
Understanding SMT Solvers
Exploring Parallelization in Floating-Point Problems

Tristan Schmidt1

Supervisor(s): Soham Chakraborty1, Dennis Sprokholt1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Tristan Schmidt
Final project course: CSE3000 Research Project
Thesis committee: Soham Chakraborty, Dennis Sprokholt, Andy Zaidman

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

To solve floating-point SMT problems, a variety
of algorithms can be used, but there is not one al-
gorithm that truly stands out at solving any kind
of problem, as most have their own specific sub-
set of problems where they perform well. A solu-
tion to maintaining efficiency in solving any kind of
floating-point SMT problem is to run many of these
domain specific solvers in parallel, allowing the
best to always come out on top. This paper aims to
provide an insight into possible improvements us-
ing parallelization by running multiple solvers (in
parallel) on a large and diverse set of problems. We
show that by parallelizing diverse solvers we can
obtain a significant speedup over individual solvers
on complex problems.

1 Introduction
The floating-point data type and its arithmetic are fundamen-
tal building blocks of many computer programs. It is of high
importance to test and verify the functionality of programs
to prevent any undefined or unknown behaviour, which is
commonly caused by rounding errors and other arithmetic
anomalies. Verifying programs is one of many tasks that
SMT solvers help with. For the floating-point data type it
is a particularly important one, as it is one of the most com-
mon primitive data types. Even though SMT solvers perform
well at these problems, it is often the case that a solver stands
out in a subset of problems, there isn’t one that stands out
in all of them. Many different solvers exist, each with their
own unique architecture, but there isn’t one that is optimal for
solving all floating-point SMT problems.

Parallelization is a simple but promising improvement [12]
to solve floating-point problems faster. It can be implemented
by making use of the multiple cores modern day computer
processors have, where each processor can run one solver, so
that they will run simultaneous / in parallel. This technique
does not limit the CPU access of other solvers so that, in the-
ory, the fastest solver will always yield the solution of a prob-
lem first. A portfolio solver approach like this is sometimes
used internally in solvers, but the technique is not often ap-
plied between different solvers. With this approach, we aim
to make a solver that is always at least as fast as the fastest
solver (available to us), which will be verified by testing our
solver on benchmarks from the 2018 SMT-COMP [21].

This paper aims to explore and address the possible opti-
mizations in solving floating-point SMT problems by apply-
ing parallelization. Specifically we use a tool to run diverse
and well-known SMT solvers in parallel to see how they per-
form on different benchmarks, from this we will conclude the
effect and possible optimizations obtained from paralleliza-
tion, as well as an analysis on how the underlying solvers
relate to the results they produced. Specifically we contribute
the following:

• We provide a detailed overview of the current state-of-
the-art floating-point SMT solvers.

• We discuss the current advancements of parallelism in
SMT solving and its limitations.

• We use a portfolio solver that deploys different solvers
to explore the possible benefits of parallelization.

• We compare our results to individual floating-point
solvers, which show improvements in the amount of
problems that can be solved and the time used in total
when given a time limit for each problem.

Our results show that in problems that take more time to
solve, parallelization matches the cumulative solving capa-
bilities of every individual solver, resulting in less time spent
solving, while being able to solve more problems overall. As
opposed to larger problems, parallelization does not improve
the solving speed of smaller problems.

2 Background
This section presents the most relevant background theory
and terminology regarding SMT solving, SMT solvers and
floating-point numbers.

Satisfiable Modulo Theories (SMT) problems question
whether a (mathematical) formula is satisfiable or not, that
is, if there is an arrangement of values such that the said
formula is true. An SMT problem can involve different data
types such as real numbers, integers, strings or floating-point
numbers, and their relative operators. An SMT solver (Figure
1) then tries to find solutions for these problems. The formula
x = y+5 could be an SMT problem of the integer data type,
where an answer given by an SMT solver could be x = 7 and
y = 2.

As there is no efficient solution (an algorithm in polyno-
mial time) to many of these problems, some SMT solvers
solve these problems by reducing them to a boolean satisfi-
ability (SAT) problem [10; 3]. With this generalization, only
an algorithm for a reduction to SAT is needed, which sim-
plifies writing a general solver. This also means that this
approach could be less efficient when writing a specialized
solver that is focused on less data types, and that many SMT
problems are more complex than SAT.

Figure 1: Architecture of an SMT solver

SMT problems can be of two types: sat / satisfiable or un-
sat / unsatisfiable. To prove that floating-point numbers are
not associative, we can turn it into a satisfiable SMT problem
by writing it in the SMT-LIB standard:

(d e c l a r e − fun x () (F l o a t i n g P o i n t 11 5 3))
(d e c l a r e − fun y () (F l o a t i n g P o i n t 11 5 3))
(d e c l a r e − fun z () (F l o a t i n g P o i n t 11 5 3))
(a s s e r t (n o t (=

(fp . add RNE x (fp . add rm y z))
(fp . add RNE (fp . add rm x y) z)

)))
(check − s a t)

When solving this problem with an SMT solver, the solver
will return sat. When we express an assertion that is clearly
false, such as asserting that x ̸= x, an SMT solver will return
unsat:

(d e c l a r e − fun x () (F l o a t i n g P o i n t 11 5 3))
(a s s e r t (n o t (= x x)))
(check − s a t)

Both of these problems can be solved by different solvers
relatively quick, but when problems become more complex
(more assertions and variables), one solving strategy tends to
become faster than the other, parallelism can find this better
strategy.

By the means of standardizing SMT solving, standards
have been made for specifying SMT equations and data
types. The specification, known as SMT-LIB [2], also
provides support for floating-point numbers, a so called
theory. An SMT theory describes and defines the logical
system and behaviour of a data type. The theory includes
details such as: the functions a floating-point solver should
support, the ways that these functions should behave and
the construction of a floating point number, specifically that
it is represented by a bit vector / bit array, which is used
to represent a number using a significant and an exponent.
SMT-LIB also manages SMT-COMP [21], a competition for
SMT solvers, which includes large sets of SMT problems
which are called benchmarks. These benchmarks are often
useful for testing the performance of an SMT solver based
on the accuracy of its solutions and its efficiency in terms of
computation time and correctness.

2.1 Solvers
The most common approaches to solving floating-point prob-
lems include reducing the floating-point problem to either a
bit vector problem (and from there to a SAT one) [17; 1;
6] or a real number problem [15; 8]. The first approach works
in theory, as floating-point operations are composed of bit
vector operations, but unfortunately this approach becomes
inefficient really quick when the input equation grows in size.
Trying to solve an equation by transforming it into a real num-
ber equation works sometimes, however it might return inac-
curate results because floating-point arithmetic doesn’t follow
real number arithmetic. As an example, floating-point num-
bers are not associative, while real numbers are, so x+(y+z)

does not always equal (x+ y)+ z, these problems are mostly
caused by the rounding after calculations on floating-point
numbers [9].

Z3
The Z3 solver [6] is one of the largest and most general
solvers. It supports almost all data types that are supported
by the SMT-LIB theories, including floating-point. It has
been proven to be an overall well performing solver, win-
ning many first places in the SMT-COMP across the years,
while also performing well in the QF BVFP (Quantifier-Free
Bit Vector and Floating Point) category, where solvers should
support a mix of both quantifier free bit vector and floating-
point problems. Z3 uses the DPLL(T) [10] algorithm to turn
SMT problems of a type T into a SAT problem and solve it
from there using the DPLL algorithm. Although the process
of transforming a floating-point problem into a SAT problem
is not documented, it becomes evident from the code1 that Z3
turns the floating-point problem into an equivalent bit vector
problem, which it solves using bit blasting. Bit blasting turns
a bit vector formula into an equivalent SAT problem by tak-
ing every bit from from the bit vector variables and turning
them into a propositional formula of the same form.

CVC5
The CVC5 solver [1] is a general purpose solver, similar to
Z3. In the 2024 SMT-COMP it has won every category in the
single query track2, and has performed well in the floating-
point arithmetic category. CVC5 implements the CDCL(T)
[3] (Conflict Driven Clause Learning) algorithm for a data
type T. CDCL is inspired by and similar to DPLL [3], but
it implements non-chronological backjumping, meaning that
it can go up multiple levels in its decision tree per iteration
when it reaches a conflict. CVC5 implements a similar bit
blasting technique3 to Z3. It uses SymFPU [20] to translate
floating-point operations an equivalent bit vector representa-
tion. After reducing to a bit vector problem, it uses bit blast-
ing to reduce it to a SAT problem, from where it is solved
using CDCL(T).

Bitwuzla
The Bitwuzla [17] solver is aimed at solving SMT prob-
lems regarding data types involving bits specifically, includ-
ing floating-point problems. In the 2024 (as well as 2023)
SMT-COMP, it has won all categories in the QF FPA sin-
gle query track4. Bitwuzla solves floating-point problems in
two ways. It first reduces it to a bit vector problem using
SymFPU, similar to CVC5. When solving a bit vector in-
stance, Bitwuzla either resorts to the classic bit blasting strat-
egy, or a propagation based local-search method [16].

GoSAT
The GoSAT [15] solver is an SMT solver that specifically
and only supports floating-point problems. GoSAT has been

1Github: Z3Prover/z3 src/tactic/fpa/qffp tactic.cpp
2https://smt-comp.github.io/2024/results/

largest-contribution-single-query/
3Github: cvc5/cvc5 src/theory/fp/fp word blaster.cpp
4https://smt-comp.github.io/2024/results/qf

fparith-single-query/

https://github.com/Z3Prover/z3/blob/e2e54527db46f0fbcef8923873818c0ee08d8aa2/src/tactic/fpa/qffp_tactic.cpp#L85-L101
https://smt-comp.github.io/2024/results/largest-contribution-single-query/
https://smt-comp.github.io/2024/results/largest-contribution-single-query/
https://github.com/cvc5/cvc5/blob/a255e1cef0e844b90e8fc9f8f3defdf3420b9069/src/theory/fp/fp_word_blaster.cpp
https://smt-comp.github.io/2024/results/qf_fparith-single-query/
https://smt-comp.github.io/2024/results/qf_fparith-single-query/

shown to perform particularly well compared to other solvers
on the griggio benchmark, a set of problems known to be
specifically hard for conventional SMT solvers. GoSAT,
as opposed to Z3, CVC5 and Bitwuzla, does not reduce a
floating-point problem to a bit vector one, but instead uses
global optimization to solve the problem by turning it into a
minimization problem.

3 Method
This section presents a parallel solver that deploys different
solvers over multiple CPU cores (Figure 2). Reasons to in-
clude different solvers will be presented, as well as possible
limitations of the solver and what metrics will be gathered
and why.

3.1 Running Solvers in Parallel
Architecture
The choice of language for the solver is python3.13.3. Python
is suitable for its ease of multi-threading and wide support of
libraries. All solvers that will be used have either a native
library or binary executable available, and thus we are not
limited by the relatively slow speed of Python itself.

Solvers
CVC5. We include CVC5 as it has proven to be a strong gen-
eral solver. It has shown promising results in many of the
most recent editions of SMT-COMP, in both overall results as
well as floating-point specific results.
Bitwuzla. We will include Bitwuzla as it is one of the
strongest bit and floating-point type specific solvers, as it has
won the floating-point SMT-COMP tracks of the most recent
years. Next to being a promising solver, Bitwuzla deploys a
strategy that is different compared to the general bit blasting
algorithm that utilizes CDCL or DPLL, allowing for possible
positive / faster results where conventional solvers will per-
form worse.
GoSAT. We will include GoSAT as it has shown to be a good
solver for problems where other conventional (bit blasting)
solvers will perform significantly slower, such as the grig-
gio benchmark [15]. As results for GoSAT have mainly been
aimed at this benchmark in the past, it could also provide in-
teresting insights when running GoSAT on other benchmarks.
Z3. We will include Z3 as it remains to be one of most well
known general solvers. For this reason, Z3 has been included
in various papers, which will help us compare and confirm
our own results (Section 6). General solvers such as CVC5
have a very similar architecture to Z3, yet they have shown
to be faster [20] on floating-point problems. Therefore, our
parallel solver might not benefit as much from Z3 as it may
from other solvers.

3.2 Benchmarks
We have taken the benchmarks from the 2018 SMT-COMP5

to compare the parallel solver to other solvers. These bench-
marks provide a diverse set of tests which have been used be-
fore to test different solvers [15; 20]. The QF FP benchmark

5See: https://smt-comp.github.io/2018/benchmarks.htmlSMT-
COMP 2018 benchmarks

set is used, where QF stands for quantifier free, as quanti-
fiers are known to pose problems regarding unsupported op-
erators for some solvers[15]. The problems in these bench-
marks are generated from / for software verification tools [19;
14] 6 7, randomized problems involving common floating-
point operators (wintersteiger benchmark) and manually
crafted problems [11].

3.3 Measurements
We measure the performance of a solver by its speed. For ev-
ery result yielded by the parallel solver, the (CPU) execution
time will be measured, as well as the result obtained. From
these metrics we can conclude the effect of the paralleliza-
tion, and compare this to the performance of the individual
solvers on the same problems.

3.4 Limitations
As GoSAT uses global optimization, it can never prove that
a problem is unsatisfiable, as it does not propagate variables
and reach conflicts. Because of this GoSAT returns unknown
when a result is (assumed to be) unsatisfiable8. It is clear that
this solver trades in absolute certainty / completeness for a
(possibly) faster solving time.

Figure 2: Architecture of the parallel solver

4 Experimental Results
This section presents the experimental results from running
the benchmarks on our parallel solver as well as other solvers
for comparison. We present the results per benchmark in a
graph where we compare the time spent per problem, as well
as a bar plot with the contributions of each solver to the par-
allel solving.

6Vector: https://www.vector.com/int/en/products/products-a-z/
software/vectorcast

7SPARK: https://www.adacore.com/about-spark
8See: ff

https://smt-comp.github.io/2018/benchmarks.html
https://www.vector.com/int/en/products/products-a-z/software/vectorcast
https://www.vector.com/int/en/products/products-a-z/software/vectorcast
https://www.adacore.com/about-spark
https://github.com/abenkhadra/gosat/issues/6

4.1 Configuration
All benchmarks have been ran on an 8 core M2 CPU, with
16gb of RAM available. Benchmarks have been run without
any foreground processes running that could interfere with
the CPU access of the solvers. The 8 cores ensure that all
solvers can have their own core, which is also ensured by
pythons multiprocessing module that spawns the processes.
All solvers have a 60 second timeout / limit to solving a single
problem, and share the same RAM with a size of 16GB.

4.2 Benchmarks
We show the results of the parallel solver next to those of
the individual solvers in a plot that represents the amount of
problems solved over time. From this graph we can see dif-
ferences between how many problems each solver can solve,
as well as how fast it solves these.

Figure 3: Results of the griggio benchmark.

When comparing the individual solvers in the griggio
benchmark (Figure 3), it can be seen that GoSAT has solved
the most problems in the least amount of time. Bitwuzla and
CVC5 show to be performing relatively similar. Looking at
the parallel solver, it can be seen that it has solved more prob-
lems than any individual solver, as well as that it has done this
in less time.

Figure 4: Results of the schanda benchmark.

For the schanda benchmark (Figure 4), both CVC5, Z3
and Bitwuzla perform very well compared to the Bitwuzla
propagation and GoSAT solver. The GoSAT solver does not

perform well because it does not support most of the floating-
point operations that are used in these benchmarks. The paral-
lel solver has solved more problems than any of the individual
solvers in less time.

Figure 5: Results of the ramalho benchmark.

For the ramalho benchmark (Figure 5), it can be seen that
Bitwuzla solves the largest amount of problems. All solvers
can be seen timing out on approximately half of the prob-
lems in the benchmark, including the parallel solver, which
does not provide better results than Bitwuzla. GoSAT is not
showed, as it does not support many of the operations that are
used in these benchmarks and because of this has solved 0
problems.

Figure 6: Results of the automizer2019 benchmark. Z3 is not
shown for clarity as it took 100x as long as the other solvers to solve
the problems.

For both the automizer2019, vector and wintersteiger
benchmark (Figure 6, Figure 7, Figure 8), it can be seen that
all solvers have solved every problem in the benchmarks, with
no significant differences between the times that the solvers
take. The parallel solver starts solving with a similar trend,
but it becomes slower once it has progressed further through
the benchmark. GoSAT does not support the operations that
are used in these benchmarks.

By looking at the the distribution of the amount of prob-
lems that are solved by each solver per benchmark (Figure
9), we can get a better insight into what solvers contribute
to the solving of each benchmark. Bitwuzla shows to have
solved most of the problems across all benchmarks.

Figure 7: Results of the vector benchmark.

Figure 8: Results of the wintersteiger benchmark.

Although the majority of problems is solved by one solver for
each benchmark, the solvers that solve the rest of the bench-
marks still make a significant and surprising contribution. For
the griggio benchmark it is clear that GoSAT is the most effi-
cient solver, being 6x as efficient as Bitwuzla (Table 1). Yet,
Bitwuzla manages to solve 14% of the problems, reducing the
solving time from 13 minutes down to 10 minutes.

Looking at the table of the time spent solving per bench-
mark (Table 1), we can see that our parallel solver outper-
forms every individual solver, as should be theoretically pos-
sible. Bitwuzla and CVC5 show to be the overall most com-
petitive solvers, where our solver is 1.14x to 1.35x faster,
across all benchmarks. When we compare our solver to
GoSAT it shows that our solver is 29.65x faster. This has
no significance as the increased time in GoSAT’s solving is
caused by timeouts, as it is unable to support some floating-
point operands, which is a known limit of GoSAT and pre-
vents it from solving a large portion of problems. If we take
into account these timeouts, and exclude the problems that
GoSAT does not support in the calculation, we can see that
our solver obtains a speedup of 1.37x. When comparing our
solver to Z3, a speedup of of 3.52x can be seen. The parallel
solver gives us a 2.30x speedup over the Bitwuzla propaga-
tion solver.
Because of their similar bit blasting tactic Z3, CVC5 and
Bitwuzla also show similar behaviour in solving (Figure 3,
Figure 4), where Z3 most of the times performs slightly worse
than the others, which is possible because of the structure of

Figure 9: The distribution of problems solved for each solver. Time-
outs are shown in blue. Numbers in the bars indicate the amount
of problems that are solved by the corresponding solver. For contri-
butions smaller than a hundredth of all problems, labels have been
hidden.

the code itself and not the algorithm it uses, as discussed by
other papers [20; 4].
While running different problems from the wintersteiger
benchmark with the Bitwuzla propagation solver, we encoun-
tered multiple timeouts, from which we estimated that the
entire benchmark would take multiple days to complete, as
it contains 39994 problems. We concluded that it was infea-
sible to run the entire benchmark, the results are marked with
an x.

5 Responsible Research
The proper working of SMT solvers is of high importance,
as this is what the essence of software verification is about.
As we have not introduced a new algorithm for solving it-
self, the accuracy and integrity of our portfolio solver de-
pends directly on the solvers that we have used, consider-
ing our code is correct. Our work is publicly available9

to provide this integrity as well as reproducibility. The
solvers that are used are all publicly available [15; 1; 6;
17], as well as the data that we have used to verify our solver
[21]. To obtain fair results we have ran our experiments in

9Repository: https://github.com/TrizlyBear/parallelsmt

https://github.com/TrizlyBear/parallelsmt

Table 1: The time every solver took to solve all problems of a benchmark. Numbers that are bold show the fastest solver. Crossed out numbers
indicate that the solver does not support (some) operations in the benchmark. Speedup times are proportional to the parallel solver, formatted
as the speedup time with / without solvers that timeout because of unsupported operations. The speedup column shows the speedup of our
solver compared to the individual solvers across all benchmarks, whereas the column shows the speedup of our solver for a single benchmark
compared to all solvers.

Model griggio schanda ramalho vector automizer2019 wintersteiger Speedup

bitwuzlaprop 7923.54s 1461.23s 1561.95s 13.32s 2.34s x 2.30/2.30
cvc5 4985.38s 370.45s 1181.67s 15.90s 2.68s 3817.71s 1.35/1.35
gosat 775.48s 2580.75s 2160.00s 5460.00s 1440.00s 1198390.46s 29.65/1.37
bitwuzla 4697.98s 200.75s 1087.13s 14.19s 2.39s 3839.68s 1.14/1.14
z3 9394.44s 330.98s 1203.06s 18.33s 427.09s 3864.78s 3.52/3.52
parallel 564.73s 166.95s 1158.85s 27.71s 2.92s 6770.50s 1.00/1.00

Speedup 7.49/7.49 3.72/2.61 1.20/1.08 1.79/0.55 8.45/3.06 2.38/0.57

equal environments, with minimal interference of other pro-
cesses.

6 Related Work
This section presents relevant research to parallelization and
other benchmark results of the relevant solvers. We present
an overview of parallelization and its benefits compared to
running SMT solvers sequentially, as well as comparisons of
relevant benchmark results compared to ours.

6.1 Parallelization
Parallelization has already been shown to have a positive ef-
fect on SMT solving. Using the Z3 solver it has been shown
[12] that an overall speedup of 1.06 can be achieved, but
when looking at harder problems that can not be solved un-
der a minute, the average speedup is 3.2. This shows that
parallelization becomes significantly more useful when solv-
ing harder problems, our findings reach the same conclusion.
The strategy used to achieve this speedup is lemma sharing.
When an instance of a solver finds a lemma, it adds this
lemma to a queue that is available to all solver instances, from
where other solvers can use any new lemmas to specify their
search domain further.

ManySAT [13], a parallel SAT solver, has also shown
to make significant improvements (compared to sequential
solvers) by running solvers in parallel. The solver deploys
the same (CDCL based) solver with different configuration
on different cores.

6.2 Benchmarks
The results of this study confirm different performance re-
lated findings from previous studies. We can confirm the fast
behaviour of GoSAT on the griggio benchmark compared to
a slow performance on other benchmarks that the SymFPU
paper has shown before [20]. Our results of the Bitwuzla,
CVC5 and Z3 solver also show similar times compared
to the experiments results shown in the Bitwuzla system
description [17]. Even though it is not mentioned in the paper
whether Bitwuzla used a bit-blasting or propagation-based
approach, we believe that it uses the bit-blasting approach as
this has shown to be the most effective method of the two

(Table 1). We have not found any benchmark results of the
propagation-based approach [16] in other studies.

7 Conclusion and Future Work
We have addressed the workings, issues and state-of-the-
art solvers of floating-point SMT problems (Section 2) from
which we have constructed a parallel / portfolio solver (Sec-
tion 3). From our experiments we have concluded that paral-
lelization provides promising results and optimizations when
it comes to solving floating-point SMT problems. Across all
experiments 4 our solver performs better than any individ-
ual solver, with speedups between 1.14x and 1.37x over the
most competitive solvers and a speedup of 2.30x+ over other
solvers. Our solver achieved speedups of 2.61x+ on problems
that are not easily solvable (over 2+ seconds), contrasted by
the speed decrease that our solver shows on problems that are
easily solvable. Our solver has also shown that solvers which
do not stand out in the overall results of a benchmark, might
still be the best performing for some specific problems, re-
ducing overall solving time when using parallelization.

While our parallelization of some promising solvers has
shown positive results, there are other promising solvers such
as Boolector [18], MathSAT [5] and Yices [7]. Comparing
a parallel solver to these solvers as well as including them
in a parallel solver could provide more significant insights,
faster results to problems, and an even more diverse range
of algorithms that can be applied. GoSAT [15] has shown
to be one of the fastest solvers (Section 1), yet it can not
solve many problems because of its lack of support for some
floating-point operations and constructors. An implementa-
tion of these features would make it possible to solve a sig-
nificantly larger subset of problems.

References
[1] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon

Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman
Mohamed, Mudathir Mohamed, Aina Niemetz, An-
dres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar.

cvc5: A versatile and industrial-strength SMT solver. In
Dana Fisman and Grigore Rosu, editors, Tools and Al-
gorithms for the Construction and Analysis of Systems
- 28th International Conference, TACAS 2022, Held as
Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part I, volume 13243
of Lecture Notes in Computer Science, pages 415–442.
Springer, 2022.

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli.
The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2016.

[3] Roberto J. Bayardo and Robert C. Schrag. Using
csp look-back techniques to solve real-world sat in-
stances. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence and Ninth Con-
ference on Innovative Applications of Artificial Intelli-
gence, AAAI’97/IAAI’97, page 203–208. AAAI Press,
1997.

[4] Martin Brain and Marina De Vos. The significance
of memory costs in answer set solver implementation.
Journal of Logic and Computation, 19(4):615–641, 09
2008.

[5] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost
Schaafsma, and Roberto Sebastiani. The mathsat5 smt
solver. In Nir Piterman and Scott A. Smolka, editors,
Tools and Algorithms for the Construction and Analy-
sis of Systems, pages 93–107, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[6] Leonardo de Moura and Nikolaj Bjørner. Z3: An ef-
ficient smt solver. In Jakob Ramakrishnan C. R. and
Rehof, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337–340. Springer
Berlin Heidelberg, 2008.

[7] Bruno Dutertre. Yices 2.2. In Armin Biere and
Roderick Bloem, editors, Computer-Aided Verification
(CAV’2014), volume 8559 of Lecture Notes in Com-
puter Science, pages 737–744. Springer, July 2014.

[8] Zhoulai Fu and Zhendong Su. XSat: A Fast Floating-
Point Satisfiability Solver. In Proceedings of the 28th
International Conference on Computer Aided Verifica-
tion, Part II, pages 187–209. Springer, 2016.

[9] David Goldberg. What every computer scientist should
know about floating-point arithmetic. ACM Computing
Surveys (CSUR), 23:5 – 48, 1991. Cited by: 1183.

[10] George Hagen, Robert Nieuwenhuis, Albert Oliveras,
Cesare Tinelli, and Harald Ganzinger. Dpll(t): Fast de-
cision procedures. In Doron A Alur Rajeev and Peled,
editors, Computer Aided Verification, pages 175–188.
Springer Berlin Heidelberg, 2004.

[11] Leopold Haller, Alberto Griggio, Martin Brain, and
Daniel Kroening. Deciding floating-point logic with
systematic abstraction. In 2012 Formal Methods in
Computer-Aided Design (FMCAD), pages 131–140,
2012.

[12] Youssef Hamadi, Leonardo de Moura, and Christoph M.
Wintersteiger. A concurrent portfolio approach to smt
solving. In Oded Bouajjani Ahmed and Maler, editors,
Computer Aided Verification, pages 715–720. Springer
Berlin Heidelberg, 2009.

[13] Youssef Hamadi, Said Jabbour, and Lakhdar Sais.
Manysat: a parallel sat solver. Journal on Satisfiability,
Boolean Modelling and Computation, 6:245–262, 2010.

[14] Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch,
Marius Greitschus, Jochen Hoenicke, Yong Li, Alexan-
der Nutz, Betim Musa, Christian Schilling, Tanja
Schindler, and Andreas Podelski. Ultimate automizer
and the search for perfect interpolants. In Dirk Beyer
and Marieke Huisman, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 447–
451, Cham, 2018. Springer International Publishing.

[15] M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang
Kunz. gosat: Floating-point satisfiability as global opti-
mization. In 2017 Formal Methods in Computer Aided
Design (FMCAD), pages 11–14, 2017.

[16] Aina Niemetz and Mathias Preiner. Ternary
propagation-based local search for more bit-precise rea-
soning, 2020.

[17] Aina Niemetz and Mathias Preiner. Bitwuzla. In Con-
stantin Enea and Akash Lal, editors, Computer Aided
Verification - 35th International Conference, CAV 2023,
Paris, France, July 17-22, 2023, Proceedings, Part II,
volume 13965, pages 3–17. Springer, 2023.

[18] Aina Niemetz, Mathias Preiner, and Armin Biere.
Boolector 2.0. J. Satisf. Boolean Model. Comput.,
9(1):53–58, 2014.

[19] Mikhail Ramalho, Felipe R. Monteiro, Jeremy Morse,
Lucas Cordeiro, Bernd Fischer, and Denis Nicole. Es-
bmc 5.0: An industrial-strength c model checker. In
33rd IEEE/ACM International Conference on Auto-
mated Software Engineering, 2018.

[20] Florian Schanda, Youcheng Sun, and Martin Brain.
Building better bit-blasting for floating-point problems.
In Lijun Vojnar Tomáš and Zhang, editors, Tools and Al-
gorithms for the Construction and Analysis of Systems,
pages 79–98. Springer International Publishing, 2019.

[21] Tjark Weber, Sylvain Conchon, David Déharbe,
Matthias Heizmann, Aina Niemetz, and Giles Reger.
The SMT competition 2015-2018. J. Satisf. Boolean
Model. Comput., 11(1):221–259, 2019.

	Introduction
	Background
	Solvers
	Z3
	CVC5
	Bitwuzla
	GoSAT

	Method
	Running Solvers in Parallel
	Architecture
	Solvers

	Benchmarks
	Measurements
	Limitations

	Experimental Results
	Configuration
	Benchmarks

	Responsible Research
	Related Work
	Parallelization
	Benchmarks

	Conclusion and Future Work

