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ABSTRACT

That what makes simulation models useful and especially interesting, is si-
multaneously what makes building them so difficult. Involving the correct
dynamic behaviour in a simulation model is hard and rarely done for com-
mercial purposes. A way of identifying dynamic model parameters within
commercial purposes can possibly be done by using parameter identifica-
tion techniques. The in- and output signal are simultaneously measured,
while the input signal contains the correct amplitude and frequencies so
that the whole dynamic behaviour of the system will be exposed. When the
in- and output are known, this tells something about the system and hope-
fully the system’s parameters can be identified which enables you to have a
correct dynamic model in a short time.

First of all, it is tried to identify model parameters of a nonlinear simulation
model. Then, this experience is used to avoid pitfalls on the way to param-
eter identification of a physical propulsion drive train on full-scale. Param-
eter identification generally requires three things: an information-rich data
set, a model structure representing different relations between the system
parameters and finally an optimization program.

A nonlinear model is built for the generation of different information-rich
datasets. Subsequently, this nonlinear model is linearized so that it can
be used as a model structure for parameter estimation. Using a excisting
Matlab tool for optimization a successful virtual parameter estimation is
executed. The parameter estimation was successful, because the initial pa-
rameters are known as they are implemented in the nonlinear model and
the estimated parameters are identical to the implemented ones. This suc-
ceeded for multiple input signals, which means that different information-
rich datasets were generated and used for parameter identification. It is
important to note that not all individual parameters could be estimated as
absolute values. Due to limitations in the model structure, some parameters
were only estimated relatively to each other.

Due to the success of the virtual parameter estimation, full-scale experi-
ments were executed on the 5th of November using a stock vessel, namely
the Stan Tug 1205 of Damen. During this experiment, full-scale information-
rich datasets were generated. A document containing execution details of
this experiment, ’experiment protocol’, is delivered separately from this the-
sis, so that origin of the data is known and it can be used for other researches
or a repetition of this research.

Apart from some minor changes are for the full-scale parameter identifica-
tion the same model structure and optimization program used as during the
virtual parameter identification. The estimated parameter sets of different
parameter estimations with the full-scale data are showing less promising
results. The differences between the estimations are so big that results of
the different parameter estimations are not trustworthy.
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One single parameter of the estimated parameter set is ’known’, because it
can be obtained from a different kind of experiment. However is the value
of this parameter according to the other experiment completely different
than when the value is estimated by parameter identification. Additionally,
some of the estimated parameters and/or relations show unexpectedly high
or low values. However, when the estimated parameter set is implemented
in the model structure it shows step response behaviour similar to step re-
sponse data from the full-scale experiments. During manoeuvring the most
common input signals by the captain are steps, so the relevant responses
can now be simulated to some extent.
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1 INTRODUCT ION

This chapter contains four different main parts, where the motivation for
this research is outlined in the first main part. The second main part con-
tains the main research question, which is then divided into several subques-
tions. The third main part contains the research approach, which describes
how the different subquestions can be answered. During the definition of
this approach also a great part of the scope is implicitly defined. In the last
main part the report outline is given, clarifying the structure of this thesis.

1.1 motivation

Computer simulation models play a more important role in every field of en-
gineering nowadays. Furthermore the desire of having a simulation model
is increasing. A simulation model is an imitation of the reality. In the ma-
rine industry, this can be a simple waste-heat system but also a complex
propulsion drive train with different configuration modes. The main reason
for having a simulation model is that every kind of dynamic propulsion be-
havior can be tested in a cheaper and safe environment (2). Especially for
the propulsion drive train, where high forces are involved.

The definition of dynamic behavior is the ’path’ taken from a starting point
A to a new point B, instead of the static values of those two points. To put
this in marine propulsion terms: It is common practice nowadays that an
engineer calculates the power in different static operating points of the en-
gine. But it is much harder for the engineer to calculate how the propulsion
system behaves between the operating points. In other words, what is the
’path’ between the operating points A and B?

The reason what makes the simulation models especially useful and inter-
esting. Is also the reason why the building of the simulation models is really
difficult. Involving the correct dynamic behaviour in a simulation model is
hard and rarely done for commercial purposes. The difficulty is that the
suppliers of the equipment in the drive train are often not willing to share
the correct dynamic behaviour of their components.

But for a shipyard, the urge of having such a dynamic simulation is still
there. What kind of simulation studies does a shipyard want to do and
which commercial advantages can this have? First of all, the ability for test-
ing the control system of the ships propulsion in a simulated environment
can decrease the required testing time in a sea trial, since fine-tuning of the
control system is one of the most time-consuming activities. This is shown
in the testing results of aircraft carrier ’Cavour’, built for the Italian navy.
The final tuning at sea lasted less than half of the time that is normally
scheduled (3). Furthermore the complexity of the propulsion drive train
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is increased in the last decade, due to the building of vessels with hybrid
propulsion plants and/or more redundancy. As a consequence, the control
system becomes even more critical. In the near future, more vessels will be
equipped with different propulsion systems, due to an increase of different
emission zones all around the world, which again results in more complex
control systems.

Another example where simulation models can play a key role, is in the
answering to the new IMO requirements. Vessels built today are quite often
installed with less power, because they have to comply with the new rules
of the international maritime organization (IMO), the energy efficiency de-
sign index (EEDI). Potentially, the EEDI could affect the safety in adverse
conditions as the installed power is lowered for complying with the EEDI
rule (2). For some vessels the EEDI is a design driver, so the installation of
less power is beneficial for the complete ship design.

A good control system can also play an important role during the purchase
of a vessel by a shipping company. Because sailing with the correct control
system can be economically beneficial. For example, economical benefit is
achieved by tuning the control system such that the system is less aggres-
sive to small errors. This results in less accelerations which reduces the total
amount of energy required for the voyage.

The last possibility is adjusting an existing control systems for a certain
situation. During manoeuvring, for example, the captain wants a more
aggressive vessel behaviour, so a button can be created which makes the
propulsion system more aggressive. But also, one can adjust the control sys-
tem during sea trials for better results, such as during turning circles and
crash stops.

The four reasons mentioned here above indicate the importance of simula-
tion models. But one should understand that the opportunities from having
a simulation model are tremendous and some possibilities are still unknown,
e.g. condition monitoring. The problem statement: ’The model parameter
identification of a simulation model requires a lot of time, but the urge is
increasing.’

As stated before, the dynamic behaviour of propulsion systems is often not
identified, due to the fact that the parameters that are responsible for this
dynamic behavior are unknown. Some parameters, as far as known, which
are influencing the dynamic behaviour are so far never been known, such as
the gain settings of the PID controller. Of course, some dynamic parameters
of the components can be derived by doing individual experiments or by
getting in touch with product specialists within the supply company. Nev-
ertheless, the gathering of model parameters is very time-consuming task
and asks for improvement.

A way of identifying model parameters is by data-driven models (DDM’s)
(4) (5). These models are built on historical data collected by on-board sen-
sors and they estimate the parameters without requiring any priory knowl-
edge of the system. But there are two really big disadvantages. First of all,
the logging of the data on board is quite often too low sampled to make
thrust worthy conclusions of the dynamic behaviour. The sampling rates
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are low, because otherwise you get a tremendous amount of data. Another
big disadvantage is that it is unknown if the information in the data sets is
’rich enough’. For example when a container vessel is sailing for two weeks
with constant speed from harbour A to B, than these data sets are not con-
taining enough dynamic behaviour.

Another way of identifying model parameters is by using parameter identi-
fication techniques. Nowadays, identification techniques are often used in
other fields of engineering, e.g. sound and vibrations, were they excite the
system with certain frequencies and measure the response somewhere else
which tells you something about the system in between. For example when
you put a speaker in room one and measure the noise in room two, than
this says something about the wall in between room one and two. Figure
1.1 explains parameter identification, where an input signal is put on an un-
known system, in our case a propulsion drive train. During the excitation
of the system, the input and output from the propulsion drive train will be
simultaneously measured and parameters can hopefully be identified.

Figure 1.1: Model parameter identification.

The input signal on the propulsion drive train is chosen such that it is a
short but information-rich signal, which contains different frequencies so
that the whole dynamic behaviour of the vessel can be identified. From this
dynamic behaviour the vessel parameters can be calculated. The experiment
can take place just before a sea trial or after docking where big maintenance
is carried out. Differences between previous gained parameters can point
out improvements or installation errors in the maintenance work.

The research goal is to use parameter identification techniques to determine
parameters of a full-scale marine propulsion system.
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1.2 research questions
The research goal is defined in the previous section. This research goal leads
to the following main research question:

”How to determine propulsion model parameters with identification
techniques on a full-scale propulsion system in limited time?”

This main research question will be the common thread throughout this
research and will be divided into several subquestions. Below, the different
sub-questions are listed with a brief explanation on how this subquestion
will contribute to the main research question.

• ’Which parameter identification techniques are suitable for model parameter
estimation of a ship propulsion plant’? This subquestion involves different
mathematical approaches on how the parameters can be identified.

• ’Which experiments are suitable for the full-scale determination of model pa-
rameters’? The goal of this subquestion is to gain knowledge for the
full-scale experiments, where the emphasis lies on safety and pragmat-
ically. Furthermore is the feasibility of full-scale parameter identifica-
tion discussed.

• ’What is the uncertainty of an estimated full-scale model parameter’? The
goal of this subquestion is to gain knowledge about the error in the
estimated parameter. Also, the uncertainty in the estimated parameter
is an important factor in making the concluding statement more thrust
worthy.
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1.3 research approach
The research approach is describing how the answers to the research ques-
tions are obtained, this implies that conditions are set. The research ap-
proach is split up into three parts, where every part contains one research
subquestion.

The global lines of the research is summarized in figure 1.2. In this figure is
also illustrated how the answering on the different subquestion is achieved.

Figure 1.2: Location of subquestions in block diagram.

The ’first subquestion’ is answered with a computer simulation model of a
propulsion system, so this is defined as virtual experiments in figure 1.2. In
general can be stated that parameter estimation requires three things: data
(input and output signals), model structure and an optimization program
(fit model to data).

The answering of the first subquestion is done with virtual experiments for
several reasons. First of all, different kind of datasets can be generated with
the simulation model. Second of all the generation of these data sets in
a computer model is faster than gaining them on full-scale. Furthermore
using the simulation model is a lot cheaper and safer than doing this on a
full-scale vessel. The third reason for building a computer simulation model
is that it can be used as basis for the ’model structure’ that is required for pa-
rameter estimation. Please note that the simulation model is built in Matlab
Simulink in the same conditions as the full-scale experiments are executed.

Now the information rich dataset can be generated from the nonlinear model
and the model structure can be derived from the nonlinear model, the only
thing that is required for parameter estimation is the optimization program.
The optimization program is discussed in chapter 4.1 ’Methods’, were more
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in depth research is done on different optimization program and how this
optimization works in practice. Using these three pillars, the answering of
the first subquestion can be done. Namely, how and to which extent the
model parameters can be determined in a theoretical way.

The second subquestion is answered with a more pragmatic approach. This
is exactly one of the goals of this research question, as after the answering
of this question an experiment protocol is delivered for the full-scale experi-
ments. First, the limitations of a propulsion drive train should be dealt with.
The limitations are safety and the system’s physical response on the input
signal. These limits can express themselves into ramps in the different con-
trol units and the follow up question is where are these control units are
placed.

For the full-scale experiment is full control of the input signal required. This
will be achieved in cooperation with VOLVO Penta Netherlands, where the
possibilities for the implementation of the input signal will be discussed.
The difficulty lies here that the engine should think that the lever is at-
tached to the control system, while in practice it is replaced by a computer
or signal generator. Apart from the input signals, the output signal is as im-
portant. The output signal is measured in cooperation with JVS B.V., who
are specialized in measuring and calculating the vibration and noise levels
for maritime installations. In cooperation with JVS B.V. the possibilities will
be discussed for the measurement of the output signals, e.g. precision and
amount.

In the end is also knowledge required for the correct logging of the data.
But if the outlined points here above are done correctly than different infor-
mation rich datsets can be generated of a full scale propulsion drive train.
The second part of the answering contains the results, to see if it is possible
with the used input signals to identify the parameters. The approach used
during the second subquestion is based on the derived methodology in the
first subquestion.

The ’third subquestion’ will be answered with a review of the mathematical
approach that is used during the answering of the first and second subques-
tion. In this review, different errors and their uncertainties on the parameter
estimation will be discussed. In this discussion, the errors of the different
input signals and different identification techniques will be reviewed. The
goal of this research question is to substantiate the conclusion that can be
with drawn from this research.
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1.4 outline
The thesis outline clarifies the contents of all the chapters in this thesis. Fur-
thermore, figure 1.3 shows a block diagram which contains the interaction
of the vital chapters leading to the research goal. Figures 1.3 and 1.2 are
nearly identical, indicating that Chapters 1-5 contain the answering of the
first subquestion, that Chapter 6 and 7 answer the second subquestion and
the third subquestion.

Figure 1.3: Thesis outline in block diagram.

• Chapter 1 ’Introduction’ contains motivation, research questions and
an approach to the answering of the research questions.

• In Chapter 2 ’Literature review’ a brief literature review is given on the
literature that is used for the simulation model. Furthermore, liter-
ature about the basic knowledge/principles of signals, systems and
parameter identification techniques is given.

• Chapter 3 ’Simulation model’ contains the building of the simulation
model that is used for the ’virtual experiments’. After that, this simu-
lation model is linearized which results in the model structure for the
parameter estimation.

• In Chapter 4 ’Parameter identification’ the input signal and parameter
estimation methods are discussed. Furthermore the requirements for
the input signal are derived. Also, it is discussed how the parameter
estimation program could be optimized.

• In Chapter 5 ’Virtual parameter estimation’, the model structure, information-
rich data sets and parameters estimation algorithms from the previous
chapters leads to different virtual parameter estimation. From these
virtual parameter estimations, lessons are learned which are used for
the full-scale experiments.
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• Chapter 6 ’Full-scale experiments’ contains a detailed explanation of
how the experiments are executed, how the input signal is put on
the system and finally how the data is measured and pre-processed.

• In Chapter 7 ’Full-scale parameter estimation’, the different model pa-
rameters are estimated with the obtained data during the experiments.
The estimated parameter vector is evaluated and the quality of the
estimation is determined. Chapter 7 is based on Chapters 3, 4 and 6.

• In Chapter 8 ’Conclusion & Recommendation’, a conclusion is given on
the main research question that is formulated in Chapter 1. After that
recommendations for further research are given.



2 L I TERATURE REV IEW

During this research different fields of engineering are touched, such as
model building and identification techniques. The two different main parts
in this literature review correspond with these two fields, respectively. First
the model building is discussed, followed by the main part about ’identifi-
cation techniques’.

2.1 simulation model

This main part on simulation models can be separated into two parts. The
first part covers literature which is used for the building of the nonlinear
simulation model. The second part discusses the literature which is used
for the linearization of the nonlinear model.

In the past, different simulation models have been built, that imitate the
propulsion system of a vessel. These models are a good starting point for
the building of a new simulation model. An example of such a propulsion
model, is a CODLAG configuration in free sailing, made by Martelli, M
(6). Another simulation model is the COGAG configuration by Altosole, M.
(3). The basis of simulation models in general are the same, namely all of
them consist out of a shaft and speed loop. These two loops are discussed
in quite some detail in the work of Makrygiannis, N (7). The differences
between simulation models is quite often found in the level of detail of the
(sub)-components.

An approach of simulating the diesel engine is found in a publication of
Vrijdag, A. (8). Here, the brake torque is a function of fuel rack [mm] and
shaft speed [rpm]. Also, it is stated that an increase of the engine speed,
while keeping a constant fuel rack position, reduces the brake engine torque
slightly. A reason for this is that a higher rpm increases the friction between
the piston and the cylinder wall per cycle. Another reason for this phe-
nomenon is that an old fuel injector pump can lead to more fuel leakage at
higher engine speeds per cycle.

If one wants to simulate a crash stop, which means ’negative’ engine speed
and forwards sailing, more quadrants should be added. To do this, one
could introduce polynomials that describes the open water diagrams. The
polynomial’s parametric values are different for every type of propeller and
are presented in the book Marine Propellers and Propulsion, J. Carlton (9).

Next to the propeller and diesel engine, the governor is also an important
component that has a big influence on the dynamic behavior of the vessel.
The calculation that is made in the governor determines the error between
the set point engine speed and engine speed. This error should then be
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minimized over time. This approach is visible in the work of ’Marine diesel
engine governor identification’, P Matic (10). Next to that, this approach is
also used in Martelli, M (6).

For the building of a simulation model it also requires parameters. Param-
eters are based on a reference vessel, these are supplied by Damen Gor-
inchem and also partly derived from sea trails. A vessel description of the
vessel which is used for simulation model is elaborated on in Chapter 3.2.1.
Furthermore torsion vibration calculations are provided which are used for
the determination of the mass moment of inertia. Not all dynamic parame-
ters can be derived, so then estimations are made based on existing values
from other vessels and experience.

In the second part is the linearization of the nonlinear model discussed. The
reason for linearization is that their are more identification techniques avail-
able in a linearized environment. This can be confirmed by all the different
system identification books, where the linearized parameter identification
technique methods are enormous (11) (12).

Due to the assumptions in a linearized model, there is a possibility that
some nonlinear behavior is not captured and makes the model less valuable
(12). Determining the parameters of a nonlinear system can be a major math-
ematical and time-consuming identification, compared to when the system
is linear. Nonlinear system identification comes into picture where linear
system identification fails to address the users questions (13). Nevertheless,
for this proof of concept, a linearized parameter identification will be satis-
fying, so that it simplifies the math (12) and is easier to execute parameter
estimation which results in less computational time.

Linearization of a nonlinear model is done more often in the literature. In
this thesis this is partly done according to work of Vrijdag, A (14) (8). These
two examples are executing the linearization for free sailing conditions,
while during this research the linearization should be made for bollard pull.
In the literature are also additional constraint/relations between governor
settings found, e.g. reduces cavitation or pitch changes (7) (15).These ex-
tra relations/constraints can lead to a more solvable set equations and/or
speeds up the algorithm that is estimating the parameter.

2.2 parameter identification
This second main part ’parameter identification’ contains two parts. First
of all, a literature review is given on what parameter identification is and
which literature is used to get a basic understanding of parameter iden-
tification, with respect to ’systems and models’. More information about the
existing methods that are available for parameter identification can be found
in Chapter 4.1 ’Methods’. The second part of the parameter identification
literature review is about applied parameter identification techniques in ma-
rine engineering specifically.

First of all, a basic understanding of model identification should be gained,
which is done with the help of different identification books (16) (11) (12)
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and (17). As mentioned in the previous section, there is a large difference be-
tween linearized parameter estimation and nonlinear parameter estimation.
Another important separation is made between a time-variant(TV) system
and a time invariant (TIV) system. In the case of a short and information-
rich experiment of a vessel in bollard pull (BP), it can be assumed that the
system will be time-invariant because the system will not changes a lot dur-
ing the experiment (assumed constant weather conditions). An example of
a time-variant system could be an aircraft losing weight during a flight, due
to the combustion of fuel. As a result of this, the system will also react dif-
ferently over time, because the system weight is changing over time.

An unknown system, in this case the marine propulsion drive train, can be
classified into three categories: White, grey and black box, illustrated in fig-
ure 2.1.

Figure 2.1: Clarification categories of model parameter identification.

First of all, a white box means that everything is known about the system,
including all the internal relations. The grey box represents that some rela-
tions are known and the black box represents that nothing inside the system
is known. In this particular case, the marine propulsion system can be clas-
sified as a grey box, as some relations are known, but not everything. This
also clarifies the statement, made in the beginning of this thesis, that says
that parameter identification requires three things: Data sets, searching al-
gorithm and a model structure. The model structure defines the relations
that are required in this grey box.

The model structure is equal to the linearized model, but it can be repre-
sented in different mathematical forms. For some parameter identification
techniques, it is easier to work with a transfer function, but for some it is
easier to work with state space notation. The conversion from one mathe-
matical representation to the other can easily be done with different tech-
niques (12).

Now that there is a basic understanding of parameter identification in gen-
eral. The second part is about how parameter identification has played a
role in marine engineering. This can be split up into two different fields,
namely full-scale and model scale.

In model scale, there are some different researches done on identification
techniques. First of all, identification techniques were applied on maneuver-
ing models. For optimizing an autopilot, a certain signal (zig-zag) was sent
to the steering system and parameters were identified (18). Next to that,
the parameters of a whole nonlinear maneuvering model were identified
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by doing short and information-rich experiments on the model ’Cybership
ll’(19) (20). The ’Cybership ll’ is a model scale vessel, which is used for ex-
periments by the Norwegian University of Science and Technology (NTNU).

Identifying the propulsion drive train characteristics using identification
techniques is so far only applied on model scale. The model parameters of
the educational model ship ’The Tito Neri’ are identified with system iden-
tification (21) (22). From this literature, it is understood that the parameter
estimation on model scale was successful. In these papers, recommenda-
tions are written for full-scale parameter identification, as listed here below:

• Avoid own frequencies in the drive system

• Different nonlinear effects should be taken into consideration when
the model is linearized such as:

– The engine ignition frequency relates to the upper limit of a mean-
ingful excitation frequency.

– The discrete behavior of the controller

Another thing that is addressed in these papers, is the time duration of the
full-scale experiments. A way of reducing the required time for the experi-
ments is by the implementation of a multi sinus, which means that multiple
frequencies will be exciting the system at the same time. When the value
of the own frequency of the drive system is known, a multi sinus can also
easily avoid this own frequency.

There are also different full-scale identification techniques carried out in the
marine engineering. For example ship resistance and propeller efficiency
identification.

The use of identification techniques on full-scale manoeuvring models started
with the PhD thesis of Wei-Yuan Hwang, (23). After that, in May 1987, Lui G.
(24) performed different experiments on the ’Exxon’ San Francisco, which
were used to identify the ship resistance coefficient with the help of sys-
tem identification. The experiments only took 40 minutes while the ship
was heading into the desired direction of the voyage. The procedure dur-
ing the 40 minutes was first to maintain ship equilibrium. After that, the
ship speed was slowed down by cutting the power of the propeller, allow-
ing windmilling. Then this was followed by slow to half speed and reverse
the propeller to bring the ship to a stop. After remaining at stop for a few
minutes, the ship was speed up by calling for cruise speed to be reached
as quickly as possible. With this collected data the ship resistance coeffi-
cient was identified with an accuracy probably within 1%. Furthermore the
full-scale wake fraction, w, and full-scale thrust deduction factor, t, were de-
termined.
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This chapter is divided into six different main parts. The first main part
describes the formulation of a nonlinear model of the sip propulsion plant in
bollard pull conditions. The second main part is about the static validation
of the nonlinear model. In the third main part, this nonlinear model is
linearized for bollard pull. In the fourth main part is a static operating
point selected, which is required for the verification of the linearized model.
The fifth main part consists a verification of the linearized model. In the last
and final part the conclusions from this chapter are outlined.

3.1 nonlinear model

The build of the nonlinear model is structured in the following way. First
a brief introduction is given about the full-scale experiment set up, which
influences the building of the nonlinear model. This is followed by a block
diagram of the simulation model, where every block represent a component
of the propulsion drive train. After that a set of differentials and algebraic
equations (DAE) is given, where the equations correspond to the different
blocks in a block diagram. Finally, the equations for the different blocks are
discussed.

The vessel that is used during the full-scale experiments is a small tug, be-
cause it’s relatively simple propulsion drive train, which suits for this proof
of concept. Furthermore, to the writer’s knowledge, there are no results
of similar experiments. Because it is all-new, a small ship is chosen, so
if something unexpected happens that will damage the vessel, e.g. excite
own frequencies, gearbox hammering, then the consequences and costs on
a smaller vessel are minimized. Most of Damen’s smaller tugs are equipped
with a fixed pitch propeller (FPP). This leads to an important consequence
for this research, namely that no input signal can be put on the pitch of the
propeller. This means that the only input signal in the model is the engine
speed set point.

For safety reasons and for the simplification of the full-scale experiments,
it is chosen to carry out the experiments while the vessel is moored to the
shore. It should be noted that in theory this is not equal to bollard pull
condition. However in a simulation environment they are equal so the non-
linear model is built for bollard pull. This is a simplification as the vessel
speed loop can be neglected.

The three mentioned constraints, namely small tug vessel with simple drive
train, bollard pull condition and only single input signal on the system
namely shaft speed are taken into account in the simulation model.
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In figure 3.1, a block diagram of the nonlinear model is presented, which
consists out of a governor, fuel actuator, diesel engine, gearbox, propeller
and shaft loop. The reference vessel is equipped with a damper, but this
is neglected in this model, because the influence on dynamic behaviour is
minimal.

Figure 3.1: Block diagram of the nonlinear model.

The nonlinear model is built in Matlab Simulink, where the blocks in figure
3.1 represent sub systems in Matlab Simulink model. The DEA of the com-
ponents of this nonlinear simulation model are listed in box here below.

2π
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The shaft loop is a first order differential which is presented in equation 3.1,
(14). The shaft speed loop is a balance between the shaft torque and pro-
peller torque. The shaft rotation dynamics are considered by implementing
the mass moment of inertia and the shaft speed.

In equations 3.2 and 3.3, the two equations of the governor are presented. In
equation 3.2, the error is calculated between the actual engine speed and the
requested engine speed by the operator. In equation 3.3, the set point of the
fuel rack actuator is determined by using a PI regulator. This set point is
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calculated by multiplying the error with a gain, Kp, and the time-integrated
error with another gain, Ki. It is unknown if the actual vessel is equipped
with a PID or PI regulator.

The fuel actuator is a component which makes sure that the fuel goes inside
the cylinder, quite often under high pressure. This actuator is controlled by
the governor and in practice there is a delay between the governor sending
signal, xset and the fuel actuator doing this, x f . Due to the fact that this
response is small compared to the full shaft speed loop, this delay is ne-
glected. So the fuel actuator is assumed ideal, which means mathematically
that equation 3.4 is applicable.

The diesel engine is simulated in such a way that the brake torque is depen-
dent on the fuel rack and the engine speed, see equation 3.5. In practice
this dependency is also the case but than for every engine cycle. Further-
more, limiters are implemented in the diesel engine. This is because the
turbocharger first needs power to achieve an increased air pressure. Fur-
thermore is the engine limited, because at high engine speeds the internal
forces are becoming too high. Figure 3.3, shows all the engine limits with
the black line and these are also implemented inside the simulation model.
The engine brake torque is in relation with shaft torque, gearbox ratio and
gearbox efficiency, see equation 3.6. In practice their are more limitations
in the engine for example the discrete firing frequency. Furthermore are
the step sizes of the calculation of the engine governor and possible the
engine management system not implemented. This is assumed because it
is expected that the response of shaft speed loop occurs already at lower
frequencies so these components only play a role at higher frequencies. Fur-
thermore is obtaining the correct discrete behaviour from these components
really difficult.

The propeller is simulated according to equations 3.8, 3.9 and 3.11. J is zero,
because the ship speed is zero, which also results in the fact that Kt and Kq
are constants. As a consequence is the torque and thrust only function of the
shaft speed and a multiplication with some constants. With the relative rota-
tive efficiency, which presents wake field disturbances, the propeller torque
can be calculated, see equation 3.10.
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3.2 static validation nonlinear model
This main part consists out of two parts, were in the first part the input
values of the nonlinear model are presented. In the second part a static vali-
dation is executed. The nonlinear model is only statically validated, because
there is no dynamic behaviour data available for the reference vessel.

3.2.1 Vessel specification of virtual vessel

In this first part the vessel specifications of nonlinear model is discussed.
The virtual vessel is exactly a Stan Launch 804, with a VOLVO D5A-B TA,
a ’Twin Disc 505 3.00:1’ gearbox and a Kaplan FPP 3-70 propeller with no
nozzle. This is the same drive train set-up as the vessel that later on will be
used for the full-scale experiments. The sea trial data, performance specifica-
tion and the torsion vibration calculation of the virtual vessel are provided
by Damen Gorinchem. The main particulars of the vessel are presented in
table 3.1, and more detailed information of the virtual vessel can be found
in the product sheet (25).

Symbol Physical quantity Value Unit
Loa Overall ship length 8.62 m

B Overall ship width 3.82 m
Tside Draft at the sides 1.3 m

vs Ship speed 8.3 Kn
DWT Dead weight 17.6 t

Table 3.1: Main particulars of virtual vessel.

Next to the vessel dimensions, more values are important for the execution
of simulations with the nonlinear model, these are listed in table 3.2. This
list contains some general physical quantities, the shaft line characteristic,
the propeller parameters, diesel engine and governor settings. The general
physical quantities such as water density are based on ’Haven Zuid’ in Gor-
inchem, in where the full-scale experiments take place.

Symbol Physical quantity Value Unit
g Gravitational constant 9.81 m/s2

ρ Water density 1000 kg/mˆ3
w Wake factor 0.25 [-]
t Thrust factor 0.06 [-]

ηtrm Mechanical transmission losses 0.95 [-]
igb Gearbox ratio 3 [-]

Ip,tot Total mass moment inertia 21.2 kg ·m2

Dp Propeller diameter 0.77 m
P/D Pitch ratio 0.799 [-]

Pb,max Maximum engine brake power 89 kW
ne,max Maximum engine speed 1800 rpm

Table 3.2: Additional input of nonlinear model with values.

One of the parameters that is required in the model and needs some addi-
tional more clarification is the mass moment of inertia Ip, which is used in
shaft loop. The value of Ip is derived from a torsion vibration calculation
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(TVC). In this formulation it is assumed that all the contributing moments
of inertia of the drive train are reflected to the values as ’seen’ from the pro-
peller side.

Due to the fact that there is a rotational speed difference in the drive train,
due to the gearbox, the total mass moment of inertia can not be summed
up directly. First the components after the reduction gear should be mul-
tiplied by the squared value of the reduction ratio. This is presented in
equation 3.12, where subscript n represents all the components that are after
the reduction gear such as damper, pulley, cylinders, flywheel and flexible
coupling. In here is Inc denoted as the corrected moment of inertia for a
component, after the gearbox as ’seen’ from the propeller side.

Inc = In · i2gb (3.12)

In here is Ink in equation 3.13 is denoted as the corrected moment of inertia
for a component, before the gearbox as ’seen’ from the propeller side.

Ikc = Ik (3.13)

Were in the end the total mass moment of inertia is a summation of all the
values of the different corrected components Inc and Ikc. The total mass
moment inertia ’seen’ from the propeller side is 21.2kgm2. The biggest con-
tributions of the mass moment of inertia seen from the propeller side is
listed in table 3.3.

Description Mass mom. of inertia Unit
Flywheel 8.15 kg ·m2

Propeller 2.18 kg ·m2

Table 3.3: Highest reflected mass moment inertia’s in propulsion drive train of vir-
tual vessel seen from propeller side.

From table 3.3 can be seen that the flywheel has a big contribution to the
total mass of inertia. By assuming that the total moment of inertia is op-
erating from one engagement point in this nonlinear model at end of the
shaft, this will lead to differences with reality. The reason for this is that big
contributor of the total mass moment of inertia is placed somewhere else on
the drive train. The point of engagement of all the mass moments of inertia
can have influence on the precision of the model.
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3.2.2 Static validation

The static validation is done for two cases, first an engine power comparison
and second a bollard pull comparison. This is done by comparing model
results with sea trial results of the reference vessel, which are provided by
Damen Gorinchem. Figure 3.2 shows the bollard pull as function of engine
speed for the nonlinear simulation model. The dots in figure 3.2 which indi-
cate the bollard pull for a certain engine speed that was obtained during the
sea trial. The grey line is the obtained result from the the nonlinear model.

Figure 3.2: Validation nonlinear model in bollard pull with a sea trial.

When the figure is investigated in more depth, the following observations
are done:

• The two graphs are identically shaped over the whole rpm range.

• Between 900 and 1700 rpm there is a maximum error of 0.02-0.04 ton.

• The highest relative error occurs at 1100 rpm, where the error is 0.036t,
which is 7%.

In figure 3.3 the grey line represents the brake power of the nonlinear model
as function of engine speed. As stated in the beginning of this chapter, the
black line is the torque and engine speed limit of the diesel engine. Also,
the results of the engine brake power during the bollard pull is represented
as the different dots. At closer inspection, the following observations are
done:

• Until 1200 rpm, the correlation between the two lines is nearly 100%

• Above 1200 rpm, the error is increasing with a maximum at ±1800rpm
and with a percentage error of 3.5%

From the two different static validations the following can be concluded.
The nonlinear model is built correctly, so the model fulfils the requirements,
because the static validation between the simulation model and the sea trial
are showing the same results. Still there are small differences between sea
trials and the simulation model. A reason why the brake power is higher at
higher engine speeds in the nonlinear model, could be that the friction is as-
sumed constant. In practice the energy loss in the bearings and transmission
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Figure 3.3: Validation nonlinear model of the engine with a sea trial.

increases when the shaft speed increases, so in practice is the brake power
slightly less. Furthermore, the bollard pull of the vessel is also higher, which
could be caused by the fact that during the sea trial there were disturbances
in the wake field, for instance due to shallow water. Literature (26) states
that a correction factor is sometimes used to compensate this phenomenon,
but this is not taken into account in the nonlinear model. Nevertheless the
nonlinear model is capturing the static behaviour correctly and is assumed
valid.
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3.3 linearized model
This main part contains three different parts. In the first part, a DAE is given
of the linearized model, which is followed by a brief description on how the
equations are derived. In the second part different transfer functions are de-
rived from the DAE. In the final part, the transfer functions are transformed
to state space notation.

This linearized model can be used as model structure for parameter estima-
tion. So the nonlinearities should be removed from the nonlinear model.
The nonlinearities in the model are (14):

• Nonlinearities due to multiplicative action in the mathematical model
of the system, e.g. ( T = ρn2

s D4
pKt )

• Nonlinearities due to a hard limit in the model, e.g. protective engine
limits.

Furthermore please note that the equations are also normalized, this is math-
ematically noted as *.

3.3.1 DAE of linearized model

Before the DAE of the linearized model is shown, it should be mentioned
that the linearization is based on the work of D. Stapersma & A. Vrijdag (14).
They performed this linearization already for free sailing mode and this is
the basis for this linearization. The difference is that this linearization will
be done for bollard pull condition. In mentioned reference (14) ’Appendix
B Normalisation and linearization’, it is explained how to deal with multi-
plications in a linearized environment. (14) ’Appendix C1 Linearization of
shaft speed’ is also used. These appendices of this reference are not shown
in this thesis and assumed to be known by the reader. The DAE is listed in
the box here below:

τn
dn∗

dt
= M∗s −M∗p

dE∗n
dt

= δn∗set − δn∗

δX∗set = Kpδe∗n + KiδE∗n
δX∗f = X∗set

δM∗b = gδn∗ + vδX∗f
δM∗s = δM∗b
δQ∗ = 2δn∗

δM∗p = δQ∗

δT∗ = 2δn∗

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

The shaft loop in a linearized and normalised form is presented in equation
3.14. An integration constant is added, namely τn. This is nothing more
than the operating point multiplied with the mass moment of inertia ’seen’
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from the propeller side and is defined in equation 3.23.

τn ≡
2π Ipn0

Ms,0
(3.23)

The governor is presented in equation 3.15 and 3.16. A more detailed mathe-
matical derivation of the normalized governor is presented in appendix A.1.

The diesel engine is shown in equation 3.18, which is derived from equation
3.5 of the nonlinear model. The parameters A1 and A2 are becoming nor-
malized derivatives but still represent a ratio, but to ease the math they are
named g and v. The definition of the parameters is presented here below
in equation 3.24 and 3.25. As can be seen in the definition, the parameter g
represents the influence of a small increase in engine speed on the engine
torque multiplied by the linearization point. The parameter v represents the
influence of a small increase in the fuel rack on the engine torque and is also
multiplied by the linearization point.

g ≡ ne,0

Mb,0

δMb
δn

∣∣∣
X

(3.24)

v ≡ X0

Mb,0

δMb
δX

∣∣∣
n

(3.25)

The linearization of the propeller is easily derived in bollard pull, because in a
linearized environment the quadratic coefficients become a linear multiplier.
So in equation 3.8, of the nonlinear model, is visible that the shaft torque is
depended on the quadratic shaft speed. In the linearized environment, this
means that the quadratic becomes a multiplication of 2, see equation 3.20.
The ideal fuel actuator is normalized, see equation 3.17, so it’s still a ideal
actuator

Equation 3.19 is the normalized shaft torque equal to the normalized brake
torque, so their is a constant transmission efficiency. In equation 3.21 is the
propeller torque equal to Q∗, so the relative rotative efficiency is assumed
constant.

Now all the equations of the nonlinear model are linearized and normalized
they can be put in different mathematical forms which represent a relation
between a certain input and output.

3.3.2 Transfer functions

A transfer function which can also be called a system function, is a math-
ematical function, which represents for theoretical models the relation be-
tween every possible input and output (27). The transfer function can be
presented in graph form, also called a transfer curve or Bode plot. These
graphs show the relation between input and output for a certain frequency.
The bode plot’s behaviour is influenced by the system parameters, because
these change the value of the transfer function.

As stated in the research approach, the only input signal on the system is
the set point of engine speed, nset. However, a lot of different outputs are
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available, in theory all of them, because everything can be measured in the
simulation model. For now three different outputs are used and transfer
functions with respect to the set point of shaft speed are made. For identi-
fying a system, it is best to place the three outputs at three different places.
For the best parameter identification it’s better to have an output after every
component. As can be seen figure 3.1, the fuel actuator and gearbox can
be negligible. Then after the governor, diesel engine and shaft speed loop
the three measurements say something about the whole drive train. For this
reason, it is decided to make relations between the set point engine speed
and the integrated error En, the shaft torque Ms and the actual shaft speed
ns.

The shaft speed over set point engine speed is derived from the shaft loop
equation 3.14 as a starting point. As stated before δQ∗ equals the δM∗p, so the
propeller torque can be implement in the shaft loop equation 3.14. As can be
seen in equation 3.20, the propeller torque is equal to twice the shaft speed,
so this can also be implemented. Next to that, the engine brake torque pre-
sented in equation 3.18 is also implemented in the shaft loop equation 3.14.
This will finally result in equation 3.26.

τn
dn∗

dt
= gδn∗ + vδX∗ − 2δn∗ (3.26)

The governor, equation 3.16, and the fuel actuator, equation 3.17, are now
implemented in the shaft speed loop of equation 3.26, resulting in equation
3.27.

τn
dn∗

dt
= gδn∗ + v(Kpδe∗n + KiδE∗n)− 2δn∗ (3.27)

The integral of the error is as follows:

δE∗n =
∫ t

0
δe∗ndt (3.28)

So then equation 3.15 is put in Laplace form which is shown in equation
3.29.

dE∗n
dt

= −δn∗ + δn∗set −→ E∗ns = −δn∗ + δnset (3.29)

Next to that, the shaft speed loop is put in Laplace form and the error and
the integrated error are replaced with equation 3.29 and 3.15. Then after
some mathematical manipulations, equation 3.30 is derived. It is put in this
form, because it allows easier derivation of the transfer function.

(
τn

vKi
s2 +

2− g + vKp

vKi
s + 1)δn∗ = (

KP
Ki

s + 1)δn∗set (3.30)

The transfer function is shown in equation 3.31.

δn∗

δn∗set
=

Kp
Ki

s + 1
τn

vKi
s2 + 2−g+vKi

vKi
s + 1

=

vKp
τn

s + vKi
τn

s2 +
2−g+vKp

τn
s + vKi

τn

(3.31)
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The transfer function is analysed by putting in some extreme frequencies
to see if the relation in the transfer function is logic. For example the DC
gain: When a very low frequency is exciting the system, transfer function
3.31 becomes 1, as can be seen in equation 3.32. This is logical, because
when the system is excited very slowly, one can assume that the system is
able to follow the changes, so then the input frequency becomes the output
frequency.

n∗

δn∗set
(S −→ 0) = 1 (3.32)

One can also imagine that this works the other way around, when set point
engine speed is excited with high frequencies, the large mass moment of
inertia can not be excited in such a short period. Or in other words, the
system will not react at all. This is also inline with the math because the
result is zero, see equation 3.33.

n∗

δn∗set
(S −→ ∞) = 0 (3.33)

Instead of expressing the output in the shaft speed the following transfer
function has the integrated error of the governor as output signal. This
transfer function can be obtained when some of the previous shaft speed
loop is rewritten and some mathematical manipulations are executed. The
base is again equation 3.27, in which the error is rewritten to shaft speed
and set point shaft speed, as can be seen in equation 3.15. Then after that
the shaft speed components on the right hand side are rewritten to set point
shaft speed and the integrated error in Laplace form, see equation 3.29. This
newly derived shaft loop is then put in Laplace notation and with some ma-
nipulations, equation 3.34 is derived.

τnsδn∗ = δn∗set(−2 + g− vKp) + ..

.. + δE∗ns(−2 + g− vKp)− vKiδE∗n − vKpδn∗set (3.34)

The δn∗ on the left hand side should also be rewritten to shaft speed δn∗set
and integrated errors δE∗n. With some mathematical manipulations the trans-
fer function 3.35 can be derived .

δE∗n
δn∗set

=
τns + 2− g

τns2 + (2− g + vKp)s + vKi
=

s + 2−g
τn

s2 +
2−g+vKp

τn
s + vKi

τn

(3.35)

Transfer function 3.35 is also tested to two extreme conditions, namely for
infinitely slow frequencies shown in equation 3.36. It is visible that the in-
tegrated error is dependent on the engine characteristics g, v and a tuning
parameter, Ki. It is logical that the engine parameters have influence on the
integrated error, because the speed with which the error decreases has influ-
ence on the integrated error. For high frequencies, the quadratic component
will dominate the denominator of the fraction, so in the end this will go to
zero as well, see equation 3.37. This makes sense, because the integrated
error consists of a lot of sinus signals while the system can not react. So,
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this integration becomes zero.

δE∗n
n∗set

(s −→ 0) =
2− g
vKi

(3.36)

δE∗n
n∗set

(s −→ ∞) = 0 (3.37)

The derivation of the shaft torque as output over the shaft speed set point
is derived in a different way to ease the math involved. This derivation is
shown in appendix A.2, where Hship is the core propulsion system and C
represents the governor. When the procedure in the appendix is followed
and some mathematical manipulations are done, the transfer function in
equation 3.38 is obtained.

δM∗s
δn∗set

=
τnvKps2 + (vkiτn + 2vKp)s + 2vKi

τns2 + (2− g + vKp)s + vKi
= ..

.. =
vKps2 +

vKiτn+2vKp
τn

s + 2vKi
τn

s2 +
vKp−g+2

τn
s + vKi

τn

(3.38)

When engine set point is a really slow frequency, the shaft speed will follow
this frequency. But from the linearization of the torque, we know that this
is by a factor 2, see equation 3.20. So the DC gain in equation 3.39 is correct,
because it shows that for low frequencies the shaft torque over set point en-
gine speed is a factor 2.

δM∗s
δn∗set

(s −→ 0) = 2 (3.39)

When a high frequent signal is put on the engine speed set point then only
the quadratic components in the transfer function 3.39 will be effected. So
in this case the multipliers vKp in the nominator will determine the gain at
high input frequencies, see equation 3.40. This is because the occurring error
in the simulation model is multiplied directly with the proportional part of
the the governor, Kp. In the simulation model, the engine will also react
directly, because the discrete engine ignitions are not taken into account,
which would cause in real life delays. So, the engine will directly deliver
the amount of torque requested, namely vKp.

δM∗s
δn∗set

(s −→ ∞) = vKp (3.40)

Above, three different transfer functions are derived with as input set point
engine speed and with different outputs. In table 3.4, a small summary is
made of the obtained transfer functions.
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Relation Transfer function DC-gain

δn∗
δn∗set

vKp
τn s+ vKi

τn

s2+
2−g+vKp

τn s+ vKi
τn

1

δE∗n
δn∗set

s+ 2−g
τn

s2+
2−g+vKp

τn s+ vKi
τn

2−g
vKi

δM∗
δn∗set

vKps2+
vKiτn+2vKp

τn s+ 2vKi
τn

s2+
vKp−g+2

τn s+ vKi
τn

2

Table 3.4: Summary of different transfer function.

3.3.3 State space notation

Another way of presenting a linearized model, is in state space notation.
The state space notation is a set of first order differential equations that
represent a physical system. The state space notation can be continuous
and discrete, but also time variant or invariant. Below, the continuous time
invariant state space is shown.

¯̇x = Ax̄ + Bū (3.41)

ȳ = Cx̄ + Dū (3.42)

In the state state notation every vector and matrix has its own representation
and purpose. Matrix A is the system matrix, matrix B is the input matrix
and matrix C and D ensure a physical conversion of certain unities, so that
a shaft speed input can be related to a shaft torque. The ¯̇x is the state vector,
ū the input vector and ȳ the output vector (14).

A distinguish between transfer function and state space, is that state space
notation makes it possible to set different outputs in relation to one single
input. In this section, the different transfer functions for shaft speed, shaft
torque and integrated error over the set point of the engine speed will be
put in state space notation.

The linearized DAE that is defined in the previous section, will also be
written differently. The two equations contain all the different components.
They are defined here in the box below:

τn
dn∗

dt
= (−2 + g− vKp)δn∗ + vKpδn∗set + vKiδE∗n

dE∗n
dt

= −δn∗ + δn∗set

(3.43)

(3.44)

For state space notation, the vectors x̄, ū, ȳ are first chosen and that results
in matrices A, B, C, D. From here, three different state space derivations
are shown, where the first case is defined in equation 3.45.

x̄ = ȳ =

[
δn∗

δE∗n

]
, ū = δn∗set (3.45)

These state vectors will result in the following matrices 3.46 and 3.47:

A =

[
−2+g−vKp

τn

vKi
τn

−1 0

]
, B =

[
vKp
τn
1

]
(3.46)



28 simulation model

C =

[
1 0
0 1

]
, D =

[
0
0

]
(3.47)

In the previous example, one of the output values was the integrated error
and the other shaft speed. In second case, the output signal is shaft torque
and shaft speed, see 3.48.

x̄ =

[
δn∗

δE∗n

]
, ū = δn∗set, ȳ =

[
δn∗

δM∗s

]
(3.48)

Then in the C and D matrices the error should be rewritten to the shaft
torque. Then equation 3.15, 3.16 and 3.17 should be implemented in 3.18.
Which results in equation 3.49.

δMb = (g− vKp)δn∗ + vKiδE∗n + vKpδn∗set (3.49)

With equation 3.49 and the defined input vector, state vector and output
vector, the following A,B,C and D matrices are derived:

A =

[
−2+g−vKp

τn

vKi
τn

−1 0

]
, B =

[
vKp
τn
1

]
(3.50)

C =

[
1 0

g− vKp vKi

]
, D =

[
0

vKp

]
(3.51)

For parameter identification one can imagine that the model structure can
have great influence on the results of parameter estimation. For exam-
ple, more data leads to another modelstructure, because more relationships
should be implemented in the modelstructure. So the following case still
has a single input but now has three outputs. A disadvantage is that the
parameter estimation will take longer and requires more computational ca-
pabilities. The new input, output and state vector are defined in equation
3.52.

x̄ =

[
δn∗

δE∗n

]
, ū = δn∗set, ȳ =

δn∗

δE∗n
M∗s

 (3.52)

With the following vector 3.52, the following matrices 3.53 and 3.54 are de-
rived:

A =

[
−2+g−vKp

τn

vKi
τn

−1 0

]
, B =

[
vKp
τn
1

]
(3.53)

C =

 1 0
0 1

g− vKp vKi

 , D =

 0
0

vKp

 (3.54)

Above different forms are given on how the state space notation can be
adjusted by varying input and output vectors and all representations can be
used as model structure for the parameter estimations. In Chapter 4.2 are
the amount of internal relations discussed.
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3.4 nominal operation point
In this main part the determination of a suitable operating point is discussed.
For operating point n0 the nominal value of system variables X0, Mb,0, Ms,0, ns,0, Pb,0
and parameters g, v, τn are determined. These values are derived from a con-
stant run of the operating point in the nonlinear model. Subsequently these
variables and parameters are implemented in the linearized model, result-
ing in a linearized model that is verified in the following main part.

It is chosen to select the operating point that occurs when the engine speed
set point is set at 1300 rpm. The resulting system variables are listed in table
3.5.

Variable Normalized value Unit
n0 21.677 rps
X0 13.07 mm

Mb,0 222.93 Nm
Ms,0 635.766 Nm
ns,0 7.222 rps
Pb,0 30.3 kW

Table 3.5: Values of system variables with constant input signal of nset = 1300rpm =
21.7rps.

The system parameters g, v, Kp, Ki are listed in table 3.6 and derived from
the shown locations in figure 3.4. The combined parameter τn is calculated
according to the definition in equation 3.23 and also presented in table 3.4 .

Linearized parameters Value Unit
v 1.58 [-]
g -0.58 [-]

Kp 10 [-]
Ki 1 [-]
τn 1.44 s

Table 3.6: Values of linearized model parameters with constant input signal of nset =
1300rpm on nonlinear model.

Figure 3.4: Linearized parameters from nonlinear model.
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3.5 verification of linearized model
The verification of the linearized model contains two main parts. The first
part contains a verification in time domain, which is followed by a second
part where verification in frequency domain takes place. The verification
is done twice, because in time domain it is easier to perceive differences
between nonlinear model and the linearized model. The second verification
is only done to check if the analytical derivation of the linearized model is
done correctly.

3.5.1 Verification in time domain

Time domain verification will be done with a step response on engine speed
setpoint that is applied on the linearized model and the nonlinear model. It
should be stated that the nonlinear model is only statically validated and
the linearized model is now dynamically verified to the dynamics of the
nonlinear model. But the relevance of doing this dynamic verification is
still there, because at which value the system becomes stable after a step
response can be compared. Furthermore it can be investigated whether the
dynamic behaviour of the linearized model is complete different than the
nonlinear model. The step responses that are put on the system are done
at the operating point of 1300 rpm. The three different step responses to
which the system is exposed are visible in table 3.7.

Step percentage RPM change
5% 65 rpm

10% 130 rpm
20% 260 rpm

Table 3.7: The applied step responses.

How the shaft speed reacts on the three different step responses in both
models is illustrated in figure 3.5. In these three steps it can be seen that
the two models show the same shaft speed behaviour. Furthermore it is vis-
ible that at higher steps the error between the models is slightly increasing.
According to equation 3.32 the DC gain is 1, and this also follows from the
graphs in time domain. When the system is stable, around 60 s, the shaft
speed approaches 5% = 0.05 , 10% = 0.1 and 20% = 0.2 and this is in line
with the derived DC gain of the transfer function.

How the shaft torque reacts is shown in figure 3.6. In this graph, it is clearly
visible that there are differences between the dynamic behaviour of the two
models, especially with high step responses. Figure 3.6 clearly shows that
the limiter in the nonlinear model is not applicable for the linearized model,
see step response 20%. Next to that, figure 3.6 shows that when the system
stabilizes, both models satisfy the DC Gain from equation 3.39. E.g. when a
step response of 10% = 0.1 is put on the system, then the output of dimen-
sionless shaft torque is 20% = 0.2, which equals a DC gain of 2. This is also
applicable for the two other step responses. Furthermore, it is visible that
the error is a little bit bigger in comparison with the shaft speed when the
system is stable. In general, it can be concluded that the linearized model is
showing nearly the same results as the nonlinear model.
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Figure 3.5: Comparison between nonlinear model and linearized model of shaft
speed response.

Figure 3.6: Comparison between nonlinear model and linearized model of shaft
torque response.
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Figure 3.7: Comparison between nonlinear model and linearized model of inte-
grated error response.

The integrated error for the different step responses is presented in figure
3.7. For the integrated error the same applies as for the shaft torque: An
increased step responses causes an increased error. When the DC gain of
equation 3.36 is filled in with the parameters of table 3.6, the point on which
the system stabilizes in figure 3.7 is in line with the expectations.

As can be concluded, the linearized model is showing the same character-
istics as the nonlinear model. But at increasing step responses the error
between the linearized model and the nonlinear model increases. The non-
linearity due to multiplicative action is the reason for this error increase at
bigger step responses. Q = ρn2D5Kq −→ δQ∗ = 2δn∗.

3.5.2 Verification in frequency domain

As was stated earlier, the second verification checks if the analytically de-
rived linearized model is correct. This is checked with the ’Linearization
Tool’, where the nonlinear model is automatically linearized according to
the defined input and output. The results are shown for shaft speed, shaft
torque and integrated error in figures ??, 3.9 and 3.10, respectively. As can
be seen, the linearization tool of Matlab shows the same results as the ana-
lytically derived linearization of the nonlinear model for lower frequencies.
At some higher frequencies, a small differences occurs in the phase or gain.
The exact reason is unknown but most likely this difference occurs due to
the fact that the ’Linearization Tool’ is using the pre-programmed lineariza-
tion of a certain block. Some of the blocks can not be linearization because
they do not have a predefined exact linearization. At higher input frequen-
cies, nonlinearities most likely occur, such as in the limiter of the engine.
However, the differences are small and it can be concluded that the analyti-
cal derivation is done correctly.



3.5 verification of linearized model 33

Figure 3.8: Verification of δn∗
δn∗set

.

Figure 3.9: Verification of δM∗s
δn∗set

.

Figure 3.10: Verification of δE∗n
δn∗set

.
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3.6 conclusion
The conclusions that can be drawn from this chapter are listed below:

• The nonlinear model is statically validated with data gained from a
sea trial and this gives positive results. For this reason, the nonlinear
model can be used for data generation, so that different information-
rich datasets can be generated for the parameter estimation in the vir-
tual experiments.

• The nonlinear model does not contain any discrete firing frequency or
sampling frequency of governor. The governor is also equipped with a
PI regulator, but their is a possibility that the vessel is equipped with a
PID regulator. Furthermore, the step sizes of engine governor calcula-
tions and possible engine management systems are not implemented.
Some of these components might play a role at high frequencies.

• The linearized model is made from the nonlinear model by removing
the nonlinearities. The first nonlinearity is multiplicative actions e.g. (
T = ρn2

s D4
pKt ) and the second nonlinearity is hard limits, e.g. torque

limit.

• The linearized model structure shows the same behaviour as the non-
linear model close to the operating points, so the linearized model is
verified according to the nonlinear model.

• The analytical linearized model is derived correctly according to a
comparison with the Matlab Linearisation Tool (C).
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Chapter 2.2 ’Literature Review’ states that three things are required for pa-
rameter estimation, namely a searching algorithm, a model structure and
an information-rich data set. In this chapter, these three necessities and
their influence on the parameter estimation are discussed. Every necessity
is discussed in its own corresponding main part.

4.1 searching algorithm

The searching algorithm is divided into five different parts. First of all, a
problem statement is made on how parameters are estimated in general with
a searching algorithm. After that are different elements from the problem
statement discussed in more detail, namely cost function, optimisation and
estimated fit in time domain. The fifth part contains a frequency domain
problem statement. Most of this theory is based on the book of Ljung, L.
(11), which is also the basis for the ’Identification toolbox’ in Matlab. Fur-
thermore are only linear parameter identification techniques discussed.

4.1.1 Problem statement time domain

The parameters of the nonlinear model can be defined as a vector Ψ̄. When
the nonlinear model is linearized, a new set of parameters can be defined,
namely parameter vector θ̄. Pay attention to the fact that during this lin-
earization and normalization the parameters will change from unit, so that
the value also changes.

The goal of parameter estimation is that the parameter set Ψ̄ represents
the correct physical quantity. Only linearized parameter estimation will be
done in this thesis, so the goal is to optimize the linearized parameter set, θ̄.
From full-scale experiments and/or the nonlinear model, different output
data sets ȳmeas can be derived. Pay attention to the fact that this data set
contains nonlinearities.

Now it is imaginable that for a certain parameter set, θ̄ and a certain input
signal, an output data set ȳsim(θ̄) can be generated with the linearized model
structure. Concluding, the output data set is dependent on the linearized
parameter set and input signal and does not contain nonlinearities.

An error can be defined between output of a full-scale measurement or non-
linear model and the output of a certain linearized parameter set in the
linearized model. The error defined between those two outputs is defined
as ē, and shown in equation 4.1.

35
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ē = ȳmeas − ȳsim(θ̄) (4.1)

The goal is to minimize the total error vector for a certain input signal, be-
cause ideally the parameter set estimation is correct when this error is zero.
This can be reached by ’fine tuning’ the set of linearized parameters θ̄, be-
cause the simulated output vector is a function of the linearized parameter
set, see equation 4.2.

V(θ̄) =
1
N

N

∑
t=1

ēT(t, θ̄) · ē(t, θ̄) (4.2)

Please note that the total error is in practice never zero, because linearized
parameters are compared to nonlinear data sets, illustrated in figure 4.1.

Figure 4.1: Explanation of unavoidable error in linear parameter estimation.

In literature the mathematical expression of equation 4.2 is called a cost
function or loss function. During this thesis, different cost functions will be
analysed in chapter 4.1.2.

In equation 4.3 the error of the cost function is tried to get minimized. This
will be done by changing the values of the linearized parameter set, θ̄. But
to which extent and after how many iterations is this minimum achieved?
This is discussed in chapter 4.1.3, ’minimization of error’. In the previous
part is the parameter identification in time domain defined, in chapter 4.1.5
is a problem statement made in frequency domain.

arg. min. V(θ̄) (4.3)

The third element that will be discussed after this in more detail is the fit
of the estimation. So how can you say that the estimated parameters are
correct and how can one say that one technique is better than the other?
This part is discussed in chapter 4.1.4.

4.1.2 Cost function

The error, equation 4.1, can be calculated in two different ways. First of all
as a prediction error which represents the error one step ahead. The other
method is the simulation error. As the name reveals, the prediction error
is the best if we want to predict model behaviour. The simulation error
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method focuses on making the best fit for the current data set.

The choice of the error calculation results in practice quite oft in an implicit
decision of a weighting filter. In practice is the distinguish between the two
different error calculation on how the noise is taken into account. While
as in the prediction the noise is taken into account as a variable for the pa-
rameter estimation, where in the simulation simply the best fit made for the
current data set.

After the error vector is derived, a cost function should be made. For exam-
ple, in equation 4.2 a Least Square Method (LSM) is used as cost function.
This is based on literature of Westwick and Kearney (16), chapter 8. LSM
methods can be considered as one of the easiest cost functions and is strong
for a single input en single output (SISO) system, because it is a straight
forward method. The LSM is a summation of the squares of all the different
errors (or residues) for every time step, see equation 4.2.

Most likely, the parameter estimation will take place with multiple outputs.
Then one should pay attention to the fact that the average of the output
signals can vary. With multiple outputs, also in a normalized world, there
is still some difference in response of certain ouput signals, see Bode plots
3.8 and 3.9. This will influence the cost function, because this can induce
that the cost function will be optimized for a single output only. A way to
avoid this is with a Weighted Least Square method (WLS), because now the
cost function is minimized equally for all output signals. This is explained
as well in the book Mathematical Systems Theory (12). In equation 4.4 the
weighted cost function is presented.

V(θ̄) =
1
N

N

∑
t=1

ēT(t, θ̄) ·W(θ̄) · ē(t, θ̄) (4.4)

The weight function can be fixed or a function of the parameter set. In equa-
tion 4.4 the errors are multiplied with W(θ̄), so a function of a parameter set.
This can be rewritten to equation 4.5, where the value of W is determined
by Ē(θ̄) squared. The capital E is the variance of the error. If the variance is
high, the inverse makes sure that this influence is adverse.

W(θ̄) = (
1
N

ĒT(θ̄) Ē(θ̄))−1 (4.5)

Another modification that can be made on the cost function is ’regulariza-
tion’. This prevents overestimation of parameters. Overestimation, or over
fitting, in practice means that the estimation is fluctuating so much that it
fulfils all the data points, but in the end it becomes irregular and useless. To
avoid this phenomena, another term is added to the cost functions, which is
called the Ridge regression. The ridge term is shown with the conventional
weighted cost function in equation 4.6.

V(θ̄) =
1
N

N

∑
t=1

ēT(t, θ̄) ·W(θ̄) · ē(t, θ̄) +
1
N

λ(θ̄ − θ̄∗)T R(θ̄ − θ̄∗) (4.6)

The last term makes sure that an over fit can not happen. The last term is
in fact penalizing the increase of any parameter. The other values in the
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additional term of equation 4.6 are: θ∗, which represents the nominal value
of θ. R represents the confidence in the prior knowledge of the unknown pa-
rameters. So that in the end an trade off occurs which the user should make.

Another interesting adjustment that can be made in the cost function is
to penalize for nonlinear behaviour in the data. This can be achieved by
adding a threshold, determined by the user, inside the cost function so that
the weights of large errors from quadratic behaviour will be penalized in
a linear way. When this threshold is added, then the cost function will be
written double, this means that i represents the times that the error is below
the threshold and j represents the times that the error is above the threshold,
see equation 4.7.

V(θ̄) =
1
N
(∑

t∈i
ēT(t, θ̄) ·W(θ̄) · ē(t, θ̄) + ∑

t∈j
v̄T(t, θ̄) ·W(θ̄) · v̄(t, θ̄)) (4.7)

The threshold can be defined as |e(t) < ρσ|, where σ stands for the esti-
mated standard deviation of the error and the value of ρ is determined by
the user. Here, v(t, θ) is calculated in equation 4.8.

v(t, θ) = e(t, θ̄)σ
ρ√

e(t, θ̄)
(4.8)

4.1.3 Optimisation

The optimisation part contains two different sections. The first section is
about different optimisation algorithms. In the second part different stop-
ping criterion’s are discussed.

Optimisation and minimisation of the cost function is the same, the differ-
ence lies in the constraints. Because ’Optimalisations’ is a complete different
field of engineering, this topic is only slightly discussed with the only one
purpose: to prevent big pitfalls.

For now, especially fixed step size or variable step size algorithms are used
for the parameter set estimation. But still, this can lead to a very long opti-
misation when the starting point is far away from the optimisation point. To
speed up the program, one can start with a random search. This means that
in the beginning a lot of random but feasible starting sets are made, and the
set which results in the lowest error is the starting set.

A point of attention with fixed step size is that there is a possibility that a
local minimum is found. A way of avoiding this, is by making a big step so
the program steps out of the local minimum and goes to a global minimum.
Another approach is by optimizing for different parameter sets and take the
lowest local minimum.

In the second section of this optimisation, the stopping criteria are discussed.
As stated before, there is no zero optimum, so it should be prevented that
the searching algorithm will run forever. The easiest way is to put a maxi-
mum criterion in the amount of iterations or the amount of iterations with-
out improvement. Also, a relative improvement can be used, for example
that there should be a minimum percentage difference between the current
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value of the cost function and its expected improvement after the next itera-
tion (11), otherwise the algorithm will stop.

In practice, the stopping criteria are decided upon the available time of
the user for the optimisation. Different tricks can be used to speed up the
process so that a better estimation is made in the same amount of time.
Some of these tricks include adding additional relations between certain
parameters, which are derived from literature and other researches. Another
possibility is to set a minimum and maximum value for every parameter,
which is determined by logical thinking and experience, this is outlined in
chapter 4.2.1.

4.1.4 Estimated fit

This part discusses the question ’What is a good fit?’. The lowest cost func-
tion doesn’t mean directly that it is the best fit possible. In the full-scale
measurement is noise involved, so a possibility exists that the solution is
fitted on the noise. So their are different ways in saying that it’s a good fit.

First of all, the most easy approach is implement the obtained parameters
and put them in the model and compare the response with another data
set. The requirement is to have another data set and when this is not the
case than different values are defined to say something about the fit. These
definitions are outlined here below:

The Normalized Root Mean Squared Error (NRMSE) is defined as a percent-
age, which can be calculated according to equation 4.9. The fit percentage
or NRMSE lies between the minus infinity and 100%.

FitPercen = 100(1− ||ȳ(t)meas − ȳ(t)sim||
||ȳ(t)meas − ŷ(t)meas||

) (4.9)

Equation 4.9 contains first the measured output data set ȳmeas, secondly the
mean of the measured output data set ŷmeas, finally the output of the lin-
earized model for a certain parameter set, ȳ(t)sim.

The second error is the mean squared error (MSE), an error also shown in
the part about the cost function, equation 4.10.

MSE =
1
N

N

∑
t=1

ēT(t)ē(t) (4.10)

A third way to describe the error is with Akaike’s Final Prediction Error
(FPE), defined as:

FPE = det(
1
N

ETE)(
1 + nP

N

1− np
N

) (4.11)

In equation 4.11 np represents the number of free parameters in the model.
N represents the number of samples in the estimation data set. E is the
N − by− ny matrix of prediction errors, where ny is the number of output
channels. According to Akaike’s theory, the most accurate model has the
smallest FPE. Next to the Final Prediction Error, there are other ways of
expressing the fit. Different examples are the Aikike’s Information Criterion
(AIC) and the Consistent Akaike’s Information Criterian (CAIC) (28).
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4.1.5 Problem statement frequency domain

In the previous part the parameter estimation was done in time domain.
Parameter estimation in frequency domain is another possibility that is often
used in practice. Some advantages of parameter estimation in frequency
domain compared to time domain are outlined here below:

• Compression of data, because long time measurements can be rewrit-
ten to a short mathematical notation.

• Non-uniformity in the frequency data is allowed, while in time do-
main the times steps are fixed.

• A pre-filtering takes already place.

The disadvantages of doing parameter estimation in frequency domain are
outlined here below:

• Parameter estimation for a nonlinear model is in general impossible.

The data in frequency domain can be presented in different ways. First of
all, it is possible to transfer from time to frequency domain for the whole ob-
tained data set. The other notation is that the data is written as a frequency
response, where complex notation is used most of the time.

The differences between the domains for the searching algorithms as defined
in the previous parts is that the time t is changed to frequency ω. An
easy frequency domain optimization for a single in and single out system is
presented in equation 4.12.

min
N f

∑
k=1
|W(ω)(G(θ̄, ω)− f (ω))|2 (4.12)

In equation 4.12 the W(ω) is a frequency dependent weight, which makes
sure that not on every frequency is fitted, but mostly on the frequencies that
are more dominant. N f is the amount of frequencies that are provided by
the data, G(ω) is the response of the parameter set and f (ω) is the data itself.
In global lines, this looks the same as a time domain parameter estimation,
but it speeds up the parameter estimation.
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4.2 model structure
The model structure main part is split up in two different parts. Firstly, the
parameter constraints and, secondly, an analysis of the amount of relations
in the model structure.

4.2.1 Parameter constraints

Beforehand, some constraints on parameters are already known. In table 4.1
the linearized parameter set θ̄ is presented with the mathematical expres-
sions in the nonlinear model.

Linearized parameter Mathematical expression
τn

2π Ipn0
Ms,0

g n0
Mb,0

δMb
δn

∣∣∣
X

v X0
Mb,0

δMb
δX

∣∣∣
n

Table 4.1: Definition of different linearized model parameters.

With some logical thinking, some boundaries can already be put on the dif-
ferent parameters. This will decrease the optimization time and second of
all gives only feasible solutions. A small disadvantage is that more local
minimums are created with the extra boundaries. In equation 4.13 different
constraints are determined for every parameter i, were the lower bound (lb)
and upper bound (ub) are different for every parameter.

s.t. lb < θ(i) < ub, θ(i) ∈ R (4.13)

For example, since the governor gains are positive the lower bound is put
to zero. The value of v is negative so here the upper bound is put to zero.

Next to putting boundaries on the different linearized parameters, one can
imagine that the boundaries can be placed so tight that parameters are prac-
tically fixed. In practice this can be used if a parameter is identified by for
example another experiments and is ’known’. Fixation of parameters can
lead to some big advantages, such as decrease of parameter estimation time
and less relations required in the model structure.

4.2.2 Internal relations

In this part the internal relations between the parameters in the linearized
model, derived in chapter 3.3, are discussed. This linearized model is the
basis for the model structure that is used for the parameter estimation. The
relations in the model structure are analyzed according to the transfer func-
tions, δn∗

δn∗set
, δE∗n
δn∗set

and δM∗s
δn∗set

, which is another mathematical presentation of the
model structure.

From basic math it follows that the amount of unknowns should equal the
amount of equations, if the unknowns need to be identified. The linearized
parameter set contains five parameters, which results in the requirement of
five equations. Note that then the five different equations should contain all



42 parameter identification

different parameters.

The transfer functions 3.31, 3.35 and 3.38 are simplified to the following
forms, equations 4.14, 4.15 and 4.16. The values of a, b, c, d, e, f , g, h, i are
presented in Appendix B ’Terms in transfer functions’ .

δn∗

δn∗set
=

cs + d
s2 + as + b

(4.14)

δE∗n
δn∗set

=
es + f

s2 + as + c
(4.15)

δM∗s
δn∗set

=
gs2 + hs + i
s2 + as + c

(4.16)

Table 4.2 presents a ’System of linear equations’, where the vertical line
represents the mathematical equal sign. If a system identification is made,
then the values of a till f are determined. This does not mean that the pa-
rameters are estimated, but that a fit is made with the model structure or
transfer function on the data. When the values of a till f are known, the
individual parameters can be identified. In table 4.2, it can be seen that
τn can be determined from the first two equations. When the value of τn is
known, then with help of the third equation the value of g can be calculated.

Kp Ki vKp vKi g v -
1 f
1 cτn

-1 eτn − 2
1 bτn
2 iτn
1 dτn

2
τn

1 h
1 -1 aτn − 2
1 g

Table 4.2: System of linear equations of the internal relations within the model struc-
ture.

As can be seen in the system of linear equations, the parameters of Kp, Ki
and v are not expressed individually in an equation, which makes it impos-
sible to identify their absolute values. Only the relations between Kp, Ki and
v can be derived with the previous set of equations.

So, if for example one of the values Kp, Ki and v is known, then it is possible
to derive the other two parameters. In general, it can be stated that the Kp
and Ki are unknown. The value of v can be obtained from a factory accep-
tance test (FAT) (14), so then Kp and Ki can be calculated.

From this can be concluded that the model structure does not allow iden-
tifying all parameters individually. So from here on, only relations can be
derived between Kp, Ki and v and not their absolute values. However, the
model structure does allow identification of the absolute values of the pa-
rameters τn and g.
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Note that the transfer function 4.15, with values e and f , adds no more
relations to the system of linear equations. In other words, the values of e
and f are redundant to a and g, because they have the same value. Thus,
the transfer function δE∗n

δn∗set
can be left out in the model structure.

4.3 information-rich data sets
In the third main part, information-rich data sets are discussed and elabo-
rated upon. The first part contains a brief description of how the data sets
are obtained from the nonlinear model. In the second part, different input
signals are discussed, whether they are feasible and information-rich. This
is done for full-scale and the virtual experiments. The third part is are about
the frequency and amplitude range, respectively.

4.3.1 Data set generation

In the simulation model it is possible to observe every possible signal, be-
cause a log block can be put anywhere in the model. Please note that in
reality, some components or values are not measurable, because it is too
complicated and/or expensive. From chapter 4.2.2 is derived that the shaft
torque and the shaft speed should be measured during the experiments and
the integrated error is left out. The two measurements are indicated as grey
circles in figure 4.2. Furthermore is the input signal also ’logged’, the third
grey circle. Before the data is logged, the values are first normalized.

Figure 4.2: Data set generation of nonlinear model.

4.3.2 Input signals

The input signals are discussed based on three different aspects. First of all
the practical feasibility of the input signal on a full-scale propulsion drive
train is discussed. After that the duration of a certain input signal is dis-
cussed, because the aim of this research is obtain the parameters in a short
period of time. The last aspect is that the input signal should fulfil some am-
plitude and frequency requirements. The amplitude should not excite the
system unnecessarily much, to avoid damage to the system. Furthermore,
the frequency range of the input signal is important for the identification of
the whole dynamic behaviour. Below, a list is shown with all the different
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input signals that are possible, where some signals are directly classified as
unfeasible, according to the three criteria mentioned in this paragraph.

• A ’step response’ is a signal where just a step will be set on an input
signal in a very short time. Theoretically, a step response is a summa-
tion of an infinite amount of sinus signals. A step response is good
for validation, because it covers the whole frequency domain and in
time domain the user intuitively gets a feeling whether the estimated
response is correct. Furthermore is a step response in time domain
perfect to see whether there is a dead time (delay) in the system, what
the static gain is and the difference in rise time between the estimated
model response and the data. Rise time means how fast the error is
minimized over time.

• A ’multiple sine wave’ input signal contains sinus signals with different
frequencies. One big advantages is that there is nearly no noise in the
input and output signal. And if there is noise, it can be eliminated
quite easily, because the input frequency is known. Also the purity
of a sine wave is quite high, due to the fact that only one frequency
component is put into the system. Another advantage is that one can
validate the model structure by plotting the gain and phase lag points
for those frequencies, which gives a shape that should cope with the
estimated system response. The disadvantage of multiple sine waves
is that, when exciting the systems natural frequency, damages to the
system can be quite high. Another disadvantage is that low frequen-
cies are time consuming. A way to avoid this is by implementing dif-
ferent sine signals simultaneously. A point of attention here is that the
signals have the correct phase difference, otherwise a high peak factor
will occur. A high peak factor can lead to unwanted nonlinearities and
an increased change of damaging the system.

• A ’chirp signal’ is a sinus signal with a constant amplitude but with a
continuously increasing frequency. In this way all frequencies will be
present in the input signal. An advantage of implementing the chirp
signal is that it decreases the experiment time a lot. A disadvantage
is that when there is a measurement error, the output will miss that
particular frequency response, because every frequency excites the sys-
tem only for a very short time span. Another disadvantage is that the
natural frequency is always excited, however only for a short amount
of time.

• A ’pulse’ with a small pulse width, so that it is not a double step re-
sponse, is another possible input signal. With the virtual experiments
this will make sense, because of limitations of the simulation model.
In practice it makes no sense to put a pulse on the engine, because the
system can not react due to discrete firing phenomena and moment of
inertia. For this reason, it is chosen not to take pulses into account as
feasible input signal for the experiments, including variants of pulses
(e.g. random binary pulses).

• ’Band limited white noise’ is a random input signal with a constant inten-
sity. Band limited white noise can be a very powerful tool for system
identification. In this case, the white noise is not taken into account,
because it’s the first time for full-scale parameter identification and
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there is a possibility that the propulsion drive train will not react on
limited white noise. This is because the band limited white noise will
most likely be deformed by unknown ramps or limiters in the system.
When this deformations occurs, then the actual input of the system is
unknown and this makes the parameter identification nearly impossi-
ble. Due to a lag of knowledge about the full-scale system the band
limited white noise is not taken into account as feasible input signal.

4.3.3 Signal requirements

The last part is split up into two different parts. First the amplitude of the
input signal is discussed, and in the second part the characteristics of the
input frequency is discussed.

The value of the amplitude of the input signal depends on a trade-off be-
tween the signal amplitude/noise ratio and the nonlinearities in the system.
The input signal should be visible in the measured data, but the data should
not contain to much nonlinearities. During the virtual experiments, the in-
fluence of amplitude increase on the total error is analyzed. The results of
this analysis are then used during the full-scale experiments, where the am-
plitude is minimized to avoid strong nonlinearities in the data.

As stated earlier, the input signal should cover a wide range of frequencies.
In Bode plots 3.8 and 3.9, two different transfer functions are plotted, namely
the δn∗

δn∗set
and δM∗s

δn∗set
. As known from the chapter about internal relations, the

poles are identical, but the zeros can variate. The input signal must excite all
the different zeros such that the data sets become rich enough. Concluding
remarks can be made that the lowest frequency measured in reality depends
on how long the available measurement time is and how much prior knowl-
edge is available on the location of the first zero or pole.

The highest frequency in the full scale experiments is limited by the discrete
ignition time of the physical system. Nevertheless, in the nonlinear model
every offset is directly multiplied with the proportional part of the governor
and the engine directly provides the requested torque. From this can be de-
rived that the maximum input frequency for the virtual experiment doesn’t
exist, because of the limitation in the nonlinear model. During the full scale
experiments the highest input frequency should be put on the system to see
if any ramps are touched and this theory can be confirmed.
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4.4 conclusion
The conclusions that can be drawn from this chapter are listed below:

• Throughout this chapter the knowledge is obtained on how parameter
estimation works in theory. Furthermore, the importance of the correct
settings of the searching algorithm is discussed. Options and settings
such as a weighted cost function, regularization, correct stopping cri-
teria and feasible solutions by adding constraints are recommended to
use for the parameter estimation.

• The model structure derived in Chapter 3.3 can be used, but it has
some disadvantages. First of all, it is not possible to determine ev-
ery parameter individually, because the amount of unique relations
between the parameters is not equal to the amount of parameters, as
presented in table 4.2. This results in the fact that only the values of
g and τn can be individually determined. The other three model pa-
rameters can then only be determined relative to each other by the fol-
lowing two relations vKp and Kp

Ki
. Nevertheless, this model structure is

used, because the value of v can be derived from a factory acceptance
test (FAT) (14). When the value v is known this also implies that the
values of Kp and Ki can be determined

• The two most feasible input signals of the system are multiple sine
waves and a chirp signal. The advantage of a multiple sine wave is
that the model structure can be validated and it contains a relatively
high spectral purity, because it is just a range of discrete frequencies,
which allows filtering out noise more easily. The chirp input signal is
interesting, because it minimizes the duration of the experiments.

• The input signal’s amplitude depends on a trade-off between the sig-
nal amplitude/noise ratio and the influences of nonlinearities in the
data.

• The lowest frequency measured in reality depends on how long the
available measurement time is and how much prior knowledge you
have about the location of the first zero or pole.
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In this chapter the virtual experiments and the obtained results are dis-
cussed. This chapter is divided into five main parts, where in the first main
part the data generation is elaborated on. In here are the input signals and
the output signals from the virtual experiments presented. The second main
part is about the used searching algorithm for the parameter estimation. In
the third main part the used model structure is discussed, explaining how
the model fitting on the data is done. In the fourth main part the results are
presented and in the fifth main part conclusions are drawn.

5.1 data generation from nonlinear model
First are some references made to previous chapters, because they are rele-
vant for clarity on how the data sets are derived. Next to that, some state-
ments are repeated that concern influences on the virtual experiments.

• In chapter 4.3.1 is explained how the data sets are obtained during a
virtual experiment. Figure 4.2 shows that the data contains a input
signal δn∗set and output signals δM∗s and δn∗s . During the experiments
the output signal δE∗n is not ’measured’. As can be seen from figure
4.2 these data sets are obtained from the nonlinear model.

• The data generation is done with four different input signals. Namely
multiple sine waves, chirp signal logarithmic, chirp signal linear and
a chirp signal logarithmic with bigger amplitude. These four different
input signals were selected in chapter 4.3.2 where different input sig-
nals are discussed. One input signal has a bigger amplitude to see the
influence on the parameter estimation.

• The nominal operation point is discussed in chapter 3.4 and is 1300 rpm.
This operation point leads to the system variables presented in table
3.5. The values from table 3.5 are used for normalisation of the derived
data sets.

In the following four parts the input signals and their responses are dis-
cussed in more detail.

5.1.1 Multiple sine waves

The frequency range of the multiple sine waves is determined with the help
of a Matlab ’Linear Analysis Tool’ that is implemented in Matlab Simulink.
The input signal has an amplitude of 13rpm, which leads to normalized
value of δn∗set =

13
1300 = 0.01 with the current nominal operation point. The

sixteen different frequencies of the multiple sine waves are presented in ta-
ble 5.1.
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Freq [Hz] Begin [s] End [s] Freq [Hz] Begin [s] End [s]
0.0042 0 954.36 0.1805 2484.52 2506.68

0.0067 954.36 1550.64 0.289 2506.68 2520.52

0.0107 1550.64 1923.2 0.463 2520.52 2529.16

0.0172 1923.2 2155.96 0.7407 2529.16 2534.56

0.0275 2155.96 2301.4 1.19 2534.56 2537.92

0.044 2301.4 2392.28 1.88 2537.92 2540.04

0.0705 2392.28 2449.04 3.03 2540.04 2541.36

0.1127 2449.04 2484.52 4.76 2541.36 2542.2

Table 5.1: Different frequencies of sine signal presented in Hz.

Every frequency in table 5.1 is executed four times for a more trustworthy
response of the system. The input signal of the multiple sine signals that
is used during the virtual experiment is presented in figure 5.1, where the
four periods for every frequency are visible.

Figure 5.1: Multiple sine waves as input signal.

The input signal set point engine speed δn∗set and output signal shaft speed
δn∗ are presented in figure 5.2.

Figure 5.2: Multiple sine waves as input signal and shaft speed as output signal.
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The results in figure 5.2 are in line with the expectations from looking at the
results of the Bode diagram in figure 3.8. In the Bode diagram it is clearly
visible that at higher frequencies the response of the shaft speed becomes
zero. This is also visible in the results as presented in figure 5.2, where the
grey line in the last 100 s goes rapidly to zero at higher frequency input.
Furthermore in chapter 3 is derived that the DC-gain of δn∗

δn∗set
is 1. This is

also clearly visible in figure 5.2 where the shaft speed can follow the set
point of the engine speed at lower frequencies. Another phenomena that
is slightly visible in figure 5.2 is that at increased input frequency a bigger
phase shift occurs. This is also in line with the expectations derived from
the Bode diagram.

The input signal δn∗set and the output signal shaft torque δM∗s are presented
in figure 5.3.

Figure 5.3: Multiple sine waves as input signal and shaft torque as output signal.

The results of the output signal, torque, in relation with set point engine
speed are in line with the expectations gained from the Bode diagram in
figure 3.9. In the Bode graph can be seen that at higher frequencies, the
response drastically increases. The response is even so high that these re-
sponses are not plotted, because otherwise the response of the lower fre-
quencies is not visible. The DC-gain δM∗s

δn∗set
is 2. This is also in line with figure

5.3, where at low frequencies the response of the shaft torque is 0.02, while
the input is 0.01. Furthermore is in figure 5.3 also slightly visible that with
an increased input frequency a phase shift in the response signal occurs.

From the above mentioned observations it can be concluded that the ob-
tained data sets with multiple sine waves input signal shows behaviour that
is, in line with qualitatively the frequency domain behaviour predicted in
chapter 3.3.

5.1.2 Chirp signal

During the virtual experiments three different chirp signals are used for
parameter estimation. First, the distinguishment is made between linear
and logarithmic, which means how the frequency range is divided over
time. Another difference between the chirp input signals is the amplitude.
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The frequency range for all chirp signals are kept the same and are w =
[0.0014 ... 20]Hz. The frequency range is also determined by the toolbox of
Matlab.

Chirp logarithmic small amplitude

The chirp signal in which the frequencies are logarithmic divided over time
and with normalized amplitude of δn∗set =

13
1300 = 0.01 is presented in figure

5.4.

Figure 5.4: Chirp signal logarithmic divided over time as input signal.

The input signal δn∗set and the output signal δn∗s are presented in figure 5.5.

Figure 5.5: Chirp signal logarithmic divided over time as input signal and shaft
speed as output signal.

The results of the output signal are in line with the expectations derived
from the Bode plot in figure 3.8. The reason for this is the same as stated
for the multiple sine wave signal. The shaft torque response and set point
engine are presented in figure 5.6.
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Figure 5.6: Chirp signal logarithmic divided over time as input signal and shaft
torque as output signal.

Pay attention to the fact that the actual chirp is an input signal of 1500

seconds, but the shaft torque response is only plotted till 1000 seconds. The
reason for this is that at too high input frequencies the shaft torque response
dominates figure 5.6 and presenting these results in a figure is not useful.
However at higher frequencies is the shaft torque response in line with the
expectations. From the above mentioned observations it can be concluded
that the obtained data sets with chirp signal logarithmic devided input sig-
nal shows behaviour that is, in line with qualitatively the frequency domain
behaviour predicted in chapter 3.3.

Chirp linear small amplitude

In figure 5.7 a chirp signal is represented, where the frequencies are linearly
divided over the time and the amplitude is as well δn∗set = 13

1300 = 0.01.
From figure 5.7 can be seen that after 50s the frequency is so high that a
chirp signal is not visible anymore.

Figure 5.7: Chirp signal linear divided over time as input signal.
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To see if the output signals are in line with the expectations only the first 12

seconds are plotted, see figure 5.8 and 5.9.

Figure 5.8: Chirp signal linear divided over time as input signal and shaft speed as
output signal.

Figure 5.9: Chirp signal linear divided over time as input signal and shaft torque as
output signal.

From figure 5.8 can be derived that at zero seconds the shaft speed can
follow set point engine speed, but at 6 seconds is the δn∗

δn∗set
= 0.9. This is

phenomena is also visible in figure 5.9 where at 6 seconds the δM∗s
δn∗set

= 1.9.
A reason for this is that the frequency increases so fast that after 5 seconds
the shaft is already not able to follow the set point engine speed. Still are
the values quite close to what was expected. From the above mentioned
observations it can be concluded that the obtained data sets with linear
chirp input signal shows behaviour that is, in line with qualitatively the
frequency domain behaviour predicted in chapter 3.3.

Chirp logarithmic increased amplitude

In chapter 4 is derived that during the full-scale experiments an increased
amplitude should be used so that the input signal is still visible between
the expected measurement noise, because the validation should be done
with a different data set. For this reason the amplitude is increased to a
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normalized value of 0.08. This means a shaft speed amplitude in practice
of nset = 0.08 · 1300 = 104rpm, see figure 5.10. The responses of the output
signals and the input signal are shown figure 5.11 and 5.12.

Figure 5.10: Chirp signal with higher amplitude logarithmic divided over time as
input signal.

Figure 5.11: Chirp signal with higher amplitude logarithmic divided over time as
input signal and shaft speed as output signal.

Figure 5.12: Chirp signal with higher amplitude logarithmic divided over time as
input signal and shaft torque as output signal.
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The responses are also in line with the expectation for the same reason as
stated in the multiple sine waves. From the above mentioned observations
it can be concluded that the obtained data sets with high amplitude chirp
input signal shows behaviour that is, in line with qualitatively the frequency
domain behaviour predicted in chapter 3.3.

5.1.3 Step responses

During the virtual experiments there are also step responses executed, they
serve for the purpose of validation. The input signal contains three different
steps of δn∗set = 13

1300 = 0.01 and they are executed every 20 seconds. The
input signal and the two different output signals are presented in figure 5.13

and 5.14.

Figure 5.13: Step response signal as input signal and shaft speed as output signal.

Figure 5.14: Step response signal as input signal and shaft speed as output signal.
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5.2 searching algorithm
In the second main part the settings of the searching algorithm are discussed.
In other words: How is the model fitted to the obtained data sets?

The ’Initial State’ of the optimisation algorithm is put to zero. This is the
initial state for the searching algorithm; a different initial state can lead to
a different fit (29). The ’Disturbance’ in the model is put to zero, this means
that there is no disturbance or noise in the data. This is also the case, be-
cause the data sets are obtained from the nonlinear computer model. The
’Focus’ of the error function is put to prediction, which results in a better
model reponse when a different data set is used. The searching algorithm is
obligated to come to ’force stability’, which means that the estimation should
be stable, because in reality the propulsion system is also stable. The ’In-
put/Output offset’ are turned off, because the offsets are automatically can-
celled when the data sets are normalized.

The ’Output Weight’ is turned on, which results in a weighted cost function.
This is required, because the averages of the output channels are different
and the difference at its maximum is ±15 at high input frequencies. Fur-
thermore: ’Regularization’ is used to remove the ’high’ peaks generated by
the nonlinearities in the data. The effect of this regularization is not seen
in the parameter estimation results. The ’Searching algorithm’ is chosen by
the software itself. In practice this means that the parameter estimation pro-
gram chooses the approach to come to a minimum. The methods that can
be used are subspace Gauss Newton Last Squares (GNLS), Levenberg Mar-
quard Last Sqaures (LMLS) and the Matlab function ’fmincon’.

The stopping criterion of the searching algorithm is defined as follows:
There are a maximum of 100 ’iterations’ during the loss function minimiza-
tion. The ’tolerance’ is 0.01, which is the minimum percentage difference
between the current value of the loss function and the expected improve-
ment after a following iteration. The expected improvement is computed
based on the Gauss-Newton vector for the current parameter set. If the
improvement ratio is not achieved, the algorithm will stop.

5.3 model structure
In chapter 3.3 the linearized model in state space notation is presented and
this is also used as model structure for the parameter estimation. In Chapter
4.2.2 is derived that the shaft speed and shaft torque are only measured. This
leads to the usage of the model structure which is presented in equation
3.50 and 3.51. It was also concluded that the parameters v, Kp, Ki can not be
individually identified. For this reason two relations are estimated during
the parameter identification, namely vKp and Kp

Ki
. The model structure is

able to estimate the parameters g and τn, so the parameter estimations gives
2 parameters and 2 relations.
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5.4 results parameter identification
In the fourth main part the results of several parameter estimations are pre-
sented, where every parameter estimation is defined as a small Roman nu-
meral (ii,..,v). First, the starting conditions are defined, which is followed
by a description of the four parameter estimations that have been executed.
After that the results are presented in a table and figures.

All the parameters of the nonlinear simulation model are known, because
the user knows the input, see chapter 3.4. This will result in the real param-
eter set θ̄r, presented in equation 5.1.

θ̄r =
[
τn g v Kp Ki

]T
=
[
1.442 −0.583 1.583 10 1

]T (5.1)

The searching algorithm requires a starting vector, which is presented in
equation 5.2. The values have been selected randomly. Other values can
also be used for parameter estimation, but for the comparison between the
different singals are all the results calculated with the same starting vector
θ̄0.

θ̄0 =
[
τn g v Kp Ki

]T
=
[
2.5 −2.5 3.5 10 3

]T (5.2)

To speed up the optimization program and to guide the optimization to a
feasible solution different boundaries are set for different parameters. The
boundaries are defined in equation 5.3, 5.4, 5.5, 5.6 and 5.7.

0.01 <τn < 5 (5.3)

−3 <g < −0.01 (5.4)

0.01 <v < 5 (5.5)

0.01 <Kp < 15 (5.6)

0.01 <Ki < 10 (5.7)

Below the different parameter estimations are discussed.

(i) ’Real parameters from nonlinear model’ are the parameters that are ob-
tained from the nonlinear model, θ̄r. To be clear, this parameter set
is not derived from parameter estimation, but this parameter set will
be used as a comparison with the other estimated parameter sets (ii
- v). In the end, the errors between the real parameter set and the
estimated parameter set are determining the quality of the parameter
estimation. The reason for this is if you only look at the fit percent-
ages, than you are not sure if the error occurs due to the limitations
of the optimization or because you are fitting a linearized model on
nonlinear data.

(ii) ’Multiple sine waves’ are used as input signal, which is illustrated in
figure 5.1. The amplitude is 13 rpm and the parameter estimation is
executed in frequency domain.

(iii) ’Chirp signal-lin’ where the frequencies are linearly divided over time,
which is illustrated in figure 5.7. The amplitude is 13 rpm and the
parameter estimation is executed in time domain.
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(iv) ’Chirp signal-log’ where the frequencies are logarithmic divided over
time, which is illustrated in figure 5.4. The amplitude is 13 and the
parameter estimation is executed in time domain.

(v) ’Chirp signal-ampl’ where the frequencies are logarithmic divided over
time, which is illustrated in figure 5.10. The amplitude is 0.08 · 1300 =
104 rpm and the parameter estimation is executed in time domain.

In table 5.2 different parameter identifications are listed with their results.
In the second column of table 5.2 the total experiment duration is given.
In the third till sixth columns the values of the parameters and relations
of parameters are presented. In the seventh and eighth column the fitting
percentages are presented for the data set with which the parameters are
estimated. In the ninth and tenth column validations fitting percentage to
step responses signal is shown.

Parameters Fitting Validation

Duration τn g Kp
Ki

vKp δn∗ [%] δM∗s [%] δn∗ [%] δM∗s [%]

(i) +
1.442 -0.583 10 15.83

+ +
99.53 90.72

(ii) 2542s 1.349 -0.575 9.99 15.83 99.99 99.98 99.52 90.70

(iii) 1500s 1.349 -0.575 10.03 15.86 99.91 99.91 99.53 90.69

(iv) 1500s 1.349 -0.575 10 15.43 99.98 99.98 99.52 90.70

(v) 1500s 1.321 -0.4616 11.57 15.22 97.84 87.76 99.36 89.99

Table 5.2: Results of virtual experiments.
+ The ’real parameters’ are not fitted, so for this reason there is no percentage and
no signal time.

From table 5.2 can be derived that all four (ii-v) different parameter esti-
mations are giving promising results. The only parameter estimation that
contains a slight error is the parameter estimation with an increased ampli-
tude in the input signal, v. Nevertheless, the five parameter sets are put
in a Bode plot, see figure 5.15 and 5.16 to see if the system responses are
estimated correctly.

Figure 5.15: Comparison parameter estimation frequency domain for δn∗
δn∗set
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Figure 5.16: Comparison parameter estimation frequency domain for δM∗s
δn∗set

Figure 5.15 shows a nearly perfect fit between the response of the real pa-
rameters and all four (ii-v) different estimated parameters sets responses.
Figure 5.16 shows a small offset between the response of different estimated
parameters at higher frequencies. When taking a closer look, it can be seen
that the response of parameter estimation v is containing a small offset com-
pared to the responses of the other three parameter estimations. The reason
for this offset probably has to do with nonlinearities due to the higher am-
plitude in the input signal used for parameter estimation v. In parameter
estimation v, the maximum obtained error in the parameters is ±22%, while
with smaller amplitude the maximum error 2%. However, this parameter
estimation is classified as correct, especially if you look at the simulated re-
sponse in frequency domain compared to the real system response.

The previous evaluation is performed in frequency domain. The estimated
parameter sets responses are also compared to an independent data set to
see if the fit in time domain is also correct, namely step responses. The ninth
and tenth columns of table 5.2 show the different fit percentages given with
the step response data set. The fit percentages are also presented in figure
5.17.

In general lines, the parameter estimations are in line with the real param-
eter set, as shown in figure 5.17. The biggest difference that occurs is at
higher offsets in the shaft torque output. For this reason the rectangular
drawn around the third step is observed in more detail in figure 5.18

From figure 5.18 is observed that the only difference occurs is between the
nonlinear data and the response of all the estimated linearized parameter
sets. All the different parameter estimations are on top of each other. So
in time domain the difference between parameter estimation with a high or
low amplitude of the input signal is not visible.

As concluding remark it can be stated that all used input signals are feasible
for parameter estimation. An increase of amplitude decreases the quality
of the system estimation, which is visible in the Bode diagram and in the
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results of table 5.2. Another criteria is the time duration of the different
parameter estimations. From here can be derived that the two chirp signals
are shorter than the multiple sine wave and the result is nearly identical.

Figure 5.17: Comparison parameter estimation in time domain.

Figure 5.18: Comparison parameter estimation time domain zoomed in on third
step.
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5.5 conclusion
The conclusions that can be drawn from this chapter are listed below:

• In theory it can be concluded the best parameter estimation can be
done with an input signal of multiple sinus waves with a low ampli-
tude. This can be obtained from table 5.2, where the multiple sine
waves, ii, has the smallest errors with respect to the real parameter set
i. Nevertheless, the differences between the results of parameter esti-
mation cases ii, iii, iv and v compared to real parameter set, i, are so
small, that it is not possible to say which is the best input signal result
wise.

• A big advantage of using a chirp signal in practice is that it saves
quite some time, namely 2500− 1500 = 1000s. This is already a 40%
decrease of the total experiment time. In practice more time can be
saved, because with multiple sine waves the input frequency should
be changed during the experiments or it should be programmed be-
forehand. Please note that in the multiple sine waves, as used now,
every frequency is executed for four periods. To decrease the total ex-
periment time of the multiple sine wave, the lower frequencies could
be executed only for a duration of two periods instead.

• The chirp signal on full-scale should be logarithmic distributed, which
increases the quality of the parameter estimation. The reason for this
is that with a logarithmic distribution, the lower frequencies of the
system are excited more.

• The amplitude of the input signal has a big influence on the results
of the parameter estimation. In parameter estimation v, the maximum
obtained error in the parameters is ±22%, while with smaller ampli-
tude the maximum errors are 2%. However, this parameter estimation
is classified as correct, especially if the simulated response using the
whole estimated parameter set is taken into account.



6 FULL-SCALE EXPER IMENTS

In this chapter the full-scale experiments and the analyses of obtained data
is reported. The chapter is divided into four main parts, were in the first
main part a description of the experimental set up is given. In the second
main part is a description of the experiments given and in the third main
part is a signal inspection executed were a data set is chosen for the full-scale
parameter estimation. In the fourth main part is the pre-processing of the
chosen data set discussed. In the last and final main part are the conclusion
and recommendations outlined.

6.1 description of experimental set up
The description of the experimental set up is divided into three different
parts. The first part contains a situation sketch, in which the conditions
during the experiments are elaborated on. In the second part, the ship
and the propulsion system are discussed. In the third and final part, a
measurement description is given.

6.1.1 Situation sketch

The preparations and the building of the test set up for the experiments
were carried out on the 4th and the early morning of the 5th of November
2019. The actual experiments were carried out on the 5th and started at
10:29 and the final measurement ended at 14:07.

The experiments took place at ’Haven zuid’, which is a mooring location of
the stock vessels of Damen Gorinchem in the Netherlands. ’Haven zuid’ is
surrounded by a break water, which resulted in calm water conditions dur-
ing the experiments. The 5th of November can be described as a day with
average weather conditions.

The experiments are carried out in backwards bollard push, which means
that the back of the vessel is pushing against a pontoon moored to the shore.
The reason for carrying out the experiment in this way is that the tug was
initially moored in this backwards position. Doing backward bollard push
eased the preparation of experiments in the way that a captain was not
required during the preparation phase. Also, one of the levers was not con-
trollable from the bridge anymore, which would have made the turning of
the vessel complex. An advantage is that their are no steering corrections
made during the experiments, which would be the case in bollard pull.

In figure 6.1, the experimental ship set up is presented in two different
ways. In figure 6.1a picture of the tug pushing against the pontoon during
the experiments is shown. In figure 6.1b, a schematic overview of the aft of
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the experimental ship set up is drawn. The schematic also contains symbols
representing different distances. The value of these distances can be seen in
table 6.1.

(a) (b)

Figure 6.1: The experimental vessel set up. (a) Stan Tug 1205 during the experiments.
(b) Schematic overview of experimental ship set up.

Symbol Physical quantity Value Unit
Tp Draft of pontoon 0.5 [m]

Taft,st[m] Draft of Stan Tug in the middle of the aft 1.8 [m]
Dp[m] Propeller diameter 1.05 [m]

t[m] Nozzle thickness ±0.1 [m]
Hharb[m] Draft in the harbour ±4.5 [m]

Table 6.1: Dimensions of pontoon and the aft of the Stan Tug 1205.

Some of the symbols in table 6.1 need some extra clarification. Tp repre-
sents the draft of the pontoon, Tst, represents the draft of the Stan Tug in
the middle aft part and Dp is the propeller diameter, excluding the nozzle.
The symbol Hharb is the water depth on the position were the experiments
were carried out and this value varied a little bit during the experiments.
The last symbol is t, which represents the thickness of the nozzle and the
tip clearance. The exact thickness of the optima nozzle is unknown but an
estimation of ±0.1m is used. This estimation is based on a ratio from a
drawing of the propeller. The tip clearance, derived from the performance
specification of the propeller, is 5 mm for this nozzle and propeller and will
be neglected for t.

The importance of having the correct values, is the ability to discuss the
influence of the pontoon on the water inflow of the propeller. From the
schematic overview, it can be concluded that the pontoon is not horizon-
tally in-line with the propeller tip, but it definitely does have influence on
the inflow. This interaction is also slightly influencing the dynamic system
behaviour by changing the mass moment of inertia of the propeller, while it
influences the displaced water during a propeller rotation. In the end, this
effect will influence the total mass moment of inertia of the complete shaft
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line and should be taken into account when a parameter comparison will
be made with a value taken from an existing torsional vibration calculation
(TVC).

6.1.2 Ship and the propulsion system description

The experiments are carried out on a Damen Stan Tug 1205 (STU1205), with
yard number 502522. The main particulars are listed in table 6.2 and in fig-
ure 6.2 a picture of a sister ship in free sailing condition is shown. Appendix
C contains the product sheet of a sister ship, which is generally equipped
with the same mechanical systems as the used vessel. The main difference
is the engine control system, but this will be discussed later on.

Symbol Physical quantity Value Unit
Loa Overall ship length 13.08 m

B Overall ship width 5.28 m
DWT Dead weight 54 t

vd Design speed 1 Kn
igb Gearbox ratio 3.82 [-]

Pb,max Maximum engine brake power 221 kW
ne,max Maximum engine speed 1800 rpm

Dp Propeller diameter 1.05 m
P/D Pitch ratio 1.110 [-]

Table 6.2: Main particulars of Stan Tug 1205.

Figure 6.2: Sailing Stan Tug 1205.

The vessel is equipped with two drive trains, each consisting of a VOLVO
D9-MH in-line 6 cylinder diesel engine, a twin disc gearbox and a ’Kaplan’
type fixed pitch propeller in an ’Optima’ Nozzle. The ’Optima’ nozzle
(L/D = 0.5[−]) is not steerable and the blade area ratio of the propeller
is AE

A0
= 0.7[−] and P

D = 1.11[−].

The engine control system that is used for controlling the fuel injection from
the bridge is an older VOLVO specific system, namely the Marine Commer-
cial Control (MCC) system. This is a control system for both electronic and
mechanical engines (30). A schematic overview of this system is presented
in figure 6.3. The meaning of the different abbreviations that are used in the
figure are clarified in table 6.3.



64 full-scale experiments

Figure 6.3: Set up of the MCC system on board of the Stan Tug 1205.

Abbreviation Meaning
MCC Marine Commercial Control
MCU Marine Control Unit
SDU Shutdown Unit

PM Power module
EMS Engine Management System

DE Diesel Engine

Table 6.3: Clarification of the abbreviation in figure 6.3.

The control system starts with receiving an input signal from the lever,
namely a current, Isetpoint. The internal signals between the different com-
ponents are neglected, but the output of the diesel engine (DE) is engine
speed, ne, and engine brake torque, Mb. In practice, the PM- and EMS units
are physically installed on/in the engine. Putting the input signal directly
on the engine will mean that you have to break into the engine. That is for
this research a too big operation while the ship is already classified by the
classification society, which after that operation is not valid any more. Next
to that is putting a signal directly on the engine more dangerous, because
the EMS is also equipped with different safety features which than will not
be active. The reasons given above explain why the input signal will have
to go through the control system.
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Inside the MCC there is also a feedback system. This feedback line is in-
dicated by the symbol X, but contains several different physical quantities.
Some of them are given below:

• Engine speed

• Coolant temperature, pressure and level

• Oil temperature, pressure and level

• Exhaust temperature and pressure

It is assumed that the EMS unit is influenced by each and every different
feedback component of the diesel engine, otherwise the feedback would not
be there. An educated guess is that these signals are only used when it
exceeds a certain value. Next to that, it should be pointed out that during
the simplification of the figure some input of different sensors are also left
out. For example, the MCU is also receiving sensor information which can
lead to a shutdown of the engine via the SDU. Later on in this chapter, the
MCC-system is simplified to only a governor and an engine, which than
outlined with a light blue background, see figure 6.4.

6.1.3 Measurement system description

The third part contains a measurement system description of the signals dur-
ing the experiment and will be split up into two different paragraphs. The
first paragraph is about the measurement in theory. The second paragraph
will be about how the measurements took place in practice and different
photographs of the installation will be shown.

The measurement system layout as used during the experiment is shown
in figure 6.4. The blue background in this figure is discussed in the previ-
ous part. This part discusses the systems shaded in grey (Data acquisition,
signal generation). The different symbols that are used to name different
signals are listed in table 6.4. Pay attention to the fact that the ’Math Calc’
block is in reality inside the logging device (DEWEsoft or imc-TM), but it
is chosen to separate them in this schematic diagram to clearly distinguish
between raw and calculated signals. Pay attention to the fact that the data
is logged on two different devices. The first logging is done by Damen
Gorinchem itself and the second logging is executed by JVS B.V., who are
specialized in measuring and calculating the vibration and noise levels for
maritime installations.

Another point of attention is that only one of the two shaft lines is instru-
mented and used during the experiments, namely the port side shaft line.
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Figure 6.4: Schematic overview measurement set up during the experiments.

Symbol Physical quantity Unit
Isetpoint Set point current mA

X Feedback signal -
Mb Engine torque Nm
Ms Shaft torque Nm

PTM1 Pulse time modulation [1 pulse] s
PTM4 Pulse time modulation [4 pulse] s
PTMe Pulse time modulation [engine] s

ns1 Shaft speed 1 pulse rpm
ns4 Shaft speed 4 pulse rpm
ne Engine speed rpm

Usetpoint Set point voltage V
UM,s Shaft torque voltage V

Table 6.4: Clarification symbols in figure 6.4.

First the different components that are used for the signal set up are elabo-
rated. In the list here down below are the different components types and
their product sheet presented. Next to that is a brief description of their
output signal.

– The signal generator is a RSDG 830, which is used for the input signal
and will replace the conventional lever. The signal generator is able
to generate a signal between -10V and 10V. More information can be
found in the product sheet (31).

– A signal converter, Pepperl + Fuchs SC-System S1SD-1AI-1U.2, is used
to fulfil the requirements of the MCC system to have a input signal
in current, Isetpoint. The signal converter converts the input signal, of
-10V to 10V, to a current between 4 mA and 20 mA. The scaling will
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be linear and this is also validated in chapter 6.3. More information
about the signal converter can be found at their product sheet (32).

– A temporary ’Binsfeld torque measurement’, which is a strain gauge
attached to the propeller shaft. This strain gauge is attached on the
shaft and transmits with a certain frequency to the receiver, which
than sends a voltage signal to the logging device. Next to that, the
strain gauge is not bending compensated. So, in the measurement it is
possible that there is residue left. More information about the Binsfeld
torque measurement can be found on the product sheet. (33)

– A Remote Optical Laser Sensor (ROLS) for the detection of the reflectors
on the propeller shaft which results in a pulse signal that goes into
the logging devices. More information about the laser sensors can be
found in the product sheet. (34).

– A ROLS for the detection of the four reflectors on the propeller shaft.

– A ROLS for the measurement of the engine speed.

– Logging system of imc-TM, type unknown, which is used by JVS for
logging the different signals.

– Logging system, DEWEsoft SIRIUS, which is used as second logging
device. This logging machine was equipped with 8x analogue STG
input and 2 counters in total. During the experiments all the signals
came trough the analogue STG inputs. More information about the
logging device from DEWEsoft can be found at (35). The measure-
ments are done with a DEWESoft Dual Core, which involves some
consequences on the logging of the data. The logging of the data is
explained in more detail on the website of DEWESoft (1). In figure
6.5, it is illustrated how the sampling on the DEWESoft is done. For
example, when a sample rate of 2 kHz is used, the signal is internally
sampled with sample rate of 2 kHz multiplied by 256. This signal
will then go trough a physical 2nd order filter to avoid aliasing. The
software will then give only the requested sampling rate, namely 2

kHz.

Figure 6.5: Explanation of the sampling rate DEWESoft Dual Core (1).
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Some of the components which are used in the signal set up have limitations
when it comes to their sampling rate. Next to that, as can be seen in figure
6.4, not every signal goes to every logging device. For this reason a detailed
overview is necessary, as presented in table 6.5. Here, it is visible if a signal
is logged and with which sample rate the signal is logged.

JVS Sample rate [Hz] DEWEsoft Sample rate [Hz]
Raw signals

Usetpoint Yes 2000 Yes 5000

PTMe Yes 2000 No -
PTM1 Yes 2000 Yes 5000

PTM4 Yes 2000 No -
UM,s∗ No 500-2000 No 500-5000

Processed signals
Ms∗ Yes 500-2000 Yes 500-5000

Ne Yes 2000 No -
Ns1 Yes 2000 Yes 5000

Ns4 Yes 2000 No -

Table 6.5: Logged signals on the different logging devices.

The upper note is placed for a point of attention. The transmitter that is
used after the strain gauge has a limitation of 500 Hz sampling rate. The
receivers output is an analogue signal, so when the logging devices are log-
ging at 2000 Hz and 5000 Hz, then in theory the logging sample will be the
same if zero order hold is applied. In practice every sample of the logged
data is different, so the output of the shaft torque should be analogue or a
filter can cause the different sampling values. According to the specialists
of JVS is the bandwidth created in the analogue signal by 2 filters, first by
the receiver and second of all by in the input of logging device of JVS.

Now that the symbols, the devices and the signals are clarified, the only
thing left is the mathematical calculation blocks in figure 6.4. Their are two
different mathematical calculations carried out in the logging devices. The
first calculation is the conversion from pulses to shaft- and engine speed,
which is illustrated in figure 6.6. In here is Tp depended on when the pulses
are above the 2V threshold, which indicated with a dashed line. The pulse
width is measured with two ’cond’ edges, see equation 6.1.

Tp = t2,2V − t1,2V (6.1)

With the pulse width is it possible to calculate the shaft speed, this is in
general form presented in equation 6.2.

ns =
1

Tp
(6.2)
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Figure 6.6: Explenation of pulse time modulation (PTM).

The second mathematical conversion that takes place is from voltage signal
to the shaft torque. This is quite a simple conversion as the voltage will be
multiplied by a factor, which depends on the shaft speed and power. This
factor is provided by JVS and implemented in both logging devices and
shown in table 6.6.

Symbol Quantity
C [Nm/mV] 1.059

Table 6.6: Conversion factor provided by JVS B.V.

For a more detailed calculation see Appendix D, which is the file that is
provided by JVS.

As stated earlier, the second paragraph contains a more practical description
on how the experiments are carried out, so that these kind of experiments
can be executed more easily in the future. A lesson learned is that it sounds
easier that you log Isetpoint instead of Usetpoint, because Isetpoint indicates a lot
better what is going into the system. A resistor in parallel is required for a
determination of a low current. The reasoning for not doing this is that the
converter does not have enough power to overcome the resistance in paral-
lel. A solution would be to purchase more expensive equipment. Because
of this, an input signal validation is required.

Figure 6.3 shows that Isetpoint goes into the board. In practice the board is
a hardware device called a terminal which is presented in figure 6.7, the
terminal is shown.

In figure 6.7b a red ellipse is drawn which shows the input for controlling
the engine speed, namely A5+ and A5−. As can been seen in figure 6.7a,
the two original black wires are disconnected from the terminal and the two
green wires are connected to the terminal. The green wires are coming di-
rectly from the converter and providing the required current.

In figure 6.8 an illustration is given on how the measurement of JVS is done,
these pictures are taken during the experiment. In figure 6.8b the lasers are
shown which are counting the pulses from the engine and from the shaft.
As can be seen, the lasers are attached to the steel structure of the vessel
with a magnet. This can cause vibration of the sensor especially at higher
engine speeds.
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(a) (b)

Figure 6.7: Terminal/board of the MCC system. (a) The terminal/board during the
experiments. (b) Schematic overview of the board.

(a) (b)

(c) (d)

Figure 6.8: Measurement executed by JVS B.V. (a) Attachment of strain gauge on
shaft. (b) Three different pulse measurements. (c) Logging computer of
JVS B.V. (d) Complete measurement set up of JVS B.V.
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In figure 6.8a, the reflector for the shaft speed is partly visible on the shaft.
The strain gauge and the transmitter for the shaft torque measurement are
completely visible. The strain gauge is glued on to the shaft and after that
wrapped with white tape to make sure it will not move during the experi-
ments.

Figure 6.8c shows the computer logging of JVS, were the yellow sticky note
clarifies the different data that is in the pulse signals. And in figure 6.8d
the total set up is shown, where you can see two black cables on the floor.
These will end up at the DEWEsoft logging machine which was placed in
the galley of the Stan Tug 1205.

6.2 description of experiments

During the experiment multiple measurements were carried out. A list of all
the measurements and their different log file names for both logging devices
is listed in table 6.7. Three types of experiments are carried out, multiple
sine wave experiments, chirp wave experiments and step response experi-
ments. Additionally, the amplitude determination during the experiments
is outlined down below.

Signal information DEWEsoft JVS
Sinus Freq [Hz] - Ampl. (V) File File Start [s] Stop [s]

S1 0.0021 - 0.3 ’Sin1 0021’ ’Run1’ 5500 6350

S2 0.0044 - 0.6 ’Sin2 0044’ ’Run2’ 480 1270

S3 0.0092 - 0.6 ’Sin3 0092’ ’Run2’ 1450 1900

S4 0.0193 - 0.6 ’Sin4 0193’ ’Run2’ 1970 2300

S5* 0.0275 - 0.6 ’Sin5 0275’ ’Run2’ 2400 2700

S6 0.0405 - 0.6 ’Sin6 0405’ ’Run2’ 2750 2950

S7* 0.06 - 0.6 ’Sin7 06’ ’Run2’ 3100 3200

S8 0.084 - 0.6 ’Sin8 084’ ’Run2’ 3300 3500

S9* 0.11 - 0.6 ’Sin9 11’ ’Run2’ 3600 3700

S10 0.1778 - 0.6 ’Sin10 177’ ’Run2’ 3800 3950

S11 0.3728 - 0.6 ’Sin11 37’ ’Run2’ 4050 4150

S12 0.7814 - 0.6 ’Sin12 78’ ’Run2’ 4250 4350

S13 1.637 - 0.6 ’Sin13 1 6’ ’Run2’ 4440 4580

S14 3.433 - 0.6 ’Sin14 3 4’ ’Run2’ 4640 4690

S15 7.19 - 0.6 ’Sin15 7 2’ ’Run2’ 4840 4900

S16 15.01 - 0.6 ’Sin16 15 0’ ’Run2’ 5020 5050

S17 31.644 - 0.6 ’Sin17 31 6’ ’Run2’ 5234 5254

Chirp Start Freq Stop freq Ampl. (V) File File Start [s] Stop [s]
C11 0.001 3.981 0.6 ’Chirp11’ ’Run2’ 8850 9450

C21 0.001 0.02 0.6 ’Chirp21’ ’Run2’ 9600 10150

C22 0.015 0.27 0.6 ’Chirp22’ ’Run2’ 10200 10750

C23 0.1 3.981 0.6 ’Chirp23’ ’Run2’ 10900 11450

Step Stepsize(V) Min (V) Max (V) File File Start [s] Stop [s]
St1 1 -3 6 ’Step1’ ’Run2’ 7150 7600

St2 2 -3 7 ’Step2’ ’Run2’ 7900 8300

Table 6.7: Overview of executed experiments with the names of the logfiles.
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As determined beforehand, the amplitude of the input waves depends on
the noise that is found during tests before the ’real’ measurements. During
the test runs, it was decided to put the amplitude around 150 rpm. At that
amplitude the waves are still visible in the noise of all the signals. With an
amplitude of 75 rpm, the engine is still quite close to its operating point and
when a linearization is made around this point, nonlinear effects are min-
imized. It was determined beforehand that the operating point is around
1200 rpm. During the test measurements, the bridge display indicated that
1200 rpm required approximately a −5V offset on the signal generator. So
the sinus and chirp experiments are carried out with an offset of −5V and
the amplitude of the signals is given in the fourth column of table 6.7.

6.2.1 Multiple sine waves

The frequencies of the applied sinusoidal input signal are logarithmic spaced
between 0.001Hz and 31.6Hz. The determination of the logarithmic scaling
is concluded in previous chapter 5.5. Three additional frequencies have been
added, which are marked as * in table 6.7. During the computer simulations
most poles and zeros can be found in this frequency range, for this reason
are extra sine waves executed around this frequency range. Sine wave S0,
which had a frequency of 0.001Hz is not carried out, because this would
have occupied a lot of measurement time, and during the test measurements
beforehand it indicated that the system reacted quite fast on offsets.

6.2.2 Chirp waves

In total, four different chirp wave experiments were carried out; all of them
covering a different frequency domain. The chirp signals that are carried
out are listed in table 6.7. All the different chirp signals are done with 500

seconds of duration, because this is the maximum time span which can be
created by the signal generator. The reason of doing a chirp signal is that its
less time consuming than doing experiments with the multiple sine waves.
The Chirp signals is the frequency range also logarithmic divided over the
time.

The four different chirp waves can be merged into two different chirp sig-
nals. The first chirp signal is C11, and the second chirp signal is C21,C22

and C23 added up so that a long chirp signal of ±1500s is constructed. The
small overlap between the domains is due to settling time of the chirp sig-
nals. From these two chirp signal hopefully a conclusion can be withdrawn
if a longer chirp input signal has a positive effect on the parameter estima-
tion.

6.2.3 Step responses sequences

The last input that is used during the experiments are two step responses.
Table 6.7 shows that there are two different steps set on the drive train. The
reason for carrying out these experiments is that once the parameters are
estimated in the following chapter they can be validated by implementing
these parameters in to simulation model and compare the results of the sim-
ulation model with the measured step responses.
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The signal generator was not equipped with a step response function that
was useful for this experiment. So the step responses are put on the system
by putting zero amplitude on the sine wave mode and make the steps with
the offset. A disadvantage of this approach is that the step size is limited by
1V, because this was the highest possible instantaneous offset.
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6.3 signal inspection

In the last main section the logged signals are inspected. First, an analysis
will be given of complete measured signals and checked if they are in-line
with the expectations. This is called a global analysis. The second analysis
is more in detail and this will be defined as a detailed analysis. Here, dif-
ferent peaks or noise will be clarified and discussed if there is a physical
background or if they are undesired measurement artefacts.

6.3.1 Global analysis

The global analysis is done for three different signals. First is the linearity of
the converter discussed. After that the shaft speed measurement and lastly
the shaft torque measurement.

Input signal

To check the linearity of the converter, it was tested in isolation on the 23th
of October. A picture of the test set up is shown in figure 6.9. Due to the
low currents a resistor, R = 50 Ω, is used for measuring voltages over the
resistor which can than be rewritten to a current.

The results are shown in figure 6.14, where for certain voltages the current
is plotted. Next to that, a line is drawn which represents the theoretical
relation according the product sheet. Figure 6.14 shows that the theorectical
relation is in-line with the results of the experiment.

Figure 6.9: Test set up of input signal validation.
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Figure 6.10: Correlation between input voltage and output current.

Shaft speed

The shaft speed validation takes place with JVS data by comparing the one
pulse measurement with the four pulse measurement. For a constant input
signal, a small time interval is taken and the one and four pulse measure-
ments are plotted, see figure 6.11.

Figure 6.11: Shaft speed comparison between one pulse measurement and four
pulse measurement.

In figure 6.11, the one pulse measurement is the solid line and the four pulse
measurement is the dashed line. The following can be observed from figure
6.11.

• The four pulse measurement gives in global lines the same values as
the one pulse measurement, so from here can be concluded that the
measurement for both signals is done properly.
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• Another phenoma which is visible is that the fourth measurement of
the four pulse measurement is alway higher than the previous three
measurements. This is illustrated with help of figure 6.13: An error oc-
curs due to the fact that a 6= b 6= c 6= d. This effect can be minimized
by gluing the reflectors more precisely.

Figure 6.12: Explanation pulse difference with a cross section of the shaft line, where
the blue rectangles represents the reflectors glued on the shaft.

• The third phenomena that is visible in figure 6.11, is the zero order
hold principle. As presented in table 6.5 the signals are logged with
2000 Hz. This means that there are multiple samplings during the
0.2 seconds constant shaft speed. This also means that the sensor is
giving a constant signal until the next reflector is detected. The zero
order hold principle then says that for that short moment the shaft
speed is constant, but in reality this is not the case. Shaft speed will
increase or decrease to the ’next shaft speed’.

• The last phenomena that is visible, is a small peak at the end of every
sample. The actual reason is unknown, but most likely it has to do
with filters that are in the sensor that a small ringing occurs.



6.3 signal inspection 77

Shaft torque signal

The shaft torque global analysis takes place in two different ways. First of
all, the amplitude of the shaft torque is checked. Second of all, the rimp-
pling in output shaft torque signal is analysed. The shaft torque signal is
illustrated in 6.13

Figure 6.13: Shaft torque signal with constant input signal.

The offset of the shaft torque measurement is compared to a static torque
calculation. This static calculation is performed for five different operating
points. The first step is obtaining the dimensionless torque factor. The ship
is operating in backwards bollard push, which means that if you look at an
4 quadrant propeller diagram, the propeller is working between the second
and third quadrant. This means that the operating point is β = 180◦. Next
to that is assumed that the water in ’Haven Zuid’ is fresh water so ρ = 1000.
The advanced velocity is zero and with this it is possible to fill in equation
6.3 for the different operating points. in this equation is ηr assumed as 1.

Q = Mp · ηr = C∗Q · (
1
2

ρ[V2
a + (0.7πnsDp)

2]
π

4
D2

p · Dp) (6.3)

In table 6.8, the comparison is made between the theory and the experi-
ments executed. The second column represents the operating points and
the last column, the fifth, contain the errors. From this comparison, it can
be concluded that the theory is in-line with the measured value from the
experiments for several operating points.

Usg(V) neng(rpm) Ms,m(Nm) Q(Nm) error(%)
-3 676.5 500 572.1 12.60

-4 927.5 1000 1075.3 7.00

-5 1184 1725 1752.3 0.99

-6 1430 2600 2556.1 -1.72

-7 1684 3550 3544.8 -0.15

Table 6.8: Shaft torque analysis
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Now that the amplitude of the shaft torque signal is analysed, the rimpling
in the shaft torque signal will be investigated. At the shaft torque over time,
periodic behaviour can be observed in the signal. A way of making this pe-
riodic behaviour clear is by transforming it into frequency domain instead
of analyzing it in time domain. A period of ’constant’ shaft torque is trans-
formed to frequency domain, which is presented in figure 6.14.

Figure 6.14: Shaft torque in frequency domain, with RMS of torque signal in Nm.

This figure shows peaks in the frequency domain, indicating the periodic
behaviour that was mentioned above. These peaks are pointed out with a
red arrow and their values are listed in table 6.9.

Peak 1 5.15 Hz ∼ rps
Peak 2 15.49 Hz ∼ rps
Peak 3 19.68 Hz ∼ rps
Peak 4 59.08 Hz ∼ rps

Table 6.9: Peak frequencies obtained from figure 6.14.

The frequency peaks in the torque signal are compared to the engine and
propeller frequencies. It is checked if the signal contains the correct rim-
pling according to vibration that is generated by the engine and propeller
with which the vessel is equipped. The torque signal in frequency domain
is generated while the engine was running at a speed of neng = ±1184[rpm].

As stated the engine is a VOLVO D9, a six-cylinder in-line diesel engine.
The propeller is equipped with three blades and the gearbox got a reduc-
tion of 3.82 : 1. Pay attention that the engine is a diesel engine, so every 2

rounds an ignition takes place. Also, the cylinders are in-line, which means
the cylinders fire after each other. In V shape engines this will be not the
case. The most common peak you see is often the engine and the shaft
speed. In this case the engine speed is at neng = 1184[rpm], which equals
neng = 19.73[rps]. This value corresponds with peak 3 from table 6.9. The
shaft speed is calculated in 6.4, with help of the gearbox reduction factor.
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nsha f t =
neng

igb
=

19.73
3.82

= 5.16 [rps] (6.4)

The shaft speed equals peak 1, so this also aligns with the correct frequencies
inside the output torque measurement. Every blade passage of the propeller
induces another peak that quite often occurs in the frequency spectrum. The
3 bladed propeller excites the frequency expressed in equation 6.5, z is 3.

nblade,p = z · nsha f t = 3 · 5.16 = 15.5 [rps] (6.5)

The frequency of 15.5 corresponds with peak 2 of table 6.9. The last fre-
quency that can often be seen in torque frequency domain is the firing fre-
quency of the cylinders. The following equation 6.6 is used to calculate the
ignition frequency with k = 2, because it is a 4 stroke in-line engine.

ne,cyl(k = 2) =
Cyl · neng

60 · k = 59.2 [rps] (6.6)

The ignition frequency corresponds with peak 4 of table 6.9. From this, it
can be concluded that the measured torque signal in time is showing the
expected rimpling according to the propeller and diesel engine with which
the shaft line is equipped. It is concluded that the torque measurement con-
tains the expected amplitude and frequency and is valid.

6.3.2 Detailed analysis

The detailed error analysis of signals is divided in four different types:
A,B,C,D. Table 6.10 lists which error occurs in which signals on one of the
two logging systems. This table can be considered as an overview for the er-
rors that are observed in the data. The S represents a sine wave, C represent
a chirp signal and St are step responses.

Signal DEWEsoft JVS Signal DEWEsoft JVS
S1 A,C C S13 A
S2 A S14 A
S3 A S15 A
S4 A S16 A
S5 A S17 A
S6 A C11 A,C C
S7 A C21 A E
S8 A C22 A
S9 A C23 A

S10 A St1 A
S11 A St2 A,B,C D1

S12 A

Table 6.10: Different signals with their ’errors’.

Type A; Shaft speed peak

As in figure 6.6 is presented is their a threshold in the volt signal, ′Pulse′ > 2,
and when this is achieved a new pulse period is made from the pulse signal.
But their is a erroneous determination of pulse period from pulse signals,
which can be seen in the upper graph of 6.15. From the lower lower graph
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in figure 6.15 can be seen that due to a saw tooth shape of the volt measure-
ments that for one sample the volt signal is below 2 and the next sample
above, which is the reason for the high peaks in the shaft speed measure-
ment. A way of resolving this error is by adding a additional threshold, so
that an upper cross and lower cross should be made for measuring a pulse.
This phenom can also be resolved with a lower sampling rate.

Figure 6.15: Shaft speed in time domain.

Type B; Noise in shaft speed at high engine speeds

At high engine speeds their is also erroneous determination of pulse period
from the pulse signals, which is illustrated in figure 6.16. This phenomenon
is only visible in the data logged by DEWEsoft device. The reason for this
phenomena is unknown, but it has to do to with an increase of vibrations
which disturbs the transfer in the cable.

Figure 6.16: Shaft speed in time domain.
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Type C; High peaks in torque signal

Erroneous measurement of the torque from the delivered voltage signal due
to Electromagnetic compatibility (EMC), such as phone calls. On the shaft is
a transmitter connected to the strain gauge, which is received by a stationary
receiver and this is connected to the logging device. The receiver can get
saturated by EMC, this phenonam is illustrated in figure 6.17.

Figure 6.17: Shaft torque in time domain with detailed crest.

Type D; Errors in Input signal

Two unexpected behaviours of the signal generator are detected, which are
caused by EMC issues, these errors are visible in upper graph of figure 6.18.
First type, defined as D1, are high jumps in the volt signal of the signal
generator, due to wrong relays switches. The error is canceled in a very
short period of time and the system is stabilized. These voltage jumps occur
under all circumstances, when step responses are set on the system but also
in ’normal’ running conditions.

The second type of error is defined as D2. It occurs after ±8500 s, where a
high frequent signal can be observed in the input signal. This error occurs
when the ’SWEEP MODE’ of the signal generator was turned on. When
zoomed in on the disturbance in the signal, seen in the right lower figure
6.18, 5 peaks can be observed in a time period of 0.1s. This means that this
disturbance has a frequency of 50 Hz, which matches with the frequency of
the electricity net.

The third type of error is defined as D3. This type of error occurs in input
signal ’C21’, where a chirp signal is generated for the excitation of the low
frequencies in the system. This signal should be a chirp signal, but the fre-
quency does not increase over time, as can be seen in figure 6.19. This is due
to incorrectness of the signal generator. What this incorrectness is or what
causes it is unknown. After the full-scale experiments, another test with the
same frequency domain was executed using the signal generator and again
no increase of frequency could be detected.
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Figure 6.18: Shaft torque in time domain with detailed crest.

Figure 6.19: Signal ’C21’ of table 6.7.

In this main part the different datasets were inspected by first doing a global
analysis and, after that, a more detailed analysis. During this inspection
several error types were outlined and discussed. The most usable datasets
for full-scale parameter estimation are the raw signals from JVS. First of
all, it can be seen from figure 6.4, because the JVS measurements logged
more signals than the DEWE Soft. Second of all, table 6.10 shows that the
JVS measurement contains less error types. A reason to use the raw data
instead of JVS would be that the calculation from pulse signal to shaft speed,
performed by JVS, is unknown.
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6.4 data pre-processing
In the previous main part it is concluded that the raw JVS data is the most
useable data set for the full-scale parameter identification. In this main part
is the pre-processing of this data set executed. In practice this is ’Run2’ of
table 6.7 and the ’error types’ in this data set, defined in previous main part
are presented in table 6.10. The outliers that are in the torque data measure-
ment are eliminated by taking an average of the neighboring points. Further-
more the following pre-processing operations are discussed: A correlation
between the measured voltage and the actual set point engine speed, trans-
formation of measured pulse signal to different shaft and engine speeds,
and normalisation of the data.

In the raw data of JVS the set point engine speed is given in voltage. Before
the conversion can be made between voltage and set point engine speed,
a relationship between those two should be found. This relationship can
only be made with stable points, meaning that the set point and shaft speed
are constant for a certain time span. At a constant input signal, still some
small oscillations are visible in the measured results. These oscillations are
cancelled out by taken an average so that the input signal and shaft speed
are constant. Some of those stable points are listed below, see table 6.11.
The results of table 6.11 are also illustrated in figure 6.20. From this figure is
clearly visible that the relationship is linear, so a linear function ne,setpoint =
a ·Usetpoint + b can be derived.

Usetpoint [V] nset [rpm]
-3.0309 676.74

-4.035 927.77

-5.03475 1184.4
-6.0236 1427.9

Table 6.11: Relationship between input signal and engine speed derived from JVS
logging.

Figure 6.20: Shaft speed as function of input voltage.
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Based on figure 6.20 a trend line can be drawn with the following charac-
teristic, see equation 6.7. This characteristic is used for the determination of
engine speed set point.

nset = −251.38 ·Usetpoint − 85.29 (6.7)

In the second part of the data pre-processing, three different pulse signals
are transformed to shaft and engine speeds. Which signals are in the raw
data of JVS is illustrated in figure 6.4. In the second main part was a general
equation of this transformation given, namely equation 6.2 and 6.1. But an
equation in more detail is required due to differences in amount of reflec-
tors and placing of the pulse measurement. The transformation Pulse Time
Modulations (PTM) to pulse period, illustrated 6.6, is done with the Matlab
function ’pulse period’. From this function the pulse periods for one pulse
measurement Tp1, four pulse measurement Tp4 and engine speed Tpe is
determined. The engine speed and shaft speeds are calculated according to
the pulse period, as presented in following formulas 6.8, were amount of
reflectors and were the pulses are measured are taken into account.

ne =
60

Tpe
, ns,4 =

igb · 60
Tp4 · 4

, ns,1 =
igb · 60

Tp1
(6.8)

The last pre-processing step that takes place is the normalization of the
data sets, because this is required for the model structure. The linearization
points are derived from a stable time period, while the system was running
at constant Usetpoint = −5V. The results are shown in table 6.12.

Unit Value
n0 [rpm] 1183.8

Ms,0 [Nm] 1725

Table 6.12: Normalisation points of logging device of JVS, with Usetpoint = −5V.

Furthermore the JVS raw data is down sampled for two different reasons.
First of all it reduces the required computer memory and second of all it
speeds up the parameter estimation in the time domain. The data is down
sampled to 200 Hz instead of the original 2000 Hz with Matlab function
’interp1’. This is done for all the in- and output data sets.

In end some small statements should be made about the physical limitations
of the obtained data sets. The measurement of the shaft speed contains a
frequency limitation due to the amount of reflectors installed on the shaft.
If the operating point is ±1183.8rpm and the gearbox ratio is 3.82, than shaft
speed is 1183.8

3.82 = 309.89[rpm]. This can be rewritten to 309.89
60 = 5.16rps = Hz.

In total are 4 reflectors glued on the shaft which means that the sensor can
receive 5.16 · 4 = 20.65 Hz of pulses. For the measurement of a sinus signal
you need at least 2 measurement points, according to Nyquist. This leads to
a high frequency measurement limitation of ±10Hz.

From here can be concluded that the data of the shaft speed above ±10Hz is
incorrect, due to the fact that only four reflectors are installed on the shaft.
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6.5 conclusions & recommendations
In the final main part the conclusions from the full-scale experiments are
outlined and recommendations for follow-up experiments are presented.

6.5.1 Conclusion

First of all, some conclusion are drawn from the signal inspection.

• The measured signals are all in-line with the expectations, such as
shaft torque measurement, shaft speed measurement and input sig-
nal measurement. All the measured signals contain errors, which are
summarized in table 6.10. However most of the defined ’errors’ are
outliers, which are easily repairable.

• The most usable datasets are the raw signals from JVS, because the
JVS measurements logged more signals than the DEWE soft, as can be
seen in figure 6.4. Second of all, it is visible in table 6.10 that the JVS
measurement contains less errors and the raw data is chosen, because
the calculation performed by JVS from pulse signal to shaft speed is
unknown. During the pre-processing the follow tasks are executed.

– The data is down sampled for several reasons. First of all, it is
required to eliminate the errors in the shaft speed calculation. Sec-
ond of all, it reduces the required computer memory and, thirdly,
it speeds up the parameter estimation in the time domain.

– The data is normalized according to the operation point.

– The engine speed set point is transformed from measured voltage
to engine speed in rpm.

– The engine and shaft speeds are calculated according to a trans-
formation of measured pulse signal to engine and shaft speed.

The above-mentioned proceedings are required before the data can
be used for the full-scale parameter estimation. Doing this provides
the user with a valuable dataset, which enables full-scale parameter
identification.

• The shaft speed measurement is limited by measurement limitations,
so the obtained data from 4 pulse shaft speed measurements above
±10Hz is not useful. The shaft speed measurement with one pulse
signal is not useful above ±2.5Hz.
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6.5.2 Recommendations experiments

Some recommendations are given for follow-up experiments:

• Execute the experiments with a more advanced signal generator, so
that for example higher offsets in the step responses can be used for
the input signals. It would also be interesting to have the possibility of
one long chirp signal, instead of being limited by 500s. Additionally, a
more advanced signal generator is able to minimize the ’errors’ in the
input signal, e.g. low frequent chirp or relay switches.

• Another recommendation is to make one complete input signal in time
domain beforehand. This could then contain all the different signals
such as sine waves, chirp waves and step responses. This signal can
be put on the system, which saves time and it reduces the possibility
of human errors during the experiments.

• Shut down or minimize the usage of phones, especially near the sta-
tionary shaft torque sensor, during the experiments such that less EMC
errors occur in the measurement.

• Logging the input signal Isetpoint after the converter may increase the
preciseness of what the exact input signal of the system is. Never-
theless, Isetpoint should most likely be measured with a resistance and
when this is put in parallel with the input signal on the board, the
converter is not able to deliver the requested power of this circuit. If
in follow-up experiments Isetpoint is measured instead of Usetpoint, then
another converter should be used.

• During the signal inspection it is derived that the reflectors of the 4

pulse signal PTM4 were not positioned equally over the shaft. If the
obtained data is used for recalculation or other purposes it is advis-
able to use a more advanced algorithm that takes the inequality of
the reflector positioning into account. The advantage with such an
advanced algorithm is that the 4 pulse signal fluctuates less and gives
a more realistic presentation of the reality and could improve a future
fit.

• It is recommended to pay more attention to the data pre-processing
of the shaft torque. In practice, the strain gauge measures the torque
between the propeller and the gearbox. The measured shaft torque
value should be in-between the propeller torque and gearbox torque
depending on the amount of mass moment of inertia on both sides of
the strain gauge. However, in the model structure the propeller torque
or the shaft torque has to be used. So, because of this, it is advisable
to multiply the obtained shaft torque with a correction factor.

• Execute the shaft speed measurement with 8 pulse reflectors on the
shaft, such that the shaft speed can be measured still at an input signal
of 40 Hz.



7 FULL-SCALE PARAMETER
EST IMAT ION

In this chapter the results of the parameter estimation on the full-scale data
are discussed. This chapter is divided into four different main parts. In
the first main part the pre-processed data from the previous chapter is anal-
ysed. In the second main part the used model structure and how this model
is fitted on the data for parameter estimation are discussed. In the third
main part the full-scale parameter estimation takes place with an additional
validation. In the fourth main part the conclusions & recommendations are
drawn from this chapter.

7.1 data from pre-processing
The raw data of JVS will be used for the full scale parameter estimation, so
the data set ’Run2’ of table 6.7 is split up in four different signals.. The four
different signals are:

1. Multiple sine waves

2. Short chirp signal

3. Long chirp signal

4. Step responses

Now the input and outputs of these four signals are presented and analysed
to see whether they are in line with the expectations.

7.1.1 Multiple sine wave

The multiple sine wave contains different sine wave frequencies, namely S2-
S14 of table 6.7. First of all, it should be noted that the amount of periods of
every sine wave is random. The input signal is presented in figure 7.1.

The input signal and the response of the shaft speed are plotted in figure
7.2. From Bode Diagram 3.8 is derived that the DC gain for relation δn∗

δn∗set
is 1 and this is also in line with the obtained data. At higher frequencies
the shaft speed response should go to zero according to the Bode diagram.
A reduction of the shaft speed response is also clearly visible in figure 7.3,
which is a zoomed in version at high frequencies of figure 7.2. Nevertheless,
it is also visible that the actual shaft speed response is not completely zero
at high frequencies. This might be caused due to limitations of the model,
see the conclusions of Chapter 3.6, which states that the sampling frequency
and step size of the calculations of the engine governor have an influence at
high input frequency and causes that the shaft response can not go to zero.

87
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Figure 7.1: Multiple sine wave input signal.

Figure 7.2: Multiple sine wave input signal and shaft speed 4 pulse measurement.

Figure 7.3: High frequency part of multiple sine wave input signal and shaft speed
4 pulse measurement.
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The input signal and the response shaft torque are plotted in figure 7.4.
From figure 3.9 is known that the DC gain is 2, which is also partly visible
in the results of figure 7.4.

Figure 7.4: Multiple sine wave input signal and shaft torque

At higher input frequencies, the response should increase drastically, accord-
ing the Bode diagram. In the obtained data, a small increase is visible, but
not the large increase that is expected. The reasons for this reduced increase
are most probably also the discrete behaviour in the governor, safety ramps
and discrete firing of the diesel engine.

The obtained data is also compared to an expected response graph made
by the writer, where the discrete behaviour of the governor, discrete firing
of the engine and safety ramps are involved. This is presented in figure
7.5. Please note that the sequence of the events in figure 7.5 is arbitrarily
selected, because in reality it is now unknown which event occurs first. The
three different events are briefly discussed in the outline here below:

• When the input frequency is above a certain point, the diesel engine
can not react physically on this due to the discrete firing. If this
is the case, then aliasing occurs, see the grey line. From the shaft
torque signal validation the firing frequency of the engine is deter-
mined. The different peaks in the shaft torque signal, including the
firing frequency of 59.08 Hz, can be seen in figure 6.14. To create a
sine wave as input signal it requires at least 2 ignitions, according to
Nyquist (36). Then the highest input frequency the system can react
on is 59.08[Hz]

2 ≈ 30[Hz]. This means that the highest frequency that
can be put in the system is a little bit less than 30 Hz, otherwise the
signal can not be physically transferred into the drive train. In practice
this value is most probably lower due to additional disturbances. The
dashed grey line in figure 7.5 indicates the starting frequency of this
phenomena.

• A safety ramp is installed in the governor, which limits the shaft
torque. It is expected that this ramp is just a constant line, which
means that the input frequency can be increased but the output re-
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sponse stays constant due to the ramp. The influence of this ramp is
illustrated with the red line.

• Sampling frequency of governor, calculation time step sizes of the gov-
ernor and possibly the engine management system are influencing the
shaft torque response. This means in practice that if sampling time
of these system is to low, then aliasing occurs. When aliasing occurs,
then different output responses are measured and this is illustrated
with the yellow line.

Figure 7.5: Shaft torque response in full-scale measurement.

When looking at the obtained data and figure 7.5, the obtained shaft torque
response is in line with figure 7.5. Another way of presenting this data is by
putting it in frequency domain.

Earlier in this text, the different sine waves were presented in time domain,
but putting the signal into frequency domain has some advantages. Es-
pecially the response data contains quite some noise and by putting these
signals into frequency domain this noise can be cancelled out. The removal
of this noise will most likely influence the parameter estimation positively.
The second advantage of putting the data in frequency domain is that less
computer memory is required. The third advantage is that using frequency
domain data speeds up the parameter estimation drastically. Especially be-
cause the multi sine wave signal is a really long measurement with a high
sample rate.

The different measured sine signals are summarized to a simple sinus wave,
with the Matlab function ’SineFit’. The ’SineFit’ function is obtained from
Matlab file exchange. This function fits the data into a single sine wave
with 4 values: a the offset, b the amplitude, c the frequency and d the phase
shift (37). With the use of ’SineFit’ it is not necessary to normalize the data,
because ’SineFit’ determines the normalisation point for every individual
frequency, namely the offset.

In global lines, the ’SineFit’ works as follows: The data is first transferred to
frequency domain and then the algorithm searches for the highest peak in
the frequency domain. This is decisive for the frequency that ’SineFit’ will
return and with too much noise in the measured signal this can lead to a
wrong frequency. The amplitude and offset are determined in time domain,
with a nonlinear fit. Please note that the phase shift is influenced in multiple
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ways, because a cancellation of a negative frequency leads to a phase change.

The results of the ’SineFit’ for every frequency and in- and output signals
are presented in Appendix E. The end of the appendix contains a small dis-
cussion about the obtained results. In the Appendix is concluded that every
measurement with a frequency of 3.433 Hz and above are not useful, due to
nonlinearities in the data or the conversion from time to frequency domain.

All the different input and output data are defined as simple sine waves
by the ’SineFit’ for different frequencies, ωi. The set point engine speed
nset, shaft speed measurement ns and shaft torque measurement Ms are de-
scribed by the following components a defines the offset, b the amplitude
and d the phase shift of the sine wave.

After that the sine waves can be put in complex notations and the absolute
magnitude and phase in degrees for the single input and two outputs can
be made. This is presented in equation 7.1 and 7.2.

H1(ωi) =
n∗s (ωi)

n∗set(ωi)
(7.1)

H2(ωi) =
M∗s (ωi)

n∗set(ωi)
(7.2)

The results are plotted for every frequency, ωi, in figure 7.6 and 7.7.

Figure 7.6: Bode plot of δn∗
δn∗set

.

The shape of the plots are in line with the expectations of chapter 3.5.2, be-
cause the results show the same system behaviour as the model structure
presented in that chapter. However, it should be stated that the phase in
both obtained figures contains some small outliers at a frequency of around
0.1Hz. Furthermore, the discussion, as outlined for the time domain results,
is still applicable for the same data in frequency domain. At higher frequen-
cies, less response in δn∗

δn∗set
was expected and more response in δM∗s

δn∗set
. When

here a DC gain comparison is made can be seen that the observation in time
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Figure 7.7: Bode plot of δM∗s
δn∗set

.

domain was partly correct while the correct DC gain δM∗s
δn∗set

is 2.2. The DC

gain of δn∗
δn∗set

is 1, which was also expected in time domain.

The data obtained from the multiple sine wave input signal is checked in
time and frequency domain. In both domains the lower frequencies are
in general in line with the expectations. At really high input frequencies,
the influences of sampling frequency and of step size of engine governor
calculations are visible, see also Appendix E.

7.1.2 Short chirp signal

The second input signal is a short chirp signal, which is signal ’C11’ in table
6.7. The input is presented in figure 7.8, in which the first part of the chirp
signal was cut off, because of the disturbances caused by rise time to the
operation point on which the chirp signal is executed.

Figure 7.8: Chirp input signal ’C11’ of table 6.7.
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Figure 7.9 and 7.10 shows that derived responses are identical to the results
of the previous signal. The obtained responses for low frequencies are in
line with the expected behaviour, but at high frequencies some unexpected
behaviour is observed similar to the multiple sine wave case. Nevertheless,
the results are in line with expectations. The short chirp signal is not put in
frequency domain.

Figure 7.9: Chirp input signal ’C11’ of table 6.7 and shaft speed response.

Figure 7.10: Chirp input signal ’C11’ of table 6.7 and shaft torque response.

7.1.3 Long chirp signal

The long chirp signals are the signals ’C21’,’C22’ and ’C23’ from table 6.7.
These signals are put after each other by trial and error so that no jumps
occur. Nevertheless, when a small jump would occur, then this chirp signal
contains a step responses. The signal is presented in figure 7.11. From the
detailed signal analysis and from figure 7.11, it is visible that during the first
500 seconds the frequency does not increase. Nevertheless, to excite the low
frequencies of the system, the chirp signal ’C21’ is still used. In reality this
is quite a disadvantage, because the lower frequencies are now only excited
by one single frequency instead of a whole range. Figures 7.12 and 7.13
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shows the input signal and the shaft speed and shaft torque.

Figure 7.11: Chirp input signal ’C21’,’C22’ and ’C23’ of table 6.7 and the shaft speed
response.

Figure 7.12: Chirp input signal ’C21’,’C22’ and ’C23’ of table 6.7 and the shaft speed
response.

Figure 7.13: Chirp input signal ’C21’,’C22’ and ’C23’ of table 6.7 and the shaft torque
response.
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The obtained responses for low frequencies are in line with the expected
behaviour, but at high frequencies some unexpected behaviour is observed,
similar to the multiple sine wave and short chirp signal cases. Nevertheless,
the results are in line with expectations. The long chirp signal is not put in
frequency domain.

7.1.4 Step responses

The validation of the different parameter estimations are done according to
step responses, such as presented in figure 7.14. The obtained step responses
are in line with the expectations.

Figure 7.14: Step response data St1 of table 6.7. Upper graph shaft speed response,
middle graph shaft torque response and lower graph input signal.

7.2 model structure & searching algorithm
In the third main part the used model structure and how this model is fitted
on the data for parameter estimation are discussed. In the previous part is
concluded that the model structure of chapter 5.3 is suitable for the obtained
data, so this is also used for the full-scale parameter estimations. Similar to
the virtual experiments, two parameters and two relations are estimated
during full-scale estimation, namely τn, g, Kp

Ki
and vKp.

Nevertheless, pay attention to the fact that in the previous main part, some
shortcomings of the model are outlined that influence the response at high
frequency input signals. The following events are not in the modelstructure
and play most likely an important role only at high input frequencies.

• Safety ramp

• Sample rate governor

• Discrete firing engine

How the model is fitted on the data is identical to the virtual experiments,
as was presented in Chapter 5.2. The only difference is that during full-scale
parameter estimation noise is involved in the data. So one of the settings is
changed, namely the allowance of ’Disturbance’ in the data.



96 full-scale parameter estimation

7.3 results parameter identification
In the fourth main part the results of several parameter estimations are pre-
sented, where every parameter estimation is indicated by a small Roman
numeral (ii,..,iv). First, the starting conditions are defined, which is fol-
lowed by a description of the ’three’ parameter estimations that have been
executed. After that, the results are presented in a table and figures. For
parameter estimation a starting parameter set is required, which for the full-
scale parameter estimations is defined as follows:

θ̄0 =
[
τn g v Kp Ki

]T
=
[
1.2 −0.5 1 10 3

]T (7.3)

To speed up the optimization program and to guide the optimization to a
feasible solution, different boundaries are set for different parameters. The
boundaries are defined in equation 7.4, 7.5, 7.6, 7.7 and 7.8.

0.01 <τn < 5 (7.4)

−3 <g < −0.01 (7.5)

0.01 <v < 5 (7.6)

0.01 <Kp < 15 (7.7)

0.01 <Ki < 10 (7.8)

Small Roman numerals (ii,..,iv) indicate different parameter estimations with
different input signals and/or settings. All the three parameter estimations
(ii,iii,iv) have an input amplitude of ±0.065 · n0 ≈ 77rpm.

(i) ’Initial parameter set’ θ̄0 is the set that is used initially for the searching
algorithm. Please note that this parameter set is not derived by param-
eter estimation. This initial parameter set is put into a model structure
and this initial system is used to see which changes are made com-
pared to a system determined by parameter estimations ii, iii and iv.
So this set could also be completely different.

(ii) ’Multiple sine waves with adjustments’ uses the multiple sine waves but
some values of the ’SineFit’ are manually adjusted. The reason for this
is that some of the estimated values are incorrect, which is visible in
the figures presented in appendix E. From these graphs, it becomes
visible that these adjustments are logical and that at high frequencies
an error in the ’SineFit’ occurs. The adjustments are listed here below:

• For the set point engine speed, table E.1, the amplitude at a fre-
quency of 3.433Hz is corrected to 76 instead of 68.

• For the shaft speed, table E.2, at an input frequency of 3.433Hz
the estimated frequency is corrected to 3.433Hz instead of 0.464Hz.

• For the shaft torque at an input frequency of 3.433Hz, table E.3,
the estimated amplitude is corrected to 320 Nm, instead of 96

Nm.

• All signals with a frequencies of 7.19Hz and above are disre-
garded, because these are not reliable.

The parameter estimation is executed with the data in frequency do-
main.
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(iii) ’Chirp signal short’ is the input signal as illustrated in figure 7.8. The
properties of the used chirp signal can be seen in table 6.7 at ’C11’. The
chirp signal is normalized according to the operating points presented
in chapter 6.4. The parameter estimation is executed using the time
domain data.

(iv) ’Chirp signal long’ is the input signal as illustrated in figure 7.11. The
second chirp signal contains exactly three different chirp signals placed
after each other, namely signal ’C21’, ’C22’ and ’C23’ from table 6.7.
The chirp signal is normalized according to the operating points, pre-
sented in chapter 6.4. The parameter estimation is executed using the
time domain data.

The results of the three parameter estimations are presented in table 7.1.

Parameters Fitting Validation

Duration τn g Kp
Ki

vKp δn∗ [%] δM∗s [%] δn∗ [%] δM∗s [%]

(i) +
1.2 -0.5 3.33 10

+ +
91.73 63.54

(ii) ±4250s 0.275 -0.314 0.0010 0.010 66.64 20.84 95.85 68.27

(iii) ±480s 0.5767 -0.01 0.0072 0.035 50.88 18.61 95.85 68.27

(iv) ±1400s 1.59 -0.01 1.45 1.93 42.63 10.02 95.85 68.27

Table 7.1: Results of full-scale parameter estimations.
+ The ’initial parameters’ are not fitted, so for this reason there is no percentage and
no signal time.

In general it can be concluded from table 5.2 that the different parameter
estimations are not in line with the expectations. All the three different pa-
rameter estimations (ii, iii and iv) show different results. For example, the
values of τn and g vary a lot. Additionally, the relations of Kp

Ki
and vKp are

different for nearly every parameter estimation. The fitting percentages of
the obtained parameters are low, especially that of the shaft torque response.
Here down below is every parameter estimation discussed in more detail.

Parameter estimation ii shows some unexpected results, e.g. the relation
between Kp and Ki. The obtained value for this ratio is low due to the fact
that value of Kp is really small, which also results in the low value of the
relation vKp. In practice, a small value of Kp means that an error is can-
celled out very slowly. This phenomena is not in line with the results of the
input signal and output signals of the multiple sine waves in figures 7.2 and
7.4. From these figures it is visible that the system cancels out errors quite
fast, because the responses can follow the input signal for lower frequencies.
This then leads to the assumption that the relation between Kp

Ki
is wrongly

estimated. However, the value of τn, which represents the mass moment of
inertia for a certain operating point, is also significantly lower than expected.

Parameter estimation iii also shows some unexpected results. First of all, as
a result of this parameter estimation the same unexpected relation is visible
between the Kp

Ki
and vKp. Nevertheless, the value of τn is more in line with

the expectations than for parameter estimation ii, but still way too low. It is
assumable that the parameters and relations are incorrectly estimated.
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Parameter estimation iv is more in line with the expectations when it comes
to the estimated parameters and the relations. Nevertheless, the fitting per-
centages are much lower and the relations and individual parameters are
still containing extreme values. It is still assumable that the parameters and
relations are incorrectly estimated.

In the following parts the obtained parameter sets are implemented in the
used model structure and validated in frequency domain, time domain and
the parameter τn is compared to a torsion vibration calculation (TVC).

7.3.1 Frequency domain behaviour

First, the relation δn∗s
δn∗set

is presented in figure 7.15.

Figure 7.15: Frequency domain comparison δn∗s
δn∗set

.

At first sight of figure 7.15, it can be seen that the responses of the different
parameter estimations are identical to each other. Pay attention to the fact
that parameter estimations (ii, iii and iv) are on top of each other. Param-
eter estimations (ii, iii and iv) shows different dynamic behaviour than the
initial parameter set implemented in the linearized model. The differences
are at which frequency the first decay takes place and the in steepness of the
decay. However, at lower frequencies the DC gain is 1, which is in line with
the expectations derived from the bode plot of δn∗s

δn∗set
. Furthermore are the

parameter estimations ii, iii and iv for higher frequencies not in line with
the obtained response of the multiple sine wave in frequency domain. The
second relation that is plotted, is δM∗s

δn∗set
, see figure 7.16.

Just as in the previous Bode plot, the results of parameter estimations (ii,
iii and iv) are on top of each other. The initial parameter set (i) is showing
different behaviour than the parameter estimations. At lower frequencies, it
can be seen that the parameter estimation sets (ii, iii and iv) have a DC gain
of 2, this is in line with the DC gain of δM∗s

δn∗set
, which is also ±2. However,

at high frequencies the estimated parameters go to zero, while the initial
parameter set in the linearized model goes to a certain magnitude. Further-
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Figure 7.16: Frequency domain comparison δM∗s
δn∗set

.

more are the parameter estimations ii, iii and iv for higher frequencies not
in line with the obtained response of the multiple sine wave in frequency
domain, where even a slight increase is visible.

7.3.2 Time domain validation

The previous evaluation is performed in frequency domain. The estimated
parameter sets are also compared to another data set to see if the fit in time
domain is correct. The ninth and tenth columns of table 7.1 show the fit
percentages of the estimated parameters on a different data set, namely step
a response defined as ’St1’, in table 6.7. From figure 7.17 can be concluded
that the parameter estimations (ii, iii and iv) in time domain are correct in
global lines. Please note that the parameter estimations (ii, iii and iv) are on
top of each other in the graph.

Figure 7.17: Comparison parameter estimation time domain.



100 full-scale parameter estimation

The second step is shown in more detail in figure 7.18. From figure 7.18 can
be seen that the rise time of the parameter estimations are nearly identical
with the actual data. The actual response is identical and a small overshoot
is visible in the data and in the estimated simulations. A certain kind of
delay can also be observed in the data, namely of 0.5s. For every step that is
put on the system, a delay can be observed in the data. The reason for this
delay is unknown.

Figure 7.18: Comparison parameter estimation time domain zoomed in on third
step

The parameter estimation ii is fitted on the multiple sine waves data, so time
domain validation with the multiple sine waves is only done with parameter
estimation iii and iv. The results are presented in figure 7.19, where the fit
percentages are also presented.

Figure 7.19: Validation parameter estimation iii and iv with multiple sine waves.

From figure 7.19 can be derived that the model with the estimated parame-
ter set has a higher fit percentage than the model with the initial parameters.
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Figure 7.20: Validation parameter estimation ii and iv with short chirp signal.

Most likely, these big difference are caused by response differences at higher
frequencies, because at lower frequencies the responses are identical. Fur-
thermore can be noticed that the response of the shaft speed of the estimated
parameters (iii and iv) decreases more and also at higher frequency. This is
in line with the Bode diagram 7.15, where the response difference is clearly
visible.

The parameter estimation iii is fitted on the short chirp signal, so the short
chirp signal is used for time domain validation with parameter estimation ii
and iv. The results are presented in figure 7.20, where the fit percentages are
also presented. The parameter estimations ii and iv are completely in line
with the short chirp signal at low frequencies. At higher frequencies there
is a difference for the same reason mentioned at time domain validation of
multiple sine waves.

The parameter estimations ii and iii are validated with a long chirp signal
data set. The results are presented in figure 7.21 where the fit percentages
are presented in the legend. The parameter estimations ii and iii are are
completely in line with the short chirp signal at low frequencies. At higher
frequencies there is a difference for reasons explained at the multiple sine
waves.
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Figure 7.21: Validation parameter estimation ii and iii with long chirp signal.

The results of the different time domain validations from here above are
summarized in table 7.2 and 7.3.

M. sine waves [%] Short chirp [%] Long chirp [%] Step responses [%]
P. est. i 40.45 24.21 30.43 91.73

P. est. ii fitted 46.53 49.7 95.85

P. est. iii 53.89 fitted 49.7 95.85

P. est. iv 53.89 46.53 fitted 95.85

Table 7.2: Fit percentage shaft speed of different parameter estimations according to
different validation sets.

M. sine waves [%] Short chirp [%] Long chirp [%] Step responses [%]
P. est. i -10.36 -45.86 -36.05 63.54

P. est. ii fitted 1.016 14.05 68.27

P. est. iii 19.03 fitted 14.05 68.27

P. est. iv 19.03 1.016 fitted 68.27

Table 7.3: Fit percentage shaft torque of different parameter estimations according
to different validation sets.

From tables 7.2 and 7.3, it is not possible to conclude which parameter esti-
mation is the best, because all the fits have the same value. Still, there are
differences between the parameter estimations, e.g. the duration of the ex-
periments. If the duration of the experiment is the determining factor than
the short chirp signal is the best.
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7.3.3 Parameter validation

The validation of an individual parameters is difficult, because the actual
value of these parameters are unknown. The only individual parameter
that can be partly validated is the value of τn. This can be done by making
use of the information provided in a torsion vibration calculation (TVC).

The total mass moment of inertia is calculated in the same way as stated in
Chapter 3. The total mass moment of inertia for all the different components
is 62.3kg ·m2, when seen from the propeller. With the normalisation points
from chapter 6.4 it is possible to determine the value of τn, see equation 7.9.

τn =
2π Ipn0

Ms,0
=

2 · π · 62.3 · 1184
3.82

60 · 1725
= 1.17 (7.9)

In practice the obtained value from the parameter estimation should be
lower than the determined 1.17. The reason for this is that the value is
influenced by the positioning of the measurement of shaft speed and shaft
torque. This is illustrated in figure 7.22, where an arbitrary line is drawn for
the build up of total mass moment of inertia as a function of the position
on the shaft seen from the proppeller. The influence depends on the point
where the summation of the moments is taken, which is also decisive for
the calculated mass moment of inertia.

Figure 7.22: Explanation of influence of shaft torque measurement on the value τn.

Nevertheless, this influence should not be so big. As can be seen in figure
7.22, this influence is around the 12kg ·m2. When this is the case, then the
value of τn should be around 1. However, none of the parameter estimations
result in a value for τn between the 1 and 1.17.
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7.4 conclusion & recommendations
In the final main part the conclusions from the full-scale parameter estima-
tions are outlined and recommendations are presented.

7.4.1 Conclusion

The conclusions that can be drawn from this chapter are listed below:

• The pre-processed data sets are in line with the expectations for lower
frequencies, because at an increased input frequency the shaft torque
responses increases and the shaft speed responses decreases. This is
applicable to the input signals: multiple sine waves, chirp signal and
long chirp signal.

• The used model structure for parameter estimation derived in chapter
3 is for lower frequencies in line with obtained data sets of the multiple
sine waves. But for higher frequencies is noted that the model is too
simplified. Surprisingly a lot of dynamic behaviour occurs still at high
input frequencies.

• The estimated parameter sets of different parameter estimations show
big differences, which makes the results of the different parameter
estimations not trustworthy. Additionally, the value of τn is individu-
ally validated with the help of a torsion vibration calculation and the
estimated value is incorrect for all parameter estimations.

• When the obtained parameter estimations are put in the model struc-
ture, the system responses are in line with obtained data from full-
scale step responses. This result is clearly visible in figure in 7.18,
where the rise time and the small overshoot in the system response
are clearly visible. Furthermore, step responses are practically the
most used input signal of the captain, which makes these parameter
estimations with model structure still useful. The obtained step re-
sponse data contains a delay of ±0.5s. The reason for this delay is still
unknown, but can be caused that the governor will not react on wake
differences.

• All three different input signals give the same results when the ob-
tained parameter sets are validated with different obtained datasets,
see table 7.2 and 7.3. However, from the introduction can be con-
cluded that the short chirp signal, parameter estimation iii, has the
lowest duration. This makes this signal, the best input signal for full-
scale parameter identification.

• For further investigation, it is advisable to implement the following
in the nonlinear model: Discrete firing, internal sampling time gover-
nor and extra ramps. If these elements are included in the nonlinear
model, then most likely the obtained full-scale data is more in line
with the data obtained from the nonlinear model. Furthermore, it is
recommended to execute a parameter estimation with this ’new’ non-
linear model, so that the discreteness stays in the model structure and
it is not cancelled out due to linearization. With these adjustments,
better parameter estimation results can most likely be obtained.
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7.4.2 Recommendations full-scale estimation

Figure 7.23 is an extension of figure 1.2, where in the extension multiple
events for an unsuccessful model validation are given. For now the esti-
mated models are only able to capture step responses but not any other
input signals, such as chirp signals or multiple sine waves. For this reason,
the estimated model is not classified as ’ok’. As can be seen in figure 7.23

this can be caused by an unsuitable searching algorithm and/or unsuitable
model structure and/or unsuitable data. Down below, recommendations
are written for every previously mentioned event to obtain positive model
validation instead.

Figure 7.23: Reasons for incorrect parameter estimation

The data obtained during the experiments can be unsuitable due to incorrect
measurement or due to incomplete data pre-processing. The recommenda-
tions on the experiments themselves, and on pre-processing of the obtained
data, are outlined in chapter 6.5.2.

However, it is also recommended that during new experiments more out-
put signals are measured. As one can imagine, if more is known about the
output of the system it is also easier to identify the system. This rule is only
applicable when there are also more relations available inside the system
with the newly measured output signals. Otherwise, one could measure
everything, but if there is no relation between input and output, it does
not help with the parameter identification. But, for example, during the ex-
periments the reading out of the CAN bus of the diesel engine can lead to
information such as fuel rack position, fuel consumption, cylinder tempera-
ture.

The searching algorithm can be unsuitable due to wrong settings in the
fitting of the model on the data. First of all, it is recommended to exe-
cute a more thorough investigation on usage of ’Regularization’, because the
influence of this was not notable during the parameter estimations. The
advantage of regularization is that it prevents overestimation of parameters,
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which is now definitely the case because some parameters are estimated to
be extreme.

Another recommendation for linearized parameter estimation is to penalize
differently for nonlinear data. This can be achieved by adding a threshold,
determined by the user, inside the cost function so that the weights of large
errors from quadratic behaviour will be penalized in a linear way instead of
quadratic.

The model structure can be unsuitable due to the different simplifications
in the nonlinear model and after that due to the linearization. It is recom-
mended to make the governor in the nonlinear model more advanced by
implementing a PID regulator instead of a PI regulator and furthermore
by implementing discrete behaviour in the governor. Thirdly, it is recom-
mended to implement a time delay which was visible during the step re-
sponse validation.

Additionally, the nonlinear model contains no discrete firing frequency of
the diesel engine. Furthermore, the step sizes of the engine governor calcu-
lations and possible engine management system are not implemented. Fur-
thermore, due to the linearization of the engine several engine limitations
are not taken into account.

The implementations of these components in the nonlinear model are recom-
mended for two reasons. First of all, the nonlinear model can then be used
as model structure for nonlinear parameter estimation. Furthermore, it is
possible to see if parameter identification can be executed in a virtual envi-
ronment when these components are implemented. If more output signals
are measured, then it is also recommended that more relations are derived
between the input signal and the newly obtained output signals.



8 CONCLUS ION &
RECOMMENDAT IONS

In this final chapter, conclusions are drawn from the findings in this thesis
work. In addition to that, some recommendations are given on the future
development of full-scale parameter identification.

8.1 conclusion
This thesis aims to answer the main research question: ”How to determine
propulsion model parameters with identification techniques on a full-scale propul-
sion system in limited time?”. The answering of this main research question
is done according to three sub questions.

8.1.1 First sub question

The first sub question is: ”Which parameter identification techniques are suitable
for model parameter estimation of a ship propulsion plant?”. This sub question
will be answered with parameter identification in a virtual environment. Pa-
rameter identification generally requires three things: an information-rich
data set, a model structure and an optimization program. These three com-
ponents are in following three paragraphs discussed.

The different information-rich datasets are obtained from the nonlinear model
which is presented in figure 3.1. The use of this nonlinear model is correct,
because it’s statically validated in figure 3.2 and 3.3 with data from a sea
trail. The two most feasible input signals of the system are multiple sine
waves and a chirp signal. The advantage of a multiple sine wave is that
the parameter estimation can be ’validated’ and it contains a relatively high
spectral purity, because it is just a single frequency which also allows the
user to filter out noise more easily. The chirp input signal is interesting,
because it minimizes the duration of the experiments. Other input signals
are not taken into account, because in practice the system can not react to
them (pulse signals) or it is unknown whether the signal will be deformed
by ramps and/or any other safety mechanism (Band limited white noise).
These practical considerations are taken into account, however due to limi-
tations of the nonlinear model it still could work in the virtual environment.
More importantly: the input signal needs to contain the correct input fre-
quencies and amplitude, otherwise the parameter estimation is not possible.

The model structure in state space notation, which was used for the param-
eter estimation, is presented in equation 3.53 and 3.54. This model structure
is correct, because it is verified in figure 3.6 and 3.7. Using this model struc-
ture it is not possible to determine every parameter individually, because
the amount of unique relations between the parameters is not equal to the
amount of parameters, presented in table 4.2. This results in the fact that
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only the values of g and τn and the relations vKp and Kp
Ki

can be individually
determined. Nevertheless this model structure is used due to fact that the
value v can derived from a factory acceptance test (FAT) of the engine.

The optimization program takes the following things into account: Weighted
cost function, regularization, stopping criteria and constraints to the param-
eters so that a feasible solution is obtained.

With the information-rich data sets, model structure and optimization pro-
gram, different parameter estimations are executed and the results are promis-
ing due to high fit and validation percentages, see table 5.2. During the vir-
tual experiments, the two input signal types are used multiple times with
different properties. The used signals are: Multiple sine waves (ii), a chirp
signal where the frequencies are linearly divided over time (iii), a chirp sig-
nal where the frequencies are logarithmically divided over time (iv) and a
chirp signal with an increased amplitude (v). There is a good fit between the
nonlinear data and the simulated response using the estimated parameters.
Additionally, validated percentages are obtained by comparing the obtained
simulated response using the estimated parameter set compared to a differ-
ent nonlinear data set, namely step responses. These validated percentages
are promising, due to the high percentages. The estimated parameter sets
ii, iii and iv only differ from the actual value by a small percentage, max
±2%. From this can be concluded that parameter estimation ii, ii and iv
are correct. For parameter estimation v, the maximum obtained error in the
parameters increases to a maximum of ±22%. This is an point of attention
for the full-scale experiments due fact that an increased amplitude influ-
ences the parameter estimation a lot and is the reason this error. However is
this parameter estimation classified as correct especially if the simulated re-
sponse using the whole estimated parameter set is taken into account. This
is shown in time domain with several step responses in figure 5.17 and in
frequency domain in figures 5.15 and 5.16. In both domains, all parameter
estimations are showing the same simulated response as the response of ac-
tual parameters.

So, with the given model structure, information-rich data sets and opti-
mization program, it is possible to execute parameter estimation on a ship
propulsion plant in a virtual environment. Still, the answering of the first
sub question is incomplete, namely which techniques are suitable. Param-
eter identification requires three things, model structure, information-rich
data set and optimization program. During this research, only the informa-
tion rich data sets are varied by using different input signals. So, virtual
parameter estimation is possible with multiple sine waves and chirp signals
as input signal. For executing parameter estimation on full-scale, similar
input signals and the same optimization program will be used as outlined
above.

8.1.2 Second sub question

The second subquestion is: ”Which experiments are suitable for the full-scale de-
termination of model parameters?”. The full scale limitations are already taken
into account in the choice of the input signals, as discussed in the previous
subquestion. This subquestion is thus already partly answered. Still, it is
unknown whether it is possible to obtain full-scale model parameters. To an-
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swer this question, the same approach is used as for the virtual experiments,
with some minor changes to the optimization program, model structure and
information-rich data sets.

The optimization program is identical as during the virtual experiments.
The only difference is that disturbances need to be added, because the mea-
sured data contains noise. For full-scale parameter estimation, the same
model structure is used as for the virtual model parameter simulation, equa-
tion 3.53 and 3.54.

In Chapter 6 is concluded that the obtained information-rich data sets are
derived correctly. However, some important remarks were made. First, the
shaft speed obtained from single pulse measurement is only valid for in-
put frequencies lower than ±2.5Hz. The shaft speed obtained with the four
pulse measurement is only valid for input frequencies lower than ±10Hz.

The following parameter estimation on full-scale are executed: Multiple sine
waves, chirp signals short and chirp signal long. The results of the full-scale
parameter estimation, shown in table 7.1, do not look promising. First of
all, the fitting percentages are not high and the estimated parameters are all
different. However, the validation percentages are high and this is achieved
by comparing the parameter estimation with another data set, namely step
responses. Please note that these percentages are so high, because a big part
of this signal is constant. Because of this it’s better to make a validation
where the results are visually compared. The results of this validation are
presented in figures 7.17 and 7.18. From these figures, it is concluded that
the parameter estimation responses are in line with measured data, namely
step responses. Additionally, a 0.5 s delay is observed in the propulsion
drive train, the reason for this is unknown.

The answering on the second sub question is as follows: So far no suit-
able experiments are found that can determine the full scale individual pa-
rameters and relations. However, it is possible that in the near future the
executed experiment is suitable and that only a more advanced searching
algorithm and/or model structure leads to correct parameter estimation.
However, with the executed experiment and the explained model structure
and searching algorithm it is possible to estimate the model response quite
well compared to full scale step response. This is quite relevant, because in
practice the most given input signals by the captain are step responses.

8.1.3 Third sub question

The third research question is: ”What is the uncertainty of an estimated full-scale
model parameter?”. The goal of this question is to look at the uncertainty of
the estimated parameters. Determining the uncertainty of the estimated
parameters is a difficult task, but possible. With the correct mathematical
approaches the variance and bias of the estimated parameters can be de-
termined. However, the influence on the uncertainty of fitting a linearized
model on the nonlinear data is unknown and makes determining the un-
certainty difficult. Because the parameters are not estimated correctly, no
in-depth uncertainty analysis is executed. For this reason, an answer in the
precision of the estimation is more useful than the uncertainty.
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So, the value of τn is obtained from a different experiment, namely τn = 1.17.
If this value is compared to the results of the parameter estimation in table
7.1, it is clear that none of the parameter estimations are correct and the
precision is low. However, the simulated response of the three different es-
timated parameter sets are identical when they are compared to different
validation data sets, see figure 7.18 and 7.17. From this, it is concluded that
the simulated response using the estimated parameters sets is more precise.

Nevertheless, before an uncertainty analysis is done, it is advisable to start
with a sensitivity analysis, where five Bode plots are made and in every
Bode plot one single parameter is varied. This shows the influence of a
certain parameter on the complete estimate response.

8.2 recommendations
This final section contains the recommendations for future work on full-
scale parameter identification. Please note that only the main recommen-
dations are outlined here and that all the recommendations can be found
in Chapter 6.5.2 ’Recommendations experiments’ and Chapter 7.4.2 ’Recom-
mendations full-scale estimation’.

• If another nonlinear simulation model would be built (discrete engine
firing, sampling time governor and discrete steps in the governor), it is
recommended to do this based on a Damen Stu1205, because dynamic
data exists for this vessel which enables the user to do a dynamic
validation of the simulation model.

• The results of the virtual parameter estimations are executed without
any noise in the data. A recommendation for future work is to see if
parameter estimation is also possible when noise is included, and to
see what the influence is on the results. This approach might reduce
the gap that is between full-scale experiments and virtual experiments.

• After a comprehensive analysis of the data, it is concluded that at
higher frequencies the obtained data is not in line with the nonlinear
model data. A possible reason for this could be that an incorrect as-
sumption is made in chapter 2, where is stated that the simplifications
such as discrete engine firing frequency, sampling frequency governor
and engine management system can be made. Also, the assumption
that the governor is equipped with a PI regulator instead of a PID
regulator can have influence. However, it is recommended to add and
change these components in the nonlinear model. Then, first of all, to
see if it is possible to execute parameter identification with this new,
more complex nonlinear model(virtual experiments). Second of all,
this nonlinear model can be used as a ’model structure’, so that dis-
crete steps and limits are involved during the parameter estimations.
When the nonlinear model is used as model structure, this leads to
nonlinear parameter estimation.

• It is recommended in follow-up experiments to measure the shaft
speed with eight pulses instead of four pulses. Furthermore, it is rec-
ommended to measure more output signals than only the shaft speed
and shaft torque, e.g. CAN bus of the diesel engine, because this can
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offer a solution in identifying all the parameters instead of only rela-
tions. For example, the relation of fuel rack over engine set point can
be used.

• It is recommended to pay more attention to the data pre-processing
of the shaft torque. In practice, the strain gauge measures the torque
between the propeller and the gearbox. The measured shaft torque
value should be in-between the propeller torque and gearbox torque
depending on the amount of mass moment of inertia on both sides of
the strain gauge. However, in the model structure the propeller torque
or the shaft torque has to be used. So, because of this, it is advisable
to multiply the obtained shaft torque with a correction factor. Second
of all, it is advisable to take into account the 4 pulse signal PTM4,
not all of the reflectors where positioned equally over the shaft. If
the obtained data is used, it is recommended to use a more advanced
algorithm that takes this inequality of the reflector positioning into
account, so that the model is not fit on noise of the imperfection of the
shaft speed measurement.

• It is also recommended to take a closer look at the searching algorithm
and the usage of regularization, so that overestimation can be avoided.
Furthermore, if a linearized parameter estimation is used, then pe-
nalize nonlinear data differently. This can be achieved by adding a
threshold, determined by the user, inside the cost function so that the
weights of large errors from quadratic behaviour will be penalized in
a linear way instead of quadratic.

• A separate recommendation from a more practical point of view is
to execute the parameter estimation with a simpler model structure,
so that the parameters v and g are cancelled. This leads to a three pa-
rameter model structure, which can maybe capture the shaft dynamics
and can be easily used for simulations.

• The above-mentioned recommendations contain contradictions, because
it is recommended to increase the level of detail of the model structure
and afterwards it is recommended to simplify the model. Which to fol-
low depends on the purpose of the research or application, as some
require simplicity, while other purposes require additional complexity.
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A L INEAR I ZAT ION

a.1 normalization of governor
For small increments can be said that the error in the governor is the differ-
ence between the set point of the lever and the ’real’ engine speed, see the
equation A.1.

δen = δnset − δne (A.1)

This can be normalised by dividing both sides by the operating point.

δen
n0

=
δnset

n0
− δne

n0
−→ δe∗n = δn∗set − δn∗e (A.2)

The PI controller in normalised conditions in the same way:

δXset

X0
=

Kpδen

n0
+

KiδEn

n0
−→ δX∗set = Kpδe∗n + KiδE∗n (A.3)

Were the integral of the error is capital error:

δE∗n =
∫ t

0
δe∗ndt (A.4)

a.2 derivation shaft torque and engine set
point

First of all can the nonlinear model be summarized into figure A.1, were
every component now equals one or more equation from the DAE. All the
different components in the figure A.1 are also defined with a letter, so
the governor is defined as C, the diesel engine defined as D, and the core
propulsion system is Hship. It eases the math when these letters used instead
of the whole equation.

Figure A.1: Closed loop linearization

Equation A.5 is a Laplace transform from the shaft loop equation 3.14. This
is also the only equation that is in the core propulsion system.

τnsδn∗ = M∗s − 2δn∗ (A.5)
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The core propulsion system can be rewritten so that the actual shaft speed
is in relation with the shaft torque, see equation A.6. Next to that can the
governor component also be written as in equation A.7.

Hship(s) =
δn∗

δM∗s
=

1
τns + 2

(A.6)

C(s) = Kp +
Ki
s

(A.7)

When the efficiency of the gearbox is constant then A.8 is applicable.

δM∗s =gδn∗+vδX∗ (A.8)

Then the normalised fuel rack set point, δX∗, is equal to the governor, C
multiplied by the error, where the error, δn∗set − δn∗. This leads after some
mathematical manipulations to equation A.9.

δM∗s = (g− vC)δn∗+vCδn∗set (A.9)

Equation A.6 can be rewritten were the shaft speed is a function of Hship and
δM∗s . This can be implemented in equation A.9, were after some additional
mathematical manipulations the transfer function A.13 is derived.

δM∗s = (g− vC) HshipM∗s+vCδn∗set (A.10)

δM∗s
δn∗set

=
vC(

vCHship − gHship + 1
) (A.11)

δM∗s
δn∗set

=
vKps + vKi

s
(

vHshipKp + vHship
Ki
s − gHship + 1

) (A.12)

δM∗s
δn∗set

=
vKps2 +

vKiτn+2vKp
τn

s + 2vKi
τn

s2 +
vKp−g+2

τn
s + vKi

τn

(A.13)



B RELAT IONS MODELSTRUCTURE

As defined in transfer functions 4.14, 4.15 and 4.16 the values in the denom-
inator are all equal so, this is defined as a and b, see equation B.1.

2− g + vKp

τn
= a

vKi
τn

= b (B.1)

In the named transfer functions are the relations in the numerator presented
in B.2 and B.3.

vKp

τn
= c

vKi
τn

= d
2− g

τn
= e (B.2)

vKp = f
vKiτn + 2vKp

τn
= h

2vKi
τn

= i (B.3)

119





C STAN TUG 1205

Product sheet STAN TUG 1205 ’TOR’
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D SHAFT TORQUE FACTOR

Provided by JVS B.V. conversion factor shaft torque.

123





E T IME TO FREQUENCY DOMA IN

In this appendix the results of the ’SineFit’ function for the different frequen-
cies ωi and the different measured input and output signals are discussed.
In practice this means that the time domain measurement is put into fre-
quency domain. This is done with help of a Matlab function ’SineFit’. Only
the obtained data of multiple sine waves S2-S16 are put into frequency do-
main. The ’SineFit’ function determines four values, first of all ’a’ the offset,
’b’ the amplitude, ’c’ the frequency, ’d’ the phase shift, as presented in E.1.

a + b · sin(ct− d) (E.1)

In tables E.1, E.2 and E.3 the results are presented of the ’SineFit’, where in
the first column the input frequency of the signal generator is presented. In
the second column the value ’a’ is presented, in the third column value ’b’,
in fourth column value ’c’ and in the fifth column value ’d’.

Freq input [Hz] Offset [rpm] Amplitude [rpm] Frequency [Hz] Phaseshift [Phi]
0.0044 1181 76 0,0044 0,8063

0.0092 1181 76 0,0092 3,0402

0.0193 1181 76 0,0193 5,882

0.0275 1181 76 0,0275 4,692

0.0405 1181 76 0,0405 3,087

0.06 1181 76 0,0600 2,268

0.084 1181 76 0,0848 6,079

0.11 1181 76 0,1100 5,12

0.1778 1181 76 0,1778 3,98

0.3728 1182 76 0,3728 3,028

0.7814 1182 76 0,7814 5,091

1.637 1182 76 1,6370 4,3933

3.433 1182 68 3,432 1,2377

7.19 1182 76 7,1899 2,501

15.01 1182 76 15,0099 1,809

31.644 1182 76 31,644 4,29

Table E.1: Setpoint engine speed determined by ’SineFit’
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126 time to frequency domain

Freq input [Hz] Offset [rpm] Amplitude [rpm] Frequency [Hz] Phaseshift [Phi]
0.0044 1180 76 0,0044 0,79

0.0092 1180 76 0,0092 3,022

0.0193 1180 76 0,0193 5,81

0.0275 1180 76 0,0275 4,61

0.0405 1180 76 0,0405 2,96

0.06 1180 76 0,05996 2,09

0.084 1180 77 0,0848 5,832

0.11 1180 77 0,10998 5,17

0.1778 1181 78 0,17781 3,18

0.3728 1180 77 0,37277 2,40

0.7814 1178 69 0,78134 3,91

1.637 1176 41 1,63689 1,69

3.433 1171 24 0,46446 5,82

7.19 1179 62 0,70541 4,482

15.01 1173 21 2,04048 2,05

31.644 1179 4 0,77896 0,16

Table E.2: Shaft speed determined by ’SineFit’

Freq input [Hz] Offset [Nm] Amplitude [Nm] Frequency [Hz] Phaseshift [Phi]
0.0044 1685 233 0,0044 0,8929

0.0092 1651 235 0,0092 3,2854

0.0193 1672 235 0,0193 5,6700

0.0275 1699 237 0,0275 4,8836

0.0405 1703 237 0,0405 3,0079

0.06 1706 240 0,060 2,0408

0.084 1712 244 0,0848 5,6642

0.11 1706 243 0,110 5,5086

0.1778 1713 249 0,1778 3,2608

0.3728 1719 263 0,3728 2,8288

0.7814 1690 292 0,7813 4,5919

1.637 1705 300 1,6369 2,882

3.433 1695 96 3,0510 2,8923

7.19 1691 253 0,7054 0,2885

15.01 1698 234 15,3584 0,232

31.644 1721 304 15,4423 2,3834

Table E.3: Shaft torque determined by ’SineFit’

Already, by looking at the values in the tables E.1, E.2 and E.3, some errors
and outliers from the ’SineFit’ can be observed. In the coming three parts,
every signal is discussed in more detail for different frequencies. Please note
that only the errors and outliers of the ’SineFit’ estimation are discussed in
the parts here below,.
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setpoint engine speed

From table E.1 setpoint engine speed, is visible that at an input frequency
of 3.43 Hz the amplitude is most likely not estimated correctly. This is illus-
trated in figure E.1, because in this graph is clearly visible that the amplitude
of the data is higher and is also around ±76 rpm (red line), but the ’SineFit’
estimates the amplitude lower (blue line), the reason for this occurrence is
partly unknown. In frequency domain is namely visible that at the input
signal of 3.43 Hz some lower frequent noise (3.1 Hz) can be distinguished,
which most probably influences the estimated amplitude.

Figure E.1: Input signal validation 3.433 Hz in time domain

Figure E.2: Input signal validation 3.433 Hz in frequency domain
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shaft speed

The results of the sine fits on the shaft speed are presented in table E.2. It
is visible that at an input frequency of 3.433Hz the estimated frequency is
incorrect, ′c′. This can be easily checked, because the input frequency is
known. In figure E.3 the error is illustrated and the high frequent input
signal is visible in the output, but unfortunately the lower frequency com-
ponent in the signal is more dominant. This is clearly illustrated in figure
E.4, where in frequency domain a big peak can be observed at 0.7 Hz. A
reason for this is most probably aliasing or nonlinearities inside the system.

(a) (b)

Figure E.3: Measurement shaft speed frequencies 3.433Hz in time domain.

Figure E.4: Input signal validation 3.433 Hz in frequency domain.

The shaft speed measurement with an input frequency of 7.19Hz is pre-
sented in figure E.5, where can be seen that most probably due to aliasing
the measured response is a lot lower. This means that the SineFit is correctly
fitted on the data, but the data just does not contain the high frequent com-
ponent of 7.19Hz. This becomes clear when the results are put in frequency
domain see figure E.6.
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(a) (b)

Figure E.5: Measurement shaft speed frequencies 7.19Hz in time domain.

Figure E.6: Input signal validation 7.19 Hz in frequency domain.

shaft torque

The results of the ’SineFit’ on the shaft torque is presented in table E.3. In
this table can be seen that at input frequency of 3.433Hz the amplitude is
estimated quite low. This problem is also illustrated in figure E.7. The fitted
blue line is not coping with the input data, namely the red line. Again,
the lower frequency noise is dominant in the total signal, which is clearly
visible in figure E.8. In frequency domain also the blade, engine and firing
frequencies are visible.
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Figure E.7: Torque signal wrongly estimated amplitude at input frequency 3.44 Hz
in time domain.

Figure E.8: Torque signal wrongly estimated amplitude at input frequency 3.44 Hz
in frequency domain.

At an input frequency of 7.19Hz is clearly visible that the ’SineFit’ of the
shaft torque is incorrect, e.g. frequency is estimated significantly lower. In
figure E.9 is clearly visible that a lower frequency is most dominant in the
signal. Only the blade, engine and firing frequencies are visible.

Figure E.9: Torque signal wrongly estimated amplitude at input frequency 7.19 Hz
in frequency domain.
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