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» A comprehensive review of federated learning applications in renewable energy.

« Federated learning methods show potential for overcoming data scarcity conditions.
« Open challenges remain in communication, privacy, fairness, and data heterogeneity.
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Federated learning has recently emerged as a privacy-preserving distributed machine learning approach.
Federated learning enables collaborative training of multiple clients and entire fleets without sharing the
involved training datasets. By preserving data privacy, federated learning has the potential to overcome the
lack of data sharing in the renewable energy sector which is inhibiting innovation, research and development.
Our paper provides an overview of federated learning in renewable energy applications. We discuss federated
learning algorithms and survey their applications and case studies in renewable energy generation and
consumption. We also evaluate the potential and the challenges associated with federated learning applied
in power and energy contexts. Finally, we outline promising future research directions in federated learning
for applications in renewable energy.

1. Introduction

Renewable energy generation is projected to grow significantly and
make up 38% of the total global electricity production by 2027 [1].
Machine learning models, particularly deep neural networks, have
demonstrated remarkable success in improving the operation of renew-
able energy plants, power grids, and power consuming assets [2-5].
The models enable data-driven condition monitoring as well as more
accurate forecasts of the power production and operational constraints
to inform plant operators, traders, and grid managers [6]. Machine
learning can also improve the real-time control of power plants to
ensure optimal responses to changing environmental conditions [7].
Training a machine learning model requires a large amount of past
operation data [8]. An increasing amount of data is being collected
to this end. For example, new wind farms may be equipped with
sensing and control systems that can generate terabytes of data per
day [9], and modern office buildings can produce hundreds of gigabytes

each day [10]. However, many power system assets lack represen-
tative data for training asset-specific machine learning models [11].
Newly installed systems completely lack past operation data to train
on. Other systems hardly have any representative training data due
to prolonged shutdowns or because software and hardware updates
altered the systems’ operation behavior.

A shortage of model training data can, in principle, be mitigated
by sharing training data across systems and fleets: For example, a data-
scarce wind turbine (WT) may benefit from past operation data of other
WTs in the same wind farm or even from the global WT fleet.

Renewable energy systems are largely made up of fleets of dis-
tributed power assets capable of generating, transmitting, storing, or
consuming renewable energy. In addition to WT fleets, they comprise
fleets of photovoltaic (PV) power plants, building technology fleets such
as heat pumps, or fleets of rechargeable battery storage. We refer to a
fleet as the set of all power system assets. Thus, assets especially within
a fleet can benefit from data and models trained on data from similar
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assets of other operators. For example, an operator wants to train fault
detection models to detect early-stage damage. No cases of this damage
type have been observed yet at her power plant, so she wants to learn
from sensor data of other operators who run similar power plants and
which experienced that type of damage [12]. The transfer of knowledge
from another system belongs to the area of transfer learning [13,14],
which has been shown to be effective for neural networks in renewable
energy applications [15].

In practice, however, no data sharing is in place. There is a “lack
of data sharing in the renewable-energy industry [which] is hindering
technical progress and squandering opportunities for improving the
efficiency of energy markets” [11]. The resulting data scarcity inhibits
research, innovation and transparency. Operating data of power system
assets is usually only accessible to operators, owners, and manufac-
turers. Many manufacturers seek to maintain control over the data
generated by their products and prefer not to make the data accessible
as they see business interests at risk [11,16]. Under these conditions,
alternative solutions are needed to enable collaborative learning within
and across renewable energy fleets.

Federated learning (FL) has been established as a promising solution
to address the lack of data sharing. FL has emerged as an approach for
distributed parties to collaboratively train machine learning models in
a way that preserves the data privacy of all participating parties. FL
achieves this by only exchanging and communicating model param-
eters but not the participants’ data. FL has already shown successful
results and adoption in multiple application areas, especially in mobile
devices [17]. It has also already been investigated in numerous appli-
cations in the context of renewable energy, as presented in this review.
Yet, to the best of our knowledge, there has been no survey published of
FL applications in the context of renewable energy. While [18] recently
conducted a brief review on its applications in power distribution and
transmission systems, it is limited in scope and focused on smart grids.

We present a comprehensive review of FL applications in renewable
energy generation, consumption, and storage. Our main contributions
are:

(a) an overview of federated learning in renewable energy applica-
tions,

(b) a comprehensive literature review, and

(c) an analysis and discussion of the potential, challenges, and
promising research directions of FL in renewable energy appli-
cations.

The remainder of this review is structured as follows. Section 2
provides an introduction to federated learning. Section 3 presents the
most relevant FL algorithms in more detail. In Section 4, we provide
an overview of FL in renewable energy applications. We discuss its po-
tential, challenges, and possible future research directions in Section 5.
Section 6 presents our conclusions.

2. Federated learning

Federated learning is a technique for collaborative learning of ma-
chine learning models by distributed participants referred to as clients.
To give an example, a fleet of PV systems, each representing one client,
may aim to collaboratively learn a data-driven model for detecting op-
eration faults without exchanging any operation data. The FL training
process is iterative and typically involves the clients first locally train-
ing a fault detection neural network using only their private dataset,
and then transmitting their learned model parameters, i.e., weights, to
the server. The server then aggregates the received weights according
to a specified aggregation algorithm and distributes its computed model
state back to the clients. Iteratively, the server receives, aggregates,
and distributes weights such that ultimately all PV systems receive a
global FL model, containing fault detection knowledge also from other
clients without ever sharing any client’s operation data. This procedure
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(4) Server Broadcast

(3) Server Aggregation

Fig. 1. The general procedure of federated learning, exemplified by PV systems as
separate clients with private datasets and a central server (top).

is illustrated in Fig. 1. Thus, FL ensures the privacy of locally stored
client data and can provide a viable solution to the lack of data sharing.

Formally, the setup of federated learning requires the following
[19]:

- A set of N clients C;, i = 1... N, participating in the federated
learning process. For instance, N wind turbines.

- Each client i holds a private dataset 9; containing n; samples. The

datasets remain private, i.e. inaccessible to other clients and the

server. In our example J; represents the operation data of client

WT C,.

Data distributions 7y, defining the underlying distribution of each

dataset ;. In our example, 7y, is the distribution that generates

the operation data 9; of WT C;.

Client models .#;, i = 1... N, trained on the local dataset 2.

In federated learning, these models are typically deep neural

networks parameterized by their weights w;.

Federated learning involves the following iterative steps:

Algorithm 1: Federating learning workflow

1 R: number of training rounds.

Initialization of the server model,;
2 forr=1--Rdo
3 N clients receive a global FL. model from the server;
4 All clients independently perform training updates on
this model using only their local datasets 9;;
5 The clients send the parameters of their updated models
M ; to the server;
6 The server aggregates all models ./#;, i=1... N, to
obtain the updated global FL model;

7 end

where the number of training rounds R can be set, for instance,
with a convergence criterion based on validation losses. This general FL
framework can be tailored to specific applications, for instance, by in-
troducing a selection of client models .#; prior to the aggregation step,
or by training the global FL model in a synchronous or asynchronous
manner. In synchronous learning, the server waits for all clients to
finish training before aggregation, while in an asynchronous setting
only a subset of k clients are required to have completed their training.

The essential parts of the FL framework are the communication of the
model parameters, the local training performed by the clients, and the
aggregation of the models. The most predominantly used FL framework
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Fig. 2. Centralized (left) vs. decentralized federated learning (right).

is based on the FederatedAveraging (FedAvg) algorithm [20] in
which the aggregation step consists of averaging the received model
weights. We discuss FedAvg in more detail in Section 3.1.1. Numerous
works have since explored further enhancements, e.g., in the security
or efficiency of the FL framework. We refer to [19,21-24] for reviews
of FL algorithms.

Open challenges of federated learning can be divided into the fol-
lowing categories [21,24]: Communication and efficiency (Section 2.1),
security and privacy (Section 2.2), robustness, fairness, and biases
(Section 2.3), and statistical heterogeneity (Section 2.4). We will dis-
cuss these challenges and provide examples which address and aim to
mitigate these challenges.

2.1. Communication and efficiency

The client-server communication is an important component in
federated learning which may significantly affect the efficiency of the
learning process. Depending on the framework and available resources
(e.g., computational power, bandwidth), the client-server communica-
tion can significantly affect the training speed (e.g., [25]).

Thus, it may become important to reduce the required number
of communication rounds or the overhead of communication. The
efficiency can also depend on the communication network topology.
We identify two main categories of communication networks, a cen-
tralized network, in which all weights are sent to a central server for
aggregation, and a decentralized (i.e., peer to peer) setting where the
models are communicated only between clients. These two network
types are illustrated in Fig. 2.

There are a variety of options to increase efficiency and to therefore
reduce the training time, such as an optimized client selection for
each training round, asynchronous peer-to-peer communication, or
compression schemes. The appropriate choice may depend on the spe-
cific bottleneck, available resources, and further constraints. We refer
to [26,27] for an overview of these options and a comprehensive survey
regarding communication efficiency in federated learning. In a practical
example, the paper by [28] applies client selection techniques for
aggregation. They employ this approach to discard clients with poorer
performance, thereby reducing the number of communications required
per round and enhancing overall model performance. This strategy
addresses communication cost issues in federated learning within the
context of short-term building energy consumption prediction.

2.2. Privacy and security

The main motivation for federated learning has been to preserve
the data privacy of the clients in collaborative training. However, even
information contained in the exchanged model parameters can be ma-
liciously used to obtain sensitive information about client data, thereby
violating the privacy guarantees of federated learning. Different kinds
of privacy attacks have been presented [19]:

» Reconstruction attack: The attacker reconstructs client data
from available information, in particular, the communicated model
parameters and model updates.
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« Inversion attack: The attacker tries to reconstruct client data by
using the model output.

» Membership-inference attack: The goal is to learn if a specific
sample is contained inside the training set of the model. The
attacker infers whether a sample belongs to the training set or
not based on the model output.

Federated learning is often combined with additional privacy-
preserving methods to address these critical vulnerabilities. There are
three common classes of defense, namely secure multi-party computation,
homomorphic encryption, and differential privacy [19,24]. We present
the mechanisms of these methods in Section 3.2. While these privacy
enhancements assure more data security, they may result in substan-
tial performance and/or efficiency degradation (e.g., [24,29]). Some
security threats and their proposed solutions are discussed in [30-32].
For example, with solar irradiation forecasting, [33] uses differential
privacy by adding noise to the aggregated models to enhance the
clients’ privacy and manages to produce an effective model even with
the added noise from differential privacy.

2.3. Robustness, fairness, biases

The robustness of a model describes how resilient a machine learning
model is against adversarial data examples [34]. Robustness may be
achieved by protecting participants from malicious attackers injecting
adversarial data samples into the model, ensuring that it does not
substantially affect the model performance for the participating clients.
Such a situation can also arise unintentionally: For example, a WT client
may be affected by an unnoticed sensor fault, causing that client WT
to train the local model with faulty samples, which can potentially
deteriorate the model performance for other participating client WTs.

Fairness describes how fair a model is to the federated learning
participants. Broadly speaking, a model can be described as unfair if
some participants are systematically disadvantaged, if there are sys-
tematically different performance outcomes, or if clients with similar
characteristics obtain disparate results [21,34].

Biases inherent in the federated learning process are a major driver
in causing unfair circumstances [21]. In renewable energy applica-
tions, biases may arise from, for example, the over-representation of
a particular operation mode, a geographical region, or time of day
or of year in the training dataset. Biases may also arise from varying
computational power available on each client in the FL process, in
the selection of clients for each training round which may depend on
whether a client is currently online, or in the different amounts of
local training data available (which may affect newly installed power
systems). Agnostic Federated Learning (AFL) [35] provides an approach
to reduce biases caused by imbalanced data distributions. We present
AFL in Section 3.1.3.

We refer to [21,36,37] for further mitigation approaches related to
robustness, fairness, and biases.

2.4. Statistical heterogeneity

Statistical heterogeneity can be a major challenge of federated
learning in renewable energy applications. The participating clients of
an FL model training process may differ from each other to varying
degrees and exhibit individual characteristics in their training datasets.
For example, the participating clients can be batteries from differ-
ent fleets of battery models and vendors, operated under different
operating and environmental conditions. If the clients are residential
buildings, they may differ by the highly individual energy consumption
patterns across different residential buildings.

Such variations among participants can lead to differences in the
statistical distributions of the clients’ local datasets, i.e., to statistical
heterogeneity. The data distributions are then referred to as being non-
independently and identically distributed (“non-iid”). Sources of data
heterogeneity include [38]:
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» Label skew: arises if the distributions of the model’s target vari-
ables (labels) vary between clients. As an example, label skew
may arise if WTs with different power capacities collaboratively
learn an FL model of the power output.

Feature skew: arises if the distributions of one or more features
differ between the clients. For instance, the mean incoming solar
radiation and the operation temperatures of PV systems may
differ systematically based on their locations.

Quantity skew: Different clients may have different amounts of
training data available. For example, a newly commissioned office
building has less historical operation data than buildings that
were commissioned previously.

Time skew: The distribution of client data is time dependent. For
example, the distribution of wind speed at a WT may depend on
the time of year. Based on when the data of a client was acquired,
this may bias the client dataset distribution.

2.4.1. Effect on FedAvg

The impacts of non-iid data on the convergence and performance of
the FedAvg algorithm are investigated in [39-41]. Particular attention
is devoted to the inferior convergence performance which is attributed
to the client drift [39,42]: Over the course of FL iterations, each
client’s optimal weights w} diverge from the true server optimum w*,
thereby leading to poor convergence. The FL algorithm FedProx was
introduced in [43] to enable a more robust convergence by penalizing
large deviations of local weights from the globally averaged weights.
We outline the FedProx algorithm in Section 3.1.2.

The Federated Uncertainty-Aware Learning Algorithm (FUALA) [44],
as outlined in Section 3.1.4, provides an approach to reduce the
influence of non-iid data by using a model generalization scoring during
the client selection process.

2.4.2. Customizing FL models to individual clients

Under strong non-iid conditions, a global model as obtained by
FedAvg may result in moderate or even poor performance [40,42].
Models trained only locally (without FL) may outperform a global
FL model under such conditions, as demonstrated for wind power
plants in [12] and discussed in more detail in Section 4. Therefore,
some clients may not have an incentive to participate in the federated
learning process [12,45,46]. To alleviate this issue, personalized fed-
erated learning (PFL) [47] has emerged as a technique that creates a
customized model for each participant (rather than a single global FL
model for all participants) but retains the advantages of collaborative
learning. Possible approaches on how to customize (‘“personalize”)
models are vast, and examples include client clustering [48], personal-
ized model layers [49], meta-learning [50], or transfer learning-based
approaches [51]. We refer to [47,52] for a comprehensive overview of
customization approaches.

While PFL methods usually outperform FedAvg in the presence of
non-iid data, there is no current consensus on which PFL algorithm
is preferable, as current research suggests that the optimal choice
of personalization technique is client-, task- and dataset-specific [46,
47,53,54]. In Section 3.3, we present common approaches used in
renewable energy applications, namely clustering, local fine-tuning, and
personalization layers.

3. Federated learning algorithms

This section provides an overview of federated learning algorithms
that are relevant to renewable energy applications and address the
challenges outlined in Section 2. We discuss model aggregation (Sec-
tion 3.1), privacy and security (Section 3.2), and customization algo-
rithms (personalization, Section 3.3). Specifically, this includes:

- the FedProx algorithm that can improve the performance of
FedAvg on heterogeneous data,
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Agnostic Federated Learning (AFL) to ensure fairness of models,
the Federated Uncertainty-Aware Learning Algorithm (FUALA)
that favors clients with models showing better generalization
performance,

Privacy enhancements, specifically, secured multi-party computa-
tion, homomorphic encryption and differential privacy, and

- Personalization methods, namely clustered federated learning,
fine-tuning, and personalization layers.

There is a wide variety of further modifications and extensions for
federated learning. We refer to [55] for a comprehensive review.

3.1. Aggregation algorithms

In this section, a selection of federated learning aggregation algo-
rithms is presented. We start by discussing the idea behind FedSGD
and FedAvg, the foundational aggregation algorithms for federated
learning and discuss some of their limitations. Selected improvements
of FedAvg are then presented based on the challenges and limitations
which these improvements address.

3.1.1. FedSGD and FedAvg

In standard machine learning, training neural networks is performed
by minimizing an objective function with the goal of arriving at optimal
model weights w. Typically, a loss function #(x, y; w) based on dataset
features x and labels y is minimized using gradient-based optimization
techniques, with the model being parameterized by . In standard fed-
erated learning, this objective function is extended to N participating
clients C;, i=1,... N:

N
X
min ) — (X, yii @) €]
i=1

to minimize the federated model weights w for all clients and their
respective datasets x; and y;, and where n = Z,N n; is the total number
of all training samples.

Federated Stochastic Gradient Descent [56] (FedSGD) was pro-
posed as an aggregation algorithm that minimizes the objective func-
tion in Eq. (1) by averaging transmitted gradients from clients in each
round, with each round consisting of one epoch computed in one batch.
That is, in FedSGD all clients compute and transmit their local gradient
of the loss #; with respect to the current weights w' of round ¢, such that
the server can perform one stochastic gradient descent step to update
the weights for the following round 7 + 1:

N
n:
ot =o' -1 —VE (@) 2
i=1

where V/;(!) denotes the gradient batch averages of client C; com-
puted over its datasamples, and 7 is the learning rate.

FedSGD guarantees that the global model’s total loss converges
towards a local minimum. However, FedSGD requires an update of the
model at each training step, which induces a heavy cost in communi-
cation and slows down the training.

Federated Averaging [20] (FedAvg) is the leading framework
used in federated learning, on which many extensions are based. It
substantially speeds up FedSGD by performing multiple updates of
the client models before averaging them together, and each epoch can
be trained using several mini-batches. That is, the clients themselves
perform model training updates for multiple batches or epochs before
exchanging parameters. Therefore, this algorithm does not average the
gradients but directly employs model weights in the aggregation to

obtain the updated server weights »'*':
N

ot = Z ;lwr'l 3)
i=1

where wf.“ are the updated model parameters computed by client C;.
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This approach results in significantly faster training and reduced
communication cost. While there is no guarantee for the convergence
of the global model [19], FedAvg has demonstrated remarkable empir-
ical success. FedAvg has become a predominantly used FL framework
for renewable energy applications (Section 4), consistently demon-
strating its advantages in ease-of-use and flexibility. However, the
performance of FedAvg can suffer when faced with strong statistical
heterogeneity, as the weights of locally trained models may tend to pull
the server weights in different directions.

3.1.2. FedProz

When data distributions across clients are non-iid, FedAvg may suf-
fer from poor convergence and performance issues due to the appearing
client drift (Section 2.4). The idea behind FedProx [43] is to train the
local client models such that they stay close to the global model. This
is achieved by adding a regularization term to each client loss based
on the distance between the local client weights, w;, and the weights
of the global model, w':

h,‘(a’,’,wr) = f{(a)i) + g ||(U,- - wtllz (4)

where u is the regularization parameter determining the relative im-
portance of the regularization term. The server then aggregates all new
parameters co;“ to obtain the new global model parameters, w'*!, as in
FedAvg.

The regularization term forces the local models to stay close to the
initial model and therefore reduces the issue of data heterogeneity.
However, since the local models are trained to stay close to the global
model, this can slow down the convergence process and require more
training rounds. Experiments [43] have shown an improved testing
accuracy on highly heterogeneous data, a slower convergence on iid
data compared to FedAvg, and that the regularization parameter u
can be set dynamically to improve the trade-off between training speed
and accuracy. FedProx is a moderately complex extension of FedAvg
and retains the high flexibility of FedAvg, allowing combinations with
many other FL algorithms.

3.1.3. Agnostic federated learning

Agnostic Federated Learning (AFL) [35] aims to achieve model
fairness (Section 2.3) by reducing biases due to imbalanced data dis-
tributions across clients. This can occur, for example, when there
are highly correlated clusters of clients sharing a very similar data
distribution. Some clients will then be over-represented in the learned
federated model to the detriment of clients exhibiting more unique
data distributions. For example, consider learning a control task for
clients representing residential buildings, such as heating control. Such
a model could be biased towards a group of buildings housing large
families (sharing very similar energy consumption patterns) over a
group of single households with more individual energy consumption
patterns (e.g., night shift workers, mobility workers, travelers). Consid-
ering N client datasets 9; of size n; based on distributions rg,, such
biases are due to FedAvg learning a target distribution weighted by
the relative dataset sizes of all clients:

n.
= Z ;’75% (5)
i=1
The authors in [35] argue that this target distribution does not always
reflect the true objective distribution and that it is susceptible to biases.
Instead, AFL optimizes for any possible target distribution formed by an
optimal mixture of client data distributions:

N
T = Z Aizg, (6)
i=1

where 4; defines the mixture weight and replaces the standard
dataset size weights. Thus, the server optimizes the received weights
according to an objective based on Eq. (6) in the aggregation step. AFL
aims to ensure that the global model is working well for all clients and
not only for a majority of similar clients.
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3.1.4. Model selection and federated uncertainty-aware learning algorithm

Model generalization is an important performance measure. In fed-
erated learning, a local model trained on a client’s dataset that gen-
eralizes well to multiple other clients can be considered superior to
a model only performing well on its own training dataset, as it is
more likely to perform well on outliers and previously unseen data.
Federated Uncertainty-Aware Learning Algorithm (FUALA, [44]) is an
FL algorithm based on FedAvg that employs model selection to favor
client models which generalize well to other clients. This is achieved
by selecting those models for aggregation more frequently (i.e., with a
higher probability).

In FUALA, the client selection at the start of each aggregation
round follows a dynamic distribution 77, first initialized as the uniform
distribution. Then, in each round, the distribution is updated as follows:

Algorithm 2: Distribution update
Data: N clients C;,i = 1,..., N with their local datasets &,
and models .Z;.

1 The server creates a random permutation of the client
indices o and sends %, to C;.
(That is, each client receives a model .Z; trained on
another client’s dataset 9, in addition to the global
model);

2 Each client C; computes the generalization score (e.g.,
accuracy) of .#,, on its own dataset J;
The client’s dataset 9; acts as a test set for model ./, ;

3 The server updates the distribution /7 such that models
with better generalization scores are selected with a higher
probability for the next FL round;

FUALA only affects the client selection at the start of each FL round.
This approach assigns more weight to clients whose models adapt well
across the other clients. FUALA was found [44] to achieve a superior
performance compared to other federated learning algorithms.

3.2. Privacy and security

Privacy enhancements can be added to a standard federated learn-
ing framework to ensure stronger privacy by reducing the opportunities
of malicious attacks (Section 2.2). Privacy enhancements include:

Secure multi-party computation [57] enables the secure compu-
tation of functions (e.g., sums) on data from different clients without
actually sharing the full data samples. A main approach is secret
sharing, based on splitting the transmitted data of each client in shares.
These shares can be exchanged between clients without revealing full
information of the data, as all computing operations are only performed
on the shares of each client. Results computed on each share can then
be aggregated to obtain the equivalent result of computing the same
operation on all (non-split) data. This mechanism can be applied to
aggregate the model parameters without requiring clients to explicitly
share their model parameters with the server.

Homomorphic encryption [58] is an encryption scheme which
allows to carry out operations directly over encrypted data. It ensures
that an operation, such as multiplication, of two weights w,, w, can be
performed fully within the encrypted space: H E(w, - w,) = HE(w,) -
H E(w,), where H E() represents homomorphic encryption. In the con-
text of federated learning, this property is useful to defend against
reconstruction attacks by encrypting all communicated model parame-
ters and/or gradients, while still allowing aggregation operations in the
encrypted space without the need of decryption.

Differential privacy [59] provides a security guarantee enabling
calculating operations over a dataset while restricting the information
that can be retrieved about a specific dataset sample. This property
is achieved by adding noise to datapoints (i.e., in FL for instance to
data samples or transmitted weights of clients) such as Laplace or
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Fig. 3. Personalization methods in centralized FL with clients exemplified as PV systems. A: Clustering. B: Personalization layers. C: Fine-tuning.

Gaussian noise. The extent of this noise is flexible, allowing for a trade-
off between privacy guarantees and accuracy. We refer to [60] for an
overview of differential privacy.

While all these privacy mechanisms can be added to a FL framework
to ensure stronger privacy guarantees by mitigating privacy attacks,
they do have drawbacks. Secure multi-party computation and homo-
morphic encryption can substantially affect the efficiency by increas-
ing the communication overhead, while differential privacy can be
significantly detrimental to the model accuracy [61].

3.3. Personalized federated learning

Personalized FL aims to learn models specifically tailored to indi-
vidual clients (or to a subset of clients) rather than a single, potentially
poorly generalizing model. Common personalization techniques include
clustering, personalization layers, and fine-tuning, as illustrated in
Fig. 3.

3.3.1. Clustered federated learning

The idea of clustering-based FL approaches is to build multiple
separate federated models (e.g., using FedAvg), where each model
is trained only on a specific subset of clients, called a cluster. These
clusters are selected so that the clients belonging to the same cluster are
similar to each other. This reduces the distribution heterogeneity within
a cluster with the aim of improving the federated learning performance.
Various approaches to clustering clients exist. Clustering can be applied
using meta-data of the clients (e.g., by geographic location or power
capacity) or by clustering depending on model information (e.g., the
distance of the local model weights to the cluster’s model weights) [62].

This strict type of clustering can give rise to disadvantages. For
example, there is a risk of data shortage within small clusters or too
rigid clusters focusing only on part of the relevant information (for
instance, a cluster containing only newly installed systems might be
subject to time skew) without benefiting from knowledge of other
relevant clients. To mitigate this issue, some clustering algorithms
propose incorporating parameters of clients from other clusters [63].
This way, all clusters remain involved in the collaborative training.
Fuzzy clustering [64] extends this idea by defining that every client
belongs to every cluster to a certain degree, and therefore should be
involved in the training of that cluster in proportion to that degree.
The fuzzy clustering framework (illustrated in Fig. 3A) is a promising
approach to reduce data heterogeneity while still learning from all
clients.

3.3.2. Personalization layers

The layers of a neural network can exhibit specific functions de-
pending on their position within the model. For instance, the first layers
commonly extract low-level and typically generalizable features, while
the top layers (closer to the output) compute highly complex dataset-

and task-specific features [65]. In multi-task and transfer learning, the
knowledge contained in these generalizable and shared representations
of selected layers plays a significant role [65]. This is a main motivation
for using personalization layers in federated learning.

By keeping weights of selected layers local, i.e., client-specific, and
training the remaining layers collaboratively, the resulting customized
models can capture general shared information as well as client-specific
information. Neural networks can be split into base layers and person-
alization layers to this end [49]. The weights of the base layers (the
first few general layers) are shared and aggregated as usual through
e.g., FedAvg, while the personalized layers (upper layers) remain
completely local and private. This approach is illustrated in Fig. 3B
and enables customizing (“personalizing”) an FL model for each client
participating in the training. This idea can be further generalized by
selectively choosing any specific part of the network to be personalized,
i.e., any layer or only selected parts of more complex architectures
(e.g., sub-components of a transformer) [54,66].

3.3.3. Personalized federated learning with fine-tuning

Transfer learning [13,14] aims to transfer knowledge from a task
learnt on a domain in which data and information are abundantly
available (“source domain”), to the same or a related task in a domain
where typically only few (labeled) data points are available (“target
domain”). Fine-tuning is a simple, yet common and successful transfer
learning strategy. It involves using a pre-trained model learned on
the source domain data and then fine-tuning some or all of its layers
by training them on the target domain dataset for a few additional
steps [65,67,68]. The fine-tuned model will retain transferable and
generalizable knowledge from the source domain while being adapted
to the specific target dataset characteristics. This approach usually
results in improved performance compared to a model trained from
scratch on the (scarce) target data only (see e.g., [67]).

In a personalized FL setting, fine-tuning involves first collabora-
tively training a global model, such as FedAvg. In a second phase,
all clients separately fine-tune the global model by training some of
its parameters for a few additional steps on only their own local
datasets [51,69,70]. The fine-tuned models still contain generalizable
knowledge obtained from other participating clients, but specifically
adapted to the client’s local dataset, which reduces the performance
degradation caused by statistical heterogeneity. A typical fine-tuning
strategy is illustrated in Fig. 3C.

4. FL in renewable energy applications

The adoption of FL in renewable energy is on the rise. In practical
applications such as condition monitoring or power forecasting, data is
often dispersed across various fleet members. As a typical application
example, a condition monitoring model is built for a WT fleet in [12]
using FedAvg. Results reveal that the presented personalized federated
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approach can indeed surpass the performance of local training methods,
that is, models trained on local datasets only. Through FL, WTs were
able to exchange condition information in a privacy preserving manner.
This research example underscores the significance and potential of
collaborative learning in enhancing the performance of local models,
while crucially preserving the data privacy of locally stored datasets.
We outline diverse applications of FL across various tasks.

4.1. Resource, production, and load forecasting

Production forecasts are critical in a renewable energy system for
integrating variable energy sources such as solar and wind energy. Typ-
ically, a substantial amount of representative training data is required
to train a power forecast model, which if lacking might result in inferior
model performance. In forecasting, the collected data of a specific site
(e.g., a wind farm, PV system, or a residential building) might not be
fully representative, for instance, due to a limited number of observa-
tions which were recorded only during specific weather conditions. The
goal of federated learning is to improve the performance of machine
learning models which were trained using only local client data, that
is, local models, while preserving the privacy of these data from other
clients.

Wind power forecasting. In wind power forecasting, the clients,
i.e., wind turbines or wind farms, aim to collaboratively learn to
directly forecast the generated power or wind speeds. The studies
in this field [71-75] consistently report that FL can be employed to
obtain significantly more accurate forecasts compared to local models,
demonstrating the potential and benefits of FL. In all these cases, the FL
performance also achieves performance comparable to models trained
in (privacy-violating) data sharing settings, i.e., centralized models.

The majority of studies are limited to unmodified FedAvg algo-
rithms, while FedProx is employed in [74], and an adversarial deep
domain adaptation framework is used with FedAvg in [75].

Improvements to privacy and security are presented in [74] by en-
crypting the model parameters. In [73], the authors focus on enhancing
the security by reducing the potential for data injection attacks.

While significantly less common, another application of FL has
been to create a highly generalized model with the main purpose of
alleviating the cold-start problem in machine learning. The cold-start
problem occurs when there is insufficient historical data to train a
model [76]. This is a likely occurrence in renewable energy applica-
tions, for instance for newly installed power grid infrastructure which
completely lacks representative data for training a machine learning
model for condition monitoring. By providing a global FL model to
these affected clients at the start of their operations, they can still
benefit from adequate task performance despite data scarcity issues.
The authors of [73] focus mainly on developing such a generalizable
model for wind power forecasting, investigating the global FL model
performance on wind farms that did not initially participate in the
learning process, thereby demonstrating another promising application
and benefit of FL.

Solar forecasting. In solar power forecasting, clients can be PV
systems, collaboratively learning the expected power generation and
related tasks. A standard FedAvg approach is employed in [77], show-
ing a highly significant reduction in forecast error compared to models
trained only locally on each PV system. The authors further observe
a remarkable generalization ability of the learnt global model. Results
in [33] show that a FedAvg scheme outperforms local models, achiev-
ing comparable results to a centralized model. However, a standard
FedAvg model (i.e., without personalization) does not necessarily
always outperform local models. Indeed, [78-80] report worse perfor-
mance with a standard FedAvg scheme compared to local models. This
occurrence is to be attributed to statistical heterogeneity, caused for
instance by data sources based on substantially different geographical
locations (e.g., [781]). Personalized FL has been employed to address
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this issue. An approach based on personalization layers for community-
level disaggregation is presented in [80], where specific layers of the
model remain community-specific and are not shared with the server.
An encoder—decoder structure with a two-stage training strategy is
presented in [79], in which only the decoder (forecaster) weights are
shared and aggregated, while the encoder (feature extractor) remains
local, i.e., customized. In [79], fuzzy clustering is chosen as personaliza-
tion method, where clusters are based on meta-information (location).
These personalization techniques do not only manage to outperform
local models and the standard FL model, but also a centralized model.
Furthermore, the generalization capabilities of a global model learned
with FL are demonstrated in [81], showing that regions without histor-
ical data that did not participate in the collaborative learning process
can still achieve accurate forecasting with the global FL. model.

Apart from these changes in personalization, the aggregation algo-
rithm employed in previous studies is unmodified FedAvg. Privacy
enhancements are implemented in [33], through a secure aggregation
with differential privacy. In terms of communication and efficiency,
both [78,80] remark uncertainties regarding the training time and
efficiency, i.e., possible issues when faced with a significantly larger
number of participants.

Load forecasting. Federated learning has also been employed to
forecast the energy consumption of buildings. A standard FedAvg
approach is shown in [82] to lead to more accurate load forecasting,
resulting in superior performance in practically all client buildings
compared to local models, as well as comparable results to the cen-
tralized setting. However, statistical heterogeneity is a recurring theme
in load forecasting (for instance caused by highly individual energy
consumption patterns), which negatively impacts the performance of
standard FL approaches. This issue is extensively investigated in [83],
where even the centralized model results in inferior residential load
forecasting accuracy compared to local models. The authors first in-
vestigate a clustering approach where client updates are used as proxy
for client similarity, which however still proves to be inferior, despite
improving the non-clustered approach. Only by incorporating a fine-
tuning step as a personalization method does the proposed FL method
result in the most accurate model.

Similarly, a FedAvg framework enhanced with clustering based
on client validation losses with a subsequent fine-tuning is proposed
in [63] and shown to be the favorable method in comparison to a
localized and centralized setting. Another two-stage personalization ap-
proach is shown in [84], where buildings are first clustered according to
model architectures with subsequent local fine-tuning of the federated
cluster model. This two-stage strategy is shown to result in improved
performance over either only clustering or fine-tuning and in significant
improvements compared to an approach without personalization. Fine-
tuning is also applied in [28]. A significant benefit of personalization
is further shown in [85], and also in [86], where the authors propose
a method based on domain adaptation.

Regarding privacy and security, a wide variety of solutions is
proposed. Parameter encryption [87], a secure aggregation algorithm
based on multi-party security [28], and a private data aggregation
scheme [63] have been presented.

The benefits of the generalization properties of FL in alleviating
the cold-start issue are investigated in [28] showing improvements
when only limited data is available, in [87], suggesting that FL. mod-
els perform well on out-of-sample distributions, and in [63], further
demonstrating good generalizability to nonparticipating buildings.

Despite these extensions, FedAvg remains the predominant aggre-
gation algorithm, with some variation in [88], where adaptive weights
based on client participation are proposed to mitigate the impacts
of asynchronous updates. A standard central server structure without
efficiency enhancements is present in all but [89], where a substantial
increase in efficiency is achieved by a decentralized approach, and
in [85] using peer-to-peer networks.
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Forecasting for electric vehicles. As electric vehicles (EVs) can be
represented as a fleet of individual battery-powered devices, federated
learning has been explored to enable collaborative learning for different
EV tasks in a privacy-preserving manner. Various FL algorithms are
compared in [90] in their ability to provide more accurate EV energy
consumption predictions, with FedAvg and FL with personalization
layers achieving superior performance over FedProx, FedSGD, and
over localized models trained on single EVs. FL is employed in [91]
with an extension of FedAvg with uncertainty to realize more accurate
probabilistic energy demand and driving range forecasts. A feature-
based clustering is introduced to address the heterogeneous driving
behavior and energy consumption patterns across drivers and vehi-
cles. To predict battery aging in the context of EV applications, [92]
demonstrate that a standard FedAvg approach can consistently out-
perform local models in determining the state of health, and achieve
comparable but slightly inferior performance to centralized models.
Clustering-based FL is proposed in [93] for personalized capacity pre-
diction applicable to EVs. Similar batteries are first clustered based on
model parameters, whereas a knowledge distillation algorithm enables
subsequent learning across clusters. Results show a significant perfor-
mance improvement over local, standard FedAvg and FedProx, and
centralized models.

4.2. Fault detection and diagnostics

Fault detection and diagnostics is a central task to ensure energy
plant uptimes, to reduce maintenance costs, and overall to increase the
reliability and cost-efficiency of renewable energy systems. However,
an extensive and representative fault database is required to detect
and classify faults. Detecting anomalous operation behavior in terms of
deviations from the normal state also requires a large, representative
dataset of past normal operation data. These requirements cannot al-
ways be met in renewable energy applications. For example, a database
from a wind turbine with a history of blade damages cannot be ad-
equately used to build a fault detection model for gearbox damages.
Data from other WTs is usually needed. With federated learning, the
participants in the FL training process can share and obtain exposure to
a larger number of fault types or normal operation data, without having
to share any data from their systems. FL studies of fault detection and
diagnostics applications follow similar principles as in forecasting, with
the main goal being to achieve superior performance compared to local
models.

Fault detection for wind turbines. The FL clients, typically single
wind turbines, collaboratively learn fault detection or classification
tasks. An early study [94] investigated an unmodified FedAvg scheme
for fault detection with two wind turbines of the same type and man-
ufacturer as clients, demonstrating that the FL model can successfully
surpass the ability of local models to distinguish between a fault-free
and anomalous state of the turbines, reaching comparable results as in
a centralized setting.

The authors mention the possibility of non-iid issues, especially if
different turbine types were to be considered. This statistical hetero-
geneity is a theme in [12], where learning normal behavior models of
wind turbines (see e.g., [95,96]) of the same type in a fleet is inves-
tigated. While a standard FedAvg approach results in more accurate
normal behavior models for WT fleet members lacking representa-
tive training data, a reduction in accuracy is shown for non-affected
WTs. Fine-tuning is introduced both to improve performance and to
incentivize participation from fleet members that do not lack data, by
guaranteeing them a model performance that is at least equal to that of
locally trained models. In terms of efficiency, the authors report a sig-
nificant increase in required training time with FL. A possible solution
to alleviate this issue is demonstrated with a different communication
structure approach in [97], where a peer-to-peer network is shown to
be more effective.
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Various studies [98-101] have demonstrated the successful ap-
plication of FL particularly for blade icing detection. Notably, [98]
puts emphasis on data imbalance and homomorphic encryption, while
in [99] statistical heterogeneity is addressed with transfer learning-
based approaches in which the feature maps themselves (instead of
weights) are securely transmitted to the server, showing a significant
improvement compared to FedAvg.

Solar energy. With FL, PV systems can collaboratively learn to
detect or classify faulty or anomalous behavior. In [102], an asyn-
chronous decentralized (serverless) FL fault detection framework is
proposed. The authors first show that local models fail, as expected,
when faced with fault types not present in local datasets. With the
proposed FL method, the accuracy reaches that of centralized learning,
capable of detecting a wider variety of faults. The authors further
report a significant reduction in required training time and number of
communication transmissions through their proposed asynchronous de-
centralized framework. Another decentralized approach [103] supports
the finding that PV systems can detect faults which never occurred lo-
cally, even when fault types are distributed unevenly across PV systems.
FL is also utilized for detecting false data injection attacks in solar farms
in [104], in which the authors further emphasize that FL significantly
minimizes the communication costs compared to a (privacy-violating)
data sharing setting. All studies used FedAvg as aggregation algorithm.

Smart buildings. The collected wealth of data from buildings
opens up the opportunity to detect anomalous behavior based on
data from smart meters. With FL, the clients, typically residential
or office buildings, share sensitive energy consumption information
in a privacy-preserving manner. The studies in [105,106] investigate
the use of FedAvg for anomaly detection in smart buildings. The
authors of [105] report significantly better results compared to local
models, while [106] demonstrates improvements over centralized base-
line models and also a faster convergence compared to a centralized
benchmark.

Both contributions employ additional privacy mechanisms, in [106]
with secure multi-party computation and differential privacy, and
through a privacy-preserving aggregation with shares in [105].

4.3. Federated control

An increasing amount of information-rich client data is becoming
available with the development of smart meters and other sensor-
equipped systems monitoring energy consumption patterns and sched-
ules in applications for, e.g., smart homes or electric vehicle fleets.
Federated learning for control tasks based on this data can enable a
more informed production, usage and storage of renewable energy,
ranging from building energy management to vehicle fleet charging
coordination.

Smart meters. A FedSGD based approach is presented in [107] for
the energy management of multiple smart homes, observing increased
efficiency in terms of data storage and communication compared to a
centralized approach. A FedAvg-based framework for thermal comfort
control is explored in [108], demonstrating its effectiveness while
further showing a positive impact of personalization as realized with
a fine-tuning step. For electric vehicle fleet charging, an attention-
weighted FedAvg technique is presented in [109], both outperforming
a centralized benchmark model and the unweighted FedAvg approach.

4.4. Previous studies

An overview of studies on federated learning in renewable energy
applications is outlined in Table 1, highlighting the respective FL
methods and the learning tasks accomplished by them.

5. Potential, challenges and future directions

We will now analyze and discuss the potential and challenges
of federated learning methods in the context of renewable energy.
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Table 1

Federated learning in data-driven renewable energy applications.
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Reference Centralized Method Task Application field
[12] v FedAvg with fine-tuning WT condition monitoring w
[71] v FedAvg for reinforcement Wind power forecasting w
learning
[72] v FedAvg Wind power forecasting w
[73] v FedAvg Wind power forecasting w
[74] v FedProx Wind speed prediction W
[75] v FedAvg with client selection and WT anomaly detection (blade cracking) w
domain adaptation
[94] v FedAvg Fault detection in WTs w
[97] v Clustered FedAvg with dynamic Fault diagnosis in WTs w
weights
[98] v FedAvg WT blade icing detection w
[99] v FL with exchanged feature maps WT blade icing detection w
[100] v FedAvg with custom weights WT blade icing detection w
[101] v Clustered FedAvg WT blade icing detection w
[110] v FedAvg Scenario generation for PV and wind W&S
[771 v FedAvg PV power prediction S
[78] v FedAvg with personalization Solar forecasting S
layers
[79] v Fuzzy clustered FL Solar power generation forecasting S
[80] v FedAvg with personalization Community-level behind-the-meter solar S
layers generation disaggregation
[81] v FedAvg Cyber-Resilient solar power forecasting S
[102] v Asynchronous, decentralized PV fault diagnosis S
FedAvg
[103] X Decentralized FedAvg Diagnosing faults in PV inverters S
[104] v FedAvg Detecting false data injection attacks in S
solar farms
[111] v Asynchronous, decentralized PV fault diagnosis S
FedAvg
[25] v FedAvg Energy prediction in smart buildings B
[63] v Clustered FedAvg Few-shot building energy prediction B
[82] v FedAvg Load forecasting for campus buildings B
[83] v Clustered FedAvg with Short-term residential load forecasting B
fine-tuning
[84] v Clustered FedAvg with Electricity load forecasting B
fine-tuning
[28] v FedAvg with similar client Short-term load forecasting B
selection and fine-tuning
[85] X Personalized FedAvg FL for smart buildings B
[86] v FedAvg with domain adaptation Residential short-term load forecasting B
[87] v FedAvg Heating load forecasting B
[88] v FedAvg with adaptive weights Building energy load forecasting and B
anomaly detection
[89] X Decentralized FedAvg Residential building load forecasting B
[105] v FedSGD Detection of anomalous electricity B
consumption
[106] v FedAvg Anomaly detection for buildings B
[107] v Federated reinforcement learning Energy management of multiple smart B
homes
[108] v FedAvg with fine-tuning Energy-efficient thermal comfort control B
service in buildings
[112] v Federated reinforcement learning Energy management of shared energy B
storage
[113] v FedAvg Prediction of energy consumption B
[114] v FedAvg for reinforcement Energy and carbon allowance trading for B
learning buildings
[115] v FedAvg Plug-load identification for building B
management systems
[116] v FedProx Capacity evaluation for HVAC systems in B
buildings
[90] v FedAvg Energy consumption prediction in EVs EV
[91] v FedAvg Probabilistic energy and driving range EV
forecasts for EVs
[92] 4 FedAvg Battery aging prediction for EVs EV
[93] v FedAvg Battery capacity prediction EV
[109] v Attention-weighted FedAvg Plug-in EV fleet charging coordination EV
[117] v FedAvg EV charging EV
[118] v FedAvg Fault prediction in autonomous guided o
vehicles
[119] v FedAvg Multi-Microgrid energy management o

with deep reinforcement learning

(continued on next page)
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Table 1 (continued).
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Reference Centralized Method Task Application field
[120] v FedAvg Dynamic line rating forecasting o
[121] v FedAvg Detection of false data injection attacks (0]

in smart grid

B: buildings, S: solar, W: wind, EV: electric vehicle, O: others.

Moreover, we outline research needs and highlight possible future
research directions. Our discussion is summarized in Table 2.

5.1. Potential of FL in renewable energy systems

Previous studies have demonstrated that federated learning methods
can be beneficial for overcoming data scarcity conditions as exemplified
by [11]. The results reported in previous studies consistently illustrate
the superior ability of FL. compared to local machine learning models
in applications such as forecasting, control, and fault detection and
diagnostics. They also demonstrated increased efficiency compared to
centralized data sharing settings, and inherent generalization properties
of models trained through FL.

Federated learning approaches seem particularly suited for renew-
able energy sectors that involve fleets of distributed systems that gen-
erate, store, or consume energy, and that offer continuous sensor
monitoring for the intended FL task. For example, fleets of wind tur-
bines equipped with anemometers (to measure local wind conditions)
and accelerometers (to measure vibration responses of critical drive
train components) offer the potential to collaboratively learn power
forecast models and fault detection models that outperform locally
trained models, in a data-privacy-preserving manner based on FL.
Similarly, fleets of PV systems, smart meters, and vehicle batteries
may also benefit from federated learning. The reviewed studies have
demonstrated that FL can extract and share information collaboratively
across the clients (fleet members) participating in the training. This
can be achieved in a privacy-preserving manner where data remains
local and inaccessible to other clients, effectively addressing the lack
of data sharing and privacy concerns in this field. FL is also a highly
flexible approach, shown to be compatible with a wide variety of data
types, model architectures, and tasks commonly faced in renewable
energy applications. Another benefit of FL that applies particularly
for large-scale fleets, such as buildings or EVs, is in its ability to
enable learning on the edge. As opposed to a centralized setting, FL
requires no centralized data storage capabilities, reducing costs and
concerns of data leakage. By only exchanging model parameters it
can also substantially reduce communication requirements, leading to
comparably more efficient learning. Various proposed extensions to
enhance security, efficiency, or model performance further demonstrate
the option of adjusting FL. methods to specific requirements.

There are numerous applications in the field of renewable energy in
which the potential of federated learning has barely been explored yet.
Examples include predictions of the remaining useful life of equipment,
and estimating optimal maintenance schedules in predictive mainte-
nance tasks. Furthermore, the vast majority of applications presented
make use of FedAvg only with limited modifications and do not fully
exploit recent state-of-the-art research contributions to further improve
FL in practice, especially in terms of data heterogeneity and effi-
ciency. Generally, the choice of framework, algorithms, and extensions
is scattered in the presented literature, suggesting a research need for
more in-depth comparisons of the applied FL algorithms across various
application domains.

It is also apparent that some energy-related domains, such as elec-
trical load forecasting of buildings, present a more advanced state
of research of federated learning applications than others, such as
battery management and control. When planning FL studies, it may be
beneficial for researchers in renewable energy application domains less
advanced in FL case studies to also take into account previous studies
that were conducted on related tasks in other application domains with
more comprehensive FL research, such as building load forecasting.

10

5.2. FL challenges and future directions

Challenges, open questions and potential future research directions
related to federated learning in renewable energy will be discussed in
the following.

The vast majority of studies reviewed employ a standard network
configuration based on a centralized server, coupled with a relatively
small number of clients. Uncertainties regarding the scalability of
the proposed FL method are occasionally expressed across literature,
especially concerning scenarios with a large number of participating
clients. Only few contributions propose alternative approaches based on
configurations with asynchronous, decentralized (server-less), and/or
peer-to-peer network structures. In all of these cases, a substantial
reduction in communication costs was successfully demonstrated, pro-
viding an essential finding that has not been sufficiently considered
yet in other studies. Moreover, possible effects of the computational
capabilities of clients and their differences on the learning process
have not been investigated. The positive results of alternative net-
work configurations provide promising research directions towards a
more scalable and efficient use of FL in practical renewable energy
applications. Further large-scale studies, based on e.g., more clients
and realistic computational capabilities, are needed to confirm the
effectiveness of the proposed alternatives.

Statistical heterogeneity, i.e. non-iid data, is a recurring major
challenge in all application fields in renewable energy. Several studies
report that non-iid data, if left unaddressed, negates any performance
benefits of applying standard FL frameworks in their case studies,
resulting in up to substantially inferior models than locally trained
models. Personalized FL is dominantly used with significant success
to mitigate this issue. Numerous techniques, mostly based on clus-
tering, personalization layers, and fine-tuning, manage to outperform
localized, non-personalized, and even centralized approaches in all
presented cases.

Thus, personalization appears to be a viable solution to mitigate
non-iid data issues in renewable energy applications. However, exist-
ing studies usually propose only one specific personalization method,
lacking its justification and comparisons with other personalization
methods. While no personalization method is consistently superior in
all applications (Section 2.4.2), comparisons may still be worthwhile
and reveal crucial insights on differences across methods. Furthermore,
the extent of distribution differences varies strongly across applications
(e.g., individual household consumption vs. power generation of a
fleet of PV systems), therefore an appropriate choice of personalization
method (if any) is challenging. It should be noted that this choice
may have broader impacts. For instance, clustering or personalization
layers affect the cold-start problem, as no single global model is avail-
able to distribute to newly joined clients. Additionally, some methods
require changes to the framework which require the consent of all
participants, unlike, for example, fine-tuning which is essentially an
optional, local post-FL step. For instance, the clustering personalization
method remains unexplored in the realm of wind energy but holds the
potential to enhance the performance of federated learning, particularly
in scenarios involving multiple wind farms and turbine models.

FedAvg is still predominantly used despite these non-iid issues.
Alternative algorithms such as FedProx and FUALA, which aim to im-
prove convergence and performance with non-iid data, remain largely
unused in renewable energy applications. Overall, these results suggest
that personalized FL is a very promising and viable solution for renew-
able energy applications even when faced with significant statistical
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Table 2
Summary of our findings.
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Advantages

Challenges and research needs

+ FL enables collaborative learning while respecting data privacy
+ FL is well suited to small-scale distributed assets in fleets

+ Can consistently outperform local models

+ Highly flexible framework customizable to specific requirements
+ Customization techniques can address statistical heterogeneity
+ Efficiency benefits with large-scale fleets

+ Privacy guarantees can be further enhanced

- Not reaching the performance of a data-sharing setting in all cases

- Scalability of FL to a larger number of client systems require further (field) testing
- Alternatives to FedAvg largely unexplored application-wise

- Chosen methods rarely justified and compared in studies

- Uneven progress across renewable energy application domains

- Non-federated hyper-parameter tuning

- Fairness and biases aspects have barely been investigated yet

heterogeneity. The potential benefits of applying alternative aggrega-
tion algorithms should, however, be investigated, given the prevalence
of this issue.

Several studies have proposed weighted variants of FedAvg mo-
tivated by ensuring fairness. However, multiple challenges related to
systematic biases and fairness in renewable energy applications re-
main unaddressed. For example, the impacts of an over-representation
of e.g., systems operated only under certain weather conditions are
largely unexplored across applications. Case studies are also lacking
with regard to model robustness. Case studies investigating potential
performance impacts caused by faulty sensor data are required, also
with a view towards practical implementations of FL, yet remain ab-
sent. The potential of frameworks such as Agnostic Federated Learning
addressing these challenges has also yet to be investigated in renewable
energy applications.

Some stakeholders may seek more data privacy guarantees than
already provided by a standard FL framework. This is reflected in the
literature with numerous works employing additional privacy mecha-
nisms. A wide variety of proposed enhancements in various combina-
tions is shown to be compatible with FL for renewable energy appli-
cations, independently of the task and dataset. Further studies should
investigate comparisons of privacy methods in terms of efficiency and
their impact on model performance to support decision-makers in
justifying and choosing appropriate privacy solutions.

Framework considerations. The federated learning framework of-
fers flexibility in its selection of the employed aggregation algorithm,
communication structure, client selection, or client training procedure.
While numerous different frameworks and modifications of FL have
been proposed across renewable energy application domains, a compre-
hensive comparison is lacking. As the optimal choice of a framework
may depend on the application domain and data, a more compre-
hensive understanding of the performance of these different methods
would aid in making informed decisions regarding the choice of an
appropriate framework.

Regarding the choice of aggregation, the algorithms discussed in our
review and more generally applied in the field of renewable energy are
all based on neuron-wise averaging, i.e., they aggregate and average
the weights unit-by-unit for each neural network layer. Approaches of
federated learning with dynamical network architectures such as Feder-
ated Match Averaging (FedMA, [122]), Probabilistic Federated Neural
Matching (PFNM, [123]) or Federated Distance (FedDist, [124])
account for the various roles each unit plays in neural networks.
Federated learning is still a rapidly growing field with new proposed
modifications to improve efficiency or performance, and yet recent
state-of-the-art federated learning algorithms have remained unused for
renewable energy applications so far (including FedMA and PFNN, as
mentioned above). These algorithms have demonstrated performance
improvements and reductions in required communication, and they
can facilitate the choice of model architecture. Future research studies
should investigate if further benefits can be obtained by applying
recent state-of-the-art FL. methods, such as FedMA, PFNM, and others.
Moreover, an adaptation of transfer learning methods in a federated
learning setting might improve the issue of data heterogeneity and can
also be a subject of future research.

Hyper-parameter tuning. Another challenge in federated learning
is the choice of model architecture and hyperparameter tuning. In
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general, model architecture and parameter tuning are not dealt with
in a federated way, meaning that the appropriate hyper-parameters
are usually guessed from observing a single device, such as a single
WT [12]. But decisions based on single local clients may not represent
the best global choice. For example, a neural network architecture
may easily overfit on local clients with fewer, simpler, or narrowly
distributed data, but may underfit the global task across clients. To
address this problem, a federated approach to hyper-parameter tun-
ing [125,126] should be considered and investigated in the renewable
energy applications of interest.

Implementation challenges. Processes and policies related to fed-
erated learning still need to be defined to enable its implementation
in practice. This includes specifying the roles and responsibilities of
all actors related to the FL process. Different configurations and role
distributions are possible in practice. For example, the federated learn-
ing process may be orchestrated by a regulatory entity, which might
also define the neural network structure. This regulator could decide on
what happens if a client disagrees with aspects of the federated training,
for example, the client might be exempt from the training process
or required to participate anyways. Federated learning processes can
also be implemented and orchestrated by operators to enable data
access across the fleet. Federated learning can, in principle, even be
implemented by the manufacturer for customers who prefer not to give
the manufacturer access to their data. Many research needs and open
questions remain with regard to the actual practical implementations
of federated learning in renewable energy systems.

6. Conclusions

With the growing importance of renewable energy in the energy
mix, more accurate forecasting, condition monitoring, and control ca-
pabilities become crucial. Data-driven models based on deep learning
have shown impressive results. However, these models require large
and representative training datasets, which are often lacking. While
utilizing data from other fleet members within and across fleets can be
a solution, it is usually hindered by a lack of data sharing. Federated
learning emerged as an approach for distributed systems to collabo-
ratively train machine learning models in a data-privacy-preserving
manner. It fully addresses data scarcity and privacy concerns as the
locally stored datasets of each participant remain inaccessible to other
participants.

Numerous studies have investigated potential applications of fed-
erated learning in the context of renewable energy generation, con-
sumption and storage. We have provided a comprehensive review of
the findings of those studies. Further, we have discussed challenges
relevant to federated learning in renewable energy applications. Our
analysis shows that FL can indeed enable privacy-preserving learn-
ing and consistently improve models trained on single asset datasets
across all renewable energy application fields. As FL incorporates in-
formation from multiple assets, participants benefit from e.g., more
accurate forecasting (by learning from various geographical locations),
improved fault detection (by obtaining a larger fault database), and
improved asset control (by learning from consumption patterns of mul-
tiple assets). We further note that the flexibility of federated learning
approaches allowed researchers to develop approaches customized to
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specific requirements, e.g., with regard to data heterogeneity or addi-
tional privacy needs. Our findings suggest a large potential of federated
learning in all considered renewable energy applications.

However, many challenges and research questions remain open.
One challenge relates to the scalability of FL to larger fleets, which
requires further investigation. The robustness and fairness of FL also
remain unexplored due to a lack of exploration into potential biases or,
e.g., effects of faulty sensor data on the FL performance. While previous
studies demonstrated numerous privacy enhancements, a more unified
approach with in-depth comparisons is required to support decision
makers in choosing appropriate solutions. Statistical heterogeneity has
appeared as a major prevalent issue across applications, due to com-
monly arising distribution differences between client data, such as
differences in the technical specifications of the power plant or of indi-
vidual energy consumption patterns. We find that model customization
approaches can successfully mitigate model performance degradation
resulting from statistical heterogeneity. Customization techniques have
been demonstrated in some cases to be essential when non-customized
FL methods are outperformed by locally trained models.

Despite the prevalence of these challenges, alternative aggregation
algorithms to FedAvg which could address these open questions have
received insufficient attention. If further research addresses the pre-
sented challenges, federated learning may help overcome the lack of
data sharing and, thereby, enable more innovation and efficiency in
renewable energy applications.
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