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for Channels with Bounded Noise and Offset
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Applied Mathematics Dept., Optimization Group
Delft University of Technology
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R.Bu@tudelft.nl

Abstract—Data storage systems may not only be disturbed by
noise. In some cases, the error performance can also be seriously
degraded by offset mismatch. Here, channels are considered for
which both the noise and offset are bounded. For such channels,
Euclidean distance-based decoding, Pearson distance-based de-
coding, and Maximum Likelihood decoding are considered. In
particular, for each of these decoders, bounds are determined on
the magnitudes of the noise and offset intervals which lead to
a word error rate equal to zero. Case studies with simulation
results are presented confirming the findings.

Index Terms—Flash memory, optical recording, maximum
likelihood decoding, bounded noise, offset mismatch, zero WER

I. INTRODUCTION

With the explosive growth of reliance on information, both
for home and personal use along with business and profes-
sional needs, more data are being generated, processed, and
stored. It is necessary to guarantee very high access speeds,
low power consumption, and, most importantly, reliable data
storage systems. In data storage systems, it is usually found
that noise (which leads to unpredictable stochastic errors) is
an important issue, but that also other physical factors may
hamper the reliability of the stored data. For example, in
Flash memories, the number of electrons of a cell decreases
with time and some cells become defective over time [1].
The amount of electron leakage depends on various physical
parameters, such as, the device’s temperature, the magnitude
of the charge, and the time elapsed between writing and
reading the data. In digital optical recording, fingerprints and
scratches on the surface of discs result in offset variations of
the retrieved signal [2].

To address the physical-related offset issues, two approaches
are usually investigated and applied in storage systems. One
approach uses pilot sequences to estimate the unknown chan-
nel offset [3]. The method is often considered too expen-
sive with respect to redundancy. Other approaches are error
correcting techniques. Up to now, various coding techniques
have been applied to alleviate the detection in case of channel
mismatch, specifically rank modulation [4], balanced codes
[5] and composition check codes [6]. These methods are
often considered too expensive in terms of redundancy and
complexity.

Since the retrieved data value has been offset in channels,
a Euclidean distance measure will be biased or grossly inac-
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curate. Immink and Weber [7] showed that decoders using
the Pearson distance have immunity to offset and/or gain
mismatch. Use of the Pearson distance requires that the set
of codewords satisfies certain special properties. Such sets
are called Pearson codes. In [8], optimal Pearson codes were
presented, in the sense of having the largest number of
codewords and thus minimum redundancy among all g-ary
Pearson codes of fixed length n. Further, in [9] a decoder was
proposed based on minimizing a weighted sum of Euclidean
and Pearson distances. In [10], Blackburn investigated a max-
imum likelihood (ML) criterion for channels with Gaussian
noise and unknown gain and offset mismatch. In a subsequent
study, ML decision criteria were derived for Gaussian noise
channels when assuming various distributions for the offset in
the absence of gain mismatch [11].

The above-summarized research results are based on the
Gaussian noise model, which is the most satisfactory of reality
in many cases. An increasing number of studies focus on
another important class of non-Gaussian stochastic processes:
bounded noise, which is motivated by the fact that the
Gaussian stochastic process is an inadequate mathematical
model of the physical world because it is unbounded [12],
[13]. Moreover, in many relevant cases, especially in Flash
memory, the impact of parameters (such as charge leakage)
on the retrieved data value should not be arbitrarily large.
Consequently, not taking into account the bounded nature of
stochastic variations may lead to impracticable model-based
inferences. In this paper, we explore decoding criteria for
channels with bounded noise and bounded offset mismatch.
Specifically, we consider Euclidean distance-based decoding,
Pearson distance-based decoding, and Maximum Likelihood
decoding. Most importantly, we investigate, for each of these
decoders, under which constraints zero Word Error Rate
(WER) performance can be achieved. We should stress that
zero WER performance is achieved without assumptions of
specific distributions for the bounded noise and offset.

The remainder of this paper is organized as follows. We
first review the channel with noise and offset and the classical
Euclidean and Pearson distance-based decoding criteria in Sec-
tion II. In Section III, we present a ML decoding method when
the noise and offset in the channel are bounded. Simulation
results for specific cases are given in Section I'V. In the channel



with bounded noise and offset, zero WER is achievable for all
detectors discussed in this paper. Conditions to achieve zero
WER for these decoders are derived in Section V. We conclude
the paper in Section VI.

II. PRELIMINARIES AND CHANNEL MODEL

We consider transmitting a codeword x = (21,2, ...,Zy)
from a codebook & C R™, where n, the length of x, is a
positive integer. In many applications, the received vector may
not only be hampered by noise v = (v1,vs,...,v,), but also
by gain a and/or offset b. Hence,

r=a(x+v)+bl,

where 1 = (1,1,...,1) is the real all-one vector of length n.
The gain and offset values a and b may change from word
to word, but are constant for all transmitted symbols within a
codeword, while the noise values vary from symbol to symbol.

In the channel model under consideration in this paper, we
assume that there is no gain mismatch, i.e., a = 1, but there
is an offset b € R, i.e.,

r=x+v-+bl. (1)

The values v; in the noise vector v = (v1,v2,...,0p,)
are independently and identically distributed with probability
density function ¢, leading to a probability density function
x(v) =17, ¢(v;) for v.

A well-known decoding criterion upon receipt of the vector
r is to choose a codeword X € S which minimizes the
(squared) Euclidean distance between the received vector r
and codeword X, i.e.,

n
Sp(r,%) = (ri— #)°. 2)
i=1
It is known to be optimal with regard to handling Gaussian
noise.
The Pearson distance measure [7] is used in situations which
require resistance towards offset and/or gain mismatch. For

any vector u € R”, let

n
_ 1
u=— E U;
n -
=1

denote the average symbol value and let

. 1/2
Ou = <Z (u; — 1_1)2)

i=1
denote the unnormalized symbol standard deviation. The Pear-

son distance between the received vector r and a codeword
X € S is defined as

op(r, %) =1~ prx, 3)
where p, 5 is the well-known Pearson correlation coefficient,
(ri = T) (& — %)

n
=1

Prx =
OrO0%

A Pearson decoder chooses a codeword minimizing this dis-
tance. As shown in [7], a simpler Pearson distance-based
criterion leading to the same result in the minimization process
reads n
Fp(r, %)= (ri— @ +%)°, 4)
i=1

if there is no gain mismatch, as assumed in this paper.

III. MAXIMUM LIKELIHOOD DECODING FOR NOISE AND
OFFSET WITH BOUNDED RANGES

We assume that the noise values are restricted to a certain
range. More specifically, ¢ only takes non-zero values on an
interval (—c«, a), where o > 0. Hence, —a < v; < « for all
i. For a codeword X = (Z1,...,4,) € S, we define its noise
environment as

Ug ={u=(u1,...,up) ER": &y —a <u; <& +a}. (5

For the offset b we assume that it has a probability density
function ¢ which only takes non-zero values on an interval
(v,m). Hence, v < b < 1. Since the receiver can subtract
’7"’771 from r if the offset range is not symmetric around zero,
we may assume without loss of generality that the offset is
within the range (—0, ), where 8 = (n — v)/2, which we
will do throughout the rest of this paper. We define

Le={r—tl:te(-5,8)} (6)

for a vector r € R™.

In order to achieve ML decoding, we need to choose the
codeword of maximum likelihood given the received vector.
Assuming all codewords are equally likely, this is equivalent to
maximizing the probability density value of the received vector
r given the candidate codeword X. Denoting the probability
density function of v 4+ b1 by v, we find with (1) that we
should thus maximize

o0
-0 = [ a-x-newd o)
over all candidate codewords X, where x and ( are the proba-
bility density functions of the noise and offset, respectively. x
and ( can be any distribution as long as they are restricted to
the indicated intervals. In Section IV, we will show simulation
results assuming specific distributions.

Note from (6) and (5) that a point r — ¢1 of L, is in Uy if
and only if ¢ satisfies

ri—T—a<t<r,—;+a,Vi=1,...,n, )
—B<t<p.
From this observation, we find that (7) equals
S (e = R = b1)C(b)db if to(r, %) > (1, %),
0 otherwise,
)
where
to(r,X) =min ({r; —&; +ali=1,...,n}U{B}),
ti(r,X) =max ({r; — & —ali=1,..,n}U{=5})
(10)



IV. CASE STUDIES

In this section, we consider several noise and offset distri-
butions. Simulated WER results are shown for the codebook

8" ={(0,0,0),(1,1,0),(1,0,1),(0,1,1)}

of length 3 and size 4, in combination with different decoders.
This simple codebook is used to demonstrate some important
WER characteristics. Codebook construction as such is beyond
the scope of this paper. The interested reader is referred to [14].

A. WER for Uniform Noise and Offset

The uniform distribution is the most-commonly used for
bounded random variables. Let the probability density function
of a random variable which is uniformly distributed on the
interval (71, 72) be denoted by U(71,72). The uniform distri-
bution U (11, T2) has probability density function

U(z) = { 62;1

Hence, for the noise we assume v; ~ U(—a, «) and for the
offset b ~ U(—5, B).

Note that ML decoding in this case is tantamount to
maximizing

ifm <z<mo,
otherwise.

Y

max{0, to(r,%X) — t;(r,X)}, (12)

i.e., choosing the codeword X for which the part of the line
segment L, that is within Uy is largest.

Simulated WER results for the example code S* and various
values of o and S are shown in Figs. 1-3 for Euclidean,
Pearson, and ML decoders, respectively.

In Fig. 1, we observe that the performance of the Euclidean
decoder gets worse with increasing values of « and/or (. In
Fig. 2, the curves for different values of 3 overlap because of
the Pearson decoder’s intrinsic immunity to offset mismatch.
Note that the performance of the Euclidean decoder is close
to ML performance for 8 = 0.15 and that the performance of
the Pearson decoder is close to ML performance for S = 0.30
in Fig. 3.

Most interestingly, for Euclidean decoding, WER ap-
proaches zero if @ < 1/2 — 3, while for Pearson decoding,
it happens when o < 1/4. WER approaches zero for the
ML decoding if « < 1/4 or o < 1/2 — S, ie., a <
max{1/4,1/2—f}. Indeed, we observe in Fig. 3 a zero WER
for a < 0.35 if = 0.15, for a < 0.30 if 8 = 0.20, and for
a <0.25if 8 = 0.25 or B = 0.30. We will show in Section
V that, for all decoders under consideration, a WER of zero
is achieved if the magnitudes of the noise and offset intervals
satisfy certain conditions.

B. WER for Uniform Noise and Various Offset Distributions

In this subsection, we consider again uniform noise, but
various options for the offset distribution. In particular, v; ~
U(—0.3,0.3), while the offset is (i) uniform, ie., b ~
U(—B,05), as in the previous subsection, (ii) triangular, i.e.,
b~ T(=4,0,0), as specified next, or (iii) Gaussian with mean
zero and variance o2, ie., b ~ N(O,J2). The last option is

; Euclidean Distance Based Decoding
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Fig. 1. Simulated WER of Euclidean distance-based decoding for codebook
S* on channels with uniform noise v; ~ U(—a, «) and uniform offset b ~

U(=p,8).
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Fig. 2. Simulated WER of Pearson distance-based decoding for codebook
S* on channels with uniform noise v; ~ U(—a, «) and uniform offset b ~

U(=8,8).
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Fig. 3. Simulated WER of ML decoding for codebook S* on channels with
uniform noise v; ~ U(—a, ) and uniform offset b ~ U(—73, B).
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Fig. 4. Simulated WER for codebook S* on channels with uniform noise
v; ~ U(—0.3,0.3) and uniform offset b ~ U(—4, B).
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Fig. 5. Simulated WER for codebook S* on channels with uniform noise
v; ~ U(—0.3,0.3) and triangular offset b ~ T (—2,0, 3).

included since it is the most important representative of un-
bounded distributions. The triangular distribution 7 (-, 0, 8)
has probability density function

T(m):{ 0%(17%|1‘|) if *5<I<5,

13
otherwise. (3)

In Figs. 4-6 we present WER results for the example
code S* for the three offset options under consideration. For
comparison purposes, the WER is presented as a function of
the standard deviation of the offset in each case.

In general, note that the WER of Pearson decoding has the
same constant value for all cases, since it does not depend
on the offset. It is close to ML performance in case of large
standard deviations. The performance of Euclidean decoding
is close to ML performance for small standard deviations. For
medium standard deviations, ML decoding clearly outperforms
both Euclidean and Pearson decoding in all three cases.
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Standard Deviation o

Fig. 6. Simulated WER for codebook S* on channels with uniform noise
v; ~U(—0.3,0.3) and Gaussian offset b ~ N(0,5?).

We also observe in Fig. 4 that the WERs of Euclidean and
ML decoders approach zero if the standard deviation 3/+/3 of
the uniform offset distribution is at most 0.12, and in Fig. 5
that the WER approaches zero if the standard deviation 3/v/6
of the triangular offset distribution is at most 0.08. On the other
hand, we see in Fig. 6 that for Gaussian offset zero WER can
only be achieved by extremely small noise, as expected, due to
the unbounded nature of the Gaussian distribution. In the next
section we will analyse the zero WER constraints for different
detectors.

V. ZERO ERROR ANALYSIS

In this section, we will show that, for all decoders under
consideration, a WER of zero is achieved if the magnitudes
of the noise and offset intervals satisfy certain conditions.

A. Euclidean Distance-Based Decoding

The Euclidean decoder can achieve zero WER for channels
with bounded noise and offset when o+ 3 is sufficiently small,
as shown in the following result.

Theorem 1. If the noise and offset are restricted to the
intervals (—a, o) and (—B, B), respectively, with

n

> (si—

i=1

2
CZ')
a+ < min

i, | S a4

,CES,

s,C S#cC 2Z|S,L—Cz|
i=1

then the Euclidean decoder achieves a WER equal to zero.

Proof. Assume that x € S is sent and r = x + v + b1 is
received. Then, for all codewords X # x, it holds that



Op(r,%X) — dp(r,x)

=3 (ri — &:)2 = X (ri — )?
=1 =1

= Z(Tz — X5 — Xy +xi)2 - Z(Tz 371)2
i=1 =1

|
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g
8
|
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|
[N}
—
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|
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-
33

©
Il
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©

I
=1
—

E~2>

\
5
\E

=1 =1
> 2(« +ﬂ)2|$z—$z|—22|$z 4] |vi + 0]
=2Z\$i—xi|(a+ﬂ—|vi+bl)

=1
> 0,

where the fourth equality follows from r; = z; + v; + b, the
first inequality follows from (14) and the last inequality from
the fact that |v; + b| < |v;| + |b| < a + S for all i. Hence, if
decoding is based on minimizing (2), the transmitted codeword
is always chosen as the decoding result, leading to a WER
equal to zero. O

B. Pearson Distance-Based Decoding

Since Pearson distance based decoding features its immu-
nity to offset mismatch, zero WER performance only requires
a limited value of «, which is shown in the next theorem.

Theorem 2. If the noise and offset are restricted to the
intervals (—a, o) and (—f, ), respectively, with

n

Z (Sl —§—C,‘+(_!)2
a < min =1
)

n
s,cE€S,s#c nT_14Z |S7;—§—C7;+E‘
=1

5)

then the Pearson decoder achieves a WER equal to zero.

Proof. Assume that x € S is sent, and r = x + v 4 b1 is
received. Then, for all codewords X # x, it holds that

' p(r,%) — & p(r,x)

(T‘i — I +):()2 —

= i(ri—xi—l—i)?

i=1
(ri— @i +%X=1)° = Y (ri— 2 + X =)

&.
I

Il

@
Il
—
©
I
—

z—)_(—i‘i—F):()Q

I
Py
o

i=1
+§:12(xzf>_< &+ %) (ri —a; + X —T)
=
= S (- % d+ R+ 3 2o - %= E 4 - 9)
7;14ai’xl—x—xl+;§
B — Y 2ay % — & + | o — V|
:i| — X — &+ X[ (Lo - 2|v; — V)
Z1:1

(16)

where the fourth equality follows by substituting r; = x; +
v;+band T = X+ V +D, the first inequality from (15), and the
last inequality from the fact that |v; — V| < 2=12q for all i.
Hence, if decoding is based on minimizing (4), the transmitted
codeword is always chosen as the decoding result, leading to
a WER equal to zero. O

C. Maximum Likelihood Decoding

Finally, we show that zero WER for ML decoding is
achieved if « or o + (8 is sufficiently small.

Theorem 3. If the noise and offset are restricted to the
intervals (—a, o) and (—f, B), respectively, with

o 127%"{(81' —ci) — (85— ¢j)} )
o min
T s,c€S,s#c 4
or
max (|s; —cif)
a+ < min et (18)

s,ceS,s#c 2

then the ML decoder achieves a WER equal to zero.

Proof. Assume that x € S is sent and r = x + v + b1 is
received. We will show that if (17) or (18) holds, then ¥ (r —
%) = 0 for all codewords % # x. First of all, note that

to(r,X) — t1(r,X)
=min({r; —&; +ali=1,...

n}U{B})

—max ({r; —&; —ali=1,...,n} U{=5})
:min({ri—fci—i—aﬂz1,...,n}U{ﬁ})
—‘,—min({—(n—i‘i)-i-aﬁzL...,TL}U{ﬂ})

= min({28} U { min {—

U{lg;g {20 -

|ri — &)} + o+ 8}

(rj =)} + 20a}).
(19)
Next, we will show that if (17) or (18) holds, this expression
is negative whenever X # x.
If (17) holds, then

1<I£'1,ijgn{(m — &) = (r; — &)} + 2a
glg%;ré”{(ﬁ — &) = (rj — &)} — 20+ 4o
< i {(r =) = (=) = (0= )} +4a
= lglzrén{[(m — &) = (rj — ;)]
=[(ri =i = b) = (rj —2; = O)]} + 4o
= Join {(2; — &) — (2 — &;)} +da
= -, max {(& ;) = (& —2;)} + 4o
<0.

(20)
where the first inequality follows from the fact that v; —v; <
|vi] + |v;| < 2 and the second inequality from (17).



If (18) holds, then
“min {—|r; — &} +a+p

1=1,...,

— ‘min {~|r;~ &} —a~ f+2a+ )

‘_Iilin {=|ri — & — |vi + 0|} + 2(a + 8)
min {— |’I“i — i‘1| — ‘Ti — Izl} + 2(0&4—5)

i=1,...,n

41{1111 {=lzi — &} +2(a + B)
i=1,...,n
= — max {|z; — [} +2(a + f)
<0,

where the first inequality follows from the fact that |v; + b <
|v;| + |b] < o+ B and the last inequality from (18).
Combining (19), (20), and (21) with (7) and (9), we find
that indeed ¢ (r — %) = 0 for all codewords %X # x, while the
probability density value of the received vector r given the
transmitted codeword x is larger than 0, i.e., ¥(r — x) > 0.
This implies that if decoding is based on maximizing (7), the
transmitted codeword is always chosen as the decoding result,
leading to a WER equal to zero. O

AN

2L

IN

For the codebook S*, the bound on « + S for a Euclidean
decoder in (14) is 1/2, the bound on « for a Pearson decoder
in (15) is 3/16, and the bounds on « and « + 3 for a ML
decoder in (17) and (18) are 1/4 and 1/2, respectively.

Considering Figs. 1-3, results from Theorems 1-3 are con-
firmed. The zero WER of Pearson decoding is indeed achieved
if & < 3/16. However, the shown results suggest that this may
not be the best upper bound for the code under consideration.
In addition, for = 0.3 and the example code §*, Theorems 1
and 3 give that, for both Euclidean and ML decoding, the
WER is equal to zero if the offset is restricted to the interval
(=B, 8) with § < 0.5 — 0.3 = 0.2. This confirms the results
from Figs. 4-5: for uniform offset, the zero WER is achieved
if standard deviation 0.2/ V3~ 0.12; for triangular offset, the
zero WER is achieved if standard deviation 0.2/ V6 = 0.08.

VI. DISCUSSION AND CONCLUSION

We have investigated Euclidean, Pearson, and ML decoders
for channels which suffer from bounded noise and offset
mismatch. In particular, it has been shown that the WER for
such decoders is equal to zero if the noise and offset ranges
satisfy certain conditions. The findings have been confirmed
by simulation results.

Further investigations about how codebooks can be gen-
erated satisfying Theorems 1-3 given « and [ will be of
interest. Suppose «, ( are fixed, it would be very interesting to
fully explore the capacity of this channel and what rates can
be achieved for the three decoding schemes satisfying zero
WER conditions. Also, another interesting option for future
research is to include the possibility of gain mismatch as well
by considering various distributions for this phenomenon.
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