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1 CHAPTER

Introduction

The demand for fossil fuels is expected to increase. To meet this de-
mand petroleum reservoirs should be operated more efficiently. This

chapter gives an overview of the operation of hydrocarbons reservoirs in
which models play an increasingly important role, and provides the re-
search objective and motivations of this thesis.

1.1 Increasing demand for fossil fuels

Since the industrial revolution the world has been depending on fossil fuels; main-
ly as energy source but also as providers of e.g. lubricants and plastics. Fossil
fuels consist of coal, oil and natural gas. The latter two are also called petroleum,
meaning literally ‘rock oil’. Also today the world’s main energy sources are fossil
fuels. A smaller fraction of the total energy (14%) is delivered by nuclear fission,
hydro-electric, wind, solar and biomass energy.

In some parts of the world there is a trend to minimize energy consumption,
mainly motivated by environmental reasons. For example, in the European Union
the energy consumption in 2007 has decreased by 2.2 % (BP Statistical Review of
World Energy, 2008). However, in rapidly developing countries such as China
and India the demand for energy is increasing drastically. As a result, worldwide
there is a growing demand for energy. It is expected that oil and gas will remain
the largest energy source for the next decades (International Energy Outlook,
2009). See Figure 1.1 for a historic overview of the marketed energy per energy
type, and a projection until 2030.

Considering the estimated reserves of oil and gas (USGS World Petroleum Assess-
ment, 2000) as well as the projected demand for oil and gas (International Energy
Outlook, 2009), it can be concluded that the reserves are sufficient for the com-
ing decades. However, as will be explained in the next section, the recovery of
these reserves becomes increasingly demanding, and a more efficient operation of
petroleum reservoirs would be beneficial to increase petroleum production.

1
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Figure 1.1: World marketed energy use by energy type, 1980-2030 (International
Energy Outlook, 2009).

1.2 Petroleum production

1.2.1 Overview of petroleum production

Petroleum is produced from subsurface reservoirs, where it is contained in the
pores of the reservoir rock under high pressure and temperature. Once a promis-
ing reservoir structure is found by conducting and interpreting geological and
seismic surveys, an exploration well is drilled to investigate if it contains petro-
leum. Subsequently, it is investigated if the petroleum can be recovered in an
economically and environmentally sound way. To this purpose several decisions
need to be made during the depletion design of the petroleum reservoir. An ex-
ample of such a decision is where to drill a well such that the total amount of
produced hydrocarbons can be maximized.

These decisions directly influence the dynamic processes that play a role during
the recovery of the fluids from the reservoir. These processes mainly concern
reservoir pressure and saturations, i.e. the fractions of oil, gas and water occu-
pying the pore space. Initially, during the primary recovery phase, the large pres-
sure in the reservoir is driving the oil and gas towards the wells and the surface.
However, due to production the reservoir pressure declines and at a certain point
in time the pressure is insufficient to drive the oil and gas to the wells and the
surface. During the secondary recovery phase the reservoir pressure is increased
by injecting water via injection wells - see Figure 1.2. Besides giving pressure
support, the injected water can also drive the oil towards the production wells.
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Figure 1.2: Process of water flooding using a horizontal injection and produc-
tion well. The irregular-shaped oil-water front is a result of the reservoir hetero-
geneities (after Brouwer 2004; van Essen et al. 2009).

This process is called water flooding. Water flooding can increase the recovery of
oil and gas with a few percent to several tens of percent - see Jansen et al. (2008)
and references therein for examples. In certain cases, during the tertiary recovery
phase, additional oil and gas is recovered by injecting CO2 or chemicals.

One of the reservoir properties that can have a large influence on the dynamic pro-
cesses in the reservoir is the permeability of the rock. The permeability describes
how easily fluids can move through the rock, and since the rock is heterogeneous
the permeability can greatly vary throughout the reservoir: through some parts
of the reservoir the fluids cannot flow at all, and through other parts the fluids
can flow easily. As a result, there can exist preferential flow paths in the reser-
voir through which fluids can move faster. For example, water is injected into the
reservoir with the aim to drive the remaining oil towards a production well, see
Figure 1.2. However, in some cases the water encounters a high-permeable area in
the reservoir and directly flows to the production well, bypassing the oil in some
parts of the reservoir. The production well is then producing water, which at the
surface needs to be disposed of in an environmentally friendly way.

After production the petroleum is transported to refineries where it is refined to
e.g. gasoline or bitumen. So in addition also decisions about the surface facilities
and infrastructure need to be made. However, in this thesis only the reservoir and
the wells are considered, which will be considered as the system of interest.

1.2.2 Recent trends in hydrocarbon production

It becomes more and more challenging to meet the increasing demand for hydro-
carbons. The production rates of currently producing oil reservoirs decline more
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rapidly than expected. In addition, recently discovered reservoirs are often found
in environments that are challenging to operate in. This is referred to as that the
easy oil has been found (e.g. Voss and Patel 2007). Examples of such environments
are arctic or deep sea environments. The increasing complexity in hydrocarbon
production is combined with an expected loss of experience and knowledge, for
a large part due to the expected retirement of 40% of the E&P workforce within
the coming decade (e.g. Parry et al. 2006). This demands for a more efficient and
rationalized operation of petroleum reservoirs.

Fortunately, in the last decades the control possibilities, i.e. the influence that de-
cisions can have on the processes in the reservoir, have increased due to increased
capabilities of hardware. There are currently wells with internal control valves
that can be remotely operated such that some parts of the well are open and other
parts are closed to flow from the reservoir. Also, because of increased control
over the drilling process it is possible to drill complex well configurations such
as horizontal wells or multi-lateral wells with multiple branches, offering extra
possibilities to increase hydrocarbon production.

For the decision making it is beneficial to know the relevant properties of the reser-
voir, such as the heterogeneities in the reservoir rock that are relevant for the flow.
These properties are to a large extent unknown, certainly in the beginning of the
reservoir life. Therefore, wellbore measurements in the form of core samples or
wireline logs are taken to increase the knowledge of the reservoir. Moreover, pro-
duction measurements such as pressure and rate measurements also contain indi-
rect information about the permeability distribution in the reservoir. Furthermore,
recently measurement devices have been developed and implemented that nearly
continuously give information about the downhole pressures and oil, water and
gas rates. In addition, time-lapse seismic measurements offer the possibility to
monitor the displacement of oil-water or oil-gas fronts in the reservoir at quar-
terly intervals.

These trends in petroleum production have offered new decision possibilities for
the operation of petroleum reservoir. Examples of new decision possibilities are:

• how to operate the control valves in the wells such that the total amount of
produced oil is maximized over the life of the reservoir;

• around which well should the reservoir rock be fractured such that the pro-
duction is increased;

• where to install measurement devices such that the maximum amount of
information on the relevant reservoir properties is gained.

Note that there are still processes in the reservoir that can not be controlled. For
example, in the situation that gravity effects or capillary pressure effects play a
large role in the recovery, the reservoir pressure and saturations are difficult to
manipulate and thus the control possibilities are limited. In addition, the number
of control possibilities and measurements locations are limited due to economic
constraints.

It is desirable to take decisions related to the optimal depletion design and oper-
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ation of petroleum reservoirs based on knowledge and measurement data. This
can be done by using models of subsurface hydrocarbon reservoirs, in which the
relevant dynamic processes are represented, and which support the decisions that
need to be taken to increase the reservoir performance. For initial depletion de-
sign the use of models can be considered to be standard practice in the oil indus-
try. However, model-based operation of hydrocarbon reservoirs is not standard
practice yet. In the next subsection this is discussed in more detail.

1.2.3 Model-based depletion design and operation of hydrocar-
bon reservoirs

Reservoir modeling

To aid the optimal depletion design of a reservoir often a detailed, physics-based
model of the subsurface reservoir is made that integrates all relevant information,
e.g. seismic information, geological information, well information. From the de-
tailed model a less detailed reservoir model is derived (i.e. the model is upscaled).
To make long-term predictions of the reservoir fluids flowing through the porous
rocks and into the wells the partial differential equations (pde’s) for mass balance,
Darcy’s law, equations of state and the relevant initial and boundary conditions
are temporally and spatially discretized (i.e. divided into time steps and grid
blocks), resulting in a set of ordinary differential equations (ode’s). See Chapter
2 for more details. For the remainder of the thesis this will be referred to as the
reservoir model. Based on the model the effect of decisions on the future behavior
of the reservoir can be predicted, and those decisions can be selected that maxi-
mize reservoir performance, e.g. total production or net present value over the life
of the reservoir. Examples of decisions during depletion design are the number
and type of wells and the size of the platform.

Each grid block in the temporally and spatially discretized reservoir model is as-
sociated with its own values for pressure, saturation and rock properties (e.g. per-
meability). The dynamically varying pressures and saturations in each grid block
of the reservoir model are referred to as states, and are denoted by x. The deci-
sions regarding the wells (e.g how to operate the wells, where to position the next
well) are referred to as inputs to the reservoir model, and are denoted by u. The
resulting petroleum production rates and pressures that are measured in the wells
or at the surface are referred to as outputs of the reservoir model, and are denoted
by y. The remaining variables in the model are referred to as parameters, and are
denoted by θ. They can concern fluid properties (e.g. viscosity, density, compress-
ibility), rock properties (e.g. permeability in each grid block, porosity in each grid
block, compressibility) and rock-fluid interaction properties (e.g. capillary pres-
sure, relative permeability), and can be a function of the states.

Since the number of grid blocks in a realistic reservoir model is often chosen in
the order of 104 − 106, the number of states and parameters is enormous. An ad-
vantage of the finely gridded reservoir model is that the fine scale measurements
in the wells can be accommodated in the model, and also that the processes in
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the reservoir model can be modeled in great detail. E.g. a thin, high permeable
streak, which can possibly have a large effect on the flow behavior, can be accu-
rately modeled. A disadvantage of the finely gridded reservoir model is that sim-
ulation times are large. This is not a major problem, since the relevant reservoir
processes are slow and computing capabilities increase steadily. A more impor-
tant disadvantage is that the values of the model parameters and states cannot all
be verified with measurements, not only due to the large number of states and
parameters, but also due to the relatively low information content present in the
measurements.

The predicted flow behavior contains uncertainty arising from uncertainty in the
model parameters, initial model states and inputs. Also, discretization errors (in
time and place) and disturbances on the measurements and inputs are unknown.
It can even be uncertain if the relevant physical processes are adequately cap-
tured by the model. In case it is assumed that the relevant physical processes are
captured, the inputs are known and the discretization errors are minor, then the
uncertainty in the model parameters and states can be reduced by estimating the
values of parameters and states from measured data. Furthermore, it is difficult to
integrate a priori information such as geological information into the model such
that after parameter estimation the geological information is still preserved.

To summarize, reservoir models are typically

• physics-based;

• nonlinear in the dynamics;

• after spatial discretization large-scale;

• limited in number of observation and control possibilities;

• uncertain in e.g. parameters, initial states, inputs, boundary conditions, a
priori information such as geological information.

Reservoir performance optimization

As mentioned in the previous subsection model-based depletion design can be
considered as standard practice in the oil industry and is performed before the
reservoir has started production. Model-based operation of hydrocarbon reser-
voirs is however not standard practice in the oil industry, mainly because the
models are considered to be too uncertain and too complex, and at the moment
the models are kept up-to-date only on a periodic basis of several years.

One aspect in which a model could aid during the operation of the reservoir is to
maximize reservoir performance by manipulating the well rates or pressures, see
e.g. Jansen et al. (2009); Van den Hof et al. (2009). The optimal well rates or pres-
sures that maximize reservoir performance can be calculated for a given reservoir
model and configuration of wells by model-based control. A model-based control
technique that has received a considerable amount of attention is model-based op-
timal control using a gradient method, in which gradients point into the direction
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of an improved performance of the reservoir model. The gradients are usually
obtained through the use of adjoint equations. Early applications of adjoint equa-
tions to calculate gradients are Ramirez (1987), Asheim (1987), Virnovsky (1991)
and Sudaryanto and Yortsos (2000). More recent applications are Brouwer and
Jansen (2004) and Zandvliet et al. (2007). Recently, adjoint-based techniques have
also been applied to optimize well locations - see Zandvliet et al. (2008) for a
promising example. Furthermore, in Van Essen et al. (2009) an approach is pre-
sented to deal with the uncertainty in the optimal well rates or pressures that arise
from uncertainty in the model. Here, a so-called robust optimal strategy is calcu-
lated based on optimal strategies of an ensemble of reservoir models.

The calculated optimal well rates or pressures that maximize the flooding per-
formance over the life of the reservoir can be regarded as the optimum targets
that are to be tracked. In process control this type of control is called real-time
optimization (RTO), and the optimum targets are subsequently tracked by ad-
vanced process control techniques (e.g. model predictive control (MPC)). In daily
production operations for hydrocarbon reservoirs this is often not the case: de-
cisions involving e.g. daily well production settings are generally taken without
the use of the previously discussed reservoir models, also since the targets that
maximize long-term reservoir performance possibly lead to a decrease in short-
term production performance. In Van Essen et al. (2009) an hierarchal approach is
presented, that offers a promising route to unite long-term production optimiza-
tion, (i.e. the primary objective) and short-term production optimization (i.e. the
secondary objective). Here it is shown that there are remaining degrees of free-
dom after optimizing the primary objective, and these can be used to solve the
secondary optimization problem, while still adhering to the primary optimization
solution.

Parameter and state estimation

State and parameter estimation in reservoir engineering are often called history
matching (see e.g. Shah et al. 1978). This term seems to indicate that the goal of
state and parameter estimation is solely to match the historical production behav-
ior, while the goal should be to obtain models that can predict the future behav-
ior of the reservoir. Furthermore, generating multiple models and selecting only
those models that best match the measured data is also called history matching. To
avoid this ambiguity in the term history matching the terms parameter estimation
and state estimation are used throughout this thesis.

Typically, the physical parameters in reservoir models cannot be uniquely esti-
mated from measurements, meaning that the model parameterization is not iden-
tifiable. As a result, the parameter estimation problem is ill-posed. This is prob-
lematic, because an incorrect parameter estimate can lead to incorrect long-term
predictions (see e.g. Tavassoli et al. 2004, for an example). There are basically two
approaches to overcome this. The first approach is to regularize the problem by
adding an extra term to the cost function that penalizes deviations from a prior
model. This is referred to as the Bayesian approach, and an estimate of the co-
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variance of the prior model is needed. The second way is to reparameterize the
parameter space, such that the number of parameters is reduced, while at the same
time it may be possible to better maintain geological realism.

Reparameterization techniques previously applied in reservoir engineering in-
clude zonation (Jacquard and Jain 1965; Jahns 1966), where the parameters in each
zone are grouped into one parameter. Grad zones (Bissell et al. 1994; Brun et al.
2004) and adaptive multiscale methods (Grimstad et al. 2003; Berre et al. 2007) are
more advanced methods that divide the reservoir model into zones. The number
of parameters that need to be estimated is reduced, but these methods possibly
lead to discontinuities between the zones that are considered as non-geological.
In Shah et al. (1978) the eigenvectors of the sensitivity matrix (i.e. derivative of
model outputs with respect to parameters) corresponding to the largest eigenval-
ues are used to reparameterize the parameter space. Both in Oliver (1996) and
Reynolds et al. (1996) this approach is applied to determine permeability and/or
porosity parameters. In Reynolds et al. (1996) and Abacioglu et al. (2001) the sub-
space algorithm as introduced by Oldenburg and Li (1994) is used to solve the
identification problem in a computationally efficient way. In Rodrigues (2006) the
parameter space is reparameterized based on the right singular vectors of the di-
mensionless sensitivity matrix as presented in Zhang et al. (2002).

Other parameterizations that have been used in reservoir engineering are wavelets
(Sahni and Horne 2005), principle component analysis of the permeability vec-
tor (Sarma et al. 2007), and discrete cosine transform (Jafarpour and McLaughlin
2007). Furthermore, the pilot-point method (RamaRao et al. 1995) and gradual
deformation (Hu 2000) are reparameterization techniques which are both based
on spatial variograms. According to Oliver et al. (2008) the pilot point method
possibly introduces non-physical artifacts in the permeability and porosity fields,
and the gradual deformation method might experience difficulties converging to
a model that is able to match the measurements. Finally, geological parameteri-
zations are available where geologically realistic shapes are used to populate the
permeability distribution of the reservoir model. Examples of channel parame-
terizations are given in Rahon et al. (1998), Bi et al. (1999) and Phan and Horne
(2002).

In practice, the problem of estimating the physical parameters and states in reser-
voir models based on measured data is often approached as an optimization prob-
lem. A cost function is defined, typically the weighted squared difference between
predicted and measured data, and subsequently minimized over the parameter
and state values using a gradient-based optimization procedure. The gradients are
usually computed using the adjoint method. Alternatively, in Vasco et al. (1999)
streamline simulation models are used to derive gradients of saturation changes
with respect to parameters. Parameter and state estimation methods that have
recently received considerable attention in reservoir engineering include the rep-
resenter method (Bennett 2002) and the Ensemble Kalman filter (EnKF, Evensen
2007). The representer method is a gradient-based method which uses the cost
function that includes the weighted squared difference between predicted and
measured data and also penalizes deviations from a prior model. The represen-
ter method has been applied to estimate parameters and states in reservoir mod-
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els by e.g. Rommelse et al. (2006) and Przybysz-Jarnut et al. (2007). The EnKF
takes a Monte Carlo approach and uses an ensemble of model realizations, repre-
sented by the augmented states xθ :=

[
xT θT

]T , to approximate the gradient
of the model predictions with respect to the parameters. Each model is simulated
up to the time that measurements become available. Next, the augmented states
of each model are estimated using the information in the measurements. The
EnKF has been applied to estimate parameters and states in reservoir models by
e.g. Naevdal et al. (2005); Reynolds et al. (2006); Rommelse et al. (2006); Evensen
(2007).

Model reduction

Reservoir simulation models contain a large number of states and parameters.
Research in the area of model reduction of reservoir engineering models has been
pursued by e.g. Markovinović et al. (2002), Heijn et al. (2004) and Gildin et al.
(2006). They have applied model reduction techniques such as modal decompo-
sition and balanced truncation. Also, proper orthogonal decomposition (POD) is
successfully applied to nonlinear reservoir models, e.g. in finding optimal produc-
tion settings (Van Doren et al. 2004; Cardoso et al. 2008), for reduction of compu-
tation time in reservoir simulation (Markovinović and Jansen 2006), and in find-
ing parameter estimates (Kaleta et al. 2009). The fact that these early attempts
at model reduction have been successful indicates that the relevant reservoir dy-
namics can be represented by much simpler models than are used today.

Closed-loop control

In Figure 1.3 the petroleum production process is represented as a model-based,
closed-loop controlled process, in which reservoir states and parameters are es-
timated once measurements become available, and subsequently the most recent
model is used to calculate new inputs that are expected to optimize the reser-
voir performance. Because of the batch-type nature of the reservoir process, the
optimization strategy becomes a receding horizon approach. In reservoir engi-
neering this is called ‘real-time’ or ’closed-loop’ reservoir management. Examples
of closed-loop reservoir management can be found in Brouwer (2004); Naevdal
et al. (2006); Sarma et al. (2006); Jansen et al. (2009). In these examples it is demon-
strated that closed-loop reservoir management has the potential to considerably
improve the reservoir performance, certainly if the states and parameters are es-
timated more often. Here it is found that although the estimated parameters do
not necessarily resemble the parameters that have generated the measurements
(i.e. the true reservoir parameters), the computed control strategy is still able to
considerably improve the reservoir performance. Apparently, the estimated mod-
els are able to predict the future behavior of the reservoir sufficiently well for the
purpose of control. Again, this indicates that the relevant reservoir dynamics can
be represented by much simpler models than are used today.
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Figure 1.3: Petroleum production represented as a model-based closed-loop con-
trolled process (after Jansen et al. 2005).

1.3 Research objective and thesis outline

1.3.1 Research objective

In the previous part it has been described how models can aid in increasing petro-
leum production in order to meet the increasing demand for energy. An overview
has been given of the research activities related to model-based depletion design
and model-based operation of petroleum reservoirs. This has lead to the following
research objective of this thesis:

Research objective:
Investigate the possibilities to obtain petroleum reservoir models that are

suitable for model-based operation, and that can be validated from
production measurements

The balance that plays a role in the research objective is to determine on the one
hand models with a complexity that is sufficient for being used for model-based
operation of petroleum reservoirs, i.e. the relevant dynamic processes can be ade-
quately described, and on the other hand physics-based models that only contain
parameters that can be validated by measurement data, i.e. production measure-
ments.

The most relevant dynamics of the model are to a large extent determined by the
controllability and observability properties of the model1. Hence, these properties

1Controllability is related to the extent to which the states can be influenced by manipulating the
inputs to the reservoir model, and observability is related to the extent to which the states can be
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play a role as to why the model dynamics can be represented by much simpler
models, i.e. models of lower order, which are still suitable for model-based oper-
ation. It is first of all unknown how to quantify and interpret the controllability
and observability properties of reservoir models, and secondly which pressures
and saturations are most relevant for operating the hydrocarbon reservoir. The
analysis of controllability and observability can aid in understanding which pro-
cesses should be accurately captured by reduced-order models, but also in finding
optimal positions for a well to increase production, or finding optimal positions
of measurement devices.

Then we turn to the second part of the research objective: the model should be
validated or estimated from measurement data. Measurement data only contains
a limited amount of information, and consequently the models that can be esti-
mated or validated from measurements are also of limited model complexity. If
the dynamics of the considered process are linear, then a model can be estimated
by applying black-box system identification, which provides a well-studied set
of tools for identifying linear models on the basis of experimental data (Ljung
1999). If there is a particular interest in the identification of physical parameters,
this often does not raise any additional problems: one has to choose the correct
physics-based model structure2 and identify the parameters through one of the
available (possibly non-convex) optimization methods. The only issue that has
to be taken care of is that the model structure is identifiable, which implies that
the physical parameters can be distinguished from each other on the basis of the
model’s input-output behavior.

If the dynamics of the considered process are nonlinear, then it can often be lin-
earized around an operating point and the above mentioned linear approach can
be followed leading to a linear (approximate) model. However, when essential
nonlinear dynamical phenomena are involved and one needs to capture this dy-
namics in the model, it is much harder to come up with generic black-box tech-
niques for identification. Although there are interesting attempts to capture the
nonlinear phenomena in (black-box) model structures as Wiener and/or Ham-
merstein models (Bai 1998; Zhu 2002), and linear parameter-varying (LPV) mod-
els (Verdult and Verhaegen 2002; Toth et al. 2007; Van Wingerden and Verhaegen
2009), information on the underlying physical structure of the nonlinearities is
very often required for selection of an appropriate model structure. For mod-
els such as reservoir models it is desirable to capture the underlying nonlinear
dynamic structure of the process in order to make reliable long-term predictions.
First principles model then provide the structure of the model, while incorporated
physical parameters have to be estimated from measurement data.

As mentioned before, identifying extremely large number of parameters from
measurement data leads to serious problems, and at least it leads to the question
which model properties can be reliably estimated from the available measure-
ment data. From a model-based operations point of view (monitoring, control,

estimated from measurement data. The concepts of controllability and observability are defined in
Chapter 2.

2One formally speaks of a model structure in case the parameters of the model are not yet fixed to
a certain value, whereas as soon as all model parameters have been fixed, then one speaks of a model.
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optimization) it makes sense to limit the complexity of an identified model to a
level where the model can be reliably validated from measurement data. If not,
the parameter estimates might be highly determined by the -random- experiment
that is done (overfit), leading to unreliable model predictions. In identification
this problem is addressed by the notion of identifiability of a model structure, and
is directly coupled to the variance of estimated parameters.

Hence it is relevant to analyze the model structure since it can give answers to
questions like which parameters can be reliably estimated from specific output
variables, and equally important, which parameters cannot be reliably estimated
from the output variables? Furthermore, how can the model structure be approx-
imated in terms of its parameter space, such that the parameters in the approxi-
mated model structure are identifiable, and the physical interpretation of the pa-
rameters are kept?

1.3.2 Outline of thesis

The outline of this thesis is as follows:

• Chapter 2 is an introductory chapter and gives a brief overview of the reser-
voir modeling process, paying special attention to geological processes. In
addition, notions that are used in the remainder of the thesis are presented,
such as controllability and observability, identifiability and structural iden-
tifiability. Also an overview of parameter estimation techniques in a predic-
tion error setting is presented.

• In Chapter 3 the controllability and observability of single-phase and two-
phase reservoir models are analyzed in order to find the most relevant pro-
cesses during the life of the reservoir. This chapter is partly based on Zand-
vliet et al. (2008).

• Chapter 4 deals with identifiability and model structure approximation of
linear and nonlinear models, including structural identifiability. It is shown
how the model structure can be approximated, leading to identifiable pa-
rameterizations with parameters that can be physically interpreted. Also,
identifiability properties are related to iterative and recursive parameter es-
timation algorithms. This chapter is for a large part based on Van Doren
et al. (2008a, 2009); Van den Hof et al. (2009).

• In Chapter 5 an identifiable parameterization is derived and applied to es-
timate the grid block permeability of single-phase and two-phase reservoir
models. In addition, an alternative, geological parameterization is intro-
duced and applied to estimate reservoir properties. This chapter is partly
based on Van Doren et al. (2008a,b).

• In Chapter 6 conclusions are drawn and recommendations for further re-
search are given.



2 CHAPTER

Reservoir Modeling and Estimation

This chapter presents the notation and concepts from literature that
will be used in the remainder of this thesis. The first section gives an

overview of the geological formation of hydrocarbon reservoirs. Next, the
single-phase and two-phase flow models in porous media are described.
The subsequent section presents the concepts of controllability and ob-
servability, and finally a short overview is given of parameter estimation
methods in the prediction error framework.

2.1 Geological background and data sources

2.1.1 Introduction

The main purpose of this section is to give an overview of the geological pro-
cesses that play a role during the formation of the hydrocarbon reservoir. These
processes determine the properties of the reservoir rock through which the fluids
move. This material presented in this section is described in e.g. Bell et al. (1989)
and Press and Siever (1994). In addition, an overview is given of the data sources
that give information about the hydrocarbon reservoir.

2.1.2 Hydrocarbon play

A hydrocarbon play is a set of geological conditions necessary to form a hydro-
carbon reservoir. The conditions are:

• Presence of source rock, reservoir rock and seal rock.

• Sufficient burial of source rock to ’cook’ the source rock.

• Presence of a suitable trap structure.

13
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• Presence of a migration route for the hydrocarbons from the source rock to
the reservoir rock and the trap.

Source rocks are lithified sediments containing large amounts of organic matter,
which can liberate hydrocarbons when heated and pressurized during burial (so-
called cooking of source rock). Examples of source rocks are coal and organic rich
shales. Before burial these sediments could be deposited in a swamp or ocean.
Knowledge of the depositional environment helps in predicting the amount of
source rock and the properties of the hydrocarbons. Via migration paths (e.g.
fractures and joints) the hydrocarbons migrate to the reservoir rock.
Reservoir rocks are lithified sediments containing carbonates or clastic particles as
sand grains. The hydrocarbons are in the pores between the sand grains. The vol-
ume between the particles divided by the bulk rock volume is called the porosity.
When the pores are connected, the hydrocarbons can move and the rock is said
to be permeable. Analysis of the reservoir rocks enables to determine the deposi-
tional environment (e.g. deposited by a river), the diagenesis (e.g. compaction or
cementation) and the structural changes that have occurred over time (e.g. fold-
ing and faulting). These processes can help in predicting reservoir characteristics
and will be further discussed in the following subsections.
Seals are impermeable rocks that prevent hydrocarbons from migrating further
upwards. An example of a seal is a continuous layer of salt or an impermeable
shale. Knowledge of the depositional environment helps in determining the qual-
ity of the seal (e.g. lateral extent and continuity).

Trap structures prevent the hydrocarbons from migrating in the lateral direction.
There are structural traps, stratigraphic traps and a combination of these two.
The most common structural trap is the anticline, a dome structure formed in a
compressional setting, where the hydrocarbons are below the anticline. Another
structural trap is a fault trap where a sealing fault prevents the hydrocarbons from
migrating further. The reservoir models discussed in Section 2.2 mainly focus on
the reservoir rock with no-flow boundaries.

2.1.3 Deposition and diagenesis

The architecture of the reservoir and seal rock, including the heterogeneities in
porosity and permeability distribution, is influenced by many geological pro-
cesses. In the first part of this subsection the scales of sedimentary heterogeneities
in reservoirs are discussed with a special focus on river deposits. In the second
part the processes associated with deposition and transport of fluvial sediment
are described, including the diagenetic effects and lithification that occur after de-
position.

Scales of sedimentary heterogeneities

The porous medium in hydrocarbon reservoirs exhibits heterogeneities at differ-
ent scales. The different scales are:
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• From microns to centimeter scale the texture of the reservoir particles plays a
role. The texture is the range of grain sizes and the shape of the grains. Data
sources that give information for this scale are cuttings and cores obtained
during drilling.

• From centimeter to meter scale sedimentary structures play a role. A sedimen-
tary structure is any structure of sedimentary rock that was formed at the
time of deposition. Examples of sedimentary structures are ripples and sand
dunes formed during the sedimentation. The thin layers that can be formed
are called laminae, and layers consisting of stacked laminae are called beds.
The stacked beds are again grouped in sequences. The transitions between
laminae, beds and sequences can result in transitions in porosity and perme-
ability. Data sources that can give information at this scale are cores obtained
during drilling and well bore logs.

• From meter to 100 meter scale the geometry of individual bodies play a role.
The geometry is influenced by the depositional environment. An example
of a body is a sinuous sand body formed by river channels. Data sources that
can give information about the reservoir at this scale are continuous cores,
well bore logs and high resolution seismic surveys.

• At the largest scale the interrelationship between the bodies plays a role. Also
the connectedness of the bodies and the architecture at this scale is strongly
influenced by depositional processes. Data sources that can give informa-
tion about the reservoir at this scale are continuous cores, well bore logs and
seismic surveys.

The texture, sedimentary structures, geometry of individual bodies, and interre-
lationship between bodies can be studied in detail from outcrops, especially the
latter two. Outcrops are rocks that are exposed at the surface and are studied
to increase the understanding of depositional environments and other geological
processes.

Example: river deposits

As example of a promising hydrocarbon play river deposits are described in more
detail. River deposits, or fluvial deposits , are deposited by braided of meander-
ing rivers. Braided rivers have frequently braided channels with a low sinuosity.
They form on steep slopes near mountainous areas and carry coarse sediments. In
between the channels are sand and gravel bars or small islands. In the case of high
discharge new channels are formed. In the case of low discharge the flow in some
channels gradually decreases and sometimes is completely stopped. The deposits
of braided river systems fine upwards due to the abating flow in the channel(s),
starting with coarse gravel. The gravel is overlain with cross-bedded sands and
finally a thin sheet of muds. The proportion of muds is low and therefore the
channel sands are well connected.

Meandering rivers have a single channel with a high sinuosity - see Figure 2.1.
They form on gentle slopes and carry fine sediments. On the outside of the river
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Figure 2.1: Block diagram of a meandering river. Figure from Press and Siever
(1994), used with permission.

bend the water flows faster and the channel is eroded. The eroded material is
deposited at the inside of the next river bend forming a point bar. As a result
the sinuosity is increasing slowly and a characteristic vertical sequence of sedi-
ments is formed. Herein the grain size of the sediments decreases from bottom
to top, forming a fining upwards sequence. During flooding of the river thin
sheets of mud are deposited across the flood plain, forming overbank deposits.
Sometimes levées are formed during flooding, which consist of coarse material
deposited along the channel. As the meandering channel is increasing in sinuos-
ity and is moving laterally, it incises the flood plains or previously deposited point
bars.

All these processes lead to complex reservoirs with long, narrow sand bodies with
fining upwards particles, coarse grained levees and sheets of mud. The connect-
edness of the sand bodies depends on the proportion of overbank to channel de-
posits, which is controlled by both subsidence rates and the sediment load carried
by the original river.

Diagenesis

The processes that take place after deposition are called diagenetic processes.
They usually result in a reduction of depositional porosity and permeability. Dur-
ing burial the sediment is compacted under the influence of increasing pressure.
The freshly deposited sand particles are repacked and the porosity consequently
reduces from 30-40% to 20-30%. Freshly deposited clays contain around 70-90 %
of water, which is slowly expelled during compaction. The water contains miner-
als and slowly moves through overlying sediments to the surface.
Another process that takes place after deposition is cementation, which leads to
lithification, where the soft sediment is hardened into rock. During cementation
mineral crystals grow within the pore space of the sediment. The crystals precipi-
tate from the pore waters expelled by underlying clay sediments. The cementation
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leads to lower porosity, while also the pore throats are clogged by the minerals and
as a result the permeability is decreased.

2.1.4 Deformation

The previous subsection described how reservoir rocks are deposited as layers
which are close to horizontal. However, real reservoirs are deformed by faults,
folds or fractures due to compressional and tensional forces. Faults are brittle fail-
ure planes within rocks, across which the rocks have been displaced. Faults can be
closed or open to flow, dependent on the differential pressures across the fault, the
availability of sufficient clay during the faulting, and the activity along the fault.
Folds are classified as anticlines if the layers are upfold (limbs are lower than its
center), and as synclines if the layers are downfold. They can have dimensions
ranging from kilometers to centimeters. Anticlines form the most important trap-
ping structure for hydrocarbons. Another important trapping structure is a dome,
formed under the influence of volcanic activity, or under the influence of a body of
salt, which has a lower density than the surrounding rocks, that pierces through
shallower layers and pushes overlying rocks towards the surface.
Fractures are planes of brittle failure which show no movement across the planes.
They are common in reservoir rocks, and when they are open to flow they are im-
portant fluid paths through the reservoir. Fractures often occur at a scale invisible
for seismic.

Figure 2.2 gives an example of the different stages in the development of a geo-
logical structure. In stage (a) stratified sediments are deposited on the seafloor,
in stage (b) the sediments are compressed horizontally and folded and faulted. In
stage (c) the top part of the structure is eroded away as the structure is lifted above
sea level, creating a new horizontal surface. In the next stage volcanic eruptions
deposit a sheet of lava onto the erosion surface. In stage (e) the tensional forces
cause new faults, breaking up the earlier formed features in blocks.

Erosional surfaceOcean Lava layer

(a) (b) (c) (d) (e)

Figure 2.2: Stages in the development of a geological structure. Figure from Press
and Siever (1994), used with permission.
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2.1.5 Data sources for hydrocarbon reservoirs

Data sources that assist in finding a hydrocarbon reservoir of economic size and
deriving its properties are:

• Regional geology

• Seismic measurements

• Well bore measurements and correlation

• Well tests

• Production measurements

Regional geology

Many areas have a description of the regional geology and geological maps. From
the description of the regional geology it is possible to deduce the depositional
environments and the tectonic settings of a larger area. The depositional envi-
ronment gives information about the possible texture, sedimentary structures, ge-
ometry of the sand and mud bodies and their interconnectedness. The tectonic
setting (compressional or tensional) gives information about possible faults, folds
and fractures, and their direction.

Seismic measurements

Geophysical or seismic measurements are taken before drilling expensive explo-
ration wells. Their aim is to indicate structures that can serve as an oil trap, the
geometry of the potential reservoir and potentially the fluid content. Seismic mea-
surements are based on differences in the rock density and the speed of the wave
traveling through the rock. The waves are generated on land by exploding dyna-
mite in shallow holes or vibrator trucks, and on sea by using airguns. The waves
sent through the earth are refracted and/or reflected when a medium with other
properties is encountered. The intensity and the arrival time(s) of the reflected
waves are measured by geophones on land and hydrophones at sea. The arrival
times of the reflected waves can be converted to depth using a velocity model of
the rock and the seismic velocity log obtained in the well bore. As high frequency
waves can travel less far than low frequency waves, the resolution of the seismic
image decreases with depth.
Time-lapse seismic or four-dimensional seismic is three-dimensional seismic data
acquired at different times over the same area to detect time-dependent changes in
a reservoir. The changes can be explained by changes in fluid content (saturation),
pressure or temperature.
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Well bore measurements and correlation

To prove the presence of hydrocarbons it is necessary to drill exploration wells.
During drilling the cuttings of the drilling are gathered and inspected for the pres-
ence of fossils, liquids and gasses. It is also possible to retrieve cores with a hollow
drill bit. The cores, long cylinders of rock, are used to see the fluid content, the de-
positional environment, the diagenetic effects and the presence of fractures.

After drilling the well it is common to lower well bore measurement devices,
which make logs of the rock. There is a multitude of logs available. Examples
are:

• Electrical resistance logs. The electrical resistance indicates water or salt con-
tent.

• Density logs. The density, measured by the number of detected neutrons
that are emitted from the logging tool, indicates the age of the rocks and its
porosity.

• Gamma ray logs. The gamma radiation indicates sand and shale minerals.
Shale minerals contain potassium which radiates gamma rays.

• Geomagnetic logs. Magnetism helps in indicating the age of rocks. It is
known that the magnetic field of the Earth has switched several times, which
can be measured as geomagnetic anomalies in rocks.

• Seismic velocity logs. The seismic velocity of the rock layers is important for
the time-depth conversion of the geophysical measurements.

• Temperature logs. Temperature anomalies indicate differences in the geo-
thermal gradient, the entry of fluids into the borehole or the exit of fluid into
the formation.

• Formation Micro Image (FMI) logs. FMI logs can visualize sedimentary
structures in three dimensions.

Subsequently, during well correlation, logs from several wells are correlated, i.e.
the logs of different wells are compared, and structural and sedimentological fea-
tures are identified and interpreted. The purpose is to map the possibilities of
reservoir structures, including the thickness of units and their connectedness. Of
course, these are only interpretations and the quality depends among others on
the well spacing. In other words, if more wells are drilled and logged, the inter-
pretations can change drastically.

Well tests

Once a well is drilled and it is found that the reservoir contains hydrocarbons, a
production test can be done. There are basically three production tests: a draw-
down test, a shut-in test and a tracer test. In a drawdown test the fluids are free to
flow for a short period. If the pressure declines rapidly, the reservoir is expected
to be insignificant. If the pressure declines negligibly, the reservoir is expected
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to be significant. Pressure measurements during a drawdown are usually noisy,
especially for new wells where well cleanup occurs after begin of production.
During a buildup or shut-in test the bottom hole pressure is measured and ana-
lyzed after a producing well is shut in. Buildup tests are used to determine well
flow capacity, average permeability, layer thickness, skin and other information.
The skin is the zone between the well bore and the reservoir, which is either less
permeable than the rest of the reservoir rock (often due to formation damage or
mud-filtrate invasion), or more permeable than the rest of the reservoir rock (often
due to well stimulation).
Finally, during a tracer test a tracer fluid, usually a fluid with radioactive particles,
is injected into the flow stream of one well and measured at other wells to deter-
mine fluid paths and velocities. For multi-phase flow special tracer fluids exist
that only move with one phase, which result in a velocity log per phase.

Dynamic production measurements

When the wells of a reservoir are injecting and producing it is possible to take
production measurements. Available production measurements are

• Bottomhole pressures, i.e. the pressures are measured at the bottom of the
well, typically on a daily basis. This requires downhole pressure sensors.

• Tubing head pressures, i.e. the pressures are measured at the top of the well,
typically on a daily basis.

• Flow rates, i.e. production rates for a well or a group of wells, typically on a
monthly basis. After separation of the produced fluid in its phases the phase
rates can be determined.

• 4D seismic measurements, can be regarded as production measurements
since the movement of the fluid front can be determined; typically obtained
with a frequency of a few years.

2.1.6 Modeling overview

In Figure 2.3 a flowchart is given of the current modeling process. The grey boxes
represent analysis and modeling steps and the white boxes represent data sources.
Starting with the sedimentology, the cores, cuttings and well bore measurements
are examined for sedimentary structures, like texture, laminae and beds. Also the
diagenetic history is determined. In the following step the facies are determined
by analyzing characteristic sequences and depositional processes. The term fa-
cies has two meanings: in the first meaning facies describe a set of features that
characterizes a body of rock. For a sedimentary rock the relevant characteristics
include geometry, mineral content, color, texture, sedimentary structures and fos-
sil content. In the second meaning facies imply the process that produced the rock
body, such as a fluvial facies. Now a depositional model can be constructed us-
ing regional geological insight. Next the wells are correlated, the gross thickness,
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Figure 2.3: Overview of the modeling process, after Bell et al. (1989).

size and shape of sand bodies are determined, and faults which can subdivide
the reservoir in zones are determined. Petrophysical measurements from labora-
tory experiments on reservoir samples, well bore measurements and geophysical
measurements are used as data source for this step. In the geological model de-
tailed maps are constructed of the properties such as net sand thickness, porosity,
permeability and initial saturation. These property maps are largely based on the
measured property values in the wells, and the area in between the wells is of-
ten populated using geostatistical methods, e.g. variograms (Deutsch 2001). Well
test measurements, petrophysical and geophysical measurements are used as data
sources and are integrated into detailed geological models with a large number of
grid blocks (107 − 108).

These large-scale geological models are usually not suitable for multi-phase fluid
simulations, and therefore the geological models are ‘upscaled’ to simulation mod-
els. Numerous techniques have been proposed to ‘upscale’ the problem so that
computations can be performed on a coarser scale but still retain sufficient infor-
mation about the fine-scale flow (Farmer 2002). The model parameters and states
of the simulation model are estimated using well test measurements and produc-
tion measurements including 4D (or time-lapse) geophysical measurements. In
Section 2.4 this will be described in more detail.

2.2 Modeling of flow in porous media

2.2.1 Single-phase flow equations

Single-phase flow models are considered in Chapters 3 and 5 of this thesis. Its
description here is largely based on Jansen (2007) and Zandvliet et al. (2008). Con-
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sider the usual equations for isothermal, weakly compressible single-phase flow
through porous media, based on conservation of mass and Darcy’s law (Aziz and
Settari 1986). It is assumed that there is no flow across the boundaries of the reser-
voir other than through the wells. Furthermore, permeability is isotropic, parame-
ters are not dependent on pressure and gravity is absent. This results in the linear
equation

φct
∂pt

∂t
= ∇ ·

(
k

µ
∇pt

)

+ qt, (2.1)

where φ is porosity, ct is total compressibility, pt is fluid pressure, t is time, k is
permeability, µ is viscosity, ∇ is the nabla operator, and qt is flow rate per unit
volume.

After spatial discretization we obtain continuous-time model equations, which
can be written in partitioned form as:




V11 0 0
0 V22 0
0 0 V33









ṗ1
ṗ2
ṗ3



+





T11 T12 T13
T21 T22 T23
T31 T32 T33 + Jp









p1
p2
p3



 =





0
q̆well

Jpp̆well



 (2.2)

where the diagonal block matrices Vii, i = 1, 2, 3, are accumulation matrices with
entries that depend on the grid block size, grid block porosities and total com-
pressibility, and the band-diagonal block matrices Tij, i = 1, 2, 3, j = 1, 2, 3, are
transmissibility matrices with entries that depend on the grid block size, fluid vis-
cosity, and permeabilities at the grid block interfaces. The permeability at the grid
block interface is given by the harmonic average of the permeability in the grid
blocks, i.e. for a one-dimensional reservoir model the permeability at the grid
block interface between grid blocks j and j + 1, denoted by kj+ 1

2 , is given by the
harmonic average of kj and kj+1:

kj+ 1
2 =

2
1
kj + 1

kj+1

. (2.3)

The elements of vector p1 are the pressures in those grid blocks (elements) that
are not penetrated by a well. The elements of p2 are the pressures in the blocks
where the source terms are prescribed well flow rates q̆well, and those of p3 are the
pressures in the blocks where the source terms are obtained through prescription
of the bottom hole pressures with the aid of a well inflow model

q̄well = Jp (p̆well − p3) , (2.4)

where Jp is a diagonal matrix of well indices, the elements of p̆well are the pre-
scribed pressures and those of q̄well are the resulting well flow rates. Well indices
reflect the effect of near-well flow which is normally not properly represented be-
cause the grid block dimensions are usually much larger than the well diameter.
Throughout this thesis the well indices are computed using the Peaceman model
(Peaceman 1978):

J =
2πkj∆z

µ ln
(

0.14
√

∆x2 + ∆y2/rw

)

+ S
, (2.5)
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where ∆x, ∆y and ∆z are the grid block dimensions in x, y and z direction, rw is
the wellbore radius, and S is the skin factor.

To compute the bottom hole pressures p̄well in the wells where the flow rates have
been prescribed we need an additional diagonal matrix Jq of well indices such
that

q̆well = Jq (p̄well − p2) . (2.6)

Equations (2.4) and (2.6) can be combined to give




0
p̄well

q̄well



 =





0 0 0
0 I 0
0 0 −Jp









p1
p2
p3



+





0 0 0

0 J−1
q 0

0 0 Jp









0
q̆well

p̆well



 . (2.7)

If we define the vectors

x :=





p1
p2
p3



 ∈ R
Ngb , u :=

[
q̆well

p̆well

]

∈ R
m, y :=

[
p̄well

q̄well

]

∈ R
p,

equations (2.2) and (2.7) can be rewritten as

ẋ = Acx + Bcu (2.8)
y = Cx + Du, (2.9)

where

Ac = −




V−1
11 T11 V−1

11 T12 V−1
11 T13

V−1
22 T21 V−1

22 T22 V−1
22 T23

V−1
33 T31 V−1

33 T32 V−1
33
(
T33 + Jp

)





Bc =





0 0

V−1
22 0

0 V−1
33 Jp



 , C =

[
0 I 0
0 0 −Jp

]

, D =

[
J−1

q 0

0 Jp

]

.

Equations (2.8) and (2.9) are the standard continuous-time, linear time-invariant
state space equations as used in the systems and control literature. The param-
eters in these equations represent the grid block size, grid block porosities, total
compressibilities, grid block permeabilities, and fluid viscosity. The states x rep-
resent the pressures in each grid block. The inputs u represent the prescribed well
flow rates q̆well and the prescribed bottom hole pressure p̆well. The outputs y rep-
resent the resulting bottom hole pressures p̄well and the resulting well flow rates
q̄well.

For simulation of reservoir models time discretization is necessary. A common
method for time discretization is the first-order Euler scheme

ẋ ≈ xk+1 − xk

∆t
,

where ∆t is the discretization time step and where we have applied the notation xk

to indicate x(k∆t), where the subscript k is the time step counter or discrete time,
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and where xk =
[

x1 x2 . . . xNgb

]T
represents the pressure in each grid block

i ∈ [ 1 . . . Ngb

]
. In case the remaining terms in (2.8) and (2.9) are evaluated

at time t the discretization is called explicit, while if these are evaluated at time
t + ∆t the discretization is called implicit. In practice, implicit time discretiza-
tion schemes are applied in reservoir model simulation, since this leads to shorter
simulation times. However, in the analysis of controllability and observability of
single-phase reservoir models in Chapter 3 an explicit time discretization scheme
is used, since the dynamics can be more accurately captured in combination with
small time steps. As a result, equations (2.8) and (2.9) can be rewritten in general
discrete-time state-space form as

xk+1 = Axk + Buk (2.10)
yk = Cxk + Duk, (2.11)

where A = (I + ∆tAc) and B = ∆tBc. The discretization time step ∆t is set in
Chapter 3 to

∆t =
1
2
|λmin (Ac)|−1 , (2.12)

where λmin represents the most negative eigenvalue. This leads to quite small time
steps, and is referred to as the Nyquist-Shannon sampling time that is needed to
accurately capture the dynamics in (2.8) - see e.g. Astrom and Wittenmark (1990).
The time steps derived from the Nyquist-Shannon sampling time are smaller than
the time steps that are required to meet the Courant-Friedrich-Lewy (CFL) condi-
tion to ensure numerical stability of an explicitly discretized model. This is given
by

∆t = 2 |λmin (Ac)|−1 . (2.13)

Note that although here an explicit discretization scheme is presented, the results
in this thesis remain valid for implicit discretization schemes.

2.2.2 Two-phase flow equations

Two-phase flow models are considered in Chapter 3 and 5, and its description is
largely based on Jansen (2007). Again we consider the usual equations for isother-
mal weakly compressible flow through porous media, but now for oil and water
(Aziz and Settari 1986). It is assumed that there is no flow across the boundaries of
the reservoir other than through the wells. Furthermore, permeability is isotropic,
parameters are not dependent on pressure and gravity is absent. This results in
the nonlinear equations

φs(cr + cw)
∂p f

∂t
= ∇ ·

(
kkrw

µw
∇p

)

+ qw, (2.14)

φ(1 − s)(cr + co)
∂p f

∂t
= ∇ ·

(
kkro

µo
∇p

)

+ qo, (2.15)

where s is water saturation, cr is rock compressibility, ci is compressibility for
phase i, µi is viscosity for phase i, kri relative permeability for phase i, and qi the
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Figure 2.4: Example of the relative permeability of oil and water as function of
water saturation.

rate of phase i, where i ∈ {o, w} and where w and o denote the water and oil
phase, respectively.

The relative permeabilities kro and krw are parameters that represents the physical
mechanism that the presence of more than one fluid generally adds resistance to
flow. Relative permeability is defined as the ratio of the effective permeability
of a fluid at a particular saturation to the absolute permeability of that fluid at
total saturation. In this thesis we use the Corey model for saturation-dependent
relative permeability, given by

krw = kr0,wS̄nw , (2.16)
kro = kr0,o(1 − S̄)no , (2.17)

with
S̄ :=

s − swc

1 − sor − swc
, 0 ≤ S̄ ≤ 1, (2.18)

where kr0,w and kr0,o are the end-point relative permeabilities, nw and no are the
Corey exponents, swc is the connate water saturation (i.e. the water saturation
present during formation of the rock, usually the lowest water saturation found
in the reservoir), and sor the residual oil saturation. See Figure 2.4 for an example
of relative permeability of oil and water as function of water saturation. Note that
in case the sum of both relative permeabilities is equal to one, then the phases do
not interfere with each other.

After spatial discretization with upstream weighting we obtain continuous-time
model equations. In case a well inflow model similar as in (2.7) is included these
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can be written in partitioned form as:
[

Vwp Vws

Vop Vos

] [
ṗ
ṡ

]

+

[
Tw + FwJp 0
To + FoJp 0

] [
p
s

]

=

[
Fw

Fo

] (

Iq + J∗p
)

qt, (2.19)

where submatrices Vwp, Vws, Vop, Vos are accumulation matrices with entries that
depend on grid block dimensions, grid block porosity, compressibility and satu-
ration terms, submatrices Tw and To are transmissibility matrices with entries that
are a function of saturation and depend on grid block dimensions, viscosity, grid
block permeability and relative permeability, submatrices Fw and Fo are fractional
flow matrices with entries that are a function of saturation and depend on viscos-
ity and relative permeability, p represents the oil pressures in each grid block, s
the water saturations in each grid block, Iq is a selection matrix containing zeros
and ones at appropriate places, J∗p contains zeros and Jp as submatrix, and qt is
the flow rate per unit volume.

If we define the vectors

x :=
[

p
s

]

∈ R
2Ngb , u :=

[
q̆well

p̆well

]

∈ R
m, y :=





p̄well

q̄well,w
q̄well,o



 ∈ R
p,

equation (2.19) can be rewritten in state-space form as

ẋ = A∗
c x + B∗

c u (2.20)
y = C∗

c x + D∗
c u, (2.21)

where

A∗
c = −

[
Vwp Vws

Vop Vos

]−1 [ Tw + FwJ∗p 0

To + FoJ∗p 0

]

,

B∗
c =

[
Vwp Vws

Vop Vos

]−1 [
Fw

Fo

] (

Iq + J∗p
)

,

C∗
c =





0 I 0
0 0 −FwJp

0 0 −FoJp



 , D∗
c =





J−1
q 0

0 −FwJp

0 −FoJp



 .

After explicit temporal discretization we obtain the nonlinear state-space equa-
tions

xk+1 = A(xk)xk + B(xk)uk (2.22)
yk = C(xk)xk + D(xk)uk (2.23)

where xk =
[

pT
k sT

k

]T represent the states, pk the oil pressures in each grid
block at time step k and sk the water saturations in each grid block at time step k,
yk the outputs at time step k, and uk the inputs at time step k. Matrix A contains
elements that are a function of grid block porosities, fluid densities, fluid com-
pressibilities, grid block interface permeabilities, grid block size, fluid viscosities,
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and relative permeabilities. Matrix B is a matrix with nonzero elements at posi-
tions that correspond to well grid blocks and zeros otherwise, where the elements
are a function of grid block porosities, fluid densities, fluid compressibilities, grid
block interface permeabilities, grid block volume, and fractional flow rates of wa-
ter and oil.

In the situation that capillary pressure is ignored, (2.22) can be rewritten as
[

pk+1
sk+1

]

=

[
A11(sk) 0
A21(sk) 0

] [
pk

sk

]

+

[
B1(sk)
B2(sk)

]

uk, (2.24)

showing that both pressures and saturations are driven by the pressures of the
previous time step. However, due to the saturation dependency of the relative
permeabilities kr in matrix A21, the saturations are also influenced by the satura-
tions of the previous time step. Furthermore, note that including gravity effects
and aquifers leads to extra terms on the right-hand side of (2.22) over which we
have no control.

As discussed in Brouwer (2004), the eigenvalue decomposition of Ac in (2.20)
shows a clear distinction between the eigenvalues. The pressure states, part of
a diffusive process, are associated with eigenvalues with a high absolute value
and exhibit a fast behavior, while the saturation states, part of a convective pro-
cess, are associated with eigenvalues with a low absolute value and exhibit a slow
behavior. This knowledge can be exploited to separate the pressure and satura-
tion states and obtain a singularly perturbed slow approximation of the reservoir
model in which the time scales are separated (see e.g. Kokotovic et al. 1986). Con-
sider the reservoir model given in (2.24). Since we are interested in the saturation
behavior we assume that the pressure behavior is stationary, leading to setting
pk+1 = pk in (2.24). We can rewrite this equation to

pk = (I − A11(pk, sk))
−1 (A12(pk, sk)sk + B1(sk)uk) . (2.25)

If we substitute this in (2.24), we obtain

sk+1 = A21(pk, sk) (I − A11(pk, sk))
−1 (A12(pk, sk)sk + B1(sk)uk) + B2(sk)uk.

(2.26)
This is a nonlinear equation in terms of water saturation, and this will be used
in Chapter 3 to calculate the controllability and observability of the saturation
states.

2.3 Controllability and observability

2.3.1 Controllability

The concept of controllability allows us to determine to what extent the state of the
model can be influenced by manipulating the input. In this subsection this concept
is presented, and in the remainder of this section the concepts of observability,
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duality, and balancing and truncation are presented. In Chapter 3 these concepts
are applied to analyze (nonlinear) reservoir models.

Following Nijmeijer and van der Schaft (1996) we consider the discrete-time, con-
trol affine1, nonlinear model

xk+1 = f(xk) +
m

∑
j=1

gj(xk)uj, u = [u1, . . . , um]T ∈ U ⊂ R
m, (2.27)

where x = [x1, . . . , xn]T are local coordinates for a state space manifold M, and
f, g1, . . . , gm are smooth vectorfields on M. Furthermore it is assumed that the
input u consists of piecewise constant functions. In most applications, and also
in reservoir engineering, this is a reasonable assumption. The unique solution of
(2.27) at time k for a particular input function u and initial condition x0 at time 0 is
denoted as x(k, 0, x0, u), or simply as xk. Following Nijmeijer and van der Schaft
(1996) controllability is defined as follows:

Definition 2.1 The nonlinear model (2.27) is called controllable if for any x1, x2 in M
there exists a finite time T and input u : [0, T] → U such that x(T, 0, x1, u) = x2.

For a linear time-invariant model (2.10, 2.11) the controllability is determined by
the matrix pair (A, B). After writing (2.10) as








x1
x2
x3
...








=








A

A2

A3

...








x0 +







B
AB B

A2B AB B














u0
u1
u2
...








(2.28)

one can see that controllability can be analyzed by evaluating the rank of the con-
trollability matrix, which is defined as

Cn :=
[
B AB A2B . . . An−1B

] ∈ R
n×nm. (2.29)

If Cn has full rank, then the controllable subspace X
con = im(Cn) = R

n and any
x can be reached by an admissible choice of u and the linear model is called con-
trollable2. If rank(Cn) < n, then X

con = im(Cn) ⊂ R
n.

Alternatively, the controllability Gramian can be used to analyze the controllabil-
ity properties. The controllability Gramian for finite time is defined as

Pn :=
n

∑
k=0

(AkB)(AkB)T = CnCT
n . (2.30)

The controllability Gramian for infinite time can be computed by solving the so-
called discrete-time Lyapunov or Stein equation

APAT + BBT = P . (2.31)
1For our purpose it suffices to consider the control affine case as is also considered in Nijmeijer and

van der Schaft (1996). See the references cited in Nijmeijer and van der Schaft (1996) for the general
nonlinear case.

2Under these conditions the system is actually called reachable in the systems and control litera-
ture, which is equivalent to controllable if A is nonsingular (Antoulas 2005). Since A is nonsingular
throughout this thesis, we stick to the term controllable.
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If the controllability Gramian (2.30) for a state-space model given in (2.10, 2.11)
is positive definite (as opposed to semi-definite), then the state-space model is
controllable.

There are states of X
con that require significantly more energy3 in terms of

Jcon :=
n

∑
k=0

uT
k uk (2.32)

to be reached than others. In Glover (1984) it is shown that the minimal energy
required to steer the state from x1 to x2 is

Jcon (x1, x2) = (x2 − x1)
T P−1

n (x2 − x1) (2.33)

assuming P−1
n exists and where x1 and x2 are n time steps apart. This means that

the states in X
con that require the least energy to reach (i.e. are most controllable)

have a significant component in the span of the eigenvectors of Pn correspond-
ing to large (absolute) eigenvalues, where the eigenvalue decomposition (EVD) is
given by

Pn = UΛUT, (2.34)

where Λ contains positive, real eigenvalues λk, k = 1, . . . , n, on the diagonal and
U contains the eigenvectors. In a similar manner a singular value decomposition
(SVD) can be applied to quantify controllability. An advantage of an SVD over an
EVD is that the SVD can be applied to any m × n matrix. In case an SVD is applied
to the controllability matrix we can write

Cn = UΣVT =
[

U1 U2
]
[

Σ1 0
0 Σ2

] [
VT

1
VT

2

]

, (2.35)

where matrices U and V are unitary matrices, Σ = diag (σ1, . . . , σn) with σ1 ≥
· · · ≥ σl, and where σl+1, . . . , σn are equal to zero or significantly smaller than σl .
If l = n then Cn has full rank and controllability is confirmed. Alternatively, an
SVD can be applied to the controllability Gramian

Pn = CnCT
n = UΣ

2UT, (2.36)

resulting in the same matrices U and Σ as in (2.35). Note that matrix Λ in (2.34) is
identical to the square of Σ in (2.35).

The column space of U1 represents the subspace of the state space that is most con-
trollable. The singular values on the diagonal of Σ can be seen as the weights of
each column in U. A large singular value indicates that the corresponding direc-
tion is a dominant direction in the controllable subspace, while a small singular
value indicates that the corresponding direction is a direction that only plays a
minor role in the controllable subspace.

3The term ‘energy’ is used loosely here, motivated by the fact that energy can often be written as
a quadratic form (e.g., kinetic energy as a function of squared velocity). A more precise term is the
squared l2 norm of the input.
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2.3.2 Observability

The problem of observing or reconstructing the state from the output involves the
observability of the model. Consider the nonlinear system (2.27) but now together
with an output map

y = h(u; x0), (2.37)

where h : M → Y = R
p is the smooth output map of the system. Again follow-

ing Nijmeijer and van der Schaft (1996) the notion of observability is defined as
follows:

Definition 2.2 States x1, x2 are said to be indistinguishable (denoted x1 Ix2) for (2.37)
if for every input u the output h(u; x1) of the system for initial state x1 is identical to
the output of h(u; x2) for initial condition x2 on their common domain of definition. The
system is called observable if x1 Ix2 implies x1 = x2.

For a linear time-invariant model (2.10, 2.11) the observability is determined by
the matrix pair (A, C). After rewriting








y0
y1
y2
...








=








C
CA

CA2

...








x0 + ... (2.38)

one can see that observability can be analyzed by evaluating the rank of the ob-
servability matrix, which is defined as

On :=










C
CA

CA2

...
CAn−1










. (2.39)

If On has full rank, then the unobservable subspace X
unobs := ker(On) = ∅. The

model is then called observable. If rank(On) < n, then X
unobs = ker(On) ⊂

R
n.

Alternatively, the observability Gramian can be used to analyze the observability
properties. The observability Gramian for finite time is defined as

Qn :=
n

∑
k=0

(CAk)T(CAk) = OT
nOn. (2.40)

The observability Gramian for infinite time can be computed by solving the so-
called discrete-time Lyapunov or Stein equation

ATQA + CTC = Q. (2.41)

If the observability Gramian in (2.40) for a state-space model given in (2.10, 2.11)
is positive definite (as opposed to semi-definite) then the state-space model is ob-
servable.
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There are states not in X
unobs that induce outputs with significantly more energy

in terms of

Jobs :=
n

∑
k=0

yT
k yk (2.42)

when observed than others. In Glover (1984) it is shown that the maximal en-
ergy of the output of the model with initial state x1 and current state x2, is given
by

Jobs (x1, x2) = (x2 − x1)
T Qn (x2 − x1) , (2.43)

where x1 and x2 are n time steps apart. This means that the states not in X
unobs

that produce the least energy when observed, have a significant component in the
span of the eigenvectors of Qn corresponding to small (absolute) eigenvalues. In
a similar manner as for controllability, a singular value decomposition (SVD) can
be applied to the observability matrix or observability Gramian:

OT
n = UΣVT =

[
U1 U2

]
[

Σ1 0
0 Σ2

] [
VT

1
VT

2

]

, (2.44)

Qn = OT
nOn = UΣ

TU. (2.45)

The left singular vectors U1 contain the directions in state space that are most
observable.

2.3.3 Duality

Alternatively, the observability Gramian of model (2.10, 2.11) can be calculated
using the dual model, since the observability Gramian is equivalent to the control-
lability Gramian of the dual model (e.g. Antoulas 2005). The dual model running
backward in time is given by

x′k = −A∗x′k+1 − C∗yk+1, (2.46)

uk+1 = B∗x′k+1 + D∗yk+1, (2.47)

where ∗ denotes the conjugate transpose, x′ is the dual state, u is the output and y
the input. As can be seen, in the dual model the inputs have become outputs and
vice versa. For nonlinear models the dual model is defined as the dual model of
the linearized tangent linear model of the nonlinear model. This property will be
exploited in the observability analysis of reservoir models in Chapter 3.

2.3.4 Balancing and truncation

The controllability and observability Gramians are coordinate dependent. For ex-
ample, for another set of coordinates a transformed state can become more con-
trollable (i.e. requires less energy to reach) and less observable (i.e. produces less
energy). This can be seen by considering a linear combination of the states

x̆k = Txk, (2.48)
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with T ∈ R
n×n a nonsingular transformation matrix. The associated Gramians P̃n

and Q̃n satisfy
P̃n = TPnTT , Q̃n = T−TQnT−1. (2.49)

In Moore (1981) it is proven for linear models that there exists a balancing transfor-
mation matrix T = UPQ that makes the controllability and observability Gramians
diagonal and equal, resulting in a balanced system:

Definition 2.3 The system (A, B, C, D) is said to be balanced if

Pn = Qn = Σ (2.50)

and have the Hankel singular values σk, k = 1, . . . , n, on their diagonal.

The Hankel singular values are coordinate-independent, and σk can be interpreted
as the energy contribution of the k-th component of the balanced state x̆ to the
input-output behavior of the system. If the Hankel singular values decrease rapid-
ly, it can be concluded that most of the input-output behavior is determined by
only the first few balanced states. The Hankel singular values can be computed
by decomposing the product of both Gramians

PnQn = UPQΛU−1
PQ, (2.51)

where Λ contains positive, real eigenvalues λk, k = 1, . . . , n, on the diagonal and
UPQ contains the eigenvectors. Next, the Hankel singular values are computed
as

σk :=
√

λk, k = 1, . . . , n. (2.52)

The eigenvectors of PnQn correspond to (combinations of) states that are rele-
vant for the input-output behavior of the model, and the value of the correspond-
ing Hankel singular value gives the relative importance of these (combinations
of) states. Alternatively, the product of controllability and observability matrices
C̄nC̄T

n ŌT
n Ōn can be decomposed to calculate the Hankel singular values.

Finally, it can be shown that truncating the last n − k components of the balanced
state leads to a reduced k-th order approximation of the full-order system, for
which the error in input-output behavior, measured in terms of the worst-case
energy norm (i.e. H∞ norm) is given by

2 (σk+1 + . . . + σn) , (2.53)

or twice the sum of the truncated n− k Hankel singular values (Moore 1981).

2.3.5 Controllability and observability of nonlinear models

Introduction

The definitions of controllability and observability for nonlinear models have been
given, and for linear models it has been described how to determine if a model is
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controllable or observable. In this subsection two approaches are presented that
can be used to analyze the controllability and observability of nonlinear reservoir
simulation models. As presented in Chapter 1 reservoir models are large-scale
and consequently not all approaches to analyze the controllability and observ-
ability of nonlinear models are currently computationally feasible for reservoir
models with a large number of state variables. Examples hereof are the nonlin-
ear local controllability and observability analysis with a differential geometric
approach (Hermann and Krener 1977) and the application of the nonlinear con-
trollability and observability function (Scherpen 1993; Isidori 1995). Approaches
that are currently feasible to analyze the (local) controllability and observability
of reservoir models are:

1. Linearize the model equations around a steady-state operating point and
analyze the linearized model with controllability and observability tools for
LTI models, or linearize along a nominal trajectory and analyze the model
with controllability and observability tools for linear time varying (LTV)
models;

2. Use empirical Gramians (Lall et al. 2002; Hahn et al. 2003) to approximate
the controllability and observability Gramians.

Both approaches will be described in the following subsections.

Linearization

In the first approach the controllability and observability of the nonlinear model
are analyzed after linearization. After linearization the controllability and observ-
ability of the linearized model can be analyzed with the controllability and ob-
servability matrices or Gramians for linear models, as described in Section 2.3.
Note that in Nijmeijer and van der Schaft (1996) can be found that the control-
lability and observability rank conditions of an LTI model are only a sufficient
condition for the controllability and observability of the nonlinear model given
by (2.27, 2.37). This means that a nonlinear model can be controllable or observ-
able, while its linearization is not since the higher-order derivatives are not taken
into account. See e.g. Nijmeijer and van der Schaft (1996) for an example.

Alternatively, the nonlinear model (2.27, 2.37) can be linearized along a state tra-
jectory, resulting in an LTV model. More specifically, the nonlinear model is at
time steps k ∈ [1, . . . , N] linearized around its current state xk. The linearized
system reads:

xk+1 = Ak(xk)xk + Bk(xk)uk (2.54)
yk = Ck(xk)xk (2.55)

where

Ak(xk) =
∂f(xk)

∂x

∣
∣
∣
∣
x=xk

, Bk(xk) =
∂g(xk)

∂x

∣
∣
∣
∣
x=xk

, Ck(xk) =
∂h(xk)

∂x

∣
∣
∣
∣
x=xk

.
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In the following the state-dependency of the system matrices is omitted in the
notation.

The LTV controllability matrix Cki:k f
and observability matrix Oki:k f

for this model
are given by

Cki:k f
=

[

Bk f −1 Ak f −1Bk f −2 . . . (Ak f−1 . . . Aki+1Bki
)
]

, (2.56)

Oki:k f
:=








Cki

Cki+1Aki
...

Ck f
Ak f−1 . . . Aki








, (2.57)

where ki is the initial time step and k f is the final time step. If Cki:k f
has full rank,

then the LTV model is called controllable. If Oki :k f
has full rank, then the LTV

model is called observable. Note that an SVD can be applied to Cki:k f
to quantify

controllability, or to OT
ki :k f

to quantify observability.

Empirical Gramians

Another option to investigate the controllability and observability of nonlinear
models is with empirical Gramians (Lall et al. 2002; Hahn et al. 2003). Empiri-
cal Gramians can be computed for nonlinear large-scale models such as reservoir
models. Note that they cannot represent the global behavior of nonlinear mod-
els, but they can be used for the analysis of nonlinear models for specific inputs
u1, . . . , uN and specific initial conditions x0.

The controllability Gramian (2.30) can be interpreted as the covariance of the states
under specific input conditions. The empirical controllability Gramian is computed
from the covariance of the states trajectories that result from the chosen input sig-
nals. First the input signals with specific excitation sizes and patterns are chosen
in a systematic way. For the empirical controllability Gramian consider

T m = {(T1, . . . , Tr) , TT
l Tl = I ∀ l, Tl ∈ R

m×m}, (2.58)
N = {(c1, . . . , cs) , cu > 0 ∀ u, cu ∈ R}, (2.59)
Em = {(e1, . . . , em) , ei denote standard unit vectors in R

m}, (2.60)

where r represents the number of matrices for excitation patterns Tl , s the number
of different excitation sizes cu for each direction, and m the number of inputs to
the system. The matrix Ti is usually chosen as I,−I, where I is the identity matrix
and refers to positive perturbations in the state variables, and −I refers to negative
perturbations. The input signal is given by

uk = cuTleivk + ū, (2.61)

where cu is the input size, Tlei describes the input pattern, vk is the nature of the
input (e.g. impulse or step input) and ū is the mean input. The inputs should be
chosen such that they resemble typical inputs of the system.
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Next, the input signal in (2.61) is used to generate state trajectories, and the em-
pirical controllability Gramian is defined as

Pe :=
m

∑
i=1

r

∑
l=1

s

∑
u=1

1
rsc2

u

k f

∑
k=ki

Φ
ilu
k , (2.62)

where Φ
ilu
k ∈ R

n×n is given by

Φ
ilu
k = (xilu

k − x̄ilu)T(xilu
k − x̄ilu), (2.63)

where x̄ilu
k is the mean state and xilu

k is the state of the nonlinear system. Here one
clearly sees that the covariance of the states are calculated, where the states result
from input signal uk in (2.61).

If the system is stable, linear and excited with an impulse input, the empirical
controllability Gramian is identical to the controllability Gramian (Lall et al. 2002).
Note that the empirical controllability Gramian calculated based on the snapshots
of one state trajectory is identical to POD using the method of snapshots (Lall et al.
2002).

Next the empirical observability Gramian is presented. The observability Gramian
(2.40) can be interpreted as the covariance of the output under specific initial state
conditions. The empirical observability Gramian is computed from the outputs for
various initial conditions of the system state, while the inputs are kept at their
nominal values. Alternatively, as presented in Section 2.3.3 for the linear sys-
tem, the empirical observability Gramian can also be computed from the dual
linearized system trajectories resulting from different dual input signals.

First the initial conditions are chosen in a systematic way. Consider

T n = {(T1, . . . , Tr) , TT
l Tl = I ∀ l, Tl ∈ R

n×n}, (2.64)
N = {(c1, . . . , cs) , cu > 0 ∀ u, ci ∈ R}, (2.65)
En = {(e1, . . . , en) , ei denote standard unit vectors in R

n}, (2.66)

where r represents the number of matrices for the perturbation directions, s the
number of different excitation sizes for each direction, and n the number of states
of the system. The initial condition is given by

x0 = cuTlei + x̄0. (2.67)

Next, the initial condition in (2.67) is used to generate state trajectories with uk =
ū, and the empirical observability Gramian is defined as

Qe :=
r

∑
l=1

s

∑
u=1

1
rsc2

u

k f

∑
k=ki

TlΨ
lu
k TT

l , (2.68)

where Ψ
lu
k ∈ R

n×n is given by

Ψ
lu
ij,k = (yilu

k − ȳilu)T(y
jlu
k − ȳjlu), (2.69)
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where ȳilu is the mean output and yilu
k is the output of the system. Here one

clearly sees that the covariance of the states are calculated, where the states result
from initial condition x0 in (2.67). If the system is stable and linear, then the em-
pirical observability Gramian is identical to the observability Gramian (Lall et al.
2002).

The empirical observability Gramian (2.68) is calculated based on the outputs
of the model for various initial conditions. However, for applications with a
large number of states this approach would be computationally demanding, and
in Willcox and Peraire (2002) and Rowley (2005) an alternative approach is pre-
sented to approximate the observability Gramian. In their work the observability
Gramian is approximated by taking snapshots of the dual linearized system, as
is described in Section 2.3. This is computationally more efficient in the case the
number of outputs is smaller than the number of states. Note that in this work
only one state trajectory is analyzed. In other words, we have chosen r = s = 1.
However, choosing different inputs to generate other state trajectories can be eas-
ily implemented.

2.4 Parameter estimation

2.4.1 Introduction

Parameter estimation basically consists of defining a model structure parameter-
ized in θ, collecting measurements of the dynamic system and estimating parame-
ters from the measurements using a specific parameter estimation method. In this
section a short overview hereof is presented, and the notation and definitions are
given that will be used in the remainder of the work.

Consider a discrete-time, nonlinear dynamical model parameterized in θ that gen-
erates output predictions according to:

ŷ = h(θ, u; x0), (2.70)

where ŷ is a prediction of y :=
[

yT
1 . . . yT

N

]T denoting output signal mea-
surements yk ∈ R

p stacked over time, θ ∈ Θ ⊂ R
q the parameter vector, Θ the

parameter set and u :=
[

uT
1 . . . uT

N

]T the input vector uk ∈ R
m stacked over

time, and x0 ∈ R
n the initial state vector. For the purpose of analysis it is assumed

that u is a quasi-stationary signal of finite power that can be either a stochastic
signal, a deterministic signal or a combination of a stochastic and deterministic
signal (Ljung 1999). A stochastic process or deterministic sequence uk is called
quasi-stationary if there exist c1, c2 ∈ R such that |Euk| < c1 for all k, and

Ru(i) := Ē (ukuk−i) (2.71)

satisfies |Ru(i)| < c2 for all i. Here, Ē denotes the generalized expectation

Ē := lim
N→∞

N−1

∑
k=0

E. (2.72)
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(Ljung 1999). This indicates that the average properties of the signal hardly vary
with time, and therefore the signal can be treated as if it is a stationary signal. The
power of such a signal can be expressed as

P̄u := Ē

(

u2
k

)

. (2.73)

In the remainder of the chapter the shorthand notation h(θ) is used to indicate
h(θ, u; x0). Note that since the model (2.70) is parameterized it represents an in-
put/output model structure.

After linearization of the nonlinear process dynamics around a chosen operating
point or trajectory, a linear dynamical system results. This system can be modeled
by an LTI input-output model, represented by the transfer function G(q, θ) under
the condition x0 = 0, leading to an output predictor

ŷk = G(q, θ)uk, (2.74)

with q the forward shift operator quk = uk+1.

The parameterization of G(q, θ) is defined as a mapping:

µ : Θ → G(q, θ). (2.75)

There are many different ways of parameterizing sets of models. In this thesis a
parameterization in state-space representation is chosen

xk+1 = A(θ)xk + B(θ)uk (2.76)
yk(θ) = C(θ)xk + D(θ)uk, (2.77)

similar as described in Section 2.2. The number of parameters in the model should
be large in order to be flexible (i.e. the set of models is large), which reduces the
bias error of the estimated model. However, the number of parameters should
be small in order to keep the variance of the estimated parameters small, where
the variance of an estimate is a measure for the variation in an estimate resulting
from taking different realizations of the noise process. This is the so-called bias-
variance trade-off. In case appropriate basis functions are introduced, the number
of parameters can be reduced, resulting in a more favorable variance error of the
estimated parameters, while the bias error is also more favorable. The difficulty is
indeed to choose appropriate basis functions.

The corresponding transfer function of (2.76, 2.77) is given by

G(q, θ) = D(θ) + C(θ) (qI − A(θ))−1 B(θ). (2.78)

A state-space model (2.76, 2.77) is called a realization of G(q, θ) if it satisfies (2.78),
and it is called minimal if it additionally has a minimal state dimension n. The
latter is also referred to as the McMillan degree of the dynamical system.
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2.4.2 Structural identifiability and identifiability

Consider the model (2.70) parameterized in θ. It is possible to estimate the param-
eters θ from measured data if the input/output model structure is identifiable.
Local identifiability is defined after Grewal and Glover (1976) as:

Definition 2.4 An input/output model structure h(θ, u; x0) is called locally identifiable
in θm ∈ Θ for a given u and x0, if for all θ1, θ2 in the neighborhood of θm it holds that

{h(u, θ1; x0) = h(u, θ2; x0)} ⇒ θ1 = θ2.

The parameter estimation problem discussed until now basically consists of two
parts. The first part is a property of the model structure itself: is it possible at all to
distinguish two given parameters sets, provided the input is chosen the best pos-
sible way? This property is called the structural identifiability of a model param-
eterization. The second part is related to the actual input and will be considered
later in this subsection.

In this thesis the local structural identifiability formulation of Glover and Willems
(1974) is adopted, where the notion is defined by considering the properties of the
parameterized transfer function (2.74):

Definition 2.5 An input/output model structure µ : Θ → G(z, θ) with Θ ⊂ R
q and

G(z, θ) ⊂ R(z)p×m is called locally structurally identifiable in θm ∈ Θ if for all θ1, θ2
in the neighborhood of θm holds that

{G(z, θ1) = G(z, θ2)} ⇒ θ1 = θ2. (2.79)

with z the z-transform variable and G(z, θ) ⊂ R(z)p×m, where R(z)p×m denotes
the set of matrices with dimension p × m and entries contained in R(z). Note
that in contrast with (2.70) this notion does neither include the input vector nor
the initial state, and is valid for linear models. Structural identifiability will be
considered in Section 4.6, where a link is made between structural identifiability
and identifiability.

The second part of the parameter estimation problem is to find out if the actual in-
put is informative enough to allow this distinction. This leads to the requirement
that the input signal is persistently exciting. Here we characterize persistently
exciting inputs of order n in terms of the covariance matrix Ru (2.71) after Ljung
(1999):

Definition 2.6 Let u be a quasi-stationary signal, and let matrix R̄n be defined as

R̄n =








Ru(0) Ru(1) . . . Ru(n − 1)
Ru(1) Ru(0) . . . Ru(n − 2)

...
. . .

. . .
...

Ru(n − 1) . . . Ru(1) Ru(0)








, (2.80)

then uk is persistently exciting of order n if R̄n is nonsingular.

An example of a persistently exciting input of any finite order is a sequence of
zero mean independent random variables, which is also called white noise.
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2.4.3 Prediction error estimation

Least-squares estimation

Until now we have a model parameterized in θ. Furthermore, suppose we have
collected measurements of the dynamic system. As a next step the parameters are
estimated from the measurements using a specific parameter estimation method.
In the prediction error framework (Ljung 1999) parameter estimation methods are
considered that are obtained by minimizing a cost function V(θ). Commonly, the
cost function V(θ) is chosen as:

V(θ) :=
1
2

ǫ(θ)TP−1
v ǫ(θ), (2.81)

where the prediction error ǫ(θ) is defined as

ǫ(θ) = y − ŷ, (2.82)

where y denotes the measured outputs and ŷ the predictor as in (2.70), and Pv is
(an estimate of) the covariance matrix of the noise v that is supposed to act on the
measured output. Note that the parameter vector θ can be extended to include
components of Pv.

Parameter estimation then consists of finding a parameter estimate as a minimiz-
ing argument of the cost function V(θ)

θ̂ := arg min
θ

V(θ). (2.83)

Minimization of cost function (2.81) generally involves a non-convex, gradient
based optimization problem (described later in this subsection). However, in case
a model structure is chosen that is linear in θ, the cost function V(θ) is a quadratic
function in θ, and the resulting convex optimization problem has an analytical
solution.

An example of a model that is linear in θ is a linear regression model with predic-
tor

ŷ = Φθ, (2.84)

where Φ, given by

Φ :=
[

φT
1 . . . φT

N

]T , (2.85)

contains the regression vectors. In a Finite Impulse Response (FIR) model struc-
ture (Ljung 1999) the regression vectors are a function of the input u only. For cost
function (2.81) the minimizing argument is given by

θ̂ = (Φ
TP−1

v Φ)−1
Φ

TP−1
v ŷ, (2.86)

where (Φ
TP−1

v Φ)−1
Φ

TP
− 1

2
v is also the pseudo-inverse of P

− 1
2

v Φ. This is the least-
squares estimate.
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In the situation that cost function (2.81) is applied to linear models and the input
signal is quasi-stationary, the asymptotic properties of the resulting parameter
estimate can be derived, i.e. results for convergence and consistency. It is assumed
that the underlying system that generates the measurements, the data-generating
process, is an LTI discrete-time process

ŷk = G0(q)uk + vk, (2.87)

where vk = Pvek, and e is associated with a probability density function fe.
The convergence result in this context is that for an infinite amount of measure-
ments the parameter estimate converges with probability 1 to θ∗, where

θ∗ := arg min
θ

Ēǫ(θ)TP−1
v ǫ(θ). (2.88)

This implies that the parameter estimate is in the asymptotic case independent of
the particular noise realization in the measurements.
The consistency result is that if u is persistently exciting of sufficient order (see
Definition 2.6), if G0(z) is in the model set and if G(z, θ∗) is parameterized in-
dependently from the noise model, then G(z, θ∗) = G0(z). This implies that the
measurements contain enough information on the dynamics in G0(z) to estimate
n parameters.

Finally, estimation errors are present in G(z, θ̂) due to e.g. noise and lack of in-
formation. The estimation error can be decomposed in a term related to the bias
error and a term related to the variance error:

G0(z)− G(z, θ̂) = G0(z)− G(z, θ∗) + G(z, θ∗) − G(z, θ̂), (2.89)

where G0(z) − G(z, θ∗) is the bias error and G(z, θ∗) − G(z, θ̂) is the variance
error. In Ljung (1999) results are presented that characterize the bias and variance
error in the asymptotic case. For linear regression models (2.84) the variance of
the least squares estimate is given by

cov(θ̂) ≃ σ2
e

N

(

ĒΦ
T

Φ

)−1
, (2.90)

where σ2
e denotes the variance of the noise. This equation clearly indicates that

the variance of the estimate can be reduced by reducing the variance of the noise
σ2

e , increasing the number of measurements, and/or increasing the power of the
input signal, since that increases the term Φ

T
Φ.

Maximum likelihood estimation

The maximum likelihood method for parameter estimation can also be seen as a
special case in the prediction-error framework (Ljung 1999). Suppose that we have
chosen a model structure that includes besides a predictor also an assumed pdf
fe(y; θ) of e. Substitution of the mismatch between the measured output values
and predictions results in the likelihood function L(θ; y). This is a deterministic
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function of the unknown parameter θ. The maximum likelihood (ML) estimate is
found by minimizing the negative value of log likelihood. If fe is a Gaussian pdf
with variance σ2

e , then

− log L(θ; y) = constant + N log σe +
1

Nσ2
e

ǫ(θ)Tǫ(θ). (2.91)

The resulting ML estimate is

θ̂ML = arg min
θ

(

N log σe +
1

Nσ2
e

ǫ(θ)Tǫ(θ)

)

= arg min
θ

(
1
N

ǫTǫ

)

. (2.92)

As can be seen from (2.92) in the Gaussian situation the ML estimate is equal to
the least squares estimate. ML estimates are known for their attractive properties,
which also hold for non-Gaussian distributions: ML estimates are consistent in
case the observations are independent (i.e. white noise). Furthermore, for N → ∞

the ML estimate has an asymptotic Gaussian distribution with variance given by
J−1, with J the Fisher Information Matrix:

J = E

(

∂ log L(θ; y)

∂θ

(
∂ log L(θ; y)

∂θ

)T
)∣
∣
∣
∣
∣
θ=θ∗

. (2.93)

For a Gaussian pdf it can be shown that the Fisher Information Matrix satis-
fies

J =
1

Nσe
E

(

∂ŷ

∂θ

(
∂ŷ

∂θ

)T
)∣
∣
∣
∣
∣
θ=θ∗

. (2.94)

Bayesian approach

In the Bayesian approach to parameter estimation the parameter is considered as
a random variable with a certain prior probability p(θ). The measured output
y is associated with a probability p(y). The conditional probability y given θ is
denoted by p(y|θ). With Bayes rule p(θ|y), the posterior probability of θ given y,
can be calculated according to

p(θ|y) =
p(y|θ)p(θ)

p(y)
. (2.95)

The maximum a posteriori (MAP) estimate of p(θ|y) is the value of θ for which
the pdf takes its maximum value.

Let the prior knowledge of θ be represented by assuming that θ is Gaussian dis-
tributed with mean θp and covariance Pθ. For linear models it can then be shown
that maximizing p(θ|y) is equivalent to minimizing the cost function

V(θ) = (ȳk − yk)
TP−1

v (ȳk − yk) + (θ− θp)P−1
θ (θ− θp), (2.96)

where the first term in V(θ) represents the weighted mismatch between observed
measurements and model outputs, and the second term represents the weighted
mismatch between the parameter vector and the a priori mean θp. The latter term
penalizes deviations of θ̂ from θp and can be seen as an approach to regularize the
parameter estimation problem (see e.g. Tarantola 2005).
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Nonlinear optimization methods

Since the cost function is in general not convex, it needs to be minimized using an
iterative method. If we iteratively solve for a parameter estimate θ̂ by minimizing
a cost function V(θ), the general update rule in step m of a Newton-type algorithm
is given by

θ̂m+1 = θ̂m + γ

(
∂2V

∂θ2

)∣
∣
∣
∣

−1

θ=θ̂m

∂V

∂θ

∣
∣
∣
∣
θ=θ̂m

, (2.97)

where γ denotes a scalar damping factor . Note that in this expression the par-
tial derivatives are evaluated in the local parameter θ̂m, which are usually cal-
culated with the aid of an adjoint-based method. See Chavent (1975); Li et al.
(2003) for applications of an adjoint-based method for estimating reservoir pa-
rameters. The term ∂2V

∂θ2 is usually approximated, leading to e.g. Gauss-Newton
or Steepest-Descent methods, see Chapter 4 for more details. Alternatively, pa-
rameter estimation methods as discussed here can be solved recursively, where
the parameters are estimated on-line as the measurements are gathered. This will
be further discussed in Chapter 4, where also a link is made between recursive
estimation methods and filtering methods such as Kalman filters.

2.5 Summary

This chapter has presented the basic concepts and notation that will be used in
the remainder of this thesis. The section on the geological formation of oil and gas
reservoirs has mainly served to show that the structures in the subsurface can be
diverse as a result of the greatly varying processes that have taken place during
the formation of an oil and gas reservoir. The section has focused mainly on chan-
nelized structures since in Chapter 5 a channel and barrier parameterization will
be introduced.

The result of the greatly varying geological processes is a heterogeneous porous
medium that contains oil and/or water. For petroleum production single-phase
and two-phase flow models in porous media are generated (described in Section
2.2) that aim to predict the flow behavior resulting from certain decisions. The cur-
rently used petroleum reservoir models are nonlinear models that contain a large
number of states and physical parameters (typically 105 − 106), resulting from the
spatial and temporal discretization of the relevant partial differential equations.
The states are the grid block pressures and grid block saturations. Physical pa-
rameters that play a large role in the long-term flow behavior are the grid block
permeabilities.

For a better understanding of the key processes in reservoir models the control-
lability and observability properties of the models will be analyzed in the next
chapter, concepts which have been presented in this chapter. To increase the pre-
dictive capacity of these models the model parameters are to be estimated from
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measurements. In Section 2.4 the notions of identifiability and structural iden-
tifiability have been defined and a short overview has been given of parameter
estimation methods in a prediction error framework.
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3 CHAPTER

Controllability and Observability in
Porous Media Flow

In this chapter it is shown how the controllability and observability of
single-phase and two-phase flow reservoir simulation models can be

analyzed. With this analysis one can find which processes are most rele-
vant during the life of the reservoir. Examples are presented to illustrate
the results. Also the influence of well locations and heterogeneity on the
controllability and observability properties of reservoir models is investi-
gated.

3.1 Introduction

As discussed in Chapter 1 determining optimal control settings based on mod-
els of limited complexity (e.g. obtained from reducing large-scale models) works
surprisingly well. The question is why do these simple models work so well? In
pursuit of an answer of this question the notions of controllability and observ-
ability of reservoir models are analyzed. Only recently, the controllability and
observability of reservoir simulation models have been analyzed for single-phase
reservoir models (Zandvliet et al. 2008), and in this chapter the controllability and
observability properties of two-phase reservoir models will be analyzed.

The analysis gives insight into which processes in the reservoir are most rele-
vant for the input-output behavior, and also which processes should be modeled
carefully such that the model is suitable for model-based operations of petroleum
reservoirs. To this end the controllability and observability of the reservoir model
are quantified such that the most controllable and most observable (combinations
of) states can be determined.

Single-phase reservoir simulation models for slightly compressible liquid flow are
linear and therefore their controllability and observability can be readily analyzed
using the tools available for linear systems (summarized in Subsections 2.3.1 and
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2.3.2). Two-phase reservoir simulation models are nonlinear and the controllabil-
ity and observability analysis of nonlinear models is more complicated. In Section
2.3.5 two approaches have been presented that are suitable for controllability and
observability analysis of nonlinear large-scale models. In Section 3.2 it is described
how these tools are used to determine which (combinations of) states are most rel-
evant for the input-output behavior of reservoir models. Next, in Section 3.3 the
controllability and observability of grid block pressures in two-dimensional (2D),
single-phase models are analyzed. In Section 3.4 the controllability and observ-
ability of grid block saturations in a one-dimensional (1D) two-phase reservoir
model are analyzed, where the reservoir model is represented by a linear and non-
linear convection-diffusion equation. Finally, in Section 3.5, the controllability and
observability of grid block pressures and saturations in 2D, two-phase reservoir
models are analyzed.

3.2 Quantifying controllability and observability in

porous media flow

In Section 2.3 singular value decompositions (SVD) have been used to quantify
controllability and observability, and thereby specifying the state space that is
most controllable or observable. The controllable subspace can be approximated
as

Cn = UΣVT =
[

U1 U2
]
[

Σ1 0
0 Σ2

] [
VT

1
VT

2

]

≈ U1Σ1VT
1 , (3.1)

where the separation between Σ1 and Σ2 is chosen in such a way that the singular
values in Σ2 are considerably smaller than those in Σ1. Alternatively, an SVD can
be applied to the controllability Gramian

Pn = CnCT
n = UΣ

2UT, (3.2)

or to the empirical controllability Gramian Pe (2.62), resulting in the same matrices
U and Σ as in (3.1).

The observable subspace can be specified by applying an SVD to the transpose of
the observability matrix or the observability Gramian

OT
n = UΣVT =

[
U1 U2

]
[

Σ1 0
0 Σ2

] [
VT

1
VT

2

]

, (3.3)

Qn = OT
nOn = UΣ

TU. (3.4)

Note that the SVD is applied to the transpose of On such that the left singular vec-
tors of On and Qn are equal. Alternatively, the empirical observability Gramian
Qe (2.68) can be used to specify the observable subspace.

Consider the case in which the controllable subspace is approximated by remov-
ing columns in U that correspond to (very) small singular values as in (3.1). In
case the values of the input variables vary several orders of magnitude, the values
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of B related to those input variables appear to influence the numerical values that
occur in Σ1 and Σ2, and as such can influence the separation between Σ1 and Σ2.
In order to make the selection mechanism scaling-independent matrix B can be
scaled to

B̄ = BΓu, (3.5)

where in this chapter Γu = diag
( |u1| . . . |up|

)
and where ui, i = 1, . . . , p rep-

resents typical input values. Subsequently, the controllability matrix and Grami-
ans are calculated. This is illustrated in Sections 3.3 and 3.5 in which examples are
presented where the inputs contain pressures that have values in the range of 107

and rates that have values in the range of unity.

The same reasoning also applies to the output variables. In order to make the
selection mechanism scaling-independent, matrix C can be scaled to

C̄ = ΓyC, (3.6)

where in this chapter Γy = diag
(
|y1|−1 . . . |yp|−1

)
and where yi, i = 1, . . . , p

represents typical output values. Subsequently, the observability matrix and ob-
servability Gramians are calculated. This is illustrated in Sections 3.3 and 3.5 in
which examples are presented that support this scaling.

The controllability properties of a nonlinear model can change with time, i.e.
states can become more or less controllable with time. In this work we have cho-
sen to analyze the controllability per time interval. To this end the total simulation
time of N time steps is split into intervals ki, f = [ ki, . . . , k f ] where ki and k f de-
note the first and last time step of the interval. Next, the controllability of each
interval is analyzed using the approaches presented in Subsection 2.3.5. This ap-
proach is comparable to the Sliding Interval Gramians mentioned in Verriest and
Kailath (1983).

Each column of U in (3.1), (3.2), (3.3) or (3.4) contains a singular vector with di-
mension n, where n is the total number of states. In the case of spatially discretized
reservoir models the states represent grid block pressures and/or grid block sat-
urations. Since each state is connected to a grid block, each column of U can be
interpreted as a spatial pattern or a basis function. The spatial patterns contained
in U1 that correspond to large singular values can be interpreted as the combina-
tion of states that are most controllable or observable.

To present the spatial patterns more compactly, we have chosen to depict the
weighted singular vector, which consists of the sum of the singular vectors cor-
responding to the first z singular vectors weighted by their singular value. In this
way one can immediately see which parts of the reservoir model contain states
that are most controllable or observable, and which parts of the reservoir model
only contain states that are almost not controllable or observable. The weighted
left singular vector U1:z of a certain matrix is given by

U1:z(·) :=
z

∑
i=1

σi

σ1
Ũi, (3.7)
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Figure 3.1: Well locations: wells 1, 3 and 5 are bottom-hole pressure controlled
production or injection wells containing a flow meter (⊗), well 4 is a flow rate
controlled production or injection well without a pressure gauge (©), and well 2
is an observation well containing a pressure gauge (×)

.

where σi is the i-th singular value on the diagonal of Σ, and Ũi is the i-th column
vector of U in (3.1), (3.2), (3.3) or (3.4) with length n. In a geometric interpretation
the columns of the unitary matrix U represent a direction in the controllable or
observable subspace, where the length of the vectors is given by the correspond-
ing singular values. The vectors weighted by their singular value as in (3.7) can
then be considered as a vector sum, characterizing the dominant directions in the
controllable or observable subspace.

3.3 Controllability and observability of pressures in

single-phase porous media flow

3.3.1 Introduction

The work in this section has been done in cooperation with Maarten Zandvliet and
has previously been published in a joint publication Zandvliet et al. (2008) and in
his thesis Zandvliet (2008). The controllability and observability of pressures in
2D single-phase porous media flow are analyzed to find out which states are most
controllable and observable.
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reservoir
         

model

well 1: pressure

inputs

well 3: pressure

well 5: pressure

well 4: flow rate

well 1: flow rate
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well 2: pressure

well 3: flow rate

well 5: flow rate

Figure 3.2: Input-output scheme: wells 1, 3, 4 and 5 are flow rate or bottom-hole
pressure controlled production or injection wells. Wells 1, 2, 3 and 5 are wells in
which either flow rate or bottom-hole pressure is measured

.

3.3.2 Example 1: homogeneous permeability

Consider a homogeneous reservoir containing one phase and modeled as in Sec-
tion 2.2.1. The model has 21 × 21 × 1 grid blocks of 10 m × 10 m × 10 m. The
absolute permeability is 10 mDarcy. The porosity is chosen constant in every grid
block and is given by φ = 0.20. The fluid compressibility is c = 10−10 Pa−1 and
viscosity µ = 10−3 Pa s. There are five wells configured in a standard 5-spot
pattern depicted in Figure 3.1. The input-output block scheme of the inputs and
outputs is depicted in Figure 3.2.

Four of the wells can inject or produce (inputs), i.e. wells 1, 3, 5 and 4. These are
in Figure 3.1 indicated by a circle, either with or without a cross. In the first three
of these wells, i.e. wells 1, 3 and 5 the bottom-hole pressure can be controlled and
in well 4 the flow rate. Of the total number of wells four have measurement ca-
pabilities (outputs), i.e. wells 1, 3, 5 and 2 can measure either flow rate or bottom
hole pressure. These are in Figure 3.1 indicated by a cross, either with or without
a circle. In the first three of these wells, i.e. wells 1, 3 and 5 the flow rate can be
measured, and in well 2 (a non-producing or injecting well) the bottom-hole pres-
sure can be measured. The well indices Jp and Jq are computed using a Peaceman
model (2.5) with a wellbore radius rw = 0.1 m and skin factor S = 0.

The matrices A, B, C and D are computed as in Section 2.2.1 with a discretization
time step given by (2.12), which in this example leads to ∆t = 1.2 s. In this par-
ticular example, the nonzero entries in C corresponding to the flow rate measure-
ments q̄well (i.e. the well indices of wells 1, 3 and 5) are in the order of 10−8: much
smaller than the nonzero entry in C corresponding to the pressure measurement
p̄well in well 2, which is equal to 1. This is problematic, because the in Section 2.3
discussed energy produced by observing pressures in well 2 (in [Pa]2) will then
generally be much larger than the energy produced by observing flow rates in
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Figure 3.3: All 441 Hankel singular values σ1, . . . , σ441 (left) and 21 largest ones
σ1, . . . , σ21 (right) for homogeneous example. The dashed line represents machine
precision.

wells 1, 3 and 5 (in [m3/s]2). In the following examples, C is therefore scaled with
Γy such that the entries in C̄ = ΓyC are of the same order. Similarly, the nonzero
entries in B corresponding to the bottom-hole pressure controlled wells q̆well (i.e.
wells 1, 3 and 5) are much smaller than the nonzero entry in B corresponding to
the flow rate controlled well q̆well (i.e. well 4). In the following examples, B is
therefore scaled with Γu such that the entries in B̄ = BΓu are of the same order.
The Gramians and Hankel singular values are subsequently computed using the
scaled B̄ and C̄ matrices. Note that the sign of the input signal decides if fluid is
injected or produced, and hence the Gramians are indifferent to injection or pro-
duction of fluids, only to the type of control, i.e. rate-controlled or bottom-hole
pressure.

The Hankel singular values, depicted on a logarithmic scale in Figure 3.3, decrease
very rapidly, indicating that the 441th order reservoir model behaves like a model
of considerably lower order.

The singular vectors corresponding to the three largest singular values of the
Gramians Pn and Qn, as well as the eigenvectors corresponding to the three largest
eigenvalues of PQ are depicted in Figure 3.4. In each of the plots, the vector un-
der consideration is projected onto the model grid. Since each component of the
state relates to the pressure in a specific grid block, and thereby a specific physical
location, this projection allows us to interpret how the reservoir model’s control-
lability and observability properties vary over space. Note that the scales of these
plots differ and that the nonzero areas are of particular interest, as these represent
areas where reference pressures are controllable and / or observable. Since the
observation well (well 2 in Figure 3.1) is the only well that does not appear as a
nonzero area in the plots of the controllability Gramian, we conclude that refer-
ence pressures in areas near production or injection wells require are most control-
lable. Similarly, since the production or injection well without any measurement
(well 4 in Figure 3.1) is the only well that does not appear as a nonzero area in
the plots of the observability Gramian, we conclude that reference pressures in ar-
eas near wells with flow meters or pressure gauges are most observable. In short,
pressures near wells in which we can control the flow rate or bottom-hole pressure
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Figure 3.4: Singular vectors corresponding to the three largest singular values of
controllability Gramian Pn (top row) and observability Gramian Qn (middle row),
and eigenvectors corresponding the three largest singular values of PQ (bottom
row), projected onto model grid for homogeneous example.

are controllable, whereas pressures near wells in which we can measure the flow
rate or bottom-hole pressure are observable. The wells in which we can control
and observe (wells 1, 3 and 5 in Figure 3.1) appear as nonzero areas in the bottom
row of Figure 3.4. Since a eigenvector of PQ represents a state (i.e. a vector of
pressures) that is equally difficult to reach as observe, it makes sense that particu-
larly the wells in which we can control and observe (wells 1, 3 and 5 in Figure 3.1)
appear as nonzero areas in the plots of PQ.

Remark: It is important to mention that the previously mentioned scalings of the
entry in C corresponding to the pressure measurement in well 2 and entry in B
corresponding to the flow-rate controlled well 4 have a large influence on Figure
3.4. For example, smaller scaling factors (i.e. smaller entries in B and C) make the
non-zero areas surrounding wells 2 and 4 in Figure 3.4 less pronounced. Recall
that the main reason for these scalings is that ‘energy’ in [Pa2] will generally be
much larger than in [m3/s]2. Therefore, if in each well the bottom-hole pressure
is controlled and the flow rate is measured (and ‘required energy’ is thereby con-
sistently in [Pa2] while ‘produced energy’ is consistently in [m3/s]2), then these
scaling are no longer necessary.
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Figure 3.5: Heterogeneous permeability distribution as used in Section 3.3.3.
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Figure 3.6: All 441 Hankel singular values σ1, . . . , σ441 (left) and 21 largest ones
σ1, . . . , σ21 (right) for heterogeneous example. The dashed line represents machine
precision.

3.3.3 Example 2: heterogeneous permeability

Consider the same reservoir model as in the previous example, but with a high
permeability zone of 1000 mDarcy in the North-West corner, a low permeability
zone of 10 mDarcy in the South-East corner, and a permeability of 100 mDarcy
throughout the rest of the reservoir - see Figure 3.5. The discretization time step
∆t is still given by (2.12) and its value is therefore different than before, namely
∆t = 0.013 s.

The Hankel singular values, depicted in Figure 3.6, decrease very rapidly. As
before, this indicates that the 441th order reservoir model behaves like a model of
considerably lower order.

The singular vectors corresponding to the three largest singular values of the
Gramians Pn and Qn as well as the eigenvectors corresponding to the three largest
eigenvalues of PnQn are depicted in Figure 3.7. Contrary to Figure 3.4, only the
production well in the high permeable zone (well 1 in Figure 3.1) appears as a
nonzero area in the plots of the controllability Gramian. From this we conclude
that reference pressures in areas near production wells in high permeable zones
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Figure 3.7: Singular vectors corresponding to the three largest singular values
of controllability Gramian Pn (top row), and observability Gramian Qn (middle
row), and eigenvectors corresponding to the largest eigenvalues of PnQn (bottom
row), projected onto model grid for heterogeneous example.

require the least energy to reach. Contrary to Figure 3.4, only the well with a mea-
surement in the high permeable zone (well 1 in Figure 3.1) appears as a nonzero
area in the plots of the observability Gramian. From this we conclude that refer-
ence pressures in areas near observation wells in high permeable zones produce
the most energy when observed. Also the eigenvectors of PnQn show that the
reference pressures in areas in high permeability are most relevant for the input-
output behavior, and that the reference pressures in areas in low permeability are
least relevant for the input-output behavior (values close to 0).

3.3.4 Effect of physical reservoir parameters

This subsection shows how the controllability and observability results depend
on the physical reservoir parameters, the time discretization and the spatial dis-
cretization. Recall that the matrices A and B in (2.10) are given by:

A = I + Ac∆t, B = Bc∆t,
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where Ac and Bc contain entries that are inverse proportional to compressibility c,

the entire porosity field φ =
[

φ1 . . . φNgb

]

, viscosity µ, and proportional to

the entire permeability distribution k =
[

k1 . . . kNgb

]

. Therefore, scaling the
value of

• compressibility c to (1/ǫ)c, or

• the entire porosity field φ to (1/ǫ)φ, or

• viscosity µ to (1/ǫ)µ, or

• the entire permeability distribution k to ǫk,

for some constant value ǫ > 0 leads to

A = I + ǫAc∆t, B = ǫBc∆t.

In other words, scaling the above mentioned physical parameters by ǫ has the
same effect on A and B as scaling the discretization time step ∆t by ǫ. Further-
more, it can be shown that for the viscosity or the entire permeability this also
leads to a scaling of the values of C and D in (2.11) to ǫC and ǫD, respectively.
Note that in Section 3.3.3 only certain grid block permeability values are scaled
and not the entire permeability distribution. Therefore there is an effect on the
controllability and observability properties.

It is important to note that the dynamics of the discrete-time reservoir model
(2.10, 2.11) are unaffected by scaling ∆t, provided that ǫ∆t is still smaller than
the value given by (2.12)1. In fact, the results obtained in this section (in terms
of Hankel singular values and spatial variation of controllability and observabil-
ity properties) using the original continuous-time matrices (Ac, Bc) are virtually
the same. This therefore also holds for the compressibility and porosity scalings
mentioned above. The viscosity and permeability scalings on the other hand also
influence C, leading to a scaling of diagonal matrix with Hankel singular val-
ues diag

(

σ1 . . . σNgb

)

in (2.52) to ǫ diag
(

σ1 . . . σNgb

)

. The spatial dis-
cretization also does not have a significant influence on the results: the spatial pat-
terns depicted in Figure 3.4 and Figure 3.7 resemble the ones obtained by model-
ing the reservoir with, say, 11× 11× 1 or 31× 31× 1 grid blocks. This is important,
as it points out that controllability and observability are reservoir properties, and
not just reservoir model properties. Furthermore, the overall decrease in Hankel
singular values from 10−9 to approximately 10−25 is very similar - see Figure 3.8.
This is important, as it points out that the number of grid blocks, often chosen
as high as computationally possible, does not have a significant influence on the
relevant order of the pressure dynamics throughout the reservoir.

1Recall that a discrete-time model (2.10) obtained with a time step larger than (2.12) does not capture
all of the dynamics of the original continuous-time model (2.8)-(2.9).
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Figure 3.8: All Hankel singular values (left) and 21 largest ones (right) of three
reservoir models based on the reservoir model treated in homogenous example,
where each model is spatially discretized by a different number of grid blocks.

3.3.5 Summary

In this section the controllability and observability properties of single-phase flow
reservoir models have been analyzed, showing that pressures near wells in which
we can control the flow rate or bottom-hole pressure are controllable, whereas
pressures near wells in which we can measure the flow rate or bottom-hole pres-
sure are observable. Based on the examples we conclude that these properties
are determined by the well configuration, and to a lesser extent by the hetero-
geneity of the reservoir at hand. The Hankel singular values of single-phase flow
reservoir models decrease rapidly, indicating that they behave as models of much
lower order than the order that follows from the number of discretization grid
blocks.

3.4 Controllability and observability of saturations in

two-phase porous media flow

3.4.1 Introduction

In this section the controllability and observability of grid block saturations in a
horizontal, one-dimensional (1D) reservoir model will be analyzed to find which
processes are most relevant during the life of the reservoir. The reservoir model,
schematically depicted in Figure 3.9, initially contains oil which is flooded by wa-
ter that is injected at the left boundary of the reservoir model. The oil and/or
water are produced at the right boundary. Oil and water are both assumed to
be incompressible, and consequently the total fluid velocity is constant. Further-
more, gravity forces are ignored. As described in e.g. Aziz and Settari (1986) and
Vakili et al. (2005) this can be modeled by a linear or nonlinear 1D convection-
diffusion equation (CDE). In Section 3.4.2 the linear CDE is described and next
its controllability and observability properties are analyzed using the approaches
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Figure 3.9: Sketch of 1D reservoir model after spatial discretization.

for linear and nonlinear models described in Section 2.3. The advantage of using
the linear CDE is that the results of the different approaches can be compared.
In Section 3.4.3 the controllability and observability is analyzed for the nonlinear
CDE.

3.4.2 Linear convection-diffusion equation

The advantage of analyzing the controllability and observability of this CDE is
that it is a linear two-phase reservoir model. This greatly simplifies the analysis.
The linear CDE is given by

D
∂2s

∂x2 − v
∂s

∂x
= ϕ

∂s

∂t
, (3.8)

where coefficient D represents the effects of molecular diffusion and dispersion
resulting from mechanical mixing through subgrid geological heterogeneities, s =
s(x, t) is water saturation, v is total liquid velocity, φ is porosity, x is position and t
is time. The initial condition is s(x, 0) = swc, where swc is connate water saturation.
The boundary conditions are:

s(0, t) = swc,
∂s(x, t)

∂x

∣
∣
∣
∣
x=L

= 0,

where L represents the length of the reservoir (see Figure 3.9). An analytical solu-
tion for the linear CDE is (Aziz and Settari 1986)

s = swc +
(1 − sor − swc)

erfc
(

−tD

√
P

4tD

) erfc

(

(xD − tD)

√

P

4tD

)

, (3.9)

where sor is residual oil saturation, erfc is the complementary error function and
the dimensionless variables are given by

xD =
x

L
, tD =

vt

Lϕ
, P =

vL

D
,

where P is the Peclet number reflecting the relative importance of convection rel-
ative to diffusion.
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Symbol Value Unit
D 10−5 m2/s
φ 0.20 −
v 2 × 10−4 m/s
sinj 1 −
swc 0 −
L 200 m
∆x 1 m
∆t 1000 s
tend 15000 s

Table 3.1: Model coefficients and discretization variables of the linear 1D reservoir
model.

The linear equation is spatially discretized using a finite-difference scheme with
block-centered grids with an upstream weighting or backward difference approx-
imation for the convection term. The temporal discretization is performed with
forward Euler. This results for grid block si at time step k + 1 in

si
k+1 =

(
D∆t

φ∆x2 +
v∆t

φ∆x

)

si−1
k +

(

1 − 2
D∆t

φ∆x2 +
v∆t

φ∆x

)

si
k +

(
D∆t

φ∆x2

)

si+1
k , (3.10)

where we have used superscripts to indicate grid block numbers, and subscripts
to indicate time steps.

The linear equation is casted in an LTI discrete-time state-space form to enable the
analysis of controllability and observability. The state x is the water saturation in
each grid block, the input u is the water injection saturation sinj in the first grid
block, and the output y is the water saturation that is observed at 2

3 L. In the exam-
ple, the length L is chosen as 200 m, and as a result the water saturation is observed
133 m from the left boundary - see the red dashed line in Figure 3.9.

The initial water saturation is chosen as s0 = swc = 0 equal in every grid block.
This means that the reservoir model only contains oil. Water is injected at the
left boundary and produced from the right boundary, meaning s0 = sinj = 1.
The remaining coefficients and discretization variables are listed in Table 3.1. In
Figure 3.10 the saturation profiles at t = 105s for the analytical solution (3.9) and
numerical solution (3.10) are shown. The difference between the analytical and
numerical solution is caused by numerical dispersion. The red dashed line in
Figure 3.10 indicates the measurement location. For this example the model order
of the numerical model is n = 200, which is equal to the number of grid blocks
L/∆x = 200. The Courant-Friedrichs-Lewy (CFL) condition C for the linear CDE,
given by

C =
v∆t

φ∆x
, (3.11)

satisfies for this example C = 0.9. Since C < 1 this indicates that the solution is
stable.
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Figure 3.10: Water saturation profile calculated with linear numerical CDE (green)
and analytical CDE (blue) after 105 s with v = 0.0002 m/s. The red dashed line
indicates the measurement location.

Controllability and observability of the linear 1D reservoir model

The controllability and observability properties of the linear 1D reservoir model
in state-space form will be first analyzed with the controllability and observability
Gramians as calculated with the discrete Lyapunov or Stein equations (2.31, 2.41),
since this is known to be a numerically reliable method. Secondly, for comparison
purposes, the controllability and observability properties will also be analyzed
with the controllability and observability matrices (2.29, 2.39) and with empirical
Gramians (2.62, 2.68). These approaches should lead to the same results, although,
for large numbers of grid blocks numerical issues can be expected to cause differ-
ences.

Firstly, the controllability and observability Gramians of the linear 1D reservoir
model are calculated using the Stein equations (2.31, 2.41) as implemented in
MATLAB in the function balreal. The Hankel singular values σi, i = 1, . . . , 200,
are calculated as in (2.51) and are plotted in Figure 3.11. It can be seen that the
Hankel singular values decrease rapidly, indicating that the dynamical behavior
of the model is of an order that is significantly less than n = 200 (which is equal
to the number of grid blocks). This is in line with results from Markovinović et al.
(2002), Heijn et al. (2004) and Gildin et al. (2006).

The eigenvectors of the product of the controllability and observability Gramian
PnQn that correspond to dominant Hankel singular values, contain those combi-
nations of states that are most relevant for the input-output behavior. The abso-
lute value of the first nine eigenvectors of the product PnQn are plotted in Figure
3.12 as function of the distance x from the left boundary of the reservoir model.
We have chosen to depict the absolute value of the eigenvectors since it is eas-
ier to see that the highest values are at the left boundary of the reservoir. The
red dashed line indicates the position of the measurement location. The weighted
sum (3.7) of the singular vectors and singular values of PnQn is plotted in Figure
3.13, bottom row, middle plot. Here is chosen for singular vectors since singu-
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Figure 3.11: Hankel singular values of the linear 1D reservoir model. The dashed
line represents machine precision.

lar vectors are contrary to eigenvectors orthogonal to each other, and the singular
vectors only show minor differences when compared to the eigenvectors plotted
in Figure 3.12.

From Figure 3.12 several observations can be made. While moving downstream
from left to right we observe that close to the left boundary, where water is in-
jected, the values of the eigenvectors of the product PnQn are higher than further
away from the left boundary, indicating that these states are more relevant for the
input-output behavior. Furthermore, the states directly upstream of the measure-
ment location are more relevant for the input-output behavior than further up-
stream. The states downstream of the observing well are apparently not relevant
for the input-output behavior. This is caused by the upstream weighting scheme
that is used for the spatial discretization, which implies that the water saturation
of grid block i is only dependent on the water saturation upstream of grid block i.
This is in line with the physical behavior of the flow in the reservoir. In case e.g.
a central difference scheme is used to spatially discretize the model, the observ-
ability results would be different and would not reflect the physical behavior, as
is also mentioned by Singh and Hahn (2007).

Secondly, the controllability and observability properties of the model are ana-
lyzed using controllability and observability matrices, controllability and observ-
ability Gramians and empirical Gramians. Note that the empirical observability
Gramian of the CDE is calculated using snapshots of the dual model with an ini-
tial condition x′(0) = 0 and excited with an impulse input. For each approach the
weighted singular vector is calculated according to (3.7) for z = 20 and plotted
in Figure 3.13. These plots give insight into which (combinations) of states are
most controllable, most observable and most relevant for the input-output behav-
ior of the flow. In the top row the weighted singular vectors of the controllability
matrix U1:20(C200), the controllability Gramian U1:20(Pn) and empirical control-
lability Gramian U1:20(Pe) are plotted. From these plots it can be seen that for
all three approaches it holds that states close to the left boundary, where water is
injected, are most controllable, and the states further away from the left bound-
ary are less controllable. States close to the right boundary are not controllable
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Figure 3.12: First nine eigenvectors of PnQn (absolute value).
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Figure 3.13: First row: weighted singular vectors of controllability matrix C200,
controllability Gramian Pn and empirical controllability Gramian Pe of the linear
1D reservoir model. Middle row: weighted singular vectors of the observability
matrix OT

200, observability Gramian Qn and empirical observability Gramian Qe.
Bottom row: weighted singular vectors of C200CT

200OT
200O200, PnQn and PeQe.
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anymore. At the right boundary, where the controllability is smallest, there are
differences between the plots, probably caused by numerical issues during the
computation of the controllability matrix which involves multiplication of a large
number of system matrices with each other, see (2.29).

In the middle row of Figure 3.13 the weighted singular vectors of the observabil-
ity matrix U1:20(OT

200), the observability Gramian U1:20(Qn) and the empirical ob-
servability Gramian U1:20(Qe) are plotted, where the red dashed line indicates
the measurement location. From these plots it can be seen that states upstream
of the observation point are most observable and that the observable is slowly
decreasing for states in the upstream direction. States downstream of the obser-
vation point are not observable. As explained earlier, the reason for this is that an
upstream weighting scheme for the spatial discretization is applied.

Finally, the model is balanced and the Hankel singular values and eigenvectors
of PnQn are calculated. The results are plotted in the bottom row of Figure 3.13,
and it can be observed that the weighted singular vector is at its maximum at the
location where water is injected and then slowly decreases. Downstream of the
measurement location, indicated by the red dashed line, the weighted singular
vector drops fast to zero. Apparently, the most relevant states are between the left
boundary and the measurement location.

3.4.3 Nonlinear convection-diffusion equation

In this subsection the nonlinear CDE (Aziz and Settari 1986) is used to model the
flow in a 1D two-phase horizontal reservoir model that contains both water and
oil (Figure 3.9). The model is given by

∂

∂x

(

hw
∂s

∂x

)

− v
∂ fw

∂x
= φ

∂s

∂t
, (3.12)

where hw is a nonlinear function of water saturation representing a term with
capillary pressure, and fw is the water fractional flow function that plays a role in
the description of the flow of the water fraction. These terms are defined by

hw = hw(s) = − λoλw

λo + λw

dPc

ds
(3.13)

fw = fw(s) =
λw

λo + λw
, (3.14)

where Pc = po − pw is the capillary pressure, λo = kkro(s)
µo

is the oil mobility,

λw = kkrw(s)
µw

is the water mobility, k is the absolute permeability, krw is the wa-
ter relative permeability, kro is the oil relative permeability, µo is the oil viscosity
and µw is the water viscosity. The relative permeability is modeled with a Corey
model (2.16, 2.17). In this work capillary pressure is ignored since during dis-
placement processes on reservoir scale the dispersive effect of sub grid block size
geological heterogeneities is usually considerably larger than the diffusive effect
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of capillary pressure. The dispersive effect of geological heterogeneities can be
taken into account by using velocity-dependent dispersion tensors (Russell and
Wheeler 1983). This is not included here and in many cases numerical diffusion is
of the same order of magnitude as or even larger than the physical diffusion and
dispersion. As a result the first term in (3.12) is excluded.

The initial condition is given by s(x, 0) = swc. The boundary conditions are given
by:

s(0, t) = swc,
δs(L, t)

δx
= 0.

An analytical solution to the nonlinear CDE in the absence of capillary pressure
was derived by Buckley and Leverett (1942). A numerical solution is obtained by
spatial and temporal discretization. The equation is spatially discretized using a
finite-difference scheme with block-centered grids and with an upstream weight-
ing approximation. For the discretization in space this leads to

v
∂ fw

∂x
= v

fw,i − fw,i−1

∆x
. (3.15)

The temporal discretization is performed with forward Euler. This results in

si
k+1 =

v∆t

(φ∆x)

(

f i−1
w,k − f k

w,k

)

. (3.16)

The nonlinear equation (3.16) can also be written in discrete-time state-space form
where the matrices are state-dependent.

The output y is the water saturation that is observed at 2
3 L. In the example, the

length L is chosen as 200 m, and as a result the water saturation is observed at the
left boundary and 133 m from the left boundary - see the red dashed line in Figure
3.9. The input u is the water injection saturation sinj in the first grid block. See Fig-
ure 3.14 for the saturation profiles using the model coefficients and discretization
variables listed in Table 3.2. The analytical solution is obtained with the Buckley-
Leverett solution. The difference between the analytical and numerical solution is
due to numerical diffusion resulting from the discretization.

Controllability and observability of a nonlinear 1D reservoir model

The controllability and observability properties of the nonlinear CDE in state-
space form are analyzed with the LTV controllability and observability matrices
of the linearized model where the system matrices in intervals ki,j = [ ki, . . . , kj ]
are used to calculate the controllability and observability properties in the inter-
val. These results are depicted in Figure 3.15. Additionally, the controllability and
observability properties are analyzed with empirical Gramians, where we have
chosen r = s = 1, and a snapshot is generated at each time step. These results
are depicted in Figure 3.16. For both approaches the interval length is chosen as
50 time steps and the model coefficients and discretization variables are listed in
Table 3.2.
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Symbol Value Unit
φ 0.20 −
µo, µw 10−3 [Pas]
v 2 × 10−4 m/s
k 10−12 m2

no, nw 2 −
kro, krw 1 −
L 200 m
∆x 5 m
∆t 600 s
tend 1.5 × 105 s
sinit 1 −

Table 3.2: Model coefficients and discretization variables of the nonlinear 1D reser-
voir model.
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Figure 3.14: Water saturation profile calculated with nonlinear numerical CDE
and analytical Buckley-Leverett model after 105 s with v = 0.0002 m/s

The plots in Figures 3.15 and 3.16 will be discussed row by row. The top row in
each figure depicts the snapshots of the water saturation at the start of each inter-
val. The oil-water front is in these plots indicated by the (close to) vertical line,
where downstream of the oil-water front oil is found and upstream water. The
weighted singular vector related to controllability (second row) clearly indicates
for both approaches that the states around the oil-water front are most control-
lable. Note that the controllability for the complete interval is analyzed, e.g. for the
first column the weighted singular vector related to controllability is the result of
the controllability analysis for the time interval in which the oil-water front moves
from the position in the first saturation plot to the position in the second saturation
plot. Next, the observability analysis (third row) indicates for both approaches
that states close to the observation well are most observable, where the measure-
ment location is indicated by the red dashed line. Finally, the weighted singular
vector of Ck:ki

CT
k:ki

OT
k:k f

Ok:k f
and PeQe (bottom row) shows that the most relevant

states for the input-output behavior are located around the oil-water front.

For reasons of comparison also the controllability and observability properties
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Figure 3.15 - Saturations with LTV controllability and observability matrices: Wa-
ter saturation s calculated with nonlinear CDE at different time steps (first row);
weighted singular vector of LTV controllability matrix Ck:ki

(second row) and LTV
observability matrix Ok:k f

(third row) for the interval. Weighted singular vector

of Ck:ki
CT

k:ki
OT

k:k f
Ok:k f

(bottom row).

of the linear CDE model have been analyzed per time interval using empirical
Gramians. In Figure 3.17 the results are plotted. Since the total number of time
steps is 230 an interval length of 46 has been chosen instead of an interval length
of 50. The conclusions that can be drawn from this figure are identical to the
conclusions for the nonlinear case shown in Figure 3.16.

3.4.4 Summary

In this section the controllability and observability of a linear and nonlinear model
for two-phase flow in a 1D horizontal reservoir model have been analyzed. Based
on the examples we conclude that

• The water saturation states of the nonlinear CDE are most controllable near
the front and the states of the linear CDE are most controllable close to the
boundary where water is injected. The reason why the linear model is ap-
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Figure 3.16 - Saturations with empirical controllability and observability Grami-
ans: Water saturation s at different time steps calculated with nonlinear CDE (first
row); weighted singular vector of empirical controllability Gramian Pe,k:ki

(sec-
ond row) and empirical observability Gramian Qe,k:k f

(third row) for the interval.
Weighted singular vector of Pe,k:ki

Qe,k:ki
(bottom row).



3.4 Controllability and observability of saturations in two-phase porous media flow 67

0 100 200
0

0.5

1

s
1

0 100 200
0

1

2

|U
1:20

(P
e,1:46

)|

0 100 200
0

0.5

1

|U
1:20

(Q
e,1:46

)|

0 100 200
0

0.5

1

|U
1:20

(P
e
Q

e
)|

distance x, [m]

0 100 200
0

0.5

1

s
47

0 100 200
0

1

2

|U
1:20

(P
e,47:92

)|

0 100 200
0

0.5

1

|U
1:20

(Q
e,47:92

)|

0 100 200
0

0.5

1

|U
1:20

(P
e
Q

e
)|

distance x, [m]

0 100 200
0

0.5

1

s
93

0 100 200
0

1

2

|U
1:20

(P
e,93:138

)|

0 100 200
0

0.5

1

|U
1:20

(Q
e,93:138

)|

0 100 200
0

0.5

1

|U
1:20

(P
e
Q

e
)|

distance x, [m]

0 100 200
0

0.5

1

s
139

0 100 200
0

1

2

|U
1:20

(P
e,139:184

)|

0 100 200
0

0.5

1

|U
1:20

(Q
e,139:184

)|

0 100 200
0

0.5

1

|U
1:20

(P
e
Q

e
)|

distance x, [m]

0 100 200
0

0.5

1

s
185

0 100 200
0

1

2

|U
1:20

(P
e,185:230

)|

0 100 200
0

0.5

1

|U
1:20

(Q
e,185:230

)|

0 100 200
0

0.5

1

|U
1:20

(P
e
Q

e
)|

distance x, [m]

Figure 3.17 - Saturations with empirical controllability and observability Grami-
ans: Water saturation s at different time steps calculated with linear CDE (first
row); weighted singular vector of empirical controllability Gramian Pe,k:ki

(sec-
ond row) and empirical observability Gramian Qe,k:k f

(third row) for the interval.
Weighted singular vector of Pe,k:ki

Qe,k:ki
(bottom row).
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parently not only controllable around the front is that the controllability and
observability is analyzed for the total period, instead of intervals. If for the
linear model the empirical Gramians are calculated for intervals, then the
water saturation states also appear to be most controllable around the front,
since the empirical Gramians are based on snapshots of the saturation states
which show for both the linear and nonlinear model similar behavior. This
is supported by Figure 3.17.

• Water saturation states located at the observation point are most observable.

• After balancing the linear model the states that are most relevant for the
input-output behavior are located near the left boundary where water is in-
jected and also upstream of the observation point. For models for which the
controllability and observability of an interval is analyzed we conclude that
the states that are most relevant for the input-output behavior are situated
around the oil-water front.

• The Hankel singular values decrease rapidly, indicating that reservoir mod-
els behave as models of much lower order than the order that follows from
the number of discretization grid blocks. These results are in line with the
results of the controllability and observability analysis in Section 3.3.

3.5 Controllability and observability of pressures and

saturations in two-phase porous media flow

3.5.1 Introduction

In Section 3.3 the controllability and observability of pressures have been ana-
lyzed. In Section 3.4 the controllability and observability of saturations have been
analyzed. In this section we turn our attention to 2D two-phase reservoir models,
where the states are the pressure and saturation in each grid block. The aim is to
find which grid block pressures and saturations are most controllable and observ-
able during the life of the reservoir. The first example is a reservoir model with
a homogeneous permeability field, and the second example is a reservoir model
with a heterogeneous permeability field.

3.5.2 Example 1: homogeneous permeability

For the first example consider a 2D homogeneous reservoir model in which the
oil will be replaced by water in a water flooding process. The model descrip-
tion has been given in Section 2.2.2. The model has 21 × 21 × 1 grid blocks of
10 m× 10 m× 10 m. For the first example the absolute permeability is 10 Darcy in
every grid block. The porosity φ = 0.30 and is constant in every grid block. The oil
compressibility is co = 10−10 Pa−1 and water compressibility is cw = 10−10 Pa−1.
The oil viscosity is µo = 10−3 Pa and the water viscosity is µw = 10−3 Pa. For the
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Figure 3.18: Locations of injection and production well. Both wells can measure
the bottom hole pressure and the oil and water rates.

relative permeability the Corey model (2.16, 2.17) is used, which has Corey expo-
nents no = nw = 2, kro,0 = 0.9 and krw,0 = 0.6. The resulting curves for relative
permeability as function of water saturation are plotted in Figure 2.4. Capillary
pressure is not included in the model. The initial pressure is p0 = 100× 105 Pa and
the initial water saturation is Sinit = Swc = 0.2, and both are uniform throughout
the reservoir model.

The reservoir model contains an injection well and a production well at oppo-
site corners of the reservoir model - see Figure 3.18. The inputs u represent the
prescribed rate in the injection well (no pressure constraint) and the prescribed
pressure in the production well (no rate constraint). The well indices are com-
puted with a Peaceman model (2.5) with well bore radius rw = 0.1 m and skin
factor S = 0. Similarly as in Section 3.3.2, the nonzero entry in B corresponding
to the flow rate controlled injection well is scaled with Γu to the well index of
the pressure controlled production well. Both wells have the capability to mea-
sure the bottom hole pressure and the oil and water rates. The reservoir model is
simulated for 10 years.

Since we consider the controllability and observability around a certain state tra-
jectory, we need to choose input signals which can be considered as realistic dur-
ing the operation of a petroleum reservoir. For this example we have chosen
pseudo-random binary signals (PRBS, Ljung 1999) with rate related input lev-
els between 0.4 m3/s and 0.5 m3/s and pressure related input signals between
90 × 105 Pa and 99 × 105 Pa. The signal is constant over intervals with a length of
at least 25 time steps before it switches to another input level.

Recall from Section 2.2.2 that the equations of two-phase flow in porous media are
given by

xk+1 =

[
A11(xk) A12(xk)
A21(xk) A22(xk)

]

xk +

[
B1(xk)
B2(xk)

]

uk (3.17)

yk =
[

C1(xk) C2(xk)
]

xk + D(xk)uk, (3.18)
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Figure 3.19: All Hankel singular values (left) and 20 largest ones (right) for the
complete simulation time, calculated with empirical Gramians.

where the state vector x consists of a stacked pressure state vector and saturation
state vector, both with dimension n. The time scales of the dynamic behavior of
the pressure and saturation states are very different from each other, as indicated
by the clear separation in eigenvalues of system matrix Ac (see Section 2.2.2). The
pressure states are associated with eigenvalues with a high absolute value and
exhibit a fast behavior, while the saturation states are associated with eigenvalues
with a low absolute value and exhibit a slow behavior. Therefore it is reason-
able to analyze the controllability and observability of the pressure and saturation
states separately. First the controllability and observability of the pressures will
be analyzed with LTV observability and controllability matrices and empirical
Gramians. Next, the controllability and observability of the saturations will be
analyzed with LTV observability and controllability matrices, empirical Grami-
ans and also, after time scale separation (see Section 2.2.2) and linearization, with
LTI controllability and observability Gramians. This analysis will be done for two
examples: one with a homogeneous and one with a heterogeneous permeability
distribution.

For the first example with a homogeneous permeability distribution the Hankel
singular values of all states and of the pressure and saturation states separately
are calculated using empirical Gramians. These are shown in Figure 3.19. The
values decrease rapidly, indicating that the reservoir model behaves as a model
of much lower order. For a reservoir model with a homogeneous permeability
distribution and only two wells this seems reasonable. The reason that empirical
Gramians are chosen to calculate the Hankel singular values is that this method
is applicable to both pressure and saturation states (as opposed to the approach
that involves time scale separation), and gives good results for both pressures and
saturations.

Analysis of pressure behavior

First the pressure behavior of the model is analyzed with LTV controllability and
observability matrices. To this end model (3.17, 3.18) is linearized around the
state trajectory resulting from a realization of the PRBS signal. Subsequently the
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Figure 3.20 - Pressures with LTV controllability and observability matrices: The
first two rows depict the grid block pressures and saturations at the start of each
interval. The third row depicts for each interval the (10 log) weighted singular
vector of the LTV controllability matrix related to pressures. The fourth row de-
picts for each interval the (10 log) weighted singular vector of the LTV observabil-
ity matrix related to pressures. The last row depicts for each interval the (10 log)
weighted singular vector of the product of LTV controllability and observability
matrices related to pressures.

total simulation time is divided into five intervals of 60 time steps each. For each
interval the LTV controllability matrix Ck:ki

(2.56) and the LTV observability matrix
Ok:k f

(2.57) are calculated.

Next, the LTV controllability and observability matrices are divided into two parts:
a pressure related part and a saturation related part. Rows 1 to n of the LTV con-
trollability matrix Ck:ki

and columns 1 to n of the LTV observability matrix Ok:k f

are related to the pressure states, and these are indicated by subscript p, resulting
in Cp,k:ki

and Op,k:k f
. The weighted singular vectors (3.7) of these matrices give

an indication which pressure states are most controllable and most observable,
respectively.

In Figure 3.20 the results are shown. The first two rows show snapshots of the
grid block pressures and saturation at the start of each interval, i.e. time steps
1, 61, 121, 181 and 241. The third row shows for each interval the weighted sin-
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gular vectors (3.7) related to the 20 most dominant singular vectors of the LTV
controllability matrix 10 log |U1:20(Cp,k:ki

)|. For the first interval this is indicated
by 10 log |U1:20(Cp,1:60)|. According to the Hankel singular values this is more
than sufficient. The fourth row shows for each interval the 10 log of the abso-
lute weighted sum of the 20 most dominant singular vectors of the LTV observ-
ability matrix 10 log |U1:20(Op,k:k f

)|. The red colors indicate high controllability
and observability, and the blue colors low controllability and observability. The
bottom row shows the weighted singular vector of the balancing transformation
matrix

10 log |U1:20(Cp,k:ki
CT

p,k:ki
OT

p,k:k f
Op,k:k f

)|.

As can be seen from this example the most dominant controllable and observable
pressures are around the wells. The larger the distance from the well, the more
difficult it is to control or observe the pressure. This is similar to the single-phase
example described in Section 3.3. Not surprisingly, after balancing it appears that
the pressure states that are most relevant for the input-output behavior are located
around the wells.

Next, for the same example empirical controllability and observability Gramians
are calculated for intervals around the state xss, where x̄ is chosen as the state vec-
tor in the middle of the interval. The interval length is again chosen as 60, and
r = s = 1. The results are shown in Figure 3.21. The plots related to observabil-
ity depicted in the fourth row are identical to the plots in Figure 3.20. The plots
related to controllability have values with a different range (note the scale). The
reason for this is that the pressure states have high values (in the order 107) and
therefore the values of the empirical Gramians and specifically Φ

ilu
k in (2.63) are

also higher. However, the key observation still holds, namely that the pressures
are most controllable around the wells. Also, after balancing the pressures most
relevant for the input-output behavior are located directly around the wells. This
is completely in line with the observations for the 2D single-phase reservoir mod-
els discussed in the previous section.

Analysis of saturation behavior

Next, we analyze the controllability and observability of the saturation behavior in
two-phase flow in porous media. Three approaches are used: LTV controllability
and observability matrices, empirical controllability and observability Gramians,
and controllability and observability Gramians after time scale separation and lin-
earization.

First the controllability and observability of the model given in (3.17, 3.18) are
analyzed with LTV controllability and observability matrices after linearization
at each time step. Rows n + 1 to 2n of the controllability matrix Ck:ki

in (2.56)
and columns n + 1 to 2n of the observability matrix Ok:k f

in (2.57) are related to
the saturation behavior. This is indicated by subscript s, resulting in Cs,k:ki

and
Os,k:k f

.



3.5 Controllability and observability of pressures and saturations in two-phase porous

media flow 73

 p 1

 

 

  

 

 1

1

1
x 10

7

 s 1

 

 

  

 

 0

0.5

1

|U
1:20

(P
ep,1:60

)|

 

 

  

 

 0

5
x 10

−3

|U
1:20

(Q
ep,1:60

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(P
ep

Q
ep

)|

 

 

  

 

 −15

−10

−5

0

 p 61

 

 

  

 

 
0.95

1

1.05

x 10
7

 s 61

 

 

  

 

 0

0.5

1

|U
1:20

(P
ep,61:120

)|

 

 

  

 

 0

5
x 10

−3

|U
1:20

(Q
ep,61:120

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(P
ep

Q
ep

)|

 

 

  

 

 −15

−10

−5

0

 p 121

 

 

  

 

 

1

1.1
x 10

7

 s 121

 

 

  

 

 0

0.5

1

|U
1:20

(P
ep,121:180

)|

 

 

  

 

 0

5
x 10

−3

|U
1:20

(Q
ep,121:180

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(P
ep

Q
ep

)|

 

 

  

 

 −15

−10

−5

0

 p 181

 

 

  

 

 

1

1.1
x 10

7

 s 181

 

 

  

 

 0

0.5

1

|U
1:20

(P
ep,181:240

)|

 

 

  

 

 0

5
x 10

−3

|U
1:20

(Q
ep,181:240

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(P
ep

Q
ep

)|

 

 

  

 

 −15

−10

−5

0

 p 241

 

 

  

 

 
1.15
1.2
1.25
1.3
1.35

x 10
7

 s 241

 

 

  

 

 0

0.5

1

|U
1:20

(P
ep,241:299

)|

 

 

  

 

 0

5
x 10

−3

|U
1:20

(Q
ep,241:299

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(P
ep

Q
ep

)|

 

 

  

 

 −15

−10

−5

0

Figure 3.21 - Pressures with empirical controllability and observability Gramians:
The first two rows depict the grid block pressures and saturations at the start of
each interval. The third row depicts for each interval the (10 log) weighted singular
vector of the empirical controllability Gramian related to pressures. The fourth
row depicts for each interval the (10 log) weighted singular vector of the empirical
observability Gramian related to pressures. The last row depicts for each interval
the (10 log) weighted singular vector of the product of empirical controllability
and observability Gramian related to pressures.
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The first two rows in Figure 3.22 show the snapshots of pressure and saturation
at the start of each interval. The third row shows for each interval the weighted
singular vectors (3.7) related to the 20 most dominant singular vectors of the LTV
controllability matrix 10 log |U1:20(Cs,k:ki

)|. The fourth row shows for each inter-
val 10 log |U1:20(Os,k:k f

)|. The bottom row shows for each interval the weighted
singular vector of the balancing transformation matrix

10 log |U1:20(Cs,k:ki
CT

s,k:ki
OT

s,k:k f
Os,k:k f

)|.

The controllability and observability results for saturations obtained with the LTV
controllability and controllability matrices are suspicious, and are not in line with
the results presented hereafter obtained with empirical Gramians or after time-
scale separation and linearization. The plots in Figure 3.22 show a strong resem-
blance to the plots in Figure 3.20 related to pressures. A probable reason for this is
that the pressure behavior is fast relative to the saturation behavior and therefore
is more dominant. Furthermore, the submatrices of A after linearization that are
related to saturation, i.e. A21 and A22, contain values that are approximately a fac-
tor 1010 lower than the values in submatrices related to pressures, i.e. A11 and A12.
This possibly results in numerical issues, since to calculate the LTV controllability
and observability matrices (2.56, 2.57) the system matrices are multiplied several
times with each other.

Next, we analyze the controllability and observability of the saturation states with
empirical controllability and observability Gramians. These are calculated for
sliding intervals around the state x̄, where x̄ is chosen as the state vector in the
middle of the interval. The interval length in Figure 3.23 is chosen as 60, and
r = s = 1. The first two rows in Figure 3.23 shows again the snapshots of pressure
and saturation. The third row shows the weighted singular vector of the empirical
controllability Gramian 10 log |U1:20(Pes,1:60)|, indicating that the saturation states
are most controllable in the grid blocks where the fluid front is located. This is
understandable since the saturation values around the front are the only values
that change using the specific input signal. All other saturation values are ei-
ther at their maximum value (upstream of the front) or at their minimum value
(downstream of the front). The fourth row in Figure 3.23 shows the weighted
singular value of the empirical observability Gramian 10 log |U1:20(Qes,1:60)|, indi-
cating that the saturation in the grid blocks close to the wells are most observ-
able. There seems to be no influence of the arrival of the saturation front on
the observability. The fifth row shows the weighted value of the balanced states
10 log |U1:20(Pes,1:60Qes,1:60)|, indicating that the saturation states around the front
are most relevant for the input-output behavior. Furthermore, upstream of the
front the states are more relevant than downstream of the front, since the values
of the weighted singular vector are higher upstream of the front.

Finally, time scale separation (see Section 2.2.2) is used to separate the pressure
and saturation states and obtain a singularly perturbed slow approximation of
the reservoir model. Consider (2.26), a nonlinear equation in terms of water sat-
uration. This equation is linearized around the state and input in the middle of
the interval, and subsequently the LTI controllability and observability Gramians
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Figure 3.22 - Saturations with LTV controllability and observability matrices: The
first two rows depict the grid block pressures and saturations at the start of each
interval. The third row depicts for each interval the (10 log) weighted singular vec-
tor of the LTV controllability matrix related to saturations. The fourth row depicts
for each interval the (10 log) weighted singular vector of the LTV observability
matrix related to saturations. The last row depicts for each interval the (10 log)
weighted singular vector of the product of LTV controllability and observability
matrices related to saturations.
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Figure 3.23 - Saturations with empirical controllability and observability Grami-
ans: The first two rows depict the grid block pressures and saturations at the start
of each interval. The third row depicts for each interval the (10 log) weighted sin-
gular vector of the empirical controllability Gramian related to saturations. The
fourth row depicts for each interval the (10 log) weighted singular vector of the
empirical observability Gramian related to saturations. The last row depicts for
each interval the (10 log) weighted singular vector of the product of empirical con-
trollability and observability Gramian related to saturations.
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Figure 3.24 - Saturations with time scale separation and linearization: The first two
rows depict the grid block pressures and saturations at the start of each interval.
The third row depicts for each interval the (10 log) weighted singular vector of the
controllability Gramian related to saturations after time scale separation and lin-
earization. The fourth row depicts for each interval the (10 log) weighted singular
vector of the observability Gramian related to saturations. The last row depicts for
each interval the (10 log) weighted singular vector of the product of controllability
and observability Gramian related to saturations.
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are calculated. In Figure 3.24 the results of this analysis are shown. The third
row shows the weighted singular vector of the controllability Gramian, denoted
by 10 log |U1:20(Pts,1:60)|, indicating that the saturation states are most controllable
in the grid blocks where the fluid front is located. This is similar to results from
the analysis with empirical controllability Gramians. The fourth row in Figure
3.24 shows 10 log |U1:20(Qts,1:60)|, indicating that the saturation in the grid blocks
close to the wells are most observable. Probably due to numerical issues in lin-
earizing the saturation equation (2.26) the plots look different from the plots in
Figure 3.23. However, the key observation still holds, namely that the satura-
tion states are most controllable around the front and most observable around the
wells where the saturation is measured. The fifth row shows the weighted value
of the balanced states 10 log |U1:20(Pts,1:60Qts,1:60)|, indicating that the saturation
states around the front are most relevant for the input-output behavior. Further-
more, upstream of the front the states are more relevant than downstream of the
front, since the values of the weighted singular value are higher upstream of the
front. Although the plots look ‘noisy’, they still show that the relevant saturation
states are located around the front.

3.5.3 Example 2: heterogenous permeability

As a next step, the controllability and observability of a reservoir model with a
heterogenous permeability distribution is analyzed. The permeability distribu-
tion contains a high permeable streak from the injector to the producer with an
absolute permeability of 9.1 × 10−9 m2. The absolute permeability in the other
grid blocks is 10−10 m2 - see Figure 3.25.

First, the controllability and observability of the pressure states are analyzed. The
plots in Figure 3.26 show the weighted singular vector of the LTV controllability
and observability matrices. The weighted singular vectors of the empirical Grami-
ans are identical to the ones of the LTV controllability and observability matrices,
and are therefore not shown. From Figure 3.26 we can conclude that the pressure
states are controllable around the wells and in the high permeable streak down-

x−grid

y
−
g
ri
d

 

 

[lo
g

 m
2]

1 3 5 7 9 11 13 15 17 19 21

21

19

17

15

13

11

9

7

5

3

1
−11

−9

−7

Figure 3.25: Heterogeneous permeability distribution as used in Section 3.5.3.



3.5 Controllability and observability of pressures and saturations in two-phase porous

media flow 79

 p 1

 

 

  

 

 1

1

1
x 10

7

 s 1

 

 

  

 

 0

0.5

1

|U
1:20

(C
p,1:60

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(O
p,1:60

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(C
p
C

p

T
O

p

T
O

p
)|

 

 

  

 

 −15

−10

−5

0

 p 61

 

 

  

 

 
9.02
9.04
9.06

x 10
6

 s 61

 

 

  

 

 0

0.5

1

|U
1:20

(C
p,61:120

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(O
p,61:120

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(C
p
C

p

T
O

p

T
O

p
)|

 

 

  

 

 −15

−10

−5

0

 p 121

 

 

  

 

 
9.02
9.04
9.06
9.08

x 10
6

 s 121

 

 

  

 

 0

0.5

1

|U
1:20

(C
p,121:180

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(O
p,121:180

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(C
p
C

p

T
O

p

T
O

p
)|

 

 

  

 

 −15

−10

−5

0

 p 181

 

 

  

 

 
9.02
9.04
9.06
9.08
9.1
9.12

x 10
6

 s 181

 

 

  

 

 0

0.5

1

|U
1:20

(C
p,181:240

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(O
p,181:240

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(C
p
C

p

T
O

p

T
O

p
)|

 

 

  

 

 −15

−10

−5

0

 p 241

 

 

  

 

 
1.085
1.09
1.095

x 10
7

 s 241

 

 

  

 

 0

0.5

1

|U
1:20

(C
p,241:299

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(O
p,241:299

)|

 

 

  

 

 −15

−10

−5

0

|U
1:20

(C
p
C

p

T
O

p

T
O

p
)|

 

 

  

 

 −15

−10

−5

0

T T T T T

Figure 3.26 - Pressures with LTV controllability and observability matrices: The
first two rows depict the grid block pressures and saturations at the start of each
interval for the heterogeneous permeability distribution depicted in Figure 3.25.
The third row depicts for each interval the (10 log) weighted singular vector of
the LTV controllability matrix related to pressures. The fourth row depicts for
each interval the (10 log) weighted singular vector of the LTV observability matrix
related to pressures. The last row depicts for each interval the (10 log) weighted
singular vector of the product of LTV controllability and observability matrices
related to pressures.

stream of the oil-water front. When the front has reached the producer, the most
controllable states are again located around the wells and in the high permeable
streak. The most observable pressure states coincide with the most controllable
pressure states. For this example the pressure states that are most relevant for the
input-output behavior are according to the bottom row in Figure 3.26 also around
the wells and in the high permeable streak.

Next, the controllability and observability of the saturation states are analyzed.
Since the results of the analysis with LTV controllability and observability ma-
trices for saturation states were unsatisfactory for the previous example, this ap-
proach is not used. In Figure 3.27 the results are shown using empirical Grami-
ans, and in Figure 3.28 the results are shown for controllability and observability
Gramians after time scale separation and linearization. As in the previous case,
the saturation states are most controllable around the oil-water front. The satura-
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Figure 3.27 - Saturations with empirical controllability and observability Grami-
ans: The first two rows depict the grid block pressures and saturations at the start
of each interval for the heterogeneous permeability distribution depicted in Figure
3.25. The third row depicts for each interval the (10 log) weighted singular vector
of the empirical controllability Gramian related to saturations. The fourth row
depicts for each interval the (10 log) weighted singular vector of the empirical ob-
servability Gramian related to saturations. The last row depicts for each interval
the (10 log) weighted singular vector of the product of empirical controllability
and observability Gramian related to saturations.
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Figure 3.28 - Saturations with time scale separation and linearization: The first two
rows depict the grid block pressures and saturations at the start of each interval
for the heterogeneous permeability distribution depicted in Figure 3.25. The third
row depicts for each interval the (10 log) weighted singular vector of the controlla-
bility Gramian related to saturations after time scale separation and linearization.
The fourth row depicts for each interval the (10 log) weighted singular vector of
the observability Gramian related to saturations. The last row depicts for each
interval the (10 log) weighted singular vector of the product of controllability and
observability Gramian related to saturations.

tion states that are most observable are located close to the wells and furthermore
in the high-permeable streak. The last row in both figures indicate that the sat-
uration states around the front are most relevant for the input-output behavior,
where the states upstream of the front are more relevant than downstream of the
front.

3.6 Chapter conclusions

In this chapter the controllability and observability of single-phase and two-phase
reservoir models have been analyzed to determine the processes that are most rel-
evant during the life of the reservoir. For the linear models we have used con-
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trollability and observability matrices, Gramians and empirical Gramians. For
the nonlinear models, the controllability and observability around a state trajec-
tory have been analyzed using LTV controllability and observability matrices after
linearization, empirical Gramians and with time-scale separation and lineariza-
tion.

Based on the analyzed examples we conclude that the Hankel singular values of
reservoir models decrease rapidly, indicating that they behave as models of much
lower order than the state-space models that results after discretization. Further-
more, pressures are most controllable and observable around the wells that can
control and observe the pressure states. The saturations are most controllable
around the fluid front and most observable around the wells. After balancing the
model we can conclude that the most relevant pressure states are located around
the wells and the most relevant saturation states are located around the fluid front.
Following from the examples dealing with a heterogenous permeability distribu-
tion we can conclude that model parameters, such as permeability, that alter the
shape and position of the fluid front, do influence the observability and controlla-
bility properties of the reservoir, and hence generalize the results.

Based on the examples we conclude that the position of the wells and the dynam-
ics of the front between reservoir fluids determine the controllability and observ-
ability properties of the reservoir. Therefore, for fixed well positions, reduced-
order models should focus on modeling the fluid front(s).

Possible applications of the controllability and observability analysis are e.g. con-
trol of the fluid front as described in e.g. Fyrozjaee and Yortsos (2006); Jansen et al.
(2009), and sensor or measurement location optimization. The latter deals with the
problem to choose an optimal sensor location that maximizes observability - see
e.g. Brewer et al. (2007).



4 CHAPTER

Identifiability: From Qualitative
Analysis to Model Structure

Approximation

To increase the predictive capacity of a reservoir model its parameters
are estimated from measurements. It is well known that not all pa-

rameters can be estimated from measurements, in other words, the model
is not identifiable. To analyze which parameters can be best estimated the
notions of (local) identifiability and structural identifiability are used in
a quantitative way. Considering large-scale (nonlinear) physical models
the question is addressed how to approximate the model structure. This
implies addressing the question how the model structure can be approx-
imated so as to achieve identifiability, while retaining the interpretation
of the physical parameters. In this chapter this problem is addressed in
a prediction error setting, and it is shown how the construction of best
identifiable model structure approximations relates to notions of control-
lability and observability. Additionally the analysis in terms of an off-line
prediction error approach relates to iterative optimization algorithms (like
Gauss-Newton and Steepest-Descent) as well as to sequential (recursive)
parameter estimation methods, either in a Bayesian or a non-Bayesian
framework.

4.1 Introduction

When building dynamic models from physical first-principles relations often mod-
el structures occur that are large-scale in their dimensions (due to spatial dis-
cretization of pde’s) and include a high number of physically interpretable pa-
rameters. If subsequently the model parameters have to be identified from mea-
surement data with prediction error methods (PEM) or (extended) Kalman filter-
ing methods the question occurs whether the parameters are identifiable. The

83
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notion of identifiability refers -roughly speaking- to the question whether param-
eter changes can be observed in the model output signal (output identifiability)
or in the model’s transfer function (structural identifiability). This is specifically
important in the case of reservoir models, since these models are used to make
long-term predictions of the reservoir flow behavior and therefore a good match
with historical measurement data alone is not enough.

The notion of output identifiability has been studied in e.g. Grewal and Glover
(1976) and Ljung (1999). The notion of structural identifiability was first stated by
Bellman and Åström (1970) and has been extensively studied in the field of com-
partmental modeling (Godfrey 1983), Norton (1980). State-space model parame-
terizations have been analyzed by Glover and Willems (1974) and Walter (1987).
Lately there has been a renewed interest in structural identifiability analysis, with
contributions from Stigter and Peeters (2007) and Van Doren et al. (2008a).

In general identifiability questions are considered qualitatively, i.e. through de-
ciding whether a model structure is identifiable or not. The tests required for this
decision are typically rank evaluations of matrices, as e.g. Fisher’s information
matrix, around a particular local operating point in the parameter space, see e.g.
Dötsch and Van den Hof (1996). Restricting attention to a local analysis is often
the only situation that is feasible in terms of computational complexity. For issues
around global properties see e.g. Ljung and Glad (1994).

However, when considering parameters in large scale (nonlinear) physical models
it is relevant to raise the question how the notion of identifiability can be quan-
tified. This implies addressing the question which part of the parameter space is
best identifiable, and which part of the model structure can be approximated so
as to achieve local identifiability, while retaining the interpretation of the phys-
ical parameters. For structural identifiability this question was preliminary ad-
dressed in Van Doren et al. (2008a). In Berntsen and Balchen (1973) the degree of
identifiability was introduced. In Vajda et al. (1989) principal component analy-
sis was applied to determine which parameters can be identified. McKelvey et al.
(2004) introduced data driven local coordinates to overcome numerical difficulties
in identification of overparameterized state-space systems.

In this chapter we will further investigate how the notions of identifiability and
structural identifiability can be quantified to allow for a reduction in the parame-
ter space with physically interpretable parameters. The analysis will be restricted
to the local case, considering (linearized) nonlinear dynamical models that are
non-linear in the parameters.

First the problem will be considered in the context of an off-line prediction er-
ror identification approach, while appropriate attention is given to the effect of
parameter-scaling. Next, the analysis in terms of an off-line prediction error ap-
proach will be related to iterative optimization algorithms (like Gauss-Newton
and Steepest-Descent) as well as to sequential (recursive) parameter estimation
methods. In Section 4.6 the problem will be considered in the context of structural
identifiability, where in addition an analytical expression is derived to evaluate
structural identifiability. In Section 4.7 the identifiable parameter spaces are re-
lated to controllability and observability. Finally, in Section 4.8 a few small exam-
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ples are presented.

4.2 Identifiability

4.2.1 Introduction

Consider the nonlinear dynamical model (2.70) that generates output predictions
according to:

ŷ = h(θ, u; x0). (4.1)

where ŷ is a prediction of y :=
[

yT
1 . . . yT

N

]T denoting output signal mea-
surements yk ∈ R

p stacked over time, θ ∈ Θ ⊂ R
q the parameter vector, u :=

[
uT

1 . . . uT
N

]T the input vector uk ∈ R
m stacked over time, and x0 the initial

state vector. Since the model (4.1) is parameterized it represents an input/output
model structure.

In a prediction error framework we consider parameter estimation methods that
are obtained by minimizing a cost function V(θ):

V(θ) :=
1
2

ǫ(θ)TP−1
v ǫ(θ), (4.2)

where the prediction error ǫ is defined as

ǫ(θ) = y − ŷ = y − h(θ, u; x0), (4.3)

where y denotes the measured outputs and ŷ the predictor, and Pv is (an estimate
of) the covariance matrix of the noise v that is supposed to act on the measured
output. In the rest of the chapter the shorthand notation h(θ) is used to indicate
h(θ, u; x0).
The Jacobian of V(θ) with respect to the parameters is

∂V(θ)

∂θ
=

∂ǫ(θ)T

∂θ
P−1

v ǫ(θ) = −∂h(θ)T

∂θ
P−1

v (y − h(θ)) . (4.4)

The Hessian of V(θ) with respect to the parameters is

∂2V(θ)

∂θ2 =
∂ǫ(θ)T

∂θ
P−1

v

(
∂ǫ(θ)T

∂θ

)T

+ S =
∂h(θ)T

∂θ
P−1

v

(
∂h(θ)T

∂θ

)T

+ S, (4.5)

where S denotes the second-order information in ∂2V(θ)
∂θ2 . The Jacobian and Hes-

sian are for a given θ and a given operating point (given by u and x0). Parameter
estimation then consists in finding a parameter estimate as a minimizing argu-
ment of the cost function V(θ)

θ̂ := arg min
θ

V(θ). (4.6)

At θ̂ the cost function V(θ) is minimized and the Jacobian (4.4) is zero, i.e. ∂V(θ)
∂θ

=

0 at θ̂.
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4.2.2 Analyzing identifiability

Local identifiability in θ̂, defined in Definition 2.4, is generally evaluated by the
test whether the optimization problem (4.6) has an unique solution in the param-
eter space. By locally approximating the cost function V(θ) by a quadratic func-
tion1, and thus neglecting the second order term S in (4.5), uniqueness of θ̂ is

guaranteed if the Hessian at θ̂ is positive definite, i.e. ∂2V(θ)
∂θ2 > 0 at θ̂, which in this

case is equivalent to rank ∂2V(θ)
∂θ2 = q. This is a sufficient condition for local identi-

fiability in θ̂, see e.g. Bellman and Åström (1970), Glover and Willems (1974) and
Ljung (1999).

The considered rank test is naturally performed by applying a singular value de-
composition (SVD):

∂2V(θ)

∂θ2 = UΣVT =
[

U1 U2
]
[

Σ1 0
0 0

] [
VT

1
VT

2

]

, (4.7)

where matrices U and V are unitary matrices, Σ1 = diag(σ1, . . . , σp) with σ1 ≥
· · · ≥ σp. If p = q then identifiability is confirmed. If p < q then the column space
of U1 represents the subspace of the parameter space that is identifiable, and the
column space of U2 is its orthogonal complement, characterizing the subspace
that is not identifiable.

As a result, the SVD of the Hessian can be used to extend the qualitative treatment
of the question whether or not a particular model structure is identifiable, to a
quantitative property of specifying the identifiable parameter space. The columns
of U1 represent basis functions in the parameter space, determining the linear
combinations of the original parameters that will be identifiable from the mea-
surements. This implies that it is possible to reparameterize the model structure
by defining a reduced-order parameter ρ defined by

θ = U1ρ (4.8)

leading to an identifiable model structure in the parameter ρ through the mapping
(4.8). The limitation of the approach is of course that only linear transformations
are considered.

4.2.3 Model structure approximation

When in the SVD of the Hessian singular values are found that are (very) small,
this points to directions in the parameter space that have a very limited (but
nonzero) influence on the cost function V. In identification terms this corresponds
to directions in the parameter space in which the variance is large. The Hessian
evaluated at θ̂ is connected with the variance of θ̂, since for the Gaussian case (and
provided that θ̂ is a consistent estimate) it follows that

cov(θ̂) = J−1 (4.9)
1This is achieved by approximating h(θ) with a first-order Taylor expansion around θ̂
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with J the Fisher information matrix

J = E

[
∂2V(θ)

∂θ2

∣
∣
∣
∣
θ̂

]

, (4.10)

where E denotes expectation (Ljung 1999). For (4.7), where Σ2 = 0, this leads
to

cov(θ̂) = ∞. (4.11)

We are interested in specifying that part of the parameter space that is best iden-
tifiable by removing the subspace that has only a very small influence on the cost
function V. This reasoning would point to removing those parameter (combina-
tions) from the model structure for which the variances are very large (and the
corresponding singular values are very small), as also addressed in Vajda et al.
(1989) and Hjalmarsson (2005) for nonlinear parameter mappings, and in Lund
and Foss (2008) for single parameters.

The appropriate selection of the identifiable parameter space is then obtained
from

∂h(θ)T

∂θ
P
− 1

2
v =

[
U1 U2

]
[

Σ1 0
0 Σ2

] [
VT

1
VT

2

]

, (4.12)

where the separation between Σ1 and Σ2 is chosen in such a way that the singu-
lar values in Σ2 are considerably smaller than those in Σ1. After reparameteriz-
ing the model structure using (4.8) the parameters ρ are well identifiable with a
limited variance and the physical interpretation of the parameters is untouched.
Specifically in the case of parameters in spatially distributed systems with all pa-
rameters having the same physical unit, the singular vectors can be seen as basis
functions in the parameter space. Examples hereof will be provided in the next
chapter.

For (4.12), where trace(Σ2) > 0, this leads to

cov(θ̂) =
[

U1 U2
]
[

Σ
−2
1 0

0 Σ
−2
2

] [
UT

1
UT

2

]

, (4.13)

while the sample estimate of the reparameterized parameter estimate is given
by

cov(U1ρ̂) = U1Σ
−2
1 UT

1 < cov(θ̂), (4.14)

showing a variance that is reduced by the reparameterization.

4.3 Parameter scaling in identifiability

The notions of identifiability are defined in such a way that the result is indepen-
dent of any particular scaling of parameters, where scaling is related to the choice
of physical units in which the parameters are represented. For the case where
Σ2 = 0 as in (4.7), scaling clearly has no influence on identifiability issues, since
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scaling of the parameters leads to scaling of the singular values in Σ1 and the zeros
in Σ2 are not affected.

However, for the case where Σ2 contains nonzero singular values, the numerical
values in Σ1 and Σ2 are affected by the scaling and can possibly influence the sep-
aration between Σ1 and Σ2 in (4.12) and hence the identifiable parameter space.
This particularly plays a role in case the physical parameters contain different
physical quantities. For example, in reservoir models the parameters to be esti-
mated can be grid block permeabilities and porosities. The question is then how
to balance the variability in the different physical parameters.

It appears that in the approach presented in Section 4.2.3 the absolute variance
is used as a measure of selection, and as a result the selected parameter space
is dependent on the scaling of the parameters. In case one prefers a selection
mechanism that is scaling independent, the relative variance of parameters can be
chosen, i.e.

cov(Γ
−1
θ̂

θ̂) (4.15)

where
Γθ̂ = diag

(
|θ̂1| . . . |θ̂q|

)
. (4.16)

This motivates the analysis of a scaled Hessian

Γθ̂

∂2V(θ)

∂θ2

∣
∣
∣
∣
θ̂

Γθ̂, (4.17)

related to the scaled Fisher information matrix J̃:

J̃ = E

[

Γθ̂

∂2V(θ)

∂θ2

∣
∣
∣
∣
θ̂

Γθ̂

]

. (4.18)

The appropriate selection of the identifiable parameter space is then obtained
from:

Γθ̂

∂h(θ)T

∂θ
P
− 1

2
v =

[
U1 U2

]
[

Σ1 0
0 Σ2

] [
VT

1
VT

2

]

. (4.19)

Consequences of the parameter scaling are illustrated later on for some simple
examples in Section 4.8.

Note that the evaluation of the relative variance of parameter estimates for model
structure selection is also done in classical methods when considering the stan-
dard deviation of an estimated parameter related to the parameter value itself (see
e.g. Ljung 1999; Hjalmarsson 2005). However usually the analysis is performed
for single parameters and not for linear combinations of parameters. For exam-
ple, in Figure 4.1 zero is included in the parameter confidence interval, and hence
according to Hjalmarsson (2005) parameter θ2 can be removed. In the analysis
presented here linear combinations of parameters are evaluated, thus focussing
on the ratio between the lengths of the principle axes of the uncertainty ellipsoids
representing the parameter confidence bounds for θ̂ - see Figure 4.1 in which the
principle axis marked in blue is preserved. The parameter uncertainty ellipsoid is
expressed by

D(α, θ̂) =
(

θ | N(θ− θ̂)TP−1(θ− θ̂) ≤ χ2
q,α

)

, (4.20)
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θ1

θ2

P99%

Figure 4.1: Uncertainty ellipsoid in a two-dimensional parameter space showing
the principle axes of the ellipsoid.

where P = J−1 is the covariance matrix of the estimator, and χ2
q,α corresponds to

a probability level α in the χ2
q-distribution with q degrees of freedom. This pa-

rameter uncertainty ellipsoid is used to specify that θ0 ∈ D(α, θ̂) with probability
α.

4.4 A Bayesian approach

In the previous sections we have dealt with the lack of identifiability and the non-
uniqueness in the estimated parameters by reducing the parameter space. Alter-
natively, additional prior information can be added to the identification problem,
usually in the form of a Bayesian cost function that takes account of prior knowl-
edge on the parameters to be estimated. In this setting the use of an alternative
cost function is considered:

Vp(θ) := V(θ) +
1
2
(θ− θp)P−1

θ (θ− θp), (4.21)

where the second term represents the weighted mismatch between the parameter
vector and the prior parameter vector θp with covariance Pθ. When again the
model output h(θ) is approximated using a first-order Taylor expansion around
θp, the Jacobian and Hessian are given by

∂Vp(θ)

∂θ
= −∂h(θ)T

∂θ
P−1

v (y − h(θ)) + P−1
θ

(
θp − θm

)
, (4.22)

∂2Vp(θ)

∂θ2 =
∂h(θ)T

∂θ
P−1

v

(
∂h(θ)T

∂θ

)T

+ P−1
θ , (4.23)

respectively. The Hessian (4.23) consists of two terms: the first term is positive and
the second term P−1

θ is positive definite by construction. Therefore, since prior
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information is added to the problem, the Hessian has full rank and the parameter
estimate

θ̂Bayes := arg min
θ

Vp(θ) (4.24)

is unique. However, the parameter estimate can be severely influenced by the
prior knowledge. If prior knowledge is not included, then there will be adapta-
tions in the parameter space U1 only, while leaving the remainder of the space
completely untouched. Furthermore, when parameter space U2 is made explicit,
other sources of information can freely be applied when projected onto U2, with-
out pinning oneself down from the start to one specific prior model, since this has
no influence on Vp(θ).

The covariance matrix of the Bayesian parameter estimate can also be analyzed
using the classical prediction error theory (Ljung 1999). Assuming consistent esti-
mation and θp = θ0 it can be shown that

cov
(
θ̂Bayes

)
=



E




∂2Vp(θ)

∂θ2

∣
∣
∣
∣
∣
θ0









−1

, (4.25)

In other words, the inverse of the Hessian of the identification criterion remains
to play the role of (sample estimate of) the parameter covariance matrix, and the
same considerations as discussed in the earlier sections can be applied to the SVD
analysis of this Hessian.
The Hessian (4.23) can be rewritten as

P
1
2
θ

(

P
T
2
θ

∂h(θ)T

∂θ
P−1

v

(
∂h(θ)T

∂θ

)T

P
1
2
θ + I

)−1

P
T
2
θ , (4.26)

where we have used that Pθ = P
1
2
θ P

T
2
θ , which exists since Pθ is a symmetric positive

definite matrix by construction. In (4.26) the term

P
T
2
θ

∂h(θ)T

∂θ
P
− 1

2
v (4.27)

can be discerned, where we have implicitly assumed that Pv is also a symmetric
positive definite matrix. This is equivalent to the so-called dimensionless sensi-
tivity matrix described in Zhang et al. (2002); Tavakoli and Reynolds (2009). The
SVD of (4.27) is given by

P
T
2
θ

∂h(θ)T

∂θ
P
− 1

2
v = ŬΣ̆V̆T. (4.28)

The SVD of the inverse Hessian in (4.26) is given by

P
T
2
θ

∂h(θ)T

∂θ
P−1

v

(
∂h(θ)T

∂θ

)T

P
1
2
θ + I = ŨΣ̃ṼT. (4.29)

where Ṽ = Ũ since the matrix is positive definite. It can be easily seen that Ũ =
Ŭ, and that Σ̃ = Σ̆ + I. This means that expression (4.27) can be analyzed to
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determine orthonormal basis functions that can be used to approximate the model
structure in a Bayesian approach. The expression in (4.27) is of a similar form as
the expression in (4.19) for the non-Bayesian framework; the weighting matrix Γθ̂

in (4.19) is now replaced by the prior covariance matrix P
T
2
θ in (4.19). From this

analysis it can be concluded that in the Bayesian framework it seems natural to

scale the Hessian with P
T
2
θ , possibly complemented with the weighting matrix Γθ̂

as in (4.19).

4.5 Cost function minimization in identification

4.5.1 Iterative parameter estimation methods

In this section we will show how identifiability properties of the model structure
relate to gradient-based iterative parameter estimation algorithms (e.g. Gauss-
Newton and Steepest-Descent). These algorithms are referred to as off-line iden-
tification or batch identification, since first a batch of data is collected from the
system and subsequently this batch is used to update the model. If we iteratively
solve for a parameter estimate θ̂ by minimizing a cost function V(θ), the general
update rule in step m of a Newton-type algorithm is given by

θ̂m+1 = θ̂m − γ

(

∂2V

∂θ2

∣
∣
∣
∣
θ̂m

)−1
∂V

∂θ

∣
∣
∣
∣
θ̂m

, (4.30)

where γ denotes a scalar damping factor. Note that in this expression the partial
derivatives are evaluated in the local parameter θ̂m whereas in the previous sec-
tion we evaluated the Hessian in a (local) minimum θ̂ of the cost function V. For
notational simplicity

If we consider the prediction error cost function as used before, then for the model
structure considered and after linearization of h(θ) around parameter θ̂ the up-
date rule becomes

θ̂m+1 = θ̂m − γ

(

∂h(θ)T

∂θ
P−1

v

(
∂h(θ)T

∂θ

)T
)−1

∂h(θ)T

∂θ
P−1

v (y − h(θ)) (4.31)

where we have omitted, for brevity, the dependence of the Jacobian and Hessian
on h(θ). The parameter update (4.31) is actually a Gauss-Newton step (Dennis Jr.
and Schnabel 1996), employing a first order Taylor expansion of h(θ) around θm,
similar to the approximation in Section 4.2.3. As an alternative, a Steepest-Descent
algorithm (Dennis Jr. and Schnabel 1996) approximates the Hessian with any pos-
itive definite matrix, where standard the identity matrix is chosen. As a result, the
update rule in the considered situation becomes:

θ̂m+1 = θ̂m − γ
∂h(θ)T

∂θ
P−1

v (y − h(θ)).
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Note that in case the Hessian (4.5) has full rank in θ̂m scaling of the parameters
influences the estimate of Steepest-Descent, but does not influence the estimate
provided by Gauss-Newton - see e.g. Dennis Jr. and Schnabel (1996).

If the model structure is not identifiable in θ̂ the matrix inverse in (4.31) will not
exist. Although this is often indicated as a serious problem for iterative optimiza-
tion algorithms it can simply be overcome by restricting the update rule to make
steps only in that part of the parameter space that does influence the output pre-
dictor, see e.g. McKelvey and Helmersson (1997); McKelvey et al. (2004); Verdult
(2002). This actually comes down to utilizing the pseudo-inverse of the Jacobian
in (4.31) using again the SVD

∂h(θ)T

∂θ
P
− 1

2
v =

[
U1 U2

]
[

Σ1 0
0 Σ2

] [
VT

1
VT

2

]

. (4.32)

In case Σ2 = 0 it follows that the update rule for the Gauss-Newton iteration can
be expressed by

θ̂m+1 = θ̂m − γU1Σ
−1
1 VT

1 P
− 1

2
v (y − h(θ)),

while the update rule of Steepest-Descent is given by

θ̂m+1 = θ̂m − γU1Σ1VT
1 P

− 1
2

v (y − h(θ)).

Both algorithms update the parameter only in the subspace that is determined by
the column space of U1, being the identifiable subspace of the parameter space,
provided that we would have evaluated identifiability in the local point θ̂m.

Note that the difference between the two update mechanisms is that Steepest-
Descent emphasizes the vectors of U1 that correspond to large singular values of
the Jacobian, while Gauss-Newton emphasizes the vectors of U1 that correspond
to small singular values of the Jacobian (Douma 2008). Large singular values of
the Jacobian are associated with directions in which the predictions are most sen-
sitive to a change in the parameters. Steepest-Descent looks for the direction in
which the cost function decreases as fast as possible. In other words, the algo-
rithm looks for decreasing the cost function with the least amount of effort in
changing the parameters. Gauss-Newton and PEM follow the opposite strategy:
these algorithms look for a change in predicted outputs (i.e. cost function) that
is induced by the largest change in the parameters. In other words, the most un-
certain parameters are changed, i.e. those parameters are adapted to which the
predicted outputs (i.e. cost function) are least sensitive.

Similar to the analysis in the previous sections the rank reduction of the Jacobian,
as represented in (4.32) can of course be enforced if the SVD shows a large number
of small singular values in Σ2, and the Jacobian is approximated by setting Σ2 = 0.
A similar approach of Jacobian reduction is employed in the fully parameterized
state-space model identification, using so-called data-driven local coordinates of
McKelvey and Helmersson (1997); McKelvey et al. (2004) as well as in subspace
identification Verdult (2002). In these approaches a parameter space is constructed
that is orthogonal to the tangent space of the manifold representing equivalent
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models. This parameterization has numerically attractive properties compared
to the fully parameterized model structure, although it leads to the same search
directions as Gauss-Newton (Wills and Ninness 2008). However, in this work we
focus more on preserving the physical interpretation of the parameters since we
are interested to obtain reliable long-term (non-linear) model predictions.

Finally for the sake of completeness, in Section 4.4 the Jacobian (4.22) and Hessian
(4.23) are given for a Bayesian approach. The resulting Gauss-Newton iterative
update rule (4.31) is given by

θ̂m+1 = θ̂m − γ

(

∂h(θ)T

∂θ
P−1

v

(
∂h(θ)T

∂θ

)T

+ P−1
θ

)−1

×
(

∂h(θ)T

∂θ
P−1

v (y − h(θ)) + P−1
θ

(
θp − θm

)
)

. (4.33)

The resulting Steepest-Descent iterative update rule (4.32) is given by

θ̂m+1 = θ̂m − γ

(
∂h(θ)T

∂θ
P−1

v (y − h(θ)) + P−1
θ

(
θp − θm

)
)

. (4.34)

4.5.2 Recursive estimation and filtering

Identifiability properties of the model structure are also to be considered in recur-
sive parameters estimation algorithms. Recursive estimation algorithms update
the model at each time instant that new data becomes available. Synonyms for re-
cursive estimation are online and sequential estimation. Advantages of recursive
estimation algorithms are that the estimate of the parameter variance is usually
included in the algorithm, that they can be computationally more efficient than
off-line algorithms, and that the properties of the model are allowed to vary with
time (Ljung 1999). Recursive algorithms in a prediction error framework (RPE) are
extensively described in Ljung and Söderström (1983) and Ljung (1999).

Recursive algorithms can be derived from off-line algorithms by including a new
observation at the same time as performing an iteration. The recursive least-
squares and off-line least-squares algorithms are exactly the same (Ljung 1999).
In Ho (1962) the least-squares algorithm is also related to the Kalman filter, where
the matrix inversion equations of Sherman-Morrison-Woodbury are used. The
matrix inversion equations of Sherman-Morrison-Woodbury (see e.g. Golub and
Van Loan 1996) are useful to rewrite a matrix expression in such a way that the ma-
trix expression that is to be inverted has the smallest possible dimensions.

Gradient-based, iterative algorithms such as the Gauss-Newton algorithm (4.33)
can also be solved recursively. The parameter estimate at the next time step is
given by

θ̂k+1 = θ̂k − γR−1
k

∂hk(θ)T

∂θ
(yk − hk(θ)) , (4.35)
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where Rk is given by

Rk = Rk−1 + γ

(

∂hk(θ)T

∂θ

(
∂hk(θ)T

∂θ

)T

− Rk−1

)

, (4.36)

subscript k denotes the time step, and the derivatives are evaluated at the cur-
rently available parameter estimate θ̂k. In this case every recursive step can be
interpreted as solving Bayes’ rule since the posterior covariance of the previous
recursive step is the prior covariance in the next recursive step. The asymptotic
properties for the estimates obtained by this algorithm are for time-invariant sys-
tems with identifiable parameters equal to those of the corresponding iterative
algorithms (Ljung and Söderström 1983). For smaller numbers of measurements
the recursive algorithm can result in parameter estimates that are worse than those
of the corresponding iterative algorithms due to transient effects in the algorithm.
For example, an unsuitable choice of initial covariance matrix R0 can give worse
estimates in the beginning, but in the limit of an infinite number of measurements
the estimates of both algorithms become identical. In case the system contains
non-identifiable parameters then the parameter values of the non-identifiable pa-
rameters cannot be estimated from the measurements and remain equal to the
prior estimate, equal as in the Bayesian approach.

The recursive implementation of Gauss-Newton (4.35, 4.36) can be directly related
to the extended Kalman filter (EKF) for estimating parameters in linear models
(see Ljung 1979; Ljung and Söderström 1983, p.430)2. The EKF is a commonly
used observer technique for nonlinear models such as reservoir models. It pro-
cesses the measurement data based on the linear Kalman filter equations, using a
locally linearized model of the process and assuming a Gaussian distribution of
the state and output. In reservoir engineering the Ensemble Kalman Filter (EnKF,
Evensen 1994, 2007) has become popular, which can be seen as a generalization
of the EKF. In the EnKF the analytical propagation of the error covariance matrix
is replaced by a Monte Carlo approach, in which the covariance matrix is com-
puted from an ensemble of models. The EnKF does not require a linearization of
the model and uses the availability of the reservoir simulation model. Not only
states but also parameters can be included in the estimation problem. Following
a Bayesian approach the unknown parameters are added to the states, leading to
an extended state vector xθ = [xTθT]T . This extended state is then estimated with
an EnKF on the basis of an ensemble of xθ. The EnKF algorithm encompasses the
following steps:

• As prior information an ensemble of initial states {x̂θ,k|k} is synthetically
generated from a given distribution;

• By simulating every ensemble member through the model corresponding
ensembles {x̂θ,k+1|k} and {ŷk+1|k} are generated, that are stored as columns
of matrices X̂ and Ŷ respectively;

2The most important difference between both algorithms is that the gradient of the Kalman gain
with respect to the parameters is in the EKF approximated by the identity matrix, while it is present
in the recursive algorithm. This enables faster computation of the parameters, but can deteriorate the
convergence of the EKF
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• The measurement update of a common Extended Kalman Filter is applied to
every element of the ensemble, where the covariance matrices are replaced
by sampled estimates from the ensembles generated in the previous step;

• The measurement update then becomes

{x̂θ,k+1|k+1} = {x̂θ,k+1|k} + Kk+1

(

yk+1 − ŷk+1|k
)

(4.37)

where Kk+1 is generated by applying the best linear unbiased estimate, given
by

Kk+1 = X̂ŶT
(

ŶŶT + R
)−1

(4.38)

• The result is a new ensemble {x̂θ,k+1|k+1}.

Similar to the ordinary Kalman Filter the EnKF can be interpreted as an opti-
mization algorithm where the Jacobian and Hessian are approximated with a
perturbation-based gradient (Douma 2008). In reservoir engineering problems
the EnKF has been applied to models with number of state variables in the order
of 106 (Naevdal et al. 2005; Gu and Oliver 2007). Since also grid block parame-
ters such as grid block permeability and porosity are estimated with the EnKF an
extremely large number of variables has to be estimated from the available mea-
surement data.

To summarize, off-line prediction error algorithms such as the Gauss-Newton
algorithm (4.33) can be related to recursive algorithms (e.g. RPE with Gauss-
Newton update direction (4.35, 4.36)), and also to filtering algorithms (e.g. EKF
and EnKF). Therefore, identifiability issues of the model structure also play a role
in recursive and filtering algorithms for parameter estimation.

4.6 Structural identifiability

4.6.1 Analyzing structural identifiability

The question as to whether parameters can be uniquely identified from data basi-
cally consists of two parts. The first part concerns the model structure: is it pos-
sible at all to distinguish two given parameters, provided that the input is chosen
in the best possible way? This property is reflected by the structural identifiability
of a model structure. The second part concerns the issue whether the actual in-
put is informative enough to allow this distinction. In the previous sections both
parts were considered simultaneously. In this section only the first part is investi-
gated.

Consider Definition 2.5 on structural identifiability. Structural identifiability of
nonlinear dynamical systems can be analyzed by using different approaches (Wal-
ter 1987): linearization around an operating point (Grewal and Glover 1976), pow-
er series (Pohjanpalo 1978), similarity transformation (Vajda et al. 1989, only valid
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for minimal systems), and differential algebra (e.g. Ljung and Glad 1994). Since
reservoir models are known to be non-minimal (i.e. not observable and not con-
trollable) and large-scale the latter two approaches are not applicable and we
choose to linearize the model around an operating point. Subsequently, the struc-
tural identifiability of the linearized state-space model is analyzed.

Note that G(z, θ) in (2.74) can be written as:

G(z, θ) =
∞

∑
k=1

M(k, θ)z−k, (4.39)

where M(k, θ) = C(θ)Ak−1(θ)B(θ) are the Markov parameters. Based on (4.39)
we argue that equality of G(z, θ1) and G(z, θ2) is related to equality of the Markov
parameters of G(z, θ1) and G(z, θ2). For reasons that become clear later the MIMO
Markov parameters are decomposed into p multi-input, single-output (MISO) Mar-
kov parameters

−→
M(k, θ) :=

[
M1∗(k, θ)T M2∗(k, θ)T . . . Mp∗(k, θ)T

]T ∈ R
1×pm, (4.40)

where Mj∗(k, θ) denotes the j-th row of Markov parameter M(k, θ).
We now present Lemma 4.1 on injective maps, which will lead together with Def-
inition 2.5 to Proposition 4.1 (see also Glover and Willems (1974), Grewal and
Glover (1976), Norton (1980) and Van Doren et al. (2008a)):

Lemma 4.1 Let Ω be an open set in R
n and f : Ω → R

m be a k-times continuously

differentiable map with k ≥ 1. If
∂ f (θ)

∂θ has constant rank l in a neighborhood of θm, then
f is locally injective at θm if and only if l = n.

Proposition 4.1 Consider the map
−→
S r(θ) : Θ ⊂ R

q → R
pmr defined by:

−→
S r(θ) :=

[ −→
M(1, θ)

−→
M(2, θ) . . .

−→
M(r, θ)

]T
∈ R

pmr×1. (4.41)

Then the model structure is locally structural identifiable in θm if, for sufficiently large r,

rank

(

∂
−→
S r(θ)T

∂θ

)

= q (4.42)

in θ = θm.

This is equivalent to a rank test on the matrix

∂
−→
S r(θ)T

∂θ

(

∂
−→
S r(θ)T

∂θ

)T

evaluated at θ = θm, which has dimension q × q. It expresses the sensitivity of
the parameters and linear combinations of parameters on the input-output be-
havior.
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Both the qualitative question of structural identifiability, and the determination of
the structurally most identifiable subspace of parameters can now be examined
by applying an SVD to the matrix

∂
−→
S r(θ)T

∂θ

(

∂
−→
S r(θ)T

∂θ

)T

=
[

U1 U2
]
[

Σ1 0
0 0

] [
VT

1
VT

2

]

, (4.43)

and examining the column space of this matrix, see Van Doren et al. (2008a). This
means that the SVD of (4.43) can be utilized to determine a locally structurally
identifiable parameterization. The columns of U1 are regarded as directions in the
parameter space that are structurally identifiable and serve as a mapping from
high-dimensional parameter space θ to a low-dimensional parameter space ρ =
UT

1 θ. It can be shown that

∂
−→
S r(θ)T

∂ρ

(

∂
−→
S r(θ)T

∂ρ

)T

= Σ1,

evaluated at ρ = ρm = UT
1 θm The columns of U2 provide an orthogonal basis

of the null space of (4.42). The columns of U2 are regarded as directions in the
parameter space that are locally structurally not identifiable.

Also in this problem we need to take care that the result of our (approximate)
identifiability test is not dependent on a user-chosen parameter scaling, and so
we need a premultiplication of (4.43) with a scaling matrix Γθm . This scaling ma-
trix Γθm

can be chosen in such a way that it is suitable for the application in mind.
Here we have chosen to scale with the value of the Markov parameter, where we
reasoned that if a parameter has a high impact on a particular Markov parameter,
but the Markov parameter itself has a very small value, the considered parame-
ter is still a good candidate to be removed in our model structure approximation
problem. Therefore an additional weighting of (4.43) is desired that takes the val-
ues of the Markov parameters into account. As a result we consider the column
space of the matrix

Γθm

∂
−→
S r(θ)T

∂θ
Γ

2
S

(

∂
−→
S r(θ)T

∂θ

)T

Γθm
. (4.44)

where ΓS denotes the diagonal matrix with on each diagonal element the values
of

−→
S r(θ). In the SISO case this is equivalent to the absolute value

−→
M(i, θ). The

consequence is that Markov parameters that have a high value are considered to
be more important to include than Markov parameters with a small value. The
column space of (4.44) that relates to the dominant singular values of the matrix,
now is a representation of the parameter space of the approximated model struc-
ture.

The structural identifiability problem and the identifiability problem are of course
closely related. This can be observed by realizing that for the SISO case

∂h(θ)T

∂θ
=

∂
−→
S r(θ)T

∂θ
Φr, (4.45)
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where Φr is given by

Φr =









u1 u2 . . . ur

u1
...

. . .
u1









(4.46)

and the derivatives are evaluated at θ = θ0.
Note that the matrix Φr with input signals acts as a weighting matrix in (4.45) in
a similar way as the weighting matrix ΓS does in (4.44).

4.6.2 Derivation of analytical expression

In this part an analytical expression is derived for (4.43) for a parameterized linear
state-space model. First recall that the chain rule for differentiating a matrix Ak(θ)
with respect to θi ∈ R gives us

∂Ak(θ)

∂θi
=

∂A(θ)Ak−1(θ)

∂θi
= A(θ)

∂Ak−1(θ)

∂θi
+

∂A(θ)

∂θi
Ak−1(θ) =

A2(θ)
∂Ak−2(θ)

∂θi
+ A(θ)

∂A(θ)

∂θi
Ak−2(θ) +

∂A(θ)

∂θi
Ak−1(θ), (4.47)

where ∂Ak(θ)
∂θi

has dimensions equal to that of A(θ). After repeatedly applying
(4.47) we can write

∂Ak(θ)

∂θi
=

k

∑
l=1

Al−1(θ)
∂A(θ)

∂θi
Ak−l(θ). (4.48)

The Jacobian matrix of Ak(θ) ∈ R
n×n with respect to the parameter vector θ ∈ R

q

is consequently given by:

∂Ak(θ)

∂θ
=

k

∑
l=1

((

Iq ⊗ Al−1(θ)
) ∂A(θ)

∂θ
Ak−l(θ)

)

, (4.49)

where Iq is the identity matrix with dimensions q × q, ⊗ denotes the Kronecker

product (Golub and Van Loan 1996), and where ∂A(θ)
∂θ ∈ R

qn×n consists of the

partial derivatives ∂A(θ)
∂θi

organized column-wise.

Similarly, the Jacobian matrix of Mj∗(k, θ) ∈ R
1×m with respect to θ is:

∂Mj∗(k, θ)

∂θ
=

∂Cj∗(θ)Ak−1(θ)B(θ)

∂θ
=

∂Cj∗(θ)

∂θ
Ak−1(θ)B(θ) +

(

Iq ⊗ Cj∗(θ)Ak−1(θ)
) ∂B(θ)

∂θ

+
k−1

∑
l=1

(

Iq ⊗ Cj∗(θ)Al−1(θ)
) ∂A(θ)

∂θ
Ak−1−l(θ)B(θ). (4.50)
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Equation (4.50) shows that the Jacobian of each Markov parameter can be ex-
pressed using the system matrices A(θ), B(θ), C(θ), and the analytical partial
derivatives of the state-space system matrices with respect to the parameter vec-
tor. As stated in (4.41) the Markov parameters are organized in the vector

−→
S r :=

[ −→
M(1)

−→
M(2) . . .

−→
M(r)

]T
∈ R

1×pmr, (4.51)

where we have omitted, for brevity, the dependence of Sr and M(k) on θ. The
Jacobian of

−→
S r with respect to the parameter vector θ ∈ R

q is denoted as:

∂
−→
S T

r

∂θ
:=
[

∂
−→
M(1)
∂θ

∂
−→
M(2)
∂θ . . . ∂

−→
M(r)
∂θ

]T
∈ R

q×pmr, (4.52)

where ∂
−→
M(k)
∂θ ∈ R

q×pm, for k = (1, . . . , r).

To summarize, using the notational conventions stated before, for a multi-input

multi-output system the expression ∂
−→
S T

r
∂θ

∂
−→
S T

r
∂θ

T

is given by

∂
−→
S T

r

∂θ

∂
−→
S T

r

∂θ

T
∣
∣
∣
∣
∣
∣
θ0

=
r

∑
i=1

p

∑
j=1

∂Mj∗(i)

∂θ

(
∂Mj∗(i)

∂θ

)T
∣
∣
∣
∣
∣
θ0

(4.53)

with dimensions q × q and where
∂Mj∗(i)

∂θ is given by (4.50). As in Dötsch and
Van den Hof (1996), the expression in (4.53) is computed using the matrices A(θ),
B(θ), C(θ), ∂A(θ)

∂θ , ∂B(θ)
∂θ and ∂(Cθ)

∂θ . Computation of the partial derivatives of A(θ),
B(θ), C(θ) with respect to θi (i = 1, . . . , q), for θ = θ0 is done analytically. How-
ever, the procedure given here is strongly simplified and much more direct com-
pared to the one proposed by Dötsch and Van den Hof (1996) since the “thought”
identification problem is not needed anymore. Furthermore, it has been extended
to MIMO models. Also, computing (4.53) is computationally more efficient because
the matrix is calculated as a whole, instead of element by element.

4.6.3 Number of Markov parameters

One of the questions is how many Markov parameters r should be taken into ac-
count in order to arrive at correct expressions for the local identifiability analysis.
In the SISO case it is well known that 2n + 1 Markov parameters uniquely deter-
mine a linear system with McMillan degree n (see Section 2.4). In the MIMO case
the minimum number of Markov parameters that uniquely determines the under-
lying linear system is given by µ + ν, with µ the observability index and ν the con-
trollability index (see e.g. Kailath 1980). The controllability index is the smallest
number for which is satisfied that rank(Cµ) = rank(Cµ+1), and the observability
index ν is the smallest number for which is satisfied that rank(Oν) = rank(Oν+1).
It implies that r is sufficient if rank(Hr−1) = rank(Hr), where Hr denotes a block



100 Chapter 4 Identifiability and Model Structure Approximation

Hankel matrix containing r Markov parameters (Damen et al. 1985)














M(1) M(2) M(3) . . .
M(2) M(3)
M(3)

...

...
. . . M(r − 1)

... M(r − 1) M(r)














. (4.54)

4.7 Relation with controllability and observability

4.7.1 Identifiability, controllability and observability

In this section we will show how the identifiable parameter space that results
from (4.19) is related to properties of controllability and observability. We consider
the strictly proper deterministic linear time-varying (LTV) model in discrete-time
state-space form, that could result from linearizing a nonlinear model in the vicin-
ity of the nominal trajectory. The model is

xk+1 = Ak(θ)xk + Bk(θ)uk

h(θ)k+1 = Ck+1(θ)xk+1,

where subscript k denotes the time index. The sensitivity of the outputs with
respect to the parameter vector θ is element-wise given by

∂h(θ)k+1
∂θi

= Ck+1(θ)
∂xk+1

∂θi
+

∂Ck+1(θ)

∂θi
xk+1, (4.55)

where ∂xk+1
∂θi

is given by

∂xk+1
∂θi

= Ak(θ)
∂xk

∂θi
+

∂Ak(θ)

∂θi
xk +

∂Bk(θ)

∂θi
uk

︸ ︷︷ ︸

:=ũ
θi
k

. (4.56)

Without loss of generality we can assume that ∂Ck+1
∂θi

= 0, since Ck+1 can be made
independent of θ by redefining the state using a similarity transformation.

Note that the effect of a parameter change is weighted by the value of current
state and input, i.e. in (4.56) ∂Ak(θ)

∂θi
is weighted by xk and ∂Bk

∂θi
is weighted by uk

in (4.56). This means that, given a specific model structure, outputs h(θ) are more
sensitive to parameters associated with states and inputs that have a large value
since ∂h(θ)k+1

∂θi
in (4.55) is higher.



4.7 Relation with controllability and observability 101

In stacked form we can write
(

∂h(θ)T

∂θ

)T

=








C1 0
C2

. . .
0 CN



















I 0 . . .
A1 I

A2A1 A2 I
...

. . .
AN−2 . . . A1 AN−2 . . . A2 . . . AN−2 I
AN−1 . . . A1 AN−1 . . . A2 . . . . . . AN−1 I












︸ ︷︷ ︸

Õ∈RN(p×n)

×










ũ
θ1
0 . . . ũ

θi
0 . . . ũ

θq

1

ũ
θ1
1 . . . ũ

θi
1 . . . ũ

θq

2
...

...
...

ũ
θ1
N−1 . . . ũ

θi
N−1 . . . ũ

θq

N−1










︸ ︷︷ ︸

Ũ∈RNn×q

, (4.57)

where we have defined Õ and Ũ . For a change in the model parameters the term
ũ

θi
k in (4.56) is given by

∂A(θ)

∂θi
xk +

∂B(θ)

∂θi
uk.

In stacked form this is can be written with abuse of notation as
(

∂h(θ)T

∂θ

)T

= Õ [ ∂A
∂θ

∂B
∂θ

]
[

x
u

]

. (4.58)

The identifiability of the model parameters is seen to be determined by three fac-
tors:

• the current state and input, where the current state is related to the mapping
from input to state, which is related to controllability;

• the mapping from a model parameter perturbation to a change in the system
matrices (sensitivity)

• the mapping from a state perturbation to a change in the output (observabil-
ity), given by Õ in (4.57)

Indeed only parameter changes that result in state perturbations contained in the
row space of (Õ) can be identified.

4.7.2 Structural identifiability, controllability and observability

Also expression (4.53) can be expressed in terms of observability, sensitivity of
the state matrices with respect to the parameter vector θ, and controllability. Ex-
pression (4.53) is valid for parameterized linear state-space models and therefore
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we have linearized the model around an operating point instead of in the vicinity
of a nominal trajectory, leading to the desired LTI model. Furthermore, to arrive
at compact expressions that are more insightful we assume that system matrices
B and C are independent of θ, leading to an expression (4.53) without ∂B

∂θ
and

∂C
∂θ .

First consider the most simple situation that q = 1, p = 1 and r = 4. We can write
∂
−→
S 4
∂θ =

[
0 X

]
, where

X =
[

C CA CA2 ]





∂A
∂θ

∂A
∂θ

∂A
∂θ









B AB A2B
B AB

B



 . (4.59)

In this expression a block diagonal matrix of the sensitivity of the state space ma-
trices with respect to the parameter vector is left multiplied with the observability
matrix, and right multiplied with a block Toeplitz matrix containing the control-
lability matrix and shifted controllability matrices.

Next, consider the situation that q > 1, p = 1 and r = 4, the expression be-
comes

X =
[ (

Iq ⊗ C
) (

Iq ⊗ CA
) (

Iq ⊗ CA2
) ]

×




∂A
∂θ

∂A
∂θ

∂A
∂θ









B AB A2B
B AB

B



 ,

which possesses a similar structure as (4.59).

Finally, consider system matrices with the parameters on the diagonal only. The
diagonal structure in this example is relevant since reservoir models also display
a diagonally banded structure in the system matrix, resulting from the spatial
discretization.

A =








θ1
θ2

. . .
θq








,

where θ : θi 6= θj and where the input and output matrices do not degenerate the
observability and controllability matrix. In that case

rank




∂
−→
S T

r

∂θ

(

∂
−→
S T

r

∂θ

)T


 = q = n, (4.60)

where n is the McMillan degree. In Appendix 4A equation (4.60) is tested for
different values of q and p.
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4.8 Examples

In order to illustrate the concepts we will now discuss five examples where we
have chosen a very simple SISO model structure. The first two examples, Exam-
ples 4.1 en 4.2, illustrate in particular the role of the scaling/weighting functions
in the identifiability analysis. The model structure will be approximated using the
previously discussed identifiability analysis, where we assume that Pv = I.

In Examples 4.3, 4.4 and 4.5 we illustrate the relationship between structural iden-
tifiability and controllability and observability. Example 4.3 describes a model
that is controllable and observable, but poorly structurally identifiable. Example
4.4 describes a model that is poorly controllable and observable as well as poorly
structurally identifiable. In the last example the effect of a pole-zero cancelation
on the structural identifiability is illustrated.

Example 4.1 Consider the data-generating system

y(t) = α0u(t − 1) + β0u(t − 2)

with α0 = 106 and β0 = 10−6, and θ0 := [α0 β0]
T . Consider the input/output model

structure

y(t, θ) = αu(t − 1) + βu(t − 2), θ := [α β]T .

The system in controllable canonical form is given by

(A, B, C) =

([
0 0
1 0

]

,
[

1
0

]

,
[

α β
]
)

, (4.61)

and the Markov parameters are (α, β). The controllability and observability matrices are

[
1 0
0 1

]

,
[

α β
β 0

]

=

[
109 10−9

10−9 0

]

, (4.62)

respectively.
The scaled Fisher information matrix J̃ of (4.18) for a local analysis around θ0 is

[
α0 0
0 β0

] [
Ru(0) Ru(1)
Ru(1) Ru(0)

] [
α0 0
0 β0

]

,

where Ru(τ) = Ē [u(t)u(t − τ)]. The relative parameter variance is indicated by J̃−1. In
the case of a unit variance white noise input, it follows that

J̃ =

[
1012 0

0 10−12

]

,

while the unscaled Fisher information matrix satisfies J = I. Analysis of J̃ shows that the
second parameter can very well be neglected, leading to an approximate model structure
y(t) = αu(t − 1), while analysis of J does suggest a reduction.
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Structural identifiability analysis without scaling shows that both parameters are struc-

turally identifiable, since
∂ST

N
∂θ

= I. However, including both scaling matrices Γθ̂ and ΓS

as in (4.44), we obtain

Γθ̂

∂ST
N

∂θ
ΓS =

[
1012 0

0 10−12

]

,

also showing that the second parameter can be very well neglected. In light of Section 4.7
we remark that in θ = θ0 this model is poorly observable/controllable and as a result it is
also poorly identifiable.

Example 4.2 In this example the same data-generating system as in the previous example
is considered. Consider the input/output model structure

y(t, θ) = αu(t − 1) + 10−6γu(t − 2), θ := [α γ]T .

where γ0 = 1. The scaled Fisher information matrix J̃ of (4.18) is

[
α0 0
0 γ0

] [
Ru(0) 10−6Ru(1)

10−6Ru(1) 10−12Ru(0)

] [
α0 0
0 γ0

]

.

Under the same input conditions it follows that

J̃ =

[
1012 0

0 10−12

]

,

while the unscaled Fisher information matrix is

J =

[
1 0
0 10−12

]

.

Whereas the unscaled matrix is essentially different from the previous example, the scaled
analysis shows again that the second parameter can be very well neglected and that the
model structure can be approximated with y(t) = αu(t − 1).

Structural identifiability analysis without scaling shows that α is structurally best iden-
tifiable, since

∂ST
N

∂θ
=

[
1 0
0 10−6

]

.

Including both scaling matrices Γθ and ΓS, we obtain in quadratic form

Γθ
∂ST

N

∂θ
ΓS =

[
1012 0

0 10−12

]

,

being exactly the same as matrix as in the previous example, meaning that the structural
identifiability analysis is now scaling-invariant.

Example 4.3 (Controllable/observable, but not structurally identifiable) Consid-
er the data-generating system

y(t, θ) = θ1u(t − 1) + θ2θ33u(t − 2), θ := [θ1 θ2 θ3]
T .
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a In θ = θ0 = [1 1 1]T this model will be observable/controllable, but not structurally
identifiable.

Γθ
∂ST

N

∂θ
ΓS =





1 0
0 θ3
0 θ2



 =





1 0
0 1
0 1



 .

The singular value decomposition (SVD) hereof is

UΣVT =





0 −1 0
− 1

2

√
2 0 − 1

2

√
2

− 1
2

√
2 0 1

2

√
2









√
2 0

0 1
0 0





[
0 −1
−1 0

]T

.

According to the singular values the first two directions in parameter space, given
by the first two column vectors of U, are structurally identifiable. The first direction
involves θ2 and θ3, and shows that we cannot structurally identify θ2 and θ3 sepa-
rately. Only the combination θ2θ3 is structurally identifiable. The second direction
shows that θ1 is structurally identifiable.

b Same example as the previous one, but θ0 = [1 100 1]T. For these parameter values
we obtain

Γθ
∂ST

N

∂θ
ΓS =





1 0 0
0 100 0
0 0 1









1 0
0 θ3
0 θ2





[
1 0
0 100

]

=





1 0
0 104

0 104



 .

The singular value decomposition (SVD) hereof is

UΣVT =





0 −1 0
− 1

2

√
2 0 − 1

2

√
2

− 1
2

√
2 0 1

2

√
2









√
2 × 104 0

0 1
0 0





[
0 −1
−1 0

]T

,

which is equal to the previous case, with the exception that the first singular value is
a factor 104 higher. The parameter combination θ2θ3 is apparently easier to identify.
One could argue that a further increase of the value of θ2 will lead to an approxi-
mated model structure in which θ1 is excluded.

Example 4.4 (Poorly observable/controllable and also poorly structurally identifiable)
Consider the input-output model structure:

y(t, θ) = θ1u(t − 1) + θ1θ2u(t − 2), θ := [θ1 θ2 ]T

with θ1 = 109 and θ2 = 10−9, and θ0 := [θ1 θ2]
T.

In θ = θ0 this model will be poorly observable/controllable, and also poorly structurally
identifiable.

Γθ
∂ST

N

∂θ
ΓS =

[
109 0
0 10−9

] [
1 θ2
0 θ1

] [
109 0
0 10−9

]

=

[
1018 1

0 1

]

.

The SVD hereof is

Γθ
∂ST

N

∂θ
ΓS = UΣVT =

[
1 −10−36

10−36 1

] [
1018 0

0 1

] [
1 −10−18

10−18 1

]T

.
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According to the SVD only θ1 is identifiable.

Note that without scaling we obtain

∂ST
N

∂θ
= UΣVT =

[
10−18 −1

1 10−18

] [
109 0
0 1

] [
10−27 −1

1 10−27

]T

,

indicating that θ2 is best structurally identifiable. This indicates that scaling can change
the results dramatically.

Example 4.5 (Pole-zero cancelation) Finally, consider the data-generating system

y(t, θ) =
b0 + b1q−1

1 + a1q−1 u(t), θ := [ a1 b0 b1 ]T .

The first three Markov parameters are given by

[
b0 (b1 − b0a1) −(b1 − b0a1)a1

]
.

If b1 6= a1b0, e.g. θ0 = [1 2 1 ], then the model in state-space representation is observ-
able/controllable and all three directions in parameters space are structurally identifiable.
However, if b1 = a1b0, then there is a pole-zero cancelation and the model is poorly ob-

servable/controllable. The SVD of Γθ
∂ST

N(θ)
∂θ ΓS for θ0 = [1 1 1 ] is given by

Γθ
∂ST

N

∂θ
ΓS = UΣVT =





1 0 0
0 1 0
0 0 1









1 0 0 0 0
0 0 0 0 0
0 0 0 0 0













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









T

,

(4.63)
showing that only one direction can be identified. This illustrates that in the case of a
pole-zero cancelation (b1 = a1b0) the model is not observable/controllable, and only one
direction in parameter space will be structurally identifiable.

In Section 4.7.2 it was shown that under certain assumptions the expression to test
structural identifiability can be decomposed into a part related to controllability,
a part related to observability and a part related to the sensitivity of a param-
eter on the system matrix. The last three examples of this section support this
demonstrating that lack of structural identifiability can be caused by lack of ob-
servability/controllability and by a small sensitivity of a parameter.

4.9 Summary

To increase the predictive capacity of a reservoir model its parameters are esti-
mated from measurements. The question whether a large scale (nonlinear) phys-
ical model structure such as a reservoir model is identifiable, is usually consid-
ered in a qualitative way (yes or no). It is well known that reservoir models are
not identifiable. In this chapter the notions of (local) identifiability and structural
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identifiability are quantified and it is shown how the model structure can be ap-
proximated so as to achieve identifiability, while retaining the interpretation of the
physical parameters.

The identifiability question has been addressed in a prediction error setting, and
the analysis has been related to iterative optimization algorithms (like Gauss-
Newton and Steepest-Descent) as well as to recursive (sequential) parameter esti-
mation methods. In a Bayesian setting, in which a priori knowledge is included
in the cost function, there seems to be no issue regarding identifiability. But in
this setting the parameters that cannot be estimated from measurements are de-
termined by the a priori knowledge (i.e. parameter estimate). This could give a
false sense of model reliability.

In addition, it is shown how the construction of best identifiable model struc-
ture approximations relates to the notions of controllability and observability as
discussed in the previous chapter. Furthermore, an analytical expression is devel-
oped to test structural identifiability, which is also related to controllability and
observability.

In the next chapter these notions will be applied to reservoir models, in which
identifiable parameterizations are determined with a significantly reduced num-
ber of parameters, and next the parameter values are estimated in an iterative
estimation procedure.
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4A Diagonal system matrices

In Section 4.7 it was posed that for system matrices with the parameters on the
diagonal where θ : θi 6= θj and where the input and output matrices do not de-
generate the observability and controllability matrix it holds that

rank




∂
−→
S T

r

∂θ

(

∂
−→
S T

r

∂θ

)T


 = q = n, (4A-1)

where n is the McMillan degree. It this appendix this will be shown for different
values of q and p.

Case 1: siso and n = 1

For p = m = 1 and n = q = 1, then A = θ, B = b, and C = c. The term

∂
−→
S T

r

∂θ

(

∂
−→
S T

r

∂θ

)T

, (4A-2)

is for this case given by

X =
[

C CA CA2 . . .
]






B AB . . .
B AB

. . . . . .




 =

[
cb 2cθb 3cθ2b . . .

]
.

For this case (4A-1) holds, because

rank




∂
−→
S T

r

∂θ

(

∂
−→
S T

r

∂θ

)T


 = n = q = 1.

Case 2: siso and n > 1

For p = m = 1 and n = q = 2, then

A =

[
θ1

θ2

]

,
∂A

∂θ
=







1 0
0 0
0 0
0 1







, (4A-3)
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where θ1 6= θ2. We define B =

[
b1
b2

]

, C =
[

c1 c2
]
. Then X is given by

X =

[
C 0 CA 0 . . .
0 C 0 CA . . .

]















1 0
0 0
0 0
0 1

1 0
0 0
0 0
0 1




















B AB . . .
B AB

. . .
. . .




 =

[
c1b1 2c1θ1b1 3c1θ2

1b1 . . .
c2b2 2c2θ2b2 3c2θ2

2b2 . . .

]

. (4A-4)

Due to the structure of system matrix A, all inputs and outputs are decoupled.
The Markov parameters of this system are

[
c1b1 + c2b2 c1θ1b1 + c2θ2b2 c1θ2

1b1 + c2θ2
2b2 . . .

]
. (4A-5)

This is equal to the row sum of X, up to an weighing matrix.
Also for this case, considering the structure as mentioned earlier, the rank of
(4A-2) is equal to n, and (4A-1) holds.

Case 3: p > 1 and n > 1

We now consider the system with m = 1 and p = n = q = 2. Matrices A, ∂A
∂θ and

B are equal to the ones in the previous case. We define C =

[
c11 c12
c21 c22

]

. Then X

is given by

X =

[
C 0 CA 0 . . .
0 C 0 CA . . .

]















1 0
0 0
0 0
0 1

1 0
0 0
0 0
0 1




















B AB . . .
B AB

. . . . . .




 =

[
c11b1 c21b1 2c11θ1b1 2c21θ1b1 3c11θ2

1b1 3c21θ2
1b1 . . .

c12b2 c22b2 2c12θ2b2 2c22θ2b2 3c12θ2
2b2 3c22θ2

2b2 . . .

]

. (4A-6)

Also for this case, considering the structure as mentioned earlier, the rank of
(4A-2) is equal to n, and (4A-1) holds. For completeness we give the Markov
parameters of this system

[
c11b1 + c12b2 c11θ1b1 + c12θ2b2 c11θ2

1b1 + c12θ2
2b2 . . .

c21b1 + c22b2 c21θ1b1 + c22θ2b2 c21θ2
1b1 + c22θ2

2b2 . . .

]

. (4A-7)
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In our approach we organize the Markov parameters as one row vector
[

c11b1 + c12b2 c21b1 + c22b2 c11θ1b1 + c12θ2b2 c21θ1b1 + c22θ2b2 . . .
]

.
(4A-8)

When we consider the row sum of X in (4A-6) we obtain (4A-8) up to a weighing
matrix.



5 CHAPTER

Model Structure Approximation and
Identification of Reservoir Models

Typically, the physical parameters in reservoir models cannot be
uniquely estimated from measurements, meaning that the model pa-

rameterization is not identifiable. This is problematic, because an incor-
rect parameter estimate can lead to incorrect long-term predictions and
model-based control strategies. This problem is analyzed using the no-
tions of identifiability and structural identifiability as presented in the
previous chapter. Structural identifiability is used to determine which
parameters can be reliably estimated with perfect inputs, and identifiabil-
ity is used to determine which parameters can be reliably estimated with
given inputs. These notions allow to approximate the model structure
and determine an identifiable parameterization with a significantly re-
duced number of parameters, both for single-phase and two-phase reser-
voir models. The identifiable parameterizations with reduced numbers
of parameters are employed in an iterative procedure to minimize a cost
function that is defined as the mismatch between production measure-
ments and model outputs. The analysis is also applied to an object-based
parameterization describing channels and barriers in the reservoir.

5.1 Introduction

Typically, the physical parameters in reservoir models cannot be uniquely esti-
mated from measurements, meaning that the model parameterization is not iden-
tifiable. In other words, the problem of estimating the parameters in reservoir
simulation models using measured production data (i.e. history matching) is gen-
erally an ill-posed problem, see e.g. Gavalas et al. (1976) and Oliver et al. (2008).
This is particularly true if it is attempted to estimate individual grid block pa-
rameters such as permeability or porosity values, which may lead to a very large
number (105 to 106) of unknown parameters that can only be estimated with a
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large variance. Another challenging aspect in history matching is the need to re-
tain geological realism while updating the parameter values.

One way to deal with the lack of identifiability in parameter estimation problems
is to constrain the solution space for the model parameters through the addition
of regularization terms to the cost function - see Section 4.4 and also Gavalas et al.
(1976) for an early reference to Bayesian estimation of reservoir parameters. An-
other way to deal with the lack of identifiability in parameter estimation problems
is to reparameterize the parameter space, in which case the number of parameters
is strongly reduced, while at the same time it may be possible to better maintain
geological realism.

An advantage of reparameterization is that the approach can be used to include
prior knowledge. An example hereof is a channel parameterization that is ap-
plicable in the situation that channels are present in the reservoir. In case the
parameters are estimated from measurements it will result in a realization that is
geologically sound. Moreover, the number of parameters to be estimated is usu-
ally smaller and therefore the (co)variance of the estimated parameters is smaller,
and the parameter identification problem is computationally less demanding to
solve. A disadvantage of reparameterization is that a parameterization with less
parameters is also less flexible and possibly has an increased bias. If the physi-
cal properties cannot be well represented by the new parameterization, then it is
difficult to get a feasible solution of the parameter estimation problem. For exam-
ple, in Gavalas et al. (1976), McLaughlin and Townley (1996) and Evensen (2007)
can be found that wrongly assuming that some parameters (or states) are known
by e.g. not estimating them, may lead to unrealistic estimates. These estimates
usually become unrealistic because they compensate for neglected errors in the
model.

Reparameterization techniques previously applied in reservoir engineering in-
clude zonation (Jacquard and Jain 1965; Jahns 1966), where each zone is assumed
to have constant properties. Adaptive multiscale methods (Grimstad et al. 2003;
Berre et al. 2007) are more advanced methods that divide the reservoir model into
zones. The number of parameters that need to be estimated is reduced, but these
methods possibly lead to discontinuities between the zones that are considered
as non-geological. In Reynolds et al. (1996) and Abacioglu et al. (2001) the sub-
space algorithm as introduced by Oldenburg and Li (1994) is used to solve the
identification problem in a computationally efficient way. Other parameteriza-
tions that have been used in reservoir engineering are wavelets (Sahni and Horne
2005), principle component analysis of the permeability vector (Sarma et al. 2007),
and discrete cosine transform (Jafarpour and McLaughlin 2007). Furthermore, the
pilot-point method (RamaRao et al. 1995) and gradual deformation (Hu 2000) are
reparameterization techniques used in reservoir engineering which are both based
on spatial variograms. According to Oliver et al. (2008) the pilot point method
possibly introduces non-physical artifacts in the permeability and porosity fields,
and the gradual deformation method might experience difficulties converging to
a model that is able to match the measurements.

In Shah et al. (1978) the eigenvectors of the sensitivity matrix (i.e. derivative of
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model outputs with respect to parameters) corresponding to the largest eigenval-
ues are used to reparameterize the parameter space. Both in Oliver (1996) and
Reynolds et al. (1996) this approach is applied to determine permeability and/or
porosity parameters. Another reparameterization that is based on the sensitivity
matrix is the gradzone reparameterization introduced by Bissell et al. (1994). In
this approach first an SVD is applied to the sensitivity matrix, and next to the
values in each singular vector associated with a large singular value a cutoff is ap-
plied to make a division between grid block parameters that are relevant and not
relevant for the input-output behavior. As a result, each singular vector results in
two basis functions (i.e. zones): one that is associated with grid block parameters
corresponding to positive entries above a certain threshold value in the singular
vector, and one that is associated with grid block parameters corresponding to
negative entries below the threshold value in the same singular vector. In Brun
et al. (2004) the gradzone approach is extended from a cost function without prior
information to a cost function in which prior information is included, showing the
large influence of the prior information. In Rodrigues (2006) the parameter space
is reparameterized based on the singular vectors of the dimensionless sensitivity
matrix as introduced in Zhang et al. (2002) of water and oil flow rate measure-
ments with respect to permeability parameters in each grid block. Based on the
sensitivity matrix, calculated with an adjoint model, the model is reparameterized
using the gradzone approach (Bissell et al. 1994). In Vasco et al. (1997) the sensitiv-
ity of pressure measurements with respect to grid block permeability is computed
with finite differences. Pressure measurements appear to be most sensitive to grid
block permeability changes in the vicinity of the wells. In addition, the sensitivity
of tracer concentration measurements with respect to grid block permeability is
computed with finite differences, all after tracer breakthrough time. The tracer
concentration is modeled using a streamline approach (Datta-Gupta and King
1995). Tracer concentration measurements appear to be most sensitive to grid
block permeability changes in areas where tracer flow occurs between injector-
producer pairs.

In this chapter the reservoir models are also reparameterized, where we use the
model structure approximation framework of Chapter 4 to determine identifiable
parameterizations using the notions of structural identifiability and identifiability.
In the new model structure the parameters to be identified are well identifiable
and the physical interpretation of the parameters remains untouched. The repa-
rameterizations that are based on the sensitivity matrix (e.g. by Shah et al. 1978;
Bissell et al. 1994; Vasco et al. 1997; Brun et al. 2004; Rodrigues 2006; Tavakoli and
Reynolds 2009) all fit in the model structure approximation framework. More pre-
cisely, the reparameterization proposed by Shah et al. (1978) is identical to model
structure approximation using the notion of identifiability in case a cost function
without prior information is used. The other reparameterizations differ by the
choice of the cost function (with or without prior information), or post-processing
of the gradient information (directly using the gradients as basis functions or us-
ing a gradzone approach). As argued in Section 4.4 in this thesis a cost function
without prior information is chosen, and also it is chosen to use the basis functions
directly and not to use grad zones.
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In Section 5.2 model structures will be approximated to determine identifiable pa-
rameterizations for grid block parameters. In addition, attention is given to the
effect of parameter values on the parameterization. Next, in Section 5.3 a chan-
nel parameterization is introduced, where the number of parameters is strongly
reduced and geological realism is preserved after updating. Based on two ex-
amples the structural identifiability and identifiability of this parameterization is
analyzed. In Section 5.4 an iterative algorithm is presented that is subsequently
used to estimate the grid block permeability in a single-phase and a two-phase
reservoir model. In Section 5.5 the channel parameters are estimated from mea-
surements in a single-phase and a two-phase reservoir model.

5.2 Analysis of reservoir model structures

5.2.1 Structural identifiability

In Section 4.6 it is described how the notion of structural identifiability can be
used to analyze model structures. The appropriate selection of the identifiable
parameter space is obtained from (4.44), leading to

Γθm

∂
−→
S r(θ)T

∂θ
Γ

2
S

(

∂
−→
S r(θ)T

∂θ

)T

Γθm =
[

U1 U2
]
[

Σ1 0
0 Σ2

] [
VT

1
VT

2

]

(5.1)

where again the separation between Σ1 ∈ R
l×l and Σ2 is chosen in such a way

that the singular values in Σ2 are considerably smaller than those in Σ1. In the ex-
amples presented later in this section the value of l, the number of singular values
in Σ1, is chosen based on the normalized singular values according to

σl+1
σ1

< 1 × 10−5. (5.2)

The value l is also referred to as the (numerical) rank of Γθm

∂
−→
S r(θ)T

∂θ ΓS. Further-
more, we define

U :=
[

U1 U2
]

(5.3)

as the singular vectors of the scaled structural identifiability matrix (5.1). Note
that (5.1) is a symmetric matrix and therefore the left and right singular values
should be equal, i.e. U = V.

The columns of U1 act as basis functions in the parameter space, expressing the
sensitivity of the Markov parameters with respect to the parameter vector. In
case we choose the parameters to be estimated as the permeability in each grid
block, each left singular vector has length q and each entry in a left singular vector
corresponds to a specific grid block. Consequently, each column of U1 can be
interpreted as a spatial pattern.

Alternatively, for small-scale nonlinear dynamical models h(θ) (2.70) the (global)
structural identifiability can be analyzed by determining the rank of the symbolic
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matrix ∂h(θ)T

∂θ . If the symbolic matrix has full-rank the parameters θ can be iden-
tified. However, since symbolic matrices are used it is not possible to investigate
which parameter (combinations) are more identifiable than others and the anal-
ysis is limited to small-scale models. For an analytical, 1D two-phase reservoir
model this analysis has been performed by Watson et al. (1984). See Section 3.4.3
for a description of the model. It is found that the permeability distribution is
structurally identifiable from pressure measurements. In case it is assumed that
the permeability distribution is known it is found that only the average porosity
can be identified from the pressure and flow rate measurements. In case it is as-
sumed that the porosity and permeability distribution are uniform and known it
is found that the Corey exponents are structurally identifiable. For the latter case
also the covariance is investigated, leading to the observation that the Corey expo-
nents can be most reliably estimated from the combination of pressure drop and
flow rate measurements.

In the remainder of this subsection the structural identifiability analysis following
a Markov parameter approach is applied to two 2D, single-phase reservoir mod-
els to find which permeability parameters can be reliably estimated from pressure
measurements, and what factors influence the structural identifiability. The first
example is a SISO model with 49 grid blocks where the identifiability of grid block
permeability from pressure measurements is analyzed. It mainly serves to show
the influence of the permeability values on the determined identifiable parame-
terization. The second example is a MIMO model with 441 parameters and five
inputs and five outputs where also the identifiability of grid block permeability
from pressure measurements is analyzed. It demonstrates the influence of the
permeability values and also the position of the wells. The examples will show
that the grid block permeability cannot be reliably estimated from pressure mea-
surements since

rank

(

Γθm

∂
−→
S r(θ)T

∂θ
ΓS

)

< q, (5.4)

where the numerical rank is evaluated. More importantly, based on the structural
identifiability analysis the model structure can be approximated, an identifiable
parameterization can be determined and the resulting basis functions can be de-
picted.

Single input, single output example - single-phase

In the first example the identifiability analysis is performed on a single-phase
reservoir model with 49 states and an equal number of parameters (i.e. grid
block permeabilities). The compressibility is c = 1 × 10−10Pa−1, the viscosity
is µ = 1 × 10−3Pa · s, the porosity is φ = 0.2 in each grid block, and each grid
block has dimensions 10m × 10m × 10m. The permeability is 10−13m2 and equal
in each grid block. Figure 5.1 (left picture) depicts the permeability on a log scale
as a top view of a 2D representation. The input variables u denotes total liquid
rate in the middle of the reservoir, and the output variable y denotes measured
pressure in the middle of the reservoir.
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Figure 5.1: Top view of a homogeneous permeability distribution with well loca-
tion indicated by a rectangle (left) and corresponding dominant spatial patterns
in parameter space (middle and right).
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Figure 5.2: Permeability distribution containing a streak with higher permeabil-
ity values (left) and corresponding dominant spatial patterns in parameter space
(middle and right).

We first determine r based on a rank evaluation of the two block Hankel matri-
ces (see Section 4.6.3). Expression (5.1) is calculated with r = 13, and next (5.1)
is evaluated. The singular values decrease rapidly and σ4

σ1
< 1 × 10−5. Therefore,

according to (5.2) l = 3 and this means that in this case 3 parameters can be identi-
fied using pressure measurements. U1 has consequently dimensions of q × 3 and
since each parameter is connected to a grid block each column of U1 can be de-
picted as a spatial pattern (see Figure 5.1, three most right pictures, where the i-th
singular vector is indicated by Ũi). These spatial patterns can be interpreted as the
dominant directions in the parameter space to which the Markov parameters are
sensitive to changes in θ.

As can be seen in Figure 5.1 the model parameters are mainly structurally iden-
tifiable around the well, because the values corresponding to these grid blocks
are not equal or close to 0. Also, it is clear that a five-point spatial discretization
scheme is used, because the values in the four neighboring grid blocks of the grid
block containing the well are equal. Finally, due to the symmetry in the model
properties, the dominant directions in the parameter space also display symmet-
ric patterns.

To show the influence of θ0, we added a high-permeable streak to the uniform
permeability distribution (Figure 5.2, left picture). The value of the permeability
in the streak is ten times higher. We calculated (5.1) with r = 11 and its rank is
l = 3. Although the value of l is equal to the value of l in the previous exam-
ple, the dominant directions in the parameter space that are sensitive to changes
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Figure 5.3: Permeability distribution containing a streak with lower permeabil-
ity values (left) and corresponding dominant spatial patterns in parameter space
(right).

in the input-output behavior are different (Figure 5.2, three most right pictures).
Apparently, the input-output behavior is more sensitive to permeabilities with
high values, since the values in the high-permeable streak have the highest val-
ues.

If the permeability in the streak is ten times lower (Figure 5.3, left picture), then
according to (5.2) the rank of the information matrix is only l = 2. The corre-
sponding dominant directions in parameter space are plotted in the middle two
pictures of Figure 5.3, where the direction in the most right picture cannot be reli-
ably identified anymore. These plots show that the input-output behavior is less
sensitive to permeabilities with low values.

Multiple input, multiple output example - single-phase

In the second example the structural identifiability analysis is performed on a
single-phase reservoir model with 441 states and an equal number of parameters.
The permeability distribution consists of three zones: the upper left corner has a
high permeability, the lower right corner a low permeability, and the intermediate
zone an intermediate permeability (Figure 5.4). The other physical coefficients are
chosen the same as in the first example. The model contains five wells, distributed
in a characteristic five-spot pattern, indicated in Figure 5.4 by grey squares. For the
wells in the four corners of the reservoir the bottom hole pressures are prescribed,
and for the well in the middle of the reservoir the total liquid rate is prescribed.
All wells have pressure measurement capabilities. This means that the model has
five inputs and five outputs.

It was found that in this single-phase case 19 Markov parameters should be taken
into account in order to arrive at correct expressions for the local structural iden-
tifiability analysis, i.e. rank(Hr−1) = rank(Hr) (see Section 4.6.3). Expression
(5.1) is therefore calculated with r = 19. The corresponding singular values are
plotted in the left part of Figure 5.5. The 30 largest singular values are plotted
again in the right part of Figure 5.5. For this example the rank is more difficult to
determine, because the difference between two subsequent singular values is less
distinct than for the SISO example. However, we do see that at least σ18 to σ441 are
close to machine precision. This means that the maximum number of parameters
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Figure 5.4: Permeability distribution (top view) for MIMO example. Rectangles
indicate well positions.

that can be structurally identified with perfect pressure measurements and finite
machine precision is only 17 out of a total of 441.

The singular vectors corresponding to the 12 largest singular values are depicted
in Figure 5.6. Singular vectors Ũ1, Ũ2, Ũ5, Ũ7, Ũ8 and Ũ12 show spatial patterns
located around the well in the zone with high permeability. The spatial patterns
increase in size with decreasing singular value, indicating that the grid block per-
meabilities in the area further away from the well are more difficult to identify.
The ninth singular vector Ũ9 is the only vector in this figure that shows a spatial
pattern around the well in the zone with low permeability. The remaining singular
vectors show spatial patterns located around the wells in the zone with interme-
diate permeability. These spatial patterns also increase in size with decreasing
singular value.

From this example we conclude that grid block permeabilities in an area near
a well are most structurally identifiable from pressure measurements. Also we
conclude that the value of the grid block permeability affects the extent to which
it is structurally identifiable: grid block permeabilities near a well with a lower
permeability value are less structurally identifiable than grid block permeabilities
near a well with a higher permeability value.

5.2.2 Identifiability

In Section 4.2 it is described how the notion of identifiability can be used to an-
alyze model structures. The appropriate selection of the identifiable parameter
space is obtained from (4.17), leading to

Γθ̂

∂h(θ)T

∂θ
P
− 1

2
v =

[
U1 U2

]
[

Σ1 0
0 Σ2

] [
VT

1
VT

2

]

(5.5)

where the separation between Σ1 and Σ2 is chosen in such a way that the singular
values in Σ2 are considerably smaller than those in Σ1. In the Bayesian frame-
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Figure 5.5: All singular values (left) and 30 largest singular values of (5.1) using
the permeability distribution depicted in Figure 5.4.
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Figure 5.6: Singular vectors corresponding to the first 12 singular values of (5.1)
using the permeability distribution depicted in Figure 5.4.
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work the appropriate selection of the identifiable parameter space is obtained
from (4.27), leading to

P
T
2
θ

∂h(θ)T

∂θ
P
− 1

2
v =

[
U1 U2

]
[

Σ1 0
0 Σ2

] [
VT

1
VT

2

]

, (5.6)

which is similar to the dimensionless sensitivity matrix defined by Zhang et al.
(2002).

Multiple input, multiple output example - two-phase

Here a small-scale example is presented where the combinations of grid block
permeability are shown that are most relevant for the input-output behavior of
a two-phase reservoir model. Similar results can be found in e.g. Vasco et al.
(1997) and Rodrigues (2006). The reservoir model is identical to the previously
described MIMO reservoir model, with the exception that there are both oil and
water phase present. Both fluids have density ρ = 1000kg/m3, compressibility
c = 1 × 10−10Pa−1 and viscosity µ = 1 × 10−3Pa · s. The relative permeability of
water and oil as function of water saturation is plotted in Figure 2.4.

Perfect measurements y are generated by simulating the two-phase reservoir mod-
el with the real permeability distribution in an in-house reservoir simulator, using
an initial state of p0 = 100 × 105Pa, and a manipulated input u as depicted in
Figure 5.7. As input we have used the pressures in the production wells, located
in the four corners of the reservoir, and the injection flow rate in the injection well,
located in the center of the reservoir. The input signals u are depicted in Figure 5.7.
As measurements we have used the oil and water flow rates in the four produc-
tion wells, where we note that water breakthrough has occurred in all production
wells. In other words, the production wells produce at a certain time both oil and
water.

The adjoint model implemented in the reservoir simulator is used to calculate
∂h(θ)T

∂θ in (5.5) where we have chosen for a non-Bayesian cost function (4.2)1. Fur-

thermore, we have chosen Γθ̂ = diag(10log θ) and P
− 1

2
v = I. As can be clearly seen

the singular values of (5.5) in Figure 5.8 drop steeply, however, less steep than
the singular values in Figure 5.5 corresponding to the pressure measurements re-
sulting from the structural identifiability analysis (note the difference in vertical
scale).

The singular vectors corresponding to the 12 largest singular values are depicted
in Figure 5.9. Singular vectors Ũ1 to Ũ4 mainly show spatial patterns located
around the production wells, although there are also patterns visible between the

1In the particular implementation of the adjoint model only the time-averaged value of ∂h(θ)T

∂θ is

given, i.e. a vector with the length of the number of parameters q. In this work matrix ∂h(θ)T

∂θ ∈ R
q×N

is obtained column by column, where column i, i = 1, . . . , N, is calculated by the adjoint model by
assigning a unit weight to h(θ) at time step i, and assigning zero weights to h(θ) at the other time
steps.
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injection well and production wells. The fifth singular vector Ũ5 clearly shows
a pattern between the injection and production well in the bottom left corner,
where the grid blocks in the middle of this area have the highest absolute value
(indicated by blue). This means that in case the permeability value in these grid
blocks is changed this will have a large effect on the oil and water rates. Together
with the plot of the singular values in Figure 5.8, this points into the direction
that flow rate measurements contain more information on the permeability dis-
tribution than pressure measurements, because also grid block permeabilities lo-
cated further away from the wells significantly influence the flow rate measure-
ments.

Note that the shape of the patterns in Figure 5.9 is not necessarily related to the
presence of geological features such as channels. Also the yellow parts depicted
in singular vector Ũ5, at the edges of the pattern between injection and production
well, should not be confused by the presence of geological features in the perme-
ability distribution, since these result from a similar effect as noted by Vasco et al.
(1997), i.e. that at a later moment in time the flow rates are also influenced by grid
block permeability parameters located in these areas. The remaining singular vec-
tors Ũ6 to Ũ12 show spatial patterns connecting an injection and production well
similar as in Ũ5.

Also note that the symmetry that is present in the permeability field is not present
anymore in the patterns (i.e. patterns related to the bottom left well are not iden-
tical to patterns related to the top right well). This is caused by the different in-
put signals that are used for each well, and since identifiability (as opposed to
structural identifiability) is used the input signal does influence the identifiable
directions.

5.3 Geological parameterizations

5.3.1 Introducing a channel parameterization

As described in Section 5.1, desired features of parameterizations in reservoir en-
gineering applications are that the parameters are identifiable and that after esti-
mation geological realism is preserved. A possible solution to realize these fea-
tures is to choose a parameterization in terms of a limited number of geological
objects (e.g. channels) such that an update in the parameters results in a geolog-
ically realistic permeability field. Here, a channel parameterization is presented
and subsequently an example is given in which the channel parameters are esti-
mated from measurements.

Estimating channel parameters with production measurements has been consid-
ered by e.g. Rahon et al. (1998), Bi et al. (1999) and Phan and Horne (2002). In Phan
and Horne (2002) a deterministic method has been used, where the mapping be-
tween the 14 channel parameters and the three-dimensional permeability field is
unique. In this section we introduce a simple two-dimensional object-based mod-
eling method to create facies and permeability distributions, where the mapping
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Figure 5.7: Input signals as function of time that are used to excite the two-phase
reservoir model. Bottom-hole pressures (left) and liquid flow rates (right).
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Figure 5.9: Singular vectors corresponding to the first 12 singular values of (5.5)
using the permeability distribution depicted in Figure 5.4.

between the parameters and resulting facies or permeability distribution is also
unique. It is assumed that the channels are straight and have a uniform perme-
ability distribution. Also the permeability of the background has a uniform dis-
tribution. These assumptions are motivated by the fact that we wanted to reduce
the number of parameters and only wanted to model those features of the reser-
voir that are relevant for prediction and control. Additionally, we reasoned that
the flow behavior in a channel with a slight curvature would be approximately
equal to the flow behavior in a straight channel with a slightly lower permeabil-
ity.

The advantages of the channel parameterization are that it results in a geolog-
ically more realistic permeability distribution after estimation of the parameters,
and that the number of parameters that needs to be estimated is relatively small. A
difficulty with the channel parameterization is that it is less flexible than the grid
block parameterization: if for example the permeability distribution does not con-
tain channels, the procedure of estimating channel parameters will not converge
or converge to a different estimate. Examples of more flexible parameterizations
are e.g. the discrete cosine transform parameterization, that originates from the
image compression community and has been applied in Jafarpour and McLaugh-
lin (2007, 2009) in a parameter estimation procedure for reservoir models.

The channels in our modeling method are modeled with the morphological struc-
turing element strel as available in the Image Processing Toolbox of MATLAB. Each
channel is described by six parameters: orientation, position in x direction, posi-
tion in y direction, length, width and channel permeability. An additional param-
eter describes the permeability of the background permeability of the reservoir
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Figure 5.10: Example of permeability distribution generated with the channel and
barrier modeling method. The parameter values are given in Table 5.1.

Symbol Meaning Value Unit U1:13 (1p) U1:13 (2p)
θch1 orientation channel 1 45 [°] 5.6 × 10−5 2.2 × 104

θch2 orientation channel 2 90 [°] 4.7 × 10−5 2.9 × 104

θch3 position x channel 1 200 [m] 0.2 × 10−5 0.5 × 104

θch4 position x channel 2 300 [m] 0.7 × 10−5 1.5 × 104

θch5 position y channel 1 1000 [m] 0.5 × 10−5 0.6 × 104

θch6 position y channel 2 150 [m] 0.5 × 10−5 0.1 × 104

θch7 width channel 1 600 [m] 2.2 × 10−5 0.6 × 104

θch8 width channel 2 200 [m] 2.7 × 10−5 1.1 × 104

θch9 length channel 1 4400 [m] 5.2 × 10−5 0.4 × 104

θch10 length channel 2 3000 [m] 0.9 × 10−5 0.9 × 104

θch11 permeability channel 1 300 [mD] 3.9 × 10−5 1.5 × 104

θch12 permeability channel 2 600 [mD] 2.8 × 10−5 0.9 × 104

θch13 permeability background 100 [mD] 0.2 × 10−5 0.8 × 104

Table 5.1: Channel parameters of the permeability distribution in Figure 5.10. The
fifth column gives the value of the measure U1:13 for the single-phase (1p) exam-
ple, and the last column gives the value of the measure U1:13 for the two-phase
(2p) example.
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model. This means that the permeability field with two channels in Figure 5.10 is
described by θgb = 13 channel parameters. The values of the channel parameters
for the example in Figure 5.10 are given in Table 5.1, where the longest channel is
defined as channel 1. If channels intersect with each other, then the younger chan-
nel replaces the older channel, where the channel number is representative for
the age. In other words, in case channels intersect the grid block permeability is
solely determined by the youngest channel only. The channels are generated on a
fine-scale grid, and then upscaled to the simulation grid size using the arithmetic
mean. For the example depicted in Figure 5.10 we have chosen 420 × 420 grid
blocks which are subsequently upscaled to 21 × 21 grid blocks of 10 × 10m2. The
parameterization of this example will be analyzed with structural identifiability
(Subsection 5.3.2) and with identifiability (Subsection 5.3.3).

5.3.2 Analysis of a channel parameterization - single-phase

For the single-phase example we will use structural identifiability analysis, since
the analysis is independent of the chosen input signals and it can be easily ap-
plied to linear models. With structural identifiability analysis it is possible to cal-
culate

∂
−→
S r(θgb)

T

∂θch

∣
∣
∣
∣
∣
θch

, (5.7)

where θgb denotes grid block permeability and θch denotes the channel parame-
ters. To calculate this expression we simply apply the chain rule

∂
−→
S r(θgb)

T

∂θch
=

∂θT
gb

∂θch

∂
−→
S r(θgb)

T

∂θgb
, (5.8)

evaluated at θch. The term
∂θT

gb

∂θch
is calculated using finite differences adopting a

central difference scheme where each geological parameter θch is perturbed in
positive and negative direction on the fine-scale grid.

Subsequently, the scaled structural identifiability matrix is analyzed with an SVD
according to

Γθch

∂
−→
S r(θgb)

T

∂θch
Γ

2
S

(

∂
−→
S r(θgb)

T

∂θch

)T

Γθch
= UΣVT , (5.9)

evaluated at θch. Since (5.9) is a symmetric matrix the left and right singular vec-
tors should be equal, i.e. U = V. However, due to round-off errors the matrices
can have different values for vectors corresponding to small singular values. In
the remainder we have made the choice that the columns of U are the singular
vectors of the scaled structural identifiability matrix. The singular vectors and
singular values of (5.9) also offer a means to find which combinations of parame-
ters affect the predicted measurements. The latter greatly adds to the insight in the



126 Chapter 5 Model Structure Approximation and Identification of Reservoir Models

dθ
gb

T
 /d θ

ch1

 

 

−20

0

20

dθ
gb

T
 /d θ

ch2

 

 

−20

0

20

dθ
gb

T
 /d θ

ch3

 

 

−1

0

1

dθ
gb

T
 /d θ

ch4

 

 

−2

0

2

dθ
gb

T
 /d θ

ch5

 

 

−0. 5

0

0. 5

dθ
gb

T
 /d θ

ch6

 

 

−1

0

1

dθ
gb

T
 /d θ

ch7

 

 

−0. 5

0

0. 5

dθ
gb

T
 /d θ

ch8

 

 

−2

0

2

dθ
gb

T
 /d θ

ch9

 

 

−0.2

0

0. 2

dθ
gb

T
 /d θ

ch10

 

 

−0. 4

0

0. 4

dθ
gb

T
 /d θ

ch11

 

 

−1

0

1

dθ
gb

T
 /d θ

ch12

 

 

−0. 5

0

0. 5

dθ
gb

T
 /d θ

ch13

 

 

−1

0

1

Figure 5.11: Each column of
∂θT

gb

∂θch
is visualized onto the reservoir grid. See Table

5.1 for the meaning and value of parameters θch1, . . . , θch13.

reservoir behavior and the parameter estimation process, as will be demonstrated
in the next example.

We now present an example in which the parameters of the channel parameter-
ization are to be estimated from pressure measurements. We choose a real per-
meability field as depicted in Figure 5.10, which is parameterized by 13 parame-
ters. The well configuration and remaining reservoir coefficients are identical to
those in the previous example in Section 5.2. The model structure is analyzed with

structural identifiability. The term
∂θT

gb

∂θch
is computed using finite differences where

each geological parameter θchi, i = 1, . . . , 13 is perturbed with a perturbation step
size of 10−5 times the absolute value of the channel parameter to obtain the grid
block permeability field θgb. We obtain, after upscaling, the plots in Figure 5.11,

in which each column of
∂θT

gb

∂θch
is interpreted as a spatial pattern. For example, in

the first plot of this figure the difference in permeability distribution is given as a
result of a perturbation of θch1, the orientation of channel 1.

The singular vectors contained in U and singular values Σ of (5.9) are computed
for this specific example. The logarithm of the singular values, 10 log σi, i =
1, . . . , 13, are plotted in Figure 5.12 (left). Specifically, the last singular value has
a low value, which indicates that for this example the model structure can be ap-
proximated with a reduced number of parameters, being linear combinations of
the channel parameters. Equally as in the example dealing with grid block per-
meability, the singular vectors can be interpreted as combinations of parameters.
Matrix U consisting of the 13 singular vectors as columns is depicted in Figure
5.12 (right), where green colors indicate that the value of the singular vector is
zero or close to zero. The first column denotes the first singular vector of (5.9)
and is associated with a large singular value. Each subsequent singular vector is
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Figure 5.12: Singular values (left) and singular vectors (right) of (5.9) for the chan-
nel parameterization in a single-phase reservoir model.

associated with a smaller singular value.

For matrix (5.9) the weighted singular vector U1:z in (3.7) is calculated for z = 13.
For each channel parameter the value is denoted in Table 5.1. Based on these val-
ues we conclude for this permeability distribution that the orientation of channel
1, θch1, and length of channel 1, θch9, are best identifiable, since these have the
highest values of U1:z. The position in x direction of channel 1, θch3, and the back-
ground permeability θch13, are least identifiable, since these have the lowest values
of U1:z. Note that these results are computed before the channel parameters are
estimated, which will be done in Section 5.5.1.

5.3.3 Analysis of a channel parameterization - two-phase

The model structure of the two-phase model with channel parameterization will
be analyzed using the notion of identifiability. This time we calculate

∂h(θgb)
T

∂θch

∣
∣
∣
∣
∣
θch

=
∂θT

gb

∂θch

∂h(θgb)
T

∂θgb
, (5.10)

where θgb denotes the grid block permeability. Subsequently, the scaled identifia-
bility matrix is analyzed by applying an SVD on

Γθch

∂h(θgb)
T

∂θch
Pv = UΣVT, (5.11)

evaluated at θch. In the next example the parameters of the channel parameteri-
zation are to be estimated from oil and water flow rate measurements. The per-
meability, well configuration and remaining reservoir coefficients are identical as
in the previous example. Using the adjoint model in the reservoir simulator the

term ∂h(θ)T

∂θch
is calculated and the term

∂θT
gb

∂θch
is computed using perturbations and is

plotted in Figure 5.11.

The singular vectors contained in U and singular values Σ of (5.11) are computed
for the specific example. The logarithm of the singular values are plotted in Fig-
ure 5.13 (left). Again, the last singular value has a low value, which indicates that
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Figure 5.13: Singular values (left) and singular vectors (right) of (5.9) for the chan-
nel parameterization in a two-phase reservoir model.

the model structure can be approximated with a reduced number of parameters.
Matrix U is visualized in Figure 5.13 (right). Also for this example U1:13 is com-
puted and denoted in Table 5.1 (last column). We conclude for this example that
the orientations of both channels, θch1 and θch2, are best identifiable from water
and oil flow rate measurements, since for these parameters the value of U1:13 is
the highest. The position in y direction of channel 2, θch6, is least identifiable from
water and oil flow rate measurements, since for this parameter the value of U1:13
is the lowest.

5.4 Identification of grid block parameters

5.4.1 Identification procedure

In this section the values of grid block parameters of single-phase and two-phase
reservoir models are estimated from pressure and flow rate measurements, where
we propose to approximate the reservoir model structure using the notions of
structural identifiability and identifiability. In (4.45) the relation is given between
identifiability and structural identifiability, leading to the observation that in case
the input signal is persistently exciting the notions of structural identifiability and
identifiability lead to similar results. Therefore, for single-phase reservoir models
as presented in this section the reservoir model structure is solely approximated
using the notion of structural identifiability.

Subsequently, the reduced-dimensional, identifiable parameters in the approxi-
mated model structure are estimated in an iterative identification procedure. The
advantage of this formulation is that only those (linear combinations of) parame-
ters are updated that are relevant for the input-output behavior. Parameters with
a large effect on flow behavior are the permeabilities in each grid block, and these
are also the parameters that will be estimated. However, the same procedure can
easily be used to estimate other parameters in the reservoir model.

Since the identifiable parameterization partly depends on the parameter value we
use an iterative procedure as depicted in Figure 5.14, similar as in Zandvliet et al.
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(2008). Starting from an initial guess θinit the model structure is approximated and
U1 is calculated according to (5.1). An extra column containing ones in every entry
is added to U1 to account for an overall increase or decrease in the parameters.
Subsequently, θ is reparameterized as

θ = Ū1(θ)ρ, (5.12)

where ρ ∈ R
1+l denotes the reduced-dimensional parameter vector that needs to

be estimated and where

Ū1(θ) :=
[

Iq×1 U1
] ∈ R

q×(1+l). (5.13)

An iterative, gradient-based optimization problem is solved to estimate the re-
duced-dimensional parameter vector, in which ρ̂1 = ŪT

1 (θinit)θinit. The quadratic
cost function without prior information is defined as

V (Ū1 (θ) ρ) := (y − ŷ (Ū1 (θ) ρ))T (y − ŷ (Ū1 (θ) ρ)) , (5.14)

where y denotes the measured output and ŷ, which is a function of Ū1 (θ) ρ, de-
notes the predicted output. The estimated parameter vector is given by

ρ̂ = arg min
ρ

V (Ū1 (θ) ρ) . (5.15)

In the examples presented in this section the Gauss-Newton algorithm as imple-
mented in the MATLAB function lsqnonlin is used to minimize the quadratic cost
function (5.14).

If the value of the cost function given in (5.14) is not decreasing anymore (i.e. a
local minimum is found) we determine a new identifiable parameterization. With
the new set of basis functions we might possibly succeed in decreasing (5.14) fur-
ther. If this is not the case then the parameter estimation problem is said to have
converged. It is possible to increase the number of reduced-order parameters in
the new parameterization to give additional degrees of freedom in the identifica-
tion procedure. However, in this work the number of reduced-order parameters
is kept fixed.

There is always a risk that the numerical minimization gets stuck in a local min-
imum since the model is nonlinear in the parameters. Therefore it is advisable
to try several different initial parameter values. The resulting estimate could be
different when another set of initial parameter values were chosen, especially in
the case not all parameters are identifiable.

During the algorithm the SVD of matrices with large dimensions is calculated ev-
ery iteration. Since we are mainly interested in the singular vectors associated
with large singular values it is computationally attractive to use the Lanczos al-
gorithm to calculate only a limited number of singular vectors (e.g. Golub and
Van Loan (1996)). The Lanczos algorithm is also used in Rodrigues (2006) and
Tavakoli and Reynolds (2009) in a parameter estimation procedure.
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Figure 5.14: Iterative procedure for identifying reservoir parameters.
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Figure 5.15: Bottom-hole pressures (left) and flow rates (right).

5.4.2 Identification of grid block permeability - single-phase

In this example we use a single-phase, two-dimensional model. The state-space
formulation of this model is given in (2.10, 2.11) and further described in Section
2.2.1. The parameter to be estimated is the logarithm of the permeability in each
grid block. The permeability field depicted in Figure 5.4 is defined as the real
permeability distribution. The 21 × 21 reservoir grid is penetrated by five wells,
which positions are indicated by rectangles. The remaining reservoir coefficients
are considered known and are given in Section 5.2.1.

Perfect measurements y are generated by simulating the single-phase reservoir
model (2.10, 2.11) with the real permeability distribution and an initial state of
p0 = 100 × 105Pa. As input u we have used the pressures in the production
wells, located in the four corners of the reservoir, and the injection flow rate in
the injection well, located in the center of the reservoir. The measurements y and
input signals u are depicted in Figure 5.15, where the subscript NW indicates the
well in the upper left corner (North West) of Figure 5.4, SW the well in the lower
left corner (South West), NE the well in the upper right corner (North East), SE the
well in the lower right corner (South East), and C the well in the center. The input
consists of step input signals, since these are commonly applied to reservoirs, and
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Figure 5.16: Real permeability distribution (left), initial permeability distribution
(middle) and estimated permeability distribution (right) obtained with the struc-
turally identifiable parameterization in a single-phase reservoir model.

is persistently exciting2.

The previously described identification procedure is used to estimate the grid
block permeability distribution. As initial guess a homogeneous permeability dis-
tribution is chosen with the value θinit = −13.3 which is equivalent to a permeabil-
ity value of 5 × 10−13m2. This permeability distribution is depicted in the middle
of Figure 5.16. The corresponding value of the cost function is V(θinit) = 6.76.
Based on θinit an identifiable parameterization Ū1 is determined keeping only the
first 12 columns of U1.

In this example the estimate has converged after three iterations to the permeabil-
ity distribution depicted in the right of Figure 5.16. The value of the cost function
has decreased to V = 3.0 × 10−4. In the situation that pressure measurements are
used to estimate the permeability distribution the input-output behavior of the es-
timated permeability field is according to the low value of the cost function similar
to the behavior of the real permeability distribution. Apparently, grid block pa-
rameters, which are located in medium and low permeable grid blocks that are
penetrated by wells, are structurally most identifiable, together with grid block
parameters in a slightly larger area around the well located in the high permeable
area. The permeability in the other grid blocks are in the structurally least iden-
tifiable directions and these parameters only have a negligible influence on the
input-output behavior. The parameter values in this area are solely determined
by the initial permeability distribution.

Although the cost function has a small value and one could say that the reser-
voir model is history matched, this does not mean that the model can be reliably
used for prediction and decision making. With the estimated permeability distri-
bution the decision of e.g. finding the optimal position where a new well should
be drilled can not be adequately made. Apparently, the information content in the
pressure measurements is not sufficient for this purpose.

2Formally, according to the definition of persistence of excitation step input signals are not per-
sistently exciting, but step responses completely characterize linear system dynamics (modulo initial
conditions). Note that the results obtained using a pseudo-random binary signal (prbs) are similar as
the results presented in this chapter.



132 Chapter 5 Model Structure Approximation and Identification of Reservoir Models

5.4.3 Identification of grid block permeability - two-phase

Next the grid block permeability of a two-phase reservoir model will be identified.
Since the reservoir model contains water and oil, and as a result it is nonlinear, the
model structure is analyzed with the notion of identifiability (see Section 5.2.2).
The adjoint model as implemented in an in-house reservoir simulator is used to

calculate ∂h(θ)T

∂θ in (5.5). We have chosen for a non-Bayesian cost function (4.2),
since we are most interested in the information on the model parameters provided

by the measurements. The value of the covariance matrix P
− 1

2
v is chosen to be the

identity matrix.

In the following example both fluids have density ρ = 1000kg/m3, compressibil-
ity c = 1 × 10−10Pa−1 and viscosity µ = 1 × 10−3Pa · s. The relative permeability
of water and oil as function of water saturation are plotted in Figure 2.4. Perfect
measurements y are generated by simulating the two-phase reservoir model for
200 days in the in-house reservoir simulator with the real permeability distribu-
tion (see left plot in Figure 5.18), initial pressure p0 = 100 × 105Pa and initial oil
saturation s0 = 0.2 in every grid block. As input we have used the pressures in
the production wells and the injection flow rate in the injection well (see Figure
5.7 for the signals). As measurements we have used the oil and water flow rates
in the four production wells (see Figure 5.17 for the signals). As can be seen water
breakthrough has occurred in all production wells. Also note that the production
well in the SW area is shut in for the first 60 days since the reservoir pressure is
lower than the prescribed bottom-hole pressure.

As initial guess a homogeneous permeability distribution is chosen with the value
θinit = −13.3 which is equivalent to a permeability value of 5× 10−13m2, identical
to the initial guess of the example in Subsection 5.4.2. This permeability distribu-
tion is depicted in the middle of Figure 5.18. The corresponding value of the cost
function is V(θinit) = 135. Based on θinit the model structure is approximated
using (5.5), keeping only the first 15 singular values. To estimate the grid block
permeability we have used the Gauss-Newton update rule (4.5.1). In this exam-
ple the best result is obtained in case the model structure is approximated after
each update. The estimate has converged after 30 iterations to the permeability
distribution depicted in the right of Figure 5.18. Note that the scale of this plot is
different from the two other plots to better see the estimated permeability values
in between the injection and production wells. The value of the cost function has
decreased to V = 5.93. From the estimated permeability distribution we see that
the largest changes have occurred in the grid blocks which are penetrated by pro-
duction wells. Other changes have occurred in grid blocks between injection and
production wells, which was to be expected from inspecting the basis functions
depicted in Figure 5.9. There is a low permeable zone between the injection well
and the production well in the low permeable area, and there is a zone with a
slightly higher permeable area in between the injection well and the production
well in the high permeable area. Although the real permeability distribution is not
recognizable anymore, the flow relevant features are apparently estimated since
the cost function has decreased significantly. Next, the geologist and reservoir
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Figure 5.17: Water (blue) and oil (red) flow rates in the four production wells
in respectively the NE, SE, NW and SW corner of the reservoir. The thick lines
represent the measured flow rates and the thin lines the predicted flow rates of
the estimated permeability distribution in a two-phase reservoir model.
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Figure 5.18: Real permeability distribution (left), initial permeability distribution
(middle) and estimated permeability distribution (right) obtained with the identi-
fiable grid block parameterization in a two-phase reservoir model.

engineer need to explain what permeability distribution could exhibit the same
flow relevant features but has a geologically more realistic appearance. The latter
is important because then also the geological model is changed based on mea-
surements, leading to improved geological models. Note that they may add any
spatial pattern present in the singular vectors of U2 without changing the value of
the cost function.

Note that in Chapter 4 it has been shown that identifiability is related to controlla-
bility and observability. In Chapter 3 it has been demonstrated that the saturation
states are most controllable around the oil-water front. Therefore, only after wa-
ter breakthrough has occurred, i.e. the oil-water front has reached the production
wells, the observed measurements of oil-water rates (or tracer concentration) con-
tain significant information on the grid block permeability. This has also been
illustrated by Vasco et al. (1997).
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5.5 Identification of channel parameters

5.5.1 Identification of channel parameters - single-phase

To estimate the channel parameters and resulting permeability distribution in a
single-phase reservoir model we start with initial parameter values resulting in
an upscaled permeability field as depicted in the middle of Figure 5.19. The cor-
responding value of the cost function is V = 0.06. With the same persistently
exciting inputs as in the previous example, shown in Figure 5.15, the 13 chan-
nel parameters are estimated. We have used the Gauss-Newton algorithm as
implemented in the MATLAB function lsqnonlin to minimize the quadratic cost
function (5.14). This results after convergence in the permeability distribution de-
picted in the right of Figure 5.19. The value of the cost function has decreased
to V = 5.3 × 10−4. For this situation the input-output behavior of this perme-
ability distribution is similar to the behavior of the real permeability distribution.
However, the estimated permeability distribution is different from the real per-
meability distribution. Note that the channels are in this example not correctly
positioned at the well locations. For example, the channel in the northern part
of the reservoir is in the real permeability distribution penetrated by the well in
the NW corner. But this is not the case in the estimated permeability distribution.
From this example it is concluded that there is insufficient information in the mea-
surements to reliably estimate the channel parameters and resulting permeability
distribution.

5.5.2 Identification of channel parameters - two-phase

Next, the channel parameters are estimated in a two-phase reservoir model. The
channel parameters are estimated from the water and oil flow rate measurements
in the producers depicted in Figure 5.20 with the thick lines. The initial perme-
ability distribution resulting from the initial channel parameters is depicted in the
middle of Figure 5.21. The channels are located in a similar configuration as in
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Figure 5.19: Real permeability distribution (left), initial permeability distribution
(middle) and estimated permeability distribution (right) obtained with the chan-
nel parameterization for the single-phase example.
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Figure 5.20: Water (blue) and oil (red) flow rates in the four production wells
in respectively the NE, SE, NW and SW corner of the reservoir. The thick lines
represent the measured flow rates and the thin lines the predicted flow rates of the
estimated permeability distribution obtained with the channel parameterization.
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Figure 5.21: Real permeability distribution (left), initial permeability distribution
(middle) and estimated permeability distribution (right) obtained with the chan-
nel parameterization for the two-phase example.

the previous example, and are not penetrated by the wells. The corresponding
value of the cost function is V = 25.8. With the same inputs as in the previous
two-phase example in Section 5.4.3 we estimate the 13 channel parameters. This
results after convergence in the permeability distribution depicted in the right of
Figure 5.21. The value of the cost function has decreased to V = 0.46. For this
situation the input-output behavior of this permeability distribution is similar to
the behavior of the real permeability distribution. Also the estimated permeabil-
ity distribution is similar to the real permeability distribution, and the channels
are in this example correctly positioned at the well locations. The latter was not
the case in the previous example in which only pressure measurements were used
to estimate the channel parameters. Apparently, to estimate permeability the in-
formation content in rate measurements is larger than the information content in
pressure measurements: in case rate measurements are used the channel parame-
ter values can be estimated in such a way that they are similar to the values of the
channel parameters corresponding to the real permeability distribution. This can
also be concluded from the singular values in Figure 5.8 which decrease slower
than in the case pressure measurements are used, and the singular vectors in Fig-
ure 5.9 which clearly show patterns between the injection and production wells,
and not only around the wells.
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5.6 Conclusions

In this chapter the model structure of reservoir models has been analyzed with
the notions of identifiability and structural identifiability. As a result a best identi-
fiable, reduced-dimensional parameterization has been constructed, which is ap-
plicable to large-scale, non-linearly parameterized and multi-input, multi-output
state-space models.

The approach has been applied to single-phase and two-phase examples in pe-
troleum reservoir engineering, where both pressure measurements and flow rate
measurements have been used. In case grid block parameters are analyzed this
leads to basis functions or spatial patterns in the original parameter space. These
give insight into the information content of the measurements. It appeared that
the information content in the pressure and rate measurements on grid block per-
meability is limited. The pressure measurements only give information on the
grid block permeability close to the wells, where the size of the area is propor-
tional to the value of the grid block permeability. The rate measurements also
give information on the permeability in the area between the injection and pro-
duction wells. The basis functions resulting from the identifiability analysis have
been used in an iterative procedure to estimate the grid block permeability from
production measurements, leading to permeability distributions that are different
from the real permeability distribution, but with a low value of the cost func-
tion.

In addition, a geological, object-based channel parameterization has been intro-
duced and the identifiability analysis of this parameterization has been applied
to single-phase and two-phase examples. Again pressure and rate measurements
have been used to estimate the parameters, where the parameters converged to
geological realistically looking permeability distributions. Also for these exam-
ples the information content in the production measurements was insufficient to
estimate the real permeability distribution, but a low value of the cost function
has been achieved.

Overall, we can conclude that the information content of the production measure-
ments is insufficient to reliably estimate the permeability distribution, irrespective
of the chosen parameterization. Of course a geological parameterization could be
used to estimate geologically looking permeability distributions with a low cost
function, but still the estimated permeability distribution is only reliable in the
area around the wells and in between the injection and production wells. In other
areas the permeability distribution has not been reliably estimated, and depends
to a large extent on the initial choice of the parameter values.



6 CHAPTER

Conclusions and recommendations

The research objective of this thesis is to investigate the possibilities to
obtain petroleum reservoir models that are suitable for model-based

operation, and that can be validated from production data. This chap-
ter presents the conclusions of this thesis and gives recommendations for
future research.

6.1 Conclusions

• The currently used petroleum reservoir models are nonlinear models that
contain a large number of states and physical parameters (typically 105 −
106), resulting from the spatial and temporal discretization of the relevant
partial differential equations. The states are the grid block pressures and
grid block saturations. Physical parameters that play a large role in the long-
term flow behavior are the grid block permeabilities.

• Controllability and observability properties of the model determine to a
large extent the most relevant dynamics. Based on the analyzed reservoir
models with homogeneous and heterogeneous reservoir properties the Han-
kel singular values of reservoir models decrease rapidly, indicating that they
behave as models of much lower order than the state-space models that re-
sult after spatial and temporal discretization.

• Pressure states are most controllable and observable around the wells that
can control and observe the pressure states. Saturation states are most con-
trollable around the fluid front and most observable around the wells. After
balancing, the most relevant pressure states are located around the wells,
and the most relevant saturation states are located around the fluid front.
This offers an explanation why the control action that is observed in flooding
optimization studies of optimal production settings is often at the injection
wells at early times, and at the production wells at later times.

137
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• Based on the examples we conclude that the position of the wells and the dy-
namics of the oil-water front determine the controllability and observability
properties of the reservoir. Therefore, for fixed well positions, reduced-order
models of flow in porous media should focus on correctly modeling the fluid
front(s).

• Identifiability and structural identifiability play a central role in parameter
estimation. The notions of (local) identifiability and structural identifiability
can be quantified, and can be used to determine which model parameters
can be reliably estimated from measurement data. This allows to approxi-
mate the model structure so as to achieve identifiability, while retaining the
interpretation of the physical parameters.

• Identifiability plays a role both in iterative optimization algorithms (like
Gauss-Newton and Steepest-Descent) as well as in recursive (sequential) pa-
rameter estimation methods.

• In a Bayesian setting, in which a priori knowledge is included in the cost
function, there seems to be no issue regarding identifiability. But in this
setting the parameters that cannot be estimated from measurements are de-
termined by the a priori knowledge (i.e. parameter estimate). This could
give a false sense of model reliability.

• Both identifiability and structural identifiability are closely related to con-
trollability and observability.

• Reservoir models are not identifiable from production measurements: the
parameter values in these models are to a large extent based on qualitative
geological information, and to a smaller extent based on information from
production measurements.

• The information content of production measurements on grid block perme-
ability in single-phase and two-phase reservoir models is limited. The pres-
sure measurements only contain information on grid block permeabilities in
an area close to the wells in which is measured, where the extent of the area
is proportional to the value of the grid block permeability. The rate mea-
surements also contain information on grid block permeabilities in the area
between the injection and production wells.

• Overall, we conclude that the information content of the production mea-
surements is insufficient to reliably estimate the permeability distribution.
This also holds for the introduced geological, object-based channel parame-
terization. Of course a geological parameterization could be used to estimate
geologically looking permeability distributions with a low value of the cost
function, but still the estimated permeability distribution is only reliable in
the area around the wells and in between the injection and production wells.
In other areas the permeability distribution has not been reliably estimated,
and depends to a large extent on the initial choice of the parameter values.

• The values of parameter combinations that cannot be estimated from mea-
surements, i.e. directions in parameter space that are not identifiable, can
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be freely altered without changing the value of the cost function. This can
be considered as additional degrees of freedom in the parameter estimation
problem that can be used to include geological information after the param-
eters have been estimated from measurements.

The overall conclusions of this thesis promote a complexity reduction of hydrocar-
bon reservoir models for model-based operation: if a part of the reservoir model
does not influence the relevant dynamics of the model, or it cannot be validated
with measurements, then this should not be modeled.

6.2 Recommendations

Answering one question leads to another, and also research on model-based op-
erations of hydrocarbon reservoirs is far from complete. Suggestions for future
research are given below:

• Controllability analysis of two-phase reservoir models has shown that the
saturation states are most controllable around the fluid front. Therefore, it is
important that models are able to accurately capture the front between the
phases in the reservoir model. Gridding and upscaling methods should take
advantage of this, and possibly use an adaptive gridding method that uses a
fine level of detail around the wells and the fluid fronts, and a coarser level of
detail in the rest of the reservoir. The result could be that the total simulation
time is decreased and that the accuracy of the solution is increased.

• In this thesis the main focus was on estimating permeability, while certainly
for two-phase flow also other parameters are uncertain (e.g. parameters of
the relative permeability model or parameters in the geological model). The
same analysis could be also be carried out for these parameters.

• Model structure analysis could be used to define a new sensor location that
maximizes identifiability and/or observability of the reservoir model. In
addition, by solving an hierarchical optimization problem as described in
Van Essen et al. (2009), a location can be chosen that also optimizes reservoir
performance (e.g. ultimate recovery).

• Identifiability analysis can be used to determine on which part of the reser-
voir information is gathered. It would be beneficial to determine for each
measurement type on what part of the reservoir information is gathered.
Based on this it can be decided which measurement types are redundant (i.e.
give information on the same part of the reservoir, presumably the near well
bore area), and which measurement types give information further away
from the wells.
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List of Symbols and
Notation

Notation
Unless stated otherwise, scalars are denoted in this thesis with small letters in
italic font, vectors are denoted in small letters in bold font, and matrices are de-
noted with capital letters in bold font.

Partial derivatives of a column vector a ∈ R
n with respect to a column vector

b ∈ R
m are denoted with

∂aT

∂b
=







∂a1
∂b1

. . . ∂an
∂b1

...
...

∂a1
∂bm

. . . ∂an
∂bm






∈ R

m×n,

where the subscripts denote the element of the vector.

Latin symbols

Ac, Bc continuous-time state-space matrices for single-phase flow
A∗

c , B∗
c , C∗

c , D∗
c continuous-time state-space matrices for two-phase flow

A, B, C, D discrete-time state-space matrices
Ā, B̄, C̄ weighted discrete-time state-space matrices
Cn controllability matrix
Cki :k f

LTV controllability matrix where ki initial time step and k f final time step
ct total compressibility
cr , co, cw compressibility of rock, oil, water
D diffusion coefficient
E expectation
Ē generalized expectation of a quasi-stationary process
fw fractional flow function in CDE
f, g, h smooth vector fields on M
G(q, θ) transfer function
Fo, Fw fractional flow matrix of oil, water
H block Hankel matrix
h(θ, u; x0) discrete time, nonlinear dynamical model parameterized in θ
hw nonlinear function of water saturation in CDE
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I identity matrix
Jp, Jq matrix of well indices
J Fisher Information Matrix
Jcon minimal required input energy
Jobs maximal produced output energy
kro, krw relative permeability of oil, water
kr0,o, kr0,w end-point relative permeability of oil, water
k absolute permeability
L length of 1D reservoir model
M(k, θ) Markov parameters−→
M(k, θ) vector of decomposed Markov parameters (MISO)
M state-space manifold
m number of inputs
Ngb number of grid blocks
n number of states
no, nw Corey exponents of oil and water
On observability matrix
Oki :k f

LTV observability matrix where ki initial time step and k f final time step
Pv covariance matrix of noise v
Pθ covariance matrix of θ
P controllability Gramian for infinite time
Pn controllability Gramian for finite time
Pe empirical controllability Gramian
Pc capillary pressure
p1 vector of pressures in grid blocks without wells
p2 vector of pressures in grid blocks with flow-rate controlled wells
p3 vector of pressures in grid blocks with pressure controlled wells
p̆well vector of prescribed pressures
p̄well vector of measured pressures
p vector of grid block pressures
pk vector of grid block pressures at time-step k
P Peclet number
p number of outputs
pt fluid pressure
Q observability Gramian for infinite time
Qn observability Gramian for finite time
Qe empirical observability Gramian
q̆well vector of prescribed flow rates
q̄well vector of measured flow rates
q well flow rates
q forward shift operator
q number of parameters
qt flow rate per unit volume
qo, qw flow rate per unit volume of oil and water
Ru(i) autocovariance function of the input
R set of real numbers
rw wellbore radius
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−→
S (θ) map containing decomposed Markov parameters

S skin factor
S̄ variable in Corey model
s water saturation
sor residual oil saturation
swc connate water saturation
T transformation matrix
Tij transmissibility matrix, i = 1, 2, 3, j = 1, 2, 3
To, Tw transmissibility matrix of oil, water
t time
U matrix with left singular vectors
U1:z weighted vector with first z left singular vectors of U
Ũi i-th column of U
u vector of inputs
uk vector of inputs at time step k
V matrix with right singular vectors
Vii accumulation matrix, i = 1, 2, 3
Vwp,Vws,Vop,Vos accumulation matrices
V cost function
Vp cost function which includes prior parameter vector
v output noise
v total liquid velocity
X

con controllable subspace
X

unobs unobservable subspace
x vector of states
xk vector of states at time step k
x′k vector of dual states at time step k
x̆k vector of transformed states at time step k
y vector of outputs (measured output)
yk vector of outputs at time step k
ŷ vector of predicted outputs

Greek symbols

γ scalar damping factor
∆t discretization time-step
ǫ(θ) vector of prediction errors
ǫ constant
θ vector of parameters
θch vector of channel parameters
θgb vector of grid block parameters
θ̂ vector of estimated parameters
θi i-th parameter
Λ matrix with eigenvalues on diagonal
Λθ weighting matrix
λi i-th eigenvalue
λmin most negative eigenvalue
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λo, λw mobility of oil, water
µ viscosity
µo, µw viscosity of oil, water
ρ reduced-order parameter vector
Σ matrix with singular values on diagonal
σi i-th singular value
σ2

e variance of white noise input
φ porosity

Abbreviations

CFL Courant-Friedrich-Lewy
CDE Convection Diffusion Equation
EnKF Ensemble Kalman Filter
EVD Eigenvalue Decomposition
LTI Linear Time Invariant
LTV Linear Time Varying
MIMO Multiple Inputs, Multiple Outputs
MISO Multiple Inputs, Single Output
ode ordinary differential equation
pde partial differential equation
PEM Prediction Error Methods
POD Proper Orthogonal Decomposition
SISO Single Input, Single Output
SVD Singular Value Decomposition
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Summary

The demand for petroleum is expected to increase in the coming decades,
while the production of petroleum from subsurface reservoirs is becoming

increasingly complex. To meet the demand petroleum reservoirs should be op-
erated more efficiently. Recent technological developments, such as subsurface
valves and measurement devices, provide possibilities to accomplish this, but it
is not yet clear how these can be optimally used. Physics-based petroleum reser-
voir models that describe the flow in subsurface porous media can play an im-
portant role here. In this thesis possibilities are investigated to determine on one
hand models with a complexity that is suitable for model-based operation, i.e. the
relevant dynamic processes can be adequately described, and on the other hand
models that only contain parameters that can be validated by production mea-
surements.

The first part of the research objective is about the most relevant dynamics of the
model. These are to a large extent determined by the controllability and observ-
ability properties of the model. The Hankel singular values, which are related to
controllability and observability, decrease rapidly for one-phase and two-phase
reservoir models. This indicates that reservoir models behave as models of much
lower order than the currently used models that result after spatial and temporal
discretization. This explains why models of lower order are found to be suitable
for model-based operation. Based on the analyzed homogenous and heteroge-
neous examples we conclude that the dynamics of the oil-water front and the po-
sition of the wells determine the controllability and observability properties of
the reservoir. Therefore, for fixed well positions, reduced-order models of flow
in porous media should focus on correctly modeling the fluid front(s). The anal-
ysis of controllability and observability can aid in finding optimal positions for
a well to increase production, or finding optimal positions of measurement de-
vices.

Then we turn to the second part of the research objective. From a model-based op-
erations point of view (monitoring, control, optimization) it makes sense to limit
the complexity of an identified model to a level where the model can be reliably
validated from measurement data. If not, the parameter estimates might be highly
determined by the (random) experiment that is done, leading to unreliable model
predictions. In identification this problem is addressed by the notion of identifia-
bility of a model structure, and is directly coupled to the variance of estimated pa-
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rameters. Identifiability and structural identifiability have been quantified in this
thesis, and used to determine which model parameters can be reliably estimated
from measurement data. This allows to approximate the model structure so as to
achieve identifiability, while retaining the interpretation of the physical parame-
ters. Identifiability is also related to iterative optimization algorithms (e.g. Gauss-
Newton and Steepest-Descent) and recursive (sequential) parameter estimation
methods that minimize a cost function consisting of the mismatch between the
measurements and the simulated measurements. In a Bayesian setting, in which
a priori knowledge is included in the cost function, there seems to be no issue re-
garding identifiability. But in this setting the (combinations of) parameters, which
cannot be estimated from measurements, are determined by the a priori knowl-
edge.

From the analysis of one-phase and two-phase reservoir models it can be con-
cluded that these are not identifiable from production measurements (i.e. pres-
sure and phase-rate measurements in the wells). The parameter values in these
models are to a large extent based on qualitative geological information, and only
to a smaller extent based on information from production measurements. This
underpins the need to use information from other measurement types. Pressure
measurements only contain information about grid block permeabilities in an area
close to the wells in which measurements are taken, and phase-rate measurements
(after water breakthrough) contain information about grid block permeabilities in
the area between the injection and production wells. Overall, we conclude that
the information content of the production measurements is insufficient to reliably
estimate the permeability distribution and depends to a large extent on the ini-
tial choice of the parameter values. This also holds for geological, object-based
channel parameterizations. The values of parameter combinations that cannot
be estimated from measurements, i.e. directions in parameter space that are not
identifiable, can be freely altered without changing the value of the cost function.
These can be considered as additional degrees of freedom in the parameter esti-
mation problem that can be used to include geological information.



Samenvatting

De vraag naar olie en gas neemt de komende decennia naar verwachting toe,
terwijl de productie van olie en gas steeds complexer wordt. Om te kunnen

voldoen aan de vraag moet de winning van petroleum uit ondergrondse reser-
voirs efficiënter worden. Recente technologische ontwikkelingen, zoals onder-
grondse kleppen en sensoren, bieden hiertoe mogelijkheden, maar het is nog on-
duidelijk hoe deze optimaal benut kunnen worden. Op fysica gebaseerde mod-
ellen, die de stroming in ondergrondse, poreuze gesteentes beschrijven, kunnen
hierin een belangrijke rol spelen. In dit proefschrift worden mogelijkheden on-
derzocht om aan de ene kant modellen te bepalen met een complexiteit die vol-
doende is om te worden gebruikt voor model-gebaseerde operatie van petroleum-
reservoirs, dat wil zeggen de relevante dynamische processen worden adequaat
beschreven, en aan de andere kant modellen met parameters die kunnen worden
gevalideerd door meetgegevens, in dit geval productiemetingen.

Het eerste deel van het onderzoeksdoel gaat over de meest relevante dynamica
van de modellen. Deze wordt voornamelijk bepaald door de regelbaarheid- en
waarneembaarheideigenschappen van het model. De Hankel singuliere waarden,
die gerelateerd zijn aan regelbaarheid en waarneembaarheid, dalen snel voor een-
fase en twee-fase reservoirmodellen. Dit geeft aan dat de modellen zich gedragen
als modellen van veel lagere orde dan de huidig gebruikte modellen die ontstaan
na ruimtelijke en temporele discretisatie. Dit verklaart waarom lage-orde mod-
ellen nog steeds geschikt blijken zijn voor model-gebaseerde operatie. Op basis
van de geanalyseerde voorbeelden met homogene en heterogene permeabiliteit
concluderen we dat de regelbaarheid en waarneembaarheid grotendeels worden
bepaald door de dynamiek van het olie-water front en de positie van de putten.
Daarom moeten lage-orde reservoirmodellen met vaste putposities zich concentr-
eren op het juist modelleren van het vloeistoffront. De analyse van regelbaarheid
en waarneembaarheid kan ook helpen bij het vinden van een optimale positie van
een put om de productie te verhogen, of het vinden van een optimale positie om
sensoren te plaatsen.

Het tweede deel van het onderzoeksdoel beschrijft dat het model uit een oog-
punt van model-gebaseerde operaties (waarnemen, regelen, optimalisatie) uit-
sluitend parameters moet bevatten die kunnen worden gevalideerd door meet-
gegevens. Als dit niet het geval is, dan kunnen de parameterschattingen sterk
worden bepaald door het willekeurige experiment dat wordt uitgevoerd. Dit
kan leiden tot onbetrouwbare modelvoorspellingen. In identificatie wordt dit

159



160 Samenvatting

probleem geadresseerd door de notie van identificeerbaarheid van een model-
structuur, wat direct gekoppeld is aan de variantie van de geschatte parame-
ters. In dit proefschrift worden identificeerbaarheid en structurele identificeer-
baarheid gekwantificeerd en gebruikt om te bepalen welke modelparameters be-
trouwbaar kunnen worden geschat op basis van meetgegevens. Dit laat toe dat
de modelstructuur benaderd kan worden, teneinde te komen tot een identificeer-
bare modelstructuur met fysieke parameters. Ook wordt aangetoond dat identi-
ficeerbaarheid een rol speelt in iteratieve (bv. Gauss-Newton en Steepest-Descent)
en recursieve / sequentiële parameterschattingmethoden, die de kostenfunctie
minimaliseren bestaande uit het verschil tussen de metingen en de gesimuleerde
metingen. In een Bayesiaanse omgeving, waarbij a priori kennis is opgenomen
in de kostenfunctie, lijkt er geen probleem met betrekking tot identificeerbaarheid
te zijn. Maar in dit geval worden de (combinaties van) parameters, die niet kun-
nen worden geschat met behulp van meetgegevens, bepaald door a priori ken-
nis.

Uit de analyse van een-fase en twee-fase reservoirmodellen blijkt dat ze niet iden-
tificeerbaar zijn met behulp van productiemetingen (i.e. druk- en debietmetin-
gen in de putten). De parameterwaarden in deze modellen zijn in grote mate
gebaseerd op kwalitatieve geologische informatie, en slechts in mindere mate
gebaseerd op informatie van de productiemetingen. Dit onderbouwt de noodzaak
om informatie van andersoortige metingen te gebruiken. Drukmetingen bevatten
alleen informatie over de permeabiliteit dicht bij de putten waarin wordt geme-
ten, en debietmetingen bevatten (na waterdoorbraak) alleen informatie over de
permeabiliteit in het gebied tussen de injectie- en productieputten. Algemeen con-
cluderen we dat de informatie van productiemetingen onvoldoende is om een be-
trouwbare schatting van de permeabiliteit te geven, en deze hangt voor een groot
deel af van de initiële keuze van de parameterwaarden. Dit geldt ook voor geolo-
gische, object-gebaseerde kanaal parametrisaties. De waarden van de parameter-
combinaties die niet kunnen worden geschat op basis van meetgegevens, d.w.z.
richtingen in de parameterruimte die niet identificeerbaar zijn, kunnen worden
veranderd zonder dat de waarde van de kostenfunctie verandert. Deze kunnen
worden beschouwd als extra vrijheidsgraden in het parameterschattingsprobleem
en worden gebruikt om bijvoorbeeld geologische informatie toe te voegen.
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