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AbstractÐThe performance analysis of dynamic routing algorithms in interconnection networks of parallel computers has thus far

predominantly been done by simulation studies. A limitation of simulation studies is that they usually only hold for specific combinations

of network, routing algorithm, and traffic pattern. In this paper, we derive saturation point results for the class of homogeneous traffic

patterns and a large class of routing functions on meshes. We show that the best possible saturation point on a mesh is half the best

possible saturation point on a torus. We also show that, if we restrict ourselves to homogeneous routing functions, the worst possible

saturation point on a mesh is again half the best possible saturation point. Finally, we present a class of homogeneous routing

functions, containing the well-known e-cube routing function, which are all optimal for all homogeneous traffic patterns.

Index TermsÐRouting, mesh, torus, homogeneous, automorpshism, parallel communication, parallel computer, performance

analysis, saturation, traffic pattern.
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1 INTRODUCTION

AN important goal of designing algorithms for routing
messages in parallel architectures is that they behave

efficiently for frequently occuring communication patterns.
However, verifying that they indeed have this desired
property turns out to be very difficult. The dominant
analysis technique used so far has been the simulation of
specific combinations of network architectures, routing
algorithms, and communication patterns. While simulation
provides some insight, general properties of routing
algorithms, such as scalability, cannot be derived.

Also, most papers concerning dynamic routing in

parallel computers suffer from all, or nearly all, of the

following problems (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16]):

1. The routing algorithms are not precisely specified,
therefore, the exact routing algorithm is not known.

2. The traffic patterns are not precisely specified,
therefore, the exact pattern is not known.

3. It is not clear what the exact performance measure is.
4. The only knowledge about the performance is

obtained by simulation.
5. The performance is only known in one, or a few,

specific situations.
6. The influence of many parameters (e.g., packet

length) is not known.

Papers like [17] and [18] are exceptions, since they

present a precise model and precise results. The first paper,

analyzing the e-cube routing function under a uniform

traffic pattern on meshes, can be related to our work,

although the main performance measure is the average

delay, whereas we are interested in saturation points. The

second paper considers hypercubes, an architecture we will

not explicitly consider.
In this paper, a new analysis model is presented which

alleviates the aforementioned deficiencies. The main char-

acteristics of the model and the derived results are the

following:

1. Formal definitions of the notions routing function and
traffic patterns are given (note that we use routing
functions instead of routing algorithms).

2. The concept of saturation point is used as the basic
performance measure.

3. All derived theoretical results are proven formally.
4. All results hold for large classes of routing functions

and traffic patterns.
5. Our model has a high level of abstraction, which

allows us to ignore a number of parameters, such as
the switching technique.

The saturation point is our performance measure. It is

the injection rate at which the average delay grows without

bound. Injection rates are denoted by �. To compute the

saturation point, we compare the capacity of a link to the

amount of traffic using that link per time unit. We assume

that all links have the same capacity c. The amount of traffic

using a link l relative to the injection rate is called the load of

link l and denoted as ��l�. We assume that all nodes have an

infinite number of buffers available. Limiting the number of

buffers will in reality lead to a decrease of the saturation

point, so the results presented in this paper yield upper

bounds for saturation points in situations with a limited

number of buffers. Furthermore, we consider the effect of

the routing function in its purest form without having to

consider details which do not influence the saturation point.

Since saturation occurs at the link which is most heavily

loaded, we also define the maximum load �max. Using the
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above, we derive that the saturation point �sat is c divided

by �max.
In this paper, we consider ªhomogeneousº traffic

patterns and routing functions. What we mean by this term
is explained in Section 3. The main analysis results of this
paper concern tori and meshes. The homogeneity of tori is
used to derive the maximum load in each dimension for
regular routing functions and traffic patterns. This max-
imum load will be expressed in a function � on the traffic
pattern T . On tori, the derived maximum load in
dimension i is 1

2 �i�T � (see Table 1). Then, we show that
the maximum load for homogeneous traffic patterns on
meshes is �i�T �, twice the best possible maximum load for
tori. Meshes are less regular than tori, but their regularities
can still be used to derive performance results. We show
that any homogeneous routing function on a mesh has, at
most, a maximum load of 2�i�T �. Finally, we give a class of
routing functions on meshes which are optimal for the
considered traffic patterns. In other words, all routing
functions in the given class have a maximum load of �i�T �
for any homogeneous traffic pattern T .

To get to these results, we first introduce, in Section 2,

our model of graphs, traffic patterns, and routing functions,

and our basic method of analysis, which enables us to

compute saturation points. Then in Section 3, to be able to

handle the regularities in tori and meshes, we introduce the

concept of automorphism and the concept of partial

automorphism. Where automorphisms are quite usual in

graph theory, we extend the notion from graphs to traffic

patterns and routing functions. As will be shown, the use of

automorphisms greatly simplifies the analysis of routing

algorithms, without sacrificing the possibility of optimality.

We also introduce the concept of homogeneity, which is an

extreme form of regularity. Homogeneity plays an impor-

tant role in our performance results.
Section 4 contains our results. First, homogeneous

routing under homogeneous traffic for tori is analyzed.
Then, we show that, for meshes, the optimum is at least
twice as bad as for tori, when considering the same
homogeneous traffic pattern. The use of minimal homo-
geneous routing functions limits the worst-case perfor-
mance by another factor of two. Our final result shows that
the routing functions in a given subclass of the minimal
homogeneous routing functions perform optimally under
all traffic patterns under consideration.

2 MODEL

In this section, we present our model and notation. The
three main parameters are interconnection graph, traffic
pattern, and routing function. We also present a method to

compute the saturation point of a routing function under a

certain traffic pattern. An overview of the notation used in

this paper is given is given in Table 2.

2.1 Interconnection Graphs

We consider a network of processors represented by a

graph G � �V ;E�. V is the set of vertices, also called nodes

or processors. E is the set of edges, also called links. Each

edge is a unidirectional link. In most practical cases, links

appear in pairs; one for each direction. The meaning of the

symbols used are defined in Table 2.

Definition 2.1. A graph G is a tuple �V ;E�, where V is a set of

nodes (Vertices) and E is a set of links (Edges).

In this paper, we are mainly concerned with tori and

meshes. The following example introduces the notation

involved with these graphs.

Definition 2.2. Let N � 3 be an integer. We define N-meshes

and N-tori. Let V � f�x1; x2� mod 0 � x1; x2 � N ÿ 1g. An

N-mesh is a graph G � �V ;E� such that:

E � fhx;yi j x;y 2 V ^ ��x1 � y1 ^ x2 � y2 � 1�
_ �x1 � y1 � 1 ^ x2 � y2��g:

An N-torus has a similar definition, but now using mod N :

E � fhx;yi j�x1 � y1 ^ x2 � �y2 � 1� mod N�
_ �x1 � �y1 � 1� mod N ^ x2 � y2�g:

The vertical links are denoted by E1, the horizontal links by

E2. This is illustrated by Fig. 1. Also, we denote the vertical

links in the positive direction by E1� and those in the negative

direction by E1ÿ. Analogously we will use E2� and E2ÿ.

The dimensions of meshes and tori will play an

important role. Therefore, we define a seperate distance

measure for each dimension. We will denote source nodes

by s and destination nodes by d.

Definition 2.3. The ith dimension torus distance between s and

d, denoted as disi;sd, is defined as:

disi;sd � min�jsi ÿ dij; N ÿ jsi ÿ dij�:

2.2 Traffic Patterns

Given a graph G � �V ;E�, we characterize a traffic pattern

T by a jV j � jV j matrix ��sd�, where �sd specifies the number
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Maxium Loads for Links in Dimension i for Regular Routing

Functions and Regular Traffic Pattern T

Fig. 1. Directions in a mesh.



of packets s sends to d relative to the total number of
messages sent by s. The following must hold:X

d2V
�sd � 1;

for all s 2 V .

Example 2.4. Consider an N-mesh or N-torus. Suppose that
we have a traffic pattern such that each node s sends an
equal amount of its packets to each of the nodes which is
one horizontal step, one vertical step, or both, away from
that node s (Fig. 2). We do this modulo N , so e.g., node
�0; 0� sends 1

8 of its packets to node �N ÿ 1; N ÿ 1�. We
will call this traffic pattern the local traffic pattern, or Tloc.
We can model this as follows:

�sd �
1
8 ; if dis1;sd � 1; dis2;sd � 1; and s 6� d;
0; otherwise:

�

2.3 Routing Functions

We introduce the concept of a routing function. Routing
functions are applied in a node, given a packet and the state
of the network. In this paper, we refrain from considering
the network state, because that would add a lot of
complexity without adding much to the results of this
paper. However, a part of the results can be extended to

adaptive routing functions (i.e., routing functions which
effectively use state information), see [19].

Packets. In this paper, only the routing information

stored in the packets is relevant; this information is usually

stored in the header. We denote the set of all possible packet

headers by the packet set PP. Also, when we say ªpacket,º

we in fact mean the header. We use the symbol P to denote

packets. All kinds of routing information can be stored in

the packet header, but at least the destination of the packet

should be available. For this paper it is convenient to store

three kinds of information in a packet P : the source of a

packet, denoted by src�P�, the destination of a packet,

denoted by dst�P�, and a mark, which is denoted by

mark�P�. The mark is an element of NN and can be used to

pass information from one router to the next.
Routing functions will be denoted by R. Routing

functions take the current node x and the current packet

P as input and give a probability distribution on pairs

�y; P 0� as output. This means that if, for example,

R�x; P ��y; P 0� � 1
4 , there is a 25 percent probability that

packet P entering node x is forwarded as P 0 to node y. A

routing function has to comply with some restrictions. First,

if a packet is at its destination, then it should not be

forwarded anymore. Otherwise, the sum of the probabilities

on all output pairs �y; P 0� should be 1. Second, a routing
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function can only send a packet residing at node x to a node
y if there exists a link between x and y. Third, the output
packet P 0 should have the same source and destination as

the input packet P . Putting this together, we get the
following definition.

Definition 2.5. Let G � �V ;E� be a directed graph, let x 2 V ,

and let PP be a packet set. A routing function is a function

R : V � PP! �0; 1�V�PP1 such that:

1. For all x 2 V and P 2 PP:X
y2V

X
P 02PP

R�x; P ��y; P 0� � 0; if x � dst�P�;
1; otherwise;

�

2. For all x;y 2 V and P; P 0 2 PP:

R�x; P ��y; P 0� > 0 ) hx;yi 2 E;

3. For all x;y 2 V and P; P 0 2 PP:

R�x; P ��y; P 0� > 0 ) src�P� � src�P0� and dst�P�
� dst�P0�:

The following example is to illustrate both the applica-
tion of the above definition to formalize routing strategies
and to introduce an example routing function which will be
used throughout this paper.

Example 2.6. Consider an N-mesh. Let us introduce the
following routing strategy: If a packet is already at its
destination row or column, then route it along that row
or column to its destination. Otherwise, if the packet has
mark 0, then route it horizontally towards its destination
and mark the packet either 0 or 1 with 50 percent
probability. If the packet is marked 1, route it vertically
towards its destination and mark it 0. Initially, the packet
has mark 0.

We can now write this strategy down by means of a
routing function Rex. Let P � �s;d; k�. We only give the
specification for x1 � d1 and x2 � d2; the other cases can
be specified analogously.

1. L e t x1 � d1 a n d x2 < d2. T h e n Rex�x; P �
��x1; x2 � 1�; P � � 1.

2. L e t x2 � d2 a n d x1 < d1. T h e n Rex�x; P �
��x1 � 1; x2�; P � � 1.

3. Let x1 < d1, x2 < d2, and k � 0. Then

Rex�x; P ���x1; x2 � 1�; P 0��

�
1
2 ; if P 0 � �s;d; 0�;
1
2 ; ifP 0 � �s;d; 1�:

(

4. Let x1 < d1, x2 < d2, and k � 1. Then Rex�x; P �
��x1 � 1; x2�; P 0� � 1, where P 0 � �s;d; 0�.

2.4 Analysis of Routing Functions

To analyze the performance of a routing function for a

specific traffic pattern, we need to compute how often each

route is used. A route is a sequence of nodes such that

between each pair of subsequent nodes there exists a link.

For example, the route r, starting in s, and going through u

and v to end in d, will be written as:

r � �s;u;v;d�:
This is a valid route if and only if hs;ui 2 E, hu;vi 2 E,

and hv;di 2 E. We denote the set of all routes between two

nodes s and d by routesG;sd. Now we can assign to each

route r between s and d the probability that r will be used.

We denote this probability by ��r�sd. The following example

shows how we can compute these probabilities.

Example 2.7. Consider the routing function Rex

(see Example 2.6) on a 4-mesh. Let s � �0; 0� and

d � �3; 3�. We start with packet P0 � �s;d; 0�. Consider

the route r1, as depicted in Fig. 3. This route is used if the

first two random choices result in 0s. The third random

choice does not have any influence on the route that is

used. The probability that both choices are 0 is 1
4. Thus,

we have ��r1�sd � 1
4 . Analogous results hold for the

routes r2, r3, and r4; all these routes have a probability of
1
4 to be chosen.

We can also determine which sequences of packets yield

a given route r. The set of all these packet sequences is

denoted by packets�r�.
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1. �0; 1�V�PP is the set of all functions f : V � PP! �0; 1�, so all probability
functions on all node-packet pairs.

Fig. 3. Possible routes between (0,0) and (3,3) for Rex. The numbers at

the routes are the values of mark(P) at the corresponding links.

Fig. 2. The local traffic pattern Tloc.



Example 2.8. Consider again the routing function Rex and

Fig. 3. For convenience, we denote packets just by their

marks. We can see that the sequence �0; 0; 0; 0; 0; 0� causes

route r1 to be used, but that the sequence �0; 0; 0; 1; 1; 1�
also causes r1. Thus, we obtain packets�r1� �
f�0; 0; 0; 0; 0; 0�; �0; 0; 0; 1; 1; 1�g. In an analogous manner,

we get

packets�r2� � f�0; 1; 0; 0; 0; 0�; �0; 1; 0; 1; 1; 1�g;
packets�r3� � f�1; 0; 1; 0; 0; 0�; �1; 0; 1; 0; 1; 1�g; and

packets�r4� � f�1; 0; 0; 0; 0; 0�; �1; 0; 0; 1; 1; 1�g:

Now we can compute how often a particular link is used

on average by packets traveling between a given pair of

nodes. This number is denoted by ��l�sd, where l is the link,

s is the source node, and d the destination node. This value

is usually, at most, one, but in general a route can pass the

same link more than once. Therefore, we say that a link

l � hx;yi occurs in a sequence of nodes �x0; . . . ;xr� if there is

a 0 � i � rÿ 1 such that x � xi and y � xi�1. The function

occurs�l; r� is defined as the number of times l occurs in r.

Definition 2.9. Let G � �V ;E� be a directed graph and let R be

a routing function. Let l 2 E be a link and let s;d 2 V be

nodes. The function ��l�sd is defined as follows:

��l�sd �
X

r2 routesG;sd

occurs�l; r� � ��r�sd:

Example 2.10. Consider Fig. 4. The routes used by Rex from

s � �0; 0� to d � �3; 3� are again shown. For these routes

hold ��ri�sd � 1
4 , i � 1; . . . ; 4. Also , the l ink l �

h�1; 3�; �2; 3�i is depicted. As can be seen, all routes

shown in the figure, except r3, use l. Therefore, 3
4 of the

packets from s to d use link l. Formally:

��l�sd � 1 � ��r1�sd � 1 � ��r2�sd � 0 � ��r3�sd � 1 � ��r4�sd
� 1

4
� 0� 1

4
� 1

4
� 3

4
:

2.5 Load and Saturation

By using the knowledge we have about the traffic pattern

and the routing function, we can count the average number

of packets that cross a link per time unit and, thus, compute

the saturation point. By summing weighted �'s for all

source-destination pairs, we can compute a measure for the

average number of packets crossing a link relative to the

injection rate. This amount is called the link load and is

denoted by ��l�.
Definition 2.11. Let G � �V ;E� be a directed graph, let T be a

traffic pattern, and let R be a routing function. Let l 2 E be a

link. The link load ��l� is defined as follows:

��l� �
X

s;d2V
�sd � ��l�sd:

Example 2.12. Consider again the traffic pattern Tloc and the

routing function Rex. We are going to compute the link

load for link l � h�1; 3�; �2; 3�i.
First, we determine the relevant source-destination

pairs. Consider Fig. 5. Only the sources in the upper
rectangle and the destinations in the lower rectangle are
relevant with respect to the use of link l, because Rex is a
minimal routing function.

Now, we can compute ��l�sd for all relevant source-
destination pairs. To save work, however, we consider
all �sd simultaneously. Thus, if �sd � 0 for some s and d,
we do not have to compute ��l�sd since the contribution
to the link load is 0 anyway. The results of those
computations are given in Table 3. Each item in the table
correpsonds to a source-destination pair s, d. The first
number of each item is �sd, the second is ��l�sd. If �sd � 0,
however, then ��l�sd is not relevant so we have written a
ª?º in those places. To compute the link load ��l�, we
have to multiply all �sds with ��l�sds and then add them
all. Therefore,

��l� � 5

8
:

Since the link with the highest load in a network

saturates at the lowest injection rate, we also define the

maximum load �max�T;R� as follows.

Definition 2.13. Let G � �V ;E� be a graph, T a traffic pattern,

and R a routing function. The maximum load �max�T;R�:
�max�T;R� � max

l2E
��l�:
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Fig. 4. The relative route use ��r�sd and the relative link use ��l�sd for the

routing function Rex.

Fig. 5. Relevant source-destinations pairs for computation of ��l�.



The input rate � is defined as the average number of
packets each node injects into the network per time unit.
The following lemma states at which input rate a network
saturates: the saturation point, �sat.

Lemma 2.14. Let G � �V ;E� be a graph, c the link capacity, T a

traffic pattern, and R a routing function. Then,

�sat�T;R� � c

�max�T;R� :

A high saturation point is an important goal for the
designer of routing functions. Therefore, we will call a
routing function optimal for a particular traffic pattern if it

has the highest possible saturation point, i.e., the lowest
possible maximum load.

Definition 2.15. Let G � �V ;E� be a graph and T a traffic

pattern. A routing function R is called optimal for T if for all

routing functions R0 it holds that �max�T;R� � �max�T;R0�.

3 REGULARITIES

In this section, we model regularities and study their
influence on the performance of routing functions. First, we
introduce the concept of automorphism to model regula-
rities in graphs. Then we extend the concept to include

traffic patterns and routing functions. We show that if the
same regularity occurs for graph, traffic pattern, and
routing function, then the load exhibits this regularity,
too. Also, we prove that, given a graph and a traffic pattern
exhibiting a certain regularity, there also is an optimal
routing function exhibiting that regularity.

Then we introduce an extreme form of regularity,
namely homogeneity. We show that tori are homogeneous.
Next, we want to do a similar thing for meshes. However,
the automorphism concept is too strict to meaningfully
define homogeneous routing functions for meshes. There-
fore, we introduce the concept of a ªpartial automorphism.º

3.1 Automorphisms

To be able to consider regularities of graphs, traffic patterns,

and routing algorithms, we use maps under which graphs,
traffic patterns, and routing algorithms are invariant:
automorphisms. This concept is often used in graph theory.

Let G � �V ;E� be a graph. Our basic map is a function
' : V ! V . We extend the domain of ' to links, routes, and
packets, in a straightforward way. If l � hx;yi is a link, then

'�l� � h'�x�; '�y�i; if r � �x0;x1; . . . ;xk� is a route, then
'�r� � �'�x0�; '�x1�; . . . ; '�xk��; and if P � �s;d; k� is a
packet, then '�P � � �'�s�; '�d�; k�.

Such a map ' is called an automorphism for graph G if it is
bijective and for all l 2 E holds that '�l� 2 E. An example of
an automorphism is a mirror operation.

Definition 3.1. Let x � �x1; x2� be a node such that 0 � x1 �
N ÿ 1 and 0 � x2 � N ÿ 1, for some N � 2. The mirror
operation in dimension 1 is denoted by �1�, and defined as:

�x1; x2��1� � �N ÿ 1ÿ x1; x2�:
The mirror operation in dimension 2 is defined analogously.

Example 3.2. Let G � �V ;E� be an N-mesh. We show that �1�
is an automorphism for G. Consider a vertical link in the
negative direction l � h�x1; x2�; �x1 ÿ 1; x2�i (Fig. 6). We
have

l�1� � h�N ÿ 1ÿ x1; x2�; �N ÿ x1; x2�i;

which is a vertical link in the positive direction. Consider
a horizontal link in the positive direction l � h�x1; x2�;
�x1; x2 � 1�i. We have

l�1� � h�N ÿ 1ÿ x1; x2�; �N ÿ 1ÿ x1; x2 � 1�i;
which is also a horizontal link in the positive direction.
The other links can be shown to comply analogously.
Also, in a smimilar manner it can be shown that �2� is an
automorphism for G.

The same kind of regularities can be defined for traffic
patterns and routing functions. Instead of respecting the
existence of links in graphs, these regularities should
respect the values in the traffic pattern and in the routing
function, respectively. So, if T is a traffic pattern, then ' is
called an automorphism for traffic pattern T if for all s;d 2 V
holds

�sd � �'�s�'�d�: �1�

Example 3.3. Consider the traffic pattern Tloc and the mirror
operation �1�. We have that the distance in dimension one
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between s and d is equal to the distance in dimension

one between s�1� and d�1�:

dis1;s�1�d�1� � min�jN ÿ 1ÿ s1 ÿ �N ÿ 1ÿ d1�j;
N ÿ jN ÿ 1ÿ s1 ÿ �N ÿ 1ÿ d1�j�

� min�jd1 ÿ s1j; N ÿ jd1 ÿ s1j� � dis1;sd:

The same holds for the distance in dimension two.
Therefore, if �sd � 1

8 , then both dimension distances are,
at most, one and s 6� d. Thus, both dimension distances
between s�1� and d�1� are at most one and s�1� 6� d�1�, so
�s�1�d�1� � 1

8 . Otherwise, both values are zero. We conclude
that �1� is an automorphism for the traffic pattern Tloc.
Analogously, we can show that �2� is an automorphism
for the traffic pattern Tloc. tu

We also extend the concept of automorphism to routing

functions. Now the function ' should respect the prob-

abilities of the routing function. Let G � �V ;E� be a graph.

We get that ' is called an automorphism for routing function R

if ' is an automorphism for graph G and for all x;y 2 V and

P; P 0 2 PP holds:

R�x; P ��y; P 0� � R�'�x�; '�P ���'�y�; '�P 0��: �2�

Example 3.4. Consider the routing function Rex and the

mirror operation �2�. Earlier (Example 3.2) it has been

shown that �2� is an automorphism for N-meshes. So, to

show that �2� is an automorphism for Rex, it suffices to

proof that Rex satisfies (2) for all nodes and packets

where ' ��2� . Consider, for example, a packet P �
�s;d; 0� and a node x, such that x1 < d1 and x2 < d2, as

shown in Fig. 7 (Case 3 of Example 2.6). We have

P�2� � �s�2�;d�2�; 0�. We have that x�2� � �x1; N ÿ 1ÿ x2�
and d�2� � �d1; N ÿ 1ÿ d2�, so the mirrored packet P�2�
must be routed the the left and downwards from x�2�.
Now let P 0 � �s;d; 1�, so P 0�1� � �s�2�;d�2�; 1�. We have

Rex�x; P ���x1; x2 � 1�; P 0� � 1

2

and we also have

Rex�x�2�; P�2����N ÿ x1 ÿ 1; N ÿ x2�; P 0�2�� �
1

2
:

Therefore, Condition (2) is satisfied in this case. If we
check all the other cases, too, we find that �2� is indeed an
automorphism for the routing function Rex. A similar
thing can be shown for �1�.

The set of all automorphisms of a graph G is called the

automorphism group of graph G, denoted by Aut�G�.
Analogously, we define the automorphism groups of a

traffic pattern T and a routing function R; these are denoted

by Aut�T� and Aut�R�, respectively.
We can now derive two highly intuitive results. First, we

show that if a traffic pattern and a routing function exhibit

the same regularity (i.e., automorphism), then the link load

� exhibits that regularity, too. Second, we show that if a

graph G and a traffic pattern T exhibit the same regularity,

then there exists an optimal routing function exhibiting that

regularity, too.

Theorem 3.5. Let G � �V ;E� be a directed graph, T a traffic

pattern, and R a routing function. If ' 2 Aut�T� \Aut�R�,
then for all l 2 E holds

��'�l�� � ��l�:

Proof. Suppose ' 2 Aut�T� \Aut�R� for some function '.

Since ' is an automorphism for R, we have for all s;d 2
V and r 2 routesG;sd that ��r�sd � ��'�r��'�s�'�d�. Further-

more, it is clear that the function ' also respects occurs;

that is, occurs�l; r� � occurs�'�l�; '�r��. Therefore, we can

derive

��l�sd �
X

r2 routesG;sd

occurs�l; r� � ��r�sd

�
X

r2 routesG;sd

occurs�'�l�; '�r�� � ��'�r��'�s�'�d�

�
X

r2 routesG;'�s�'�d�

occurs�'�l�; r� � ��r�'�s�'�d�

� ��'�l�'�s�'�d�:
Now, we can also derive

��l� �
X

s;d2V
�sd � ��l�sd �

X
s;d2V

�'�s�'�d� � ��'�l��'�s�'�d�

�
X

s;d2V
�sd � ��'�l��sd � ��'�l��:
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Fig 7. Routing function automorphism: on the left, P has a probability 1
2 to be changed into P 0 and routed along hx;yi; on the right, P�2� has a

probability 1
2 to be changed into P 0�2� and routed along hx�2�;y�2�i.



Example 3.6. Consider again traffic pattern Tloc and routing
function Rex. Earlier (Example 2.12) we have computed
for l � h�1; 3�; �2; 3�i that ��l� � 5

8 . Using the facts that

�2� 2 Aut�Tloc� \Aut�Rex�, we can apply Theorem 3.5 and
derive that ��l� � ��l�2��. Therefore, ��l�2�� � 5

8 , where
l�2� � h�1; 0�; �2; 0�i (see also Fig. 8).

We now show that, when designing routing functions,
we can respect given regularities of traffic patterns without
sacrificing the possibility of optimality.

Theorem 3.7. Let G � �V ;E� be a graph and T a traffic pattern.
Let ' 2 Aut�G� \Aut�T�. There exists a routing function R
which is optimal for T such that ' 2 Aut�R�.

Proof. If ' is an automorphism for graph G, it has a finite
order, say q. This means that q is the smallest positive
integer such that 'q is the unity function. Now consider
an optimal routing function Ropt for T . We use ' to
construct q routing functions R0; . . . ; Rqÿ1, such that for
all x;y 2 V and P; P 0 2 PP:

Ri�x; P ��y; P 0� � Ropt�'i�x�; 'i�P ���'i�y�; 'i�P ��:
Note that R0 � Ropt. Now, when a packet is injected, one
of the routing functions Ri is chosen randomly, so each
routing function Ri has a probability of 1

q to be chosen.
This packet is now routed to its destination by the
selected Ri. We can implement this by marking the
packet with i, such that all nodes the packet encounters
know that Ri should be applied.

We call this new routing strategy R0. We have
' 2 Aut�R0�. This can be seen as follows: R0 chooses Ri

with probability 1
q . Also, it chooses R�i�1�modq with the

same probability. Thus, (2) is satisfied.
From the new routing strategy R0 follows that for all

links, l holds that

�R0 �l� � 1

q
�R0
�l� � . . .� 1

q
�Rqÿ1

�l�;

where �R denotes the link load under routing function R.
Since all link loads for Ri, 0 � i � q ÿ 1, are smaller than
the maximum link load under Ropt, we get that

�R0 �l� � 1

q
�max�T;Ropt� � . . .� 1

q
�max�T;Ropt�

� �max�T;Ropt�;
which implies that R0 is optimal for T . tu

3.2 Homogeneity

We introduce the concept of homogeneity. In our context, a
graph, traffic pattern, or routing function is homogeneous if
it has the same structure at every node. Formally, for each
pair x;y 2 V of nodes there must be an automorphism '
such that '�x� � y. To explore the concept of homogeneity,
we need a translation operator for nodes.

Definition 3.8. Let G � �V ;E� be an N-mesh or N-torus. Let
x; a 2 V be nodes. The node addition operator � is defined as
follows:

x� a � ��x1 � a1� mod N; �x2 � a2� mod N�:

Tori are homogeneous graphs. This can be described
using the node addition operator; for all a 2 V holds that
�� a� 2 Aut�G�, where G � �V ;E� is an N-torus. Therefore,
for all x;y 2 V there exists an automorphism ' such that
'�x� � y. Such a graph is called homogeneous. Now
suppose we have a traffic pattern T and a routing
function R such that �� a� 2 Aut�T� \ Aut�R� for all
a 2 V . We call T and R homogeneous, too. Furthermore,
su ppose that T and R are a l so symmetr i c :

�1�;�2� 2 Aut�T� \Aut�R�. Then we obtain that all vertical
links have the same load and also all horizontal links have
the same load. On top of that, if the routing function is also
minimal, then it is optimal.

Theorem 3.9. Let G � �V ;E� be an N-torus. Let T be a
symmetrical homogeneous traffic pattern and let R be a
symmetrical homogeneous routing function. Then for i � 1; 2
and for all l1; l2 2 Ei holds:

��l1� � ��l2�:

The proof can be found in [19].
The notion of automorphism with respect to routing

functions is a little too strict to be useful on the mesh,
because a routing function can only be homogeneous if the
graph is. Thus, since meshes are not homogeneous, there
are no homogeneous routing functions for meshes. More
concretely, consider an N-mesh G � �V ;E�. For most links
l � hx;yi 2 E holds that l� �0; 1� 2 E, except for the links at
the right border of the mesh. Therefore, ���0; 1�� is not an
automorphism for G. However, we would like to use the
regularity of meshes.

We thus introduce the concept of a ªpartial automorph-
ismº for routing functions by dropping the condition that '
should be an automorphism for the graph it acts on and
demand only that the routing function respects ' where the
graph allows it.

Definition 3.10. Let R be a routing algorithm for a graph
G � �V ;E�. A bijective graph map ' : G! G0 is a partial
automorphism for R if for all s � x0;d � xk 2 V and all r �
�x0; . . . ;xk� 2 routesG;sd holds: if '�r� 2 routesG;'�s�'�d�;
then for all �P0;...;Pk� 2 packets�r� and all 0 � i < k:

R�xi; Pi��xi�1; Pi�1� � R�'�xi�; '�Pi���'�xi�1�; '�Pi�1��:

The set of all partial automorphisms for R is called the
partial automorphism set of R, denoted by PAut�R�. Note
that Aut�R� � PAut�R�. Note also that PAut�R� is not
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Fig 8. Symmetry of the link load ��l� under traffic pattern Tloc and routing

function Rex.



necessarily a group, i.e., it is not necessarily closed with
respect to composition.

Example 3.11. Consider a 4-mesh G � �V ;E� and the
mapping ' � ��0; 1�, which is a translation of one to
the right. Now, ' is not an automorphism for G. This can
be seen as follows: Consider link l � h�0; 2�; �0; 3�i. We
get '�l� � h�0; 3�; �0; 1�i, which is a nonexistent link in G.

Next, consider a routing function R, source node
s � �0; 0� and destination node d � �1; 1�. Suppose R
routes all packets from s to d using route r �
��0; 0�; �0; 1�; �1; 1�� (Fig. 9). Suppose ' � ��0; 1� is a
partial automorphism for R. If we apply ' on r once,
we see that we again get a route in G. So, to route
from '�s� � �0; 1� to '�d� � �2; 2�, R uses '�r� �
��0; 1�; �0; 2�; �1; 2��. We can do the same for the route
from '2�s� to '2�d�. However, if we apply ' a third time,
we see that '3�r� is not an existing route in G. Therefore,
R uses an other route from �0; 3� to �3; 0�. This
ªexceptionº causes that ' is not an automorphism for
R, but since we use the regularity of the mesh where
possible, we call it a partial automorphism for R.

Lemma 3.12. Let G � �V ;E� be a directed graph, T be a
traffic pattern, and R a routing algorithm. If ' 2 PAut�R�,
then for all s;d 2 V and r 2 routesG;sd: if '�r� 2
routesG;'�s�'�d� then

��r�sd � ��'�r��'�s�'�d�:

The proof can be found in [19].
Similar to homogeneous routing functions, we call a

routing function partially homogeneous if for all a 2 V holds
that �� a� 2 PAut�R�.

4 HOMOGENEOUS TRAFFIC AND HOMOGENEOUS

ROUTING ON TORI AND MESHES

In this section, we present our main results. We define the
traffic load in dimension i, which will be denoted by �i�T �,
where T is the traffic pattern. The first result concerns
homogeneous traffic patterns and routing functions on tori.
We show that these routing functions have maximum load
1
2 �i�T � in each dimension and that this is the optimum.
Then we turn to homogeneous traffic patterns on meshes
and derive a lower bound on the maximum load, which is
twice as bad as the optimum for tori. Next, we show that if
we use minimal homogeneous routing functions, the

maximum load is at most twice the best-case bound.

Finally, we present a class of minimal homogeneous routing

functions of which the performance matches the best-case

bound, which leads to the conclusion that all those routing

functions are optimal.

4.1 Tori

First, we define a measure to characterize traffic patterns, �.

This measure will be used to express our results. The traffic

pattern measure � indicates what load the traffic pattern

puts in total on the network.

Definition 4.1. Let G � �V ;E� be a directed graph and let T be

a traffic pattern for G. The traffic load in dimension i, denoted

�i�P �, is defined as:

�i�T � �
X
d2V

�0ddisi;0d;

where 0 � �0; . . . ; 0�.
Corollary 4.2. Let G � �V ;E� be an N-torus, T a traffic pattern,

and R a minimal routing function, such that �a 2
Aut�T� \Aut�R� for all a 2 V and �1�;�2� 2 Aut�T� \
Aut�T �. For all i � 1; 2, and l 2 Ei holds

��l� � 1

2
�i�T �:

Furthermore, R is optimal for T .

Proof. Since R is minimal, we have thatX
l2Ei

��l� �
X

s;d2V
�sd � disi;sd �X

s;d2V
�0�d	s� � disi;0�d	s� � jV j � �i�T �:

�3�

Furthermore, according to Theorem 3.9, all links in Ei

have the same load, so we get for an arbitrary link l0 2 Ei:X
l2Ei

��l� � jEij � ��l0� � 2 � jV j � ��l0�: �4�

Combining (3) and (4) yields the link loads. To see that R

is optimal, reflect that for any routing function holds thatX
l2Ei

��l� � jV j � �i�T �;

so there is always a link in Ei having at least load
1
2 �i�T �. tu

ARONSON: HOMOGENEOUS ROUTING FOR HOMOGENEOUS TRAFFIC PATTERNS ON MESHES 789
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Example 4.3. Consider an N-torus and, again, the traffic

pattern Tloc. Let R be the routing function which routes

randomly in any profitable direction (that is, it can only

route from x to y if disi;yd < disi;xd for i � 1 or i � 2,

where d is the destination).
To compute �1�Tloc�, consider Fig. 2. There are eight

kinds of packets, all having weight 1
8 . Six of those kinds

of packets travel a vertical distance of one, two kinds of
packets travel a vertical distance of zero. Therefore, we
have

�1�Tloc� � 6 � 1
8
� 1� 2 � 1

8
� 0 � 3

4
:

The same holds for �2�Tloc�.
Applying Corollary 4.2 yields that

�max�Tloc; R� � 1

2
� 3
4
� 3

8

and that R is optimal for Tloc.

4.2 Best Case Behavior on Meshes

We derive a lower bound on the maximum load for

homogeneous traffic patterns using the bisection bound.

Later it will turn out that this bound is sharp since there are

routing functions achieving the bound.

Theorem 4.4. Let G � �V ;E� be an N-mesh. Let T be a traffic

pattern such that �1�;�2� 2 Aut�T� and ��a� 2 Aut�T� for all

a 2 V . Let R be a routing function. For i � 1; 2, there is an

l 2 Ei such that

��l� � �i�T �:

Proof. Assume that i � 1; the case i � 2 is analogous.

Consider the ªbisectionº containing links of E1: These

are the links hx;yi such that x1 � bN2 c ÿ 1 and y1 � bN2 c
(see Fig. 10). The amount of traffic which has to pass this

bisection can be computed as follows:

XbN2 cÿ1

s1�0

XNÿ1

s2�0

XNÿ1

d1�bN2 c

X
d2�Nÿ1

�sd �
XbN2 cÿ1

s1�0

XNÿ1

s2�0

XNÿ1

d1�bN2 c

X
d2�Nÿ1

�0;d	s

�
XbN2 cÿ1

s1�0

XNÿ1

s2�0

XNÿ1ÿs1

�1�bN2 cÿs1

XNÿ1

�2�0

�0�:

In [19] this is shown to be equal to N�1�T �.

Since the ªbisectionº contains N links, we obtain that
there is at least one link l such that:

��l� � N�1�T �
N

� �1�T �: ut

4.3 Worst Case Behavior on Meshes

In this section, we derive an upper bound for the maximum
load of partial node homogeneous routing functions on
meshes, for the class of node homogeneous traffic patterns.
This bound is twice as large as the above derived best case
lower bound . It can even be slightly improved by
seperately considering the traffic which travels only in
one dimension (see [19]), but for the sake of clarity, we have
left out that part.

To bound the maximum load, we first derive bounds for
every choice of �. For such a �, we divide the mesh into
columns of sources (Fig. 11). Then each column is divided
into two parts: the sources from which we have to route
down (picture on the left) and the sources from which we
have to route up (picture on the right). Then we show that
each link is used by at most one route of both parts. This is
expressed by the following lemma.

Lemma 4.5. Let G � �V ;E� be an N-mesh. Let R be a minimal
routing function such that ��a� 2 PAut�R� for all a 2 V . Let
0 � x2; s2;�2 � N ÿ 1 be such that s2 � x2 < s2 ��2 �
N ÿ 1. Let l � hx;yi 2 E2�. Let 0 � �1 � N ÿ 1. Then

1:
XNÿ1ÿ�1

s1�0

��l�s;s�� � 1;

2:
XNÿ1

s1�Nÿ�1

��l�s;s�� � 1:

A proof can be found in [19]. We illustrate the lemma by
means of an example.

Example 4.6. Consider a 6-mesh (Fig. 11). Let s2 � 1 and
� � �2; 4�. Consider all links l � hx;yi 2 E2� such that
x2 � 2 (as shown by the dashed line).

1. Consider 0 � s1 � N ÿ 1ÿ�1 � 3 . Now, what-
ever route we take from s to s��, the regularity
of the routing function causes that each of the
considered links is used by at most one of the
considered source-destination pairs.

2. Consider N ÿ�1 � 4 � s1 � N ÿ 1 � 5. Again,
whatever route we take from s to s��, each of
the links under consideration is used by at most
one of these source-destination pairs.

Next, we add the bounds for all columns, where we
account for the fact that a link l � hx;yi 2 E2� can only be
used by a route from s to s�� if s2 � x2 < �s2 ��2�modN .

Lemma 4.7. Let G � �V ;E� be an N-mesh. Let R be a minimal
routing function such that ��a� 2 PAut�R� for all a 2 V . For
i � 1; 2, all l 2 Ei, and � 2 V holdsX

s2V
��l�s;s�� � 2 �min��i; N ÿ�i�:

790 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 8, AUGUST 2000
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lower part has to use at least one of the links in the bisection.



Proof. Assume that l � hx;yi 2 E2�. The proofs for the
other links are analogous. We get

X
s2V

��l�s;s�� �
XNÿ1

s1�0

Xmin�x2;Nÿ�2ÿ1�

s2�max�0;x2ÿ�2�1�
��l�s;s��:

Appplying Lemma 4.5 yields that this is, at most,

2 � �max�0; x2 ÿ�2 � 1� ÿmin�x2; N ÿ�2 ÿ 1��:
In [19] it is proven, by an exhaustive case analysis, that
this term is, at most,

2 �min��2; N ÿ�2�: ut

The last step is to combine the result above with the
homogeneity of the traffic pattern. This results in an upper
bound for the maximum load which is twice as large as the
lower bound we presented in the preceding section.

Theorem 4.8. Let G � �V ;E� be an N-mesh. Let T be a traffic
pattern and R a minimal routing function such that �1�;�2� 2
Aut�T� and �a 2 Aut�T� \ PAut�R� for all a 2 V . For all
l � hx;yi 2 Ei holds, for i � 1; 2,

��l� � 2�i�T �:

Proof. Applying Definition 2.11 and the homogeneity of T
yields

��l� �
X

s;d2V
�sd � ��l�sd �

X
s;�2V

�s;s�� � ��l�s;s��

�
X
�2V

�0�

X
s2V

��l�s;s��:

When we apply Lemma 4.7 we get that this is, at most,

2
X
�2V

�0�min��i; N ÿ�i� � 2�i�T �: ut

4.4 A Class of Optimal E-Cube-Like Routing
Functions

In this section, we present a class of e-cube-like routing
functions for meshes which are optimal (matching the
already presented lower bound) for all traffic patterns

which are both homogeneous and symmetrical in both
dimensions. These routing functions are partially node
homogeneous. The class contains the popular e-cube
routing function. All routing functions in the class produce
only horizontal-first and vertical-first routes.

To obtain a maximum load equal to the best bound
(Theorem 4.4), we try to find partial node homogeneous
routing functions such that the sum of 1. and 2. of
Lemma 4.5 is at most one, so for all l 2 hx;yi,
0 � s2 � x2 < s2 ��2 � N ÿ 1, 0 � �1 � N ÿ 1:

XNÿ1ÿ�1

s1�0

��l�s;s�� �
XNÿ1

s1�Nÿ�1

��l�s;s�� �
XNÿ1

s1�0

��l�s;s�� � 1:

We will achieve this by using only ªvertical-firstº and
ªhorizontal-firstº routes. To see why we need those routes,
consider Fig. 11 again. In the left part of the figure, a kind of
ªzigzagº-routes are used. This causes that link h�4; 3�; �4; 4�i,
denoted by ª?º, is used in both the left part and the right
part of the figure. Now, we can avoid using any horizontal
link 2 times by choosing other routes in the right part, but
then the routing function would not be partially node
homogeneous anymore. In fact, it is impossible to find two
ªcongruentº routes such that none of the horizontal links is
used twice. However, this becomes possible if we use
ªvertical-firstº or ªhorizontal-firstº routes in the left part of
Fig. 11. This yields the picture in Fig. 12.

Definition 4.9. The class ec routes is defined as the of all
routing functions satisfying the following conditions:

1. All routes are either ªvertical-firstº routes or
ªhorizontal-firstº routes. For a given source-
destination pair s;d r1;sd will denote the vertical-first
route and r2;sd will denote the horizontal-first route
(see Fig. 13).

2. For all �; s; s0 2 V :

��r1;s;s���s;s�� � ��r1;s0;s0���s0;s0��:

Note that 1. and 2. together imply that 2. also holds for
r2;s;s��. Also note that all routing functions in ec routes are
partially homogeneous.
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Fig. 11. Illustration of division of load for partially node homogenous routing functions; each link crossed by the dashed line is used by at most one of

the depicted source-destination pairs.



This definition actually means that for each ªdistanceº �
between source and destination, there is a fraction of the
packets routed vertical-first and a fraction routed
horizontal-first. For all source-destination pairs having
ªdifferenceº vector �, these fractions should be equal. For
different �, however, the fractions can be different.

Theorem 4.10. Let G � �V ;E� be an N-mesh. Let T be a traffic
pattern such that �1�;�2� 2 Aut�T� and �a 2 Aut�T� for all
a 2 V . Let R 2 ec routes, l 2 Ei

�TR�l� � �i�T �;
for all l � hx;yi 2 Ei, for i � 1; 2. So R is optimal.

Proof. We give a sketch of the proof here; the complete
proof can be found in [19]. Let q��� be the fraction of the
packets from s to s�� that is routed horizontal-first, for
all s 2 V . As can be seen from Fig. 12, for each column of
source nodes holds that all horizontal links are used at
most once. The same holds for the 1ÿ q��� part of the
packets routed vertical-first. Therefore, we have for all
l 2 E2 and 0 � s2 � N ÿ 1 that

XNÿ1

s1�0

��l�s;s�� � q��� � 1ÿ q��� � 1:

Adding this for all s2 yields for all l 2 E2:

X
s2V

��l�s;�� � min��2; N ÿ�2�:

Adding for all � and accounting for the traffic pattern
yields for all l 2 E2:

��l� � �2�T �:
For l 2 E1, the result can be derived analogously.

This, in combination with Theorem 4.4, leads to the
conclusion that R is optimal. tu

5 CONCLUSIONS

We believe that our results are relevant in practice, in the
first place because our saturation point analysis provides
the designer of routing algorithms with an upper bound on
the practical performance. Also, the computed link loads
represent the actual link loads in practice.

It would still be nice to see how accurate the saturation
point analysis is in practical situations, where the number of
buffers is finite so additional parameters like injection
distribution and switching technique may play a role.
However, a thorough comparison to simulation results
published before cannot be performed, for the following
reasons: In the first place, very few papers consider the
same combinations of graph, traffic pattern, and routing
function. Second, the performance of routing functions is
usually presented in throughput/latency plots. The pro-
blem with these plots is that both axes represent measured,
hence dependent, variables. It is not possible to get an
accurate estimate of the saturation point from such plots,
because the measured throughput may be higher than the
saturation point. This is due to the following phenomenon:
While some parts of the network are already saturated,
other parts may still be quite low on traffic so an increased
injection rate can increase the load in those parts of the
network. This increases the average throughput, but not the
maximum injection rate at which saturation occurs. In the
third place, the throughput is often normalized while it is
not always clear with respect to what value (see e.g., [9]).
Therefore, unnormalized injection rate/throughput and
injection rate/latency plots would be far more suited for
comparisons.
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Fig 12. Routes which, at most, use each horizontal link once.

Fig 13. Vertical-first route r1;s;dand horizontal-first route r2;s;d for source s

and destination d:



The only case in which we are actually able to compare
our results to earlier published results is in the case of
e-cube routing under uniform traffic on meshes ([8]) and
tori ([3]). In both cases, about 70-80 percent of our computed
saturation point is achieved. Since the mentioned papers
consider wormhole routing, it can be expected that the
number of available buffers is low, which probably causes
the fact that the networks saturate at 70-80 percent of the
saturation points presented by us.

We have presented results showing how minimal
partially node homogeneous routing algorithms perform
on a two-dimensional mesh for node homogeneous traffic
patterns. Many traffic patterns found in literature belong to
this class: For example, the uniform traffic pattern, the local
traffic pattern, (see [7]) and a nameless traffic pattern using
the Hamming distance in the hypercube (see [18]). The
minimal partial node homogeneous routing algorithms
always have a load between the optimum and the optimum
plus a term which depends on the traffic pattern. We have
also presented a class of routing algorithms which is not just
optimal for one traffic pattern, but for a whole class of traffic
patterns.

Of course, there is much work left to be done. The
assumption of infinite buffer capacity could be dropped to
obtain more accurate results than the upper bounds
presented in this paper. We could also consider other
performance measures. Also, our theory can be extended to
other classes of traffic patterns, routing algorithms, and
graphs. We think that the theory can be extended to higher-
dimensional meshes and tori, because most of the indivi-
dual steps taken in this paper either apply, or can be
extended to apply, to an arbitrary number of dimensions.
The framework presented in this paper provides a
systematic method for further research.
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