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Abstract

The increasing energy consumption in buildings due to cooling and heating, accounting for over one-third of the total energy
consumption in society, has become a growing concern. Therefore, reducing building energy consumption has become an
urgent issue for countries worldwide. Windows serve as the primary channel for energy exchange between the indoor and the
outdoor environments. While providing natural lighting for occupants, windows are also the weakest link in terms of energy
consumption. In recent years, there have been some new and superior coating glass technologies compared to traditional
low-emissivity glass. These coatings utilize various optical functional materials to regulate the incident sunlight, aiming to
save cooling and heating energy consumption. Materials, such as tungsten-based compounds, vanadium dioxide, lanthanum
hexaboride, or copper monosulfide, can absorb near-infrared light to effectively control solar radiation by leveraging the
localized surface plasmon resonance (LSPR) effect of nanoparticles. This paper mainly introduces the micro-mechanisms
of these materials and provides a detailed summary of the latest advancements in coating materials. The application and
effects of these coatings in building energy conservation are emphasized. Finally, the challenges and prospects of LSPR-
based smart windows are discussed. It is expected that this review will provide new insights into the application of smart
windows in green buildings.

Keywords Tungsten - Localized surface plasmon resonance (LSPR) - Tungsten-based compounds - Vanadium dioxide -
Lanthanum hexaboride - Copper monosulfide

1 Introduction

With the acceleration of urbanization and the increasing
occurrence of extreme weather events, the energy con-
sumption for cooling and heating in buildings has been
continuously rising. This portion of energy consumption
now exceeds 40% of the total building energy consump-
tion [1], leading to severe issues such as power shortages
in many areas. Therefore, reducing the energy consumption
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for cooling and heating in buildings has become a focal
point in the field of energy conservation. Within building
structures, energy exchange between the indoor and the
outdoor environments primarily occurs through windows.
Modern buildings increasingly strive for spacious visual
areas, resulting in larger glass areas in windows [2, 3]. This
unavoidably creates a conflict with the energy-saving aspect
of building design, leading to significantly increased costs
and energy consumption for heating in winter and cooling
in summer. Therefore, the key to achieving a comfortable
living environment while reducing energy consumption lies
in the windows.

The thermal energy of solar radiation is mainly concen-
trated in the visible (Vis) and near-infrared (NIR) regions
(0.3-3 pm), with each region accounting for approxi-
mately half of the energy [4]. The solar irradiance under
air mass (AM) 1.5 conditions is shown in Fig. 1. For win-
dow glass, high Vis (0.38-0.76 um) is essential to ensure
natural daylighting, regardless of the cooling or heating
requirements. NIR light (0.76-2.5 um) should be blocked
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Fig. 1 Solar spectrum irradiance at the situation of AM 1.5

during summer for cooling purposes but be transmitted
indoors during winter to introduce solar heat gain. How-
ever, currently, there is no perfect solution available to
achieve reversible control of NIR for different climatic
conditions while maintaining high Vis transmittance.
The most widely promoted product in the field of
energy-saving glass is low-emissivity (Low-E) glass
[5]. Low-E glass is a film system product composed of
multilayered metals such as silver coated on the surface
of the glass. Its coating layer has high transparency for
Vis light and high reflection for infrared rays, which
has excellent heat shielding effects and good light
transmittance compared to ordinary glass and traditional
architectural coated glass [6]. Low-E glass is usually
coated by magnetron sputtering, and it is currently
made into a center-controlled sandwich structure, which
requires vacuum equipment, uses high airtight composite
adhesives, is made up of two or three pieces of glass,
and bonded with an aluminum alloy frame containing
desiccant. This approach would lead to high costs, making
it difficult to popularize in developing countries. In
addition to this, Low-E glass also causes light pollution
and other multiple issues, including inevitable aging
failures [7]. Therefore, in recent years, researchers have
been devoted to developing new functional materials and
coatings to control the incidence of sunlight and ensure
indoor living comfort. From the perspective of Vis light
transmittance, these materials can be roughly divided
into two categories: a type of material that exhibits
color-changing effects under the influence of electric
fields, light exposure, or changes in environmental
temperature is known as electrochromic, photochromic, or
thermochromic material, respectively. Meanwhile, another
type of material leverages the localized surface plasmon
resonance (LSPR) effect intrinsic to the nanoparticles.
This phenomenon allows for the strong absorption of NIR
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from sunlight, while ensuring high transmittance of Vis
light, thus producing a transparent heat shielding effect.

The color-changing materials undergo changes in shape,
structure, or phase in response to external stimuli, result-
ing in color changes and reversible transformations between
transparent and opaque states, thereby controlling the inci-
dence of sunlight. Typical examples of electrochromic mate-
rials include conductive polymers, such as polyaniline and
polypyrrole, inorganic metal oxides, such as WO; and TiO,,
and nematic liquid crystals [8—11]. Under the influence of an
electric field, these materials undergo changes in their charge
state or molecular arrangement, resulting in color variations.
However, electrochromic smart windows typically require
electricity, electrical equipment, additional operating power,
and expensive manufacturing processes, which limit their
large-scale application [12]. Similar to electrochromic materi-
als, photochromic materials undergo reversible color changes
under illumination at specific wavelengths. These materials
include organic substances, such as fulgides, diarylethenes,
spiropyrans, spirooxazines, azobenzenes [13], and inor-
ganic substances, such as V,05, WO;, Nb,Os, TiO, [14-17].
Organic photochromic materials undergo a coloring process
under ultraviolet light, but typically require Vis light to restore
their original color. Inorganic photochromic materials usu-
ally form electron—hole pairs under illumination, leading to
oxidation—reduction reactions or changes in elemental valence
states, thereby causing color changes. High coloration con-
trast, fast reversible switching speed, and high photochemical
stability are key measures of the performance of photochro-
mic materials. Thermochromic materials can adjust their
colors according to temperature changes. In the application
of smart windows, these materials can adjust the transparency
of the windows according to temperature changes, thereby
automatically adjusting the window’s transmittance to sun-
light, controlling the energy usage of the house. Such smart
windows can adaptively adjust the light according to dynamic
environmental temperature. The color change effect is com-
pletely driven by the material, so this mechanism is a passive
light regulation method. Thermochromic materials that have
been studied extensively include VO,, hydrogels, ionic lig-
uids, liquid crystals, and perovskites [18-23]. Among these
materials, hydrogels such as poly(N-isopropylacrylamide)
(pNIPAm) have been widely researched recently due to their
abrupt response and reasonable activation temperature [12,
24, 25]. Unlike VO, and other thermoresponsive hydrogels,
pNIPAm has a lower critical solution temperature (LCST) of
32 °C, which is close to the actual application temperature of
thermochromic windows. Above the LCST, the hydrated poly-
mer chains will collapse into globules, making the polymer
insoluble in water. Therefore, the window transitions from a
transparent state to an opaque state.

The above-mentioned color-changing materials can indeed
regulate sunlight to achieve a good thermal control effect
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indoors, but due to the greatly reduced Vis light transmittance
after changing color (some are almost opaque), it seriously
affects the field of view. However, another type of inorganic
compounds based on LSPR can regulate NIR while main-
taining high Vis light transmittance. The LSPR effect is a
phenomenon that occurs on the surface of metallic nanopar-
ticles [26]. It arises from the resonance oscillation of free
electrons in the metallic nanoparticles when they are excited
by photons under specific conditions. The generation of the
LSPR effect involves the optical properties and electron
structure of the metallic nanoparticles. In these particles, the
free electrons in the metal can move freely, forming an elec-
tron gas, known as a plasmon [27]. When the nanoparticles
are exposed to light, the electric field of the photons excites
the free electrons on the surface of the nanoparticle, caus-
ing these electrons to resonate oscillate, as shown in Fig. 2.
The condition for resonance to occur is that the frequency of
the photons matches the inherent plasmonic frequency of the
metallic nanoparticles. When these two are equal, the photon
energy and the plasmonic oscillations of the metallic nano-
particle resonate, forming LSPR. Under the LSPR effect, the
resonant oscillation of the surface electrons in the metallic
nanoparticles leads to the amplification and local enhance-
ment of the electric field. This results in notable changes
in the absorption, scattering, and transmission spectra. In
the absorption spectrum, LSPR will cause enhanced light
absorption within a specific wavelength range [28]. In the
scattering spectrum, LSPR will cause enhanced light scat-
tering and frequency shift. The LSPR effect is closely related
to factors, such as shape, size, and composition of the metal-
lic nanoparticles. By adjusting these parameters, position,
intensity, and wavelength range of the LSPR effect can be
regulated, thereby achieving precise control over the optical
properties of the metallic nanoparticles.

It is worth noting that the LSPR effect is not limited to
metallic nanostructures and has also been observed in certain
semiconductors with high densities of free charge carriers.
In recent years, nanomaterials that have been studied more
include tungsten-based compounds, vanadium dioxide,
rare-earth hexaborides, copper sulfides, and so on [29-33].
The nanoparticles of these materials often show strong NIR
absorption properties induced by LSPR. In finite systems
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Fig.2 The schematic diagram of LSPR induced by light

like nanoparticles, the behavior of free electrons is confined,
leading to the LSPR effect. This resonance frequency w; gpr
is determined by the size and shape of the nanostructure,
as well as the dielectric functions of both the particle and
the surrounding medium. Practical applications based on
LSPR often harness its strong scattering or absorption
properties, tunable optical extinction, or the enhancement
of local electric fields [34]. For applications in smart
windows, the desired LSPR frequency should fall within the
Vis or infrared (IR) spectrum range, ideally with a tunable
resonance frequency and minimal energy loss.

The application of electro-, thermo-, and photochromic
materials in the field of smart windows has already been
extensively reviewed by numerous researchers [8, 11,
13, 18, 22]. This review paper provides a comprehensive
summary of NIR regulating inorganic compounds based on
the LSPR effects of nanoparticles, including tungsten-based
compounds, vanadium dioxide, lanthanum hexaborides,
and copper sulfides. It analyzes and encapsulates the latest
developments in terms of their optical properties, NIR
shielding mechanisms, optical control characteristics, and
more. By comparing different materials, the respective
strengths and weaknesses are discussed. Finally, the review
offers a perspective on the future developments in the realm
of smart windows.

2 Tungsten-based compounds
2.1 Tungsten suboxides

Pure WO; is a type of semiconductor material [35], which
has high transmittance for Vis light and NIR light [36]. In
semiconductor materials, the transition of electrons from the
valence band (VB) to the conduction band (CB) results in
light absorption, and the absorption edge is determined by
the bandgap. The bandgap of pure WOj; typically falls within
the range of 2.6-3.25 eV [35], which places its absorption
edge around 400 nm. As a result, most of the Vis light can-
not induce intrinsic absorption in tungsten trioxide, ensuring
a high Vis light transmittance of the material. Furthermore,
the tungsten element only exists in the form of a hexavalent
state, which cannot provide additional free electrons. This
absence of free electrons does not give rise to a noticeable
LSPR effect, thus leading to weak absorption in the NIR
region. However, its electrical properties can be regulated by
controlling the oxygen content. Oxidized WOj; is an insula-
tor with a larger bandgap, while reduced WO, _ is a conduc-
tive semiconductor. W30, is a common sub-oxide of tung-
sten. Research shows that W ;0,4 nanostructures have a high
LSPR absorption characteristics [37]. Previous researchers
believed that there were some unsaturated oxygen atoms
on the surface of W30, nanoparticles, forming surface
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oxygen vacancies. These surface defects can cause local
charge redistribution and electron oscillations, leading to
the emergence of the LSPR effect [38, 39]. However, recent
research determined through density functional theory cal-
culations that the lattice pairs of W>¥—W>* spaced at 1.3 nm
are responsible for the intrinsic LSPR effect of W 40,4 [40].
The energy level caused by W3* ions localizes high-con-
centration electrons in a small space, with W3*—W>* pairs
serving as localized free electron reservoirs, bringing about
an intrinsic LSPR effect. In the electronic structure, the 5d
orbital of W is split into a triply degenerate t,, orbital with
lower energy and a doubly degenerate e, orbital with higher
energy. The emergence of W>* causes the ty, Orbital to move
downward, becoming a local energy level in the bandgap.
Transitions from this local level to above the Fermi level
contribute significantly to the wide-range photoresponse in
the Vis—NIR region, as illustrated in Fig. 3. However, local-
ized electrons cannot move freely through the crystal like
those in the conduction band, therefore the LSPR absorption
range of W 40,4 is insensitive to shape and size, which is
consistent with the experimental results [41].

Currently, there are various methods to prepare W 30,0,
among which the solvothermal method is more frequently
adopted [41-43]. By controlling the type and amount of the
solvent and the W source, it is possible to achieve W 30,4

Molecular orbital theory

We* 5d

Energy band theory

nanomaterials with various morphologies and sizes, such as
nanorods, nanofibers, nanobundles, nanograins, nanoassem-
blies, nanoplates, and nanoparticles as depicted in Fig. 4a—j.
The absorption curve of the W40,y solution prepared by
Zhong et al. shows lower values in the Vis light range [43],
and marked increase in the NIR region (Fig. 4k), which indi-
cates that W 30,4 possesses NIR shielding properties. How-
ever, there isn’t a sharp increase in the absorption as it transi-
tions from Vis to NIR; instead, there’s a gentle rise between
700 and 1100 nm. This gradual ascent implies a subopti-
mal shielding effect against the majority of the sunlight’s
energy concentrated in this range. A film made from a mix
of W30,y nanorods and polydimethylsiloxane (PDMS) (as
shown in Fig. 41) mirrored this absorption trend (Fig. 4m).
The Vis light transmittance surpassed 60%, gradually dimin-
ishing as it approached the NIR spectrum. Thus, for applica-
tions like smart windows, there’s room for improvement in
the optical properties of W 30,4 at the shorter wavelengths
of the NIR spectrum.

2.2 Tungsten bronzes
Tungsten bronze (M, WO;) is a non-stoichiometric com-

pound where M represents the insertable cation in the
crystal structure of WOj;, and x denotes the concentration

|L

Receive an electron
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o

¢

Seo-

Fig.3 Schematic diagram of probable electrons transition process under light irradiation for W,30,q. E; and E; stand for Fermi level and local-
ized level, respectively. Reproduced with permission from Ref. [40]. Copyright 2022, Wiley
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Fig.4 Scanning electron microscopy (SEM) images of the W 4O,
nanomaterials synthesized by solvothermal reactions in an etha-
nol solution containing a 7.5 mmol-L™!, b 15 mmol-L™!, and ¢ 50
mmol-L™! W(EtO) at 200 °C for 24 h (where Et represents ethyl)
[41]; SEM images of W30,y samples synthesized using mixtures
of d 5 mmol-L™! W(EtO)s+ 10 mmol-L™! WCl,, e 7.5 mmol-L™!
W(EtO)¢+7.5 mmol-.L™! WCl,, and f 10 mmol-L™! W(EtO)s+5
mmol-L™! WClg as tungsten sources in propanol (T=200 °C; t=24
h) [41]; transmission electron microscope (TEM) images of W 3O,

of the cation. The insertion of cations leads to changes
in the electronic structure and optical properties of these
materials. M can be alkali metals, alkaline-earth metals,
rare-earth elements, or monovalent cations, such as H" and
NH,* [32]. WO, has a simple stoichiometry and possesses
a variety of distinct crystal structures, all of which are
formed by interconnected WOq octahedra that share cor-
ners, constituting a three-dimensional network and which
can be viewed as variants of the distorted cubic ReO;
crystal structure [44], tungsten atoms are linked to oxy-
gen atoms by covalent bonds [45, 46]. In M, WO;, cations
are inserted to the sub-lattice, which not only changes the
crystal lattice but also introduces charges, further altering
the electronic structure. Tungsten bronze typically exhib-
its three crystal structures: cubic, tetragonal, and hexago-
nal structures, as shown in Fig. 5. The crystal structures
of tungsten bronze depend on the M and the x, and the
maximum value of x depends on the crystal structure and
the cation [47-50]. Cubic structures are limited to x < 1.0,
tetragonal to x <0.6, and hexagonal to x < 1/3. But some
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samples g, h synthesized with different amount of WCl in the start-
ing solution and i, j samples synthesized with different solvent (where
OA represents oleic acid and TNO represents tri-n-octylamine)
[42]; k absorbance of W 30O, solution and 1 photos of the flexible
W 304 @PDMS film and m corresponding transmittance (ITO rep-
resents indiumtin oxide) [43]. Reproduced from with permission from
Refs. [41-43].Copyright 2012, American Chemical Society; Copy-
right 2016, Elsevier; Copyright 2020, Elsevier, respectively

appear to have lower limits, e.g., tetragonal Na, WO, can
only be prepared up to~0.5, but tetragonal K ' WO; can go
up to 0.6 [34, 51].

The NIR absorption characteristics of tungsten bronzes
are mainly attributed to the LSPR effect of its nanoparticles
[52-54] and small polaron conversion [55-57]. In tungsten
bronze, there is a large number of small polarons. Whenever
a cation enters the structure of tungsten bronze, it injects a
corresponding number of free electrons into the conduction
band. The lattice ions move due to the electrons in the
conduction band and are accompanied by polarization,
generating an electric field that in turn acts on the electrons,
causing lattice distortion. In this way, the electron moves
together with the lattice distortion, leading to the small
polaron transition between W>* and W°*, as shown in
Fig. 6a. Labeling two adjacent W as A and B, the process is
represented as follows, where hv and E ., represents the
photon and phonon energy, respectively.
v+ W(AP* + WB)*" - WA + WB)* +E

phonon

M
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Fig.5 Crystal structure of tungsten bronze: a cubic structure, b tetragonal structure, ¢ hexagonal structure [32]. Reproduced with permission

from Ref. [32]. Copyright 2019, Elsevier
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According to Adachi et al.’s analysis of Cs WO; [55],
the asymmetrically shaped peak appearing near 1.5 eV in
the absorption spectrum of Fig. 6b matches the features of
the small polaron absorption. In the energy loss spectrum
of Fig. 6¢, besides the feature peak of the small polaron, a
bulk plasmon feature peak also emerges. The reflectivity
curve in Fig. 6d displays a distinct minimum around 2
eV, followed by a sharp increase at lower energies, a

@ Springer

behavior characteristic of free electron plasmas. When Cs
is introduced into WO, the crystal structure changes from
monoclinic to hexagonal, Cs dissociates into Cs™, and
supplies electron to the local energy level and the conduction
band. At the maximum value of x at 0.33, the maximum
number of electrons occupies the conduction band, and
LSPR absorption becomes the major absorption mode for
nanoparticles, while polaron absorption provides a minor
contribution. Therefore, the primary NIR absorption of
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Cs,WO; is not intrinsic absorption but is believed to be
absorption generated by the interaction of free electrons
in nanoparticles with external electromagnetic waves (i.e.,
LSPR).

The NIR absorption properties of tungsten bronzes are
closely related to the LSPR effect, which in turn depends
heavily on the composition, the size, and the morphology
of the nanoparticles. Hence, by regulating these factors,
the NIR absorption characteristics of tungsten bronze can
be optimized. However, precise control over particle size
and shape in the synthesis of tungsten bronze nanoparticles
remains a significant challenge. Cheref et al. successfully
fabricated hexagonal cesium tungsten bronze with vari-
ous aspect ratios (AR) by adjusting experimental param-
eters in the thermal decomposition process, as depicted in
TEM images shown in Fig. 7a-g (Fig. 7h shows a schematic
diagram of hexagonal columns with different AR) [58].
The LSPR effect of the nanoparticles manifests as strong
extinction in the NIR region. As can be observed from the

extinction curve (Fig. 71), the extinction peak varies con-
tinuously in the NIR region with the change in AR, cor-
relating with the AR-dependent band splitting of the LSPR
in both transverse and longitudinal modes. This indicates
that combining particle morphology with the anisotropy of
the crystal structure, and controlling particle size and AR,
can regulate the LSPR response of tungsten bronze nano-
particles across the entire NIR region. From the perspec-
tive of smart window applications, the AR-dependent LSPR
response evidently affects the shielding performance of the
sample against solar radiation (Fig. 7j), providing insights
for designing energy-saving materials with varying function-
alities. Apart from the AR modulation methods, the research
by Tegg et al. has confirmed that the strong LSPR energy
of Na,WOj; can be continuously adjusted by varying the Na
content [59].

From the perspective of NIR shielding, the tungsten
bronze series that is currently mainly studied is doped with
monovalent cations such as alkali metals (Li, K, Na, Cs, Rb)
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extinction spectra of the colloidal hexagonal cesium tungsten bronze
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solar transmission spectra filtered by above samples, where gray line
represents solar irradiance at sight level [58]. Reproduced with permis-
sion from Ref. [58]. Copyright 2022, American Chemical Society
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or ammonium [35, 60-64]. These materials have demon-
strated strong NIR absorption capabilities along with high
Vis light transmittance. Compared to W 30,4, tungsten
bronze possesses enhanced shielding ability in the shorter
wavelength region of the NIR spectrum, hence showcasing
great application potential. In recent years, researchers have
enhanced the NIR shielding capability of nanocrystalline

a
(s. [ — (Sl

(Sl (SIV) (sl sy

..
| =m

tungsten bronze by means of doping with dual alkali metal
cations [35, 36, 65, 66] or partially substituting the W ele-
ment with Ti, Mo, Pt, etc. [57, 67, 68]. This adjusts the
LSPR effect and small polaron absorption of tungsten
bronze. Dual cation co-doping not only promotes the for-
mation of W3* to boost the LSPR effect but also facilitates
the bonding between W>* and oxygen. This can enhance the
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absorption of small polarons, significantly improving NIR
shielding in the 730-1100 nm range. When elements like
Mo partially replace the W element, the absorption of small
polarons also significantly increases. However, as the dop-
ing amount continues to rise, free electrons tend to become
localized, suppressing the LSPR effect and diminishing the
NIR absorption capability of the particles.

In practical applications, tungsten bronze is often used in
conjunction with other materials. For example, by harness-
ing the self-heating properties when it absorbs NIR light,
tungsten bronzes can be combined with thermochromic
materials such as pNIPAm or T-Perovskites [69, 70]. The
heat generated by tungsten bronze is utilized to facilitate the
color-changing process of thermochromic materials, thereby
enhancing its optical modulation capabilities, as shown in
Fig. 8. In general, tungsten bronze materials can maintain a
high Vis light transmittance while also having exceptional
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NIR shielding capability. They have promising applications
in buildings located in hot climate areas, while their energy-
saving effects may not be very pronounced in cold regions
during winter.

3 Vanadium dioxide

Vanadium dioxide (VO,) is a typical transition metal oxide
that undergoes a reversible metal-insulator phase transition
around 68 ‘C [71]. Below this temperature, it acts as an
insulator, while above this temperature, it becomes metallic.
This phase transition is accompanied by significant changes
in its electrical conductivity and optical properties, making
VO, highly valuable in many applications. Due to its phase
transition characteristics, VO, can block more NIR radiation
as the temperature rises, thereby reducing the heat inside
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Fig.9 a Crystal phase transition of VO, between the high-tempera-
ture R phase and the low-temperature M phase; b X-ray diffraction
analysis of VO, at different temperatures; ¢ electric field of VO,
nanoparticles in PDMS matrix at R/M phase; d simulated absorbance
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and scattering of VO, nanoparticles in PDMS matrix at R/M phase
[73]. Reproduced with permission from Ref. [73]. Copyright 2020,
Elsevier
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buildings or vehicles. When the temperature is lower, the
NIR transmittance significantly increases, which has
garnered a lot of attention in the field of smart windows and
thermal control coatings [72].

Above the phase transition temperature, the crystal
structure of VO, is rutile (R phase), while below this tem-
perature, it adopts a monoclinic structure (M phase), as
illustrated in Fig. 9a, b [73]. With changes in temperature,
there is a reversible transition between these two phases.
The LSPR effect of VO, becomes pronounced in the R
phase and is quenched in the M phase [72-75]. This can
be clearly observed from the electric field distribution in
Fig. 9c and the simulated absorption and scattering cross
section in Fig. 9d.

Various methods have been reported to modulate
the LSPR effect of VO,, enhancing its optical response
to better suit applications in the smart windows. These
include optimizing the geometric structure of the VO,
nanoarrays [74, 76], doping metallic nanoparticles into
VO, thin films to regulate its crystallinity, grain shape,
and surface morphology [77, 78], surface treatments of
continuous VO, films [79, 80], altering the strain-induced
local dielectric environment [75], doping with other
elements [81], and adjusting the thickness of the coating
layer of VO, nanoparticles [82], among others.

In Fig. 10a, a hexagonal cylindrical array is designed
on a glass substrate [76]. Through finite element method
calculations, it was found that by changing parameters,
such as radius, height, and spacing of the cylinders, the
position of the LSPR absorption peak can be tuned (as

shown in Fig. 10b). Compared to single VO, nanoparticle,
the periodic cylindrical structure of VO, exhibits a cer-
tain red-shift in the absorption peak. This may be related
to a certain degree of overlap in the near-field light field
between adjacent particles (Fig. 10c). Based on the trans-
mission results, this kind of nanoparticle array offers better
regulatory performance for high-density solar energy with
wavelengths around 1000 nm (Fig. 10d). Ke et al. used
the nanosphere lithography technique to prepare periodic
VO, nanoparticle arrays (Fig. 10e) [74]. With the increase
in particle size and periodic range, a red-shift in LSPR
occurred, consistent with the trend in Fig. 10f. Both these
theoretical and experimental findings underscore the tun-
ability of VO, LSPR.

The reversible change in VO,'s optical properties with
temperature has made it one of the most researched inor-
ganic materials for smart windows. This self-tuning capa-
bility of optical properties means that VO, has potential
applications in various climatic regions. However, VO,
has a relatively low Vis light transmittance, and its NIR
regulation capability is still not outstanding. These draw-
backs hinder its further development. Additionally, the
appearance of VO, films is monotonously brown—yellow
(Fig. 11a) [83], which is visually somewhat inferior. To
address this, Zhao et al. developed a three-layer VO,/ pho-
tochromism/ fluorescence structure (FPV), which not only
enhances the Vis light transmittance and solar regulation
efficiency, but also allows this structure to dynamically
change to other colors depending on the intensity of ultra-
violet light (Fig. 11b—f) [84].

Glass "x =
b50 (. p. h)=20, 60, 50) nm d 100 —— - Nano-oyinder arrays f +=] Simulation: L=y
\ —(r’ p, h)=(40, 100, 50) nm - i =L e ] e 67im - E e
40 K —{r, p. N)=(60, 140, 50) nm | o .-~ 7 VO;(R) T E) < 125n0m ~
8 \ 4= 1250 nm A Z 1450 nm R { . S Gl |-DNCR L e e 28705 1500
% sor ‘\ //?\’:1320\%\ 8 R vl 8 s §
g \ A= 12 e B ool 1\ AT g | —670m 31150
0L\ 47 nm ~.] € AR V0. (M) = | " 1250m ¥
2 /" A=1150nm 2 |y \/ iy 5 ]
< 4o |\ A=1080nm |‘_E 40F/ 3 N = o o —=—Experiment
/ £ & 1050 -+- Simulation
4 00 00 —
: : , h T 1000 PR
500 1000

Wavelength / nm Wavelength / nm

Fig. 10 a Schematic of the hexagonal VO, nano-cylinder arrays on
glass substrate, b absorption spectra of VO, films (blue and red dots
correspond to the absorption peak positions of the periodic structure
and a single VO, nanoparticle), ¢ near-field light intensity profiles of
nano-cylinder arrays, d transmittance spectra of nano-cylinder arrays
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Fig. 11 a Photos of a room with VO, glazing (left) and a room with
ordinary glazing (right) [83]; b diagram for illustrating design concept
of a flexible three-layer VPF on polyethylene terephthalate substrate; ¢
the images of model windows with RGB colors (red: F-red/P-red/VO,;
green: F-green/P-blue/VO,; blue: F-blue/P-blue/VO,); d house-inte-
rior solar intensity of VO, film, F-yellow/P-red/VO, composite film,

Wavelength / nm

Time / days

and polyethylene terephthalate (PET) film (blank) at dawn; e house-
interior solar intensity at midday; f the transmittance at 550 nm of VO,
film and F-yellow/P-red/VO, composite film at three moments (7:00
AM, 1:00 PM, and 6:00 PM) of a day in one week [84]. Reproduced
with permission from Refs. [83, 84]. Copyright 2013, Elsevier; Copy-
right 2021, Elsevier, respectively
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4 Lanthanum hexaboride

Lanthanum hexaboride (LaBg) is a compound composed of
La and B, which is primarily recognized for its exceptional
thermionic emission capabilities and is extensively utilized
in various domains, such as electron microscopy [85, 86].
LaBg adopts a CsCl-type simple cubic structure (space group
Pm3m, No. 221), as depicted in Fig. 12a [87]. An octahe-
dron formed by six boron atoms is situated at the center of a
cube with lanthanum atoms at its vertices, resulting in LaB¢
having remarkably stable chemical properties. In Fig. 12b,
a conduction band crosses over the Fermi level along the
X—R direction of the Brillouin zone. Therefore, LaB¢ mani-
fests metallic properties with a free carrier concentration
of approximately 1.45x 10*2 cm?® [88]. Recent research has
revealed that nanoparticles of LaB exhibit a pronounced
LSPR effect [89], leading to strong absorption in the NIR

light, combined with high transparency in Vis light, promis-
ing a bright future in the domain of smart windows. Com-
pared to other plasmonic materials, the electron energy loss
spectroscopy peak for LaB nanoparticles lies between 1.1
and 1.4 eV, as shown in Fig. 12c [90]. This range is lower
than elemental metals but higher than doped semiconduc-
tor materials, positioning LaBg’s unique NIR absorption
(or transmission) peak closer to the more energy-dense NIR
region of 900-1000 nm, as seen in Fig. 12d.

The LSPR characteristics of LaBg can be modulated
through various methods, and we have conducted numer-
ous studies both theoretically and experimentally. First-
principles calculations reveal that pressure plays a role in
adjusting both the intensity and size of the energy loss peak
of LaB, as illustrated in Fig. 13a. Moreover, the position of
the low-energy loss peak is related to the absorption edge in
the NIR region [87]. Additionally, doping LaB, with other
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Fig.12 a Crystal structure of LaBg [87]; b band structure of LaBg
[87]; ¢ electron energy loss spectroscopy of LaB¢ particle shown in
the inset [90]; d transmittance profiles of LaBy dispersions with mean
particle size 13 nm diluted to various concentrations, where VLT rep-
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resents visible light transmittance and ST represents solar transmit-
tance [89]. Reproduced with permission from Refs. [87, 89, 90]. Cop-
yright 2016, Elsevier; Copyright 2010, Springer Nature; Copyright
2011, Elsevier, respectively
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Fig. 13 a Energy loss function of LaBg at different pressures [87]; b
optical absorptance of Sm doped LaBy [91]; ¢ extinction efficiencies
of various-shaped LaB particles with an effective radius of 100 nm
[93]; d extinction efficiencies of LaBg spherical particles with differ-

rare-earth elements can control its LSPR, subsequently
altering the intensity and position of the NIR absorption
peak, as shown in Fig. 13b [91, 92]. Our first-principles cal-
culations indicate that when some of the La atoms in LaBg
are replaced by other rare-earth atoms, the total kinetic
energy of electrons near the Fermi surface decreases.
This reduction in charge carrier quantity and plasmonic
frequency leads to changes in the LSPR characteristics
[84]. We also employed the discrete dipole approximation
method for theoretical computations on LaB particles with
various shapes and coating thicknesses. The results demon-
strate that particles with a larger aspect ratio absorb more
strongly at longer wavelengths in the NIR, whereas parti-
cles with a smaller aspect ratio show stronger absorption at
shorter NIR wavelengths, as depicted in Fig. 13c (simulated
extinction efficiency Q,,/a.; represents the absorption effi-
ciency of actual samples) [93]. Computations after TiO,
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ent TiO, shell thicknesses [93]. Reproduced with permission from
Refs. [87, 91, 93]. Copyright 2016, Elsevier; Copyright 2015, Else-
vier; Copyright 2021, Elsevier, respectively

coating indicate that as the coating thickness increases,
both position and intensity of the extinction peak of LaBg
in the NIR region undergo systematic changes, as shown
in Fig. 13d. This is likely associated with the increase in
particle size due to thickness variation.

LaB, exhibits outstanding shielding capabilities against
NIR light, especially at shorter wavelengths within the NIR
spectrum. However, its drawback is a narrow and relatively
weak transmission peak in the Vis light range, as shown in
Fig. 14a [94]. This results in a lower light collection effi-
ciency when used in smart window applications. In Fig. 14b,
the LaB4/PVB composite coating prepared on a glass sub-
strate demonstrates that as the content of LaB increases,
transparency significantly decreases and the color darkens
[95]. Yet, the insulation rate against NIR radiation is remark-
ably high. Hence, improving the Vis light transmittance of
LaBg will be the focus of future research.
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Fig. 14 a TEM image of prepared LaB, nanoparticles and the trans-
mittance of the corresponding LaB4/PVB composite resin coatings
(dotted line) [94]; b photographs of LaBg/poly(n-butyl acrylate)-r-
poly(methacrylate-2-ureido-4[ 1H]-pyrimidinone) films with different

5 Copper monosulfide

In recent years, copper-based chalcogenides Cu, E (E=S,
Se, Te) nanocrystals have garnered significant attention
due to their high electrical conductivity, exceptional cata-
lytic performance, substantial specific capacity, and light
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absorption capabilities [96—100]. These properties make
them particularly notable in applications related to sensors,
solar cells, and photocatalysis. Among the Cu,_E nanocrys-
tals, CuS nanocrystals are distinctively recognized for their
unique LSPR properties in NIR region [101]. CuS is a p-type
semiconductor with a band gap ranging from approximately
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Fig.15 a Transmittance of the polyvinyl alcohol/CuS composite
films with 30 pm thickness [33]; b a photograph of CuS/PVP nano-
particles printed on white paper and the thermographic images irradi-
ated for different times [103]; ¢ transmittance of in doped CuS coat-

2.2to 2.6 eV. The LSPR absorption peak in the NIR region
is predominantly attributed to the inherent copper vacan-
cies in the material. Should these copper vacancies be elimi-
nated, the corresponding LSPR absorption peak would fade
away [97]. The Hall effect measurements indicate that for
every formula unit in CuS, there exists one-third of a hole
[102]. According to the Drude model, this high concentra-
tion of p-type free carriers is beneficial for the LSPR in
CuS nanostructures. From the transmittance curve of CuS in
Fig. 15a[33], it is evident that it exhibits excellent shielding
performance in the NIR region, a conclusion that can also
be corroborated by the thermographic images in Fig. 15b
[103]. The efficiency of NIR shielding can be enhanced
through methods such as doping (Fig. 15¢) [104]. However,
CusS is similar to VO, and LaB, which does not exhibit the
same superior transmittance in the visible region as tungsten
bronze does. Additionally, it often displays a brownish hue
in thin films.

The LSPR effect of Copper chalcogenides is related to
the carrier concentration caused by its copper vacancies.
Therefore, besides factors, such as the dielectric constant

c 10 —yms NIR
90}

80|
70|
60
50 |
40
30—
H—11

20F—12

—14

Transmittance / %

500 1000 1500 2000

Wavelength / nm

ings (10, I1, 12, 14, and 16 corresponds to the molar ratio of In to Cu
was 0, 0.01, 0.02, 0.04 and 0.06, respectively) [104]. Reproduced
with permission from Refs. [33, 103, 104]. Copyright 2020, Elsevier;
Copyright 2019, Elsevier; Copyright 2021, Elsevier, respectively

of the medium, shape, size, and composition, the LSPR
resonance wavelength gradually blue shifts to the CuS with
the decrease of free carrier concentration [101]. Although
CusS exhibits significant LSPR effects in the NIR region, it
is characterized by easy photocorrosion and high environ-
mental sensitivity. As a result, coating methods are often
required to enhance its optical stability. However, coating
can also impact the intensity and position of CuS's LSPR
peak [105]. Figure 16a displays CuS nanocrystals with
varying SiO, shell thicknesses, with their absorption spec-
tra shown in Fig. 16b. As the shell thickness increases, the
LSPR peak in the NIR region experiences a red-shift and
its intensity gradually decreases. This is likely associated
with the reduction in free carrier concentration caused by the
SiO, coating, a conclusion supported by Hall effect measure-
ments and Mie—Drude model calculations. Moreover, Wei
et al. confirmed the revertible shifts of surface-dependent
LSPR in CuS nanodisks [101]. Figure 16c illustrates the
blue-shift of LSPR with increasing surface treatment cycles
at a consistent oxygen exposure time. As depicted in the
adjacent schematic, when oleylamine is removed and oxygen
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Fig. 16 a TEM images of CuS nanocrystals with different SiO, shell
thicknesses of 0, 15, 23 and 40 nm; b corresponding absorption spec-
tra and carrier densities [105]; ¢ absorption spectra of CuS nanodisks
with increasing surface-treatment cycles (curve 1 to 4 represent an
increase in the number of surface-treatment cycles) with identical

is adsorbed onto the surface of the CuS nanodisks, the LSPR
shift toward the blue. However, when the CuS nanodisks
are re-passivated with Oleylamine, the LSPR returns to its
original position. The surface-dependent shifts of LSPRs
are primarily determined by the free hole concentration in

@ Springer

1600

3010 - A
£ 2.5x107 - \
} A
g L
o 1.0x10*} =
o
T 0.5x107 | "
)
—um~— Hall effect measurement n
0 f=a~ Calculate by drude model
1 1 1 1
0 15 23 40

Thickness of silica shell / nm

Q'\éz:\,
&
g2
L B
L 8
\éb g
3
9
» <
& 4
\éz“ 4’,%
% mn
d;;l’ RN
600 1200 1800

Wavelength / nm

oxygen exposure time and schematic illustration of the process of
LSPRs shifts [101]. Reproduced with permission from Refs. [101,
105]. Copyright 2013, American Chemical Society; Copyright 2023,
Springer Nature, respectively

CuS nanodisks. This free hole concentration is influenced
by the coverage and exchange of surface ligands, as well as
the dosage and duration of oxygen exposure.

Compared to LaBg, the main advantage of CuS is its
lower cost and easier preparation of various nanostructural
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Fig. 17 A working model for an ideal smart window

forms [106]. Therefore, it also has promising development
prospects in the field of smart windows.

6 Summary and prospects

An ideal smart window should adapt to various climatic
regions. As illustrated in Fig. 17, during hot weather, it
should block the UV and NIR rays of the solar spectrum,
while allowing Vis light to pass through, thereby reduc-
ing cooling energy consumption. Conversely, during cold
weather, it should permit NIR to pass through to ensure
indoor heat retention. When considering the potential loss
of indoor heating energy, the smart window should have a
high reflection rate for longer-wavelength mid-infrared rays
(with radiation wavelengths of underfloor heating around
a few micrometers) to prevent indoor heat from escaping
through the window. Materials capable of changing color
due to electrical, thermal, or light-induced effects can sig-
nificantly and reversibly control the incidence of sunlight.
However, these materials often substantially reduce the
transmittance of Vis light when they change color, result-
ing in an opaque effect on the corresponding coated glass.
This could create an uncomfortable experience for inhab-
itants when used in buildings. Some metallic compounds
with low plasmon frequencies that maintain high Vis light
transmittance show promise for applications. These materi-
als absorb UV due to interband transitions and possess LSPR
effects that scatter and absorb NIR light. The four plasmonic
materials discussed in this article each have their own set
of advantages and disadvantages. Tungsten suboxides and
tungsten bronzes have excellent NIR shielding capabilities
while maintaining a very high transmittance of Vis light.
However, their long-term stability in real-world environ-
ments is questionable, and their NIR shielding capability
is irreversible. Our recent simulations suggest that tungsten
bronzes are ideal for energy-saving applications in build-
ings in hot regions, but it’s not as effective in colder regions

[107, 108]. The primary advantage of VO, is its phase transi-
tion property, which shields against NIR in hot weather and
automatically increases NIR transmittance in cold condi-
tions. This reversible optical control feature makes it the
most researched material in the smart window domain. Yet,
VO,’s downsides include its not-so-high transmittance of
Vis light and significant room for improvement in its NIR
control capacity. LaB exhibits remarkable shielding abil-
ity against high-energy solar light around 1000 nm, with
notable thermal insulation effects and high chemical stabil-
ity. However, its disadvantages include a relatively low Vis
light transmittance, challenges in synthesizing nano-sized
particles, and an irreversible NIR shielding capability. CuS’s
advantage lies in its cost-effectiveness, making it a relatively
affordable option with promising applications. However, its
transparent thermal insulation performance is somewhat
subpar.

In summary, neither chromogenic nor plasmonic mate-
rials offer a perfect solution in the smart window domain
currently. Each material has its own set of advantages and
drawbacks. The choice should be based on various factors,
such as climate, region, budget, and personal preferences.
For future research concerning these plasmonic materials,
besides continuously optimizing their solar control capabili-
ties, the following points should be considered:

i. The smaller the particle size, the more pronounced the
NIR shielding ability. Therefore, in practical applica-
tions, particles should be prepared in sizes ranging from
a few nanometers to tens of nanometers. While current
nanoparticle preparation methods like the solvothermal
method can produce smaller-sized particles, but they
yield low output, making them unsuitable for large-
scale production. On the other hand, solid-state reac-
tions, while facilitating large-scale preparation, often
result in micron-sized particles, significantly affecting
NIR shielding effects. Therefore, exploring synthesis
methods for nanocrystals that are conducive to large-
scale production is a promising research direction.

ii. When evaluating the energy-saving effects of these
materials on buildings during winter, the reflection
rate of these coatings to indoor heat radiation should
also be considered, a point often overlooked in cur-
rent research. For example, the radiation wavelength
of underfloor heating is around 8 um, if these coatings
have a high reflection rate in this mid-infrared range,
it can prevent indoor heat from escaping through the
windows, thus also contributing to energy savings.
Therefore, the reflection conditions of these materi-
als' coatings in the mid-infrared should be determined
under the same standards and conditions to estimate
the energy-saving effects more accurately.
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