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Reliability analysis of reinforced concrete vehicle
bridges columns using non-parametric Bayesian

networksI
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Abstract

In the bridge industry, current traffic trends have increased the likelihood of
having the simultaneous presence of both extreme live loads and earthquake
events. To date, their concurrent interaction has scarcely been systematically
studied. Prevailing studies have investigated the isolated existence of either live
loads or seismic actions.

In an effort to fill this gap in the literature, a non-parametric Bayesian
Network (BN) has been proposed. It is aimed at evaluating the conditional
probability of failure for a reinforced concrete bridge column, subject simulta-
neously to the actions mentioned above. Based on actual data from a structure
located in the State of Mexico, a Monte Carlo Simulation model was developed.
This led to the construction of a BN with 17 variables.

The set of variables included in the model can be categorized into three
groups: acting loads, materials resistances and structure force-displacement be-
havior. Practitioners are then provided with a tool for unspecialized labor force
to gather information in-situ (e.g. Weight-In-Motion data and Schmidt hammer
measurements), which can be included in the network, leading to an updated
probability of failure. Moreover, this framework also serves as a quantitative
tool for bridge column reliability assessments.
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Results from the theoretical model confirmed that the bridge column prob-
ability of failure was within the expected range reported in the literature. This
reflects not only the appropriateness of its design but also the suitability of the
proposed BN for reliability analysis.

Keywords: Bridge, Reliability, Reinforced concrete columns, Bayesian
Networks
2010 MSC: 00-01, 99-00

1. Introduction.1

Bridges are high impact engineering structures which are menaced by differ-2

ent hazards such as earthquakes and high traffic loads. Then the possibility of3

having the combined presence of live loads and seismic events is not remote [1].4

These events may lead to a bridge damage which in turn may provoke negative5

consequences in the transportation systems.6

7

Vehicle loads exceeding the legal weight limits, cause serious threats to road8

transport operations. Live-load models of many codes of practice are theoret-9

ical only, and are commonly calibrated for reproducing a load effect and not10

the actual magnitude of the load itself [2]. Additionally the frequent occurrence11

of earthquakes could lead to damage and would further accelerate the deteri-12

oration of bridges, which might conduce eventually to a catastrophic failure. [3].13

14

In order to assess the impacts of the previously described scenario, reliability15

analyses are performed. To do so, it is necessary to gather consistent measures16

of safety under uncertain events. Among the available reliability tools, Bayesian17

Networks (BN’s) offer the opportunity to fulfill these requirements, because they18

represent multidimensional probability problems with a reduced number of pa-19

rameters. In addition, BN’s can be updated when new data becomes available.20

21

The purpose of this piece of research is to estimate the bridge reinforced22

concrete column conditional Probability of Failure (POF) through a BN. To23

this end, the variables considered in the study are: seismic intensity, traffic24

loads and materials properties. The main originality of this paper consists in25

the possibility of updating such POF by considering new practical information.26

27

In the subsequent sections, a typical Mexican bridge will be firstly presented.28

Then, the failure mechanisms of RC columns will be explained. Next, the the-29

ory behind BN’s will be discussed in combination with the variables considered30

in the research. To complete the discussion, some limit state functions will be31

introduced. Then, the resultant BN and its main features will be explained,32

along with its use in the above mentioned structure. The main findings of the33

study will then be discussed. Finally, the conclusions of the investigation will34
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be drawn.35

36

2. Mexican bridge37

The structural element under analysis is the central bent column of a bridge38

built in 2014, with two lanes and located in the state of Mexico. The bridge has39

eight 35.0 m spans, each of which has six concrete box girders. Their ends rest40

on bents composed by 2 circular RC columns, with a diameter of 1.40 m and a41

square pier cap of 1.4 m. The length and cross section of the interest column42

are depicted in Figure 1. In terms of its reinforcement features, 37 longitudinal43

steel bars with a diameter of 25.4 mm, and spiral transversal reinforced with44

12.7 mm steel bar (1 turn every 10 cm) are considered.45

46

Figure 1: Plane, vertical view and details of the structure under analysis [cm].

The bridge under study was chosen because it represents 73.1% of the struc-47

tures built in the state of Mexico [4] over the last four decades. Moreover, it is48

situated in a seismic zone with frequent annual activity [5]. In parallel, consider-49

able traffic loads use the structure on a daily basis [6]. Consequently, it fulfilled50

the established criteria to carry out the required analysis. Prior to explaining51
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the construction of the BN, it is important to understand the RC column failure52

modes.53

54

3. Reinforced concrete columns failures modes55

There are different failure mechanisms of RC columns, e.g. structural in-56

stability and pure compression. The recorded data of damaged columns during57

past strong motion events revealed two main failure conditions: flexural and58

shear [7]. As will be discussed later, these two have been chosen to propose the59

limit state functions to perform a reliability analysis. Moreover, to include a60

service limit state evaluation, the drift exceed likelihood of the element will also61

be assessed. Even though a comprehensive description of the failure modes can62

be found elsewhere [8], next some highlights will be presented.63

64

3.1. Combined axial and flexural strength65

Interaction diagrams are a visual representation of the combined loads, usu-66

ally bending moment (M) and axial load (P), that will cause the RC column to67

fail. These diagrams are created assuming a series of strain distributions and68

computing the corresponding values of P and M [9]. Following the steps detailed69

in [10], the nominal axial load (P) and the bending moment capacity (M) about70

the assumed neutral axis were estimated the for element of interest.71

72

3.2. Shear strength73

The shear strength (VU ) of RC members is affected by a number of pa-
rameters: applied shear stress level, level of imposed ductility, level of axial
compression force, aspect ratio, transverse steel ratio, and longitudinal steel ra-
tio [11]. VU for a circular cross section in combined bending and compression
stress regime adopted in the Mexican code NTC RCDF[12] is given as follows:

VU = VCR + VSR (1)

74

75

Where VCR is the contribution of the concrete to shear strength, and VSR76

is the contribution of the shear reinforcement.77

78

3.3. Drift79

Since this research is aimed at obtaining the POF of the mentioned limit
states, the resistance component in this case will be the permissible drift. Ba-
sically, the drift (γ) is a representative measure of a structural system affected
by seismic forces, calculated as:

γ =
U

H
(2)
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80

81

Where H is the height of the column and U is the lateral displacement.82

83

Based on the recommendations given in [13], a response modification factor84

(R=3) for vertical RC vertical piles was selected. According to the Mexican pro-85

cedure NTC-RSEE [14], the corresponding maximum drift value is γmax=0.02.86

Having highlighted these points, in the next section the theory behind BN’s will87

be briefly presented.88

4. Non-Parametric Bayesian Networks89

The literature reports various studies within the reliability bridge analysis,90

centered on the use of fuzzy logic [15], the analytic hierarchy process [16] and91

fragility curves [17]. Another tool that could be used in the exercise is a BN.92

Based on the discussion reported in [18], which highlights the advantages of93

using BNs in the bridge industry, such a tool has been adopted here. Bayesian94

Networks are directed acyclic graphs, consisting of nodes and arcs. The first95

represent uncertain or random variables which can be either continuous, discrete96

or functional. And the latter represent the causal or influential links between97

these uncertain variables [19].98

99

The theory of non-parametric BN’s is built around bivariate copulas. They100

are a class of bivariate distributions whose marginals are uniform on the uni-101

form interval [20]. The use of the normal copula reduces and simplifies the joint102

distribution sampling, when dealing with high dimensional continuous BN’s.103

Correlation = 0 implies independence, for the normal copula. The relationship104

between the rank correlation of the normal variables r, and the product-moment105

correlation of the normal variables ρ is given by [21]:106

107

ρ(X,Y ) = 2sin
(π

6
r(X,Y )

)
(3)

108

109

When building a non-parametric BN, there are two properties that should be110

validated: (i) that the data has a normal copula and (ii) that the BN represents111

enough dependence. To do so, the d-calibration score is computed. It uses the112

following of three variants.113

114

• ERC: empirical rank correlation matrix.115

• NRC: empirical rank correlation matrix under the assumption of the nor-116

mal copula.117

• BNRC: Bayesian network rank correlation matrix.118
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The score is 1 if the matrices are equal, and 0 if one matrix contains a pair
of variables perfectly correlated. The score will be “small” as the matrices differ
from each other element-wise [22]. The d-calibration score is given by:

d(Σ1,Σ2) = 1 −
√

1 − η(Σ1,Σ2) (4)

η(Σ1,Σ2) =
det(Σ1)1/4det(Σ2)1/4

det

(
1

2
Σ1 +

1

2
Σ2

)1/2
(5)

Where Σ1 and Σ2 are the correlation matrices of interest. More details for119

non parametric BN’s can be consulted in [23], [24] and [25]. Now that a typical120

Mexican bridge has been presented, the failure modes of the RC column dis-121

cussed, and the BN theory briefly described, the steps for building the network122

of interest will be exposed.123

124

5. Framework for building the BN125

The requirements of the BN have been divided into three categories: traffic126

loads, ground motion and bridge information. The first refers to the position127

of the two trucks in the bridge relative to the beginning of the structure, the128

number of axles per lane, the gross weight per vehicle and the weight per lane.129

While the length of the bridge span was able to hold up to two vehicles per130

lane, only one was taken into consideration. This was because of the restriction131

imposed by the maximum truck legal length [26]. The second considers the132

seismic accelerograms used in the study with their corresponding Peak Ground133

Accelerations (PGAs). The third is related to resistance material properties134

(concrete and reinforcement steel) and the Finite Element Model (FEM) of the135

bridge.136

137

It should be noted, that the list of variables selected is not exhaustive, it138

only considered those that take part in the initial stages of the phenomena.139

The main selection criteria used was the availability of data by means of either140

experiments, experts or simulation. Figure 2 shows the whole framework for141

building the BN, based on the model described in [2].142

143
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Figure 2: Framework for the joint live load and earthquake loads

To operationalize the process, a computer script was written in MATLAB R©,144

aimed at controlling SAP2000 R© through an Application Program Interface145

(API). Bear in mind that a useful method to assess infrastructure performance146

is Monte Carlo Simulation (MCS), which makes use of random numbers to147

compute complex phenomena. Basically, random variables with specific distri-148

butions can be modeled [27].149

150

The algorithm used to run the exercise included the following phases:151

152

1. For each of the input variables, random numbers are generated via MCS153

(see input nodes in Figure 2).154

155

2. The MATLAB R© script is then executed with the random data.156

157

3. The corresponding output variables are obtained by means of SAP2000 R©.158

159

4. The processes is repeated.160

161

Here, given the limited computational resources and time to carry out the162

research, only 3500 realizations have been performed. Each one took approxi-163

mately two hours to complete. The simulations were run on a personal computer164

with 64-bit, Windows 10 OS, 8 GB RAM and i7-6700 Intel 3.40 Ghz processor.165

Nevertheless, it is important to note that the resultant imprecision level is 0.010166

for a 99% confidence interval [28]. With these ideas in mind, now the categories167

within the framework will be detailed.168

169
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5.1. Traffic loads170

According to the Mexican standard NOM-012-SCT-2-2014 [26] there are171

three main types of design vehicles with a maximum weight of 740.4 kN. How-172

ever, empirical evidence has revealed that it is lower than the actual Mexican173

highway traffic loads. Garcia-Soto [29] reported a maximum gross vehicular174

weight of 1307.7 kN in a main highway located in central Mexico, i.e. 1.75175

times the maximum allowed within the standard.176

177

In terms of the vehicle masses, the weight in motion (WIM) system was178

designed for quantifying axle loads, vehicular weights, inter axial separations,179

vehicle lengths and speeds [30]. It represents a good alternative for knowing180

the traffic flow characteristics in the bridge under analysis. However, evidence181

about the existence of WIM in Mexico is scarce [29].182

183

As a consequence, and based on the experience of one of the authors [30],184

who developed a large-scale hybrid BN for traffic load modeling from the WIM185

system of The Netherlands. Then data from the Dutch WIM was used to carry186

out the simulation exercise presented in this paper. It should be noted here, that187

the aim of the research is to establish a theoretical methodology for reliability188

analysis of RC bridge columns. In a practical evaluation, actual data form the189

structure under analysis should be employed. Having clarified the point, Figure190

3 shows the total truck weight per lane considered for the case study.191

192

As can be seen, the corresponding empirical distribution has a mean of 545193

kN, with a standard deviation of 260 kN. Its maximum value is 1464 kN, a194

quantity comparable with that registered in central Mexico for a single heavy195

truck [29]. In the next section the ground motion variable will be presented.196

197

Figure 3: Total weight per lane (one nine axles vehicle).

5.2. Ground motion198

Unlike the previous variable, which was easy to operationalize, the ground199

motion can be represented in different manners. Note that the dynamic charac-200

teristics of the bridge have been neglected in this study. Thus, further research201
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should address this limitation. Under these circumstances, according to [31] the202

most widely used parameter in strong-motion studies is the peak ground accel-203

eration (PGA). Essentially, it has been deemed superior compared to several204

intensity measures such as: peak ground velocity, peak ground displacement,205

spectral acceleration, Arias intensity, velocity intensity, cumulative absolute ve-206

locity and cumulative absolute displacement. Then, on the basis of efficiency,207

practicality, proficiency, sufficiency, and hazard computability, PGA is the op-208

timal intensity measure [32].209

210

Once the PGA was selected, to choose the ground motion accelerograms for211

this study, three alternatives were explored. Being an academic exercise, the212

goal was to find some earthquakes able to reach the inelastic response of the213

structure.214

215

1. The Mexican large seismic data base was consulted first [33]. In the216

event, 98 ground motions with Mw>6, ranging from 1964 to 2018, were identi-217

fied. Having carried out the structural analysis, the inelastic state of the bridge218

was not reached.219

220

2. The seismic design program (PRODISIS) [34] developed by the Mexican221

Federal Electricity Commission (CFE) was now used. It allowed the generation222

of 100 synthetic accelerograms in the bridge location. These were used in the223

structural analysis. Once again, the inelastic state of the structure was not224

reached.225

226

3. The ground motion database proposed by Caltrans engineers from the227

Pacific Earthquake Engineering Research Center, was then chosen [35]. Specif-228

ically, it was utilized in [36] in a probabilistic seismic demand analysis. In this229

case, the inelastic state of the bridge was finally reached.230

231

Consequently, 12 three-components (longitudinal, transverse, and vertical)232

ground motions were selected from the latter. To complement the database, the233

no-earthquake scenario and the ground motion occurred on 2017-09-19 in Mex-234

ico was also included, leading to a total of 14 records. The 2017 earthquake was235

elected not only for its epicenter location (about 100 km away from the bridge),236

but also for the need to include at least one Mexican record in the analysis.237

These ground motions cover low, moderate, and high hazard seismic levels, as238

shown in Table 1.239

240
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Table 1: General characteristics of the ground motions.
Earthquake Year Station PGA

No-earthquake – – 0.000
Morelos, MX 2017 DX37 0.191

Livermore, USA 1989 MGNP 0.245
Morgan Hill, USA 1984 CCLYD 0.273
Loma Prieta,USA 1989 LEX 0.403
Loma Prieta,USA 1989 GILB 0.447
Coyote Lake,USA 1979 CLYD 0.527

Parkfield,USA 1966 CS050 0.659
Loma Prieta, USA 1989 GAV 0.695
Loma Prieta, USA 1989 LGPC 0.783

Kobe, JP 1995 KOB 0.824
Tottori,JP 2000 TTR 0.975

Northridge, USA 1989 COR 1.026

The years of the events range from 1966 to 2017. While nine of them were241

recorded in the USA, two were registered in Japan and one in Mexico. Since all242

of them led to damage of RC bridge columns either by flexural or shear stresses243

[7], they were considered in the current research. Strictly speaking, only the244

Mexican record should be used in the assessment of the structure analyzed.245

Nevertheless, the use of the other ground motions helps to better understand246

the phenomena under study. Now that the first two categories of the framework247

have been established, the third will be presented.248

5.3. Bridge information249

The Mexican bridge has already been described in terms of its geometry and250

reinforcement features (see Figure 1 above). To enhance the description, both251

its material properties and its finite element model will next be described.252

253

5.3.1. Material properties254

Four mechanical properties were introduced into the BN: concrete compres-255

sive strength (f ′c), concrete elastic modulus (Ec), reinforced steel yield strength256

(fy) and tensile strength (fu). These variables were chosen because they are257

required in the in-situ tests established in the Mexican standards [12], [37], [38],258

[39], [40], [41], [42] and [43]. The empirical part of the research consisted of259

collecting data from 64 fresh concrete cylindrical specimens, and 44 representa-260

tive longitudinal reinforcement samples. They were obtained during the bridge261

construction process.262

263

Given the results of the laboratory test, the model uncertainties for resistance264

have been considered as random variables. They are described by appropriate265

probability density functions (pdfs). The type of distribution and the relevant266

statistical parameters found in the case study are listed in Table 2267

268
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Table 2: Random variables, type of distribution and parameters found in the case study.

Random Variable Distribution µ σ
f ′c(MPa) Lognormal 3.4782 0.10988
Ec(MPa) Lognormal 10.181 0.061225
fy(MPa) Lognormal 6.1321 0.080797
fu(MPa) Normal 7.1614 46.498

Due to the scarcity of field data, dependence models such as the gaussian269

copula can be employed to generate random data having the statistical charac-270

teristics of the specimens. Thereby, given the correlation between f ′c−Ec and271

fy− fu, a random gaussian copula is generated. First the Pearson’s coefficient272

(ρ) is computed using a small sample of empirical data (see Figure 4a). Through273

equation (3) the associated Spearman’s rank (r) is calculated (see Figure 4b).274

This enables to generate a larger sample of data based on the original data275

source.276

277

(a) f ′c− Ec copula (b) f ′c− Ec scatter plot

Figure 4: f ′c− Ec copula and scatter plot.

Once the random pair sample is computed, each material property is entered278

into the finite element model, which will now be described.279

280

5.3.2. Finite element model281

The numerical model is aimed at understanding the bridge behavior. The282

variables of interest here include: maximum axial load (MaxP), maximum shear283

(MaxV), maximum bending moment (MaxM), and lateral displacements (U).284

A simplified FEM of the structure has been built using SAP2000 v.14 bridge285

wizard module [44]. Following the guidelines for non-linear analysis of bridge286

structures [35], the subsequent assumptions are considered:287

• Three component ground motion non-linear time history analysis is exe-288

cuted.289

17



• Adopting the recommendations made in [45], to achieve an adequate use of290

real accelerograms in the nonlinear analysis of a multi-span bridge, ground291

motions may be amplified using a scale factor of 2.0.292

• The interaction soil-structure is not taken into account and the ground is293

not modeled.294

• Response in the inelastic interval is only evaluated for the RC column295

under study.296

• Plastic hinges are placed at the ends of the column at 5% and 95% of the297

height.298

• Springs are established at the beams’ support ends and over the cap.299

• Negligible second-order effects (P − ∆).300

• Neoprene bearing pads only work as a simply supported system.301

• Fixed joints are included in the column bottom.302

• The Hilbert Hughes Taylor integration method is employed.303

• The Mander parametric approach is utilized for concrete modeling.304

• The simultaneous presence of two vehicles with random weight and posi-305

tions on the bridge is contemplated.306

Figure 5 shows the FEM simplified model. It should be observed that some307

springs have been included not only in the support ends but also in the bent308

cap. This is to consider damping effects during the simulation exercise. After309

the detailing of the three categories of the framework, in the successive section310

the BN model will be proposed.311

312
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Figure 5: Simplified FEM model.

6. Bayesian network developed313

The dependence structure of the data was modeled with a BN, that consists314

of 17 nodes (variables of interest) and more than 100 arcs illustrated in Figure315

6. The model was built in the uncertainty analysis software package Uninet [46].316

317

The occurrence of a seismic event of certain intensity (PGA) is independent318

of the vehicle weight in each lane of the bridge (WA1, WA2). The same is true319

for the number of axles in each lane (ApL1, ApL2) and the material properties320

(f ′c, Ec, fy, fu). WA1 and WA2 in turn, are independent from one another.321

Similarly, the material properties of the concrete (f ′c, Ec) are independent of322

the reinforcement steel strength (fy, fu). Moreover, ApL1 and ApL2 are con-323

ditionally independent of the force variables (MaxP, MaxV2, MaxV3, MaxM2,324

MaxM3) and the displacement variables (U1, U2, U3) given the loads on each325

section of the bridge (WA1, WA2).326

327
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Figure 6: Proposed model.

The dependence between vehicles, earthquake intensity, material properties328

and force-displacement variables is complex. Hence, arcs from them to the re-329

mainder variables of the network are considered. The reason for this is that the330

BN model that would capture most of these interactions is precisely a complete331

graph (see the arrowheads converging in the output nodes in Figure 6). Once332

the graphical part of the model has been detailed, its validation process will be333

described.334

335

6.1. Validation of the model336

The dependence calibration score was estimated to validate the BN using337

Equation (4). Based on the approach exposed in [22] for calculating the d-score,338

a sample of 165 observations was generated 1800 times. This resulted in a d-339

score of 0.54, showing that the data has a normal copula (see Figure 7a ERC vs340

NRC). Similary, the resultant d-score between BNRC and NRC equals 0.868,341

demonstrating that the BN dependence is enough (see Figure 7b). This analysis342

concluded that the model was valid, hence valid reliability assessments can be343

carried out.344

345
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(a) The d-score of the ERC vs NRC (b) The d-score of the BNRC vs NRC

Figure 7: Dependence calibration score.

7. Reliability analysis346

The Oxford English Dictionary [47] defines reliability as ”the quality of being
trustworthy or of performing consistently well”. This definition is higly associ-
ated with the assessment of the POF [48]. To evaluate such a probability, a
limit state function (Z) should be prior defined. In this case, Z is the condition
beyond which, the structure or part of the structure does not longer fulfill one of
its performance requirements. The limit state Z can be assessed by considering
the resistance R and the loads L, i.e. Z = L− R. Failure occurs when L > R.
Then, the probability of failure equals:

Pf = P (Z ≥ 0) (6)

As mentioned earlier, for the RC column analyzed, R will be estimated using347

the approach described in section 3. ln contrast, L will be obtained from the348

FEM analysis. Subsequently, the limit state functions required will be estab-349

lished.350

351

7.1. Combined axial and flexural strength limit state function352

The limit state function ZBC is assessed by considering the position of the353

point (MaxM, MaxP) in the corresponding interaction diagram. The following354

two conditions are considered:355

356

if the point is inside of the diagram area:

ZBC = −1 ∗
√

(MaxM − x1)2 + (MaxP − y1)2 (7)

if the point is outside of the diagram area:

ZBC =
√

(MaxM − x1)2 + (MaxP − y1)2 (8)
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Where (x1, y1) are the coordinates of the closest point on the interaction dia-357

gram boundary to the point (MaxM, MaxP). Failure occurs when ZBC > 0.358

Figure 8 shows two examples of the ZBC value.359

360

(a) (MaxM, MaxP) combination inside the
interaction diagram, negative ZBC value

(b) (MaxM, MaxP) combination outside
the interaction diagram, positive ZBC

value

Figure 8: ZBC value.

Therefore, the POF due to combined axial and flexural strength equals:

PfBC = P (ZBC ≥ 0) (9)

7.2. Shear strength limit state function361

Here, the shear strength function ZSh is assessed by means of V u, and the
maximum acting shear in the element (MaxV ).

ZSh = MaxV − V u (10)

Thus, the POF due to shear (PfSh) is:

PfSh = P (ZSh ≥ 0) (11)

7.3. Drift exceedance limit state function362

Finally the drift exceedance function Zγ is computed through γ and the
maximum permissible drift γmax.

Zγ = γ − γmax (12)

The drift exceedance probability (Pfγ) is:

Pfγ = P (Zγ ≥ 0) (13)

363

364

Once the model has been fully explained, its application will be presented365

in the next section, together with an analysis and discussion of its results.366
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8. Analysis and discussion367

One of the advantages of the BN model, is that whenever evidence becomes368

available, the joint distribution may be updated accordingly. This procedure is369

referred to as conditionalization. Then, the BN is ready to be used for inference370

processes. It is also possible to condition either a unique value, or an interval.371

372

In order to understand the use of the BN model, the instantiation process373

of the input nodes, using the PGA variable, will be illustrated. Making use of374

the intensities already presented in the last column of Table 1, they are firstly375

ranked from the minimum to the maximum value i.e. 0.00 to 1.026. Secondly,376

the 25th and 75th percentile values are calculated. In this case, they correspond377

to 0.273 and 0.783 respectively. Then, three ranges are proposed: (0.00,0.273)378

for low ground motion intensities; (0.273,0.783) for mid ground motion intensi-379

ties; and (0.783,1.026) for high ground motion intensities.380

381

The same steps are followed with the remainder selected input variables382

(WA1, WA2, f ′c, fy). With this approach, 243 (35) scenarios can be analyzed.383

Each may help to determine the POF of the RC column subject to the combined384

action of, say, axial and flexural strength. Table 3 shows both the quantitative385

ranges found, and their qualitative labels.386

387

Table 3: Input node labels.
Input node LB UB Label

PGA[g]
0.000 0.273 Low
0.273 0.783 Middle
0.783 1.026 High

WA1[kN]
21.80 372.0 Low
372.0 676.0 Middle
676.0 1464.4 High

WA2[kN]
43.70 378.8 Low
378.8 705.0 Middle
705.0 1464.4 High

f ′c[MPa]
22.70 30.00 Low
30.00 34.80 Middle
34.80 47.90 High

fy[MPa]
345.5 435.0 Low
435.0 484.0 Middle
484.0 619.7 High

To demonstrate the use of the BN in practice, an example is now pro-388

vided. Suppose that the following scenario is randomly generated: PGAMiddle,389

WA1High, WA2High, f ′cLow, and fyLow. Essentially, it represents a situation390

with considerable vehicle loads and low material resistances. Using a sample391

that satisfies the conditionalization of the five input variables, the limit state392

function (ZBC) is evaluated. By means of an exceedance probability analysis393

[22], a POF=3.35x10−7 is calculated. This probability is in line with the figures394

reported in [49], and corresponds to a small failure rate (lower than 1x10−6).395

396
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Figure 9 shows graphically the cumulative exceedance probability for this397

condition. While the dotted line represents the empirical distribution of ZBC ,398

the dashed one represents the corresponding extrapolation. As can be seen, the399

sample obtained from the conditionalized BN does not reach the failure state400

ZBC > 0. In order to investigate the POF, the exceedance probability obtained401

from the BN may be extrapolated by usual probability distribution fitting tech-402

niques. These have been employed before, for example, in the context of bridge403

reliability using WIM data from the Netherlands in [50] and [51].404

405

Seventeen continuous parametric distributions are fitted to the data through406

maximum likelihood estimation in MATLAB. The best fit is then selected based407

on Akaike’s information criterion (AIC [52]). In the case of Figure 9, the result408

led to a t distribution with mean µ = −216.51, scale parameter σ = 27.773409

and shape parameter ν = 16.35. Note that the t distribution approximates the410

Normal distribution as ν tends to infinity.411

412

The data shown in Figure 9 is unimodal. For multimodal distributions in413

[50], [51] and [52] a finite mixture of Gaussian distributions is recommended414

in order to better represent tail behavior. Other POFs in table 4 have been415

computed by extrapolating the parametric distributions obtained from the BN,416

as judged by the AIC.417

Figure 9: Conditional POF for the following case: PGAMiddle, WA1High, WA2High, f ′cLow,
and fyLow.

Given the large number of possible cases, 15 scenarios have been chosen for418

further analysis. The criteria for selection were as follows: one third of the419

events correspond to a low PGA, one third to a middle PGA and one third420

to a high PGA. For the loads (WA1 and WA2) and the resistances (f ′c and421

fy) there were 81 combinations. Although not exhaustive, five were used be-422

cause they would give a general insight of the seeked probabilities. They are:423

(High-High, Low-Low), (Low-Low,Low-Low), (High-High, High-High), (Low-424

Low, High-High) and (Middle-Middle, Middle-Middle) respectively. Table 4425

24



summarizes not only the described scenarios but also their associated probabil-426

ities of failure. Three POF’s are being reported: PfBC , PfSh and Pfγ . Just as427

a reference, the β reliability index associated with the POFs found range from428

3.1 to 8.1. [49].429

Table 4: Probability of failures for each case

Cases
Peak Ground

Acceleration (PGA)
Total weight

per lane (WA)
Materials

Resistance (f’c, fy) PfBC PfSh Pfγ
Level of conditionalization

1

Low

High, High Low, Low 2.24E-07 6.53E-04 3.62E-05
2 Low, Low Low, Low 1.58E-07 9.46E-04 1.50E-05
3 High, High High, High 1.11E-16 4.67E-11 2.99E-06
4 Low, Low High, High 4.88E-15 1.33E-11 4.96E-06
5 Middle, Middle Middle,Middle 3.33E-16 1.17E-08 6.10E-07
6

Middle

High, High Low, Low 3.35E-07 1.28E-03 3.19E-04
7 Low, Low Low, Low 2.17E-07 1.43E-04 1.64E-04
8 High, High High, High 1.44E-14 7.49E-11 2.67E-05
9 Low, Low High, High 3.57E-14 6.73E-11 2.63E-05
10 Middle, Middle Middle, Middle 2.22E-16 7.61E-08 4.70E-05
11

High

High, High Low, Low 1.09E-07 9.65E-04 4.17E-03
12 Low, Low Low, Low 2.47E-07 5.39E-04 3.15E-03
13 High,High High,High 1.11E-16 1.04E-11 4.32E-04
14 Low, Low High,High 2.22E-16 6.37E-12 1.78E-04
15 Middle, Middle Middle, Middle 1.45E-10 1.27E-07 1.32E-03

For the combined axial and flexural strength, the most adverse scenario is430

given by PGAMiddle, WA1High, WA2High, f ′cLow, and fyLow (case 6) with a431

PfBC ≈ 3.35x10−7. The next three are: case 12 with a PfBC ≈ 2.47x10−7, case432

7 with a PfBC ≈ 2.17x10−7 and case 2 with a PfBC ≈ 1.58x10−7. Once more,433

all of them are lower than 1x10−6, ratifying small failure rates [49]. It becomes434

apparent that the PGA has minimum influence in the PfBC . However, it reveals435

the importance of the quality controls during the construction process, to avoid436

low material resistances.437

438

In terms of the shear strength, case 6 represents the worst possible event439

with a PfSh ≈ 1.28x10−3. This value corresponds to a large failure rate (close440

to 1x10−3) [49]. Now, for a middle PGA, the vehicle loads have an important441

influence in PfSh, given low material resistances. It is worth noting that the442

PfSh for case 7 is lower one order of magnitude than that for case 6. Moreover,443

it is lower eight orders of magnitude with respect to case 8 (PfSh ≈ 7.49x10−11).444

This confirms the importance of quality controls to ensure high material resis-445

tances during the building stage.446

447

Last but not least is the drift exceedance. Case 11 with a Pfγ ≈ 4.17x10−3448

is now the most adverse scenario. This value is 1.3 times that of case 12449

(Pfγ ≈ 3.15x10−3), meaning that the lower the vehicle loads, the lower the450

probability of failure. At this point, it was expected to obtain similar trends as451

those stated in [1]. Contrary to the finding reported here, they found a benefi-452

cial effect due to the presence of live loads. This was evidenced by the reduction453

of the measured displacements and probability of failure. In the same line of454

thought, more analyses may be performed. Those presented here have demon-455
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strated the value of the proposed BN model. Finally, the main conclusions of456

this research will subsequently be drawn.457

458

9. Conclusions459

This document has dealt with concrete RC bridge columns and their act-460

ing loads and materials resistances. Having reviewed the literature, it became461

apparent that the combination of earthquake and live loads could lead to the462

failure of the structure under analysis. To better comprehend the bridge behav-463

ior, a probabilistic model was develop using the BN framework.464

465

The proposed network includes the following variables: number of axles per466

lane, peak ground acceleration, total vehicle weight per lane, steel yield strength,467

tensile strength of the steel, compressive concrete strength, modulus of elastic-468

ity of the concrete, maximum axial load, maximum shear, maximum bending469

moment and displacements.470

471

After quantifying all 17 variables by means of statistical historical data,472

in-situ tests and Monte Carlo simulations, their probability distributions were473

established. All of them were represented through empirical distributions, al-474

lowing the analyst to calculate the RC POF’s.475

476

At the outset, it was intended to include Mexican return periods in the bridge477

analysis. According to the civil construction manual of the federal electricity478

commission [53], the return period associated to the seismic demand, in the479

bridge location, ranges from 1000 to 2000 years. However, this recommendation480

was neglected since the Caltrans database was used to carry out the exercise.481

A similar decision was made with regard to the live load return period, which482

value is 50 years in the Mexican context [26], because the Dutch WIM data was483

utilized instead.484

485

Having clarified this, the most adverse POF due to combined axial and flex-486

ural strength is approximately 3.35x10−7. The worst calculated POF due to487

shear force is approximately 1.28x10−3 and the most adverse for the maximum488

drift exceedance is approximately 4.17x10−3. Moreover, some scenarios can be489

simulated with the model. The results have the potential to help bridge man-490

agers in the resources allocation based on new available data.491

492

Therefore, it is strongly believed that the methodology applied to build the493

model herein presented should serve as a reference. Basically, it might be ap-494

plied to complete related exercises in different locations.495

496

While the key objectives of this research have been achieved, there were a497

number of drawbacks associated with the work. Firstly, the limited availability498
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of data records for quantifying the variables. Secondly, the use of in-situ tests499

has proven to be a time-consuming aspect for collecting information.500

501

Overall, this research has demonstrated that the use of continuous probabil-502

ity distributions, generated through statistical data in concrete bridge columns,503

is not only reasonable but also advantageous. Even more, with new information504

the results can be updated through the proposed BN.505

506

This work forms part of a bigger project aimed at developing a more com-507

prehensive model applicable to the different components of a bridge. Finally,508

it is hoped that the results presented in this document are useful for the civil509

engineering community.510
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