < Size / sizeof(double)) {

fuzzed_features[count] = *( double *)(Data + count*sizeof(
double));

count ++;
}

auto probs = predict_probs(fuzzed_features);
int fuzzed_class = predict(probs);
check_for_ae(fuzzed_features , fuzzed_class , probs);

// The following never happens , but is used such that the
structure of the objective function and the variables ppp
and ddd will not be compiled away or optimized

if (( double) fuzzed_class - probs [0] == -10000.42) {
printf("never␣happens␣%d\n", ppp);
printf("never␣happens␣2␣%d\n", ddd);

}
}
return 0;

}

Listing D.9: AFL++ fuzz function and persistent mode



88 D. Full fuzz target

D.7. Standalone
Listing D.10 shows the standalone Genetic Algorithm. It calls the LLVMFuzzerInitialize, LLVMFuzzerCustomCrossOver
, LLVMFuzzerCustomMutator and LLVMFuzzerTestOneInput functions to make sure it performs the same
as when executed in libFuzzer. The population is implemented as a 2d-array of bytes, with the adversarial dis-
tances of the population implemented as a separate array of doubles. The population is initialized with the
original features of the victim for each population member. The function returns after runtime_seconds or
max_runs, whichever comes first. Variables such as mutation_depth and population_size that are not
initialized represent settings of the Genetic Algorithm.

int main(int argc , char **argv) {
std:: uniform_int_distribution <int > num_mut(1, mutation_depth); //

uniform , unbiased
std:: uniform_int_distribution <int > pop_dist(0, population_size -1);

// uniform , unbiased

// reads information about the victim
LLVMFuzzerInitialize (&argc , &argv);

using std:: chrono :: high_resolution_clock;
using std:: chrono :: duration_cast;
using std:: chrono :: duration;
using std:: chrono :: milliseconds;

int Size = num_features*sizeof(double);
uint8_t OrigData[Size];
// victim features to byte array
for (int i = 0; i < num_features; i++) {

(( double *)(OrigData + i*sizeof(double)))[0] =
original_features[i];

}

// Start the timer
auto t1 = high_resolution_clock ::now();

// initial population consists of the victim features
uint8_t ** population = 0;
population = new uint8_t *[ population_size ];
for (int i = 0; i < population_size; i++) {

uint8_t Entry[Size];
memcpy(Entry , OrigData , Size);
population[i] = Entry;

}

// we keep the distances of the population members in a separate
array

double population_dist[population_size] = {1.0};
std:: fill_n(population_dist , population_size , 1.0);

int iter = 0;
while (true) {

/* exit if the runtime or max_runs is exceeded */
auto t2 = high_resolution_clock ::now();
auto ms_int = duration_cast <milliseconds >(t2 - t1);
if (ms_int > std:: chrono :: milliseconds(runtime_seconds *1000)) {

break;
}



D.7. Standalone 89

iter ++;
if (iter > max_runs) {

break;
}

uint8_t Data[Size];
memcpy(Data , population[pop_dist(en)], Size);

// we call the mutator maximal mutation_depth times
for (int nm = 0; nm < num_mut(en); nm++) {

if (uniform_dist(en) < 0.001) {
// unlikely
uint8_t CrossoverData[Size];
if (uniform_dist(en) < random_crossover_chance) {

// crossover with random features
for (int j = 0; j < num_features; j++) {

(( double *)(CrossoverData + j*sizeof(double)))
[0] = uniform_dist(en);

}
} else {

// crossover with another member of the population
memcpy(CrossoverData , population[pop_dist(en)],

Size);
}
uint8_t indata[Size];
memcpy(indata , Data , Size);

// perform crossover
LLVMFuzzerCustomCrossOver(indata , Size , CrossoverData ,

Size , Data , Size , en());
} else {

// perform mutation
LLVMFuzzerCustomMutator(Data , Size , Size , en());

}
}
LLVMFuzzerTestOneInput(Data , Size); // call the objective

function
// itr == -1 if current input is not better than one of the

members of the population
int itr = index_to_replace(population_dist , cur_ae_dist);
if (itr != -1) {

// Save input to population
memcpy(population[itr], Data , Size);

}
}
auto t3 = high_resolution_clock ::now();

/* Getting number of milliseconds as an integer. */
auto ms_int = duration_cast <milliseconds >(t3 - t1);

/* Output runtime information to be parsed by FATE */
std::cout << "Performed␣" << iter << "␣runs␣in␣" << (double)ms_int.

count() /1000 << "␣seconds .\n";

return 0;
}



90 D. Full fuzz target

// finds the member of the population with the highest adversarial
distance

// if higher than the current input.
// cur_dist = 1.1 if the current input is not an adversarial example.
// the population distances are initialized with the value 1.0 (for the
// original features of the victim)
int index_to_replace(double distances[], double cur_dist) {

int res = -1;
double largest_dist = 0.0;
for (int i = 0; i < 1; i++) {

if (distances[i] > cur_dist && distances[i] > largest_dist) {
res = i;
largest_dist = distances[i];

}
}
return res;

}

Listing D.10: Standalone Genetic Algorithm function


	Abstract
	Preface
	Introduction
	Contributions and objectives
	Outline

	Background
	Decision-tree based models
	Adversarial examples
	Adversarial examples for tree ensembles
	Images

	Search algorithms
	Fuzzing
	Corpus
	Mutation
	Monitoring

	Related work
	Adversarial examples for tree ensembles
	Coverage-guided fuzzing for verifying (D)NN


	Methodology
	Fuzzing
	Tree ensemble model to source code
	Mutation
	Baseline

	Objective function
	Processing results

	Fuzzing for adversarial examples
	Experimental setup
	Objective function
	Fuzzer configuration
	Custom mutator

	Compiler optimization
	Conclusion

	Improving FATE by fuzzing smarter
	Sources of information
	Training set
	Model
	Execution
	Conclusion

	FATE with different fuzzing engines
	AFL++
	libFuzzer
	Honggfuzz
	Conclusion

	Fuzzing Efficiency
	Coverage guidance
	Seed selection
	Scalability
	FATE in comparison with the state-of-the-art
	FATE on unseen datasets

	FATE as standalone Evolutionary Algorithm
	Conclusion

	Conclusion
	Discussion
	Limitations

	Conclusion
	Future Work

	Bibliography
	Training Procedure
	Extra visualisations and tables
	Datasets
	Breast-cancer
	Diabetes
	IJCNN1
	Covertype Binary
	Webspam
	Higgs
	MNIST 2 vs 6
	Vowel
	MNIST
	FMNIST

	Full fuzz target
	Initialization
	Adversarial Example handling
	Predict
	Random Forest

	Mutation
	AFL++ mutation library

	Objective function
	Fuzz function
	AFL++ persistent mode

	Standalone


