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SUMMARY

face forward-facing step alters the stability and transition mechanisms of a

laminar incompressible swept-wing boundary layer dominated by stationary
crossflow instabilities (CFI). The results elucidate the processes that cause significant
transition advancement due to the step and, in turn, challenge the classic paradigm
in fluid mechanics that rapid, localised surface-geometry variations are universally
detrimental to laminar flow. Through Direct Numerical Simulations (DNS) and new
theoretical modelling, this thesis shows that, under specific conditions, a forward-
facing step stabilises pre-existing stationary crossflow vortices and thereby delays
laminar-turbulent transition.

Steady-state DNS are conducted first to examine the interaction mechanisms
between CFI of varying amplitude and steps of different heights, corresponding to
roughness Reynolds numbers (Repp,) from 368 to 832.

Three methodological innovations underpin the analysis of stationary-perturbation
effects. First, a perturbation-projection framework is introduced, decomposing the
perturbation field relative to the local base-flow orientation rather than the wall. This
enables the identification of modal and non-modal growth mechanisms and reveals
that the lift-up effect governs the behaviour of the fundamental CFT as it passes over
the step. The formulation uncovers a previously unreported reverse (i.e., stabilising)
lift-up effect, capable of inducing a rapid local decay of kinetic perturbation energy.
Whether this reverse (stabilising) or the classic (destabilising) lift-up effect occurs
at the step depends, at least, on step height and free-stream evolution. Secondly,
the analysis elucidates how non-modal stationary perturbation streaks emerge as in-
herent features of swept step flows; it also shows that an inflectional instability of
the step-flow profiles amplifies high-order harmonic (i.e., smaller-wavelength) CFI
modes downstream of the step, as confirmed experimentally. Finally, an extended
Reynolds-Orr energy framework quantifies the amplitude-dependent mechanisms of
energy exchange underlying these effects. The resulting deformation of the near-wall
shear layer downstream of the step —beneath the crest of the pre-existing crossflow
vortex— plays a central role in transition advancement.

Complementary unsteady DNS and linear stability analyses reveal that early tran-
sition induced by the step (under both critical and supercritical conditions) is not
driven by classic secondary crossflow instabilities. Instead, a new shear-layer insta-
bility developing downstream of the step is identified as the key transition-promotion
mechanism. Overall, these findings establish a new physical and modelling basis for
understanding, predicting, and ultimately controlling laminar flow over relief-shaped
swept wings, offering a promising new direction towards robust passive laminar-flow-
control strategies for future aircraft.

T his thesis presents a theoretical and numerical investigation of how a sur-

ix



SAMENVATTING

trede de stabiliteits- en transitismechanismen beinvloedt van een laminaire,

onsamendrukbare grenslaag over een gepijlde vleugel die wordt gedomineerd
door stationaire kruisstromingsinstabiliteiten (crossflow instabilities, CFI). De resul-
taten verduidelijken de processen die leiden tot een significante vervroeging van de
transitie door de aanwezigheid van de trede en dagen het klassieke paradigma uit
dat lokale hoogtevariaties per definitie nadelig zijn voor laminaire stroming. Directe
Numerieke Simulaties (DNS) en nieuwe theoretische modellering tonen daarentegen
aan dat een voorwaarts gerichte trede, onder specifieke omstandigheden, bestaande
kruisstromingswervelingen kan stabiliseren en zo de laminair-turbulente transitie kan
vertragen.

Stationaire DNS zijn uitgevoerd om de interactiemechanismen te onderzoeken
tussen CFI’s met verschillende amplitudes en tredes met uiteenlopende hoogten,
overeenkomend met ruigheid-Reynoldsgetallen (Repp,) van 368 tot 832.

Drie methodologische vernieuwingen vormen de kern van de analyse. Ten eerste
wordt een projectiekader geintroduceerd waarin het verstoringsveld wordt ontbonden
ten opzichte van de lokale basisstroomoriéntatie in plaats van de wand. Deze aanpak
maakt het mogelijk modale en niet-modale groeimechanismen te onderscheiden en
onthult een omgekeerd (stabiliserend) lift-up-effect, dat lokaal een snelle afname van
de kinetische verstoringsenergie veroorzaakt. Of dit omgekeerde of klassieke (desta-
biliserende) lift-up-effect optreedt, hangt af van de tredehoogte en de ontwikkeling
van de vrije stroming. Ten tweede blijken niet-modale verstoringsstrepen intrinsieke
kenmerken van stromingen over gepijlde tredes, terwijl een inflectionele instabiliteit
hogere-orde CFI-modi stroomafwaarts versterkt. Ten slotte kwantificeert een uit-
gebreide Reynolds—Orr-energiebalans de amplitude-afhankelijke energie-uitwisseling.
De vervorming van de schuiflaag onder de kam van de kruisstromingswerveling speelt
daarbij een centrale rol in de transitie.

Tijdafhankelijke DNS en lineaire stabiliteitsanalyses tonen aan dat de vervroeging
van transitie door de trede —zowel onder kritische als superkritische omstandigheden—
niet wordt veroorzaakt door klassieke secundaire kruisstromingsinstabiliteiten, maar
door een nieuwe schuiflaaginstabiliteit stroomafwaarts van de trede. Deze bevindin-
gen vormen een nieuw kader voor het begrijpen en beheersen van laminaire stroming
over oppervlakken met reliéf en wijzen de weg naar robuuste passieve laminar-flow-
controlstrategieén voor toekomstige vliegtuigen.

D it proefschrift onderzoekt theoretisch en numeriek hoe een voorwaarts gerichte
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INTRODUCTION

Abstract: This chapter introduces the engineering context, fundamental fluid dy-
namics concepts, the theoretical foundation, and prior work assessing the effects of
two-dimensional surface features on boundary-layer instability. It concludes by artic-
ulating the research objective and questions addressed in this thesis.



4 1. INTRODUCTION

1.1. MOTIVATION

n February 28th, 2019, Airbus Operations S.A.S., Toulouse (FR) and Airbus
O SAS, Blagnac (FR) patented a new method for manufacturing a wing leading

edge (Kierbel et al., 2019). The manufacturing method is claimed to reduce
surface irregularities with respect to the prior art and therefore to improve the lami-
nar flow quality. But why has the aeronautics industry patented a method to attain
wing surface irregularities (Ra and Rt) as low as 0.2 um (Kierbel et al., 2019)?

To minimise wing drag and thereby reduce aircraft fuel consumption, the bound-
ary layer over the wings and fuselage ought to remain laminar over the largest possible
spatial extent. A laminar boundary layer is characterised by ordered, smooth flow
but is inherently prone to transition to turbulence, a state characterised by disorgan-
ised and seemingly unpredictable flow. Figure 1.1 illustrates this laminar-turbulent
transition in flat-plate flow. The wall shear stress is larger when the boundary layer
is in turbulent state, as opposed to laminar state.

Kierbel et al. (2019) indicate that to “extend the laminar flow towards the rear
of the wing has a tendency to reduce drag by the order of 8% at cruising speed and
aviation-fuel consumption by the order of 4 to 5%”, see their claim [0107]. This
proposition is linked to a conventional aircraft morphology (see their claim [0044]),
i.e., “which comprises a fuselage, wings, nacelles positioned under the wings, and
a tail assembly”. The German (DLR) and French (ONERA) Aerospace Centres
report that delaying laminar-turbulent transition past 50% of the wing chord length
decreases drag by 5 to 8%. This leads to improved aircraft-fuel efficiency in the
order of 4 to 7%; or, equivalently, 2 to 5 tons of fuel saved in a typical flight from
Frankfurt to Los Angeles (HLFC-WIN consortium, 2023). Gibson et al. (2021) from
the Airbus Group indicate that a 5% reduction of fuel consumption may be achieved
if transition is shifted past 60% of the wing chord length on the wing upper surface.
See also the reports by Rossow (2010), Allison et al. (2010), or Wicke et al. (2012)
for a discussion on the topic. It is to be noted that significant benefits in terms of
fuel saving are achieved as well if large portions of laminar flow are maintained over
the fin, horizontal tail, and nacelles (Schrauf, 2005).

However, in a practical scenario involving operational conditions, the laminar-
turbulent transition typically develops very close to the wing leading edge (Joslin,
1998b; Hepperle, 2008; Rossow, 2010; Wicke et al., 2012; Gibson et al., 2021). By way
of example, for an Airbus A320 aircraft type flying at an altitude of 10,000 m and
cruise Mach number M = 0.8, transition is reported at 15% of chord length (Rossow,
2010) and it shifts towards a higher percentage of the chord length as one moves
towards the wing tip due to wing taper. Currently, aircraft manufacturers assume
essentially turbulent boundary-layer flow over most wetted surfaces (Gibson et al.,
2021) and to revert this is a major quest in the field of aerodynamics. The National
Aeronautics and Space Administration (NASA) refers to it as aviation’s Holy Grail,
since “conquering laminar flow [...] would mean dramatic improvements in fuel effi-
ciency” (NASA social media, 2011; NASA Blog, 2011). In 2018, Airbus was awarded
the Aviation Week Networks Laureate Award for BLADE. The Breakthrough Lam-
inar Aircraft Demonstrator in Europe (BLADE) is a multi-partner EU-sponsored
initiative aimed at assessing the feasibility of laminar-flow wings in commercial avi-
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FIGURE 1.1: Visualisation (top view) of natural laminar-turbulent transition over an unswept flat
plate at an angle of attack of 1°, with flow from left to right. The Reynolds number is Re = 105.
Laminar flow is visible on the left. © ONERA 1980, photo by H. Werlé.

ation. For example, figure 1.2 (b) shows a laminar outer-wing section used in a
BLADE flight-test demonstrator.

At the start of the BLADE project, Airbus’ former head of central research and
technology, Axel Flaig, explained that it had not been possible to manufacture suffi-
ciently smooth industrial wings to achieve and maintain laminar flow during regular
airline operations (Gubisch, 2017). As early as year 1938, it has been reported that
“very small imperfections of surface are sufficient to move transition points forward
and so increase drag” (Jones, 1938). More specifically, it is well-established that
if early transition is promoted by a surface feature, the transition-front location is
bounded between the feature itself and the transition-front location in reference (i.e.,
no-feature) conditions (Fage and Preston, 1941; Dryden, 1953; Tani, 1969). So, what
is meant by surface features or irregularities in this context?

Flaig notes that sharp two-dimensional (i.e., invariant in one spatial direction)
steps and gaps near the leading edge of transport aircraft wings, such as those arising
at panel junctions or around slats, can inhibit laminar flow (Gubisch, 2017). Consid-
ering business jets, it is typical to find a spanwise joint between skin panels forming
the leading edge part and the main wing part, which are a source of laminar flow
deterioration (Drake et al., 1996). Daniel Kierbel, project leader of BLADE, explains
that laminar flow may typically be disrupted as well by insect debris, icing-related fea-
tures, scratches, grease, surface waviness, and deformation of fastener heads (Goold,
2018). Daniel Kierbel is in fact co-inventor of the patent publication cited at the
beginning of this section. The background of the invention by Kierbel et al. (2019)
considers a wing structure composed of two spars joined by ribs, see figure 1.2 (a) and
their claim [0002]. The skin of the wing is formed by top and bottom panels (parts
28, 30, 38, and 40 in figure 1.2 (a)) that are attached to the structure. These panels
are typically machined metal plates (see their claim [0003]). According to Kierbel
et al. (2019), reducing their geometrical tolerances (i.e., two-dimensional steps and
gaps at the junction) carries great increase in manufacturing cost and complexity.
However, these geometrical tolerances must be as small as possible to broaden the
extent of laminar flow (Kierbel et al., 2019).
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FIGURE 1.2: (a) Figures 4 and 5 from the patent publication by Kierbel et al. (2019), which describes
a method for manufacturing an aircraft leading edge panel. Figure 4 presents a perspective view of
a wing, while Figure 5 shows its cross-sectional view. As stated in the source, “panels 38 and 40 are
connected to the structure 32 [...] before or after the vertical mid plane PMV”. (b) Laminar outer-
wing section of the Airbus A340 used in the BLADE test demonstrator flight (A340-300 MSNO0O01)
employed to assess, among other aspects, the influence of step-like manufacturing tolerances on
laminarity (Fendt, 2017; Appel, 2021). © Airbus 2017, photo by P. Pigeyre.

This thesis provides a theoretical and numerical investigation into the impact of
surface features on transition promotion in laminar swept-wing flows, with a particu-
lar focus on the associated instability mechanisms. The scope is placed specifically on
forward-facing steps. Theoretical and numerical approaches are combined to develop
physical understanding at a fundamental level and generate modelling frameworks.
At the same time, the conclusions of this thesis challenge the major claims outlined
earlier: numerical and theoretical evidence is presented showing that this surface
feature is not universally detrimental to laminar swept-wing flow. That is, under
certain conditions, a forward-facing step stabilises pre-existing stationary crossflow
instability and potentially delays transition as a consequence. The latter can be
further exploited to design and optimise passive laminar flow control strategies.

1.2. THEORETICAL BACKGROUND

This section introduces the theoretical background supporting the analysis of results
in this thesis. It begins by establishing key concepts from instability theory, followed
by a description of the pertinent base flows, relevant transition routes and mecha-
nisms, and characteristic features of forward-facing-step flow. Finally, an overview of
traditional methods for instability modelling is presented, and the novel modelling
frameworks developed in this thesis are introduced.
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1.2.1. INTRODUCTORY CONCEPTS: FLOW (IN)STABILITY

Perhaps one of the most thought-provoking questions posed to a researcher in flow in-
stability is: what is a flow instability? This phenomenon is the precursor to laminar-
turbulent transition in a wide range of flow scenarios and therefore it warrants for-
malisation.

Flow instability may be understood as the tendency of a fluid flow to depart
from a reference base state. This tendency can be characterised by the increase in
kinetic energy of a perturbation field in the flow, which is the deviation of a new
(evolving) state from a reference base state. Above a certain threshold of kinetic
energy increase, an initially laminar fluid flow may transition towards a new state,
see Schmid and Henningson (2001, section 1.3), for instance a turbulent state. From
the perspective of classic stability theory, the base state represents an equilibrium
condition that may be either stable or unstable to a perturbation, as determined by
its ability to return to equilibrium (Schmid and Brandt, 2014).

Flow instabilities can be characterised through stability analysis (Gregory et al.,
1955; Mack, 1984; Arnal, 1994; Huerre and Monkewitz, 1990; Reed and Saric, 1996;
Schmid and Henningson, 2001; Theofilis, 2003). Letting NS be the non-linear Navier-
Stokes operator applied to a state-variable q vector, with suitable boundary and
initial conditions, the incompressible Navier-Stokes equations can be expressed as

q =NS(q), (1.1)

where the overdot denotes the time derivative. The laminar base state, hereafter re-
ferred to as the unperturbed base flow, is the steady state of equation (1.1) satisfying
Gs = NS(gg) = 0. The stability approach decomposes the state vector g = [v p|T as

q(z,y,2,t) :qB(x,y,z)—i—q’(x,y,z,t), (1.2)
where ¢’ = [v’ p/]" is the perturbation field, gg = [vg ps|T, v = [u v w]T is the
velocity field, p indicates the static pressure, and t is the time. A Cartesian coordinate
system is here considered, that is fixed and oriented relative to the wing; that is, z and
z respectively denote the directions orthogonal and parallel to the leading edge (see
§ 2.1.1), and y denotes the wall-normal coordinate. The perturbation components in
the z-, y-, and z-directions are denoted by u’, v/, and w’, respectively.

A major instability mechanism that manifests in the field ¢’ of swept-leading-
edge flow is the stationary crossflow instability (CFI); see the detailed description of
the corresponding base-flow topology (§ 1.2.2) and the mechanisms of CFI growth
(§ 1.2.3) below. This phenomenon was first observed in flight experiments on a F-
86 aircraft (Gray, 1952). The amplification of this primary instability along the
leading-edge-orthogonal direction spatially deforms the flow. This effectively gives
rise to a new stationary (base) state, known as the steady perturbed flow, susceptible
to secondary unsteady instabilities that are harbingers of turbulence. To ascertain
how a surface step promotes transition, this thesis first characterises the stationary
step-flow mechanisms that modify the incoming CFT; i.e., the topology of the steady
perturbed flow. This forms the basis to, secondly, assess the unsteady mechanisms
ultimately leading to turbulence.
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In this thesis, the spatial evolution of CFI is fully resolved by means of Direct
Numerical Simulations of the total flow field, i.e., g (1.2). Physical insight into the
perturbation behaviour is gained a posteriori through inspection of the governing
equations and analysing the DNS data. This is elaborated as follows: introducing
decomposition (1.2) into the non-dimensional form of the stationary incompressible
Navier-Stokes equations for a fluid with constant density and constant viscosity (1.1)
and subtracting the base-flow condition identically yields

1
(W' V)vp + (vp - V)’ = =Vp' + -V — (v - V)V, (1.3)

The underbar here denotes non-dimensional variables, and Re is the Reynolds num-
ber. Similarly, the continuity condition expressed in perturbation form reads as

V.v =0. (1.4)

Equations (1.3) and (1.4), which are commonly referred to as the perturbation equa-
tions, govern the evolution of any generic stationary perturbation. The establishment
of CFI in the first place is initially governed by receptivity (Morkovin, 1969), that is,
the process by which disturbances in the free stream —such as vorticity and sound—
generate boundary-layer perturbations. In this thesis, the receptivity stage is not
explicitly resolved in the numerical simulations but is instead modelled.

1.2.2. THE LAMINAR SWEPT-WING BOUNDARY LAYER

The stability of laminar swept-wing flow is analysed by considering an idealised
representation of the wing geometry. Swept-wing flow refers to the flow over a wing
whose leading edge is angled relative to the fuselage. As is common practice in the
literature, the physical model in this thesis assumes that the chord is constant along
the span, the twist is virtually zero, and that the wing has effectively infinite spanwise
extent, i.e., root and tip effects are disregarded. By virtue of this set of assumptions,
collectively referred to as infinite wingspan, the unperturbed base flow is conceived
as a three-dimensional spanwise-invariant flow field, i.e., dgg/9z = 0.

In this model of swept-wing flow, the free-stream velocity vector may be con-
veniently decomposed into components parallel (spanwise) and orthogonal (chord-
wise) to the leading-edge direction (see figure 1.3). As the flow approaches the wing
body, the leading-edge-orthogonal component decelerates, whereas the leading-edge-
parallel component remains essentially unchanged in inviscid flow. Consequently, a
dividing streamline exists in the potential-flow region that is parallel to the leading-
edge axis and virtually separates the upper and lower sides of the wing. This so-called
attachment line at the leading edge (Pfenninger, 1965; Gaster, 1967; Cumpsty and
Head, 1969; Hall et al., 1984) is the isoline of maximum static pressure on symmetric
bodies (Arnal, 1994). The attachment line is accompanied by an attachment-line
boundary layer by virtue of no-slip at the wall. Leveraging the assumption of infi-
nite wingspan, the attachment-line boundary layer exhibits constant properties, i.e.,
thickness and wall friction, as dictated by the balance between the incoming free-
stream flow and outflow cause by flow divergence at the attachment line (Poll, 1977).
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FIGURE 1.3: Sketch of swept-wing flow with stationary CFI. The wing is swept at angle A and
the incoming freestream velocity vector Qoo is decomposed into components parallel (Q”) and
orthogonal (@) to the leading edge. The cyan curve shows the trajectory of an inviscid streamline
along the wing, and the local coordinate system {z,y, z} is oriented relative to the wing, where x is
orthogonal to the leading edge, vy is the wall-normal direction, and z is parallel to the leading edge.
The z-y planes of streamwise velocity on the right, which are distributed along x (see orange lines
on the wing for reference), show the modulation of the boundary layer due to the growth of the
stationary CFI: blue and green (low velocity), orange (moderate velocity), red (large velocity). The
free-stream velocity increases in z, as exemplified by the transition between orange and red colours
in the planes. The top circular inset (adapted from Rius-Vidales (2022)) shows the boundary-layer
organisation: the crossflow velocity profile, ws(y) in black, points normal to the inviscid-streamline
direction, and the streamwise velocity profile, us(y) in black, points tangent to it. The three-
dimensional composite (blue) follows ws near the wall and bends to match us farther from the wall.
The marker dog expresses the 99% boundary-layer thickness.

A crossflow boundary layer (see figure 1.3) forms immediately downstream of
the attachment line (Arnal, 1994), driven by the combined effect of sweep angle and
chordwise pressure gradient. This process can be described as follows: the free-stream
flow accelerates in the chordwise direction, as imposed by the aerofoil geometry, hence
the inviscid streamline! in the potential-flow region bends inboard, that is, towards
the wing root. In contrast, the velocity vectors in the boundary layer do not align with
the direction of the edge velocity (figure 1.3); centrifugal and static pressure forces
form an equilibrium in the potential-flow region. However, the reduced momentum
of near-wall flow, in conjunction with essentially invariant static pressure along the
wall-normal direction, shall be balanced by the viscous shear stress. This balance is

IThe literature (see, for instance, (Haynes and Reed, 2000)) generally defines the local direction of
the inviscid streamline as being tangent to the boundary-layer-edge velocity. This is customary
in analyses carried out through the boundary-layer equations. However, this definition poses a
problem for Navier-Stokes systems due to the non-uniformity of accelerated free-stream flow in the
wall-normal direction. The reader is referred to § 2.1.1, where the definition of inviscid streamline
is unequivocally established in this thesis.
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maintained through a secondary-flow that develops towards the concave side of the
inviscid streamline, as dictated by the direction and sense of pressure-force excess.

The convoluted organisation of the crossflow boundary layer may be represented
by decomposing the velocity profiles into components orthogonal, called the crossflow
profile, and parallel, called the streamwise profile, to the inviscid streamline (figure
1.3). Along the spatial region ranging from the attachment line to the z-location of
maximum free-stream velocity, the inviscid streamline maintains its inboard curva-
ture and the crossflow profile points inboard. The crossflow velocity is zero at the
wall and approaches zero in the limit as it tends toward the boundary-layer edge. It
peaks in between, with a strength of typically 5 to 10% of the free-stream velocity
(Arnal, 1994). Past the peak in the wall-normal direction, the crossflow velocity
decreases monotonically towards the free-stream, hence the crossflow velocity profile
is inflectional (Arnal, 1994; Bippes, 1999; Saric et al., 2003).

At the chordwise location of maximum free-stream velocity, the inviscid stream-
line begins to bend outboard, i.e., towards the wing tip. Consequently, in the wing-
aligned coordinate system, the in-plane trajectory of the inviscid streamline exhibits
an inflection point. Downstream of this point in z, the near-wall portion of the
crossflow profile reverses, i.e., it points towards the outboard direction, as driven by
the adverse pressure gradient. The upper portion of the crossflow velocity profile
maintains an inboard orientation, hence the profile as a whole develops an S-shape,
but it may be completely reversed for a sufficiently strong adverse pressure gradient
(Arnal, 1994).

1.2.3. TRANSITION DUE TO MODAL CROSSFLOW INSTABILITY
Primary instability

Three-dimensional incompressible or subsonic laminar flow over a reference (i.e., with-
out a step) swept wing supports four main instability mechanisms: attachment line,
Tollmien-Schlichting (TS), Gortler, and crossflow (Saric et al., 2003). Considering
a low-disturbance background, representative of free-flight environments, laminar-
turbulent transition is typically initiated by the ezponential growth of a primary
instability eigenmode. The focus of this thesis is restricted to boundary layers dom-
inated by the stationary crossflow instability (CFI).

Strong CFI growth typically occurs near the leading edge of highly swept wings,
where the favourable pressure gradient is large (Arnal, 1994). The associated cross-
flow velocity profile is inflectional (§ 1.2.2), thus it is inviscidly unstable and prone to
primary eigenmode growth (Mack, 1984; Saric et al., 2003). The associated instabil-
ity, namely CFI, can manifest in the form of either travelling (i.e., non-zero tempo-
ral frequency) or stationary (i.e., zero temporal frequency) perturbations, with the
dominant mode determined by receptivity conditions. On smooth surfaces and high-
turbulence environments, the travelling CFT tends to dominate (Deyhle and Bippes,
1996), whereas stationary CFI is favoured in low-turbulence conditions with dis-
tributed surface roughness. Crossflow instabilities exhibit low receptivity to acoustic
disturbances (Radeztsky et al., 1999). This thesis focuses on stationary CFI, given
its greater relevance in low-turbulence free-flight environments (Saric et al., 2003).

The stationary CFI manifests in the boundary layer as a periodic array of co-
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FIGURE 1.4: Elements of CFI-driven transition: stationary crossflow vortices are depicted in planes
of instantaneous velocity u and secondary crossflow instabilities visualised as Q-criterion isosurfaces
colour-coded by u. The velocity planes are oriented parallel to the wing’s leading edge and uoo
expresses the free-stream velocity.

rotating vortices that grow in strength along the direction orthogonal to the wing’s
leading edge (see figures 1.3 and 1.4). In addition to the crossflow velocity pro-
file (§ 1.2.2), a set of velocity profiles approximately aligned with the direction or-
thoghonal to the inviscid streamline also exhibit inflectional behaviour (Bippes,
1999). According to Linear Stability Theory (LST) (§ 1.2.6), the wave perturbation
associated with the CFTI is oblique, i.e., it possesses a non-zero spanwise wavenum-
ber. The wavenumber vector (§ 1.2.6) of the stationary CFI is nearly, though not
exactly, orthogonal to the local inviscid streamline (Arnal, 1994). In contrast, the
wavenumber vector of the travelling CFI points in different directions, forming an
angle of about 85° to 89° with the inviscid streamline (Arnal, 1994), depending on
the temporal frequency under consideration (Deyhle and Bippes, 1996).

A stage of non-linear growth and saturation of the stationary CFI follows the
initial phase of exponential eigenmode growth; in turn, the non-linear growth phase
typically precedes the stage of secondary-instability amplification and ultimately lam-
inar breakdown. Early experiments showed that measured perturbation growth rates
differ from those predicted by LST when sufficiently large perturbation amplitudes
are attained (Miller, 1990; Kachanov and Tararykin, 1990; Bippes, 1991). To mildly
relax the condition of boundary-layer homogeneity in x supporting LST (see § 1.2.6)
effectively enables the use of the Parabolised Stability Equations (PSE) approach
(Bertolotti et al., 1992; Herbert, 1997). The PSE is nowadays a popular method
to assess the linear (LPSE) and non-linear (NPSE) stability of slowly varying shear
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FI1GURE 1.5: Sketch of classic secondary crossflow instabilities. Isocontours of stability eigenmode
shapes at 40%, 60%, and 80% of their maximum value corresponding to type-I (green), type-1I (red),
and type-III (blue). Solid black lines in the background indicate the stationary crossflow vortex.

flows. The NPSE approach was proven capable of modelling the stages of strong
non-linear crossflow-perturbation evolution (e.g., Bertolotti, 1996; Haynes and Reed,
2000; Casacuberta et al., 2022b), thereby confirming that the primary cause of the
discrepancies between experimental observations and linear theory is the nonlinear
saturation of the crossflow vortices.

Secondary instability

The steady perturbed flow, i.e., the base state deformed by the amplification of
the stationary CFI, is prone to secondary instability mechanisms (see figure 1.4),
ultimately responsible for laminar breakdown.

Secondary perturbations with high-frequency content (i.e., significantly higher
than the primary travelling CFI) were initially identified in swept-Hiemenz (Poll,
1985; Malik et al., 1994) and swept-wing (Kohama et al., 1991; Deyhle and Bippes,
1996) flow configurations. Considering a swept-wing boundary layer, Malik et al.
(1999) report two families of secondary instability eigenmodes (see figure 1.5) using
Secondary Linear Stability Theory (SLST). The type-I (or z-)mode is produced most
strongly by the spanwise shear in the outer part of the upwelling region of the primary
crossflow vortex (i.e., “on its shoulder”). The type-II (or y-)mode, on the other
hand, gains its energy primarily from the wall-normal shear and is located on top
of the crossflow vortex. Theoretical results of Fischer and Dallmann (1991) identify
a low-frequency eigenmode dominant in the near-wall shear layer of the crossflow
vortex, which is nowadays referred to as type-IIT (Koch et al., 2000), see figure 1.5.
The type-II1 is commonly interpreted as the primary travelling crossflow mechanism
distorted by the stationary crossflow mechanism. A main difference between the
primary travelling and secondary type-II1 perturbations is that the latter modifies
the eigenmode topology and attains a local maximum at the shear layer underneath
the crossflow vortex (Hogberg and Henningson, 1998).

The DNS of Hogberg and Henningson (1998) for a Falkner-Skan-Cooke boundary
layer revealed type-1 and type-I11 structures; however, manifestations of the type-11
eigenmode are not observed. Consistent with findings of Hogberg and Henningson



1.2. THEORETICAL BACKGROUND 13

(1998), Wassermann and Kloker (2002) identify in their DNS the high-frequency
type-1 and low-frequency type-I1I instability mechanisms. Type-II perturbations are
argued to arise only in less physically relevant cases, as for instance, when the pri-
mary crossflow vortex has a subcritical spanwise wavelength. In such cases, the nar-
row spacing between the stationary crossflow vortices potentially weakens the type-1
amplification, which may facilitate the development of type-1I perturbations (Wasser-
mann and Kloker, 2002). Nonetheless, manifestations of the type-1I mechanism in
numerical simulations have been recently reported (Li et al., 2016, 2017).

In this thesis, transition under smooth-wall reference conditions is driven by the
amplification of the type-I secondary crossflow instability. Figure 1.4 illustrates this
scenario. The growth of the type-I instability gives rise to large-scale, finger-like struc-
tures. Similar to the eigenmode shape itself (figure 1.5), these finger-like structures
develop along the laterally inclined shear layer of the stationary crossflow vortex and
are tilted relative to the vortex axis (Janke and Balakumar, 2000; Wassermann and
Kloker, 2002; Bonfigli and Kloker, 2007; Serpieri and Kotsonis, 2016).

Hogberg and Henningson (1998) observe that high-frequency instabilities display
larger growth rates than the low-frequency ones, but the onset of low-frequency
instabilities is placed at a more upstream location than the high-frequency ones.
The type-1,-I1,-III mechanisms have been identified experimentally as well; see for
instance Serpieri and Kotsonis (2016) for a detailed characterization of the secondary
instabilities using Particle Image Velocimetry (PIV). Groot et al. (2018) investigate
the validity and limitations of two-dimensional spanwise stability analysis, hereafter
referred to as BiGlobal, applied to experimentally-measured base flows.

Bonfigli and Kloker (2007) conduct an extensive comparison between DNS and
two-dimensional stability analysis of a stationary-crossflow-dominated boundary layer.
Significant disagreement is reported in some cases in terms of spatial growth rates:
the stability results are found to be very sensitive to the representation of the steady
perturbed flow in the stability problem (Bonfigli and Kloker, 2007). In their study,
they define three alternative extraction procedures, which ensure satisfaction of the
continuity equation for the steady perturbed flow in three different orthogonal co-
ordinate systems, while adhering to the slow-evolution hypotheses underlying the
stability analysis. With the advent of the approach of Li and Choudhari (2011)
employing a non-orthogonal coordinate system, the conditions of periodicity in the
spanwise direction and flow quasi-invariance in the direction of the crossflow-vortex
axis can be accounted for simultaneously. Casacuberta et al. (2022a) solve the two-
dimensional stability problem using a non-orthogonal coordinate system, similar to
the approach presented by Li and Choudhari (2011); the corresponding analysis is
presented in chapter 8 of this thesis. A good agreement is reported between DNS
and stability analysis in terms of amplification factors and perturbation shape of the
type-I and type-IIT mechanisms (Casacuberta et al., 2022a).

Notwithstanding the fact that this thesis focuses on CFI-dominated flows, a
forward-facing step induces localised regions of adverse pressure gradient (Tufts et al.,
2017). Consequently, potential effects on transition stemming from a TS instabil-
ity mechanism are not to be discarded a priori. In a reference scenario, when the
crossflow velocity profile becomes S-shaped (§ 1.2.2) in the region of decelerated free-
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stream flow (i.e., under an adverse pressure gradient), the unperturbed base flow
becomes unstable to the TS mechanism (Arnal, 1994). It is an instability of the
streamwise velocity profile (see § 1.2.2 and figure 1.3), thus the wavenumber vec-
tor points approximately in the direction of the inviscid streamline. Wassermann
and Kloker (2005) numerically investigate the interaction between incoming cross-
flow vortices and TS instability. They conclude that the TS instability acts mainly
as a source of low-frequency secondary instabilities and exhibits little influence on
the final breakdown stage.

1.2.4. ALTERNATIVE TRANSITION ROUTES: NON-MODAL GROWTH

The lift-up effect

Morkovin (1969) introduced the notion that a primary instability mechanism, such
as crossflow, could be bypassed by “another strongly amplifying mechanism”. Over
the years, the idea of bypass transition has been subject to considerable debate, par-
ticularly in relation to the influence of surface features?. Nonetheless, the existence
of routes towards turbulence beyond the primary modal one is now well established,
see the well-known diagram by Morkovin et al. (1994) in figure 8.9 (§ 8.1.1).

To explore the possibility of an alternative transition scenario, Lord Rayleigh’s
Inflection Point Theorem (Rayleigh, 1880) is invoked, which represents one of the
foundational results in the development of flow stability theory. Namely, a necessary
condition for instability (i.e., exponential growth of wave-like perturbations in the
sense described in § 1.2.6) of parallel, incompressible, inviscid, two-dimensional flow
is that the mean-velocity profile possesses an inflection point. Despite the significance
and utility of this theorem, extensive experimental evidence has repeatedly demon-
strated that perturbation growth can occur also in the absence of inflectional mean-
flow profiles and that laminar-turbulent transition takes place in scenarios where
linear modal stability analysis predicts stable flow, such as pipe flow.

The discovery of the so-called lift-up effect (Moffatt, 1967; Ellingsen and Palm,
1975; Landahl, 1975, 1980) aided to address this apparent contradiction. Localised
streaky perturbations, which initially form linearly due to the lift-up effect, may
subsequently experience stages of nonlinear growth and eventual breakdown. The
breakdown of a localised finite-amplitude perturbation produces a turbulent spot
(Henningson et al., 1990; Breuer and Landahl, 1990; Henningson et al., 1993). As an
example, the lift-up effect has been linked to the premature transition of boundary-
layer flow exposed to high levels of free-stream turbulence or distorted by surface
features (Klebanoff, 1971; Kendall, 1985; Westin et al., 1994; Andersson et al., 2001;
Matsubara and Alfredsson, 2001; Jacobs and Durbin, 2001; Reshotko, 2001; Brandt
et al., 2003, 2004; Zaki and Durbin, 2005; White et al., 2005; Brandt, 2007).

The work of Ellingsen and Palm (1975) and Landahl (1975, 1980), on what later
came to be known as the lift-up effect, essentially establishes that from the viewpoint
of perturbation kinetic energy, any parallel inviscid shear flow is unstable to a large set
of initial three-dimensional perturbations. This holds irrespective of the exponential

2In this thesis, the term surface feature refers to either a protrusion or a depression relative to the
reference wall, characterised by a rapid variation in wall geometry. Specifically, the forward-facing
step investigated here represents a sharp surface feature.
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FIGURE 1.6: Sketch of the lift-up effect in channel flow: at t = 0, cross-stream perturbation rolls
(b) interact with the base parabolic profile (a), inducing streamwise streaks of alternating low
(blue) and high (red) momentum (c) that develop over time in accordance with the underlying
velocity distribution in (a). Here, z denotes the channel-width direction and y is the inhomogeneous
(wall-normal) direction along which the base-flow profile varies. The perturbation rolls in (b) were
computed using the code OptimalDisturbance.m provided by Schmid and Brandt (2014).

(or, asymptotic modal) stability of the flow. The physical principle of the lift-up
effect is illustrated typically as follows: a cross-stream perturbation of wave-like
form superimposed on a shear layer, for instance a pair of counter-rotating vortical
structures, lifts up low-momentum fluid and pushes down high-momentum fluid in
adjacent regions of the flow field following the wave-like distribution. By retaining
their original streamwise momentum, the displaced fluid particles introduce regions of
streamwise-momentum deficit and excess and therefore induce inherently streamwise
perturbation streaks that can attain very large amplitude over a short spatial or
temporal extent. Figure 1.6 exemplifies this mechanism in channel flow.

The foundational studies by Ellingsen and Palm (1975) and Landahl (1975, 1980)
were conducted under the assumption of inviscid flow, and the underlying concepts
were extended by Hultgren and Gustavsson (1981) accounting for the effect of vis-
cosity. By its principle, the lift-up effect is associated with the mechanism of optimal
(Andersson et al., 1999; Luchini, 2000) streamwise vortices (i.e., the initial pertur-
bation yielding the largest possible transient growth of kinetic perturbation energy)
relaxing into streamwise streaks following a non-modal (or, algebraic, as opposed to
exponential) growth (Butler and Farrell, 1992; Reddy and Henningson, 1993; Schmid
and Henningson, 2001; Schmid, 2007).

Non-modal stability theory
Non-modal perturbation growth arises from the non-normality of the linear oper-
ator governing the evolution of perturbations in some cases, i.e., from the non-
orthogonality of its associated eigenfunctions (Butler and Farrell, 1992; Trefethen
et al., 1993; Reddy and Henningson, 1993; Schmid and Henningson, 2001; Schmid,
2007). Although this thesis addresses the non-modal growth of perturbations in
space, it is instructive to introduce the underlying concept through a canonical ex-
ample, such as the temporal initial-value problem (Schmid and Henningson, 2001).
Consider unswept, parallel flow, i.e., vg = [ug(y) 0 O]T, and the linearised form
of the perturbation equations (1.3) expressed using a velocity-vorticity formulation.
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Solutions are sought in the form:

Ul(mv Y, z, t) = 5(y7 t) ei(cw;-‘rﬂz) +c.c.,

. (1.5)

(2,9, 2,1) = iy, 1) 7 4 ce,
where 7 = 0u'/0z — dw’ /Ox is the wall-normal perturbation vorticity and « and g
indicate the chordwise and spanwise wavenumbers, respectively. In this scenario, the
(linear) equations governing the evolution of the wall-normal perturbation velocity,
v’, and the wall-normal perturbation vorticity are

9 . 2 2 . d*ugp 1 2 02| ~ _

{(815 —l—lauB) (D* — ||k||7) — i 32 — Re(D — ||k||*)7| v =0, (1.6a)
0 . 1 2 9 . d’LLB -

{(815 + 1auB) - E(D — ||K|| )] N = 1ﬂd—y 0. (1.6b)

The boundary conditions read v = Do = 7 = 0 at the wall and freestream. In (1.6),
D denotes 9/dy and k = [a B]T expresses the wavenumber vector (see § 1.2.6 for
further details). Equations (1.6a) and (1.6b) are respectively the Orr-Sommerfeld
and Squire equations, which may be expressed in matrix form as

;[HkHQO— D? ﬂ [2} + [iﬂ%‘%) ]L(S)Q] [g} =0, (1.7)

Ly

with Log and Lgq indicating the Orr-Sommerfeld and Squire operators, respectively;
see Brandt (2014) for reference. The eigenvalues of a non-normal matrix system such
as (1.7) govern the dynamics in the long term, but not necessarily over a finite time
(or finite spatial) horizon (Reddy and Henningson, 1993; Schmid and Brandt, 2014).

At the core of the present ideas lies the realisation that the wall-normal perturba-
tion vorticity is linearly forced by the wall-normal perturbation velocity when 5 # 0
(Reddy and Henningson, 1993). This coupling arises primarily from the off-diagonal
term in the operator Ly, (1.7), namely i8(dug/dy), through which the solution of
the Orr-Sommerfeld equation (1.6a) drives the solution to the Squire equation (1.6b)
(Brandt, 2014; Zaki and Durbin, 2005).

This process typically manifests as the rapid, transient development of a streaky
perturbation (Zaki and Durbin, 2005), i.e., growth of the horizontal velocity com-
ponents, followed by a stage of viscous damping (Hultgren and Gustavsson, 1981).
In contrast, a modal perturbation mechanism governs the evolution of perturbations
that evolve like the background base flow and experience amplification of all ve-
locity components by a common growth rate (Marxen et al., 2009) in the limit of
parallel-flow approximation. Overall, applying these concepts —originally developed
for parallel flows with well-defined wall-normal and wall-parallel components— to the
highly deformed three-dimensional flow over the step presents a significant challenge
and, in doing so, validates the approach introduced in the conclusion of § 1.2.6 where
novel frameworks for instability modelling are proposed.
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As described above in § 1.2.3, the amplification of stationary crossflow vortices
is essentially a modal perturbation phenomenon. However, it is also well established
that swept-wing flow supports significant non-modal growth of localised perturba-
tions over a finite spatial extent (Breuer and Kuraishi, 1994; Corbett and Bottaro,
2001; Tempelmann et al., 2010). The crossflow-type perturbation wave exhibits the
largest transient amplification among all wave types (Breuer and Kuraishi, 1994).
Such non-modal growth can initiate the formation of modal crossflow vortices, for
instance, in the presence of localised roughness elements (Zoppini et al., 2023), which
subsequently evolve through the classic Orr-Sommerfeld-type mechanism. In other
words, modal and non-modal growth mechanisms are complementary in swept-wing
flow, as both excite similar perturbation structures (Corbett and Bottaro, 2001; Tem-
pelmann et al., 2010), namely alternating streaks of high- and low-momentum fluid
(Breuer and Kuraishi, 1994; Saric et al., 2003).

The secondary instability of localised perturbations

Sufficiently amplified streaky structures can sustain secondary instabilities (Anders-
son et al., 2001; Asai et al., 2002; Brandt et al., 2003; Konishi and Asai, 2004; Brandt,
2007; Ricco et al., 2011), eventually leading to premature breakdown and transition,
even if the streaks are predicted to decay asymptotically. This scenario typically
arises in the wake of a critical three-dimensional surface feature in unswept-flow con-
ditions (De Tullio et al., 2013; Loiseau et al., 2014; Casacuberta et al., 2020) or during
what is most commonly understood as bypass transition, where so-called Klebanoff
modes (Kendall, 1985) develop in two-dimensional flow subjected to moderate-to-high
levels of free-stream turbulence (Klebanoff, 1971; Westin et al., 1994; Matsubara and
Alfredsson, 2001; Jacobs and Durbin, 2001; Brandt et al., 2004; Zaki and Durbin,
2005). Analogous to the instability mechanisms associated with Gortler vortices
(Swearingen and Blackwelder, 1987), secondary instabilities of streaks are typically
classified as either symmetric (called varicose) or anti-symmetric (called sinuous)
based on their eigenmode shape relative to the streak shape. The spatial growth of
sinuous and varicose instabilities leads to the shedding of quasi-streamwise-oriented
vortices and hairpin-like vortices, respectively (Asai et al., 2002; Brandt and Hen-
ningson, 2002; Konishi and Asai, 2004).

1.2.5. STREAKS IN FORWARD-FACING STEPS: MODAL AND NON-MODAL

EFFECTS
This thesis investigates the influence of sharp surface features, such as forward-facing
steps, on the promotion of boundary-layer transition. Forward-facing steps are ubig-
uitous in a broad range of engineering applications, and consequently, extensive prior
work has examined the topology and behaviour of the flow over such features. In most
studies, the step is embedded in two-dimensional (i.e., unswept) boundary-layer flow,
where streaks have been reported as characteristic flow structure associated with the
step (e.g., figure 1.7 (a)).
The computational analysis by Wilhelm et al. (2003) shows that the two-dimensional

unperturbed base flow around a forward-facing step can exhibit regions of flow re-
circulation both upstream (e.g., figure 1.7 (b)) and downstream of the step. Their
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FIGURE 1.7: Elements of forward-facing-step flow in a channel: (a) top view (flow from bottom to
top) showing streaky structures at the upper step corner via hydrogen bubble visualisation (Stiier
et al., 1999) and (b) side view (flow from left to right) illustrating streamline deflection and the
upstream recirculation region forming ahead of the step, visualised using a tracer method (Ando
and Shakouchi, 2004).

study emphasises the mechanisms through which the initially two-dimensional base
flow evolves into a strongly three-dimensional one. Wilhelm et al. (2003), and later
Marino and Luchini (2009), attribute this transition of the step-flow topology to a
sensitive response to disturbances present in the incoming flow. It is noted that, in
this context, “transition” refers exclusively to changes in the laminar-flow topology.

Specifically, in three-dimensional swept-wing flow, the recirculating-flow regions
at the step are not a closed system, but an open helical one, due to the presence of
spanwise velocity (Tufts et al., 2017). The chordwise pressure gradient changes signif-
icantly in a very short spatial region: it switches from adverse immediately upstream
of the step, to favourable around the step apex, and back to adverse immediately
downstream of the step (Tufts et al., 2017). This rapid pressure-gradient changeover
induces a pronounced spanwise modulation of the flow at the step (Eppink, 2020)
and of the CFI in particular (Rius-Vidales and Kotsonis, 2021).

For unswept conditions, both experimental (Stiier et al., 1999) (figure 1.7 (a)) and
numerical (Lanzerstorfer and Kuhlmann, 2012) studies have reported the existence of
streaky structures close downstream of the step. The mechanisms of streak formation
and growth around forward-facing steps have been subject of discussion. This feature
has been associated with the lift-up effect (Lanzerstorfer and Kuhlmann, 2012), as
well as with a Gortler-type instability mechanism (Chiba et al., 1995; Pollard et al.,
1996). However, Stiier et al. (1999) indicate that their experiments do not support the
latter in that the instability at the step must be of a type stronger than the Gortler
instability. Wilhelm et al. (2003) and Marino and Luchini (2009) further argue that
the streaks cannot originate from an absolute instability of the recirculating flow at
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the step, at least for the parameter choices considered in their studies. The streaks
are argued to be a linear perturbation effect, inasmuch as the intensity of streaks
changes proportionally to that of incoming disturbances (Wilhelm et al., 2003).

Marxen et al. (2009) analyse the two-dimensional separating boundary layer over
a flat plate and describe the development of three-dimensional streaky structures.
Arguing that the amplification of the perturbation streaks in such flow environments
may result from a modal mechanism, a non-modal mechanism, or a mixture of both,
Marxen et al. (2009) employ a set of diagnostic metrics to distinguish between these
possibilities. The flow environment studied by Marxen et al. (2009) is similar to
the present swept-step flow: in both scenarios, the boundary layer is subject to
a favourable-to-adverse pressure gradient and a recirculating-flow region develops
(Marxen et al., 2009; Tufts et al., 2017; Eppink, 2020).

Marxen et al. (2009) conclude that non-modal growth ascribed to the lift-up ef-
fect governs the perturbation response initially. Further downstream, within the
adverse-pressure-gradient region, a modal instability of Gortler type sets in as dom-
inant perturbation mechanism. To segregate between essentially modal- and non-
modal-growth regimes, Marxen et al. (2009) decompose the perturbation vector into
components tangential and normal to the local base-flow orientation (i.e., the local
base-flow vector) instead of tangential and normal to the wall. While non-modal
growth by the lift-up effect favors the amplification of the flow-aligned perturbation
component, in the case of a modal instability, all perturbation components ought to
exhibit a similar growth rate (Marxen et al., 2009), within the limit of parallel-flow
approximation.

A similar decomposition of the perturbation vector is employed by Lanzerstorfer
and Kuhlmann (2012) to scrutinise the mechanisms of energy transfer between sta-
tionary perturbations and the unperturbed base flow in unswept forward-facing-step
flow. Specifically, following the methodology of Albensoeder et al. (2001), Lanzer-
storfer and Kuhlmann (2012) decompose the production term of the Reynolds-Orr
equation (§ 1.2.6) by expressing the perturbation vector into components tangential
and normal to the local base-flow orientation. A principal term emerging from this
decomposition characterises the lift-up effect (Lanzerstorfer and Kuhlmann, 2011,
2012; Loiseau et al., 2016; Picella et al., 2018), that is, the kinetic-energy transfer
rate between unperturbed base flow and streamwise (i.e., flow aligned) perturbations
by the action of the cross-stream (i.e., flow orthogonal) perturbations. The term pro-
vides the dominant contribution around the step, thus Lanzerstorfer and Kuhlmann
(2012) argue that the lift-up effect contributes mainly to the amplification of streaks
in unswept step flow. Similar analysis and interpretation have been used in studies
of cavity flow (Albensoeder et al., 2001; Picella et al., 2018).

1.2.6. INSTABILITY MODELLING: CLASSIC AND NOVEL APPROACHES

As mentioned above, Direct Numerical Simulations (DNS) of the three-dimensional
incompressible Navier-Stokes equations are carried out in this thesis to investigate
instability and transition mechanisms. The DNS setup is guided by wind-tunnel
experiments (Rius-Vidales and Kotsonis, 2021), in which a monochromatic stationary
CF1I is enforced through Discrete Roughness Elements (DRE) distributed along the
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wing span (Zoppini et al., 2023). This is common practice in academic investigations
to avoid flow non-uniformity (Reibert et al., 1996), given to the high receptivity of
CF1I to surface micro-roughness (Deyhle and Bippes, 1996).

By virtue of the periodicity of perturbations in the leading-edge-parallel (span-
wise) direction, the stationary content of the perturbation field ¢’ (1.2) can be de-
composed into Fourier modes. Accordingly, the stationary velocity-perturbation field
from steady-state DNS computations is expressed as

N

’U/(mvyvz) = Z ﬁ(O,j)(Iay) eij5027 (18)
jsz%’_/

Y(0.9)
where (g ;) € C? are the Fourier coefficients®, N is (one half of ) the number of modes,
and i = —1. The symmetric term ’UEO _j) i the complex conjugate of ’UZO ) which

is hereafter denoted by {}T or c.c., ’UEO70) is the mean-flow distortion, and fy € R
is the fundamental perturbation wavenumber in z. The moduli of the components
of ©(g,;) read |, jy, |0](0,5), and |](o ;) and the associated phases are denoted by
l0.4): P05y and ©(g 5)-

Given a stationary mode with 3 = j3y, where 5 = 1,..., N, the norm of the
perturbation vector at every point in space reads

||UEO,]’)H = |¢|(O,j) - \/m‘?o,j) + ‘17|%07j) + |u~)|(2o,j)' (1'9)
In turn, |1;|(01j) relates to the kinetic energy of mode j3y at a given x-location as

By =2 [ 10, d (1.10)
iPo = 5 ) (0,5) 9Y- .

The most energetic wave component (1.8) of the stationary CFI, the so-called fun-
damental or primary CFI mode, appears in the mode |j| = 1 of decomposition (1.8).
As it will be elaborated upon in this thesis, when a surface step is present, the
fundamental CFI is contained within, but it is not exclusively the, mode |j| = 1.

The present DNS make no assumptions about the perturbation growth character
or the spatial evolution of the unperturbed base flow. In contrast, classic boundary-
layer instability theory is built on a framework constrained by a set of relatively
restrictive assumptions. First, the unperturbed base flow is taken as a parallel flow,
i.e., it is a one-dimensional solution of the Navier-Stokes equations. The reader is
referred to Mack (1984), Saric (1994), and Arnal (1994) for completeness in the defini-
tion of parallel flow; particularly, regarding a consistent measure of the perturbation
amplification factor, which is a central concept for empirical transition-prediction
methods (Van Ingen, 1956; Smith and Gamberoni, 1956). Second, the perturbations
are assumed to be of small-amplitude sufficiently upstream of the transition region;
that is, they are the solution to the perturbation equations (1.3-1.4) linearised about
the unperturbed base flow.

3In this thesis, the nomenclature {-}(0 ) denotes perturbation quantities of spanwise wavenumber
7Bo and of stationary nature.



1.2. THEORETICAL BACKGROUND 21

leading edge

FI1GURE 1.8: Illustration of perturbation organisation near the leading-edge region: lines of constant
phase (solid black) and the direction of the wavenumber vector k.

Leveraging the two above-mentioned assumptions transforms the perturbation
equations (§ 1.2.1) into a system of partial differential equations with coefficients
that are a function of y only. This suggests solutions to be sought in wave form, i.e.,

q'(z.y,2,1) = Gly) TP e, (1.11)

q = q, +14q;, to reduce the system to a set of ordinary differential equations (Saric,
1994). Here, g denotes the shape function, o = . + ie; under the so-called spatial
approach, and the temporal angular frequency, w, is set to zero when perturbations
are assumed to be stationary, as in the case for CFI. Correspondingly, «; is the
perturbation growth rate and «, expresses the perturbation wavenumber in x. By
expressing ¢ = |gle!?, ¢ € R, and recalling that (1.11) is real-valued, the magnitude
of ansatz (1.11), denoted by A, satisfies

1dA
Ade ;. (1.12)
Mack (1977) notes that “obviously, A could have been chosen at any y and [(1.12)]
would be the same. It is this property that enables us to talk about the amplitude
of an instability wave in the same manner as the amplitude of a water wave, even
though this amplitude is a function of y.” By analogy with other wave phenomena, a
wavenumber vector, k, may be defined (figure 1.8) to characterise wave propagation,
with magnitude ||k|| = y/a2 + (2, forming an angle with the z-direction equal to
Yy = arctan (Bo /o).

On considering the solution ansatz (1.11) and formulating suitable boundary con-
ditions, the perturbation equations constitute an eigenvalue problem (see also § 1.2.4),
known as the Orr-Sommerfeld (OS) equation. For an unbounded fluid system such
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as boundary-layer flow, the eigenvalue problem generally comprises a finite set of
discrete eigenvalues and a continuous spectrum (Grosch and Salwen, 1978; Mack,
1984; Schmid and Henningson, 2001). Central to Linear Stability Theory (LST) is
the idea that, within the present framework and for a specified base flow, Reynolds
number, and input stability parameters, the fundamental CFI can be traced back to
a mode, i.e., an eigenfunction associated with a discrete complex eigenvalue (., @;).

For the specified Reynolds number and wave parameters, whether this crossflow
mode displays a tendency to exponentially grow (i.e., the base flow is destabilised and
a; < 0), decay (i.e., the base flow is stabilised and a; > 0), or remain neutral (i.e.,
a; = 0), is dictated solely by the evolution of the pertinent local base-flow profile in y.
In this context of local stability analysis, i.e., inherent to the local parallel-flow profile,
a crossflow instability is classified as convective, meaning it amplifies as it convects
away from the source of instability. In contrast, an absolute instability grows in both
upstream and downstream directions from the source (Huerre and Monkewitz, 1990).
It should be noted that the terms global, which refers to the flow field as a whole
(Huerre and Monkewitz, 1990), and local are sometimes used differently across the
literature (Theofilis, 2003).

The description of stationary CFI as a single mode or wave subject to asymptotic
exponential growth (1.11) will be shown to be untenable near sharp surface features,
such as the forward-facing step investigated in this thesis. Building upon insights
obtained from the unrestricted DNS, this thesis examines perturbation behaviour
from a viewpoint different than the classic analysis of eigensolutions of a linear re-
sponse equation. Specifically, the discussion of stationary perturbation effects at the
step centres on three main directions of novelty that set their foundations on classic
stability concepts, which are introduced next:

(7) Projection of the perturbation field onto the local base flow: the
perturbation field is decomposed relative to the local orientation of the base-
flow streamlines rather than relative to the wall. Under the classic wall-based
decomposition, the perturbation field of a stationary Fourier mode j (1.8) reads

vEO,j) (1’7 Y, Z) = u/(O,j)(x7 Y, Z)i + UEO,j)(mz Y, Z)j + wzo,j) (1‘7 Y, Z)k7 (113)

where & = [1 0 07,5 = [0 1 0T,k = [0 0 " and u(y ), v{g ), Wy are
complex-valued scalar fields. Following the ideas of Albensoeder et al. (2001)
and Lanzerstorfer and Kuhlmann (2012), the perturbation field is alternatively
decomposed into a component Ug’(oyj)(:v, y,2) : R3 — C3 characterising the per-
turbation acting tangent to (i.e., in the local direction of) the base-flow stream-
lines and a complementary vector component 'U;L)(OJ)(.T, y,z) : R3 — C3. The
latter characterises the perturbation acting normal to the base-flow streamlines,
i.e., in the cross-stream direction, such that ’UEOJ) = '1)27(07].) + U;:,,(o,j)' Details
of the decomposition are provided in § 3.2, and chapters 4, 5, and 6 further
develop the rationale for this approach.

(#1) Structural identification: v; and v/, carry information on the main struc-
tural elements composing the CFI. Although the growth of CFI generates co-
rotating vortices modulating the boundary layer (see figures 1.3 and 1.9 (a)),
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FIGURE 1.9: (a) Manifestation of the CFI in the total flow field (i.e., base flow plus perturbation)
and (b) at a perturbation level (i.e., when isolated from the base flow). In (b), the CFI is represented
following the decomposition proposed in this thesis (§ 3.2): regions of streamwise momentum deficit
(blue contour) and excess (red contour) accompanied by cross-stream rolls (white arrows in the
plane). Dashed lines segregate cross-stream perturbation upwash (UW) and downwash (DW) and
circular black arrows indicate the sense of rotation of the rolls. Here, V' denotes streamwise velocity
(see §§ 3.2 and 6.2.1 for details) and the subscript “B” indicates base-flow quantity. The CFI
wavelength is denoted by ..

(i)

when isolated from the unperturbed base flow, the CFI appears as a set of per-
turbation rolls. That is, streamwise-vortical structures described by v/, that
counter-rotate with respect to each other (see white arrows in figure 1.9 (b)).
Despite the motion by v}, having a small amplitude relative to vy, it is efficient
in redistributing streamwise momentum. This produces a scar or distortion in
the flow that appears as regions of streamwise-velocity excess and deficit (i.e.,
v}), see colour contours in figure 1.9 (b), as similarly reported for the Gortler
instability (Floryan, 1986). In swept-wing flow, Saric et al. (2003) correspond-
ingly describe that “the weak motion of the [stationary crossflow] wave convects
O(1) streamwise momentum producing a strong distortion in the streamwise
boundary-layer profile”.

Accordingly, a key advantage of the proposed perturbation projection is its
ability to identify and trace coherent perturbation structures within the com-
plex step flow, characterised by strong streamline curvature (Eppink, 2020;
Rius-Vidales and Kotsonis, 2021) and intense shear. The effectiveness of this
approach is demonstrated and analysed in chapters 4, 5, and 6.

Characterisation of the mechanisms of energy exchange: energy-balance
equations of the stationary harmonic perturbation modes (1.8) are formulated
in this thesis (§ 3.1). These are used towards characterising linear and non-
linear mechanisms of energy exchange between relevant perturbation structures
and with the base flow. To that end, an extended formulation of the well-known
Reynolds-Orr equation is proposed, considering each perturbation mode (1.8),
individually. The Reynolds-Orr equation governs the temporal change of the
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perturbation kinetic energy in a volume V', here denoted by Ey, so that

dBy
VYV _pyD. 1.14
% + (1.14)

The D < 0 expresses viscous dissipation and P indicates production, that is,
the kinetic-energy transfer rate between the unperturbed base flow and the
perturbation field as a whole. Equation (1.14) is specific to the case of a
localised or spatially-periodic perturbation. In this scenario, the integration
of (1.3) leads to the vanishing of boundary terms, including the non-linear
mechanism or perturbation advection, see Schmid and Henningson (2001).

1.3. EFFECTS OF TWO-DIMENSIONAL SURFACE FEATURES
ON INSTABILITY AND TRANSITION

This section reviews the state of the art on the effects of two-dimensional surface fea-
tures in promoting instability growth and laminar-turbulent transition in boundary-
layer flows. It also discusses recent experimental and numerical studies that highlight
mechanisms of transition delay induced by a surface forward-facing step.

1.3.1. MECHANISMS OF TRANSITION ADVANCEMENT

The understanding of interactions between boundary-layer instabilities and surface
features is pivotal to laminar-turbulent transition research. Early flight experiments
on smooth wings (Jones, 1938) showed that even very small surface features can dras-
tically shift the transition front upstream. For decades, the aerodynamics community
has devoted considerable efforts to characterising the mechanisms by which surface
features alter the transition route. With few exceptions (Fransson et al., 2006; Fu-
jii, 2006; Saric et al., 2011), general consensus holds that rapid spatial variations in
surface geometry promote upstream movement of the transition front.

As such, the published literature on the effects of spanwise-invariant surface fea-
tures on transition elaborates mainly on how transition is promoted. From early
experiments on two-dimensional (i.e., unswept) flow, it was established that the
transition-front location is bounded between the surface feature and the transition-
front location in reference (i.e., feature-free) conditions (Fage and Preston, 1941;
Dryden, 1953; Tani, 1969). Tests performed on a flat surface (i.e., zero-pressure-
gradient flow) with a two-dimensional wire mounted on it showed that increasing
either the wire height or the free-stream velocity caused a forward shift of the tran-
sition front (Fage and Preston, 1941; Tani, 1969). Much of the empirical knowledge
available at the time materialised essentially in a so-called roughness Reynolds num-
ber (or roughness-equivalent Reynolds number), which became a popular transition-
correlation parameter (Smith and Clutter, 1959; Braslow, 1960). It is defined as

Reyy = 207 (1.15)
14

where h is the roughness height, v is the kinematic viscosity, and wy is the velocity
of the undisturbed boundary layer at the element height. The roughness Reynolds
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number, Reyp, was for instance reported as a successful correlation parameter for
tests performed with two-dimensional wires (Smith and Clutter, 1959). However,
this thesis (see chapters 7 and 8) shows that the transition regimes resulting from
the interaction between a pre-existing CFI and a forward-facing step are influenced by
the amplitude of the incoming perturbation. Therefore, they cannot be categorised
exclusively based on Reynolds number and wavelength, as also reported by Eppink
(2020) and Rius-Vidales and Kotsonis (2020, 2021).

Historically, two essential agents have been debated regarding the mechanisms
by which a surface feature promotes transition. On the one hand, the destabilising
influence of the mean-flow profiles in the wake of the surface feature. In particular,
Klebanoff and Tidstrom (1972) argue that the effect of two-dimensional roughness
is a “stability-governed phenomenon” in that the roughness “does not introduce dis-
turbances that add to the disturbance level in the boundary layer”. On the other
hand, perturbations introduced by the surface feature itself. In this regard, the work
of Goldstein (1985) is highlighted, as it investigates the coupling between an incom-
ing TS instability and acoustic disturbances scattered by the surface feature (Saric
et al., 2002). Similarly, Fasel et al. (1977) argue that a backward-facing step influ-
ences transition by acting as a source of perturbations through vortex shedding in
the separated flow downstream of the step.

At present, the effect of a two-dimensional surface feature on two-dimensional
boundary layers is primarily attributed to the generation of TS perturbations (Ergin
and White, 2006), and, with few exceptions (Radeztsky et al., 1991), the presence
of the feature promotes transition (Nayfeh, 1992; Perraud and Séraudie, 2000). In a
three-dimensional boundary layer, a surface strip acts mainly by producing stationary
crossflow vortices (Saric, 1994). The scope of this thesis, however, lies in assessing
the influence of a two-dimensional surface feature on a pre-existing instability.

For a TS perturbation interacting with a localised surface feature, Wu and Hogg
(2006) report that the incoming TS wave is scattered at the feature. It thereby expe-
riences a change in amplitude, quantified by a transmission coefficient (Wu and Hogg,
2006), which expresses the relative change in amplitude of the TS perturbation before
and after scattering. When evaluated for the separated flow over a two-dimensional
hump, Xu et al. (2016) find a strong increase in the transmission coefficient, as com-
pared with that of a smaller element. For an analogous scenario encompassing an
incoming TS perturbation and a hump, Park and Park (2013) conclude that their
interaction is governed by both viscous and inviscid instability mechanisms. The for-
mer is associated with the original TS mechanism, whereas the latter is linked to the
inflectional nature of the base-flow profiles in the vicinity of the hump. Furthermore,
Park and Park (2013) report significant discrepancies in the predicted perturbation
growth rates when comparing PSE (§ 2.2.3) and LST (§ 1.2.6).

For the case of a swept laminar separation bubble interacting with an incoming
oblique TS perturbation or a crossflow perturbation, Hetsch and Rist (2009) highlight
the superior accuracy of PSE over LST. Edelmann and Rist (2014) report good
agreement between DNS and LST in terms of the perturbation amplification factor
in two-dimensional forward-facing-step flows. Following the work of Perraud et al.
(2004) and Crouch et al. (2006), Edelmann and Rist (2014) quantify the influence of
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FIGURE 1.10: Step-CFI interaction model proposed by Tufts et al. (2017). (c) Schematic of step-
induced helical flow. (a,b) Stationary CFI perturbation profiles immediately upstream (a) and
immediately downstream (b) of small (blue), moderate (red), and large (green and magenta) steps,
with the no-step case shown in black, reproduced from Tufts et al. (2017, cf. figures A4 and A6).

a forward-facing step by comparing the modified perturbation amplification factor
with that of the reference no-step case. Among the vast literature on the effect
of two-dimensional surface features on the laminar-turbulent transition, pressure-
gradient effects have historically received little attention. The sparse literature on
this topic motivated a series of experiments involving forward-facing steps mounted
on unswept flat plates with a prescribed favourable pressure gradient (Drake et al.,
2008, 2010). Duncan Jr. et al. (2013) extend the work of Drake et al. (2010) by adding
sweep angle to account for the instability mechanisms present in three-dimensional
flows. In a stationary-CFI-dominated scenario, Duncan Jr. et al. (2013) observe a
reduction in the critical roughness Reynolds number compared with the equivalent
two-dimensional case of Drake et al. (2010).

Tufts et al. (2017) subsequently performed numerical simulations to investigate
the interaction between a stationary crossflow instability and forward-facing steps
of various heights under the same flow conditions as Duncan Jr. et al. (2014) and
Crawford et al. (2015). The critical step height, above which the steps begins to
significantly affect transition, is linked by Tufts et al. (2017) to a strong and sudden
amplification of the incoming stationary CFI at the step (see green and magenta
curves in figure 1.10 (a) and (b)). In particular, this amplification stage is attributed
to the “constructive interaction” between the incoming stationary crossflow vortices
and the step-induced recirculating flow; figure 1.10 (c¢) depicts the resulting helical
motion underpinning the step-CFI interaction model proposed by Tufts et al. (2017).
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Nonetheless, lack of evidence supporting this mechanism of interaction was reported
in subsequent studies (Eppink, 2018; Eppink and Casper, 2019; Eppink, 2020). In
turn, the universal validity of the model proposed by Tufts et al. (2017) to determine
critical step heights has been questioned by Rius-Vidales and Kotsonis (2020).

Despite the scientific debate surrounding the mechanism proposed by Tufts et al.
(2017), similar perturbation organisation around the step have been consistently re-
ported. The CFI lifts off the wall as it approaches the step and the perturbation
profile, i.e., the perturbation shape in the wall-normal direction, develops a dis-
tinctive secondary peak close to the wall (figure 1.10 (b)). There is currently no
consensus among previous studies regarding the origin or physical nature of this ad-
ditional perturbation structure (Tufts et al., 2017; Eppink, 2018; Cooke et al., 2019;
Eppink, 2020; Rius-Vidales and Kotsonis, 2021, 2022), nor a clear understanding of
its potential impact on transition advancement. The secondary perturbation peak
is accompanied in space by a new (i.e., locally-formed) set of vortices, as identified
experimentally by Eppink (2018, 2020) and Rius-Vidales and Kotsonis (2021).

There is a growing consensus in the literature that the incoming CFI becomes
amplified at the step. However, in contrast to Tufts et al. (2017), this is ascribed
by Eppink (2020) to the destabilising effect of the inflectional profiles accompanying
the regions of flow separation and reversal of the crossflow velocity component in
the near-step regime. Moreover, Eppink (2020) identifies a second spatial stage of
stationary-crossflow amplification at the end of the flow-separation region. This is
linked to non-linear growth mechanisms triggered by the interaction of the harmonic
perturbation components: the deformation of the separation bubble under the ac-
tion of the crossflow vortices introduces multiple streamwise-oriented vortices with
harmonic wavelengths (Eppink, 2020). An enhancement of the harmonic activity in
this regime is also reported by Rius-Vidales and Kotsonis (2021), who, conversely,
suggest amplification of the harmonic crossflow modes via non-linear forcing of the
fundamental mode. Furthermore, Rius-Vidales and Kotsonis (2021) report a strong
spanwise modulation of the trajectory of the crossflow vortices at the step, likely
driven by the local pressure-gradient changeover.

It bears emphasising that the published studies on the effect of a step on CFI-
driven transition differ notably in their numerical choices of design parameters, in-
cluding step height, Reynolds number, and the amplitude of the incoming CFI. For
example, Tufts et al. (2017) investigate step heights from 150 to 400 um, Eppink
(2020) considers step heights from 1270 to 1700 pm, and Rius-Vidales and Kotsonis
(2021) examine step heights from 368 to 759 um. For the flow conditions of Eppink
(2020), the steps reach between 53 and 71% of the undisturbed boundary-thickness,
whereas for the flow conditions of Rius-Vidales and Kotsonis (2021) —which have
guided the numerical setups in this thesis— they reach between 33 and 53% of the
undisturbed boundary-thickness. Furthermore, the stationary-CFI evolution is lin-
early dominated at the step location in the study of Eppink (2020), which is not the
case in Rius-Vidales and Kotsonis (2021, 2022).

Concerning the impact of the step on unsteady instability, the literature debates
the step-induced mechanisms that promote early transition, which are typically clas-
sified into three regimes: mild (subcritical), moderate (critical), and abrupt (super-
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FIGURE 1.11: Wall temperature maps displaying the effect of the forward-facing step (orange line) on
the transition-front pattern in swept-wing flow, reproduced from Rius-Vidales and Kotsonis (2021):
reference (no-step) case (a), subcritical transition (¢), critical transition (d), supercritical transition
(e), and transition delay (b). Flow moves from left to right: bright regions indicate laminar flow,
dark regions indicate turbulent flow. Here, z is the coordinate orthogonal to the leading edge (with
wing chord ¢; = 0.9 m), while X and Z denote coordinates aligned with the wind-tunnel walls.

critical) upstream shift of the transition front induced by the step. These transition
regimes are illustrated in figure 1.11. Here, the term abrupt indicates that the tran-
sition front shifts immediately downstream of the step.

The elucidation of the mechanisms responsible for transition advancement in this
thesis focuses on the critical and supercritical regimes. For a moderate upstream
shift of the transition front —the critical regime— Rius-Vidales and Kotsonis (2022)
attribute early transition to the enhancement of type-1 and type-11 secondary crossflow
instabilities, arising from the destabilisation of the incoming stationary CFI by the
step. This proposed mechanism of transition advancement stands in contrast to
the conclusion of Eppink (2020), who instead attributes early transition to vortex
shedding initiated at the step. The latter mechanism is associated with a shear-
layer instability of Kelvin-Helmholtz (KH) type, which is “unlikely to be related to
a secondary instability mechanism” (Eppink, 2020).

For an abrupt upstream shift of the transition front at the step —the supercritical
regime— Rius-Vidales and Kotsonis (2022) report that the temporal fluctuations lead-
ing to early transition do not exhibit the characteristics of classic secondary crossflow
instabilities. Specifically, these temporal fluctuations are measured on the inner side
of the upwelling (i.e., laterally upward-inclined) region of the crossflow vortex, where
the type-III secondary instability develops under reference (no-step) conditions (see
blue isolines in figure 1.5). However, the observed fluctuations occur in a frequency
band distinct from that of the type-III instability.
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1.3.2. NOVEL TRANSITION DELAY INDUCED BY A STEP: IMPLICA-

TIONS FOR FLOW CONTROL
The prevailing consensus at the beginning of this thesis was that a two-dimensional
forward-facing step is inherently detrimental to three-dimensional laminar subsonic
flow. Specifically, the step was believed to universally amplify pre-existing stationary
crossflow vortices on interaction, thereby advancing transition. However, a series of
discoveries made both externally and within the investigations of this thesis challenge
this view. Key recent findings are highlighted next.

On the experimental side, Rius-Vidales and Kotsonis (2021) report an unexpected
transition delay (about 3.8% of the wing chord) during investigations into the effect
of a forward-facing step on transition advancement (see figure 1.11 (b)). Their ex-
periments were conducted at a chord-based Reynolds number of 2.3 x 10% and under
large-amplitude CFI conditions, i.e., the step is located in a region of non-linear
CFT growth. Numerical studies have shown that, under specific design conditions, a
forward-facing step stabilises pre-existing stationary crossflow vortices (Casacuberta
et al., 2022b) and have identified the underlying stabilisation mechanism (Casacu-
berta et al., 2024).

Ivanov and Mischenko (2019) also report significant transition delay of swept-
wing flow modulated by arrays of surface strips, i.e., consisting of both forward-
and backward-facing steps. Their experimental work builds upon the theoretical
investigations by Ustinov and Ivanov (2018), who attribute the stabilising effect
of surface strips to base-flow deformation. Specifically, the addition of the strips
reduces the crossflow velocity within the boundary layer. Correspondingly, a classic
LST analysis (i.e., based on the Orr-Sommerfeld equation, see § 1.2.6) shows that
the strip-deformed unperturbed base flow yields a lower amplification factor for CFI,
compared to the no-strip case (Ustinov and Ivanov, 2018).

These findings suggest the potential for new laminar flow control strategies based
on surface features. This is supported by experimental and numerical investigations
involving an isolated forward-facing step (Rius-Vidales and Kotsonis, 2021; Casacu-
berta et al., 2022b, 2024) and the present thesis (chapters 4, 5, and 8), as well as sharp
strips (Ustinov and Ivanov, 2018; Ivanov and Mischenko, 2019). However, the stabil-
ising mechanism proposed in this thesis differs fundamentally from that of Ustinov
and Ivanov (2018), thus underscoring the need for further investigation. Moreover,
the CFI-stabilisation mechanism introduced in this thesis is distinct from the well-
established control strategy based on discrete micro-roughness elements (Saric et al.,
2011; Wassermann and Kloker, 2002, 2005). The latter operates by introducing fi-
nite-amplitude perturbations that deform the boundary layer and thereby influence
instability growth; see the state-of-the-art review of flow control methods below. The
working principles behind stabilising steps, and the broader potential of surface-relief-
based control devices, are discussed in § 8.2 and in the concluding outlook (§ 9.2) of
this thesis.

1.3.3. STATE OF THE ART OF FLOW CONTROL METHODS
Borodulin et al. (2024) categorise the state of the art in flow-control methods aimed
at delaying laminar-turbulent transition into the following groups:
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(a) suppression of perturbations via wave superposition;

(b) suppression of perturbations via receptivity mechanisms;

(¢) modification of the body’s boundary conditions (e.g., via cooling);
(d) base-flow deformation through finite-amplitude perturbations;

(e) direct modification of the base flow as a whole (e.g., by changing the angle of
attack, the aerofoil geometry, or by applying boundary-layer suction).

Historically, the major technologies within group (e), namely Natural Laminar Flow
(NLF), full Laminar Flow Control (LFC), and Hybrid Laminar Flow Control (HLFC),
have stood out as the most successful approaches in research programs targeting
transition delay. Several large research programs have been carried out in Europe
(e.g., LaTec, ALTTA, or HYLTEC) and in the US (e.g., EETT, LEFT, or the Boeing
757 and 787 flight tests), see Joslin (1998b) and Iyer et al. (2017).

NLF is a passive flow control method that aims to delay transition through the
appropriate global shaping of the wing. A key geometrical feature of aerofoils de-
signed to sustain natural laminar flow is the reaward displacement of the maximum-
thickness location, thereby yielding an extended region of favourable pressure gradi-
ent (Doetsch, 1940). The latter stabilises the TS instability; hence NLF is well suited
for applications involving low sweep-angle conditions up to a critical Reynolds num-
ber (Schrauf, 2005). At moderate sweep-angle conditions, the design of NLF relies
on a delicate balance between controlling the TS instability and CFI (Redeker et al.,
1990). At high sweep-angle conditions, the CFI renders NFL unsuccessful (Joslin,
1998b). As such, widespread industrial adoption of NLF has not occurred, with few
exceptions such as the Honda lightweight business jet (Fujino et al., 2003).

In contrast, LFC is an active flow control method that prevents transition at
Reynolds numbers above which laminarity cannot be naturally sustained (Joslin,
1998a); this typically entails steady wall suction through slots or small holes (Schrauf,
2005). Given the mechanical complexity of most suction systems, LFC is generally
applied only to the upper wing surface, which exhibits the highest boundary-layer-
edge velocity and thus the greatest friction drag (Bushnell, 2003). In its hybrid form,
namely HLFC, LFC (i.e., suction in the leading-edge region) is combined with NLF
(i.e., wing shaping to achieve mild favourable pressure gradient in the wing-box part)
to respectively control the CFI and TS instability (Gratzer, 1986).

The practical feasibility of HLFC for transport aircraft, and corresponding im-
provement in fuel efficiency, was demonstrated on the fin of an Airbus A320 (Henke,
1999). Unfortunately, HLFC adds mass, energy, and maintenance penalties: it re-
quires complex sub-systems such as ducts and pump sources, which have collectively
hindered the widespread adoption of the technology to date. A novel method that
enhances both robustness and simplicity is therefore essential to accelerate the in-
dustrial implementation of laminar flow control.
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1.4. SCOPE OF THE THESIS

1.4.1. RESEARCH OBJECTIVE

The main purpose of this thesis is to ascertain, through Direct Numerical
Simulations, how a surface forward-facing step modifies the stability and
transition mechanisms of laminar incompressible swept-wing boundary-
layer flow with a pre-existing stationary crossflow perturbation. To that
end, a theoretical framework is developed, and the relevant flow structures
and physical processes are described and analysed in detail. The overarching
motivation of this thesis is to advance the understanding of design strategies that
promote the preservation of laminar swept-wing flow when a surface forward-facing
step is present.

1.4.2. RESEARCH QUESTIONS AND SCIENTIFIC CHALLENGES AND OP-

PORTUNITIES
The discussion in this thesis answers three primary research questions, with pertinent
sub-questions, that are articulated and justified as follows:

(I) What are the governing mechanisms of the stationary interaction
between a forward-facing step and a pre-existing stationary crossflow
perturbation?

(I.1) What is the effect of the step height and of the amplitude of the pre-
existing crossflow perturbation in this regard?

(I.2) What are the distinct regimes of growth (or decay) of a crossflow pertur-
bation upstream and downstream of a forward-facing step?

(I.3) Is a stationary crossflow perturbation of primary wavelength universally
destabilised upon interaction with a forward-facing step?

The research question (I) arises from discrepancies in the literature concerning
how salient step-induced flow features alter a pre-existing stationary CFI. The
main scientific challenge in this regard is to establish a physically sound expla-
nation of the mechanisms governing the CFI-step interaction. This challenge
stems from the fact that multiple effects —all of which co-exist within a short
streamwise region— have been reported to correlate with changes in instability
behaviour close to the step (Tufts et al., 2017; Eppink, 2020; Rius-Vidales and
Kotsonis, 2020, 2021, 2022) and has been addressed in Casacuberta et al. (2021,
2022a) (see chapter 4 in this thesis).

Over the past three decades, numerous studies have reported the ubiquitous
presence of streaky structures in unswept forward-facing step flow (Lanzerstor-
fer and Kuhlmann, 2012; Stiier et al., 1999; Wilhelm et al., 2003; Marino and
Luchini, 2009). While this thesis will show that analogous structures also arise
in the swept case, there remains no clear consensus regarding the instability
mechanisms responsible for the formation of streaks at the step, nor a thor-
ough understanding of their potential interaction with the incoming CFI. A
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detailed investigation of the streak phenomenon at the step has been presented
in Casacuberta et al. (2025b) (see chapter 6 in this thesis).

The lack of causal understanding of dominant perturbation phenomena at the
step is partly attributed to the limitations of classic stability methods, namely
LST and PSE (Cooke et al., 2019), when applied to step flow. While im-
practical for systematic studies due to their high computational cost, the DNS
performed in this thesis do not constrain the perturbation behaviour nor as-
sume a perturbation ansatz (§ 1.2.6), other than enforcing spanwise periodicity.
The physical insight gained from the DNS has guided the development of novel
methodological approaches for assessing the stability of boundary-layer flows
over sharp surface features, as elaborated upon in Casacuberta et al. (2022b,
2025b) (see chapters 4 and 6 in this thesis).

In this regard, the inability of classic stability methods to accurately model the
behaviour of perturbations near the step suggests a role played by short-term
non-modal growth (§ 1.2.4) in this region, as further elaborated in Casacuberta
et al. (2022b, 2024, 2025b). Non-modal stability theory is well established
(Butler and Farrell, 1992; Trefethen et al., 1993; Reddy and Henningson, 1993;
Schmid and Henningson, 2001; Schmid, 2007). However, it is not yet evident in
the literature how to assess whether a convective instability of initially modal
character (such as CFI) undergoes a mixture of modal and non-modal growth
within a localised spatial region. Albensoeder et al. (2001) scrutinise the po-
tential role of the lift-up effect —a strong candidate for non-modal growth of
three-dimensional perturbations— in step flow by decomposing the production
term of the Reynolds-Orr equation (1.14). Despite offering novel insights, their
approach leads to an apparent inconsistency at first glance (later shown not to
be the case), which calls for further investigation.

This is elaborated as follows: it is well known that the sign of the production
term (1.14) establishes the sense of kinetic energy exchange between pertur-
bations and the background flow; that is, whether the unperturbed base flow
is stabilised or destabilised. This interpretation also applies to the individ-
ual terms arising from the decomposition of the production term (Albensoeder
et al., 2001). It follows from this mathematical rationale that the lift-up effect
may as well act towards stabilising the flow through an inversion of sign. This
conclusion appears to contradict the common consensus in the literature, which
holds that the lift-up effect is a destabilising low mechanism responsible for the
inception of highly energetic streamwise streaks. This issue has been addressed
in Casacuberta et al. (2024) (see chapter 5 in this thesis).

(IT) How does a forward-facing step induce an upstream shift of the tran-

sition front, relative to a no-step case, and under what conditions this
shift is either moderate (the critical scenario) or abrupt in the im-
mediate downstream vicinity of the step (the supercritical scenario)?

(I1.1) What forward-facing-step-flow features significantly contribute to advanc-
ing the transition front?
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(I1.2) Is transition advancement ultimately ascribed to the modified properties
of one or more types of classic secondary crossflow instabilities?

(I1.3) In the context of the transition diagram proposed by Morkovin et al.
(1994), does the step cause a switch to the transition path?

The research question (IT) shifts the focus to the scientific challenges concern-
ing unsteady perturbation phenomena. At present, there is no consensus in the
literature on which step-flow mechanism(s) are ultimately responsible for pro-
moting early transition, manifested either as a moderate (critical) or an abrupt
(supercritical) shift of the transition front upstream. Major proposed concep-
tual models include a vortex-shedding mechanism (Eppink, 2020), the existence
of a so-called travelling mode within the region of flow recirculation at the step
(Tufts et al., 2017), the effects of classic secondary crossflow instabilities (Rius-
Vidales and Kotsonis, 2021, 2022), and temporal fluctuations emanating from
the inner side of the crossflow vortex (Rius-Vidales and Kotsonis, 2022).

Furthermore, Rius-Vidales and Kotsonis (2022) note an apparent contradic-
tion in the behaviour of the temporal fluctuations that are responsible for
supercritical transition induced by the step. While these fluctuations origi-
nate from the spatial region where the type-III secondary crossflow instability
typically develops, their frequency content is significantly higher than that of
the type-III mode. At the same time, these fluctuations do not correlate spa-
tially with the high-frequency type-I and type-II secondary crossflow instabilities
(Rius-Vidales and Kotsonis, 2022). This suggests that a new class of unsteady
instability mechanism promoting early transition becomes active at the step
under certain conditions. However, the nature and origin of this mechanism,
any role played by the recirculating-flow region at the step, and the effects of
incoming-crossflow perturbation amplitude all remain largely unclear. A de-
tailed investigation of step-induced laminar-turbulent transition advancement
under supercritical conditions has been presented in Casacuberta et al. (2023,
2025b) (see chapter 8 of this thesis).

(ITI) Assuming the presence of a forward-facing step, what design strategy
can be employed to support the preservation of laminar flow?

Originally, the scope of this thesis was limited to addressing the research ques-
tions (I) and (II). However, a series of unexpected findings (see chapters 4 and
5 of this thesis) revealed the potential of a forward-facing step to stabilise a pre-
existing stationary CFI under specific conditions, as supported experimentally
(Rius-Vidales and Kotsonis, 2021). These findings motivated an expansion of
the thesis scope to investigate whether surface steps could effectively delay tran-
sition (chapter 8) under the previously identified conditions (chapters 4 and 5),
and to explore novel strategies for passive flow control (§ 9.2). The latter was
conducted within a broader collaborative effort of the same group at TU Delft
(Rius-Vidales et al., 2025; Westerbeek et al., 2025), which further demonstrated
the potential of smooth surface humps to delay transition in swept-wing flow,
leading to an international patent application (Kotsonis et al., 2024).
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Abstract: This thesis investigates the instability and transition of swept-wing flow
using Direct Numerical Simulations (DNS) of the incompressible Navier-Stokes equa-

tions.

This chapter outlines the employed methodology: it begins by describing the

flow problem, guided by reference wind-tunnel experiments on a 45° swept wing, along
with the main control parameters and governing equations. The modelling approaches
are then detailed, covering the setup of both DNS and linear stability methods. Fi-
nally, the chapter addresses wverification and cross-validation of the computed flow

fields.
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mulation of a scientific model. Scientific modelling is the process of generating a

simplified description of a phenomenon using physical and/or mathematical tools,
with the aim of understanding and predicting its behaviour. The present exercise in
scientific modelling is summarised as follows.

First, a physical system is constructed, namely a representation of laminar swept-
wing flow modulated by stationary crossflow instability under a set of assumptions.
Unsteady wall forcing far upstream of the step introduces unsteady perturbation
content directly, a modelling convenience bypassing the natural receptivity phase.

Second, a system of partial differential equations with pertinent initial and bound-
ary conditions is chosen to mathematically describe the behaviour of the physical
system. The joint physical and mathematical models define the flow problem (§ 2.1).

Third, the flow problem is solved numerically: the numerical methodology em-
ployed in this thesis is described in § 2.2 and verified in § 2.3. Before presenting
the main discussion of results, theoretical models are developed to characterise the
relevant stationary flow structures and the associated energy-transfer mechanisms,
based on numerically generated data (§ 3).

I nstability and transition of swept-wing flow are investigated through the for-

2.1. FLOW PROBLEM

The formulation of the flow problem begins with a definition of the physical sys-
tem, guided by reference wind-tunnel data, and proceeds with a description of its
mathematical representation and control parameters.

2.1.1. DEFINITION OF THE PHYSICAL SYSTEM

The swept-wing flow is modelled as incompressible flow over a flat plate. An aerofoil-
like static-pressure distribution is externally prescribed in the inviscid-flow region,
distributed along the chordwise (leading-edge-orthogonal) direction. Furthermore,
the free-stream velocity vector is decomposed into components pointing in the direc-
tions orthogonal and parallel to the wing leading edge. The unperturbed base flow is
conceived as invariant in the spanwise (leading-edge-parallel) direction (see § 1.2.2).
This assumption lends itself to the definition of two derivative assumptions, namely
null growth and periodicity of perturbations in the leading-edge-parallel direction.
This justifies restricting the analysis to a domain that mimics the conventions ac-
companying the reference wing model (see light grey rectangle in figure 2.1 (a)).

Reference experimental setup
The physical model of swept-wing flow is guided by wind-tunnel experiments per-
formed on a wing with a sweep angle of A = 45° (Rius-Vidales and Kotsonis, 2021;
Rius-Vidales, 2022). A sketch is shown in figure 2.1. The chord length of the experi-
mental wing model is ¢, = 0.9 m in the direction orthogonal to the leading edge and
cx = 1.27 m in the wind-tunnel streamwise direction. The latter is the direction of
tun ‘i e., the incoming velocity vector. The superscript “tun” (referring to the wind
tunnel) denotes experimentally measured flow properties at the wind-tunnel section,
upstream of the wing model. These are to be distinguished from the free-stream flow
properties at the inlet of the computational domain, which is virtually placed at 5%
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FIGURE 2.1: (a) Sketch of the physical model of swept-wing flow and (b) photograph of the reference
wing model adapted from Rius-Vidales (2022). In (a): top view of the virtually infinite swept wing

(dark grey), computational domain (light grey), two-dimensional step (solid orange line), trajectory

of the inviscid streamline (cyan line), unperturbed incoming velocity vector, Q%*, and decomposi-

tion of the free-stream velocity vector at the inlet of the domain into components orthogonal (uoso)
and parallel (wso) to the leading edge.

of the wing chord. Additionally, the superscript “exp” refers to experimentally mea-
sured flow properties at the wind-tunnel section, but associated with the flow over
the wing.

The aerofoil is symmetric and features a modified NACA 66018 profile in the
chordwise direction of ¢, (figure 2.2 (a)). The wing model was specifically designed
and extensively used for the study of the crossflow instability (see Serpieri and Kot-
sonis (2016) and Serpieri et al. (2017)). It prevents attachment-line and Gortler-type
instabilities by respectively featuring a small leading-edge radius (approximately 1%
of the chord) and no concave surface regions. Furthermore, it provides a large area of
free-stream flow acceleration (i.e., favourable pressure gradient) to promote growth
of CFI in front of TS instability. At the angle of attack at which experiments were
conducted, namely —3°, the pressure gradient is favourable until approximately 65%
of ¢x. The measurements were performed on the pressure side of the wing.

The physical model of swept-wing flow is specifically based on the experimen-
tal campaign of Rius-Vidales and Kotsonis (2021). Pertinent measurements were
conducted in the Low-Turbulence Tunnel (LTT) at Delft University of Technology.
Table 2.1 summarises the main properties of the experimental setup and flow con-
ditions. The low value of free-stream turbulence intensity, Tu = 0.03% relative to
[|Q%™ ||, aims to produce conditions representative of the flight environment (Downs
and White, 2013) and ensures that the stationary CFI dominates over the travel-
ling CFI (Deyhle and Bippes, 1996; Bippes, 1999), as demonstrated by Serpieri and
Kotsonis (2016) for the present wing model.

Rius-Vidales and Kotsonis (2021) retrieved the external (i.e., outer-flow) evolu-
tion using an array of wall-pressure taps on the wing surface, distributed along the
wind-tunnel streamwise direction, see figure 2.1 (b). The external flow properties are
key inputs of the numerical simulations presented in this thesis; therefore, the pro-
cedure described by Rius-Vidales and Kotsonis (2021) for recovering them from wall
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FIGURE 2.2: Aerofoil shape of the experimental wing model in the direction orthogonal to the
leading edge (solid black line) and reference NACA 66018 (dotted) in (a), reproduced from Rius-
Vidales (2022). Outer-flow velocity (2.4) as a function of the arc length of the aerofoil in (b) from:
experimental measurements (thick line), numerical fit on experimental data (circles), and limits of
the computational domain (thin vertical lines).

measurements is detailed next. First, the pressure coefficient at the taps is computed
as

pexp _ ptun
Co=7T7705 (2.1)
2ol QLM |2
where p denotes density and p is the static pressure. The pti" is the reference

static pressure, computed as the difference between the total and dynamic pressures
measured by a pitot-static tube placed upstream of the wing.
The magnitude of the external-flow velocity vector vS*P is evaluated as

(lvl) L (2.9)
[|Qur|| b

based on the assumption of static pressure invariance in the direction normal to
the wing surface in the boundary-layer region. Equation (2.2) is derived from the
Bernoulli equation, which itself assumes steady, incompressible, and irrotational flow.
Rius-Vidales and Kotsonis (2021) express the external velocity vector into compo-
nents parallel to the leading-edge direction, i.e.,

weP = [|Q"|sin(A), (2.3)

and orthogonal to wS*P, i.e.,

P = /|2 — (wE)z. (2.4)



2.1. FLOW PROBLEM 39

Property Value
Cx 0.90 m
cx 1.27 m
A 45°
|| Qtun| 26.5 m/s
p 1.207 kg/m3
v 1.472 x 107° m?/s
Re., 2.29 x 106
Tu 0.03%

TABLE 2.1: Properties of the experimental setup.

By virtue of the assumption of infinite wingspan (§ 1.2.2), wSP (2.3) is conceived
invariant in the physical system, i.e., globally constant. Finally, a discrete represen-
tation of P (2.4) can be evaluated from the pressure-tap measurements through
(2.2).

From experiments to the physical system

The measurements on the wing model described above are used to construct a phys-
ical system in a three-dimensional domain of swept-wing flow modelled as incom-
pressible flow over a flat plate. The considered domain follows the orientation of
the wing; i.e., it extends longitudinally in the leading-edge-orthogonal direction and
the normal vectors of inflow and outflow planes are arranged to be orthogonal to
the leading-edge-parallel direction. The flat plate (hereafter, the wall) extends in
the directions orthogonal and parallel to the wing leading edge. A fixed Cartesian
coordinate system is defined, = [z y 2]T; y is the wall-normal direction, z is the
leading-edge parallel direction, and z completes the coordinate system. A sketch
of the domain is illustrated in figure 2.3, which is conceptually represented by the
projected light grey rectangle in figure 2.1 (a). The velocity components in the z-,
y-, and z-directions are respectively denoted by u, v, and w.

For the purpose of modelling, the arc length, S°*P, of the aerofoil measured rela-
tive to the stagnation line is mapped onto the xz-coordinate. The dimensions of the
baseline domain are 0 < x/dg < 517, 0 < y/dy < 26, —4.86 < z/d9 < 4.86, see the
definition below of the scaling parameter dy. The inlet, x = 0, is virtually placed at
5% of the wing chord ¢, and the outlet at 49% of ¢, resulting in a baseline domain
length of 0.4 m.

Three key modelling elements form the foundation for the physical characterisa-
tion of swept-wing flow in this thesis, as described below:

(%) To account for the effect of sweep angle, a spanwise velocity component, denoted
Woo, 18 prescribed at the inlet. From equation (2.3), it is established that
[Weo| = WP and weo /U = —1.241 (note the orientation of the coordinate
system in figure 2.3).
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FIGURE 2.3: Sketch of the domain, including the orientation of the coordinate system and the
geometry of the forward-facing step, representative of the steady-state (a) and unsteady (b) DNS
computations. The blue area in (b) represents the forcing strip on the wall used to excite unsteady
perturbation modes. Panel (¢) displays the signal modulating the wall-normal velocity over time at
the forcing strip, with z,eax denoting the centre of the strip in the chordwise direction.

(#7) The aerofoil free-stream flow evolution in the direction of the wing chord is

prescribed in x. To that end, a polynomial fit of logarithmic basis is applied
to the experimentally-derived external velocity ®¢P (2.4). The analysis in this
thesis is restricted to the region of favourable pressure gradient, see circles in
figure 2.2 (b). Correspondingly, the chordwise free-stream velocity at the inlet
of the domain, x = 0, is set to us, = 15.10 m/s and the polynomial fit reads

USP [u0e = 0.0023 In*(z + ¢) + 0.0377 In®(z + ¢)
4 0.1752 In®(z 4 ¢) + 0.5303 In(z + ¢) + 1.8574, (2.5)

with ¢ = 0.0468. A static pressure distribution is ultimately prescribed at y =
Ymax, see § 2.1.3, which is computed using expression (2.5) and the assumption
of irrotational flow. The vector of state variables in the external region is
denoted by g. = [ue ve we pe]T = [ve pe]T, where p. expresses the external
pressure and p., equals p. at the inflow.

The external chordwise velocity far from the wall, u., increases along x, since
the free-stream is subject to a favourable pressure gradient. Under classic
boundary-layer approximations, invariance of pressure and free-stream velocity
along y is assumed. However, in the present full Navier-Stokes representation
with a realistic pressure distribution, v, = wu.(x,y) with du./0x > Ou./dy.
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FIGURE 2.4: Horizontal deflection of the characteristic inviscid streamline along the domain (a),
and zoom at the step (b) in the reference case (thick solid black), step case I (dotted orange), II
(dash-dotted blue), III (thin solid red). Here, x5t = © — 177.628¢ denotes the chordwise position
relative to the step location.

(i)

As common in studies of swept-wing boundary layers, rigorous determination
of the crossflow component requires a proper definition of the orientation of a
characteristic inviscid streamline. The velocity non-uniformity in y poses the
challenge of establishing such a definition.

To overcome possible ambiguities, pseudo-free-stream properties are charac-
terised, i.e., properties which are representative of the inviscid-flow evolution
and are a function of x only. For this purpose, a numerically computed base-
flow streamline is initially seeded at y/dy =~ 5 at the inflow; the free-stream
properties measured along the computed streamline are assigned as pseudo-
free-stream properties and are denoted by a hat symbol, e.g., 0. This approach,
and inflow seeding point, yields matching boundary-layer properties between
the present DNS and the independent numerical solutions to the boundary-
layer equations (e.g., figure 2.10 (d)). Other approaches in the literature used
to characterise pseudo-free-stream properties entail the wall-normal integration
of the spanwise vorticity (Spalart and Strelets, 2000).

The pseudo-free-stream chordwise velocity, . = fi.(x), is used to define the
horizontal deflection of the computed inviscid streamline,

¢s(z) = arctan (“ﬁ“) , (2.6)

Ue

that is, the angle that the inviscid streamline projected in the z-z plane forms
with z. The chordwise evolution of ¢ is illustrated in figure 2.4. The base-flow
crossflow component, wg s (see figure 2.10 (e)), and the velocity component
parallel to the inviscid streamline direction, ug s, are accordingly defined as

UB,s = UB COS ¢ + wp sin ¢s, (2.7a)

WR,s = WR COS s — UB Sill Ps. (2.7b)

A laminar boundary layer is prescribed at the inlet, which is set to the solu-
tion of the Falkner-Skan-Cooke (FSC) equations, v¥SC = [¢/F'SC pFSC ¢ FSC|T,
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Property Value
Uoo 15.10 m/s
Woo —18.74 m/s
Regin 481 x 10*
Bu 0.4
do 7.71 x 1074 m
0%, 2.26 x 1074 m

TABLE 2.2: Main quantities of the physical model of swept-wing flow.

The solution of the FSC equations is a self-similar profile, which satisfies the
boundary-layer equations under the infinite-wingspan assumption and repre-
sents a family of wedge-type flows (Schlichting, 1979). The FSC equations read

"+ f 1+ 8u (1= (f)?) =0, (2.8a)
9"+ fg =0, (2.8b)

where f/(n) = uF5¢/uy and g(n) = w¥SC/we, represent the velocity com-
ponents in the z- and z-directions, respectively, and the prime denotes differ-
entiation with respect to the non-dimensional wall-normal coordinate 7. The
boundary conditions are f = f' =g =0atnp =0and f' — 1, g — 1, as
1n — oo. The Hartree parameter is evaluated as

2mpy . S due*P /dx

n = y\/ (e (my +1))/(2zv), and the velocity component in the y-direction
reads vF5¢ = —/(vu™®)/(2z(m + 1)) [(m + 1) f + (m — 1) f'n].

Table 2.2 summarises the main properties at the domain inlet. The arclength
distance from the stagnation line is S*P = 0.0468 m, corresponding to 5% c,
which yields a Hartree parameter of Sy = 0.4 (2.9). The inflow Reynolds num-
ber is defined as Regin = S“Pus/v. The boundary-layer thickness based on
the inflow chordwise velocity, uFSC, is §o = 7.713x10~* m, and the correspond-
ing displacement thickness at the inlet is 6%, = 2.259 x 10~ m. Throughout this
thesis, the inflow free-stream chordwise velocity, us,, and the corresponding
boundary-layer thickness, dg, are adopted as the main characteristic quantities.

Definition of flow fields and perturbation quantities

Following classic stability analysis (§§ 1.2.1 and 1.2.6), the stability of the boundary
layer is examined by decomposing the flow field into the unperturbed base flow, gg,
and a perturbation field, ¢’ (1.2). In the numerical procedure of this thesis, gp
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FIGURE 2.5: Stability diagram of the DNS base flow obtained from a linear local stability method.
The colour map expresses the perturbation chordwise growth rate, —aos, solid white lines are
isolines of the amplification factor in x, dash-dotted black lines are the neutral curve, horizontal
dashed line indicates A\, = 7.5 mm, and vertical black line illustrates the virtual step location.

is first computed independently. It then forms the initial condition to, secondly,
numerically compute the steady perturbed flow, gpp; that is, the superposition of
the unperturbed base flow and the steady content of the perturbation field:

gos = g + ¢, subject to dq' /0t = 0. (2.10)

The flow field gpg = [upp vpB wpB PpB]T is a steady-state solution of the Navier-
Stokes equations when the inflow boundary layer is disturbed with a stationary cross-
flow eigenmode (§ 2.2.1), to which a finite amplitude is assigned (§ 2.1.2). The SFD
method (Akervik et al., 2006; Casacuberta et al., 2018) is applied to ensure the fully
stationary nature of gpg. Upon subtraction of the pre-computed gg from gpg, the
stationary perturbation field is recovered, i.e., ¢’ subject to 9q’/dt = 0. The maxima
along y of |@(o,j) +|@'|(, ;) will be generally employed as the main metric to quantify
stationary-perturbation amplification in  without the step present. This amplitude
metric is denoted as Af ;) = max (1@l 0,5) + |ﬂT|(0’j)).

Third, the total unsteady flow field is the instantaneous solution of the Navier-
Stokes equations when the flow is forced at selected temporal frequencies, continu-
ously in time (§ 2.1.3), and the SFD method is switched off. In a fashion similar to
the decomposition of the stationary perturbation field into spanwise Fourier modes
(1.8), the total unsteady velocity-perturbation field is Fourier-analysed in the span-
wise direction and in time and expressed as

M N

Z D7 By (,y) el0PozReot), (2.11)

—M j=—N

(k 7)
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FIGURE 2.6: Flow features at the step: fundamental amplitude function W;I(O,l) (colour contour),
top

(0,1)°
small magenta circles) perturbatlon peaks, loci of base-flow crossflow inflection

wall-normal position of primary (i.e., associated to |1)]| big blue circles) and secondary (i.e.,

str
(0,1)°
points (solid cyan) and base-flow reversal ug = 0 (dotted green).

associated to [

where Uy, jy = [Tk Uk, 5) O(k,j) Wik, ])] € C3 denotes the Fourier coefficients, M and N
indicate (one half of) the number of temporal and spanwise modes considered, and
the parameter wy = 27 fy expresses the fundamental angular frequency. The moduli
of the components of ¥y, ;) 7 read |ﬂ|(k |17| k.5), and 10| ;) and the associated phases
are denoted by gp(k ) <p( f)? and ¢, An analogous decomposition is applied to
the pressure-perturbation ﬁeld with p(k ;) € C indicating the Fourier coefficients.

The width of the computational domain is set to the spanwise wavelength of the
fundamental stationary crossflow eigenmode prescribed at the inlet, A, = 27/8,,
and periodic boundary conditions are applied at the transverse boundaries. The
choice of wavelength of the stationary CFI in this thesis, A, = 9.73Jp = 7.5 mm, is
grounded on the criticality of the crossflow eigenmode with respect to the (maximum)
linear amplification factor achieved at the end of the computational domain. This
was quantified through a linear local Orr-Sommerfeld analysis (§§ 1.2.1 and 1.2.6)
performed on the DNS base flow, for a broad range of A\, values. Linear local stability
methods sufficiently predict the most amplified wavelength of stationary crossflow
perturbations despite their inherent parallel-flow assumption (Bippes, 1999). The
results of the Orr-Sommerfeld analysis are summarised in figure 2.5, where the colour
map represents the local perturbation chordwise growth rate, —a?s, and isolines
characterise the associated amplification factor in x.

In analogy with the classic LST ansatz (§ 1.2.6), the spatial growth rate in x of a
perturbation feature with spanwise wavenumber ;3 and angular temporal frequency
kwg is computed from the DNS results as

1 dfalfy, (,”

o (2.12)

q
aiv(kaj) | |
Ak, J)



2.1. FLOW PROBLEM 45

In equation (2.12), ¢ represents a flow quantity, such as u or ¢ (1.9), and y' refers
to the wall-normal location at which amplitude is measured in its corresponding
amplitude function. The wall-normal location 7' is generally not constant but follows
the spatial evolution of relevant perturbation quantities, see the description below.
In CFI-dominated problems, the amplitude function of a single velocity pertur-
bation component is typically employed to quantify perturbation growth and decay.
However, previous work by Tufts et al. (2017) (see figure 1.10) and the results of
this thesis (see § 4.2) show that the amplitude functions of the stationary CFI mode
develop an additional (secondary) peak near the wall after passing the step in x.
Monitoring growth at selected wall-normal locations is therefore deemed necessary
for the analysis in this thesis, owing to the co-existence of multiple perturbation
structures across y at the step z-location. For clarity, in the analyses of chapters 4
and 6, the amplz'tude measured at the upper peak (see big blue circles in figure 2.6) is

denoted by |g[*°" (0.1)7 amplitude measured at the lower peak arising downstream of the
str

step (see small magenta circles in figure 2.6) is denoted by |q|(0 1 and amplitude lo-

cally measured at the largest peak for every x is denoted by |q|m"‘x The wall-normal

location of |u|(O ) is denoted by y?otff in chapter 4 and the wall-normal location of

r

|1/J|(0 1) is denoted by y(o f) in chapter 6.

2.1.2. CONTROL PARAMETERS AND SUMMARY OF CASES

This section summarises and justifies the choices of main control parameters adopted
in this thesis. In some cases, these choices have been guided by the outcomes of recent
experimental work (Eppink, 2020; Rius-Vidales and Kotsonis, 2020, 2021, 2022).

Height and location of the step and amplitude of CFI
The step height, h, stands out as a key control parameter. The values considered
in this thesis, h/dy = 0.59,0.76, and 0.97, correspond to subcritical, critical, and
supercritical transition, respectively (see § 8.1), in agreement with the experimental
findings of Rius-Vidales and Kotsonis (2021). Accordingly, these steps are hereafter
referred to as small, moderate, and large, respectively, reflecting their respective tran-
sition behaviour in the reference experiments of Rius-Vidales and Kotsonis (2021).
However, it is emphasised that the segregation of transition regimes based on h is
contingent upon the initial amplitude of the incoming CFI, as demonstrated in this
thesis and experimentally (Eppink, 2020; Rius-Vidales and Kotsonis, 2021).
Boundary-layer metrics corresponding to the aforementioned step geometries are
summarised in table 2.3. Specifically, dgg ;, denotes the unperturbed boundary-layer
thickness at the z-location of the step and

ool
Reh = Y

2.13
- (2.13)
is the step-height-based Reynolds number. The steps, which attain approximately
between 30% and 50% of the unperturbed boundary-layer thickness, are located at
x/dp = 177.62; an exception is made in § 8.2, where the step x-location is shifted
upstream to x/dy = 73.90, to explore mechanisms of passive CFI stabilisation. The
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Boundary-layer parameters per step geometry

Test case name Note h/do h/dggn wn/tso Re;,  Renpn
step I small step 0.59 0.33 0.78 470.26 368.17
step 11 moderate step 0.76 0.41 0.93 598.51 556.88
step III large step 0.97 0.53 1.08 769.51 832.08

TABLE 2.3: Definition and notation of boundary-layer parameters for each step geometry, corre-
sponding to cases where the step is located at z/dp = 177.62 (see table 2.2). The cases of this table
are compared in chapters 4 and 8, while chapters 5, 6, and 7 focus exclusively on the “step III” case,
see table 2.6.

x/dp = 177.62, corresponds identically to 20% of the chord of the reference wing
model (Rius-Vidales and Kotsonis, 2021). The chordwise position relative to the
step, zsy = x — 177.626¢, is hereafter introduced for ease of representation.

Cases for CFI amplitude

Test case name Note A?O’l)‘xzo Alo1) o0
r.A (no step), s.A (step) small amplitude 1 x 107 une 3% 1073 ug

r.B (no step), s.B (step) medium amplitude 3.5 x 1073 uq 1x 1071 uee
r.C (no step), s.C (step) large amplitude 2.6 x 1072 uy 3x 1071 Uy

(131}

TABLE 2.4: Definition and notation of amplitude cases, where “r” and “s” denote the reference
(no-step) and step configurations, respectively. The table lists the amplitude of the fundamental
CFI mode, A?O 1) at the inlet (x = 0) and at the virtual step location (zs;y = 0), both in the

absence of the step. The cases of this table are compared in chapter 7 and, in part, in chapter 8,
while chapters 4, 5, and 6 focus exclusively on case “B”, see table 2.6.

The initial amplitude of the incoming CFI, Ag (2.27), is also a main control pa-
rameter. Three values of Ay are considered (see table 2.4), corresponding to distinct
perturbation regimes. Specifically, Ag/us = 1 x 10™* and Ag/us = 3.5 x 1072 yield
linear behaviour of the fundamental CFI until approximately the end of the domain
(figure 2.11 (a)), and until the virtual step location (figure 2.11 (b)), respectively.
The referenced figures are presented below in the cross-validation section (§ 2.3). In
contrast, Ag/us = 2.6 x 1072 leads to non-linear CFI behaviour already upstream
of the step (figure 2.11 (¢)). These amplitude regimes are defined from preliminary
stability computations on the reference (no-step) base flows. At the same time, the
choice of the largest amplitude, Ag/us = 2.6 x 1072, is further motivated by the
causal link between local CFI amplitude at the step and the onset of supercritical
transition, assessed via preliminary NPSE simulations matching the experimental
conditions of Rius-Vidales and Kotsonis (2021), see also Casacuberta et al. (2025a).
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Cases for effective sweep angle

Test case name wo/Use |¢s(0)| Forcing method Amplitude

Baseline —1.241 51.136° IM (x =0) 3.5 x 1073 uy
Test A —1.241 51.136° BS (x = 140dp) 1 x 1075 uy
Test B —0.993 44.791° BS (x = 1405p) 1 x 1075 uy
Test C —0.745 36.670° BS (z = 1405) 1 x 107° us
Test D —0.496 26.398° BS (z = 14050) 1 x 107° us
Test E —0.248 13.938° BS (z = 14055) 1x 107° us
Test F 0 0°  BS (z=14060) 1x107° us

TABLE 2.5: Definition of cases used in the study of effects of the effective sweep angle
in chapter § 6. Amplitude refers to the amplitude of the Inflow Mode (IM), as defined
in equation (2.27), in case Baseline, and to the wall Blowing-Suction (BS) amplitude, as
defined in equation (2.23), in the Test cases.

Effective sweep angle and wavelength of CFI

A secondary set of control parameters is defined and used to examine the sensitivity of
main perturbation mechanisms at the step. Namely, §§ 5.3.3 and 6.2.5 investigate the
effect of the effective sweep angle and § 6.2.7 focuses on the effect of the incoming
spanwise perturbation wavelength. The strategy employed for the analysis of the
effective sweep angle effects is described next.

The ratio of spanwise to chordwise free-stream velocity imposed at the DNS
inflow, weo /uno, establishes the orientation of the inviscid streamline. The main flow
cases discussed in this thesis use weo /U = —1.241, here referred to as the Baseline
case. Additional simulations progressively increase wq, from —1.241uq, to 0 in fixed
steps of Awy; these are designated as Test cases in table 2.5. The table also lists the
angle at the inflow that the inviscid streamline forms with the z-direction, denoted
by ¢s, and the relevant features of forcing.

The Baseline and Test cases adopt different strategies to trigger stationary in-
stability growth upstream of the step. Modifying w, inherently alters the nature of
incoming boundary-layer perturbations, though not the structure of newly-identified
near-wall perturbation features at the step, see chapter 6. The Baseline case fol-
lows the main DNS setup described in §§ 2.1.3 and 2.2.1. In contrast, some of the
Test cases operate at small-sweep-angle and even unswept (wo, = 0) conditions. In
unswept flow, the concept of an asymptotically evolving crossflow eigenmode is not
tenable. However, for meaningful comparison with the Baseline case, a stationary
perturbation must pre-exist in all cases. Leveraging the structural similarity between
stationary CFI and Klebanoff modes (Klebanoff, 1971; Kendall, 1985) at a perturba-
tion level (Herbert, 1993; Saric et al., 2003), a stationary Klebanoff mode is excited
upstream of the step in the Test cases with small sweep angle (table 2.5). Following
the approach of Herbert (1993), the stationary Klebanoff mode is introduced via
spanwise modulation of the wall-normal velocity (blowing-suction) at the wall by
altering the no-penetration condition at y = 0 in the DNS.
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2.1.3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
The behaviour of the physical system modelling swept-wing flow (§ 2.1.1) is mathe-
matically described by the incompressible form of the mass,

V-v=0, (2.14)

and the momentum (1.1) conservation equations,
—+V:(v®v)=-Vp+vV.(Vv), (2.15)

with pertinent initial and boundary conditions. The density and viscosity remain con-
stant, consistent with the low Mach number conditions in the reference experiments
(Rius-Vidales, 2022). Particularly for the unperturbed base flow, the assumption of
infinite wingspan (§ 1.2.2) lends itself to the condition of spanwise invariance and
therefore to a simplified representation of the base-flow conservation equations, i.e.,

8UB (91)]3

and

=0, (2.17)

81}]3 (91}]3 1 8pB 821]]3 62’013
—up = gy B ZUPB - 2.1
%9 oy ooy V(f)xQ + y? 0 (2.18)
Oowp owg Pwg  O%wp B
—up > —vn +u< oz T ap ) =0 (2.19)

The system of equations (2.17-2.19) has been expressed in convective form, which
facilitates the analysis and interpretation presented in § 4.1. Different boundary
and initial conditions are considered, depending on the case. Common choices are
summarised below, with specific differences pointed out as needed.

At the inflow, Op/0x = 0 and the velocity vector, vy, is prescribed and assigned
to the solution of the FSC equations (2.8), i.e., vi, = v¥5¢. No further condition at
the inlet is specified in the computations of the unperturbed base flow. However, in
the steady perturbed and unsteady flows, the inflow boundary-layer profile is

/!
in

FSC_|_[

Uin =V u Uiln wi/n]T7 (220)

to trigger stationary CFI growth. Here, [ul, v}, w]]T expresses a stationary crossflow

perturbation computed from a linear local stability analysis on the inflow base-flow
profile, see § 2.2.1 for details on the numerical implementation.

At the top boundary, the static pressure is prescribed and used to approximate
the outer-flow evolution (§ 2.1.1) from the experiments of Rius-Vidales and Kotsonis
(2021). The static pressure distribution that is ultimately imposed at ¥ = Ymax
is computed using expression (2.5) and the irrotational-flow assumption. It should
be noted that the choices of boundary conditions at the top support inflow. As
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quantitatively illustrated in figure 2.10 (b) below, the accelerated free-stream flow
carries a condition of downwash (i.e., v < 0) far from the wall, with dJv|/dy > 0.
This trend exhibits itself in conjunction with mild upwash (i.e., v > 0) close to the
wall and near the inflow, where the boundary layer undergoes rapid growth in x.

Similar numerical studies of swept-wing flow describe that the penetration con-
dition at the top can become unstable if the wall-normal velocity is “too negative”
(Chauvat, 2020). The formulation of the velocity boundary condition in the present
thesis ensures that fluctuations are quenched. Namely, the instantaneous velocity
components are split into an instantaneous spanwise mean (i.e., spanwise-averaged)
and instantaneous fluctuation (i.e., the deviation from the spanwise mean) compo-
nents. A Neumann-type condition is applied for the spanwise mean component, i.e.,
02 [{u) (v) (w)]/Oy* = 0, whereas the fluctuating part is artificially damped out, see
Hickel and Adams (2008) for further details. Here, the symbol “()” expresses spanwise
mean operation. Periodic boundary conditions are applied at the transverse faces to
constrain the growth of the CFI in z. At the wall, the no-slip and no-penetration
conditions are applied, i.e., [u v w] = 0, and a Neumann-type condition is used for
pressure in the direction normal to the wall.

At the outflow, a Neumann-type boundary condition is applied to the velocity
vector, i.e., 0%[u v w]/dx? = 0. The static pressure is prescribed by assigning it
the value corresponding to @ = Tyax from experimental outer-flow evolution (2.5).
In addition, a damping zone is placed towards the rear of the domain to suppress
temporal fluctuations in the unsteady flow computations. For the main baseline case
(table 2.5), the damping zone encompasses x/dy > 475. In selected simulations with
the step present, the domain is shortened in x to reduce computational cost; the
damping zone is correspondingly shifted to z/dy > 230, for the transitional-flow case
discussed in § 8.1.1 and to x/dy > 297 for the transitional-flow case discussed in
§8.1.2.

The damping approach relies on the Selective Frequency Damping (SFD) method.
That is, exclusively in the damping zone, the momentum-conservation equation (1.1)
and (2.15) is modified through the addition of a linear forcing term,

Gg=NS(q) —x(g—q), xR, (2.21)

that drives the flow field g to q. The flow field q is a low-pass filtered version of q,
whose evolution equation reads

g=1"9  AcRr*, (2.22)

A

and A relates to the cut-off frequency of the filter. The effectivity and efficiency of
SED strongly depend on the choice of model parameters x and A (Akervik et al., 2006;
Jordi et al., 2014; Casacuberta et al., 2018), which are main inputs of the numerical
simulation. The choices x = 0.8 and A = 5 are adopted, based on the criterion
proposed by Casacuberta et al. (2018). The so-called encapsulated formulation by
Jordi et al. (2014) is used for the numerical implementation of SFD in the time-
stepping solver.
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In the computations of the unsteady flow, the flow field is forced at selected
temporal frequencies through a disturbance strip placed at the wall near the inflow,
with zero net mass flow. The present approach is largely similar to the one employed
by Wassermann and Kloker (2002) to study the evolution of secondary crossflow
instability: a disturbance strip is defined, where the wall-normal velocity is modulated
continuously in time as follows:

Mgs
v(z,0,2,t) = fs(z) Z AP cos (Boz + 27k fot + é%) (2.23)
k=1

where fj is the fundamental temporal frequency, Mgg is the number of modal com-
ponents, AES and ¢y, respectively denote the amplitude and a random phase assigned
to each modal component k, and f,(z) modulates the wall-normal velocity smoothly

in z. It reads 5
4 - star end T
fo= ( (& — T3 start) (T35 0nd z)> : (2.24)
(xBS,end - xBS,start)

with Tpg start and TBs end indicating the starting and ending positions of the distur-
bance strip in «. Generally in this thesis, zBg start = 2000 and 2Bg.ena = 32d0; an
exception is made in chapter 6, where the wall blowing-suction is used to induce a
stationary Klebanoff mode. The function f; is symmetric and has vanishing first and
second derivatives at xBs start and TBgend. At the beginning of the simulation, the
velocity at the disturbance strip is weighted by a smooth temporal function as well
to alleviate transient effects.

The input choices in equation (2.23) are fy = 1 kHz, Mpg = 14, ABS = 0, and
A?_SM =5 x 107 3u,, implying that the flow field is forced at temporal frequencies in
the range 3 to 14 kHz. Based on preliminary investigations and stability analyses,
see Casacuberta et al. (2022a) and § 2.3.3, the lower-frequency components are not
explicitly forced in the disturbance strip, but develop naturally further downstream.
This modelling choice aims to prevent an excessively strong amplification of type-111
instability mechanisms upstream of the step. See Hogberg and Henningson (1998)
and Wassermann and Kloker (2002) for a numerical discussion on the spatial growth
trends of low- and high-frequency unsteady instabilities.

The setup choices of the disturbance strip in this thesis produce a transition
scenario qualitatively consistent with the reference experiments of Rius-Vidales and
Kotsonis (2021) under no-step conditions. In particular, emphasis has been placed on
ensuring (1) a similar location of the transition front and (2) on qualitatively repro-
ducing the breakdown of stationary crossflow vortices driven by the amplification of
the type-I secondary crossflow instability, see Casacuberta et al. (2025a) for details.

2.2. MODELLING METHODS

The governing equations are solved using Direct Numerical Simulations (DNS). In
addition, linear and non-linear stability methods are employed to guide, complement,
and cross-validate the DNS results. This section provides a detailed description of
the DNS setup and introduces the stability approaches.
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2.2.1. SETUP OF DIRECT NUMERICAL SIMULATIONS
The mass and the momentum-conservation equations (2.14-2.15) are discretised by
considering a formulation based on the Pressure-Poisson Equation (PPE). On taking
the divergence of (2.15) and combining it with equation (2.14), the following Poisson-
type equation is obtained:

Vp=-V-(u-Vu). (2.25)

The system of equations that is ultimately chosen to numerically describe the in-
compressible swept-wing flow is (2.15) and (2.25) instead of (2.14) and (2.15) see,
for instance, the discussion by Rempfer (2006) on the role of pressure in preserv-
ing the continuity condition. Equations (2.15) and (2.25) are numerically solved by
use of an adapted version of the classic fractional step method (Harlow and Welsh,
1965; Chorin, 1968) and are advanced in time with a low-storage third-order explicit
Runge-Kutta scheme (Shu, 1988). The Finite Volume (FV) method with a staggered
Cartesian grid representation (figure 2.7) is employed for the spatial discretisation.
The computational domain is partitioned into finite volumes, hereafter referred
to as cells, bounded by faces of area Sy. The semi-discrete form of the momentum
conservation equation (2.15) integrated over a particular volume, reads

AW <
Ttv =Y -c-P+D, (2.26)
=1

Ry

where V is the velocity vector in the FV representation, and C and D respectively
denote the convection and diffusion terms evaluated at the faces by virtue of the
Gauss-Green theorem. Analogously, P expresses the pressure term.

The sequence to compute the FV flow field from time ¢" to a time t"T1 = " + At
is summarised in algorithm 1. The approach relies first on evaluating a preliminary
velocity field and, second, applying a pressure correction to ultimately produce a
divergence-free flow field. Here, the subindices V and f respectively denote quantities
evaluated in the volume or at the faces of the cells in the staggered grid arrangement.
In algorithm 1, a;; expresses the coeflicients of the Runge-Kutta scheme, 4 indicates
the Runge-Kutta sub-step, s is the number of sub-steps, ® is the discretised form of
the PPE, II is a pressure correction, and .., is a scaling parameter for the pressure

Algorithm 1 Fractional step method with explicit Runge-Kutta

1: fori=1:sdo A _

2 V\;(l) = ngn) +AtY ainﬁf) > Compute preliminary velocity
3 H?) — @(Sy, Vf*(i)) > Solve the discretised PPE
4: V\;*(i) = V\;(i) — Yeor(At) (VH)@ > Correct velocity
5 chz) = chz) + HSZ) > Correct pressure
6: end for

7. V\gnJrl) _ V\;*(s)
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FIGURE 2.7: Control volumes for a staggered grid: mass conservation (left), z-momentum (centre),
and y-momentum (right). Reproduced verbatim from Ferziger et al. (2020).

correction. The time step, At, is obtained by prescribing the Courant-Friedrichs-
Lewy (CFL) number to unity. As noted by D’Alessandro et al. (2018), the present
approach (algorithm 1) differs from the classic fractional step method in that the
convection and diffusion terms are treated explicitly. It is noted the pressure remains
implicit, thus preventing a splitting error (Sanderse and Koren, 2012). See also the
discussion by Armfield and Street (1999) on the variants of the fractional step method
on staggered grids.

The discretised PPE (algorithm 1) is solved through a Krylov subspace method,
namely the bi-conjugate gradient stabilised (BiCGstab) method (van der Vorst, 1992;
Sleijpen et al., 1994). The PPE is solved until a convergence criterion of epry = 10~°
for the steady perturbed flow and epry = 1077 for the unsteady flow. Here, epry
expresses the La-norm of the velocity divergence. The PPE and the diffusion term
(2.26) are discretised in space with a second-order centred scheme. For the convective
term, a fifth-order velocity reconstruction at the cell faces is employed, utilising the
coefficients provided by Hickel (2008, Eq. 2.29). The final numerical flux is computed
as the average of Y+ and U~ and by the addition of a regularisation term, namely
(1/2) |vaa| (UT —UT). Here, UT and U~ respectively denote the two fifth-order
reconstructions of the solution on the same cell face and |v,q4| is the absolute value of
the local advection velocity. It is noted that the average of /™ and U~ corresponds
identically to a sixth-order centred reconstruction with the coefficients from Hickel
(2008, Eq. 2.29). The present spatial discretisation approach prevents the growth of
spatial dispersion errors in the staggered grid, as demonstrated in preliminary tests.
Confidence in the numerical setups, grid topology, and grid density is established in
§ 2.3, where an extensive cross-validation and verification analysis of the DNS results
is presented.

Three layers of ghost cells are placed at the boundaries of the computational
domain to apply boundary conditions. As mentioned above (§ 2.1.3), the inflow
velocity profile in the steady-perturbed and unsteady-flow computations is disturbed
with a stationary crossflow perturbation (2.20). In the ghost cells, the chordwise
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velocity-perturbation component is given by
ufy, = Ao (@ (y) {cos(atz + Boz) } — @ (y) {sin(az + Boz)}), (2.27)

where Ay € RT denotes the initial amplitude assigned to the crossflow eigenmode
and @ = @ + i@™ is the normalised amplitude function, with max {abs(a™)} = 1.
The quantity o;" € R denotes the chordwise wavenumber of the crossflow eigenmode
obtained as the solution to a linear local stability analysis on the inflow base-flow
profile. A treatment identical to (2.27) is considered for the perturbation components
v}, and w{, (2.20). For the Neumann-type boundary conditions (§ 2.1.3), the ghost-
cell values are assigned such that the second derivative of the pertinent quantity is
null at the boundary.

For the initial condition, the numerically computed steady-state solutions are
employed sequentially. The procedure is as follows: first, the computations of the
unperturbed base flow, gg, prescribe as initial condition the solution of the FSC
equations (2.8). It is noted that the Hartree parameter (2.9) is evaluated individually
at every z-station, inasmuch as this renders more efficient simulations, compared to
the use of a global Hartree parameter. The Lo-norm of the temporal derivatives, e,
is used as convergence criterion for the base-flow computations. A value of e = 1078
is used. Next, the time-converged unperturbed base-flow solution forms the initial
condition for the computations of the steady perturbed flow, gpg. The Ls-norm of
the difference between the instantaneous solution and the low-pass filtered solution
associated with the SFD formulation, espp, is used as convergence criterion for the
computations of the steady perturbed flow (Akervik et al., 2006; Casacuberta et al.,
2018). A value of espp = 1076 is used; espp > € since the computations of the
steady perturbed flow are significantly more expensive than the base-flow runs. The
time-converged steady-perturbed-flow solution is subsequently employed as the initial
condition for computations of the final unsteady flow.

2.2.2. DNS DATA ANALYSIS
The results from DNS are Fourier analysed to recover the behaviour of steady and
unsteady perturbation modes. The analysis proceeds in two steps. First, the three-
dimensional stationary perturbation field obtained from simulations of the steady
perturbed flow (2.10), is decomposed into spanwise Fourier modes. A discrete Fourier
transform of spanwise perturbation signals is performed using a Fast Fourier Trans-
form (FFT) algorithm. Second, a collection in time of three-dimensional DNS snap-
shots is Fourier analysed in the spanwise direction and in time using a similar FFT
procedure. The Fourier coeflicients are recovered for perturbation structures with a
temporal wavenumber kwy and spanwise wavenumber jfj, as expressed in equation
(2.11). In the reference no-step case, r.C, a total of 290 DNS snapshots are generated
per period of the fundamental temporal frequency, i.e., fop = 1 kHz. In the transi-
tional step case, s.C, it is ensured that at least 20 snapshots are collected per period
of the frequency component most critically affecting transition i.e., f = 12 kHz.
The analysis of unsteady perturbation effects is complemented by the use of point-
wise temporal signals from numerical probes. The power spectral density (PSD) is
estimated using Welch’s method of overlapped segments with two Hamming windows
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FIGURE 2.8: Formulations of the secondary crossflow instability problem and choices of coordinate
systems in the literature, leveraging spanwise periodicity along the leading-edge direction (denoted
z|) and various complementary z-direction. Reproduced from Groot et al. (2025). The stability
analysis employed in this thesis is based on formulation (d).

with an overlap of 80%.

2.2.3. OVERVIEW OF STABILITY METHODS

Two main stability methods are employed in this thesis to complement the re-
sults from DNS. First, the incompressible Linear (LPSE) and Non-linear (NPSE)
Parabolised Stability Equations (Bertolotti et al., 1992) method is used to cross-
validate and complement the stationary-perturbation behaviour obtained from the
steady-state DNS results. In the linear PSE approach, the perturbation quantities
are expressed as a slowly varying shape function, ¢, and a rapidly varying wave
function, x, such that

ql(w7 y7 ZVt) = q~(£7 y) X(xV Z’t) +C'C'7 (2'28)

where 0x/0x = ia(§), Ox/0z = iB, Ox /0t = —iw, and £ = z/Re is a slowly varying
streamwise scale. A normalisation condition is also imposed to close the system of
equations, preventing the shape function ¢ from absorbing rapid variations of growth
and oscillation, which remain confined to the wave function Y.

Leveraging the modified character (Bertolotti et al., 1992; Herbert, 1997) of the
perturbation equations (1.3) resulting from the PSE ansatz (2.28) and its underlying
assumptions, the perturbation behaviour can be determined using a marching ap-
proach, which is computationally more efficient than solving the full Navier-Stokes
methods. To maintain brevity, the key aspects of the LPSE and NPSE setups used
in this thesis are described in appendix B, and the reader is referred to Westerbeek
(2020) for further details. Additional background on the PSE formulation, method-
ology, and numerical aspects related to crossflow perturbations is given by Haynes
and Reed (2000).
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Second, two-dimensional linear and two-dimensional plane-marching (the latter is
popularly known as PSE-3D (Paredes et al., 2015)) stability approaches are employed
to cross-validate the unsteady perturbation behaviour from DNS. In this thesis, these
methods are referred to, respectively, as the linear BiGlobal and plane-marching
BiGlobal (BiG) approaches, and are formulated using a non-orthogonal coordinate
system (figure 2.8 (d)). The (non-orthogonal) plane-marching BiG approach extends
the (non-orthogonal) local BiG approach used by Groot and Eppink (2021), which
is itself based on the framework originally introduced by Li and Choudhari (2011)
(figure 2.8 (¢)). Figure 2.8 (a,b) illustrates earlier coordinate-system choices of the
secondary crossflow instability problem in the literature. The use of a non-orthogonal
coordinate system is required in this thesis, because the unsteady perturbations of
interest are periodic along the z-direction, i.e., parallel to the step, while the direction
of smallest gradient at a given z is not orthogonal to z. The reader is referred to
appendix B and Groot et al. (2025) for details on the method formulations, the
selection of the local direction of smallest gradient, and numerical considerations.

2.3. VERIFICATION AND CROSS-VALIDATION

Following the discussion of the DNS setup and stability methods, this section out-
lines the grid design and presents several diagnostic plots supporting the verification
and cross-validation of the unperturbed base flow, the steady perturbed flows corre-
sponding to the three initial CFI-amplitude cases considered in this thesis, and the
unsteady flow for the medium-amplitude CFI case (characterised by monochromatic
unsteady forcing). Finally, an overview is given of the behaviour of the reference
(no-step) unsteady flow under large-amplitude CFI conditions with multi-frequency
unsteady forcing, which defines the perturbation environment in the transitional-flow
cases with the step present.
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Chapters 4 and 5 (no-step case)

Case Axt|g Ayt s AzT g AT |out AyTout Azt |out
No-step 0.52 0.52 5.20 5.68 0.47 4.73
Case  A./Azlse A:/Aylse A:/Azlse Ao/Azlows Ae/Aylows  Az/AZ|out
No-step 720 720 72 60 720 72

Chapters 7 and 8 (no-step and step III cases)

Case Steady (gpp) Unsteady (q)

Nx Ny Nz Nw Ny Nz AZ‘J’_‘St Ay+|st AZ+|St
= s.A 6760 504 72
& s.B 6760 504 72 5080 504 72 0.56 0.56  5.60
5 s.C 5080 1008 144 50801 1008 144 1.54 0.77 7.70
e r.A 3380 288 72
? r.B 6760 576 72 50801 576 72 0.65 065 6.5
Z r.C' 6760 576 144 6760 576 144 0.67 0.67 3.35

TABLE 2.7: Choices of grid density. Upper sub-table: computations of the steady perturbed flow
(2.10) without the step. Grid spacing is shown both at the virtual step location (|s;) and near the
outflow (|out), expressed in wall units (top) and relative to the fundamental spanwise wavelength
(bottom). The N, Ny, and N denote the number of grid points in the z-, y-, and z-directions,
respectively, with (Ng, Ny, N.) = (6760,576,72). Lower sub-table: computations of the steady
perturbed (2.10) and unsteady (1.2) flows. In the step cases, Ny is indicative of xs; > 0. The
grid spacing in wall units is evaluated just downstream of the step z-location at the z-location
of maximum wall shear, with bold font indicating near breakdown conditions. The superindex
“1” indicates that the domain is shorter in « (2450); the height is fixed at 264o.

2.3.1. GRID TOPOLOGY AND DENSITY
Five Cartesian grids are designed in this thesis, corresponding to:

(%) one case without the step, used for reference,

(%) three cases with steps of different heights (see table 2.3), placed at /6y = 177.62
and guided by the experiments,

(#i?) one case with the step placed at x/dy = 73.90, used towards analysing mecha-
nisms of CFI stabilisation.

The grid topology is common to all cases: a smooth hyperbolic refinement is applied
in the chordwise direction near the step. For consistency, the reference case is treated
in the same manner. Hyperbolic refinement is also applied in the wall-normal direc-
tion near the wall. The chosen refinement ratios ensure smooth transitions between
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FIGURE 2.10: Evolution of the unperturbed base flow obtained from DNS (solid lines) and the
boundary layer equations (symbols): (a) chordwise-, (b) wall-normal- and (c) spanwise-velocity
profiles at /8o = 0 (circles), 160 (squares), 320 (diamonds), 480 (circles with a cross) and (e)
crossflow-velocity profile at z/dp = 320. Evolution in z of the boundary-layer thickness (black line
and circles) and displacement thickness (black line and squares) in (d).

grid regions and produce cells with a unit aspect ratio in the z-y plane, both near
the step and far into the free-stream (figure 2.9).

The choices of grid density are subject to the flow field under consideration, see
table 2.7 characterising both the steady perturbed and unsteady flows. In addition,
three layers of ghost cells are added at the domain boundaries to apply boundary
conditions. Regarding the unperturbed base flow, only two spanwise grid points
(N, = 2) are considered for its calculation, i.e., effectively solving for a single z-y
plane of the flow, leveraging the spanwise invariance of the flow. In table 2.7, N, Ny,
and N, respectively indicate the number of grid points in the z-, y-, and z-directions
and the grid spacing expressed in wall units is based on the local friction velocity.
For an extensive discussion and justification of the grid-density choices, the reader is
referred to Casacuberta et al. (2022b) and Casacuberta et al. (2025a).

2.3.2. UNPERTURBED BASE FLOW AND STEADY PERTURBED FLOWS

The spatial evolution of the unperturbed base flow is shown in figure 2.10, which
exhibits good agreement between the DNS results (solid lines) and independent
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(blue symbols), non-linear PSE (white symbols), and DNS (solid lines): spanwise Fourier modes
j = 1-5 (thick-to-thin), j = 0 (dotted). Vertical red line indicates the virtual step location.

boundary-layer computations (symbols) (see, e.g., Rius-Vidales (2022) for details
on the numerical setup), both performed under reference (no-step) conditions. The
agreement between the two methods strengthens the validity of the numerical setup
choices and model approximations, such as the domain height.

Concerning the steady perturbed flow, two critical aspects arise in the numerical
resolution of the equations. First, whilst computations of the base flow are effectively
carried out in the z-y plane, the steady perturbed flow incorporates flow modula-
tion in the z-direction. Sufficient resolution in terms of spanwise perturbation modes
is necessary to accurately resolve the stages of non-linear perturbation growth and
saturation (Haynes and Reed, 2000; Wassermann and Kloker, 2002; Li et al., 2016).
Haynes and Reed (2000) perform calculations considering up to the eight spanwise
harmonic and Wassermann and Kloker (2002) indicate that “typically 12-16 span-
wise modes are considered to be sufficient” in NPSE computations. In the present
DNS, this requirement is essentially determined by the grid density in z (see N, in
table 2.7). The validity of the choices made in this thesis is demonstrated by the
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FIGURE 2.12: Grid sensitivity to the steady perturbed flow at the step. Profiles of the fundamental
spanwise perturbation close upstream and close downstream of the step for different choices of wall-
normal grid resolution: N, = 144 (blue extra thin), 288 (red thin), 576 (green thick), and 1152
(black extra thick) at zst/d0 = —0.8 (a), 1.5 (b), 9 (¢), 17 (d). The largest step (i.e., step III in
table 2.3) and medium-amplitude CFI (i.e., Ag/uco = 3.5 x 1073 in table 2.4) cases are considered.

strong agreement between DNS and NPSE results for the amplitude curves of the
fundamental and higher-order harmonic crossflow modes, as illustrated in figure 2.11,
showing the small-(a), medium-(b), and large-(¢) amplitude CFT cases (table 2.4).

Second, when the step is present, an additional stationary perturbation structure
is shown to form locally at the step apex (chapter 6). A grid-convergence study is
carried out in this thesis to examine the sensitivity of this highly localised structure
to the grid density (table 2.7). The solution is fully grid-converged on the production
mesh, as shown in figure 2.12.

2.3.3. UNSTEADY FLOWS

In addition to the DNS-NPSE comparison for stationary perturbations, the linear
local and linear plane-marching BiG approaches (§ 2.2.3) are employed to cross-
validate the unsteady perturbation behaviour with the DNS results, as well as to
characterise the perturbation environment in the reference (no-step) scenarios, under
both medium- and large-amplitude CFI conditions. The BiG problem is solved using
the steady perturbed flow obtained from the steady-state DNS computations.

Medium-amplitude CFI (case r.B)

Solely for the purpose of cross-validation, monochromatic (single-frequency) unsteady
forcing is first applied to the steady perturbed flow under medium-amplitude CFI
conditions (table 2.4). Two DNS computations, each for a different fundamental
frequency, namely, fo = 1 kHz and 6 kHz, are performed and analysed independently.
The disturbance strip used to trigger unsteady perturbation growth is placed just
upstream of the neutral point for each considered frequency, as indicated by a BiG
stability analysis carried out a priori, see Casacuberta et al. (2022a) for details. The
initial forcing amplitudes in the disturbance strip (2.23) are APS/u,, = 107° for
fo =1 kHz and APS/u,, = 1073 for fy = 6 kHz.
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FIGURE 2.13: Chordwise evolution of the amplitude (a,b) and shape (c¢,d), evaluated as
25:7 5 u’(l’j) (2.11), of monochromatic unsteady perturbations. Results are shown for the tempo-
ral frequencies f = 6 kHz (a,c¢) and f =1 kHz (b,d), considering the spanwise modes j = —1 to —4
(curves top to bottom, see j labels in (a),(b)) from: DNS (thick solid black), plane-marching BiG
(thin solid green), and local BiG (dash-dotted red) under medium-amplitude CFI conditions (table
2.4). The amplitude curves of the BiG method are matched to the DNS equivalent at x/do = 350,
symbols in (¢,d) indicate the position of perturbation phase alignment between methods, and y*
expresses the relative wall-normal location in (¢,d) with dashed lines indicating the wall. The isocon-
tours of perturbation shape in (¢,d) represent 30% of the in-plane maximum and grey lines illustrate
the steady perturbed flow at levels of 10%, 20%, ... of the free-stream value. The y-scaling in (a)
prevents overlapping curves.
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FIGURE 2.14: Instantaneous @Q-criterion isosurfaces coloured by wall distance and y-z, z-y planes of
instantaneous chordwise velocity. Zoom of the breakdown region, 400 < z/d9 < 440, in the inset.
The DNS data are duplicated 4 times in z for illustration purposes.

As expected for monochromatic unsteady forcing at f = 1 kHz, the type-III
secondary instability mechanism dominates in both the DNS and the BiG results.
Figure 2.13 (d) illustrates the organisation of the unsteady perturbation field at
different x-locations by showing 25:75 uzl,j), that is, the superposition of spanwise
Fourier modes associated with the fundamental frequency f = 1 kHz. Figure 2.13 (b)
correspondingly quantifies the perturbation amplification. The structure of the per-
turbation field in the near-wall shear layer is in qualitative agreement with previous
numerical and theoretical studies of the type-III mechanism (Janke and Balakumar,
2000; Hogberg and Henningson, 1998; Bonfigli and Kloker, 2007). A noticeable dis-
crepancy in the upward expansion of the perturbation shape in z is observed in the
results from the local BiG approach (figure 2.13 (d)). The origin of this modelling
artefact and its impact on the amplitude estimation (figure 2.13 (b)), is discussed in
detail in Groot et al. (2025).

For monochromatic unsteady forcing with f = 6 kHz, the perturbation contours
(figure 2.13 (¢)) become localised on the outer side of the upwelling region of the
stationary crossflow vortex. This behaviour is therefore associated with the type-I
secondary instability mechanism (Hogberg and Henningson, 1998; Malik et al., 1999;
Janke and Balakumar, 2000; Wassermann and Kloker, 2002; Bonfigli and Kloker,
2007). This association is supported by the observation that the location of maxi-
mum perturbation strength coincides with the region of the maximum spanwise shear
in the steady perturbed flow. The amplification in x of the initially small-amplitude,
monochromatic unsteady perturbations (figure 2.13 (a)) ultimately leads to laminar
breakdown near the end of the computational domain, as shown in figure 2.14, which
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FIGURE 2.15: Neutral stability curves (a) computed with the local BiG stability approach: primary
travelling CFI and type-III secondary instability (black line with circles), type-I secondary instability
(blue line with diamonds), and type-II secondary instability (red line with squares). Dashed lines
with crosses in (a) additionally indicate plane-marching BiG results, see Groot et al. (2025) for
details; these are limited to a portion in f for simplicity. Chordwise evolution of the amplitude
(2.29) of the unsteady perturbation modes (b) with temporal frequencies f = 1-8 kHz, in steps
of 1 kHz (thin-to-thick and dark-to-bright colour illustrate increasing f value). Dash-dotted green
line indicates the virtual step location in (a,b) and dashed black line in (b) indicates the numerical
tolerance of the PPE solver (see § 2.2.1).

depicts instantaneous Q-criterion isosurfaces (Hunt et al., 1988). The reader is re-
ferred to Casacuberta et al. (2022a) for a more detailed discussion of the breakdown
mechanisms observed in the present case.

Large-amplitude CFI (case r.C)
The main discussion in this thesis of unsteady perturbation effects and step-induced
transition mechanisms is conducted exclusively under large-amplitude CFI conditions
(table 2.4). The DNS employs the disturbance strip (2.23) to generate perturba-
tions through multi-frequency unsteady forcing near the domain inlet (see § 2.1.3
for details). This section provides an overview of the perturbation behaviour for the
reference (no-step) case.

In this context, figure 2.15 (b) shows the spatial evolution of the amplitude of indi-
vidual unsteady perturbation modes in the case without the step, based on the modal
decomposition (2.11) of the DNS perturbation field. In particular, figure 2.15 (b)
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Mode Method flkHz] x/00 —cpidosectd Ag/d0 Nmax (Zmax/d0)
Type-1  BiG local 524+0.2 339 0.0994 4.1 16.4 (500)
Type-I ~ BiG marching 5.2+0.2 350 0.1048 4.2 15.6 (500)
Type-I1  BiG local 9.0+1.0 208 0.0685 2.7 11.1 (500)
Type-Il BiG marching 9.0+1.0 233  0.0692 2.7 15.2 (500)
Type-111  BiG local 1.95+£0.05 199 0.0546 5.8 4.0 (251)
Type-I1I1 BiG marching 1.8+0.2 205 0.0614 6.3 5.2 (282)

TABLE 2.8: Properties of secondary crossflow instabilities in the large-amplitude CFI case with-
out the step (r.C), obtained from stability analysis: most unstable modes, i.e., those for which
maxg{—ag ; secf} is largest (see appendix B), and the resulting N-factors. Plane-marching results
were stabilised by setting €, = 0; stabilisation with €, = 1 and non-zero s yielded similar but
slightly more stable values, see Casacuberta et al. (2025a) for details.

quantifies the chordwise evolution of the following perturbation amplitude metric:

9
> 4al | (2.29)

j==9

[A}] = max

with k& = 1-8 indicating the frequencies f = 1-8 kHz. The differences in the peak
values observed at the strip in figure 2.15 (b) (20 < 2/dg < 32) between perturbations
at f = 1-2 kHz and f = 3-8 kHz stem from the different choices of initial amplitude
described in § 2.1.3. In turn, the actual amplitude ultimately assigned to each mode
at the disturbance strip is also conditioned by the receptivity of the chordwise-velocity
perturbation to the imposed wall-normal-velocity forcing.

Downstream of the strip, the higher-frequency perturbations undergo an initial
phase of mild spatial decay before eventually amplifying. This behaviour is sup-
ported by the results of the linear stability analysis, as shown in figure 2.15 (a),
which predicts neutral-point locations generally consistent with the DNS results (fig-
ure 2.15 (b)). Table 2.8 summarises the main properties of the secondary-instability
eigenmodes obtained from the stability analysis. It is noted that the low amplitudes
attained by certain high-frequency perturbations in the DNS —relative to the numer-
ical tolerance of the PPE solver (§ 2.2.1)— may influence the shape and local growth
rate of corresponding unsteady modes over a limited region in x. This potential
influence has not been quantified explicitly in this work.

The breakdown of the crossflow vortices in the present large-amplitude CFI case
(table 2.4) is driven by the amplification of the type-I secondary instability mechanism.
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MATHEMATICAL FRAMEWORKS

Abstract: This chapter presents the main mathematical frameworks developed in
this thesis, with a focus on stationary perturbations. Three key formulations are in-
troduced. First, an extended version of the classic Reynolds-Orr equation is developed
to characterise the mechanisms of energy exchange for each stationary spanwise per-
turbation mode individually. Second, a generalised framework is proposed for decom-
posing perturbations relative to the local base-flow orientation, rather than relative to
the wall. Third, the production term of the Reynolds-Orr equation is further decom-
posed using the second formulation to identify and quantify the specific mechanisms
governing kinetic energy transfer between stationary perturbations and the base flow.

Parts of this chapter are published in:

Casacuberta, J., Hickel, S., and Kotsonis, M., 2022 Direct numerical simulation of interaction
between a stationary crossflow instability and forward-facing steps. J. Fluid Mech. 943:A46.

Casacuberta, J., Hickel, S., and Kotsonis, M., 2023 Laminar-turbulent transition in swept-
wing flows with a supercritical forward-facing step. In ERCOFTAC Workshop Direct and
Large Eddy Simulation (pp. 151-156). Cham: Springer Nature Switzerland.

Casacuberta, J., Hickel, S., and Kotsonis, M., 2024 Passive stabilization of crossflow insta-
bilities by a reverse lift-up effect. Phys. Rev. Fluids 9:043903.

Casacuberta, J., Westerbeek, S., Franco, J. A., Groot, K. J., Hickel, S., Hein, S. and Kotsonis,
M., 2025 Streaky perturbations in swept-wing flow over forward-facing step. Phys. Rev. Flu-
ids 10:023902.

Casacuberta, J., Groot, K. J., Hickel, S., and Kotsonis, M., 2025 Direct numerical simulation

of swept-wing transition induced by forward-facing steps. Under consideration for publication
in J. Fluid Mech.
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oretical frameworks used in this thesis to analyse stationary perturbation

T hree formulations are presented in this chapter, constituting the primary the-
phenomena at the step.

3.1. ENERGY-BALANCE EQUATION FOR STATIONARY SPAN-
WISE HARMONIC PERTURBATION MODES

The energy-balance equation for stationary spanwise-harmonic perturbation modes
presented in this section constitutes an extended formulation of the Reynolds-Orr
equation. It is employed to investigate the interaction mechanisms between the
forward-facing step and each stationary spanwise perturbation mode individually.
As such, the framework introduced below is restricted to the stationary content of
the perturbation field (2.10); that is, to v’ subject to dv’/0t = 0, or equivalently, to
the modes ’UEO’ 0 (1.8). The framework capitalises on the periodicity of perturbations
in the spanwise direction, z, and is inspired by the temporal harmonic analysis of Jin
et al. (2021).

Let E denote the kinetic energy of stationary perturbations within a volume V,
which encompasses the periodic boundaries in the z-direction of length (27)/8y. It is
defined via the standard Hermitian inner product of the complex-valued stationary
perturbation velocity vector v, ; = [ul(o,j) UE 0.9) E )] with itself:

/ Z vl i) VoAV = Z/Enﬁo ds, (3.1)

where S denotes the z-y cross-sectional plane of V. The modal energy density F,g,

corresponding to the wavenumber space nf8y, n =0,1,..., N is defined as
0n=2, n>0
Buso =0 (1o + ot + 1) { W27 220 G2

This definition accounts for the conjugate symmetry of the Fourier decomposition,
as the pair ’UEO’n) and ’U(O —n) combine to yield a real-valued structure in physical
space. Due to the stationary nature of perturbations, dE,,3,/dt = 0, indicating that
the mechanisms governing the evolution of E, 5, are in temporal equilibrium.

The contributions of the different energy-transfer mechanisms within a pertur-
bation space nfy are evaluated as follows. The decomposition of stationary per-
turbations into spanwise modes (1.8) is substituted into the perturbation equation
(1.3). By factoring out the z-dependence of terms, the perturbation equation can be
re-expressed as

N N
0= <L<0,j>+Ffo,j)— > (@(o,r)'B(o,jr))>eW°Z, (3.3)
j=—N r=—N
j—r€[—N,N]

I 11
where Lo j)(%,y) = Ao j)(,y) + A j (2, y) + Fip j(z,y) and IF’()OJ)(:E, y) represent
the linear perturbation operators, while B j)(z,y) captures the non-linear interac-
tions. The summation constraint in the non-linear term ensures that both indices r
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and j — r lie within the truncated mode range [N, N]. The underline notation (v)
indicates a non-dimensional variable, referenced to g and ue, (§ 2.1), as the analysis
is conducted using the non-dimensional form of the perturbation equation (1.3). For
further details on the derivation, the reader is referred to Casacuberta et al. (2025a).
The vector coefficients corresponding to the linear terms are given by

[ Oup . Ou %
Yoy, ~ 20 g, _ %m)
vy, Ovg oL
I ~ v ~ VB
Aoy = | Lo, ~ 200y, | Fog = Pogy | (3.4)
- Owg b 3@]3 .83
i 09" 9 =(0,5) oy Uﬁoﬂ(oj)
duwy  Ouen .. ]
Ao, Ao,
2(0,5) 2(0,7) .. -
Ag),j) = —up 82] BT : _UQOQBQ(OJ) s (3.5)
di o ooy .

[ Py | Pl

2 n2~ = ¥
—J go@(O,j) + dx? By
v 1 2 42~ D0y | D0y
0~ Re | 7 By20,5) + o2 dy? (3.6)
Pwy o %Wy s
2 92 ~ =(0,5) =(0,5)
i -J EOM(OJ) + Ox? + 8y2

Regarding the non-linear term, the index j — r in equation (3.3) is here denoted by
k, and

ox ox ox
Bo,x) = Oty 9%k 9wy . (3.7)
dy dy dy
kB by, kBT, kB,

Equation (3.3) is modally decoupled and cast into scalar energy form by taking the
standard Hermitian inner product of the amplitude coefficient ©(g ;) (1.8) with the
corresponding jth equation stemming from (3.3) such that

0= 'P",g() +7;l,30 JanﬁO +ano Jr./\/nﬁo, n=20,1,..., N, (3.8)
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with
Pnﬁﬂ = QIO,n) A{O,n) +c.c., 7;%30 = QIO,H) A{{),n) +c.c., (393)
Dnp, = QJ(royn) IFEjo,n) +cc, Whg, = on,n) IE?I(Oo,n) +c.c., (3.9b)
N
N’ﬂﬁo = — QIO,’IL) ( Z (Q(O,T) ']B(O,TL—T))> + c.c., (39(3)
r=—N
n—r&[—N,N]|

A factor of (27)/5By, which arises from integrating the terms in the z-direction, has
been omitted from the energy budget in equation (3.8) for simplicity, but it may be
included for the integral quantification of individual terms.

Each term in equation (3.8) characterises a distinct mechanism of kinetic-energy
transfer within the perturbation space nfy. The sign of each term indicates whether
the corresponding mechanism acts locally in a stabilising (i.e., < 0), or destabilising
(i.e., > 0), manner. The production term P,g,(z,y) quantifies the exchange of
kinetic energy between the unperturbed base flow and the perturbations ngy. The
transport term 7,3, (z, y) accounts for the advection of kinetic perturbation energy by
the unperturbed base flow. The term D,3,(x,y) captures viscous effects, typically
decomposed into contributions from diffusion and dissipation. Finally, W3, (z,y)
and N3, (z,y) represent the work done by the perturbation pressure and the non-
linear interactions, respectively.

It follows from equation (3.3) that

N N N N N
0= Pugo+ > Tnso+ P _Dnpo+ Y Waao + _ Nugo: (3.10)
n=0 n=0 n=0 n=0 n=0

which is analogous to equation (3.8) but applies to the perturbation field as a whole.
Equation (3.10) reduces to the classic Reynolds-Orr equation under specific condi-
tions.

3.2. DECOMPOSITION OF THE PERTURBATION FIELD BASED
ON THE LOCAL ORIENTATION OF THE BASE FLOW

The formulation of the perturbation field introduced in § 2.1.1 and considered thus
far employs a classic decomposition of the perturbation of interest into components
aligned with the flat-plate geometry, i.e., parallel and normal to the wall. A theoreti-
cal framework is developed in this thesis, which instead decomposes the perturbation
relative to the local base-flow orientation, to provide further insight into the nature
of relevant perturbation phenomena (Marxen et al., 2009; Loiseau et al., 2016; Pi-
cella et al., 2018). The framework, building on the approaches of Albensoeder et al.
(2001) and Lanzerstorfer and Kuhlmann (2011, 2012), is applicable to generic three-
dimensional base flows with one invariant spatial direction. As this thesis focuses on
the stationary CFI, a stationary perturbation field is assumed; however, extension to
unsteady perturbations is straightforward.
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In the flat-plate aligned coordinate system, the jth Fourier component of the
perturbation field, ’UEO i (1.8), is expressed initially as

'Uzo,j) = “Eo,j)'i + UEO,j)j + wEOJ)k:, (3.11)

where u’(o ) ’UEO ) w(o ;) are the complex-valued perturbation components in the -,

y-, and z-directions, respectively, and 2 = [1 0 0]T, 5 = [0 1 0], k= [001]T, see §
2.1.1. This thesis proposes to decompose ’UEO ;) as the sum

V(0,) = VL0) F Vn.(0.9): (3.12)
of two vector fields that are complex orthogonal. The field v, 0.5) is defined as

Vi 0.0) = T0.)b (3.13)
i.e., as a complex-valued perturbation component T(IO i) in the direction of the vector

t. The latter is the three-dimensional real-valued unit vector which points in the

local base flow direction:
UB

[usl|’

where ||ug]|| denotes the magnitude of vg. An expression for ’7'(/0 ;) is obtained by

t= (3.14)

evaluating the projection of ’UEO ;) onto vp:

Re(v{o;)) - vB

sl

Im(v(, ;1) - vB

, (3.15)
|lvsl|

Re(T(IO}j)) = 5 Im(T(IO’j)) =

where the dot denotes scalar product. Introducing ansatz (1.8) into (3.15) yields
1

Re(T(/O,j)) ||U H ( Y0.5) cos(jfoz) + Y0.9) sm(gﬁoz)) (3.16a)
/ 1 I _ .
Im (T(O,J)) ||UBH (Py (0,5) Sm(]ﬁoz) - ’Y(O,j) COS(]ﬂOZ)) (316b)

with

7(457]-)(13, y) = usll(0,5) cos(¢(o, ;) + vB|T](0,5) CO8(¥(o 7)) + wB|D|(0,5) cO8(#(5 7))

(3.17)
and
7(70)]) (-’I;a y) = —’U/B‘ﬂ|(07]) Sin(@%o’j)) — ’UB|’D|(O,j) Sin(apq(’oyj)) — wBMD|(O,]) SIH(qu(‘(J)J))
(3.18)
Using the sum formulas for sine and cosine, (3.16) can be rewritten as
Re((y,j)) ||’UB|| \/ 'V(o,j + (o, J)) cos(jBoz + QD(TO)]-)) (3.19a)

Im(7(o ;) = lus ||\/7(o,g) + (Y0.50)? sin(iBoz + ¢{ ;) (3.19b)
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with the phase @(O ) associated with the perturbation component 7'(/0 ) obtained as

T T,
tan(pfy ;) = =~ (3.20)
Y0.9)
From (3.16), it follows that
osy = Tt Ol P+ (o ? € 05400, (321)
(0,9) |[us|] (0,9) (0,9)
and thus
up
V0 = e SO 2+ (1 )2 €0F0T00) |y (3.22)
809 = Jlogl2 V00" T Vg Bl '
wB
T
which can also be written as U;(O,j) = (1/||usl]) [UBT(IO’J-) UBT(’OJ) wBT(’OJ) or,
equivalently, as v ;) = [0} © j)eijﬁoz ﬁf(o_j)eiw“z O?(o j)eijﬁ"z]T. Following the
nomenclature of the perturbation expressions in global coordinates, the modulus (or
amplitude function) of T(’O ;) is denoted by 7] (0,5)- Since [[t]| = 1, [T|(0,5) = [|v; © j)H
and therefore
+ —
3 \/(7(04))2 +(10,)?
‘T|(07j) = vl (3.23)

As also described above in equation (1.9), the norm of the total perturbation vector,

v{y > equals \/|1]\%07j) +[0[% ;) + [@[F, 5, and is denoted by 1] (0,4 in this thesis.
The second vector of decomposition (3.12), v/, [(0,j)> represents a perturbation
acting normal to the base-flow-aligned perturbation component, ’U;(O’j). Whereas
the direction tangential to the base flow is uniquely defined (3.14), the direction
associated to U;z, (0.5) is, at present, inherently taken as that defined by the difference

between ’UZO ;) and v (3.12). Hence

t7(07-7)

|ﬂ|(07j)ei(jﬂoz+@zto’j)) ) up
~ i(j v - i(jBoz+e(, ;
o = | Bliogel ) | = o 0oy P+ gy 0777 70) | o
i 0.5y (FP0=F#l0.0) wp
(3.24)

The amplitude function ||v], (0.j)|| associated with the perturbation component
(8 (0.j) 18 hereafter denoted by |7, ;y; it can be directly obtained by relating the
amplitude function (or moduli) of v, ;) and vy (.
100,517 = 11Vt 0. I* + 110, 0. |17 (3.25)

and v’ are complex orthogonal,

: A
since v .
n,(0,5)

£,(0,5)

2
VL (0,4) " Yn,(0.9) = V0.) " Y(0.5) — VopllF =0, (3.26)
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which follows from the fact that v} (05) = = (v 20 e vp/||vs||*)vs (3.13). Here, the
dot denotes the standard Hermitian inner product:

Ut ,(0,7) (O,j Z v n,(0,5) U;,(O,j)(k)’ (327)

with k& denoting the components of the corresponding vector field.

Finally, the vector components of the normal perturbation (3.24), v/, 0.4) =

[U;l,(o,j) U:ﬁ(o’j) vf”(o_’j)}T, may be written more compactly as

~ vk r
,(o,y \/|U |(0 ) + (0.9 ”B) - 2§(O’J‘)U1§|Uk|(0,j) COS(‘P(o,j) - LP(o,j)) €

195 10,5
(3. 28)
with £ = 1,2, 3, vl = Uu, v2 = v, V3 = w, g(O,j) = \/(’Y(J’(_J,j)) (’Y(O‘])) /HUBH
associated phase
% (0. sin <p”k — &0y VE sin(@T,
tan(gpn o j)) ‘ |(0 7) ( (0, j)) 0,5)VB ( (o,J))' (3.29>

|vk|(0 7) COS(‘P(O j)> S(O,j)v]]_g, COS(‘PE—O,]‘))

For consistency with classic perturbation formulations equations (3.24) and (3.28)
can be equivalently compacted as v/, (0.) = = [0} . (0.)€" 17602 =02 (OJ)e'jﬁ o (0 e eiihoz]T,

A key advantage of the mathematlcal formulatlon developed in this section lies
in its ability to associate physical and structural meaning with the two vector com-
ponents defined by equation (3.12). The v; characterises the regions of streamwise-
velocity excess and deficit in the flow, whereas v], represents typically the weak
cross-stream flow pattern that is responsible for momentum redistribution. More
specifically, the field v}, manifests structurally as perturbation rolls (i.e., streamwise-
vortical structures). It is therefore noted that, in the flow problems analysed in this
thesis, the streamwise-velocity perturbation component v; is the main contribution
to the perturbation kinetic energy.

3.3. DECOMPOSITION OF THE PRODUCTION TERM OF THE
REYNOLDS-ORR EQUATION

The framework introduced in the previous section (§ 3.2) serves multiple analytical
purposes. Specifically, in various parts of this thesis, the behaviour of perturbations
is assessed by examining how they gain or lose energy through interaction with the
laminar base flow. To this end, the production mechanism introduced in § 3.1 is fur-
ther decomposed using the concepts developed in § 3.2. The formulation presented
below in this section considers the fundamental spanwise mode, i.e., perturbations
with 8 = B, but can be directly generalised to any higher-order mode (8 > So).
Based on the analysis in § 3.1, the kinetic energy transfer rate between the unper-
turbed base flow and the fundamental spanwise mode in a volume V is characterised

. k
i(Jﬂoz+<,921,(0,j>)7
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as

27

Bo

where Ag, = Pgs, (see equations 3.8 and 3.9). In equation (3.30), S denotes the z-y
cross-sectional surface of a volume V that encompasses the step in x and extends
from the wall to the free-stream in y. Generally in this thesis, V' extends towards
the periodic boundaries in z.

Pg, = —/ (UéOJ) +cc.)- ((on,n +c.c.)- V) vpdV = — / Ag, dedy (3.30)
v s

Following the approach of Albensoeder et al. (2001) and Lanzerstorfer and Kuhlmann

(2012), the production term (3.30) is decomposed into four contributions,
Py =100 + 150 + 150 + 17, (3.31)

by introducing the decomposition of equation (3.12) into equation (3.30). Each term
Ifo,m = 1-4 in equation (3.31) characterises a particular mechanism contributing to
the exchange of kinetic energy between the base flow and the fundamental spanwise
perturbation mode.

The term Igo is the lift-up effect (Ellingsen and Palm, 1975; Landahl, 1975, 1980),
which is a flow mechanism widely associated to the amplification of streaky structures
in shear flow (Brandt, 2014). This mechanism entails the exchange of kinetic energy
between the base flow, vg, and streamwise perturbations, 'UL(OJ), by the action of
cross-stream perturbations, U;,(o,n' It reads

2
I’ = —/ (vt 0,1y Fe-c) ((v; (0,1 tcc)e V) vp dV = i / AY dady, (3.32)
v s\Us s(Y, /80 S
with
1 - Oup 1 - oug 9 . Ovg
Agg = (’Ui 'U}LT —+ C.C.) % —+ ('Utl sz —+ C.C.) Ty —+ (UtQ 'U}IT —+ C.C.) %
mﬂo
2
+ (o7 02t +cc.) a;; + (oF oit + cc.) % + (oF 02t + cc.) 6;“;,

Bo
5y

(3.33)

where the subscript (0, 1) has been removed in equation (3.33) for conciseness. It is
emphasised that f)f and ﬁfl', with & = 1,2, 3, denote the amplitude coefficients of the
vector components of the tangential, v}, and normal, v}, perturbations, respectively
(see § 3.2). In § 5.3, it is shown that x5° and 55” in equation (3.33) add the main
contribution to the lift-up effect at the step.

The remaining terms stemming from the decomposition of production,

If" = 7/ (v;h(o,l) +c.c.)- ((’U;L’(OJ) +c.c.)- V) vg dV (3.34)
v
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and
Bo _ / /
0 = — /v(vt’(o’l) +cc.)- ((Ut7(071) +c.c.)- V) vp dV (3.35)

respectively characterise a self-induction mechanism of the cross-stream and stream-
wise perturbation structures. In particular, the mechanism of I, is referred to in this
thesis as the “push-forward effect” in analogy to the principle of the lift-up effect.
Finally,

70 = — /\/(U;’(O’l) +c.c.) - ((’U;(Oyl) +c.c.) - V) vg dV, (3.36)

which is a mechanism associated to perturbation streaks evolving into perturbation
rolls (Antkowiak and Brancher, 2007). A treatment analogous to equations (3.32) and
(3.33) may be performed for I° = (=27 /3,) s AP dady, 190 = (—27/ o) s AY dady,
and If” = (=27/po) [ Aff” dzdy; by the inherent addition of the complex conjugate,
the terms 120 and A% with m = 1-4 are real valued.






STATIONARY INTERACTION
BETWEEN CROSSFLOW
INSTABILITY AND
FORWARD-FACING STEPS

Abstract: This chapter introduces the main structures and mechanisms governing
the stationary interaction between a pre-existing stationary CFI and steps of vary-
ing heights. The fundamental spanwise CFI mode gradually lifts up as it approaches
the step and passes over it. The flow environment around the step is characterised
by a sudden spanwise modulation of the base flow streamlines. Additional station-
ary perturbation structures are induced at the step, which manifest in the form of
spanwise-aligned velocity streaks near the wall. Shortly downstream of the step, the
fundamental CEFI maintains a rather constant amplification for the smallest steps
studied. Surprisingly, the fundamental CFI is significantly stabilised shortly down-
stream of the largest step, an observation further examined in chapter 5. Amplifica-
tion of the high-order harmonic crossflow modes downstream of the step is observed
and ascribed to an inflectional instability of the deformed step-flow profiles.

A note on nomenclature: This chapter focuses exclusively on stationary effects.
The spanwise perturbation modes are denoted by ’UZOJ), where the prime marks per-
turbation, j is the spanwise modal index, and the zero indicates stationary behaviour.
Unperturbed base-flow quantities are denoted by the subscript B, for example, vpg.

Parts of this chapter are published in:
o Casacuberta, J., Hickel, S., and Kotsonis, M., 2021 Mechanisms of interaction between sta-
tionary crossflow instabilities and forward-facing steps. AIAA Paper 2021-0854.

o Casacuberta, J., Hickel, S., and Kotsonis, M., 2022 Direct numerical simulation of interaction
between a stationary crossflow instability and forward-facing steps. J. Fluid Mech. 943:A46.
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instability (CFI) and forward-facing steps of varying heights is examined in

this chapter. The analysis begins with a description of the topology of the
laminar unperturbed base flow at the step (§ 4.1). This is followed by the investigation
of perturbation behaviour at the step (§ 4.2) and downstream of it (§ 4.3), divided into
effects of the fundamental and the higher-order harmonic CFI modes. The analysis is
further strengthened by a comparison between the perturbation behaviour observed
in the DNS results and independent calculations obtained with the PSE (§ 2.2.3)
approach. The flow problems investigated in this chapter correspond to step cases I,
IT, and IIT (table 2.3) and medium-amplitude CFI conditions (table 2.4).

T he purely stationary interaction between a pre-existing stationary crossflow

4.1. TOPOLOGY OF THE BASE FLOW AT THE STEP

4.1.1. EVOLUTION OF THE BASE-FLOW PRESSURE AND VELOCITY

When a forward-facing step is present, the organisation of the incoming boundary
layer is significantly altered and a pressure field different than that observed in the
reference (no-step) case is induced around the step. As detailed in § 2.1.1, the
free-stream features a favourable chordwise pressure gradient throughout the DNS
domain. However, whereas Opg/dz < 0 everywhere in the reference (no-step) case,
this does not hold close to the step.

Figure 4.1 (a) depicts Opg/Ox in step case II (see table 2.3 in § 2.1.1 for the
definition of step cases), which is representative of the trend observed in all step cases.
In line with the behaviour described by Duncan Jr. et al. (2014) and Tufts et al.
(2017), regions of adverse pressure gradient are induced upstream and downstream
of the step, whereas a strong region of favourable pressure gradient arises locally at
the step corner. Sufficiently downstream of the step z-location, xsy = 0, the static
pressure field gradually relaxes back to that of the reference (no-step) case. This is
illustrated in figure 4.1 (b) portraying the chordwise evolution of pressure along a
streamline of the base flow. Furthermore, figure 4.1 (b) highlights that a fluid particle
moving close to the step corner experiences strong pressure variations in a short z-
distance. It is also important to note that, while the step height is smaller than the
incoming boundary layer thickness, the strong pressure variations in the wall-normal
direction evidently extend beyond the boundary layer. This has strong consequences
in the ability of classic boundary layer approximations, in which pressure invariance
along y is usually assumed, to describe such flows.

While the influence on pressure is relatively straightforward, the three-dimensional
organisation of the base flow at the step is significantly more complex. Figure 4.2
displays profiles of the base-flow velocity components near the step. Upstream of the
step, ug and wp have decelerated with respect to the reference (no-step) case and
upwash (i.e., vertical fluid motion with vg) is induced away from the wall. When
passing over the step, up and wp experience a local chordwise acceleration and de-
celeration within a short x-distance. When considering ug, this trend is particularly
prominent near the wall; the velocity profile first displays a secondary maximum close
to the surface, which decays in strength rapidly in . In a similar fashion, upwash
induced upstream of the step is first enhanced and later suppressed downstream of
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FIGURE 4.1: Base-flow chordwise pressure gradient (colour map), Opg/dz = 0 (black dashed line),
projected base-flow streamline seeded at x/dg = 0, y/do ~ 0.2 (gray solid line) in step case II (a).
Static pressure along the streamline (b) in the reference (no-step) case (thick solid black), step case
I (dotted orange), II (dash-dotted blue), III (thin solid red).

the step in the near-wall region. This is not the case for wg, whose profile does not
display abrupt variations in = close to the surface. The latter is largely attributed to
the lack of spanwise variations in pressure, inasmuch as the step geometry is invariant
in the z-direction. Nevertheless, the wg velocity component is implicitly affected by
the step through the coupling of all three components in the momentum conservation
equations.

The notably different relative evolution of up and wp near the wall, a feature
which manifests in the experiments of Eppink (2020) as well, carries a significant
horizontal deflection (i.e., change of orientation in the x-z plane) of the base-flow
streamlines, as illustrated in figure 4.3. In absence of the step, the streamlines in
the boundary layer are practically aligned with the direction of the outer inviscid
streamlines, as commonly reported in classical literature on swept-wing boundary
layers (Bippes, 1999). However, when a step is present, the base-flow streamlines
close to the wall significantly deviate from the direction of the inviscid flow and
bend outboard, i.e., towards the negative z-direction, upstream of the step. Locally,
in the vicinity of the step corner, the streamlines display an abrupt inboard turn,
i.e., towards the positive z-direction. Further downstream, a relaxation towards the
inviscid streamline direction is observed. The importance of these observations will
be discussed in later sections.

The mechanisms responsible for the strong inboard /outboard motion of the base
flow near the step are further analysed. The local base-flow direction in the x-z plane
is characterised by op corresponding to the angle that the unit vector locally tangent
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FIGURE 4.2: Chordwise (top), spanwise (middle), wall-normal (bottom) base-flow velocity profiles
at zst /60 = —2.49 (a,e,7), 0.05 (b,£,5), 2.54 (¢,g9,k), 5.02 (d,h,l). Reference (no-step) case (thin solid
black), step case I (dotted orange), II (dash-dotted blue), III (thick solid red).

to a base-flow streamline projected in the z-z plane forms with x:

tan (op) = uB (4.1)
ug
The spatial rate of change of op in x is
dop _ up% — wp %2
= 5 5 (4.2)
Ox ug + wy
or, alternatively, by introducing equations (2.17) and (2.19) in equation (4.2),
dog 1 dwg Pwg | PPwp
5.~ 3 3| BtV P )
Or  up + wg Jy ox dy
———
Aw w
P (4.3)

_(we) (_, Qu _10ps  (0%us  Ous
UuR B0y p ox Ox? Oy?
——

. P Dy
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FIGURE 4.3: Three-dimensional (a,b) and corresponding projected (c,d) base-flow streamlines with
seeds placed at (zst,y,2)/d0 = (—6,(0,0.4],4.79) and z-y planes of chordwise velocity (z > 0) and
spanwise velocity (z < 0) in step case I (a,c) and III (b,d). Dashed black line is an equivalent near-
wall streamline in the reference (no-step) case seeded at the same y position as the lower streamline
in the corresponding step case.

Equation (4.3) expresses the spatial rate of change of the angle op in x as a func-
tion of the momentum-transport mechanisms in the z- and z-base-flow momentum
conservation equations. Since wp < 0 everywhere, op < 0 in the presently used
coordinate system. Considering that the current analysis is restricted to regions of
non-separated flow, i.e., where ug > 0, dop/0x > 0 signifies inboard-turning base-
flow motion, whereas dop/0x < 0 signifies outboard-turning base-flow motion.

Figure 4.4 (a) portrays the chordwise evolution of dog/dx at y = gjz‘o’,tf)p (see the
amplitude definitions introduced in § 2.1.1), the wall-normal location at which the
core of the fundamental CFI passes over the step, here corresponding to (y —h)/dg ~
0.5 at x5, = 0. Figure 4.4 (a) highlights that at this wall-normal location, the base-
flow motion at the step is inboard-dominated. Moreover, the inboard motion appears
to be a function of the step height.

Figure 4.4 (¢) and (d) additionally represents the decomposition of the rate of
change in step case III as a sum of contributions of the different momentum-transport
mechanisms defined in equation (4.3). On the one hand, the terms —vpdup/dy and
—vgOwp /0y act by decelerating the ug and wp boundary layer profiles; momentum
advection in the wall-normal direction moves low-momentum fluid towards upper
portions of the boundary layer. However, these terms yield a quasi-null total contri-
bution in figure 4.4 (¢) since they act opposite to each other and streamline bending
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FIGURE 4.4: Rate of change in = of the horizontal deflection of base-flow streamlines, dog /0,
at the wall-normal location y = gj?otf)p (a) and at y/6o = h/dp + 0.12 (b) in the reference (no-

step) case (thin solid black), step I (dotted orange), II (dash-dotted dark blue), III (thick solid
red). Rate of change decomposition for step III (¢,d corresponding to a,b, respectively) expressed
as the contributions defined in equation (4.3) (¢,d): dop/dx (thick solid red), A, (magenta and
crosses), Dy (grey and triangles), A, (green and squares), P (yellow and circles), D, (light blue
and diamonds).

results from an excess of ug over wpg, or vice-versa. On the other hand, the pres-
sure force accelerates up in = since the region above the step corner displays large
Opp/0xr < 0 (figure 4.1). This causes an imbalance between up and wp, which
manifests as inboard bending of the base-flow streamlines at the step, far from the
wall. As earlier mentioned, wg does not explicitly react to changes of pressure in the
z-direction, as the base flow is spanwise invariant.

Furthermore, the effect of the step on the streamline bending appears to strongly
depend to the wall-normal location of interest. In the near-wall region, the motion
of the base flow in the z-z plane is more pronounced than in the region far from the
wall. This is illustrated in figure 4.4 (b) characterising dog/dz at y/dy = h/dy+0.12,
when compared to figure 4.4 (a). Initially at x4, = 0, the base-flow motion is inboard-
dominated. Changing rapidly in z, it displays a sharp outboard turn, whereas the
streamlines far from the wall maintain a mild inboard motion. This creates a strong
diverging pattern of base-flow streamlines within a short wall-normal distance.

The mechanisms leading to the sudden inboard-outboard streamline bending in
the near-wall regime are highlighted in figure 4.4 (d) representing step case III. In
a fashion similar to the results of figure 4.4 (c¢), the favourable pressure gradient
induced at the step corner first largely contributes to the sharp inboard turn. When
moving downstream of zg = 0, the effect of the pressure force reverses; the strong
adverse pressure gradient close to the wall (figure 4.1) decelerates up in x. This
effect, in combination with the imbalance between the advection momentum trans-
port mechanisms —vgdup/dy and —vgdws/dy, cause the base-flow streamlines near
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FIGURE 4.5: Base-flow chordwise velocity (colour map) with lines of constant streamfunction (solid
black) (a). Wall shear dup/dy|w (b,c): reference (no-step) case (thick solid black), step case I
(dotted orange), II (dash-dotted blue), III (thin solid red).

the wall to bend outboard. Further downstream, the step-induced upwash decays
and eventually, the viscous forces associated to the gradients of upg take over as the
dominant mechanism opposing the effect of pressure.

4.1.2. LOCAL FLOW REVERSAL AND MODIFICATION OF THE CROSS-
FLOW COMPONENT

Next to the strong spanwise streamline modulation, flow separation (i.e., reversal of
up) is a main feature of the base flow near the step. The existence of step-induced
regions of recirculating flow in the three-dimensional swept-wing boundary layer and
the associated connection with the development of crossflow instabilities is a point of
debate in recent studies. Whereas flow reversal upstream of the step is expected and
widely reported (Tufts et al., 2017; Eppink, 2020), discrepancies arise with regard to
the downstream region. In the present DNS, flow reversal downstream of the step
is identified in all step cases, as highlighted by the negative wall shear (dup/dy|w)
measured in this region (figure 4.5). However, in step case I the strength of the
reverse flow is significantly lower than in step cases II and III, see table 4.1.
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Region Property Definition Step I Step 11 Step III
Start Tst /00 —0.67 —-1.39 —2.82
Upstream Height y/h 0.44 0.50 0.58
Strength  —up,,, /le 0.19 x 1072 0.38 x 1072 0.70 x 10~2
End Zst /00 0.12 0.53 2.09
Downstream Height (y —h)/do a 0.03 0.07
Strength  —ugp,,, /. 0.10 x 1072 1.44 x 1072 2.67 x 1072

TABLE 4.1: Properties of the flow recirculation regions at the step based on the dividing streamline.
Here, a indicates below grid resolution.
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FIGURE 4.6: Crossflow velocity profile near the step: reference (no-step) case (thin solid black), step
case I (dotted orange), II (dash-dotted blue), III (thick solid red) at xst/do = —9.56 (a), —0.97 (b),
0.05 (c), 2.86 (d).

The topology of the regions of recirculating flow is further analysed by the use
of a streamfunction (¥p) representation of the spanwise-invariant base flow in the
z-y plane. Figure 4.5 portrays isolines of Wp in step case III. Their organisation is
in agreement with the widely reported behaviour of two-dimensional forward-facing-
step flows; see Wilhelm et al. (2003) and Marino and Luchini (2009), for instance.
The region of recirculating flow upstream of the step reattaches at the vertical face of
the wall. A second smaller region of flow separation arises immediately downstream
of the step. It shall be stressed that in the present three-dimensional boundary-layer
flow, the recirculating regions extend infinitely in the spanwise direction and the
reattachment point in figure 4.5 ought to be conceived as an attachment line along
z. As noted by Tufts et al. (2017), the flow separation in three-dimensional space
represents helical flow that arises from the combination of recirculation motion and
spanwise velocity.

The geometrical properties of the separation regions upstream and downstream
of the step are quantitatively characterised by means of the corresponding projected
dividing streamline, i.e., the isoline of ¥g that connects the separation and reattach-
ment points. A summary of properties is given in table 4.1. An increase in step height
leads to a significant elongation of the separation zones in z, specially in the down-
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stream region. However, the cores of the reverse-flow regions are maintained close to
st = 0. The peak reverse-flow velocity within the downstream recirculation regions
is 1.4% and 2.7% in step cases II and III respectively, relative to the local pseudo-
free-stream velocity. These values are significantly lower than the threshold required
for global or absolute instability mechanisms to develop in classic pressure-induced
separation bubbles (Alam and Sandham, 2000; Rodriguez et al., 2013).

Previous investigations identify the regions of flow reversal as a key feature to
explain the modified properties of the incoming CFT at the step. Tufts et al. (2017)
suggest interaction between the step-induced recirculating flow and the crossflow
vortices. As will be shown in § 4.2.3 and 4.2.4, there appears to be little evidence in
the present results to support the model proposed by Tufts et al. (2017). Stationary
CFI growth at the step is ascribed by Eppink (2020) to the destabilising effect of
the inflectional profiles that develop due to flow separation and/or reversal of the
crossflow component. Crossflow reversal, i.e., change of sign of the crossflow velocity,
is captured in the present DNS as well. This phenomenon is linked to the abrupt
change of orientation of the near-wall streamlines discussed in the previous section.

The crossflow component, wg s, as defined in equation (2.7), originates from the
imbalance between chordwise and spanwise momentum in the boundary layer, rela-
tive to the orientation of the inviscid streamline. In the no-step case, the crossflow
velocity is positive in the presently used coordinate system. In the vicinity of the
step, the influence of the step-induced pressure gradient is weak in the free-stream
region. Consequently, the angle between the inviscid streamline and z, ¢s (2.6),
does not change significantly in x; this is illustrated in figure 2.4 in § 2.1.1. The
pronounced outboard bending of the streamlines in the near-wall region upstream of
the step reverses the crossflow velocity, which becomes negative in all step cases close
to the wall. This is illustrated in figure 4.6(a),(b). From equation (2.7), it can be
conceived as a consequence of the effective deceleration of ug, as compared to wg,
whereas ¢5 ~ —45° does not undergo large variations in x.

At the immediate downstream vicinity of the step, the flow behaviour follows an
opposite trend. The sudden inboard motion of the near-wall flow associated to the
rapid acceleration of up (figure 4.2(b)) carries a strong acceleration of the crossflow
component, which becomes positive again. As highlighted in figure 4.6(c), the peak
value of the crossflow component in the step cases attains more than twice the value
in the reference (no-step) case. When moving further downstream, up decelerates
in z close to the wall (figure 4.2(¢)), in the region of adverse pressure gradient. As
a consequence, a second zone of crossflow reversal emerges near the wall, see figure
4.6(d). Further from the wall, the excess of up relative to wp induced at the step
corner maintains the crossflow component in the step cases positive and stronger
than in the reference (no-step) case.

4.2. EVOLUTION OF THE PERTURBATION FIELD AT THE

STEP

In classic studies of the stationary CFI, special attention is placed on the topol-
ogy and behaviour of the characteristic co-rotating vortices that arise in the steady
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FIGURE 4.7: Organisation of the chordwise velocity of the steady perturbed flow (a), total pertur-
bation field (), fundamental perturbation field (¢) in step case III.

perturbed flow. The evolution of stationary crossflow vortices is accompanied by
a characteristic wavy fluid motion, i.e., a modulation of the flow field in the span-
wise and the chordwise directions. Naturally, the wavy motion is accentuated as the
perturbation amplifies in x. A graphical representation of the developed chordwise
velocity field in the reference (no-step) case is shown in figure A.1 in appendix A. It
must be noted that the isolated form of the CFI as a perturbation structure manifests
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case I (dotted orange), II (dash-dotted blue), IIT (thick solid red).

itself as patches of vorticity of alternating sign in z (Bippes, 1999; Hosseinverdi and

Fasel, 2016) accompanied by spanwise-distributed regions of perturbation-velocity

excess and deficit (see appendix A). Under reference (no-step) conditions, since the

activity of the harmonic components is weak at the z-position of the step (see figure
!

2.11 (b) in § 2.3.2), the fundamental perturbation component, ”/(0,1) + U(J’l)’ is very
similar as the total perturbation field near the step (figure A.1 in appendix A).

The presence of the forward-facing step and the associated changes on the under-
lying base flow further complicate the identification of vortical structures. In partic-
ular, close to the step, it is challenging to visually identify the structure of the de-
veloped crossflow vortices using classical vortex-identification techniques such as the
Q-criterion (Hunt et al., 1988). In step case I, the characteristic spanwise-modulated
pattern in the steady perturbed flow is maintained rather invariant when passing the
step in = (see figure A.2 in appendix A). This is not the case in step III, as a strong
distortion of the steady-perturbed flow motion is evident and the organisation of
the total perturbation field immediately downstream of the step is more pronounced
(figure 4.7 (a),(b)), than in the reference (no-step) case. At the same time, the to-
tal and the fundamental perturbation fields in step III differ significantly from each
other (figure 4.7 (b),(c)), suggesting an enhancement of the harmonic activity at the
step. To segregate pertinent mechanisms, the analysis is commenced by describing
the evolution of the fundamental perturbation field, qEOJ) = [UEOJ) pEO,l)]T'
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4.2.1. ORGANISATION OF THE FUNDAMENTAL PERTURBATION FIELD
Sufficiently upstream of the step, the profile along y of the amplitude function of the
fundamental Fourier component, |i|,1), displays the single-peaked topology char-
acteristic of the CFI. Nevertheless, in the upstream vicinity of the step, profiles of
|| 0,1y develop a secondary peak close to the wall in all step cases; see figure 4.8(a-c).
When considering the corresponding three-dimensional perturbation representation,
u’(m) + u'(&l), the secondary peak in the amplitude function manifests as a system of
velocity-perturbation streaks of alternating sign along the spanwise direction. This
is illustrated in figure 4.7 (c¢).

Downstream of the step, a near-wall peak in the amplitude function || 1) co-
existing with the original primary peak is captured as well, see figure 4.8(d-h). The
existence of a secondary peak in the amplitude function profile is found for all zs > 0
in the near-step regime and for all step cases. When moving downstream of xs = 0
in the largest step case, the secondary peak exhibits strong growth in amplitude and
eventually becomes more prominent than the primary peak. This trend is reverted
further downstream, as the secondary peak decays in amplitude rapidly in = and
merges back to the main profile. The associated near-wall perturbation-streak system
(figure 4.7 (¢)) behaves accordingly. Weak manifestations of the secondary peak in
the amplitude function |i|(,1) develop in step cases I and II as well, but never surpass
the primary peak in strength.

The existence of a secondary near-wall peak in the perturbation shape has been
reported in previous investigations and pointed out as a relevant feature of the inter-
action between the incoming CFI and the step (Tufts et al., 2017; Eppink, 2020). Fur-
thermore, the aforementioned works, and more recently Rius-Vidales and Kotsonis
(2021), indicate that the incoming CFI deflects away from the wall when passing over
the step. The present results support this observation, as shown in figure 4.8 (a-c).
Additionally, the near-wall streaks downstream of the step are accompanied by sta-
tionary vortex-like perturbation structures that coexist with the incoming (crossflow)
perturbation structures at the step; these manifest as spanwise-distributed patches of
opposite vorticity and have the same spanwise wavenumber as the primary vortices.
Nevertheless, these near-wall perturbation structures accompanying the streaks are
hereafter referred to as secondary since they are additional elements not present in
the reference (no-step) case. An in-depth investigation of the origin and behaviour
of such velocity-perturbation streaks at the step is provided in chapter 6.

4.2.2. PERTURBATION AMPLIFICATION UPSTREAM OF THE STEP
Next to describing the spatial evolution of the fundamental perturbation system
q£0,1)’ a main goal motivating the current analysis is to quantify the effect of the step
in altering the properties of the pre-existing stationary CFI. First, the focus is put
here on effects upstream of the step.

A first metric employed to characterise the amplification of the fundamental CFI
is the chordwise evolution of amplitude identified as the primary peak of |i](,1).
This amplitude definition is denoted by A?o,l) in this thesis (see § 2.1.1 for details on
amplitude definitions); as pointed out previously, a secondary peak in the perturba-
tion amplitude function develops upstream of the step but, unlike the downstream
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FIGURE 4.9: Amplitude of the fundamental chordwise-velocity perturbation component from DNS
(lines) and PSE (symbols) upstream of the step: reference (no-step) case (thin solid black line and
circles), step case I (dash-dotted orange line and triangles), II (dash-dotted blue line and diamonds),
11T (thick solid red line and squares). Vertical lines indicate beginning of disagreement between DNS
and PSE (1% relative error).

region it does not surpass the primary peak in strength in any step case. Thus,
max

|u|(O = = |aly) (8 2.1.1) upstream of the step. It is emphasised that the latter
relatlon does not apply when considering the perturbation components wEOJ) and
U(O 1) since secondary peak(s) may become more prominent than the primary peak.

Lines in figure 4.9 indicate the chordwise evolution of A ;) obtained from DNS.
Based on the choice of amplitude A(o 1) it is evident that the fundamental CFI
becomes gradually amplified upstream of the step. Moreover, the overall upstream
amplification with respect to the reference case appears to be proportional to the
step height.

To gain additional insight into the underlying mechanisms for the observed up-
stream amplification, it is instructive to monitor reduced approximations to the in-
stability growth. A powerful technique in this context is the Parabolised Stability
Equations (PSE) approach (see § 2.2.3) applied to the DNS base flow. The compar-
ison between DNS and PSE exposes the effect of inherent PSE assumptions, such as
quasi-parallelism, on the manifestation of amplification due to the step. On the other
hand, the present problem serves as an ideal platform to assess the limitations of a
classic stability method as the PSE when it is applied in the presence of a sharp geo-
metrical discontinuity. Cooke et al. (2019) report that the PSE method suffers from
lack of numerical convergence when it is marched over the step due to the restriction
concerning the minimum marching step size.

The linear PSE (also referred to as LPSE in this thesis) are solved in the domain
Zst < 0. The choice of initial (inflow) DNS perturbation amplitude considered in the
present analysis (namely the medium-amplitude case in table 2.4 of § 2.3.2) yields a
largely linear behaviour of the CFI until reasonably close to the step (see figure 2.11
(b) in § 2.3.2). Thus, the LPSE method has been considered for the analysis of the
upstream regime. The LPSE setup considered here is identical to that employed for
the cross-validation with the reference (no-step) DNS case in § 2.3.2. The amplitude
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FIGURE 4.10: Profiles of the normalised amplitude function |,y from DNS (solid line) and PSE
(symbols) upstream of the step at zst /00 = —4.5 (a), —2.5 (b), —0.5 (¢).

obtained by solving the LPSE is represented by symbols in figure 4.9. A first main
observation is numerical convergence of the method until the upstream vicinity of the
step; this result was unanticipated, inasmuch as the near-step region contains areas of
flow recirculation and non-negligible chordwise base-flow derivatives and upwash, a
priori violations of the underlying assumptions of the PSE method (Herbert, 1997).
A second major result of figure 4.9 is that the LPSE capture a main part of the
upstream amplification process, as indicated by the match in amplitude evolution
between DNS and LPSE until significantly close to the step. Therefore, the CFI
primarily undergoes linear growth evolution supported by the step-distorted base
flow and the strong non-parallel effects introduced by the step do not significantly
impact the main amplification process in the upstream regime.

The perturbation shape profiles obtained by DNS and LPSE are in excellent
agreement in the region of reasonably close amplitude match, see figure 4.10 (a),(b)
representing step case III. Figure 4.10 (¢) additionally portrays the perturbation
shape at an x-station immediately upstream of the step. Major differences in figure
4.10 (c¢) arise in the near-wall region; the secondary peak present in the results from
DNS is not captured by the linear PSE. The present results show that the PSE
method is robust in a region with non-negligible non-parallel effects.

It shall be noted that in the present DNS, the fundamental CFI amplifies up-
stream of the step in a regime where the strength of the base-flow crossflow com-
ponent significantly decrease in = (figure 4.6). Under parallel-flow approximations,
Mack (1984) indicates that the linear local instability characteristics are governed by
the directional profile, i.e., the profile of the three-dimensional boundary layer in the
direction of the wavenumber vector (Bippes, 1999); in a classic swept-wing bound-
ary layer without steps, the wavenumber vector is roughly parallel to the direction
of the crossflow component (2.7). However, the present results pose the question
whether the inference of stability characteristics of the perturbation system from the
properties of the crossflow profile holds valid near the step.
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FIGURE 4.11: Fundamental total amplitude function contour, wall-normal position of maximum

amplitude |1/~)|ng)1) (circles), loci of base-flow crossflow inflection points (solid cyan), base-flow reversal

up = 0 (dotted green) in the reference (no-step) case (a), step case I (b), II (¢), III (d).

4.2.3. MODAL AND NON-MODAL GROWTH OF CFI AT THE STEP

The discussion on the mechanisms of interaction between the fundamental CFI and
step-induced flow features is next extended to the region around the step, and the
physical nature of the mechanisms that govern the perturbation evolution.

When studying the stationary three-dimensional perturbation behaviour in a two-
dimensional separated boundary layer, Marxen et al. (2009) find that a mixture of
modal and non-modal growth governs the perturbation evolution. Similarities with
Marxen et al. (2009) appear in the presently inspected flow, specifically, the step-
induced region of favourable-to-adverse pressure gradient and the separation bubble.
Nevertheless, a major difference in the present case is the existence of the modal
CF1I upstream of the step, which was not considered by Marxen et al. (2009). Based
on the observations of Marxen et al. (2009), the rapid deflection of the base flow
compared to the reference (no-step) case can be expected to be fertile condition for
non-modal growth in the present case. To examine potential non-modal mechanisms
near the step, the growth rate of the fundamental velocity-perturbation vector, ’UEOJ),
decomposed following the base-flow orientation (3.12) introduced in chapter § 3 is
evaluated. In the case of pure modal growth, different velocity components ought
to exhibit a (reasonably) common growth rate, implying the existence of a single
growing eigenmode (Marxen et al., 2009).

The following analysis is carried out by considering the amplitude functions corre-
sponding to the modulus of the fundamental perturbation vector itself, \77/~1|(071) (1.9),
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and to the component of the perturbation vector tangential to the base-flow direction,
I7(0,1) (3.23). The former is portrayed in figure 4.11 for the reference (no-step) case
and for the step cases. In step III (figure 4.11 (d)), the near-wall secondary peak in
the perturbation amplitude function downstream of the step surpasses the primary
peak in strength. Similar observations apply to \7:|(0’1). Under these circumstances,
the global maxima of the perturbation amplitude function inherently measures the
growth of the near-wall secondary structures. A more representative characterisation
of the amplification of the incoming perturbation is instead obtained by tracking the
evolution of the original primary peak. A similar metric can be devised considering

|1ﬁ\§8f’1) and |7~'\ng)1) instead of |z/~J|?(l)af) and |7[{g)) (see § 2.1.1 for amplitude defini-

tions). The wall-normal locations associated with |15|ng)1) are indicated in figure 4.11

by solid circles. Additionally, dotted and solid lines in figure 4.11 represent ug = 0

and the location of inflection points in the crossflow component, respectively.
Figure 4.12 shows the chordwise evolution of the growth rate associated to \1[1\28?1)

and |7~'|ng)1) computed as defined in equation (2.12). In the reference no-step case,
as well as sufficiently upstream and downstream of the step, the fundamental per-
turbation vector and its component parallel to the base flow have a similar growth
rate. Following the discussion provided by Marxen et al. (2009), this indicates that
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perturbation growth is largely due to a modal instability, which is naturally asso-
ciated to the incoming CFI. On the other hand, the significant differences between
the growth rate evolution in the vicinity of the step in figure 4.12 (b,¢,d) provide a
first indication of possible non-modal perturbation growth. Since the single modal
crossflow instability manifests again shortly downstream of the step, it is reason-
able to consider a combination of modal and non-modal mechanisms governing the
perturbation evolution at the step.

The realisation that different (base-flow-oriented) perturbation components dis-
play a significantly different growth rate evolution at the step poses the challenge of
establishing a global estimation for the amplification in this regime. For instance,
immediately downstream of the step, “/(0,1) shows destabilisation whereas véo’l) shows
stabilisation. Based on this disparity, one may conclude that energy-based criteria,
simultaneously encompassing the evolution of all perturbation components, are more
suitable. The norm of the fundamental perturbation vector, ‘1[)|(071) (1.9), which re-
lates to the perturbation kinetic energy of the fundamental spanwise mode (1.10),
serves hereafter as a metric to characterise the growth or decay of stationary pertur-
bation at the step.

In a fashion similar to the previous analysis, growth is next measured at the wall-
normal location of the primary peak of the amplitude function, |1/~J|ng)1), thus avoiding
possible artefacts from the amplification of the secondary near-wall structures at the
step. The chordwise evolution of amplitude associated to |1/~J|ng’1) in the vicinity of the
step is illustrated in figure 4.13. At first glance, the amplitude curves of step cases
I and II maintain a rather constant growth in the region where non-modal growth
sets in, possibly indicating that its effect is mild in comparison to the modal growth
associated to the original pre-existing instability. However, step case III appears to
differ considerably. The curve of step case III initially displays growth downstream
of the step, but this is rapidly followed by a sudden and strong amplitude decay
in the downstream direction. Therefore, based on the current choice of amplitude
characterisation, the fundamental CFI emerges significantly stabilised immediately

downstream of a large step.

The current observations are in contrast to conclusions drawn by Tufts et al.
(2017), who indicate that for large steps (i.e., influencing transition), the interaction
between the downstream region of flow recirculation and the incoming crossflow vor-
tices amplifies the perturbation. Eppink (2020), who investigates steps that extend
relatively high into the boundary layer, reports stationary crossflow amplification at
the step as well; the author attributes it to the destabilising effect of the inflectional
profiles arising in the regions of flow separation. Increasing the step height results in
enhanced stationary CFI growth driven by the enhancement of reverse-flow regions
(Eppink, 2020). Notwithstanding the differences in step height and flow conditions
between this thesis and the aforementioned studies, these works do not discrimi-
nate between the locally-formed near-wall structures inherent to forward-facing step
flow (chapter 6) and the pre-existing CFI. As such, in the region where the near-wall
structures dominate, a local rapid growth is recorded, see Tufts et al. (2017, cf. figure
A5) and Eppink (2020, cf. figures 11 and 14). In contrast, in this thesis, monitoring
only the amplitude of the primary incoming instability (i.e., the CFI) that develops
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FIGURE 4.13: Chordwise evolution of the amplitude associated to W\Egpl)

case (thick solid black), step case I (dotted orange), II (dashed-dotted blue), III (thin solid red).

in the reference (no-step)

farther from the wall, reveals a milder impact —and even a stabilising effect— caused
by the step (figure 4.13).

In summary, the present DNS indicate that the near-step regime encompasses
a mixture of perturbation mechanisms acting simultaneously. Secondary near-wall
structures are induced at the step; their growth is not captured by the linear PSE,
despite the remarkable ability of the latter to model the amplitude and shape of
the incoming crossflow instability up to close vicinity of the step. Additionally,
differences in the growth rate in different directions point to non-modal effects feeding
growth to certain perturbation components. Finally, large differences in perturbation
growth rate are identified, depending on the wall-normal position at which the latter
is evaluated. Previous work on forward-facing-step flows in absence of a crossflow
instability (Lanzerstorfer and Kuhlmann, 2012) has identified spanwise-distributed
near-wall velocity streaks, structurally similar to the secondary structures reported
here. This suggests that the near-wall vortex-like structures and streaks can exist
independently from (but possibly triggered and conditioned in wavelength and phase
by) the pre-existing CFI. Furthermore, regardless of their nature and origin, the near-
wall secondary structures decay rapidly in = and eventually merge with the primary
crossflow vortices. Accordingly, it becomes important to characterise the impact of
the step on the incoming fundamental CFI by evaluating the stability properties of
the perturbation system in the region far from the wall, where the incoming primary
structures lift up and pass over the step.

4.2.4. PERTURBATION MISALIGNMENT AND ENERGY-TRANSFER MECH-

ANISMS AT THE STEP
Based on the observations in the previous section, non-modal growth mechanisms,
in conjunction to the primary modal instability growth, likely play a role near the
step. Marxen et al. (2009) relate a modal instability in which all perturbation com-
ponents exhibit a common growth rate in = to the perturbation vector maintaining
its orientation with respect to the base flow. Following this reasoning, the observed
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differences displayed by different perturbation components in figure 4.12 suggests
a link to a local misalignment between the base-flow vector and the perturbation
vector at the step. This misalignment can be expected in a region of strong and
sudden spanwise base-flow modulation (figures 4.3 and 4.4). To explore this in de-
tail, the perturbation-vector field 'UEOJ) and its component aligned with the base-flow
direction, vé,(O,j)’ are considered (3.12). The analysis carried out next is generalised
for any Fourier component, but the subsequent discussion focuses on the fundamen-
tal mode, which is the scope of the current section. Since Uzo,j) and ’Ué’(o,j) are
complex-valued, the a priori complex-valued angle, ((g ), between ’UEO’ 7 and U;(

is introduced (Scharnhorst, 2001)

0,5)’

Ul UL

. _ (0,5) ~ "t,(0,5)
% (C00) = Tigr,TTTof o (4.4)

(0,9) t,(0,5)

whereas the real-valued Euclidean angle, (g (o 5), between ’UEO ) and v, (0,5) is defined
as (Scharnhorst, 2001)

Re (“Eow ) ”Q(w))

I AP

COS (<E7(0,j)) = (45)

It must be noted that
Vo hos) = (Vo) T Vito) * Viio = Vo) * Vhio) = WP (46)

since v (0.9) and v/, (0,j) are complex orthogonal, as demonstrated in § 3.2. As a

consequence, expressions (4.4) and (4.5) are equivalent and thus () = (g (0,j)-
Furthermore, considering equality (4.6), expression (4.4) can be re-written as

_ ||U£,(O,j)|| _ |7~:|(0,j)
HUZQ,]‘)H |1/J|(o,j)

cos (C(o,j)) (4.7)

implying that (o ;) = 0,5 (x,y).
The rate of change of the angle ((o ;) in = can be directly related to the relative
growth rate evolution of the perturbation components through

0 2 (Il0.) Plog) — & (Plon) Flo
= (cos (Co,))) = 22— O : 22, (4.8)
Ox Y135
and it follows that
o ~ o 7
35 Tlon) , 5 (Ploy) . 0
S U = (Co.py) #0. 4.9
|T‘(0,j) W‘(o,j) Ox ( (OJ)) (4.9)

The condition expressed by equation (4.9) can be evaluated for a particular
Fourier component at any (x,y) location of the corresponding amplitude functions.
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FIGURE 4.14: Chordwise evolution of the perturbation-to-base-flow angle (¢ 1y at the wall-normal
location of \%|E8p1> (a) and at y/dg = h/do +0.2 (b) in the reference (no-step) case (thin solid black),
step case I (dotted orange), II (dashed-dotted blue), III (thick solid red).

From the results of figure 4.12, the occurrence of non-modal growth at the step has
been justified based on the different growth rate evolution associated to W\Egpl) and
|~|tOp The wall-normal position associated to \w\mp (figure 4.11) and |T|tOp gjz% tlo)p

0,1)
and y(TOtfp are reasonably close to each other in the vicinity of the step in case III,

and are almost identical in cases I and II. Under the assumption y(o 1)p ~ g(fotff when

evaluated at this common wall-normal position, the condition expressed by equation
(4.9) is reduced to

0
0) 7 % 0.) = 5 (Co.g) #0. (4.10)

Thus, differences in the growth rate evolution in figure 4.12 appear to be linked to
the fundamental perturbation vector changing its orientation with respect to the
base-flow vector.

Figure 4.14 (a) portrays the chordwise evolution of (o 1)(z, y(TOtff ). In the refer-
ence (no-step) case, the angle remains constant at approximately 4.6 degrees. That
is, the fundamental perturbation vector maintains its orientation with respect to the
base-flow vector while growing in x, as can be expected in the case of a single modal
(crossflow) instability. Furthermore, it conforms with the results of figure 4.12 (a),
where the perturbation vector and its tangential component are shown to follow a
common growth rate.

When considering the step cases, (1) (2, gj(TOt(f;D ) changes significantly in z in the
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FIGURE 4.15: Chordwise (a) and spanwise (b) fundamental perturbation-velocity fields at y/dp =
1.48 in step case IIL. In-plane base-flow streamlines (solid lines) and perturbation wavefronts (dash-
dotted lines).

vicinity of the step, see figure 4.14 (a). Approximately in the range x4 /g € [—1.5,4],
in line with the condition expressed by equation (4.10), both large differences in
growth rate evolution in figure 4.12 (b,c,d) and in the rate of change of (o 1) (2, 37(70,1))
in x in figure 4.14 (a) are evident. Significant chordwise variations of (o 1) are
captured in the near-wall region downstream of the step as well, see figure 4.14 (b)
representing a constant wall-normal location. Figure 4.15 gives further evidence that
the CFI does not follow the base-flow advection direction at the step. Considering
step case III, figure 4.15 portrays z-z planes of ul(O,l) —i—ul(gyl) and wEo,l) + wEJ’l) with
projected base-flow streamlines (solid lines) and wavefronts of the perturbation field
in the plane (dash-dotted lines).

In classic spatial LST analysis (§ 1.2.6), the wavenumber vector is typically used
to characterise the perturbation propagation direction (Mack, 1984; Arnal, 1994).
The wavenumber vector is normal to the wavefronts, hence the results of figure 4.15
show graphical evidence that the trajectory of the wavefronts and the projected base-
flow streamlines gradually diverge upstream of the step. In line with the results of
figure 4.14 (a), the wavenumber vector displays sudden change of orientation with
respect to the base-flow direction immediately downstream of the step. Eppink (2020)
similarly reports that isocontours of chordwise-velocity perturbation bend vigorously
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Production mno-step step casel step case II step case III

Pg,/ P* 1.00 1.85 2.13 1.01
Pgyone/Pie 100 1.63 1.89 2.35

TABLE 4.2: Regular (top) and absolute value (bottom) integral evaluation of the Reynolds-Orr
production term Pg, downstream of the step normalised by the reference (no-step) case P*.

close to the step, before re-aligning with the direction of the inviscid streamlines.

The possible implication of the misalignment between perturbations and the base
flow on the perturbation growth and decay at the step is scrutinised next by means of
the production term of the Reynolds-Orr equation (see §§ 3.1 and 3.3). Specifically,
the term Ppg, (3.30) is considered here, which characterises the exchange of kinetic
energy between the base flow and the fundamental perturbation. The sign of Pg,
informs whether kinetic energy is transferred from the base flow to the perturbation
field (Pg, > 0), i.e., the process is destabilising, or vice-versa (Pg, < 0).

For the present analysis, the production term Ppg, is evaluated by considering a
volume V defined by 0 < z4/dp < 10, h/dg < yst/d0 < 6, Zmin < 2 < Zmax since the
current aim is to quantify perturbation mechanisms downstream of the step. Table
4.2 summarises the quantitative results normalised with the reference (no-step) case,
where P* denotes integration of the signed production and P} . integration of its
local absolute value. The integral of the absolute value confirms that the presence
of the step enhances the exchange of kinetic energy between the base flow and the
fundamental perturbation field. The perturbation-to-base-flow misalignment (and
posterior realignment) induced at the step inherently carries growth (and decay) of
the normal perturbation component, U;L7(071), relative to the tangential component,
vé,(m (3.12). Rapid change in z of the perturbation component acting normal to the
base-flow streamlines appears to enhance the energy transfer between base flow and
perturbations. Chapter 5 confirms this finding and examines the physical mechanism
underpinning the behaviour.

Additionally, figure 4.16 illustrates the integrand of Pg,, (—27/80)Ag,, see equa-
tions (3.9) and (3.30). Immediately upstream of x5, = 0, in all step cases, an enhance-
ment of kinetic-energy transfer towards the perturbation field, i.e., (—27/89)Ag, > 0,
is captured. This is in agreement with the results of figure 4.9, highlighting that
the incoming CFI is gradually amplified as it approaches the step. Downstream of
the step, (—27/Bo)Ag, maintains a dominant positive contribution in cases I and II
(figure 4.16 (b),(c)), which is consistent with the rather constant amplification trend
depicted in figure 4.13. For step case III, a prominent region of negative (—27/8y)Ag,
arises (figure 4.16 (d)) in the region where the perturbation amplitude decays (figure
4.13). Overall, the present results show that the production term itself is sufficient
to characterise major stability features of the step-modified fundamental perturba-
tion field. Chapter 7 assesses the remaining terms of the energy-balance equation
for stationary modes developed in § 3.1, providing a complete energy budget at the
step. Amplitude effects will be also addressed in chapter 7.
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FIGURE 4.16: Integrand of the Reynolds-Orr production term Pg, in the reference (no-step) case
(a), step case I (b), II (¢), III (d).

4.3. PERTURBATION EVOLUTION DOWNSTREAM OF THE
STEP

The analysis is next extended to the region further downstream of the step, up to
approximately xs /09 = 30. Previous work identified dominant harmonic activity in
this regime (Eppink, 2020; Rius-Vidales and Kotsonis, 2021).

The evolution of the harmonic field ’UEO72) (i-e., the mode with wavenumber § =

2fp in the Fourier decomposition (1.8)) is characterised in figure 4.17, where the
associated total amplitude function is shown. Careful inspection of the topology
of the field reveals similarities with that of the fundamental Fourier component,

(0 1) Specifically, secondary stationary near-wall perturbation structures develop
as well immediately downstream of the step. They manifest in the form of spanwise-
distributed regions of opposite vorticity with a spanwise wavenumber of 25y. In the
smallest step case, the pre-existing harmonic perturbation elements remain as dom-
inant structures downstream of the step since additional near-wall ones are rather
weak. This is not the case in step III, for which the new secondary near-wall struc-
tures display rapid growth in z and eventually overtake the incoming ones as main
perturbation feature. Naturally, the u/, 2) streaks expand accordingly, which explains
the particular behaviour of the amphtude function for step III depicted in figure 4.17
(d). Similarly, Eppink (2020) identifies streamwise-oriented vortices localised in the
near-step regime, which are connected to the harmonic content of the perturbation
field. The origin of these secondary structures is ascribed by Eppink (2020) to the
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FIGURE 4.17: Harmonic (0,2) total amplitude function contour, wall-normal position of |1@\

modulation of the step-induced upper separation bubble under the action of the
incoming crossflow vortices.

A visual correlation is identified between the location of the maxima of the near-
wall secondary peak in the amplitude function |1ﬁ|(0,2) in step cases IT and I1II and the
location of the secondary step-induced inflection points in the crossflow component
close to the wall (figure 4.17 (¢),(d)). Eppink (2020) postulates that stationary CFI
amplification at the step corner is triggered by the destabilising effect of the step-
induced inflection points. As shown in § 4.2.3 and § 4.2.4, this is not the case for
the pre-existing fundamental CFT since it is locally stabilised by a sufficiently large
step. Nonetheless, the results of figure 4.17 suggest a local destabilising effect of the
near-wall step-induced inflection points when considering the harmonic field 'UEO,Z).

To shed light on this possibility, a linear local and parallel stability analysis, based
on the Orr-Sommerfeld eigenvalue problem (see § 1.2.6), is conducted on the base-
flow profiles in the range 4 < x4 /dy < 50.2 considering 8 = 25y. In all step cases,
an eigensolution whose associated eigenvalue becomes unstable within a particular
x-range (figure 4.18 (b-d)) is identified, which remains stable in the equivalent eigen-
spectrum of the reference (no-step) case (figure 4.18 (a)). This eigenvalue is referred
to as critical in the present analysis and denoted by a®% = a95+ia$S. Therefore, the
step-distorted base-flow profiles appear to support the exponential amplification of
small-amplitude perturbations with half the spanwise wavelength of the fundamental
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crossflow mode.

Furthermore, the amplification factor in x of the critical unstable Orr-Sommerfeld
eigenmode is proportional to the step height. In line with observations of Eppink
(2020), for the particular case of the field UEO,Z)’ an increase in the step height ap-
pears to increase the destabilising influence of the step-distorted inflectional base-flow
profiles. Additionally, in results not shown here, linear local unstable eigensolutions
are also identified when the analysis is repeated for higher-order harmonics. Al-
though not fully conclusive, this model suggests that near-wall perturbations with
B > Bo triggered at the step corner are amplified further downstream through an
Orr-Sommerfeld type of mechanism, possibly associated to the step-induced near-
wall inflection points.

The behaviour of the harmonic Fourier modes for the DNS at the largest step (i.e.,
step case III) is quantitatively characterised in figure 4.19 portraying the evolution
in x of the amplitude associated to |12|“53J"), j = 0-6. As suggested by the results of
the Orr-Sommerfeld analysis, growth of( the high-order harmonics is captured down-
stream of the step. Additionally, figure 4.19 depicts the amplitude curves obtained
by solving the linear and the non-linear PSE on the DNS base flow downstream of
(but not at) the step.

The numerical setup of the present non-linear PSE (NPSE) simulations is identical
to that employed in previous sections (§ 2.3.2), albeit a major difference: the initial
condition of the marching scheme is provided by the local DNS solution at a selected
z-position downstream of the step. Furthermore, for NPSE, this DNS (Fourier-
analysed) initial condition is simultaneously assigned to all modes considered in the
simulation at the common initial marching position.

It is found that a NPSE solution is able to march from x4 /09 = 8.57 and reason-
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indicates the step location.

ably match the results from DNS (see figure 4.19). Excellent agreement is obtained
sufficiently far from the step. Therefore, NPSE initialised from DNS data is able
to resolve the perturbation evolution downstream of the step, even when an initial
condition extracted reasonably close to the step is considered. Shifting the start-
ing position of the NPSE simulation upstream of xg /09 = 8.57 rapidly results in a
significant loss of accuracy. Similarly, the solution to linear PSE (LPSE) marched
from x4 /09 = 8.57 reasonably matches the local trend displayed by the fundamen-
tal crossflow component in the DNS and NPSE until approximately x4 /dyp = 100.
Thereby, the present results show evidence that after passing the largest step, the
fundamental CFI evolves following linear perturbation mechanisms.

This finding is contrary to the observed behaviour in the reference no-step case,
where linear and non-linear PSE start to display differences much closer to the virtual
location of the step (see figure 2.11 (b) in § 2.3.2). The fundamental perturbation
experiences a significant stabilisation at the largest step, as previously detailed in §
4.2.3 and illustrated in figure 4.13. In § 4.2.4, this behaviour has been connected to
the effective transfer of kinetic energy between the base flow and the fundamental
perturbation, which is quantitatively characterised by the linear production term
in the Reynolds-Orr equation (table 4.2 and figure 4.16 (d)). It is hypothesised
that the enhancement of this linear perturbation effect under the influence of the
step overshadows the impact of the non-linear interactions to the evolution of the
fundamental CFI. This interpretation is further reinforced by the results presented
in chapter 5, and by the rapid emergence of differences between linear and non-
linear PSE initialised downstream of step cases I and II using the same methodology
as employed for step case III; in step cases I and II, the behaviour of the linear
production term is closer to that exhibited by the no-step case (figure 4.16).

It shall be noted that linear behaviour of the fundamental CFI downstream of
the largest step arises in a regime with significant amplification of the harmonic
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components (figure 4.19). As shown in figure 4.18, harmonic growth near the step
can potentially be linked to the unstable nature of the base-flow profiles to spanwise
wavelengths smaller than the fundamental one. In contrast, Eppink (2020) attributes
stationary crossflow growth downstream of large steps —approximately beginning at
the end of the separated-flow region— to a non-linear effect; the author justifies this
based on the presence of secondary structures with harmonic wavelengths in this
region (Eppink, 2020). It can be anticipated that, in order to assess whether the
CFT follows linear or non-linear growth mechanisms downstream of the step, a multi-
parametric space ought to be defined. The present results show that the height
of the step stands out as dominant parameter in this regard and chapter 7 further
explores how the amplitude of the pre-existing perturbation also influences the growth
behaviour.







THE LIFT-UP EFFECT AT THE
STEP

Abstract: Building on the insights from the previous chapter regarding enhanced
production at the step, this chapter identifies a novel mechanism by which the forward-
facing step significantly stabilises a pre-existing stationary CFI. The mechanism is
termed here reverse lift-up effect, inasmuch as it acts reversely to the classic lift-up
effect; that is, kinetic energy of an already existing shear-flow instability is transferred
to the underlying laminar flow through the action of cross-stream perturbations. The
framework and analysis of this chapter apply to generic three-dimensional flows and
surface features of arbitrary shape with one invariant spatial direction.

A note on nomenclature: This chapter focuses exclusively on stationary effects
and the fundamental (i.e., primary-wavelength) crossflow perturbation. The funda-
mental spanwise perturbation mode is denoted by ’Uzo,l), where the prime marks per-
turbation and the zero indicates stationary behaviour. Unperturbed base-flow quan-
tities are denoted by the subscript B, for example, vp. This chapter also analyses
model problems, where a generic perturbation is represented by 0.

Parts of this chapter are published in:

o Casacuberta, J., Hickel, S., and Kotsonis, M., 2024 Passive stabilization of crossflow insta-
bilities by a reverse lift-up effect. Phys. Rev. Fluids 9:043903.
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does not universally destabilise a pre-existing fundamental CFI on interaction—

is elaborated and a supporting mechanism is proposed. Building on the ob-
servations in § 4.2.4, the production term is decomposed following the framework
introduced in § 3.3 and examined. The analysis in § 5.1 reveals that the critical
production term reverses sign (i.e., it acts stabilising) for the step geometry that
was shown to stabilise the pre-existing CFI in chapter 4. This finding gives rise to
the concept of a novel reverse lift-up effect, a perturbation mechanism formalised
in § 5.2 through two model problems: plane Poiseuille flow and blowing-suction in
two-dimensional boundary-layer flow. The chapter concludes with an analysis of the
origin and sensitivity of the reverse lift-up effect at the step to flow specifications
(§ 5.3). The main flow problem investigated in this chapter corresponds to step case
IIT (table 2.3) and medium-amplitude CFI conditions (table 2.4).

I n this chapter, a key claim from the previous chapter —that a forward-facing step

5.1. MECHANISMS OF STATIONARY PERTURBATION STA-
BILISATION BY THE STEP

This section first characterises the CFI stabilisation identified in chapter 4 under
identical flow conditions and step geometry. Figure 5.1 illustrates the organisation
of the fundamental (i.e., with wavenumber § = ) stationary perturbation field
around the step using a perturbation metric different than that considered in chap-
ter 4. Specifically, building on the projection formulation developed in § 3.2, figure
5.1 shows the streamwise-velocity perturbation component 7'(’0,1) (3.13); i.e., the com-
ponent tangential to the local base-flow direction. It represents approximately 98%
of the total kinetic energy budget —in relation to the cross-stream component— of
the 8 = [y wavenumber space. It is emphasised here that the present perturbation
decomposition into components tangential and normal to the base flow (§ 3.2) is ap-
plied to the fundamental spanwise mode (i.e., mode |j| = 1 in equation (1.8)), which
is the focus of the present chapter.

The significant exchange of kinetic energy between the base flow and fundamental
perturbations at the step observed in § 4.2.4 is next scrutinised by decomposing
the production term of the Reynolds-Orr equation using the framework developed
in § 3.3. Figure 5.2 portrays the integrands of I? m = 1-4, stemming from the
decomposition of Pg, (3.31), in the step (a-c) and reference no-step (d-f) cases. As
expected, the term Ig ° holds the dominant contribution to energy production in the
no-step case, see figure 5.2 (e). This highlights the role played by the weak cross-
stream pattern (U:%(O’l)) produced by the instability which, by displacing base-flow
momentum, it enhances regions of streamwise-velocity deficit and excess (027(0’1));
consequently, the CFI is amplified spatially (Saric et al., 2003). In the presence of the
step, the mechanism ]26 ° remains a dominant contribution in absolute value (figure
5.2 (b)), albeit an enhancement of the mechanism associated to I,° is captured locally
near the step corner (figure 5.2 (¢)). This latter feature has been reported as well in
studies of near-wall streaks in unswept forward-facing-step flows (Lanzerstorfer and
Kuhlmann, 2012).
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Figure 5.2 (b) shows that the dominant production term I5° reverses sign shortly
downstream of the step, approximately from x4 /0o = 2.3, see red contour in figure
5.2 (b). This thesis proposes that this phenomenon essentially corresponds to the
lift-up effect acting in a stabilising manner, that is, by transferring kinetic energy
from the perturbation field to the underlying flow. This mechanism is termed in this
thesis as reverse lift-up effect since, originally, the classic lift-up effect was conceived
as a mechanism responsible for actually destabilising streamwise streaks through the
action of cross-stream perturbations (Ellingsen and Palm, 1975; Landahl, 1975, 1980).
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The z-position where Ig ° first changes sign approximately matches the location at
which the CFI kinetic energy decays in & downstream of the step, as quantified by
the thin solid red line in figure 4.13.

Downstream of the stabilising region, the perturbation structures gradually re-
organise towards reference (no-step) conditions (see the description in § 5.3 below)
and a destabilising influence of I5° progressively sets in again (see black contour in
figure 5.2 (b)). In this flow environment, the strength of Igo > 0 (figure 5.2 (b)) is
lower than in reference conditions (figure 5.2 (e)), implying that the transfer rate of
kinetic energy towards the perturbation field is below reference (no-step) conditions.
This is consistent with the reduced growth rate in x of the CFI after passing the region
of Ig ® < 0 in the step case, evident in figure 4.13 (see thin solid red line). When
moving further downstream, far from the flow distortion introduced by the step, the
growth rate of the CFI eventually increases significantly and becomes closer to the
no-step case.

5.2. ON THE CONCEPT OF A REVERSE LIFT-UP EFFECT

The previous section introduced the notion of a reverse lift-up effect, a perturba-
tion mechanism that acts stabilising and reversely to the classic lift-up effect. Two
model problems are discussed next to illustrate and strengthen the validity of this
novel concept in simpler flow environments entailing canonical flow problems: plane
Poiseuille flow and blowing-suction in two-dimensional boundary-layer flow.

5.2.1. DESCRIPTION OF MODEL PROBLEM | (PLANE POISEUILLE FLOW)

The first model problem entails (itoptimal perturbations (Schmid and Brandt, 2014)
in incompressible plane Poiseuille flow. This is a classic example of perturbation
growth driven by the lift-up effect (Schmid and Henningson, 2001) and due to the sim-
plicity of the base-flow topology serves as an archetypal demonstration of the reverse
lift-up effect. The base-flow field reads vg = [ug(y) 0 0]7 with ug = uo (1 — y?/h?)
where ug denotes the peak velocity of up at centerline; i.e., at y = 0. The solid
walls are placed at y = +h. A sketch of the flow problem and coordinate system
is depicted in figure 5.3. Counter-rotating perturbation rolls are prescribed as an
initial perturbation condition. They are z-invariant wave-like flow patterns that act
orthogonal to base-flow streamlines; i.e., they represent a cross-stream perturbation
as characterised by v], in equation (3.12).

Through the lift-up effect (Schmid and Henningson, 2001), the rolls redistribute
base-flow momentum and induce streamwise perturbation streaks, i.e., regions of
streamwise-velocity deficit and excess as characterised by v in equation (3.12). The
streamwise streaks are invariant in the x-direction as well. While the streaks display
a rapid initial growth in time, the rolls remain practically unaltered in time. The
optimal perturbation rolls, i.e., the flow pattern which yields the largest transient
growth of kinetic perturbation energy, and the corresponding optimal response for a
chosen time horizon (tug/h = 27.895) have been obtained through a singular value
decomposition of the corresponding matrix exponential. The calculations are carried
out with the code OptimalDisturbance.m provided by Schmid and Brandt (2014), using
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FIGURE 5.3: Sketch of model problem I: base-flow profile ug (a) and organisation of optimal per-
turbation rolls ¥/ = [0 %’ ©@’]T at the initial time instant (b).

a spanwise wavenumber of Sgh = 2.04 and a Reynolds number of Re = ugh/v = 1000.

5.2.2. ANALYSIS OF MODEL PROBLEM I (PLANE POISEUILLE FLOW)
The Reynolds-Orr equation (1.14) is invoked next, relating the rate of change of
kinetic perturbation energy in time with the effect of production, Pg,, and viscous
dissipation, Dg, (see also § 3.1). The pre-imposed perturbation rolls act by redis-
tributing low- and high-momentum fluid and thus they feed growth to streamwise
streaks; i.e., production Pg, > 0, naturally implying that the streamwise streaks grow
by extracting energy from the base-flow shear. Concerning the overarching discussion
in this present chapter, the realisation that the lift-up effect —characterised by IQB ©
(§ 3.3)— is the main mechanism driving here the perturbation amplification (Schmid
and Henningson, 2001) follows from the fact that If“ = I:f" = If“ =0= Pg, = Ig"
(3.31). This is illustrated as follows: the base flow is a parallel flow (i.e., Qup/dy is
the only active base-flow shear), thus the integrands of I%°, m = 1-4 (see for example
equations 3.32 and 3.33), simplify as

1 -9+ OUB 1 o1 OUB
Afo = U}L UTQLT Ty + c.c., Ago = Utl UZT aiy +c.c. (5.1a)
ou Ou
_1 -2t OUB _1 -2t JuB
Ag“ = ¢} o2 By +c.c, Af“ =0} o By +c.c. (5.1b)

In turn, particularly for the present flow problem, the perturbation components tan-
gential and normal to base-flow streamlines may be related explicitly to the per-
turbation components tangential and normal to the wall as v, = [u’ 0 0]T and
vl = [0 v w']T. Therefore, A7 = AJ> = A% = 0 and

2 _ _+ Oup 47 _,. .. Oup
Py, =1 == [ (aot == 4 cec. dS:——/uv—cos v — ) dS.
o=t =0 (@0t 52 ey as= T | a5 eos(e” — o)
(5.2)
Equation (5.2) highlights that the sense of energy transfer between the base flow

and the perturbation field (through the lift-up effect) is dictated by the sign of
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FIGURE 5.4: Organisation of perturbations in a classic (a) and a reverse (c) scenario of the lift-up
effect in plane Poiseuille flow at a fixed time instant: cross-stream rolls (arrows) and streamwise

streaks (colour contour). Integrand of the lift-up term Ig 0 normalised with respect to its maximum
value in y, characterising the top (b) and bottom (d) cases.

cos(p™ — ¢¥); i.e., by the phase difference between cross-stream rolls and stream-
wise streaks establishing their relative placement along the spanwise direction z. By
their relative phase in the present configuration, see figure 5.4 (a), (—27/8o) Ago >0
for all y (figure 5.4 (b)). The latter implies that the action of the cross-stream rolls
(v])) acts destabilising and base-flow kinetic energy feeds growth to the streamwise
streaks (v;). This illustrates the typical scenario of the classic lift-up effect. It is
noted that in the present model problem, A§° = A§° (y) since both the base flow and
the perturbation field are invariant in x.

In essence, the core analysis of the present chapter revolves around the fact that
the same principle holds, but operates in a reverse fashion, if the relative spatial
placement between cross-stream rolls and streamwise streaks (i.e., their spanwise
phase) is altered. This is illustrated as follows: consider that at the time instant
depicted in figure 5.4 (a,b), the spanwise phase of the rolls, v, is shifted by =
radians such that the term cos(p™ — ¢¥) in equation (5.2) reverses its sign. In such
new perturbation environment, depicted in figure 5.4 (¢), (—27/Bo) Ago < 0 for all y
(figure 5.4 (d)). In the new scenario, I,° < 0 implying that Pg, < 0 and since Dg, < 0
always, dEy /dt < 0 (1.14). Therefore, the perturbation field undergoes stabilisation
locally in time, which shall be interpreted as the flow exhibiting a tendency towards
recovering the original (unperturbed) laminar base state: low-momentum fluid is
displaced towards the regions of streamwise-velocity excess (i.e., red regions in figure
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5.4) and high-momentum fluid is displaced towards the regions of streamwise-velocity
deficit (i.e., blue regions in figure 5.4). Consequently, a reverse lift-up effect now takes
place.

In short, the lift-up effect involves the superposition of perturbation streaks and
streamwise-vortical structures (cross-stream rolls). In the classic sense, their interac-
tion with the shear layer amplifies the streaks. However, for certain spanwise phase
shifts between the streaks and vortical structures, the same interaction with the shear
layer produces a stabilising response. At present, the novel proposed reverse lift-up
effect has been exemplified on a pre-existing streaky flow field by altering artificially
the spatial organisation of the perturbation content acting normal (the rolls) and tan-
gential (the streaks) to the base flow. It is shown in § 5.3 below that essentially the
same perturbation effect, but conditioned naturally by the abrupt spatial variation
of the flow organisation, stabilises significantly a pre-existing convective instability
in boundary-layer flow.

On a historical note, the notion that the lift-up effect is a powerful destabilising
flow mechanism originates mainly from the work of Ellingsen and Palm (1975) and
Landahl (1975, 1980). They formalised that a three-dimensional cross-stream per-
turbation in shear flow may induce growth of perturbation kinetic energy (by the
lift-up effect) irrespective of whether the flow supports a modal (exponential) insta-
bility. While the concept of a stabilising (reverse) lift-up effect may seem paradoxical
at first glance, it actually follows naturally from the model of Ellingsen and Palm
(1975) if a non-zero initial perturbation streak field is considered. This is elaborated
upon in detail in § 5.2.5.

5.2.3. DESCRIPTION OF MODEL PROBLEM II (BLOWING-SUCTION IN

TWO-DIMENSIONAL BOUNDARY-LAYER FLOW)
The second model problem illustrates the principle of the reverse lift-up effect in
boundary-layer flow. It entails streamwise perturbation streaks in a two-dimensional
spatially-accelerating (i.e., favourable pressure gradient) boundary layer over a flat
plate. When developing in the streamwise direction, the streaks interact with lo-
calised steady wall blowing-suction; § 2.1.3 provides details on the blowing-suction
setup, which is here constrained to steady modulation (i.e., fo = 0 in equation
(2.23)). The elements of the perturbation field in this (model) flow problem resemble
structurally those of the step case discussed in this present chapter. The multiple
similarities between both perturbation scenarios pave the road for full characterisa-
tion of the reverse lift-up effect in the highly deformed three-dimensional step flow
(§ 5.3). For the sake of representation, the acceleration of the free-stream in the
streamwise direction, z, and the inlet Reynolds number in the model problem are
similar to the step case. However, it is emphasised that the base flow is here unswept,
i.e., vg = [up(z,y) vs(z,y) 0] .

This model problem is configured to simulate the interaction of two distinct sets
of perturbations, represented as ©': the field ¥’ is composed of a pair of (cross-
stream) counter-rotating perturbation rolls prescribed at the inflow and streamwise
perturbation streaks which amplify in x as a result of the lift-up effect (Luchini,
2000) induced by the action of the rolls on the base-flow shear. The wavelength
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FIGURE 5.5: Evolution of the streamwise-velocity perturbation in no-blowing-suction (a,b) and
blowing-suction (c,d) cases (colour map): three-dimensional organisation (a,d) and y-z planes (b,c)
at x/6p = 59 with white arrows illustrating the in-plane organisation of the cross-stream-velocity
perturbation. Wall blowing-suction strip depicted as grey rectangle in (d).

in the spanwise direction z of the perturbation rolls is identically that of the CFI
mode in the step case and equals the spanwise domain length. The dimensions of the
computational domain are 0 < z/dp < 123 in the streamwise direction, 0 < y/dy < 26
in the wall-normal direction, and —4.86 < z/dp < 4.86 in the spanwise direction.
It is strengthened that both the pre-imposed inflow rolls and the spatially-forming
streamwise streaks are stationary perturbation structures, i.e., 90’ /0t = 0.
Corresponding flow fields of this model problem are obtained numerically via DNS
in three sequential steps. First, the unperturbed base flow is computed. Second,
steady-state DNS generates streamwise streaks in the boundary layer by prescribing,
at the inflow, a pair of cross-stream rolls superimposed on the laminar profile. Finally,
steady blowing-suction (BS) at the wall is applied: a disturbance strip modulates the
wall-normal velocity harmonically according to equation (2.23). The width of the
strip in the z-direction is kept small to produce a local effect, which is representative
of the flow environment around the step discussed in §§ 5.1 and 5.3. The spanwise
phase of the wall-normal velocity in the strip, ¢1 = 7/2 (2.23), is chosen such that the
BS strip acts by locally stabilising the incoming streamwise streaks. The amplitude
of the modulation at the strip, ABS = 1 x 1076u,, (2.23), yields a scenario of linearly
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FIGURE 5.6: Evolution in z of perturbation spatial growth rate (a) and amplitude (b) in no-blowing-
suction (thick black) and blowing-suction (thin red) cases. Spatial organisation of the integrand of
Igo [(c) and (d)] and Ifo + Ig“ + If“ [(e) and (f)] in no-blowing-suction (c,e) and blowing-suction
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wall strip.

dominated perturbation evolution. To retrieve perturbation information, the full
perturbation field is decomposed into spanwise Fourier modes.

5.2.4. ANALYSIS OF MODEL PROBLEM II (BLOWING-SUCTION IN TWO-
DIMENSIONAL BOUNDARY-LAYER FLOW)

The spatial evolution of the streaks is illustrated in figure 5.5 (a) depicting the
streamwise-velocity (i.e., base-flow tangential) perturbation, 7/ (3.13). At present,
the streaks grow monotonically in xz, as highlighted by the trend of their spatial
growth rate, o, in figure 5.6 (a) (solid black line); it is emphasised that o; < 0
here implies growth in space. By the organisation of the flow in the present model
problem, the representation of velocity perturbations acting tangential to the wall in
z, v/, and tangential to the base-flow streamlines, 7/, are largely similar.

It is well known that the (classic) lift-up effect drives the perturbation amplifi-
cation in this scenario. For instance, Luchini (2000) describes that “perturbations
produced in this way are driven by the lift-up phenomenon, that is, by the continued
accumulation over downstream distance of longitudinal-velocity differences arising
from slow convection in the transverse plane.” The term 125 © characterising the lift-
up effect naturally adds here the main contribution to energy production, see figure
5.6 (¢), in relation to negligible contributions by Ilﬁo, IgO,IfO, see figure 5.6 (e), and
150 > 0 for all z.
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A popular method used to stabilise elongated streamwise streaks is wall blowing-
suction, see for instance Lundell and Alfredsson (2003). To produce a stabilising
effect, a blowing region is placed underneath the high-speed streak and a suction
region is placed underneath the low-speed streak. The aim of this section is to
highlight that the concept of a reverse lift-up effect offers a simple way to understand
and quantify the mechanism of perturbation stabilisation by blowing-suction. To this
end, a BS surface disturbance strip is next positioned in the region 57.62 < x/§y <
62.62, see figure 5.5 (d) illustrating the surface strip in relation to the spatially-
developing streaks. In the vicinity of the surface strip, the wall-normal velocity
opposes the incoming streaks and thus it reduces the strength of the incoming streak
system locally in space. This effect is quantified by the large increase and change in
sign of the spatial growth rate, see solid red line in figure 5.6 (a), and corresponding
decay of perturbation amplitude, see solid red line in figure 5.6 (b). Finally, the
results in figure 5.6 (@,b) show additionally that the original perturbation mechanism
(i.e., the classic lift-up effect) is gradually recovered downstream of the BS strip.

In the blowing-suction scenario, the velocity induced at the wall reverses locally
the interplay between cross-stream- (white arrows in figure 5.5 (b,¢)) and streamwise-
(colour map in figure 5.5) velocity perturbations due to their relative spanwise phase.
That is, the cross-stream- and streamwise-velocity perturbations act in-phase (i.e.,
against) in the blowing-suction case, whilst they act out-of-phase (i.e., in favor) in
the no-blowing-suction case; see the comparison between figure 5.5 (¢) and figure 5.5
(b). Following the rationale discussed in § 5.2.2, but now in the context of spatially-
developing perturbations, a reversal of the sign of Ig  is consequently monitored
locally around the surface blowing-suction strip (see red region in figure 5.6 (d)).
From the viewpoint of production, the latter shall be interpreted as the cross-stream
perturbations now acting by transferring kinetic energy of the pre-existing streamwise
streaks towards the underlying flow. At the same time, figure 5.6 (f) shows that
the mechanisms of Ilﬁo, Ifo, I,° remain negligible in the region of blowing-suction.
Therefore, the stabilisation via blowing-suction originates purely from a reverse lift-
up effect; i.e., a reversal of the sense of kinetic-energy transfer with respect to the
original (classic lift-up) mechanism.

5.2.5. A HISTORICAL PERSPECTIVE ON THE CLASSIC AND THE RE-
VERSE LIFT-UP EFFECT

Ellingsen and Palm (1975) and Landahl (1975, 1980) are credited mainly for formalis-
ing the lift-up effect, the destabilising flow mechanism responsible for the widespread
presence of streaky structures in many shear-flow configurations (Brandt, 2014). At
first glance, the novel concept of a stabilising (reverse) lift-up effect introduced in
this thesis seemingly opposes their main conclusion. This is not the case; this sec-
tion elaborates upon the fact that the reverse lift-up effect may be regarded as an
additional solution to the model of Ellingsen and Palm (1975). This is expanded
upon in the following manner: Ellingsen and Palm (1975) assume a parallel (base)
flow with vg = [up(y) 0 0], which is incompressible, not stratified, and confined be-
tween two parallel walls. They consider the first component of the linearised inviscid



5.3. ON THE STABILISING OR DESTABILISING CONTRIBUTION OF THE LIFT-UP
EFFECT AT THE STEP 115

perturbation equation, i.e.,
o’ N 3UB

- T

ot dy
For an z-invariant (Ellingsen and Palm, 1975) cross-stream perturbation, ¢, the
solution to equation (5.3) between a time ¢ = ¢y and ¢; is

=0. (5.3)

~1 ~1 A/auB

=105 —0 3y At, (5.4)
where @' expresses a streamwise-velocity perturbation, At = t; — tg, 4f = 4/ (t = o),
and ¢’ # ¥'(t) under the present formulation (Ellingsen and Palm, 1975). Ellingsen
and Palm (1975) state that equation (5.4) “shows that 4’ increases linearly with
time.” While the observation of Ellingsen and Palm (1975) is that in this context @’
evolves algebraically (as opposed to exponentially) in time, in fact @' and hence the
kinetic perturbation energy might as well decay (algebraically) in time.

This is exemplified as follows. Consider a wave-like perturbation ansatz; i.e.,

o = @e'P% + c.c. and ¥/ = ©e'P0% + c.c, where @ = |i|e¥", 5 = |#]e'?", z denotes the
spanwise direction, [y indicates the perturbation wavenumber in the direction z, and
it is assumed that ¢"“(t) = @"(t = tg) for tx < t < t;. Upon introducing these
perturbation expressions into equation (5.4), two conditions are retrieved. Namely,
|@] = |t|o — cos (¥ — ¢*) |0|AtOup /Oy and ¢ — * = 0,7. Therefore, the original
model of Ellingsen and Palm (1975) admits two main solutions:

|@] = |a]o + \f)\aaﬂ At (classic lift-up effect) (5.5a)
Y

- . _ Oup .

|a| = |u|o — \v\a— At (reverse lift-up effect) (5.5b)
Y

Ellingsen and Palm (1975) write that “we therefore deduce [from equation 5.4] that
the base flow up(y) is unstable to this kind of infinitesimal disturbance [i.e., a pre-
scribed cross-stream perturbation].” However, equations (5.5a) highlight that, locally
in time, the flow field may be actually destabilised (i.e., signifying an increase in ki-
netic perturbation energy) by a classic lift-up effect or stabilised (i.e., signifying a
decrease in kinetic perturbation energy) by a reverse lift-up effect to a cross-stream-
velocity perturbation (9') if a streamwise-velocity perturbation (@') pre-exists.

5.3. ON THE STABILISING OR DESTABILISING CONTRIBU-
TION OF THE LIFT-UP EFFECT AT THE STEP

Following the analysis of model problems, this section refocuses the attention to the
lift-up phenomenon at the step.

5.3.1. THE ROLE OF THE PERTURBATION PHASE

To identify the origin of the reversed action of the lift-up effect (Ig °) at the step
described in § 5.1, the following expressions are considered:

8uB - - T v2
w5 = 25 Mool cos (9o~ #hiow) (5.6)
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Ago ~ 0 (dash-dotted red).

8’11)]3 - 2
3y 1521(0,1)|92] 0,1) cos (W(o,m - @Z,(o,u) ; (5.7)

0y = —2——
namely the terms of equation (3.33) that have the largest contribution to I5° (3.32)
in the Step case, as quantitatively demonstrated in figure 5.7 (a-c¢). From equation
(5.6), k5° is conceived as the contribution to lift-up (I5°) by which the wall-normal
shear of the base-flow up (with dug/0dy > 0) amplifies vy (o,1) in the direction z.

Similarly, 65 ° (5.7) expresses the contribution by which the wall-normal shear of the
base-flow wg (with Jwg/dy < 0) amplifies vy (g1 in the direction z.

The base-flow gradients dup /dy and dwg /dy do not change sign in the flow regime
dominated by the reverse lift-up effect. This is shown in figure 5.7 (d,e). A small
region of flow reversal (i.e., dug/dy < 0) downstream at the step is localised at the
step apex and no significant impact of this flow structure on the presently discussed
mechanism can be identified. Therefore, the sign of both I'i2 and 6 , i.e., whether
they are stabilising or destabilising contributions to I2 , is dictated by a unique and
common factor, namely cos(gp(o 1) 905(0,1))' The latter evaluates the relative phase
between the component of the cross-stream velocity perturbation in y, acting on the
wall-normal shears of the base flow, i.e. <p”2(071) (equation 3.29), and the streamwise-
velocity perturbation component, i.e., ©lo.1 (equation 3.20). In short, the stabilising
or destabilising contribution of the lift-up effect at the step is established by the
relative arrangement of cross-stream- and streamwise-velocity perturbations.

To provide a conceptual model of CFI stabilisation by the step, the organisa-
tion of the fields ’U;,(O’l) and ’U;’(OJ) is examined in relation to the identified dom-

inant factor, cos(¢f, ;) — wzg(o 1)), in equations (5.6) and (5.7). Figure 5.8 shows

streamwise-velocity perturbation 7'(’0 1 (equation 3.13) represented by colour con-
tour with white arrows illustrating the organisation of the counter-rotating cross-
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FIGURE 5.8: Streamwise-velocity perturbation (colour map) in y-z planes for the step (top) and
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In-plane organisation of the cross-stream-velocity perturbation (v; © 1)) depicted as white arrows.

Dashed black segregates regions of perturbation upwash and downwash (’Ug 1) = vl ©0,1) (2) =0).

stream perturbation (U;L’(O’l)) in y-z planes for the step case and the reference no-
step case. Upstream of the step (figure 5.8 (a)), the perturbation behaviour qual-
itatively resembles reference (no-step) conditions (figure 5.8 (d-f)); that is, the ac-
tion of perturbation upwash (i.e., U;?,(o,l) = 0;7(0)1)(2) > 0) dominates in regions of
streamwise-velocity deficit (i.e., Tlo’l < 0) and vice-versa. This interplay between
perturbation components highlights the essence of the classic lift-up effect, namely
the cross-stream velocity perturbations redistribute base-flow momentum by displac-
ing low-momentum fluid upward and high-momentum fluid downward. Therefore,
regions of streamwise-momentum deficit and excess are enhanced spatially. In such
scenario, the cross-stream- and streamwise-velocity perturbation structures act out-
of-phase, i.e., |¢¢ (0,1) —<pf:(0’1)| > 7 /2, resulting in perturbation growth (as indicated
by the thick solid black line in figure 4.13).

In the close vicinity of the step (figure 5.8 (b)), the perturbation organisation
is altered significantly, as compared to reference (no-step) conditions at the same
a-location (figure 5.8 (e)). At first glance, vigorous perturbation amplification in
x is captured near the wall (region labelled as “B”). This behaviour is ascribed to
the inception of newly-formed streaks close to the wall. The origin and governing
mechanisms of these step-localised streaks —first reported in chapter 4 and qualita-
tively characterised in § 4.2.1— are examined in detail in chapter 6. Their relevance
to advancing the laminar-turbulent transition is discussed in chapters 7 and 8. This
present chapter focuses on the behaviour of the original CFI that develops farther
from the wall (region labelled as “A”).

In region “A” in figure 5.8 (b), perturbation upwash (i.e., vf(o 1) = Y 0,1(2) >
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and II (¢) (see table 2.3). Corresponding behaviour of the streamwise-velocity perturbation (colour
map) and in-plane organisation of the cross-stream-velocity perturbation (white arrows) at z/dp = 5
(indicated by dashed cyan line) for step case I (b) and II (d).

0) dominates in regions of streamwise-velocity excess (i.e., T('OJ) > 0) and vice-versa.
Thus, the action of the cross-stream velocity perturbation (U;7(071)) now weakens
the incoming regions of streamwise-momentum deficit and excess and hence reduces
the amplitude of v; (0,1)" Following the discussion provided in §§ 5.2.2 and 5.2.4 re-
garding the model problems, the cross- stream- and streamwise-velocity perturbation
structures now act in-phase, i.e., |¢{; cpn (ol < /2, and I’BO < 0. Therefore,
the process is locally stabilising and a decay of the perturbation energy in x is con-
sequently monitored (see thin solid red line in figure 4.13). Eventually when moving
further downstream of the step, the cross-stream- and streamwise-velocity perturba-
tion structures re-organise towards undisturbed (i.e., no-step) conditions and they
act out-of-phase again (figure 5.8 (¢)).

The new near-wall perturbation rolls induced and enhanced in the step flow (white
arrows in figure 5.8 (b)) take over the incoming cross-stream perturbation motion and
induce locally a reverse lift-up effect by acting against (i.e., dampening) the incoming
CFI. Based on the current analysis, these near-wall rolls accompanying the streaks at
the step appear to be the main step-flow feature responsible for the CFI stabilisation
reported in chapter 4.

5.3.2. EFFECTS OF STEP HEIGHT

The model of perturbation interaction described above is applicable to steps of dif-
ferent height and shape. At present, this is exemplified by considering additional
steps with h/dp = 0.59 and 0.76, i.e., step cases I and II in this thesis (see table
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2.3). Both these step geometries were shown in chapter 4 to act destabilising and
thus to increase the amplitude of the incoming CFI upon interaction. Conformably,
here it is reported that Ig ® > 0 for all z around these additional steps, see figure
5.9 (a,c). Moreover, in line with the discussion above, the qualitative interplay be-
tween perturbation components features no-step conditions, i.e., vy (0,1) and vy, (0,1)
act out-of-phase (figure 5.9 (b,d)). In the step geometries portrayed in figure 5.9,
the near-wall rolls induced at the step are significantly weaker than in the main
(stabilising) step case analysed in this present chapter and, by their topology and
organisation, they do not reverse the sense of energy production at the step.

It is noted that similar mechanisms have been observed in other flow problems
involving streaky perturbations. For instance, Sescu and Afsar (2018) investigate
the stabilisation of Gortler vortices by streamwise wall deformation, which is pointed
out to be a control strategy even more efficient than an analogous blowing-suction
arrangement in some cases. In words of Sescu and Afsar (2018), the role of the sur-
face deformations is to “weaken the lift-up effect” by correspondingly accelerating
and decelerating fluid particles (Sescu and Afsar, 2018). The passive control mech-
anism of Sescu and Afsar (2018) appears to have similarities with the perturbation
phenomenon discussed in this present chapter.

5.3.3. EFFECTS OF AMPLITUDE AND SPANWISE VELOCITY

Step-height effects on the reversal of the sign of IQB ° have been analysed above, albeit
for fixed sweep angle and initial amplitude of incoming perturbations. This section
takes a step further towards universality of reverse lift-up and discusses effects of
spanwise velocity (i.e., representative of sweep-angle conditions for aircraft design)
and perturbation amplitude. For this purpose, the input parameter wu, /uso (see §
2.1.1) is increased from —1.24 to —0.25 in steps of Aws, = 0.248 and fixed us. This
corresponds to a deflection of the inviscid streamline at = 0 (i.e., the local angle that
it forms with the a-axis) shifted from |51|° to |14/|°, see table 2.5. The (changing) step-
flow evolution is analysed in relation to main stabilising and destabilising mechanisms
described above.

For the current analysis, a stationary perturbation is introduced via stationary
blowing-suction placed upstream of the step; see § 2.1.2 for details on how modifying
the parameter wu, /U alters the nature of the incoming instability. The present
choice of blowing-suction strength, APS =1 x 10™%us, (equation 2.23) yields weaker
perturbations v; 0,1y and v}, (0,1) than the main step case analysed above in §§ 5.1
and 5.3.1. This entails that the instability behaviour is fully linearly-dominated, to
strengthen that the reverse lift-up effect is a universal linear mechanism characterised
by the linear production term (§§ 3.1 and 3.3).

The latter is exemplified by figure 5.10 (I.a) portraying this lower amplitude
case at reference free-stream conditions, i.e., Weo/Use = —1.24. Namely, the spatial
evolution of the integrand of I5° is qualitatively identical to that of figure 5.2 (b). As
expected, the interplay between cross-stream and streamwise perturbations reverses
downstream of the step (figure 5.10 (I.c,d)), when compared to conditions upstream
of the step (figure 5.10 (1.b)). Figure 5.10 (II-V.a) illustrates further that, as the
parameter |weo /U | is decreased (see from top to bottom), the red contour vanishes
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1, 5 and the coordinate z* denotes spanwise shift corresponding to centered low-speed streak.

and the integrand of IQ’8 ° adds a positive (i.e., destabilising) contribution only. That
is, for decreasing |weo /Uno|, Ccross-stream perturbation downwash only dominates in
regions of perturbation excess and vice-versa (figure 5.10 (II-V)). As a consequence,
in cases with low |we/tso|, the regions of momentum excess and deficit become
more amplified than in cases with high |we/uc|, see figure 5.10 (d). In summary,
for the current fixed step height, reversal of the sign of IQB ° sets in when a particular
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threshold of |we /tueo] is reached.

5.3.4. DISCUSSION

To complement previous propositions, this final section elaborates on a physical
model relating the reversal of the sign of 15 * with step-flow features. Inspection
of the flow organisation reveals that the cross-stream perturbation field, v/ (0,1)
develops a strong rotational motion around the axis of the newly-formed near-wall
streaks at the step; i.e., the additional flow structures at the step described in § 4.2.1
and labelled as “B” in figure 5.8 (). This enhancement of cross-stream perturbations
around the streaks is quantitatively characterised in figure 6.3 ().

Previously, Eppink (2018) reported experimentally that a new set of vortices
forms in the instantaneous flow very close to the wall at the step. Key for the
present discussion is that in cases with sufficiently large |woo/uso| (i-e., top subplots
in figure 5.10), the dominant rotational motion of U;,(o,l) at the near-wall streaks
takes over the incoming cross-stream pattern. See white arrows in figure 5.10 (¢,d),
i.e., after passing the step in z, as compared to figure 5.10 (b).

Karp and Hack (2018) explain that streaks of sufficient amplitude embedded in
convex mean-flow streamlines result in enhanced streamwise perturbation vortices
(i.e., perturbation rolls) through the action of centrifugal forces. In a fashion similar
to the scenario of Karp and Hack (2018), the streamlines of the flow at the step
display convex curvature in the z-y plane (see figure 4.5 in § 4.1) and especially
in the z-z plane (see figure 4.3 in § 4.1). The reader is additionally referred to
Eppink (2020) and Rius-Vidales and Kotsonis (2021) for an experimental discussion
on this flow feature. Following the analysis of Karp and Hack (2018), the presence
of strongly amplified near-wall perturbation streaks (i.e., structure “B” in figure 5.8
(b)) in conjunction with strong convex streamline curvature, is fertile condition for
enhanced cross-stream perturbation close downstream of the step. It is noted that the
curvature of streamlines in the x-y plane is independent of w.,. However, spanwise-
velocity effects alter the topology and strength of near-wall rolls (figure 5.10). Under
the present model, this suggests a link to streamline curvature in the z-z plane.

Finally, considering the spanwise phase of perturbation rolls induced at the step,
in relation to the phase of incoming CFI, the motion of the rolls may act either in favor
or against the incoming instability. That is, the convection of streamwise momentum
in the cross-stream plane by the rolls either enhances (I5° > 0) or weakens (I5° < 0)
the incoming streamwise-momentum deficit and excess representing the CFI. Overall,
this process depends upon the local flow organisation at the step, as set by factors
such as the step height (§ 5.3.2) and weo/uso (§ 5.3.3).







A NOVEL STEP-FLOW
STRUCTURE: NEAR-WALL
STREAKS

Abstract: Chapter 4 identified novel stationary velocity-perturbation streaks form-
ing locally at the step. The present chapter explores the mechanisms of growth of
these stationary streaks at the step and provides insight into their origin, nature, and
spatial organisation. Stationary streaks are found to be a universal feature of swept
forward-facing-step flow subjected to three-dimensional perturbations in the incoming
boundary layer. The streaks at the step are primarily ascribed to the lift-up effect.
They arise as a linear perturbation response of the highly sheared step flow to the
cross-stream pattern of incoming perturbations. A mechanism of base-flow decelera-
tion additionally contributes to feeding growth to the streaks. Linear stability analysis
carried out through the Harmonic Navier-Stokes method confirms that the streaks are
a linear perturbation phenomenon. Effects of spanwise perturbation wavelength and
effective sweep angle on the mechanisms of the streaks are also assessed.

A note on nomenclature: This chapter focuses exclusively on stationary effects.
The spanwise perturbation modes are denoted by ’UEOJ), where the prime marks per-
turbation, j is the spanwise modal index, and the zero indicates stationary behaviour.
Unperturbed base-flow quantities are denoted by the subscript B, for example, vp.

Parts of this chapter are published in:

o Casacuberta, J., Hickel, S., and Kotsonis, M., 2021 Mechanisms of interaction between sta-
tionary crossflow instabilities and forward-facing steps. AIAA Paper 2021-0854.

o Casacuberta, J., Westerbeek, S., Franco, J. A., Groot, K. J., Hickel, S., Hein, S. and Kotsonis,
M., 2025 Streaky perturbations in swept-wing flow over forward-facing step. Phys. Rev. Flu-
ids 10:023902.
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the forward-facing step. Chapter 4 also reveals that this interaction gives rise,

locally at the step, to a secondary flow structure, namely stationary velocity-
perturbation streaks. The present chapter examines the origin, nature, and spatial
organisation of these streaks. A focused study on the topic is motivated by the results
of chapters 7 and 8, which show that the significant amplification of these streaks at
the step sets the conditions for laminar-turbulent transition advancement.

C hapters 4 and 5 primarily investigate how the pre-existing CFI interacts with

First, § 6.1 qualitatively and quantitatively characterises the streak evolution at
the step. Then, § 6.2 shows that the streaks are a linear non-modal perturbation of
the step flow, initially driven by the lift-up effect (Ig %) and subsequently amplified
spatially by the push-forward effect (I;°). Finally, the influence of perturbation
wavelength and effective sweep angle on the streak-amplification factor is assessed.
The main flow problem investigated in this chapter corresponds to step case III (table
2.3) and medium-amplitude CFI conditions (table 2.4).

6.1. ORGANISATION OF THE STREAKS AT THE STEP

The analysis begins by qualitatively and quantitatively characterising the evolution of
the streaks at the step. Concerning the overarching subject of this chapter, stationary
spanwise-harmonic velocity-perturbation streaks with wavenumbers § = j8y,j =
2,...,N, form and co-exist in the downstream vicinity of the step. This is claimed
on noting that a streaky structure manifests in each mode of the spanwise Fourier
decomposition of the stationary perturbation field (1.8). Topologically, the streaks
appear as alternating regions of velocity excess and deficit distributed along the step-
edge direction, z. They develop spatially very close to the wall and underneath the
pre-existing CFI that develops farther from the wall. A main goal of this chapter is to
explore the origin and evolution of the streaks at the step; to isolate pertinent effects,
a distinction is made between streaks manifesting in the fundamental, i.e., j =1 in
equation (1.8), and high-order harmonic, i.e., j > 2 in equation (1.8), perturbation
modes. For simplicity, the main body of the discussion focuses first on fundamental
streaks. Later on, in § 6.2.4, mechanisms of the perturbation streaks of higher order
will be discussed.

Figure 6.1 portrays the three-dimensional organisation of the fundamental velocity-
perturbation fields, ul(o,1)v w20,1)7 and ’UZOJ) at the step. As described in § 4.2.1, for all
velocity components, the main structure of the incoming CFT lifts off the wall gradu-
ally as it approaches the step; see also § 4.1 providing a discussion on the correspond-
ing three-dimensional organisation of the base-flow streamlines at the step. Just after
passing the upper step corner, the near-wall portion of the stationary perturbation
field is amplified significantly (Tufts et al., 2017; Eppink, 2020), when compared to
conditions far upstream of the step, see figure 6.1. The present results show that this
effect manifests more prominently in the chordwise-velocity component, “/(0,1)7 than
in the other velocity components (020,1) and wEOJ)): strongly amplified oval-shaped
u’(oJ)—streaks located underneath the incoming CFI are evident in figure 6.1 (a).

For the choice of step height and strength of the incoming CFI considered in this
chapter, namely step case III in table 2.3 and medium-amplitude CFI conditions in
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FIGURE 6.1: Organisation of the chordwise (a), spanwise (b), and wall-normal (¢) fundamental
velocity-perturbation fields (8 = 8y). Note the different scale in plot (c).

table 2.4, the amplitude of near-wall streaks forming at the step decays downstream
in x, with the streaks ultimately vanishing (figure 6.1 (a)). It is noted that near-wall
velocity-perturbation streaks form as well in the upstream vicinity of the step, see
figure 6.1. However, they appear to originate independently from the streaks down-
stream of the step, as they mainly reside in the locally separating flow upstream of
the step. The focus of this present chapter is specifically placed on the streaky struc-
tures forming downstream of the step, where premature laminar-turbulent transition
originates, as will be seen in chapter 8.
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perturbations, both considering fundamental perturbations with 8 = Bo.

The streaks are generated locally at the upper step corner, develop spatially
very close to the wall, and co-exist in y with the incoming CFI, which makes their
quantitative characterisation particularly challenging. Moreover, as shown in § 4.2.3,
the different velocity-perturbation components exhibit different growth rates in x in
the vicinity of the step. Therefore, to assess streak amplification at the step in a
global exploratory sense, perturbation growth is first evaluated based on the norm of
the total perturbation vector, i.e., |’(/~)|(071) (1.9). Figure 2.6 in § 2.1.1 illustrates the
evolution of |1E|(0,1) alongside key step-flow features, including the recirculating-flow
regions and the loci of base-flow crossflow inflection points.

Tufts et al. (2017) report that the perturbation shape (i.e., the profile along y)
develops a secondary peak after passing the step in x. This feature is also observed in
the results of this thesis, both in the chordwise-velocity perturbation (figure 4.8 in §
4.2) and in the total perturbation (see figure 2.6 in § 2.1.1). This thesis interprets the
near-wall secondary peak as the manifestation of the streaks in the spanwise Fourier
coefficient (1.8). Following the discussion in § 4.2, to distinguish streak amplification
from the evolution of the original CFI, amplitudes are monitored at two wall-normal
locations: the lower (near-wall) peak quantifies streak growth, while the upper peak
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tracks the incoming CFI. Figure 6.2 illustrates these growth metrics, evaluated at
the wall-normal locations marked by circles in figure 2.6 in § 2.1.1.

Since the secondary peak in the perturbation shape surpasses the primary one lo-
cally around the step, amplitude measured at the wall-normal location dominated by
the streaks is larger than amplitude measured at the wall-normal location dominated
by incoming CFI (figure 6.2). Consequently, estimating instability amplification by
the global maximum of the perturbation profile in y inherently characterises growth
of the near-wall streaks just downstream of the step, but growth of the CFI farther
from it.

Finally, figure 6.3 displays the imprint of the streaks on the streamwise- (a) and
cross-stream- (b) velocity perturbation components. The structural identification of
the streaks at the upper step corner, see figure 6.1, is consistent with the rapid ampli-
fication in z of the streamwise-velocity perturbation at that location (figure 6.3 (a)).
Moreover, as discussed in § 5.3.4, this amplification is accompanied by growth of the
cross-stream perturbation component, which figure 6.3 (b) quantitatively confirms.

6.2. ORIGIN AND NATURE OF THE STREAKS AT THE STEP

This section discusses the mechanisms that drive the growth and initial development
of the streaks and whether to classify it as a modal or a non-modal instability. The
focus of §§ 6.2.1, 6.2.2, and 6.2.3 is exclusive to the streaks of fundamental wavelength.
In § 6.2.4, the analysis is extended to streaks of high-order harmonic wavelength.

6.2.1. THE ROLE OF THE LIFT-UP EFFECT

The origin of the streaks at the step is investigated by use of the production term
of the Reynolds-Orr equation (see §§ 3.1 and 3.3). Specifically, the evolution in
of (—2m/Bo)Ag, (3.30) and (=27 /Bo)Afe, m = 1-4, (3.32) all probed at y = §{o%]
(see § 2.1.1), is shown in figure 6.4. This probing coordinate corresponds to the wall-
normal location of the core of the streaks, i.e., linked to the secondary peak in the
perturbation shape |1;|(011) at the step (indicated by small magenta circles in figure
2.6 (a) in § 2.1.1). Inspection of the spatial evolution of terms (—2m/By)AS0, m =
1-4, provides insight into the location and strength of the associated mechanisms.
Their sign informs whether kinetic energy is transferred from the base flow to the
perturbation field, i.e., (—27/By)A20 > 0, or vice-versa, i.e., (—2m/By)A% < 0. This
applies identically to production itself, i.e., (—27/50)Ag,.

Figure 6.4 shows that production (thick solid black line) grows rapidly in x close
downstream of the step, where the streaks first appear, and reveals that the increase
of production is driven mainly by I5° (dashed red line), i.e., the lift-up effect. To
elaborate further on this dominant role played by the mechanism of Ig °, figure 6.5
(a) additionally illustrates the spatial organisation of its integrand (3.33) superim-
posed on the projected base-flow streamlines in the z-y plane; the latter represents
identically figure 4.5 in § 4.1.2. The corresponding three-dimensional organisation of
streamlines at the step is depicted in figure 4.3. Two main destabilising flow regimes
(i.e., with (—=27/By) AS° > 0) develop at the step, see labels “A” and “B” in fig-
ure 6.5 (a). Regime “A” is associated to the new near-wall streaks incepted close
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downstream of the step, while regime “B” is mainly linked to the amplification of
the incoming CFT as it approaches the step, a feature quantitatively characterised in
§4.2.2,

In regime “A” of figure 6.5 (a), the term k5° in equation (3.33) —further expanded
in equation (5.6)— is the main contribution to Ag ? and thus drives the action of the lift-
up effect. This is quantitatively demonstrated in figure 6.5 (b) evaluating individual

terms of equation (3.33) at y = gg%*f; The term 5° (5.6) may be interpreted

as the vertical (i.e., pointing in y) perturbation by the cross-stream pattern (v),)
acting on the base-flow shear dup/dy and feeding growth to the streamwise-velocity
perturbation (v}) in . The dominant influence of /@50 at the step reconciles with the
perturbation behaviour illustrated in figure 6.1 above, when it is examined through a

classic wall-oriented perturbation decomposition, as characterised by equation (1.13).
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That is, the perturbation component parallel to the wall and aligned with x, U’EO 1)
manifests more prominently than the component aligned with z, w/ (0.1) (figure 6.1).
The resulting streaks at the step are initially aligned with the - dlrectlon because
the lift-up effect favours the amplification of the streamwise-oriented perturbation
component (Marxen et al., 2009) and the base-flow streamlines at the step bend
vigorously towards the z-direction, see figure 4.3 (b,d).

Finally, it is instructive to visualise the arrangement of streaks at the step induced
by the lift-up effect as shown in figure 6.6. Specifically, figure 6.6 illustrates the
perturbation organisation in y-z planes in the step (top) and no-step (bottom) cases
at same (increasing) z-positions. Figure 6.7 complements figure 6.6 by adding the
unperturbed base flow; i.e., [[vs]| + (7(, ;) + T(IOT,U), where ||vg]| is the modulus of
the local base-flow vector. In short, figure 6.7 expresses the velocity of the steady
perturbed flow (2.10) in the local streamline direction. In the presence of the step,
the incoming crossflow vortices lift off the wall as they approach the step in . In a
perturbation sense, the highly-energetic vj-structures correspondingly shift upward
significantly in the upstream vicinity of the step, see colour contours in figure 6.6 (a)
representing xs /09 = —0.02, when compared to reference conditions (figure 6.6 (d)).
It is noted that figure 6.6 illustrates the scalar perturbation associated to vé, 0,1y
namely 7,y (3.13).
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reference no-step (bottom) cases at zst/dp = —0.02 [(a) and (d)], 0.04 [(b) and (e)], 0.52 [(¢) and
(f)]. Dashed lines segregate cross-stream-perturbation upwash (label UW) and downwash (label
DW), see figure 6.6.

However, the cross-stream perturbation pattern v;%(o,l) maintains a dominant
contribution at a similar location to reference (no-step) conditions, i.e., at approx-
imately y/dp ~ 1. The strength of U;’(Oyl) is characterised by the length of white
arrows in figure 6.6. At the same time, the base flow at the step is highly sheared,
see figure 4.2. This combination of effects sets the conditions for the weak cross-
stream perturbation to effectively displace low-momentum fluid upward and high-
momentum fluid downward at the upper step corner and thus give rise to rapidly-
amplified streamwise streaks of alternating sign in z (figure 6.6 (b,c)). Specifically
in unswept (i.e., two-dimensional) forward-facing-step flow in a channel, Wilhelm
et al. (2003) similarly report that even very small incoming perturbations, namely
less than 1% of the mean-flow velocity, produce noticeable streaky structures at the
step. The multiple similarities between both studies suggests that the streaks are a
linear perturbation of forward-facing-step flow that develops as a “sensitive reaction
to incoming perturbations” (Wilhelm et al., 2003).

6.2.2. THE ROLE OF THE PUSH-FORWARD EFFECT

The lift-up effect plays a pivotal role in the inception of streaks at the step. However,
the results of figure 6.4 indicate that the push-forward mechanism, I f ° (3.35), con-
tributes as well to energy production, Pg, (3.30), at the streaks location. Even more
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FIGURE 6.8: Spatial evolution of (—2W/6O)Af° from equation (6.1) with streamlines of the base flow
(a) and chordwise evolution of individual terms of equation (6.1) at the wall-normal location of the

core of the streaks (b): (727!’/ﬁ0))(§0 (solid), sum of remainder (dashed), global term (727T/ﬁ0)Af°

(dotted). All curves are normalised relative to max(Af“).

so, the contribution of I}° (dotted blue in figure 6.4) surpasses that of I5° (dashed
red in figure 6.4) eventually in z. As previously mentioned, the mechanism of T f °
may be understood as a self-induction effect of the field v, onto itself. That is, the
streamwise-velocity perturbation displaces base-flow momentum in the direction of
the perturbation and hence inherits some of its energy.

This is expanded upon in the following manner: figure 6.8 (a) depicts the spatial
evolution of the integrand of I}° (3.35), (—27/5o) f", with

) ) )
A = (@tl ot 4 c.c.) % + (@tl o2t + C.c.) S (@3 ot + C.c.) vB

oy ox
dv ow ow (6.1)
+ (uf o2t 4 c.c.) (T; + (vf’ ot 4 c.c.) S+ (u;;”’ o2t +C.c.> 87;,

where the subscript (0,1) has been removed for conciseness. A prominent region of
(—27/Bo) Afo > 0 develops close downstream of the step, see figure 6.8 (a), and
figure 6.8 (b) quantitatively demonstrates that the term

ou ou
~1 ~1 B ~ B
Xfo = (Ut,(o,l)“t,T(o,l) + C-C-) or 2\”t,(0,1)|287 (6.2)

in equation (6.1) has the largest contribution to I;° in this region. Based on the
main criterion followed above, figure 6.8 (b) evaluates individual terms of equation
(6.1) at the wall-normal location of the streaks, i.e., at y = gjz%sf)r (§ 2.1.3).

From equation (6.2) and the results of figure 6.8 (b), it may be concluded that
the stabilising or destabilising contribution of I;° at the step is dictated essentially
by whether the base-flow velocity up accelerates or decelerates in x. If the base
flow decelerates, i.e., Qug/dz < 0, then Xf” <0= If“ > 0, implying that kinetic
energy is transferred from the base flow to the perturbation field and the process
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is locally destabilising. The inverse holds true if the base flow accelerates in x, i.e.,
Oup/0xr > 0= I;° < 0. In § 4.1, it is shown that the pressure gradient around the
step carries local flow acceleration (i.e., Jug/0x > 0) close upstream of the step,
which is immediately followed in = by local flow deceleration (i.e., ug/dz < 0) close
downstream of the step. In conformity with this description, the mechanism of I f 0
acts first stabilising and then destabilising as the perturbation ascends the step apex,
see figure 6.8 (a).

Following this rationale, the inception of energetic streamwise streaks just down-
stream of the step, embedded in a locally decelerating boundary layer in x, activates
the mechanism of I f °. In combining the observations from § 6.2.1 and the current
section, the initial inception of near-wall streaks at the step is mainly ascribed to
the lift-up effect, but their subsequent amplification in x is driven by a combination
of lift-up, Ig ° and push-forward, I f °. Lanzerstorfer and Kuhlmann (2012) report
as well a non-negligible contribution of the mechanism of I f ° on streaks in unswept
forward-facing-step flow albeit with a major difference noted with the present in-
vestigations. In the aforementioned work, the authors state that the perturbation
streaks are self-sustained by a feedback of the recirculating flow on the upper wall of
the step. For the case considered in this thesis, recirculating flow is present at the
step as well (see § 4.1.2), however, the streaks are sustained by the pre-existing CFI
influencing the step flow.

6.2.3. MODAL AND NON-MODAL GROWTH OF STREAKS
This section examines whether the presently discussed near-wall streaks that form
at the step are the result of modal or non-modal instability. It is well established
that non-modal growth driven by the lift-up effect, typically manifests as rapidly-
formed streamwise streaks. However, the lift-up effect plays a role as well in other
perturbation systems such as Gortler instability, see the discussion by Marxen et al.
(2009). As noted by Floryan and Saric (1982) and Floryan (1986), Gortler instability
exhibits a very weak cellular motion in the cross-stream plane, where the streamwise-
velocity perturbation correspondingly originates from a defect in the mean flow due
to the convection of streamwise momentum by the cross-stream vortex-like motion.

In previous work, Gortler instability has been suggested as the mechanism be-
hind near-wall streaky structures in two-dimensional (Chiba et al., 1995) and three-
dimensional (Rius-Vidales and Kotsonis, 2022), forward-facing-step flow. Next to
it, an instability of inflectional crossflow type (Eppink, 2020) and spatial non-modal
growth are additional candidates for the amplification of streaky structures at the
step. To segregate between modal and non-modal effects at the step, the methodology
of Marxen et al. (2009) is followed in this section. Marxen et al. (2009) decompose
the velocity-perturbation vector into components tangential and normal to the lo-
cal orientation of base-flow streamlines. That is, the velocity-perturbation vector is
decomposed in the local streamwise and cross-stream directions, as formulated in
equation (3.12) in this thesis. In the case of purely modal growth, all velocity com-
ponents ought to display a similar spatial growth rate, implying the existence of a
single (growing or decaying) perturbation eigenmode (Marxen et al., 2009).

It is noted that in non-parallel flow this can only be attained approximately,
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FIGURE 6.9: Spatial growth rates of the total, |7,Z|(071) (triangles), and streamwise, |7|(g,1) (circles),
perturbations at the wall-normal location of streaks, y = g%’sf)r, in the ranges 0 < zst/d0 < 2 (a)
and 0.5 < xst /00 < 4.5 (b).

inasmuch as the different velocity components corresponding to a modal instabil-
ity mechanisms display minor differences, see Saric (1975), Bertolotti et al. (1992,
cf. § 4.1), and Gaster (2000). However, in the case of non-modal growth by the
lift-up effect, the amplification of the streamwise-aligned perturbation component is
significantly favored over its cross-stream counterpart and the growth rate of one
component can be an order of magnitude larger than another, or even of opposite
sign (i.e., one component growing while the other component decays).

The evolution of perturbation growth rates in x —evaluated following the definition
given in equation (2.12)— in the near-wall step flow is illustrated in figure 6.9. Red cir-
cles characterise the growth rate of the streamwise-velocity perturbation, ’Ué’ (0.1)7 ie.,
based on the amplitude function |7 1) (3.23), and black triangles characterise the
growth rate of the perturbation vector itself, UEOJ)’ i.e., based on the amplitude func-

tion |1ﬁ|(0,1) (1.9). Both amplitude functions are measured at a common wall-normal

position associated to the streaks, y = g]z%’slt)r (§ 2.1.3). Initially from x4 = 0 (repre-

senting the step corner where the streaks are first incepted), the evolution of growth
rates in figure 6.9 differs considerably. The significantly larger spatial growth rate (in
absolute value) of U{t,(o,l)v when compared to UEOJ), implies that growth of streamwise
perturbations is favored over cross-stream perturbations. Following the discussion of
Marxen et al. (2009), this is an imprint of spatial non-modal growth produced by
the convection of streamwise momentum in the cross-stream plane through lift-up (§
6.2.1), which cannot be described by an individual perturbation eigenmode inherent
to the step-flow profiles in this case. The growth rate of the streamwise-velocity
perturbation being larger than that of the perturbation itself in turn implies that
the cross-stream perturbation locally decays in space while inducing the streamwise
streaks at the step.

6.2.4. CO-EXISTENCE OF HIGH-ORDER HARMONIC STREAKS AT THE

STEP
The main discussion thus far has revolved around mechanisms of the fundamental,
B8 = Do, streaks. However, as mentioned above, the streaks of fundamental wavenum-
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FIGURE 6.10: Organisation of the chordwise velocity-perturbation field with g = 283g.

ber co-exist at the step with streaks of higher-order harmonic wavenumber, 8 > fy.
The origin of the latter is the focus in this section.

In the numerical procedure of this thesis, a stationary crossflow eigenmode with
B = Bo is prescribed at the inflow (§§ 2.1.1 and 2.2.1). Gradually in z, high-order
harmonic components of the CFI with 5 = j3y,j = 2, ..., N amplify spatially due to
non-linear perturbation interactions. When approaching the step in z, all incoming
harmonics lift off the wall and pass over the step. Near-wall velocity-perturbation
streaks are induced locally at the upper step corner, which manifest at spanwise
perturbation wavenumbers of 5 = jf8p,7 = 2,..., N, hence they are contained in
each spanwise perturbation mode (1.8). This organisation of streaks was illustrated
in figure 6.1 (a) above for mode 8 = By and it is here depicted for mode 8 = 208y
in figure 6.10; the latter is representative of the behaviour of perturbations with
B> 2B.

Next, the methodology of § 6.2.1 characterising the lift-up effect is reproduced for
streaks with 8 > (. It is found that the production terms Igﬁ ° add the dominant
energy contribution (versus I f A o1 gﬂ 0T ZB %) for all high-order harmonic perturbation
fields, UEOJ) with j > 2. Inspection of the flow organisation reveals that, similarly
to the fundamental spanwise perturbation mode, the cross-stream pattern v/, 0,5
of each incoming high-order spanwise perturbation mode displaces low-momentum
fluid upward and high-momentum fluid downward on interaction with the step flow.
Consequently, spanwise-alternating regions of streamwise-momentum deficit and ex-
cess form near the wall in a short span of space, which manifest as rapidly-formed
streamwise streaks in the corresponding field ’U;/’(O’j).

In conclusion, if multiple harmonic stationary perturbations co-exist upstream of
the step, then corresponding streaky structures will be induced at the step at respec-
tive spanwise wavelengths. The streak formation appears to be governed linearly
for each incoming mode, individually; to be noted, the initial spanwise phase of the
newly-formed streaks is inherently set by the modal non-linear arrangement of har-
monic modes upstream of the step. Chapter 7 elaborates upon the fact that, when
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moving further downstream of the step, subsequent non-linear interaction among the
fundamental and high-order harmonic streaky structures takes places under certain
conditions. Specifically, chapter 7 shows that, whether non-linear streak interaction
takes place at the step, is contingent upon the amplitude of the incoming CFI. This
non-linear mechanism appears to dictate whether the near-wall streaks are sustained
or vanish further downstream of the step.

6.2.5. EFFECT OF SPANWISE VELOCITY

The discussion in the previous sections has explored the origin and non-modality of
the streaks. A heuristic experiment is performed next to further confirm that the
streaks at the step cannot be supported as an additional (modal) crossflow instability
of the inflectional step-flow profiles. The input parameter wu, /too (§ 2.1.1), which is
proportional to the global sweep angle governing the flow, is increased gradually in
small steps of Aws, for fixed us.; the approach discussed next is largely similar to
that employed in § 5.3.3. For a purely two-dimensional base flow, weo /us = 0, the
crossflow-velocity profile vanishes. In this scenario CFI is not tenable and thus, if
streaks manifest, they may not be ascribed to CFI. The flow cases discussed in this
section are labelled as Test A-F in table 2.5.

The organisation of the perturbation field at the step is shown in figure 6.11 for
decreasing |weo/Uo| (top to bottom). The planes in the top row illustrate Test A
in table 2.5, i.e., max (|weo/Uoo|), Which corresponds identically to the free-stream
conditions of the main case discussed in §§ 6.1 and 6.2 in this chapter. The planes in
the bottom row characterise Test F in table 2.5, i.e., weo /oo = 0, which corresponds
to a purely two-dimensional base flow. The results of figure 6.11 (left and right) high-
light that a region of additional perturbation amplification at the upper step corner
manifests in all cases. Figure 6.11 (centre) additionally depicts the perturbation field
upstream of the step for reference. The corresponding three-dimensional organisation
of the perturbation planes of figure 6.11 is shown in figures A.3 and A.4 in appendix
A. Overall, these results confirm the universal existence and structural similarities of
stationary perturbation streaks at the step for the full range of tested spanwise ve-
locities. Streaks manifest in unswept and low-sweep-angle conditions, hence evidence
is provided that they are not an additional (modal) crossflow instability.

6.2.6. THE STREAKS AS A LINEAR PERTURBATION PHENOMENON
In the section below (§ 6.2.7), effects of spanwise wavelength on the mechanisms of
the streaks at the step are assessed through linear stability analysis. Parametric
studies of incoming instability specifications, as well as other critical parameters
such as the Reynolds number, require efficient simulation tools. The PSE approach
or the Orr-Sommerfeld equation (see § 2.2.3) are classic methods for efficient stability
calculations. However, these methods suffer from limitations in highly non-parallel
flow such as the present step flow; see also the discussion on non-modal growth effects
at the step in §§ 4.2.3 and 6.2.3.

To overcome these aforementioned limitations, the Harmonic Navier-Stokes (HNS)
method is employed in this chapter to assess the stability of the step flow. The HNS
is an efficient approach to instability modelling considering the full form of Navier-
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FIGURE 6.11: Evolution of perturbation streaks at y/do = 1.12 (left) and in y-z planes upstream of
the step, xst/60 = —10 (centre), and downstream of the step, zst/50 = 1 (right). Top to bottom
illustrates streamwise-velocity perturbation as colour contour from case max (|woo/Uoc|) (Test A)
t0 case Woo /Uso = 0 (Test F') following table 2.5. Dotted horizontal yellow line is the y-location of
the z-z plane and the coordinate z* indicates spanwise shift for centred low-speed streak.
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FIGURE 6.12: Profiles along y of the amplitude function ||,y at the step from DNS (solid black),
AHLNS (dash-dotted green), and DeHNSSo (dashed red) at zst /do = —0.5 [(a) and (f)], 0.5 [(b) and
(9)], 2.5[(¢c) and (h)], 5 [(d) and (7)], 10 [(e) and (j)]. Top row shows max (|weo /Ucc|) conditions,
see Test A in table 2.5, and bottom row shows weo /ucc = 0 conditions, see Test F in table 2.5.

Stokes equations with one or more directions of harmonic perturbation evolution, i.e.,
the z-direction in the present flow problem. Considering the outcomes of §§ 4.2.3 and
6.2.3, HNS allows for the modelling of both non-modal and non-parallel effects at
the step without pre-imposed assumptions on the class of growth mechanisms that
develop. Moreover, the computational cost of HNS is significantly reduced compared
to DNS, which is key to produce a large data-set of perturbation fields. Two dif-
ferent HNS frameworks are employed in this chapter, namely the Delft Harmonic
Navier-Stokes Solver, DeHNSSo (Westerbeek et al., 2024), and the Adaptive Har-
monic Linearized Navier-Stokes, AHLNS (Franco and Hein, 2018). Henceforth, they
are jointly referred to as (AL)HNS for convenience. Both frameworks solve the linear
Harmonic Navier-Stokes equations, but feature implementation differences, see the
discussion in Casacuberta et al. (2025b).

The results from DNS and (AL)HNS are compared in this section; the goal of
this comparison is threefold: first, to cross-validate the results of § 6.2.7. Second, to
strengthen that the streaks are a linear perturbation of the step flow, as elaborated
upon in §§ 6.2.1 and 6.2.3. Third, to demonstrate the accuracy of novel (AL)HNS
methods for stability calculations in highly non-parallel (step) flows.

Figure 6.12 portrays profiles of the fundamental chordwise-velocity perturbation
amplitude function, i.e., |1 (o,1), at different z-locations obtained from AHLNS (dash-
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dotted green), DeHNSSo (dashed red), and DNS (solid black). It is noted that figure
6.12 (a-e) represents max (|weso /Uso|) conditions (i.e., Test A in table 2.5) and figure
6.12 (f-j) represents weo/too = 0 conditions (i.e., Test F in table 2.5). The present
calculations consider a spanwise perturbation wavelength of A\, = 7.5 mm. The
growth and further decay in x of near-wall perturbation streaks close downstream
of the step is well captured by (AL)HNS. Minor differences between DeHNSSo and
AHLNS are noted in the amplitude of the streaks just after their point of inception.
It is emphasisd that a match between methods in figure 6.12 is obtained despite the
inherent assumption of linearity in (AL)HNS. That is, the (AL)HNS methods seek
numerical solutions to the linearised form of the perturbation equations; the streak
evolution is fully captured, hence the streaks at the step are a linear perturbation
phenomenon. The present match of DNS with linear methods further downstream
of the step is likely contingent upon the use of a moderate amplitude of the incoming
CFI (table 2.5) in the analysis in this present chapter.

6.2.7. EFFECT OF SPANWISE WAVENUMBER

The choice of spanwise perturbation wavelength in this thesis, \, = 27/8y = 7.5
mm (§ 2.1.1), yields the largest (linear) amplification factor of the stationary CFI at
the end of the domain in reference (no-step) conditions. However, there is no reason
to assume, a priori, that this value yields as well the largest amplification factor of
streaks at the step. This section analyses the effect of spanwise wavelength on the
spatial amplification of streaks at the step.

A parametric study using linear stability analysis on the swept base flow with
Woo/Uso = —1.241 (table 2.5) has been carried out with (AL)HNS (§ 6.2.6) to identify
most critically amplified streaks in relation to the wavelength of upstream-existing
perturbation modes. A range of input perturbation wavelengths is tested, namely
A, € [4.5,7.5] mm, in steps of AX, = 0.5 mm. Figure 6.13 depicts perturbation
amplification factors in x evaluated as

N('Ty AZ) = N*(l‘, AZ) - N*(xstra )\Z) (63)
with

(6.4)

7| max $,>\z
N*(,A) = In (' 6 )>

|ﬂ|l(%?f)<ov)‘z)

and x4, denoting the z-position where the amplitude of near-wall streaks surpasses
that of CFI developing above. Considering the discussion of § 2.1.1 on amplitude
definitions, amplitude of the near-wall streaks in figure 6.13 (a) is monitored ap-
proximately in the range 0 < x < 4. Downstream of it, the measure of amplitude
characterises CFIL.

The results of figure 6.13 (a) indicate that the maximum amplification factor of
streaks is attained for A, = 5 mm. For reference, this value is more than six times
the step height. Following the main discussion above, the differences in amplification
factor of streaks at the step (figure 6.13 (a)) can be linked to a measure of growth
efficiency of the incoming perturbation pattern. Here, the term growth efficiency
expresses the sense of correlation between the profiles (i.e., the shape along y) of
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FIGURE 6.13: Evolution in z of the perturbation amplification factor (6.3) computed with AHLNS
(§ 6.2.6) on the swept base flow with weo/uce = —1.241 (table 2.5) for A, € [4.5,7.5] mm, in
steps of AX, = 0.5 mm: thin-to-thick (and, bright-to-dark) line style illustrates increasing \. (a).
Normalised profiles of |92| (solid blue) and dup/dy (dashed black) for A\, = 5 mm at zs /5o = 1.3
(b). Evolution in x of the maximum along y of the correlation between |2| and dup /9y (c). Solid
vertical lines in (a) indicate 1.3 < xs/dp < 1.35.

the incoming cross-stream perturbation component, v/, n (3.12), and the base-
flow shears; the most efficient interaction between these two agents will induce the
largest spatial transient growth of kinetic perturbation energy locally downstream of
the step. This concept shares the same foundations as optimal perturbations (Boberg
and Brosa, 1988; Butler and Farrell, 1992; Andersson et al., 1999; Luchini, 2000).
However, in the present case, the set of possible initial perturbations is bounded
and given by the shape of each considered spanwise wavelength of the pre-existing
perturbation in the incoming stream.

This effect is here quantified through the term x5° (5.6), which was shown above
to add the main contribution to the lift-up effect in the region dominated by the
near-wall streaks (figure 6.5 (b)). Following the mathematical definition of x5° (3.3)
and its physical interpretation in step flow (§ 6.2.1), it is identified that the normal
perturbation shape |72] (3.28) and the base-flow shear dup/dy yield maximum cor-
relation for A\, =5 mm. This implies that, the product between the profiles of |72
and Jup/dy (see figure 6.13 (b)) at a representative z-position produces a profile
whose peak attains maximum strength for A, =5 mm. The latter is quantitatively
characterised in figure 6.13 (¢) considering x4 /09 & 1.3, i.e., close upstream of the
point of maximum amplification of the smaller-wavelength streaks.







INFLUENCE OF AMPLITUDE ON
THE MECHANISMS OF
STATIONARY INTERACTION

Abstract: This chapter assesses the effect of incoming-CFI amplitude on the key
stationary-perturbation mechanisms elucidated in previous chapters. The interaction
between a sufficiently amplified CFI and the step induces a pronounced deformation
of the near-wall shear layer, a feature that plays a key role in promoting transition
(chapter 8). To elucidate the origin of this deformation, the energy-balance equations
introduced in chapter 8 are examined for varying CFI amplitudes. The analysis
reveals that the shear-layer deformation arises through two primary mechanisms: (1)
an inflectional instability of the base-flow profiles downstream of the step (chapter
4) and (2) a non-linear interaction between spanwise perturbation modes within the
region dominated by the perturbation streaks (chapter 6).

A note on nomenclature: This chapter focuses exclusively on stationary effects.
The spanwise perturbation modes are denoted by ’UZOJ , where the prime marks per-
turbation, j is the spanwise modal index, and the zero indicates stationary behaviour.
Unperturbed base-flow quantities are denoted by the subscript B, for example, vp,
whereas steady perturbed-flow quantities are denoted by the subscript DB, for exam-
ple, vpp. The steady perturbed flow results from the superposition of the unperturbed
base flow and the stationary perturbation field.

Parts of this chapter are published in:

o Casacuberta, J., Hickel, S., and Kotsonis, M., 2023 Laminar-turbulent transition in swept-
wing flows with a supercritical forward-facing step. In ERCOFTAC Workshop Direct and
Large Eddy Simulation (pp. 151-156). Cham: Springer Nature Switzerland.

o Casacuberta, J., Groot, K. J., Hickel, S., and Kotsonis, M., 2025 Direct numerical simulation
of swept-wing transition induced by forward-facing steps. Under consideration for publication
in J. Fluid Mech.
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interaction between the incoming CFI and the step. The present chapter eval-

uates how variations in incoming-CFI amplitude affect these key mechanisms.
While chapters 4, 5, and 6 focus exclusively on the medium-amplitude CFT case (table
2.4), the analysis is now extended to the small- and large-amplitude CFI cases (table
2.4), for a fixed step height (step III in table 2.3). The main emphasis is placed on
the large-amplitude CFT case, which corresponds to the flow conditions under which
laminar-turbulent transition mechanisms are analysed in this thesis (chapter 8).

T he previous chapters have examined the mechanisms governing the stationary

Since this chapter provides the foundation for the characterisation of unsteady
perturbation effects discussed in chapter 8, the analysis centres on the response of
the steady perturbed flow, gpp, to varying CFI amplitudes; that is, the flow resulting
from the superposition of the unperturbed base flow, gg, and the stationary pertur-
bation field, ¢’, as given in equation (2.10). The §§ 7.1 and 7.2 analyse, respectively,
the impact of CFI amplitude on the organisation of the steady perturbed flow and
the evolution stationary perturbations at the step. Finally, § 7.3 interprets these
results by scrutinising the associated kinetic energy transfer mechanisms at the step,
following the framework developed in § 3.1.

7.1. TOPOLOGY OF STEADY PERTURBED FLOWS

Under reference (no-step) conditions, the stationary co-rotating crossflow vortices
(see § 1.2.3), are the main flow structure of the steady perturbed flow. These vor-
tices modulate the boundary layer in both the chordwise and spanwise directions.
Naturally, this modulation is enhanced as the CFI amplitude is increased, as evident
in figure 7.1 (b) and (c¢), which compares the topology of the stationary crossflow
vortex for cases r.B and r.C at x4 /09 = 9.4. As expected, in the small-amplitude
case r.A (figure 7.1 (a)), the structure of the steady perturbed flow remains largely
similar to that of the unperturbed base flow. All planes in figure 7.1 are shown at
Zst /00 = 9.4, a position representative of the flow organisation close downstream of
the step, but beyond the reattachment point; see figure 7.2 for reference. Specifically,
figure 7.1 depicts z-y planes of

UDB,s = UDB COS(QZ)S) “+ wpB Sin(¢s), (71)

the velocity component in the steady perturbed flow which points in the direction
of the inviscid streamline (2.6). It is to be noted that equation (2.7) expresses the
representation of the unperturbed base flow (i.e., gg) oriented relative to the inviscid
streamline, whereas the analysis in this chapter applies the same concept to the
steady perturbed flow (i.e., gpp), see equation (2.10). Additionally, black arrows in
figure 7.1 illustrate the in-plane velocity components normal to the wall, vpg, and
normal to the direction of the inviscid streamline,

WDB,s — WDB COS(d)s) — UDB Sin((bs). (7.2)

When the step is present, the organisation of the steady perturbed flow undergoes
significant local deformation around the step. This effect is evident in the medium-
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FIGURE 7.1: Topology of the steady perturbed flow illustrated by z-y planes of velocity upg, s at
Zst /00 = 9.4. No-step cases r.A, r.B, r.C (a-c) and step cases s.A, s.B, s.C (d-f), see table 2.4. The
black arrows illustrate the in-plane organisation of the steady perturbed flow (wpg,s and vpg).

and large-amplitude cases, s.B and s.C, compared to their amplitude-equivalent no-
step counterparts, r.B and r.C, see figure 7.1 (e,f) versus figure 7.1 (b,c).

The step modifies the steady perturbed flow primarily through deformation of
the near-wall shear layer. In case s.C, this deformation leads to the formation of
a streamwise-momentum deficit region beneath the crossflow-vortex crest (figure 7.1
(f)) eventually in z, a flow feature that has also been observed in time-averaged exper-
imental measurements (Rius-Vidales and Kotsonis, 2022). Here, the term streamuwise-
momentum deficit refers to a deficit in the component upp s (7.1). Simultaneously,
the main structure of the original crossflow vortex is altered by its interaction with
the step: see the base, (y,z)/d0 =~ (1.5,2), and part of the shoulder of the crossflow
vortex, (y,z)/d0 = (2.5,2) (figure 7.1 (f)), compared with the corresponding no-step
case (figure 7.1 (¢)). In chapter 8, the near-wall shear-layer deformation downstream
of the step will be shown to play a key role in the mechanisms of laminar breakdown,
both in the supercritical (§ 8.1.1) and the critical (§ 8.1.2) transition regimes. The
present results demonstrate that this deformation arises purely from the stationary
interaction between the incoming CFI and the step; that is, it constitutes an inherent
feature of the steady perturbed flow.
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The organisation of the steady perturbed flow downstream of the step —specifically,
past the region of recirculating flow— qualitatively resembles the flow organisation de-
scribed by Wassermann and Kloker (2005) in the context of a swept-wing boundary-
layer subject to a pressure-gradient changeover. In the analysis presented in this
thesis, the presence of the step induces a localised region of adverse pressure gradient
downstream of the step (see figure 4.1 and § 4.1.1), and reversal of the crossflow-
velocity profile (see figure 4.6 and § 4.1.2). Wassermann and Kloker (2005) report
that the reversal of the crossflow-velocity profile induces a redistribution of the span-
wise shear and promotes the amplification of additional CFI modes, which may rotate
in the sense opposite to the pre-existing ones.

In the case of the step, the streamwise-momentum deficit region that develops
beneath the pre-existing stationary crossflow vortex (see colour contours in figure 7.1
(f)) structurally resembles a crossflow vortex rotating in the opposite sense to the
incoming one (see black arrows in figure 7.1 (f)). Notwithstanding the structural
similarities between the present step flow and the flow environment of Wassermann
and Kloker (2005), the origin of the streamwise-momentum deficit region is attributed
to a different set of mechanisms, as elaborated in § 7.3.

The deformation of the shear layer past the step increases in strength with the
amplitude of the incoming CFI. This appears evident in figure 7.1 (d-f). To quantify
this effect, the wall-shear field

£z, 2) = \/<6233>2 + (agng ’ (7.3)

all

is evaluated for the step cases, namely s.A-s. C, and portrayed in figure 7.2 (a-c) in the
range —5 < g /0o < 25. Additionally, figure 7.2 (d-f) quantitatively characterises
the x-evolution of the root-mean-square of &, along z (solid black line), denoted
by rms|,. For reference, the same wall-shear metric for the unperturbed base flow
is included and represented by dashed grey line. In the small-amplitude case s.A4,
the steady perturbed flow contains regions of reverse flow both upstream of and
downstream of the step, as indicated by the cyan isoline marking dupg /0y = 0 at
the wall in figure 7.2 (a).

In case s.B, the reverse-flow region extends further in x and becomes modulated
at the fundamental spanwise wavelength. This is evident in the similar z-evolution
of low- and high-wall-shear regions and the shape of the cyan isoline in figure 7.2
(b). Tufts et al. (2017) similarly report that the deformation of the recirculating-
flow region follows a pattern dictated by the (fundamental) spanwise wavenumber of
the incoming CFI. When the amplitude of the incoming CFI is further increased in
case s.C (figure 7.2 (¢)), the reverse-flow regions fragment into individual irregular
patches. Eppink (2020) also observes the emergence of isolated recirculating-flow
patches “in some cases” (i.e., for particular combinations of the step height and
incoming perturbation amplitude).

The red circles in figure 4.7 represent Infrared (IR) thermal measurements from
Rius-Vidales and Kotsonis (2021). In their experiments, the heated wing surface
exhibits z-distributed regions of high and low temperature, corresponding to areas
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FIGURE 7.2: Wall shear ({w) contour with cyan isoline indicating dupg/0y = 0 at the wall (a-c).
Evolution in = of the rms along z of wall shear (d-f) in cases s.A (a,d), s.B (b,d), s.C (c,f): steady
perturbed flow from DNS (solid black line), unperturbed base flow from DNS (dashed grey line),
and spatial Power Spectral Density (PSD) of infrared thermal measurements from Rius-Vidales and
Kotsonis (2021) extracted at the CFI wavelength (red circles).

of weaker and stronger wall-shear stress. A spatial Power Spectral Density (PSD)
analysis of the wall-temperature measurements is performed along the z-direction.
The normalised PSD of the fundamental spanwise wavenumber, which dominates
the wall-shear evolution, serves as key metric. It is depicted in figure 7.2 (f) as red
circles and denoted as P/P,. Overall, very good qualitative agreement is observed
between the near-wall flow behaviour obtained from DNS (case s.C') and experiments
(Rius-Vidales and Kotsonis, 2021), as shown by the solid black line and red circles
in figure 7.2 (f).

7.2. OVERVIEW OF PERTURBATION EVOLUTION

The mechanisms governing the stationary modulation of the shear layer at the step
are scrutinised in this section. The main focus of the analysis is on the medium-
(s.B) and large-amplitude (s.C) cases since the behaviour of the small-amplitude
(s.A) case at the step is qualitatively similar to s.B.
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FIGURE 7.3: Organisation of stationary spanwise perturbation modes in the medium-, s.B (a,c),
and large-amplitude, s.C (b,d), CFI cases: 8 = Bo (a,b) and 359 (c,d). The incoming modes in (c)
are invisible due to their small amplitude compared to modes downstream of the step.
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Figure 7.3 compares the stationary perturbation field at the step under medium-
(a,¢) and large-amplitude (b,d) CFI conditions. Sub-plots (a,b) correspond to the
fundamental spanwise mode, 8 = S, while sub-plots (¢,d) correspond to the third
harmonic, 8 = 38p. Thus, figure 7.3 (a) is identical to figure 4.7 (¢) in § 4.2. In this
chapter, the spanwise mode g = 30 is generally used to illustrate the behaviour of
the higher-order spanwise modes, 5 > . This choice is made in particular because
mode 3 = 208y exhibits perturbation effects at the step that differ from those of the
other harmonic modes under large-amplitude CFI conditions, see § 7.3.

Initially around the step the organisation of the stationary perturbation field is
qualitatively similar in all amplitude cases investigated in this thesis: the fundamental
stationary CFI gradually lifts off the surface as it approaches the step in x (figure 7.3
(a,b)) and passes over it (chapter 4). Upon interacting with the step flow, it produces
stationary velocity-perturbation streaks of alternating sign in z just downstream
of the upper step corner (chapter 6); the spanwise wavenumber of the streaks is
identically 8 = By, thus they appear within the fundamental spanwise perturbation
mode in figure 7.3 (a,b), together with the CFI. When moving downstream of the
step the perturbation behaviour in the medium-amplitude case s.B is qualitatively
identical to that of the small-amplitude case s.A. However, a significant difference
arises in the large-amplitude case s.C: while in s.A and s.B the near-wall streaks
rapidly decay in z (figure 7.3 (a)), in case s. C, they undergo a second phase of growth
in z after decaying initially (figure 7.3 (b)). The observed similarities between the
spatial evolution of near-wall streaks (figure 7.3 (b)) and wall shear (figure 7.2 (¢,f))
suggest that wall-shear measurements at the step do not explicitly characterise the
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evolution of the original stationary crossflow vortices when the streaks are active.

As elaborated upon in § 6.2.4, near-wall perturbation streaks induced locally at
the step apex also manifest in the high-order stationary spanwise modes, 8 > fp;
this feature is illustrated here in figure 7.3 (c,d). The evolution of u{, ,) in case s.B
(figure 7.3 (c)) is representative of the behaviour of the other high-order spanwise
perturbation modes, as they all exhibit a qualitatively similar trend in z. In con-
trast, in the large-amplitude case s.C, a range of perturbation mechanisms become
active simultaneously, leading to different growth regimes, depending on the specific
high-order spanwise mode. This disparity in spatial amplification trends among the
spanwise perturbation modes is quantified through their kinetic energy, given by
[ Enp, dy,n=0,1,2,..., as defined in equation (3.2).

The evolution of perturbation kinetic energy in z is characterised in figure 7.4.
Figure 7.4 (a,b) depicts reference (no-step) conditions, i.e., cases r.B and r.C. Figure
7.4 (c) illustrating case s.B confirms that high-order spanwise perturbation modes
undergo analogous growth phases. The common amplification immediately down-
stream of zg = 0 is attributed to the inception of the streaks (§ 6.2.4), and the
subsequent and more extended growth regime in z is linked to the modal inflec-
tion instability of the step-distorted base-flow profiles to small-wavelength stationary
perturbations described in § 4.3. The localised overshooting (figure 7.4 (¢,d)) just
upstream of xg; = 0 is primarily due to the formation of near-wall streaky structures
in this region as well (see figure 7.3 (a,b)).

The rather coherent evolution in x of high-order spanwise perturbation modes in
case s.B contrasts with the irregular evolution observed in case s.C (figure 7.4 (d)).
Notably, a significant stabilisation of mode 5 = 20, is observed, along with a re-
ordering of the energetic hierarchy of the perturbation modes, compared to reference
conditions (figure 7.4 (b)). Overall, the disorderly evolution in z of the high-order
perturbation modes in case s.C results in the distinct deformation of the steady
shear layer at the step, as shown in figure 7.1 (f). In line with the main outcomes
of chapters 4 and 5, the present results further strengthen that the influence of the
step on incoming stationary perturbations ought not to be solely ascribed to a global
enhancement (or weakening) of the stationary crossflow vortex structure.

7.3. MECHANISMS OF ENERGY TRANSFER

In § 3.1, energy-balance equations for stationary spanwise perturbation modes were
formulated. The framework developed in § 3.1 is employed in this section to asses
effects of incoming perturbation amplitude on the mechanisms of interaction between
stationary perturbations and the step. As described previously, each term in equation
(3.8) characterises a mechanism contributing to the time rate of change of kinetic
energy within a spanwise-harmonic perturbation space. In this present context, the
term perturbation space refers to the combination of a stationary spanwise perturba-
tion mode and its complex conjugate, i.e., ’UEO’H) + ’UEO,fn)’ n=20,1,...,N (§ 3.1).
For the analysis of this section, the stationary perturbation decomposition (1.8) is
truncated at N = 20. The methodology is first exemplified under medium-amplitude
CFT conditions by comparing the step and no-step scenarios. The analysis is then
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and by the addition of the mean-flow distortion (dashed black line) in (a,d).

extended to large-amplitude CFI conditions.
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(bottom): energy production (a,d), viscous effects and energy advection (b,e), work of non-linear
interactions (c,f). Loci of crossflow inflection points in the unperturbed base flow (solid cyan line)
and by the addition of the mean-flow distortion (dashed black line) in (a,d).

First, consider the fundamental space n = 1, corresponding to perturbations
with 8 = By and reference (no-step) conditions. The spatial evolution of the terms
of equation (3.8) is shown in figure 7.5 (a-c). Production adds the dominant positive




150 7. EFFECTS OF PERTURBATION AMPLITUDE

contribution (figure 7.5 (a)), where Pg, > 0 indicates kinetic energy transfer from the
unperturbed base flow to the primary-wavelength perturbations (see § 3.3 and chapter
5 for further details). Non-linear interactions contribute negligibly to the energy
budget (figure 7.5 (¢)), consistent with the agreement between solutions from the
linear and non-linear PSE approach in this z-region (figure 2.11 (b)). Viscous effects
and advection are the main mechanisms balancing out the production of kinetic
energy, i.e., Dg, + T3, < 0.

This interplay between perturbation mechanisms is typically reversed in the high-
order perturbation spaces, n > 1, with the analysis still strictly confined to reference
(no-step) conditions. Specifically, perturbation growth is primarily driven by non-
linear interactions, N,g,, n > 1, whilst linear production, P,g,, n > 1, contributes
in a stabilising manner. Figure 7.6 (a-c) illustrates this behaviour for n = 3, which
is is representative of the high-order harmonic perturbation spaces in case r.B. The
quantitative impact of individual perturbation spaces is characterised in figure 7.9
(a-e), which presents the integral contribution of the terms of equation (3.8) over a
domain S defined by —20 < z4/d¢ < 30 and y/dg < 6.

The presence of the step significantly alters the mechanisms of kinetic energy
transfer of stationary perturbations. Under medium-amplitude CFI conditions, the
inclusion of the step causes production to act locally stabilising at the step in the
space n = 1, as indicated by the red contour in figure 7.7 (a) signifying Pg, < 0. This
phenomenon has been associated to a reverse lift-up effect in chapter 5. Conversely,
the opposite trend is observed for high-order harmonic perturbation spaces. That
is, under reference (no-step) conditions, production yields a stabilising contribution
(figures 7.6 (a-c) and 7.9 (d,e)), whereas it acts destabilising at the step (figures 7.8
(a-¢) and 7.10 (d,e)).

In § 4.3, it is shown that the step flow destabilises stationary high-order harmonic
perturbations through an inflectional mechanism. Specifically, linear stability analy-
sis carried out in § 4.3 identifies an unstable stationary eigensolution of the base-flow
profiles, albeit it emerges exclusively for 5 > f(y, and within the z-range where the
profiles downstream of the step develop an inflection point near the wall. The flow
environment analysed in § 4.3 is identically case s.B here. These aforementioned re-
sults from the linear stability analysis (§ 4.3) reconcile with the present observation
that linear production of high-order harmonic perturbations peaks at the location of
step-induced inflection points (see figure 7.8 (a) illustrating Psg, for reference). The
cyan lines in figure 7.8 (@) mark the loci of inflection points in the crossflow profile
of the unperturbed base flow; the lower branch is exclusive to step conditions, as
evident from the comparison with figure 7.6 (a).

Amplitude effects on energy-transfer mechanisms at the step are next assessed by
extending the analysis to large-amplitude CFI conditions. Specifically, the reference
(no-step) case r.C is characterised in figures 7.5 (d-f) and 7.6 (d-f) illustrating the
perturbation spaces n = 1 and 3, respectively. The step case s.C' is characterised in
figures 7.7 (d-f) and 7.8 (d-f), also illustrating the perturbation spaces n = 1 and
3. The corresponding energy budgets are presented in figures 7.9 (f-7), for reference
(no-step) conditions, and 7.10 (f-j), for step conditions.

Overall, case r.C exhibits qualitatively similar behaviour to case r.B. That is,
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energy production drives the amplification of the fundamental CFI mode (8 = 5o,
figure 7.9 (g)), while non-linear interactions drive the amplification of high-order
harmonic CFI modes (8 > By, figure 7.9 (h-j)). However, as expected for a stronger
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stationary crossflow vortex, the non-linear interactions acting on individual modes
are overall more pronounced in case r.C compared to r.B (figure 7.9).
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With the step present, high-order perturbation modes destabilised analogously
by the inflectional instability at the step (§ 4.3) exhibit a similar rate of growth
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in figure 7.4 (¢); i.e., representing the medium-amplitude case s.B. While the same
inflectional mechanism is also present in the large-amplitude case s.C), it is observed
that the spanwise mode 8 = 28, undergoes significant stabilisation in z downstream
of the step (figure 7.4 (d)). The present energy-balance analysis enlightens that the
mechanism of production at the step (i.e., reflecting the imprint of the inflectional
instability) is notably weaker in the perturbation space n = 2, compared to n > 2,
under large-amplitude CFI conditions.

In addition to this linear effect, a key result of the present chapter is that a non-
linear mechanism significantly influences the perturbation evolution in case s.C. To
illustrate this, consider first the perturbation space n = 1. An elongated contour
of Ng, > 0, i.e., signifying a destabilising contribution of non-linear interactions,
emerges near the wall from x4 /dg = 10 (see arrow in figure 7.7 (f)). This feature is
absent in cases s.A and s.B. In case s.C, the elongated contour of N, > 0 spatially
coincides with the location where the near-wall streaks of fundamental wavelength
—initially generated at the upper step corner— amplify in z following a brief phase
of spatial stabilisation (figure 7.3 (b)). By contrast, in case s.B, the corresponding
streaks vanish rapidly in z (figure 7.3 (a)). In results not shown here, a structurally
similar elongated contour of the non-linear mechanism is found to manifests also in
the perturbation space n = 0, i.e., the non-oscillatory component S = 0, and in the
higher-order perturbation spaces such as n = 3,4, 5. The strength of Ay > 0 in this
region is comparable to that of Nz, > 0 and exceeds that of the higher harmonics.

The spatial amplification of near-wall streaks in the high-order perturbation
modes correlates spatially with regions where N, > 0, n > 2, near the wall. This
is illustrated in figures 7.3 (d) and 7.8 (f) for n = 3. Confirmation of a significant
growth of the mean-flow distortion at the step in case s.C is provided by the pro-
nounced alteration of the underlying flow topology near the wall. This is apparent
when comparing the fields vg and v + vEO’O), as illustrated by the different organ-
isation of solid cyan and dashed black lines in figure 7.8 (d). These lines represent,
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respectively, the loci of inflection points in the crossflow profile of the unperturbed
base flow, vg, and the modified flow vg + ’UEO’O). Thus, the present results suggest
that a non-linear perturbation effect is responsible for the spatial amplification of the
near-wall streaky structures (assessed up to the perturbation space n = 6) and the
mean-flow distortion sufficiently downstream of the step.

Overall, the dominant mechanisms of perturbation interaction at the step under
large-amplitude conditions (i.e., case s.C) are summarised as follows:

(2) A spatial stabilisation of the fundamental CFI due to a linear effect, specifically
the reversal of the mechanism of production close downstream of the step,
consistent with the reverse lift-up effect proposed in chapter 5.

(#0) A non-linear spatial amplification of near-wall perturbation streaks at the step.
Such near-wall streaks are initially induced at the upper step corner by a lin-
ear non-modal mechanism (§§ 6.2.1 and 6.2.3) and appear in each individual
spanwise perturbation mode (§ 6.2.4). A subset of these streaks (evaluated up
to the sixth spanwise mode) undergoes further non-linear amplification in z.

(#i7) A selective destabilising influence of a family of step-induced inflectional profiles
to perturbations with 5 < 28y (non-active) versus 8 > 20, (active). This mech-
anism induces a reordering of the energetic hierarchy of high-order harmonic
spanwise perturbation modes, compared to reference (no-step) conditions.

The significant deformation of the near-wall shear layer downstream of the step,
which grows in strength in x and ultimately leads to the formation of the streamwise-
momentum deficit region (figure 7.1 (f)), is primarily attributed to mechanisms (%)
and (iit) above. By leveraging the decomposition of the perturbation field into
spanwise modes, a low-order reconstruction has been performed. The skeleton of the
rapid modulation in z of successive regions of high- and low-momentum fluid, emerges
from the superposition of modes within the range 35 < 8 < 1083, (see figure 7.11).
As described previously, these modes are subject to the linear destabilising effect of
the inflectional mean-flow profiles farther from the wall and to the mechanism of
non-linear streak amplification very close to the wall.



MECHANISMS OF
LAMINAR-TURBULENT
TRANSITION

Abstract: This chapter assesses laminar-turbulent transition in the presence of the
forward-facing step. The analysis begins by examining transition advancement and
elucidating the mechanisms leading to either supercritical or critical transition. In
both cases, transition advancement arises from a nowvel shear-layer instability at the
step. The most critically amplified instability eigenmode feeds growth from the near-
wall shear-layer deformed by the interaction between the incoming CFI and the step
(chapter 7). In the critical case, the onset of key transitional-flow structures is spa-
tially delayed, thereby positioning the transition front between the supercritical and
reference (no-step) scenarios. In the second part, this chapter explores the possibility
of transition delay induced by the step, building on the insights from chapters 4 and
5 regarding the potential of the step for stabilising the pre-existing CFI.

A note on nomenclature: This chapter discusses both stationary and unsteady
effects. The perturbation modes are denoted by v/, .., where the prime marks per-
; ; , 7 (k) . .
turbation, k is the temporal modal index, and j is the spanwise modal index. Steady
perturbed-flow quantities are denoted by the subscript DB, for example, vpg. The
steady perturbed flow results from the superposition of the unperturbed base flow and
the stationary perturbation field. Results from two-dimensional linear stability analy-
sis performed on the steady perturbed flow obtained from DNS are denoted as “BiG”.

Parts of this chapter are published in:

o Casacuberta, J., Hickel, S., and Kotsonis, M., 2023 Laminar-turbulent transition in swept-
wing flows with a supercritical forward-facing step. In ERCOFTAC Workshop Direct and
Large Eddy Simulation (pp. 151-156). Cham: Springer Nature Switzerland.

o Casacuberta, J., Groot, K. J., Hickel, S., and Kotsonis, M., 2025 Direct numerical simulation
of swept-wing transition induced by forward-facing steps. Under consideration for publication
in J. Fluid Mech.
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tigates the mechanisms of laminar-turbulent transition in the presence of the
4 forward-facing step. The first part of the chapter focuses on transition ad-
vancement; specifically, § 8.1.1 and § 8.1.2 address supercritical transition (i.e., an
abrupt shift of the transition front upstream) and critical transition (i.e., a moderate
shift of the transition front upstream), respectively. Both sections include analyses
of unsteady perturbation phenomena, instantaneous flow organisation, and the re-
sulting modification of the transition path. Two-dimensional linear stability analysis
(see § 2.2.3 and § B.2 in appendix B for details) is employed in all cases to assess the
behaviour of unsteady instability modes at the step. The second part of this chapter
(§ 8.2) explores the potential for transition delay induced by the step.

In the first part of this chapter (§ 8.1), the flow problems investigated correspond
to step case IIT (supercritical transition) and case II (critical transition), see table
2.3. Cousistent with the analysis thus far in this thesis, the step is located at x/dy =
177.62. The influence of the incoming CFI amplitude (table 2.4) on conditioning
supercritical transition at the step is assessed. In the second part of this chapter
(§ 8.2), the step location is shifted to x/dy = 73.90, see table 2.6. This modification
of the step location is exclusive to § 8.2 within the scope of the thesis. The analyses of
both the critical transition and transition delay are conducted under large-amplitude
CFI conditions (table 2.4).

n 3 uilding on the analysis of stationary perturbation effects, this chapter inves-

8.1. TRANSITION ADVANCEMENT BY THE STEP

8.1.1. SUPERCRITICAL TRANSITION

Mean skin friction

First, an overview of the cases is provided using mean-flow metrics. More specifically,
the time- and spanwise-averaged skin-friction coefficient is used to segregate between
laminar and turbulent regimes. It is evaluated as

(Cr) = (22, (8.1)

where T, denotes the time-averaged wall-shear stress and (-) expresses spanwise-
averaging operation. The chordwise evolution of (C';)(z) (8.1) is illustrated in figure
8.1. Table 2.4 defines the amplitude cases considered in this chapter. The height of
the step is fixed (see step case IIT in table 2.3). Black empty circles in figure 8.1 char-
acterise the large-amplitude reference (no-step) case, r.C. The significant increase of
(Cy) towards the end of the domain signifies the breakdown of the stationary cross-
flow vortices. In case r.C, the laminar-turbulent transition front is approximately
located at 40% of the chord of the wing model used to guide the DNS set-up (see
§ 2.1.1), i.e., at x/Jp =~ 400. When the step is present for identical amplitude of
the incoming stationary CFI, i.e., case s.C, the transition front moves drastically to
the downstream vicinity of the step (see red empty squares in figure 8.1). However,
this does not hold for the medium-amplitude CFI case, s.B (see red squares with a
cross in figure 8.1), indicating that the mechanisms of supercritical transition do not
manifest at a moderate amplitude of the incoming CFI. For reference, black circles
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FIGURE 8.1: Chordwise evolution of the spanwise- and time-averaged skin friction coefficient in the
medium-amplitude cases r.B (black circles with a cross) and s.B (red squares with a cross) and
large-amplitude cases r.C (black empty circles) and s.C (red empty squares). Vertical line indicates
the step location, and the top inset provides a zoomed view over the range 170 < z/dg < 184.

with a cross represent the amplitude-equivalent no-step case, r.B.

With regard to the overarching discussion in this thesis, experimental work has
shown that subcritical (i.e., small), critical (i.e., moderate), and supercritical (i.e.,
abrupt) movement of the transition front upstream correlate with increasing step
height for a fixed amplitude of incoming stationary CFI (Rius-Vidales and Kotsonis,
2021). The present DNS results illustrate that the categorisation of transition regimes
in swept-wing flow due to a forward-facing step is not uniquely set by the step
height alone, as also observed experimentally (Eppink, 2020). The amplitude of the
incoming CFI plays a key role as well; this point is further explored below, building
on the insights presented in chapter 7. The remainder of the analysis in § 8.1.1 focuses
on large-amplitude CFI conditions, under which advancement of laminar-turbulent
transition is observed.

Mechanisms of unsteady perturbation at the step

The mechanisms of unsteady perturbation at the step are first assessed quantitatively
through temporal probe data, i.e., point-wise measurements of instantaneous velocity.
As mentioned above, the present analysis is restricted to the step case s.C that
exhibits supercritical transition; the reader is referred to § 2.3.3 for an overview of
unsteady perturbation evolution in the amplitude-equivalent no-step case, r.C.

The deformation of the near-wall shear-layer beneath the crossflow vortex’s crest
(figure 7.1 (f)), is a primary source of unsteady activity. This deformation was
identified in chapter 7 as a feature inherent to the steady perturbed flow (§ 7.1)
that eventually develops in = into a region of streamwise-momentum deficit. This is
first evaluated through power spectral density (PSD) analysis of time-resolved probe
data (figure 8.2 (b,c)) at three z-locations immediately downstream of the step, but
upstream of laminar breakdown. Additionally, perturbation growth is assessed via
the modal decomposition of the perturbation field in the spanwise direction and in
time, as defined in equation (2.11).

Unsteady perturbation content at the step appears in both a low-frequency band,
peaking at f =~ 1 kHz, and a high-frequency band, with peaks at f ~ 9 kHz and
f = 12 kHz. Perturbations with f ~ 12 kHz primarily develop along the inclined
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FIGURE 8.2: Topology of the steady perturbed flow in case s.C (a) and power spectral density, P,
of temporal probe data (b,c) identified by same colour of a corresponding probe in (a) at zst/do = 5
(I), 8 (1), 10 (III). Contours in (a) are isolines of upp s (2.7) ranging from 0 to 1.5ucc. The
coordinate z* indicates a spanwise shift relative to the intersection between the stationary crossflow
vortex and the streamwise-momentum deficit region at the step.

lateral shear layer of the streamwise-momentum deficit region at the step (see dark
blue probe in figure 8.2), whereas those at f ~ 9 kHz are concentrated along the
shear layer adjacent to the streamwise-momentum deficit region on the left side (see
orange probe in figure 8.2). While low-frequency perturbations initially dominate
around the step corner (figure 8.2 (1)), high-frequency perturbations progressively
become dominant when moving downstream of the step (figure 8.2 (IIIII)). This
trend is further illustrated by the amplitude function of unsteady perturbation modes
at individual frequencies of f = 1 kHz (a) and 12 kHz (b), respectively expressed

as ﬁ/Z;i—m |ﬁ\%k,j),k = 1,12 in figure 8.3. Consistent with the probe analysis,

figure 8.3 shows that higher-frequency perturbations exhibit greater spatial growth
rates. Overall, perturbations at f = 12 kHz ultimately reach the largest amplitude
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FI1GURE 8.3: Amplitude functions of unsteady perturbation modes: 1 kHz (a), 12 kHz (b), where
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downstream of the step.

It may be postulated that the low-frequency unsteadiness at the step represents a
manifestation of classic type-II1 secondary crossflow instability, amplified by the de-
formation of the stationary crossflow vortex at the step. This hypothesis is supported
by the organisation of the perturbation shape of the f = 1 kHz component around
the base (see figure 7.1 (f)) of the stationary crossflow vortex, which corresponds to
the typical location of type-IIT secondary crossflow instability in no-step conditions
(Koch et al., 2000). A potential mechanism involving flapping or breathing of the
shear layer at the step (Eppink, 2020), which could contribute to the low-frequency
unsteadiness, is not evident in the DNS.

In parallel, the high-frequency perturbations at the step appear to originate
from a shear-layer instability, as proposed by Eppink (2020). First and foremost,
a correlation is observed between the spatial organisation of major unsteady per-
turbation structures and the pronounced deformation of the near-wall shear layer
downstream of the step. This is illustrated in figure 8.4 (a) depicting the instan-
taneous organisation of the f = 12 kHz unsteady perturbation field (expressed as
2;3:_13 ﬂ(u,j)ei(jﬁoz) + ﬂ(_lgyj)ei(jﬁoz)) in relation to the embedding flow. As the
streamwise-momentum deficit region develops in the chordwise direction, the un-
steady perturbation gradually shifts towards its laterally inclined shear layer (see
figure 8.4 (Il.a,II1.a). Tt will be shown below that large-scale vortex shedding em-
anates from this upwelling region of the streamwise-momentum deficit region.

Second, linear stability analysis (see § 2.2.3 and § B.2 in appendix B for details)
of the steady perturbed flow identifies three eigenmodes that are explosively unsta-
ble at high frequencies (9-12 kHz), and do not manifest under reference (no-step)
conditions. These modes are henceforth referred to as step modes. Perturbation
shapes corresponding to the most unstable instances are shown in figure 8.5, with
further characteristics reported in table 8.1. Initially in x, the step modes are located
above the reverse-flow region and can be distinguised by the presence of one, two,
or three local regions of large |apig| in z, corresponding to their mode index. They
are therefore denoted step-mode;, step-mode,, and step-modes, respectively. The
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perturbation shape obtained from the local stability approach (b) at zst/d0 =~ 5 (I), 8 (II), 10
(IIT). Topology of the steady perturbed flow portrayed as isocontours of upp/uso (ranging from 0
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step modes’ growth rates (—ap ;00 sec in table 8.1) are qualified as explosive upon
noting that they are a factor 35 larger than the maximum growth rates achieved by
the classic secondary crossflow instabilities reported in table 2.8 in § 2.3.3 for no-step
conditions. Table 8.1 furthermore specifies the perturbations’ wavelength, A;,, phase
speed cph, and group speed ¢, all in the direction of the crossflow vortex (i.e., in the
non-orthogonal zp-direction), which are defined as

2 Wy Ow,.

Mgy = ——, Cph=——, Cg=
[ ) ph ’ g
Qg Qg r aae,r Qg

: (8.2)

where the subscripts r and ¢ here denote the real and imaginary parts, respectively.



8.1. TRANSITION ADVANCEMENT BY THE STEP 161

w

T
"(a) Step-mode,;

@Plane-Marching
« Local

29/50

FIGURE 8.5: Perturbation shape in case s.C obtained from the local and plane-marching BiG
approaches depicted as |@g;ig|-isocontours (1/8, 2/8, ... 7/8 of max. y |ipic|), corresponding to
the most unstable instances (zst/do-location corresponding to max,{—ay,; sec6}) of CS-modes 1-3
for the frequencies that result in the largest N-factors at xst/d = 10 (see details in table 8.1).
Isocontours of upp/uco (solid black: 10%, 20%, ... 90%; dashed red: 0, i.e., flow reversal).

Step-mode Method f (kHz) ®s/do —agidosectd Ay,/00 Cph/Uce Cg/Uoo
1 BiG local 12 1.19 3.44 1.14 0.70 0.42
1 BiG marching 12 1.19 3.64 1.13 0.69 0.38
2 BiG local 11 2.19 1.78 1.33 0.75 0.58
3 BiG local 9 2.49 1.21 1.74 0.80 0.64

TABLE 8.1: Most unstable (max,{—cg,;sec}) step mode characteristics for the frequencies that
yield the largest N-factors at xs;/d0 = 10, obtained using the local or plane-marching BiG ap-
proaches (marching step size s = 0.5d¢, see § B.2 in appendix B) in case s.C.

Step-mode 1 Step-mode 2 Step-mode 3
Method  s/8o f (kHz) 11 12 13 9 11 12 9 12
BiG local - N 17.35 17.68 17.32 8.79 9.56 9.53  5.64 4.63
0.5 N 17.01 17.39 16.94
BiG marching 1.0 N 17.16
2.0 N 16.91

TABLE 8.2: Linear amplification N-factors at zgy = 10.389¢ of unsteady instability eigenmodes using
the local or plane-marching BiG approaches in case s.C.

Large N-factors are computed for all step modes (table 8.2), at a location up-
stream of the neutral point of classic type-1 and type-11 secondary crossflow instabili-
ties (x/0g = 188.4; plane-marching results for type-II, see figure 2.15 in § 2.3.3). How-
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FIGURE 8.6: Chordwise evolution of the (a) growth rate and (b) wavelength of step-mode; at 12 kHz
as computed with local (green circles) and plane-marching (blue pluses: s/dp = 0.5; red crosses: 1;
black dotted: 2) BiG approaches in case s.C. Maximum extent of reverse flow (black dashed line).
Panels (I-VI): |ag;g|-isocontours (1/8, 2/8, ... 7/8 of max. 4 |Upig|) corresponding to step-mode;
at 12 kHz at z-positions indicated in (a,b) as computed with the local (filled contours) and plane-
marching (blue isolines: s/dg = 0.5) approach. Isocontours of upg/uc (solid black: 10%, 20%, ...
90%; dashed red: 0, i.e., reverse flow).

ever, the N-factor achieved by step-mode; is so much larger than those for step-mode,
(its relative amplitude is e?-53717-68 = 1073-) and step-modey (e*63717-68 = 10=5-T),
that the remaining analysis focuses on step-mode; .

The largest amplification factor computed from stability analysis is attained at
f =12 kHz (table 8.2). This result is conform with the results from the DNS probe
analysis (figure 8.2), which indicates that this frequency component dominates in the
DNS at similar z-positions. The shape function of this critical (i.e., most integrally
amplified) stability eigenmode, step-mode; in table 8.2, is ultimately concentrated
in = along the shear layers of the streamwise-momentum deficit region that forms
downstream of the step (figure 7.1 (f)). This is illustrated in figure 8.4 (b), which
compares the chordwise evolution of the eigenmode, as obtained from the local BiG
stability approach, with the perturbation field from DNS. The associated growth
rates (a) and chordwise perturbation wavelengths (b) of step-mode; from stability
analysis are given in figure 8.6. This provides evidence that step-mode; is initially
significantly destabilised by the local deformation of the shear layer at the upper step
corner, where regions of flow recirculation are present (see figure 8.6 (a) in the range
0 < z4/00 < 5). Further downstream, as it amplifies on the deformed near-wall
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FIGURE 8.7: Instantaneous flow organisation at the step for case s.C characterised by Q-criterion
isosurface (Qdo/uco = 0.8) coloured with chordwise velocity (a). Zoom with z-y, y-z planes of
chordwise velocity (b). The data are duplicated four times in z for illustration purposes (a).

shear layer, the shape of step-mode; resembles the perturbation recovered from DNS
(figure 8.4 (IIl.a)), albeit notable differences in perturbation shape between DNS and
the local stability approach are observed during the early stages of the eigenmode
development (figure 8.4 (IIT)).

Instantaneous flow organisation
The spatial amplification of high-frequency instabilities in the deformed near-wall
shear layer downstream of the step precedes the onset of large-scale vortex shed-
ding. Unsteady vortical structures are observed directly at the step only in case s.C;
while in case s.B, no significant unsteadiness is present. In case s.C, the onset of
laminar-turbulent transition is marked by spanwise-periodic wedges of unsteady con-
tamination inclined along the crossflow-vortex direction. This is illustrated in figures
8.7 and 8.8, which depict isosurfaces of @Q-criterion (Hunt et al., 1988) at the step.
Three main families of unsteady vortical structures are identified in the instanta-
neous flow. First, large-scale hairpin vortices shed from the streamwise-momentum
deficit region, labelled vortex; in figure 8.7. Specifically, the inception region of
vortex; spatially correlates with the shape of the critical unsteady perturbation
—namely, step-mode; at f = 12 kHz— on the deficit region, as computed by linear
stability analysis. Second, vortical structures of a rather amorphous shape emerge
from the shear layer adjacent to the streamwise-momentum deficit region on the left
side, developing spatially very close to the wall. These are labelled vortexs in figure
8.7. Third, a second family of large-scale hairpin vortices form along the shear layer
of the distorted base (see figure 7.1 (f)) of the stationary crossflow vortex. These
are labelled vortexs in figure 8.7. The fully developed form of vortexs appears sig-
nificantly farther downstream (zg/dp > 20) compared to vortex; (xs/do =~ 10) as
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FIGURE 8.8: Instantaneous flow organisation at the step for case s.C characterised by Q-criterion
isosurface (Qdo/uco = 0.8) coloured with chordwise velocity The data are duplicated four times in
z for illustration purposes.

shown in figures 8.7 and 8.8.

The rapid upward shift of vortex; and vortexs in z is a key feature of the vortical
evolution at the step. This is elaborated as follows: the primary hairpin vortices
induced at the streamwise-momentum deficit region, vortex;, ascend in z towards
the upper shear layer of the stationary crossflow vortex. Under reference (no-step)
conditions, this upper region is typically associated with the type-II secondary cross-
flow instability (Malik et al., 1999). Similarly, for s /dy > 40, the secondary hairpin
vortices, vortexs, shift upward in z and become immersed in the upper inclined shear
layer within the upwelling region of the stationary crossflow vortex (see region la-
belled as shoulder in figure 7.1 (f)). This shear layer typically feeds growth to the
type-1 secondary crossflow instability, see § 2.3.3. This effect provides a plausible
explanation for the significant unsteady activity measured by Rius-Vidales and Kot-
sonis (2021) in the boundary-layer region traditionally linked to the classic type-1
secondary crossflow instability, albeit the type-I mechanism does not appear in the
transitional flow from DNS in this z-region.

The power spectral density of temporal probe signals from DNS flattens, signifying
turbulence inception, from approximately /09 = 15. This trend is quantified in
probe measurements taken near the interaction between vortex; and vortexs, to which
the inception of turbulence is attributed in the first place. Probe measurements near
vortexs exhibit spectral flattening at a more downstream location. Therefore, both
the DNS and experimental work (Rius-Vidales and Kotsonis, 2022) indicate that
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laminar-turbulent transition under supercritical step conditions originates from the
inner side of the crossflow vortex; that is, the side of the vortex adjacent to the
streamwise-momentum deficit region.

Discussion on the laminar-turbulent transition path

The classic routes to turbulence in reference wall conditions (i.e., without surface
features) are summarised in the well-known diagram of Morkovin et al. (1994) (see
figure 8.9 (a)). More recently, Crouch (2022) presented an analogous diagram of
transition routes for non-ideal walls (i.e., with surface features), shown in figure 8.9
(b) with adaptations: a low-disturbance environment is assumed, and the level of
surface-induced flow distortion is introduced as main control parameter. Crouch
(2022) redefines the classic path “A” of Morkovin et al. (1994) by sub-dividing it
into “A;”, which characterises surface receptivity effects, and “A5”, which accounts
for the influence of surface-induced modifications on the growth of existing primary
eigenmodes. Furthermore, the diagram in figure 8.9 (b) proposes that, in the pres-
ence of surface features, the transition route switches directly from “A;” or “As” to
“E”, since transient-growth (or, non-modal) effects may occur, but do not alter the
transition route (Crouch, 2022). The results of this thesis appear to challenge this
claim, as discussed below.

The deformation of the near-wall shear layer downstream of the step arises from
the combined effect of (1) the growth of locally formed non-modal perturbation
streaks very close to the wall and (2) the destabilisation of high-order harmonic
modes of the incoming CFI through an inflectional mechanism farther from the wall
(§ 7.3). The analysis in the present chapter has shown that the shear layers adjacent
to the crossflow vortex on its inner side (i.e., beneath its crest) support the spatial
amplification of secondary unsteady instability eigenmodes that originate from the
reverse-flow region. Furthermore, it is demonstrated that the vortex-shedding mecha-
nism leading to transition to turbulence develops if, and only if, the primary incoming
CFT has sufficient amplitude (for fixed step height). Consequently, two flow cases with
identical surface-step geometry and free-stream receptivity conditions, but differing
only in the amplitude of the incoming CFI, may exhibit fundamentally different tran-
sition scenarios. This is demonstrated by case s. B (no supercritical transition) versus
s.C (supercritical transition).

The sequence of physical processes described in the previous paragraph highlights
the key role played by non-modal growth in enabling supercritical transition induced
by the step. Here, non-modal growth refers to the mechanisms responsible for gen-
erating the near-wall perturbation streaks at the step, as described in chapter 6 and
§ 7.2. It bears emphasising the role of these near-wall perturbation streaks. As dis-
cussed in § 7.3, the deformation of the near-wall shear layer is a feature of the total
flow (i.e., base flow plus perturbation) that supports the growth and breakdown of
secondary unsteady instabilities. The near-wall streaks, in contrast, belong to the
stationary perturbation field and partly underlie the deformation of the near-wall
shear layer.

As such, the transition path discussed here exhibits a distinctive twofold char-
acter. First, the non-modal growth, manifesting as the perturbation streaks at the
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FIGURE 8.9: Paths to turbulence in boundary-layer flow as a function of: (a) the external distur-
bance level (Morkovin et al., 1994) and (b) the surface-induced flow distortion in a low-disturbance
environment (Crouch, 2022). Thick (dotted and solid) red arrows in (b) indicate the model of super-
critical transition due to the step proposed in this thesis. Diagrams reproduced after (a) Morkovin
et al. (1994) and (b) Crouch (2022). The dashed arrows in (b) for routes “B”, “C”, and “D” indicate
the original claim by Crouch (2022) that transient-growth effects do not alter the transition route.

step, partially sets the conditions for secondary instability growth. Second, this
non-modal growth originates from the growth of primary eigenmodes, namely the
incoming CFI. This contribution is represented by the red solid arrows in figure 8.9
(b). At the same time, the growth of non-modal streaks contributes only partially
to establishing the conditions for breakdown; the local destabilisation, through an
inflectional mechanism, of the high-order harmonic modes accompanying the funda-
mental CFI also plays a role in this process (§ 7.3). The dual contribution to the
secondary mechanisms is represented by the red dotted arrow in figure 8.9 (b).

With the advent of non-modal stability theory, the flow stability community de-
bated how to reconcile classic concepts of non-linearity and secondary instability
mechanisms with moderate-amplitude non-modal perturbations (see, for instance,
Henningson et al. (1990), Breuer and Landahl (1990), and Henningson et al. (1993)).
For further discussion on the transient role of stationary perturbations induced by
the surface feature itself, the reader is referred to White et al. (2005). Building
on the insights from chapter 6 and § 7.3, a parallel can be drawn between super-
critical transition due to the step and the description of localised perturbations in
boundary-layer flow by Breuer and Landahl (1990): “even a modest spanwise struc-
ture [here the cross-stream pattern of the incoming CFI, characterised by v,, in equa-
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FIGURE 8.10: Wind tunnel measurements of crossflow vortices in reference no-step conditions (left)
and step conditions (right) at the same location of wing chord downstream of the step. Colour
contours of wall-normal (top) and spanwise (bottom) gradients of time-averaged velocity, @, and
isolines of Q, where Q indicates velocity measured through a hot wire probe. The z* is the direction
of wing span, 65 is a metric of displacement thickness, and X, p is the wavelength of CFI. Solid
grey and orange areas respectively depict the surface without and with the step present and dashed
grey area indicates no data. Arrows indicate the deformation of the near-wall shear layer on the
inner side of the crossflow vortex, as identified in the DNS. Adapted from Rius-Vidales and Kotsonis
(2022) with permission.

tion (3.12)] can, in the presence of a strong mean shear [here the highly sheared step
flow], produce large-amplitude horizontal perturbations [here the near-wall stream-
wise streaks|. Despite the initial linear character of the disturbance, non-linear effects
are quick to establish themselves and we see both the distortion of the ‘mean’ profile
and the growth of secondary instabilities as the disturbance evolves.”

Transition advancement due to the step entails a modification of the transition
path, relative to the reference (no-step) scenario (figure 8.9 (b)). Key elements sup-
porting this alteration of the transition path are consistent with wind-tunnel experi-
ments. First, a pronounced deformation of the near-wall shear layer on the inner side
of the crossflow vortex, is confirmed in the time-averaged flow measurements of Rius-
Vidales and Kotsonis (2022) (see figure 8.10 adapted from their work). Rius-Vidales
and Kotsonis (2022) further note that the pronounced deformation of the near-wall
shear layer beneath the crossflow vortex’s crest is specific to the set of experiments
exhibiting supercritical transition (cf. their figure 5). This observation aligns with
the identification that critical unsteady fluctuations —leading to laminar breakdown—
develop spatially in this portion of the near-wall shear layer (Rius-Vidales and Kotso-
nis, 2022). Second, Eppink (2020) attributes laminar breakdown at the step to vortex
shedding downstream of the reattachment point of the recirculating-flow region, a
mechanism also identified by the DNS (figures 8.7 and 8.8).

Notwithstanding the joint identification of major flow structures between exper-
imental reports and DNS, the nature of the unsteady perturbations that initiate
vortex shedding at the step remains an open question. Eppink (2020) attributes the
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FIGURE 8.11: Chordwise evolution of the spanwise- and time-averaged skin friction coefficient
under large-amplitude CFI conditions: reference (no-step) case (black circles), step cases I (orange
diamonds), II (blue triangles), and III (red squares). Vertical line indicates the step location.

origin of the higher-frequency perturbations to a shear layer instability, a view sup-
ported by the results of this chapter. Moreover, the findings in this chapter further
align with the primary observations of Rius-Vidales and Kotsonis (2022) that the fre-
quency content and spatial organisation of critical unsteady fluctuations downstream
of the step do not reconcile with those of classic secondary crossflow instabilities. This
discrepancy implies the presence of a novel unsteady mechanism introduced by the
step, as confirmed by the analysis in this chapter.

8.1.2. CRITICAL TRANSITION

Mean skin friction and topology of the steady perturbed flows

Figure 8.11 confirms that the three step heights investigated in this thesis (see ta-
ble 2.3) induce subcritical (h/dy = 0.59), critical (h/dy = 0.76), and supercritical
(h/do = 0.97) transition, as anticipated. This classification is based on the upstream
shift of the transition front, see Rius-Vidales and Kotsonis (2021) for reference, here
assessed through the evolution of the mean skin-friction coefficient along the chord-
wise direction (8.1). Building on the insights from § 8.1.1, it should be emphasised
that the regime classification based on step height depends on the selected amplitude
of the incoming stationary CFI. The present section focuses on the mechanisms of
critical transition under large-amplitude CFT conditions (see table 2.6); that is, under
the same amplitude conditions as the supercritical case analysed in § 8.1.1.

First, figure 8.12 presents the topology of the steady perturbed flow past the step.
In particular, planes of flow at x4 /dp = 9.4 are shown, i.e., replicating the layout
of figure 7.1 illustrating the supercritical scenario. Data from the subcritical case
are also included for reference (figures 8.11 and 8.12), although a detailed analysis of
the associated transition mechanisms falls beyond the scope of this section. Overall,
figure 8.12 (a-c) illustrates the progressive development of the near-wall shear-layer
deformation with increasing step height. Ultimately, this deformation attains its most
pronounced form in the case with the largest step tested, where the development of
a streamwise-momentum deficit region becomes evident (figure 7.1 (f)).
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FIGURE 8.12: Topology of the steady perturbed flow illustrated by z-y planes of velocity upg,s at
Zst /00 = 9.4 considering large-amplitude CFI conditions: no-step case (a), step case I (b), step case
II (c¢). The black arrows illustrate the in-plane organisation of the steady perturbed flow (wpg,s
and vpp).

Mechanisms of unsteady perturbation at the step

The two-dimensional linear stability analysis introduced in § 8.1.1 to examine the
mechanisms of supercritical transition is extended in the present section. Specifically,
the stability problem is at present solved using the steady perturbed flow correspond-
ing to the critical step case. The analysis carried out in this section employs the local
approach to BiG, see § 2.2.3.

The results of the stability analysis confirm the existence of (at least one) unsteady
instability eigenmode, supported by the near-wall shear layer downstream of the step.
The behaviour of this eigenmode closely resembles that of step-mode;, previously
identified as a main agent driving supercritical transition (see § 8.1.1). Specifically,
the eigenmode shape is concentrated within the region of low momentum beneath the
crest of the stationary crossflow vortex (figure 8.12 (¢)). Furthermore, the eigenmode
is qualified as explosive, in that it attains a very large N-factor in a short z-distance.
Considering the multiple similarities, the newly identified unsteady instability arising
under critical step conditions is hereafter also referred to as step-mode;. Following
the analysis in § 8.1.1, the subscript ‘1’ denotes the most amplified eigensolution of
the local family of step modes introduced by the step.

Selected results of the stability analysis are summarised in figure 8.13, which com-
pares the critical and the reference (no-step) cases; results from the subcritical case
are additionally included for completeness. In particular, figure 8.13 (a) quantifies the
amplification factor of two main families of eigensolutions. Namely, the newly iden-
tified step-mode,, represented by the curves concentrated near the step z-location
(denoted with closed symbols) and the classic type-I secondary crossflow instability,
represented by the curves situated farther downstream (denoted with open symbols).
For clarity, type-II and type-11I eigenmodes are omitted from figure 8.13, as there is
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FIGURE 8.13: (a) Amplification factor of the type-I instability (curves far from the step with
open symbols) and the step-mode; (curves mear the step with filled symbols) as a function of
the perturbation frequency and chordwise position: reference no-step (black circles), subcritical
(red downward-pointing triangles), and critical (blue upward-pointing triangles) conditions. Large-
amplitude CFI conditions are considered (table 2.4). The orange line indicates the step z-location.
(b) Maximum amplification factor over all z as a function of perturbation frequency for type-I
(open symbols) and step-mode; (filled symbols): reference no-step (black circles), subcritical (red
downward-pointing triangles), and critical (blue and upward-pointing triangles) conditions. Vertical
lines indicate peak locations for type-I (thin) and step-mode; (thick).

no evidence suggesting their significant contribution to the transition process in the
critical case.

Under critical conditions, the step-mode; remains spatially confined to the region
immediately downstream of the step (figure 8.13 (a)), i.e., it forms an unstable eigen-
solution exclusively for zy < x < 2309g. It exhibits a very large amplification factor,
which is greater than that of subcritical conditions (figure 8.13 (a)), but lower than
supercritical conditions (§ 8.1.1). Unlike the type-I instability, the (maximum) fre-
quency response of the step-mode; is sensitive to the step height. That is, the largest
amplification factor of the step-mode; shifts from approximately 4 kHz in the subcrit-
ical case to around 7 kHz in the critical case. This behaviour is illustrated in figure
8.13 (b), which summarises the influence of perturbation frequency on the maximum
amplification factor attained (i.e., the peak N-factor across all z-positions).

Finally, figure 8.13 also shows that the type-I instability is actually stabilised (in
an integral sense) by the presence of the step. This observation forms the basis for
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FIGURE 8.14: Instantaneous flow organisation at the step under large-amplitude CFI conditions
(table 2.4) characterised by Q-criterion (Q) isosurface, coloured with chordwise velocity in the
critical ((a), Qdo/uce = 0.1) and supercritical ((b), Qdo/uco = 0.8) cases. The data are duplicated
four times in z for illustration purposes. Panel (b) here is identically figure 8.8 above.

the discussion in § 8.2, which explores transition delay induced by the step.
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crossflow vortex

FIGURE 8.15: Instantaneous flow organisation at the step characterised by Q-criterion isosurface
(Qdo/use = 0.1) coloured with chordwise velocity (a). Zoom with z-y plane of chordwise velocity
(b). Large-amplitude CFI conditions are considered. The data are duplicated four times in z for
illustration purposes (a).

Discussion on the laminar-turbulent transition path

In the reference (no-step) case at large-amplitude CFI conditions, transition is driven
by the amplification of the type-1 secondary crossflow instability (see § 2.3.3). Under
supercritical step conditions, the growth of classic secondary crossflow eigenmodes
is bypassed by the novel unsteady mechanism originating at the step (§ 8.1.1). The
present DNS results reveal that the critical and supercritical scenarios essentially
follow the same transition path. Nonetheless, the spatial growth rate of the key
perturbation structures is reduced in the critical case, which effectively results in a
downstream shift of the turbulence onset region, compared to the supercritical case.

The comparative features of the critical and supercritical cases are elaborated as
follows: in the supercritical case, the pronounced deformation of the near-wall shear
layer sustains the amplification of secondary instability eigenmodes developing locally
at the step. Following the stage of linear eigenmode growth and the subsequent vortex
shedding, turbulence inception is first observed near the interaction of two dominant
vortical structures: the vortex; and vortexs (see figures 8.7 and 8.8). In the critical
case, a near-wall deformation of the shear layer —structurally resembling that of the
supercritical case introduced in chapter 7— also emerges (figure 8.12 (c)). However,
it exhibits smaller spatial extent, relative to the supercritical case; consequently, the
stability analysis finds that step-mode; is less unstable in the critical case. In the
DNS, the vortex; is still identifiable in the instantaneous organisation of the critical
step flow, but its formation is delayed compared to the supercritical case, and its
spatial development spans a broader chordwise region (figure 8.15).

In addition, vortexs is either absent or significantly weakened under critical con-
ditions. Correspondingly, inspection of the instantaneous flow organisation reveals
that, in contrast to the supercritical case, the pronounced spanwise spreading of
the unsteady contamination wedges forming downstream of the step does not origi-
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nate from the inner side of the stationary crossflow vortex; i.e., the z-location where
vortex; and vortexs interact. Instead, the significant spanwise spreading of unsteady
contamination in the critical case is preceded by the interaction between vortex; and
vortexs (see figure 8.15 (a)).

The vortexs —which originates on the crossflow vortex and was previously linked
to the deformation of its base (see figure 7.1 (f) and the analysis in chapter 7)-
emerges downstream of the point of inception of vortex; and vortexs in both the
critical and supercritical cases. Due to the combination of these effects, transition in
the critical case is delayed relative to the supercritical case, yet still occurs upstream
of the type-I-driven transition observed in the reference (no-step) configuration.

8.2. TRANSITION DELAY BY THE STEP

The analysis presented thus far has addressed the two main research questions of
this thesis, which concern the mechanisms of stationary interaction at the step and
the advancement of laminar-turbulent transition. This section now turns to design
strategies for preserving laminar flow when a step is present (§ 1.4). In this regard,
a series of findings established throughout this thesis (primarily concerning chapters
4 and 5) have motivated a numerical experiment to explore transition delay.

8.2.1. OBSERVATIONS AND HYPOTHESIS
The proposed numerical experiment is grounded in the following observations:

(%) The interaction between the incoming stationary CFI and the step is locally
stabilising under certain conditions; i.e., it can be conditioned to induced a
spatial decay of perturbation kinetic energy over a short chordwise region (see
§8 5.1 and 5.3).

(4) In the scenario where process (¢) occurs, the growth characteristics of the
incoming instability are modified downstream of the region of energy decay.
Specifically, the perturbation growth rate does not immediately returns to-
wards that of the reference (no-step) case; instead, it remains reduced over an
extended chordwise region downstream of the step. It is noted that observation
(%) has been reported subsequent to process (%); however there is no basis to
assume that process (%) is exclusively contingent upon the occurrence of (%).

(#i%) The mechanisms responsible for either a moderate (critical) or an abrupt (su-
percritical) advancement of the transition front are primarily supported by a
flow feature structurally independent of the stationary CFI, namely the pro-
nounded deformation of the near-wall shear layer (§ 7.1). This (stationary)
shear-layer deformation at the step is, in the first instance, driven by linear
perturbation effects (see chapter 6 and § 7.3).

Building on these observations, the following hypothesis is formulated: it is pos-
sible to hinder the amplification of high-frequency secondary crossflow instabilities,
and thus to passively delay transition, by inhibiting the growth of the station-
ary crossflow vortex through its interaction with the step. Transition delay, in this
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framework, is contingent upon preventing the adverse effects associated with the am-
plification of secondary instability eigenmodes in the downstream vicinity of the step,
as elaborated throughout this thesis. The development of these eigenmodes forming
at the step may be prevented if the step interacts with a stationary crossflow vortex
of sufficiently small amplitude, since the stationary deformation of the near-wall
shear layer at the step is driven initially by linear perturbation effects.

8.2.2. FORMULATION OF THE NUMERICAL EXPERIMENT

The previous hypothesis is tested through a dedicated numerical experiment, namely
a Direct Numerical Simulation of a step case. The numerical methodology employed
in this thesis to investigate the mechanisms of transition advancement is adopted
here without modification. However, the step height and its chordwise location (see
table 2.6) are adjusted to produce a flow environment adjusted to the hypothesised
delay of transition. To maintain consistency with the transition analysis carried out
throughout this thesis, the initial amplitude assigned to the crossflow eigenmode is
kept constant and reproducing large-amplitude CFI conditions (see table 2.4).

The step is placed at x/dy = 73.90, within the region of linear CFI growth (see
figure 2.11 (c¢)), and its height is set to h/dy = 0.76. These parameters yield approx-
imately matching conditions in terms of both the amplitude of the fundamental CFI
at the step location and the step-to-boundary-layer-thickness ratio, h/dgg 5 = 0.54,
relative to the configuration analysed in chapter 5, which reported inhibited CFI
growth following a significant modification of the perturbation organisation at the
step. The current setup results in a roughness Reynolds number of Rep; = 563.08,
see table 2.3 for a comparison with the main cases analysed in this thesis.

8.2.3. RESULTS

A summary of the key results obtained from the numerical experiment is presented
in figure 8.16. A detailed discussion of these results, along with their engineering
implications, will be addressed in § 9.2, in the context of the outlook of this thesis.

First, figure 8.16 (a) confirms that the fundamental CFI exhibits a reduced spatial
growth rate, compared to the reference (no-step) case, as a result of its interaction
with the step. This behaviour is measured over a chordwise extent of 176dg, that is,
approximately 15% of the chord of the reference wing model (§ 2.1.1). Figure 8.16
(b-g) shows a corresponding reduction in the strength of the spanwise shear layer of
the stationary crossflow vortex far downstream of the step.

On reproducing the analysis of chapter 5, it is observed that the distortion of
the perturbation organisation at the step —setting the conditions for the subsequent
inhibition of CFI growth— alters the behaviour of the production mechanism, but it
occurs without explicitly reversing the sign of the production term. In this regard,
the reverse lift-up effect identified in this thesis (§ 5.3) is a limiting case of significant
perturbation distortion at the step, one that results in a local decay of perturbation
kinetic energy, but is not a necessary condition for the inhibited downstream growth
of the CFI observed here.
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FIGURE 8.16: Metrics of the transition delay case in large-amplitude CFI conditions: (a) chordwise
evolution of the growth rate of the fundamental CFI in step (dashed cyan) and no-step (solid black)
cases. Dashed orange area indicates the z-range dominated by the near-wall streaks at the step.
(b-g) Topology of the stationary crossflow vortex characterised by isolines of upg, s ranging from
0.2u00 to 1.4us (solid black) with colour contours indicating the spanwise gradient of velocity upp, s
in the step (right) and no-step (left) cases at x/§p = 123.5 (b,c), 268 (d,e), and 386.5 (f,g). (h)
Chordwise evolution of the spanwise- and time-averaged skin friction coefficient in the step (cyan
spheres) and no-step (black circles) cases. Vertical line indicates the step location.
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Transition is ultimately driven by the amplification of the type-I secondary cross-
flow instability, indicating that, in this context, the transition path remains unaltered
by the presence of the step. At the same time, the weakening of the spanwise shear
layer of the stationary crossflow vortex is postulated to shift the neutral point down-
stream and/or reduce the spatial amplification factor of the type-I secondary instabil-
ity eigenmode. As a results, a measurable transition delay is observed, corresponding
to 5% of the chord of the reference wing model (figure 8.16 (h)).
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9.1. CONCLUSIONS

9.1.1. STATIONARY INTERACTION BETWEEN A FORWARD-FACING STEP
AND A PRE-EXISTING STATIONARY CROSSFLOW INSTABILITY

facing step and the stationary crossflow instability (CFT) of laminar, incom-

pressible swept-wing boundary-layer flow by performing steady-state Direct
Numerical Simulations (DNS). Specifically, it qualitatively and quantitatively as-
sessed the salient flow structures and mechanisms supporting and conditioning the
regimes of CFI growth and decay upstream and downstream of the step. The tested
steps reached approximately 30 to 50% of the undisturbed boundary-layer thickness,
corresponding to roughness Reynolds numbers (Rey,;,) ranging from 368 to 832. To
gain physical insight, the stationary perturbation field was Fourier analysed in the
leading-edge-parallel (spanwise) direction and decomposed into spanwise modes.

T his thesis first examined the purely stationary interaction between a forward-

Mathematical and physical frameworks

This thesis advocated analysing the behaviour of stationary perturbations by decom-
posing the perturbation field relative to the base-flow orientation rather than relative
to the wall. Correspondingly, a theoretical framework was introduced, in which the
perturbation field representing the fundamental (i.e., primary-wavelength) CFI was
decomposed into a component aligned with the local base-flow streamline (i.e., in the
local streamwise direction) and a complementary cross-stream component normal to
it (§ 3.2). The streamwise-aligned perturbation component manifested structurally
as regions of velocity excess and deficit, while the cross-stream perturbation compo-
nent typically formed a weaker pattern in the flow, appearing as streamwise-vortical
structures that were efficient in redistributing momentum. Several advantages of
this decomposition were discussed. These included improved structural coherence of
perturbation representation in regions of highly deformed base flow, the ability to as-
sess non-modal growth using metrics inspired by Marxen et al. (2009) (§§ 4.2.3 and
6.2.3), and the identification of the (linear) mechanisms of kinetic-energy transfer
between the base flow and the perturbations (chapters 5 and 6), thereby reconciling
with classic perturbation effects reported in the literature (§ 5.2).

Perturbation organisation at the step

The topology of the laminar unperturbed base flow at the step included recirculating
flow immediately upstream and downstream of all steps studied. However, contrary
to the model previously conjectured by Tufts et al. (2017), the main body of the
incoming CFI was found to pass over the step sufficiently far from the wall, with no
apparent explicit interaction with the regions of flow recirculation. Instead, the CFI
developed spatially very close to an additional perturbation structure that formed
locally at the upper step corner and was located between the wall and the CFI. This
additional structure manifested as stationary perturbation streaks, i.e., regions of
streamwise-velocity excess and deficit distributed along the step-edge direction (§ 4.2
and chapter 6). The isolation of the streaks in a structural sense was consistent with
several reports of significant stationary-perturbation amplification at the upper step
corner (Tufts et al., 2017; Eppink, 2020; Rius-Vidales and Kotsonis, 2021).
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The origin of the streaks at the step was attributed to a linear non-modal growth
mechanism driven by the lift-up effect (§ 6.2.1). Specifically, it was found that the
cross-stream pattern of the incoming CFI mode lifted-up and pushed down low- and
high-momentum fluid, respectively, in adjacent regions of the strongly sheared step
flow. Under this principle, the lift-up effect gave rise to rapidly amplified stream-
wise streaks near the wall, which inherently adopted the spanwise wavelength of the
incoming CFI mode. Therefore, this thesis supported the conclusions of Wilhelm
et al. (2003) and Lanzerstorfer and Kuhlmann (2012), who similarly ascribed a lin-
ear character and origin for streaks developing in unswept forward-facing-step flows.
Furthermore, evidence was provided that the streaks were not a manifestation of ad-
ditional crossflow instability of the step-flow profiles, as suggested by other studies.

Overall, this thesis proposed that stationary perturbation streaks are a universal
feature of three-dimensional laminar forward-facing-step flows, provided that three-
dimensional stationary perturbations are present in the incoming boundary layer
(chapter 6).

Mechanisms of perturbation growth and decay at the step

Upstream of the step, the fundamental CFI was gradually amplified as it approached
the step in the chordwise direction, x, compared with reference (no-step) conditions.
A close match between the DNS results and linear Parabolised Stability Equations
(PSE) solutions in this region revealed linear perturbation growth driven purely by
the modification of the unperturbed base flow by the step. The amplification factor
immediately upstream of the step was proportional to the step height (§ 4.2.2).

Immediately downstream of most of the steps studied, the fundamental CFI main-
tained an amplification trend; that is, its kinetic perturbation energy grew in space.
However, in the specific case involving the largest step tested, the fundamental CFI
was found to be locally damped (i.e., its kinetic perturbation energy decayed in space)
before amplifying again further downstream (§ 4.2.3). This local stabilising effect
stood in contrast to the dominant view in the published literature, which suggested
that a forward-facing step universally amplifies the incoming CFT upon interaction
(Tufts et al., 2017; Cooke et al., 2019; Eppink, 2020).

Specifically, Tufts et al. (2017) described that sufficiently large steps (i.e., those
influencing transition) are associated with a sudden growth of the incoming CFI,
and Eppink (2020) reported initial CFT amplification in the downstream vicinity of
the step, driven by a linear perturbation effect. The amplitude of the near-wall per-
turbation streaks inherently forming in forward-facing-step flows (chapter 6) scaled
with the step height (§ 4.2.1), and the steps investigated by Eppink (2020) extend
relatively high into the boundary layer; the apparent discrepancy between this the-
sis and previous studies may therefore have been a mere artefact of including the
near-wall streaks in the estimation of instability amplitude, thereby overshadowing
the incoming-instability response. Accordingly, this thesis concludes that a forward-
facing step does not universally amplify the fundamental CFI on interaction, a finding
that is also supported experimentally by Rius-Vidales and Kotsonis (2021).

The underlying mechanism supporting the stabilisation (i.e., amplitude decay) of
the CFT at the step was the proposed reverse lift-up effect (chapter 5). This novel con-
cept was elaborated as follows: the classic lift-up effect (Moffatt, 1967; Ellingsen and
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Palm, 1975; Landahl, 1975, 1980) entails a three-dimensional cross-stream perturba-
tion interacting with a shear layer which, by redistributing low- and high-momentum
fluid, induces inherently flow-aligned (i.e., streamwise-tangent) regions of momentum
deficit and excess. However, if a flow instability pre-exists and carries stream-tangent
perturbations, the momentum redistribution by the cross-stream perturbation com-
ponent may be altered locally (e.g., via a rapid variation of surface geometry) in such
a way that it acts by quenching the pre-existing regions of streamwise-momentum
deficit and excess. As such, when the reverse lift-up effect is active, high-momentum
fluid is transported towards an incoming low-speed streak and low-momentum fluid
is transported towards an incoming high-speed streak. Thus, the streak system as a
whole is attenuated, and the flow exhibits a tendency towards returning to its original
(unperturbed) laminar state.

In short, the lift-up effect involves the superposition of perturbation streaks and
streamwise-vortical structures (cross-stream rolls). In the classic sense, their inter-
action with the shear layer amplifies the streaks. However, for certain spanwise
phase shifts between the streaks and vortical structures, the same interaction with
the shear layer produces a stabilising response. The existence of the reverse lift-
up effect, which follows naturally from the original model of lift-up (Ellingsen and
Palm, 1975) (§ 5.2.5), was demonstrated through canonical flow examples in this
thesis (§§ 5.2.2 and 5.2.4). In conclusion, the lift-up effect governed the behaviour of
the fundamental CFI immediately downstream of the step; whether the classic (i.e.,
destabilising) or the reverse (i.e., stabilising) lift-up effect applied depended, at least,
on the step height and the free-stream-flow evolution.

Finally, previous studies (Eppink, 2020) attributed CFI growth locally at the step
to the destabilising influence of step-induced inflection points in the crossflow profile.
In this thesis, no apparent evidence supporting this effect on the fundamental CFI
was found; however, strong evidence was reported for the high-order harmonic (i.e.,
smaller-wavelength) spanwise CFI modes (§ 4.3). Consistently, significant growth of
these high-order harmonic modes was observed immediately downstream of the step
in the DNS, in agreement with experimental findings (Eppink, 2020; Rius-Vidales
and Kotsonis, 2021).

Effects of incoming perturbation amplitude

The discussion in the conclusions above considered a pre-existing CFI undergoing
linear perturbation evolution up to approximately the virtual step location under
reference (no-step) conditions. Subsequently, this thesis assessed the effects of CFI
amplitude on the salient flow features at the step (chapter 7). In this context, energy-
balance equations were developed for the stationary spanwise perturbation modes,
individually (§ 3.1). This formulation allowed the examination and segregation of
the linear and non-linear mechanisms governing the behaviour of each mode at the
step, effectively extending the classic Reynolds-Orr framework.

Downstream of the step, the spatial evolution of the stationary perturbations
described above deformed the near-wall shear layer of the steady perturbed flow;
that is, flow resulting from the superposition of the laminar unperturbed base flow
and the stationary perturbations, without unsteady perturbations present. For the
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largest tested values in this thesis of both the initial CFI amplitude (i.e., when the CFI
behaves non-linearly already upstream of the step) and the step height, this shear-
layer deformation effectively gave rise to an additional flow structure: a streamwise-
momentum deficit region located beneath the crest of the incoming crossflow vortex
(§ 7.1). The existence of this streamwise-momentum deficit region was confirmed by
time-averaged experimental flow measurements (Rius-Vidales and Kotsonis, 2022).

By virtue of the Reynolds-Orr type framework introduced above, the pronounced
deformation of the near-wall shear layer in the largest-amplitude CFI case was pro-
posed to have originated from a set of high-order harmonic perturbation modes spa-
tially amplified at the step through two key mechanisms: (1) a linear destabilising
effect induced by the inflectional step-flow profiles (as previously described) and (2)
a non-linear interaction between spanwise perturbation modes (§ 7.3). The former
took place farther from the wall, i.e., in the region dominated by the incoming CFI,
whereas the latter developed very close to the wall, i.e., in the region dominated by
the perturbation streaks that were initially generated at the step. The latter mecha-
nism was unique to the case with the largest tested CFI amplitude and appeared to
spatially sustain some of the streaky structures that otherwise decayed downstream
of the step when the amplitude of the incoming CFT was reduced (§ 7.2).

Overall, the stationary deformation of the shear layer downstream of the step
(and, by extension, the streamwise-momentum deficit region) diminished as the initial
amplitude of the incoming CFI was reduced.

9.1.2. MECHANISMS OF LAMINAR-TURBULENT TRANSITION ADVANCE-
MENT INDUCED BY A FORWARD-FACING STEP
This thesis subsequently elucidated the mechanisms by which the step induced laminar- m
turbulent transition advancement. The analysis focused exclusively on the case with
the largest initial CFI amplitude tested in this thesis. Unsteady perturbations in
the DNS were introduced by applying unsteady wall forcing near the inflow, super-
imposed on the pre-computed steady perturbed flow. The results from the DNS
were complemented by linear stability analysis performed using both the local and
plane-marching formulations of the two-dimensional parabolised stability approach.
This thesis concludes that transition advancement due to the forward-facing step
stemmed from an unsteady instability mechanism originating at the step (chapter 8).
Transition advancement is not attributed to the growth of classic secondary crossflow
instabilities on the stationary crossflow vortex —the mechanism typically dominant
under reference (no-step) conditions— but rather to an instability of the deformed
shear layer downstream of the step. As described above, this shear-layer deformation
arose from the interaction between the stationary crossflow vortex and the step flow.
Specifically, in the supercritical scenario (i.e., characterised by an abrupt upstream
shift of the transition front near the step), transition developed as follows: the sta-
tionary deformation of the near-wall shear layer downstream of the step supported
the exponential amplification of a set of high-frequency instability eigenmodes. That
is, these eigenmodes appeared at frequencies higher than those of the classic type-I11
secondary instability mechanism, which also develops close to the wall. These high-
frequency eigenmodes were fully related to the step, i.e., they did not manifest in the
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reference (no-step) case. The linear two-dimensional stability analysis identified that
the eigenmode exhibiting the largest amplification factor originated from the shear
layers surrounding the localised patches of recirculating flow at the upper step corner.
Further downstream, the near-wall deformation of the shear layer —which grew in x
and eventually developed into the streamwise-momentum deficit region mentioned
above— continued to support the spatial growth of this eigenmode (§ 8.1.1).

The evolution of this critical instability eigenmode spatially correlated with the
development of a hairpin vortex-shedding mechanism, emerging from the shear lay-
ers surrounding the streamwise-momentum deficit region. The interaction between
these primary hairpin vortices and a secondary family of unsteady vortices, which
also arose downstream of the step and on the side of the streamwise-momentum
deficit region, preceded the onset of turbulence (§ 8.1.1). Consequently, this thesis
supported the main conclusions of Rius-Vidales and Kotsonis (2022), who attributed
supercritical transition to an unsteady mechanism at the step whose behaviour did
not reconcile with that of classic secondary crossflow instabilities. This thesis also
supported the main conclusions of Eppink (2020), who linked transition to vortex
shedding past the region of recirculating flow. Furthermore, Eppink (2020) reported
the key role played by the incoming CFI amplitude in setting early transition con-
ditions. Consistently, this thesis showed that supercritical transition occurred only
in the case of the largest CFI amplitude considered (for fixed step height), implying
that the transition regime due the step cannot be categorised exclusively based on
Reynolds number and wavelength.

In line with previous experimental studies (Rius-Vidales and Kotsonis, 2021,
2022), a decrease in the step height (for a fixed CFI amplitude) shifted the tran-
sition regime from the supercritical to the critical scenario (i.e., characterised by a
moderate upstream shift of the transition front). However, this thesis did not sup-
port the conclusions of Rius-Vidales and Kotsonis (2022), which attributed transition
in the critical scenario to the growth of the type-I and type-II secondary crossflow
instabilities on the stationary crossflow vortex, allegedly amplified —referring to the
vortex— by the interaction with the step. Instead, evidence was presented in this the-
sis supporting that the supercritical and critical scenarios essentially follow the same
transition path, albeit the main processes described above are spatially more relaxed
in the critical case (§ 8.1.2). As a consequence, the birth of key transitional-flow
structures is delayed spatially in the critical case, thereby positioning the transition
front between that of the supercritical and reference (no-step) cases.

The elucidation of transition mechanisms revealed that significant transition ad-
vancement due to the step entailed a modification of the transition path, relative
to the reference (no-step) scenario. This proposition, which was made within the
context of the transition diagram proposed by Morkovin et al. (1994), concerned
and in turn challenged the role of transient growth in that diagram. When mani-
festing, transient growth typically either bypasses or conditions primary eigenmode
growth (Reshotko, 2001). In contrast, in the case of transition induced by the step,
the transient growth of perturbation streaks at the step —structures that partially
set the conditions for secondary instability and breakdown— was itself preceded and
conditioned by pre-existing primary (crossflow) eigenmode growth.
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FIGURE 9.1: Thermal maps demonstrating transition delay of swept-wing flow using a surface hump
(right) compared to the reference wing without the hump (left), reproduced from Rius-Vidales et al.
(2025). Flow moves from left to right: bright regions indicate laminar flow, dark regions indicate
turbulent flow. The solid orange line and shaded orange region mark the hump apex and its width.
Here, x is the coordinate orthogonal to the leading edge (with wing chord ¢; = 0.9 m), while X and
Z denote coordinates aligned with the wind-tunnel walls.

9.2. OUTLOOK: POTENTIAL FOR PASSIVE FLOW CONTROL

This thesis primarily focused on examining the instability mechanisms inducing early
transition when a forward-facing step is present. However, a series of unexpected
findings revealed that, under certain conditions, the step passively controls the in-
coming CFI (chapters 4 and 5); as a consequence, transition delay may potentially
be achieved. With few exceptions (Fransson et al., 2006; Fujii, 2006; Saric et al.,
2011), the dominant view among fluid dynamicists holds that rapid spatial varia-
tions in surface geometry advance laminar-turbulent transition. The results of this
thesis, however, support a possible exception in the context of low-speed flows domi-
nated by the stationary CFI, thereby challenging the universality of this proposition.
The objective of this section is to strengthen this view and propose future research
directions for exploring passive flow-control strategies.

The numerical and theoretical findings of this thesis are supported by experi-
mental evidence of transition delay induced by a forward-facing step (Rius-Vidales
and Kotsonis, 2021). Transition delay is also reported when using a surface relief
composed of surface strips (Ustinov and Ivanov, 2018; Ivanov and Mischenko, 2019).
In addition, the author of this thesis is a co-author of related research conducted
within the same group at Delft University of Technology (TU Delft), which demon-
strates the potential of a smooth surface hump for passive flow control. Specifically,
experimental results (see figure 9.1) show that a surface hump delays CFI-driven
transition under certain conditions (Rius-Vidales et al., 2025), with its effectiveness
being contingent upon the incoming CFI amplitude (Westerbeek et al., 2025). This
body of work on transition delay using a smooth surface hump has materialised into
an international patent application (Kotsonis et al., 2024).

The growing variety of surface-feature geometries integrated into swept wings that
have recently demonstrated transition delay under subsonic flow conditions suggests
that these are not isolated exceptions, but indications of an unexplored design space.
Specifically, it appears feasible to passively control the stationary CFI of swept-wing
flow through a surface relief, provided it matches the relevant instability specifica-
tions, i.e., Reynolds number or receptivity conditions, in order to prevent transi-
tion advancement. Accordingly, this thesis concludes by proposing Surface Methods
for Aerodynamic Relief Technology (SMART) flow control. Two preliminary design
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FIGURE 9.2: Sketch of the physical model of swept-wing flow adapted from figure 2.1, illustrating
the flow control method denoted as destructive wave-like interaction. (a) Wing model with orange
lines indicating the orientation of the surface relief features. (b) Cross-sectional view of the surface
relief along the direction orthogonal to the leading edge.

strategies can be envisioned, which are outlined next.

SMART flow control through destructive wave-like interaction

This method builds upon the identification of the reverse lift-up effect presented in
this thesis. As described above (chapter 5), this effect is of the (linear inviscid)
algebraic-growth type and has the potential to induce a local decay of perturbation
kinetic energy, either in space or in time. Two main considerations associated with
the present surface method are summarised as follows:

o Theoretical foundation

In contrast to the main working principles proposed in this thesis, Ustinov and
Ivanov (2018) attribute CFI stabilisation induced by surface strips to a reduc-
tion in the crossflow velocity within the boundary layer, thereby decreasing the
CFT amplification factor in an Orr-Sommerfeld sense. However, the validity of
linear local stability methods near sharp surface features remains questionable,
particularly since this thesis suggests that confined non-modal-growth mech-
anisms may dominate in this context. Future research should examine the
conditions under which either modal or non-modal effects dominate the inter-
action between surface features and pre-existing boundary-layer perturbations.

¢ Design

The perturbation stabilisation associated with the reverse lift-up effect does not
require prior knowledge of the wavelength or the perturbation phase upstream
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of the surface feature. Therefore, it is applicable potentially successively along
an aerodynamic surface for an overall enhancement of the underlying benefit
without need for active phase calibration.

The analysis presented in this thesis suggests that the spatial organisation of
the cross-stream perturbation field (i.e., the component characterised as v,
in equation (3.12), which is primarily responsible for redistributing base-flow
momentum) is sensitive to rapid spatial variations in the base-flow topology
(chapters 5 and 6). Accordingly, a surface relief may be designed to manip-
ulate the cross-stream perturbation field; for instance, to locally induce a de-
structive wave-like interaction with (i.e., attenuating) the incoming regions of
streamwise-velocity excess and deficit that constitute the fundamental CFI.

An example of such a surface relief is proposed in figure 9.2. Each individual
surface feature includes a leading edge that emulates the step to induce a reverse
lift-up effect, although alternative shapes may ultimately prove more effective.
Downstream of it, the feature gradually merges with the wall, thereby precondi-
tioning the CFI for interaction with the next feature in the relief. This gradual
geometric adaptation also aims to suppress or minimise flow separation. Sharp
trailing edges, as observed in backward-facing step studies (Krochak et al.,
2022), are known to promote flow separation.

SMART flow control through instability hysteresis

Refocusing on the main step-CFI analysis presented in this thesis, an ongoing debate
in the literature concerns whether the enhanced stationary harmonic activity of CFI
at the step induces non-linear growth of the fundamental CFI, or vice-versa (Eppink,
2020; Rius-Vidales and Kotsonis, 2021). This thesis shows that, in the largest step
case, the amplitude evolution of the fundamental CFI from DNS reasonably matches
the solution of linear PSE, when the PSE is initialised close downstream of (but not
at) the step, and the DNS perturbation profile is used as initial condition. This
agreement implies that the fundamental CFI evolves following linear mechanisms
downstream of the largest step tested. In contrast, for the smaller steps, the CFI
behaviour downstream of the step is non-linearly dominated (i.e., it matches the solu-
tion to non-linear PSE), suggesting that the nature of the perturbation mechanisms
is a function of, at least, the step height (§ 4.3).

Despite the complex interplay between the fundamental CFI and its associated
high-order harmonic modes downstream of the step, this thesis isolates a distinctive
effect with potential for flow control. Specifically, when the step-CFI interaction
occurs in the region of linear perturbation growth, it can lead to a broad area of
reduced growth rate of the fundamental CFI, compared to the reference (no-step)
case. This behaviour was first identified following the reverse lift-up (§§ 5.1 and 5.3),
possibly due to the strong distortion imposed on the perturbation shape. However,
the numerical experiment discussed in § 8.2 shows that this reduced growth rate of
the CFI past the step is also achieved in the absence of the reverse lift-up effect,
which may represent a limiting situation.

Accordingly, two main considerations associated with the present surface method
are summarised as follows:
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e Theoretical foundation

A qualitatively similar effect, namely reduced growth rate of the CFI, has been
reported downstream of a smooth surface hump within the scope of collabora-
tive work (Westerbeek et al., 2025). The unperturbed base flow relaxes spatially
towards the reference (no-hump) organisation over a relatively short chordwise
distance downstream of the hump. However, this rapid relaxation does not
apply to the fundamental CFI, see Westerbeek et al. (2025, figure 6). Future
research should investigate how specific surface features convert the incoming
CFI into a “less unstable structure” (Westerbeek et al., 2025) and scrutinise
the associated spatial hysteresis or, perturbation adaptation process, towards
the classic Orr-Sommerfeld type of growth.

This stabilising effect is linked by Westerbeek et al. (2025) to the inhibition
of the mechanisms of production (as characterised by Ppg, in this thesis, see
6§ 4.2.4 and 5.1). In the context of Gortler instability, Sescu and Afsar (2018)
similarly argue that passive instability control via wall deformations is possible,
and attribute it to a “weakening the effect of lift up”.

Design

In contrast to the first surface method discussed above, the present method
falls within the category of flow control based on a single —or a limited number
of— surface features. Building on the findings presented in § 8.2 regarding the
step, as well as the preliminary investigations by Rius-Vidales et al. (2025) and
Westerbeek et al. (2025) on the hump, an optimisation procedure may be car-
ried out to design a surface feature that maximally decreases the amplification
factor of an incoming boundary-layer perturbation.

This thesis aims to make a significant contribution to the understanding of flow

instability and laminar-turbulent transition. The theoretical and numerical findings
presented challenge the classic paradigm in fluid mechanics that surface features are
universally detrimental to laminar flow. Instead, under specific conditions, surface
features can delay transition and thereby reduce skin-friction drag. This proposition
is grounded in the observed ability of a forward-facing step, suitably designed, to
stabilise the pre-existing stationary crossflow vortices of a swept-wing boundary layer.
The mathematical and physical frameworks developed herein —which are potentially
applicable to other instability classes— lay the foundation for exploring and optimising
novel strategies for passive laminar swept-wing flow control via surface shaping, while
also elucidating the conditions under which transition may conversely be advanced.
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MARKERS

B Unperturbed base flow.

DB Steady perturbed flow.

1 Complex conjugate.

e External (outer) flow).

exp Experimentally measured.

() Pseudo-free-stream.

in Domain inlet.

n Perturbation normal to the base flow.

/ Perturbation quantity.

S Orientation relative to the inviscid streamline.

str Amplitude measured at the lower perturbation peak.

D Amplitude (Fourier) coefficient.

tun Wind-tunnel section, upstream of the wing model.

top Amplitude measured at the upper perturbation peak.

t Perturbation tangential to the base flow.

U, v, W Components of velocity in the chordwise, wall-normal, and
spanwise directions.

v Non-dimensional variable.

ACRONYMS

AHLNS Adaptive Harmonic Linearised Navier-Stokes.

BiG BiGlobal (linear stability analysis).

BS Blowing-Suction.

CFI Crossflow Instability.

CFL Courant Friedrichs Lewy.

DeHNSSo Delft Harmonic Navier-Stokes Solver.

DRE Discrete Roughness Elements.

FV Finite Volume.

FSC Falkner Skan Cooke.

HLFC Hybrid Laminar Flow Control.

HNS Harmonic Navier-Stokes Solver.

M Inflow Mode.

KH Kelvin Helmholtz.

LFC Laminar Flow Control.

LPSE Linear Parabolised Stability Equations.

LST Linear Stability Theory.

NLF Natural Laminar Flow.

NPSE Non-linear Parabolised Stability Equations.

0S Orr Sommerfeld.

PSE Parabolised Stability Equations.

PPE Pressure Poisson Equation.

RHS Right Hand Side.

TS Tollmien Schlichting.
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SYMBOLS
afs rad/m
O‘Z(k,j) rad/m
Ak /s
Ao In/S
Bo rad/m
Bu -

Cx m

Cx m

Cp -

699 m
999, m

(5() m

0* m

fo Hz

h m

A m

A rad

U m/s
W m/s
) rad

q -
QY m/fs
P kg/m?
SxP m

T m/s
Tu -

u m/s
Uno m/s
up m/s
v m/s
v m/s
v m?/s
w m/s
wo rad/s
x m

x m

Tt m

Yy m

~q

Yoy M

z m

Spatial growth rate from Orr-Sommerfeld analysis.
Spatial growth rate from DNS (for a perturbation quantity
q with temporal periodicity k and spanwise periodicity j).
Amplitude (for a perturbation quantity ¢ with temporal
periodicity k and spanwise periodicity 7).

Amplitude of the stationary CFI at the inlet.
Fundamental spanwise wavenumber.

Hartree parameter.

Wing chord in the direction orthogonal to the leading edge.
Wing chord in the direction parallel to the incoming stream.
Pressure coeflicient.

Boundary layer 99% thickness.

Boundary layer 99% thickness at the (virtual) step apex.
Boundary layer 99% thickness at the inlet.

Displacement thickness.

Fundamental temporal frequency.

Step height.

Spanwise perturbation wavelength.

Sweep angle.

Perturbation component normal to the base flow.

Total perturbation (i.e., associated to its modulus).
Perturbation phase.

Vector of state variables.

Velocity vector in the wind-tunnel section.

Density.

Arc length of the aerofoil.

Perturbation component tangential to the base flow.
Turbulence intensity.

Chordwise velocity.

Free-stream chordwise velocity at the inlet.

Chordwise velocity at the (virtual) step apex.

Velocity vector.

Wall-normal velocity.

Kinematic viscosity.

Spanwise velocity.

Fundamental angular temporal frequency.

Cartesian coordinate system.

Leading-edge-orthogonal (or, chordwise) direction.
Chordwise position relative to the step: xg = z — 177.620.
Wall-normal direction.

Wall-normal location at which the amplitude of perturba-
tion quantity ¢ is measured.

Leading-edge-parallel (or, spanwise) direction.
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This appendix provides additional plots of stationary perturbation organisation

at the step with regard to chapter 4 (figures A.1 and A.2) and chapter 6 (figures A.3
and A.4).
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FIGURE A.1: Organisation of the chordwise velocity of the steady perturbed flow (a), total pertur-

bation field (b), fundamental perturbation field (¢) in the reference (no-step) case under medium-
amplitude CFI conditions.
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FIGURE A.2: Organisation of the chordwise velocity of the steady perturbed flow (a), total per-
turbation field (b), fundamental perturbation field (c) in step case I under medium-amplitude CFI
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212 A. APPENDIX: PLOTS OF PERTURBATION EVOLUTION AT THE STEP

(T(/Orl) + T{Uf1)> Jtoo (x10%)

AL )
A WAWWN
& 0 .\\5\“\‘l‘“‘\‘\\t‘\\\\?\ :.5
BN LA LS
L e—

FIGURE A.3: Organisation of the streamwise-velocity perturbation for 5 = o in cases Test A (a),
B (b), and C (c) of table 2.5.
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B.1. LINEAR AND NON-LINEAR PARABOLISED STABILITY

EQUATIONS

he NPSE are solved on the unperturbed DNS base flow considering a grid

| containing 500 equispaced streamwise stations and 80 Chebyshev collocation

points in the wall-normal direction. The first-order backward Euler scheme

is used for the discretisation of chordwise derivatives and eleven stationary spanwise

Fourier modes (including the mean-flow distortion) are considered for the represen-

tation of perturbations. The simulations are initialised with a stationary crossflow

eigenmode obtained from LST on the inflow base-flow profile, to which a finite am-
plitude is assigned.

The high-order perturbation harmonics are introduced in the chordwise-marching
scheme, successively in space, once their strength surpasses the threshold of 10~® in
units of us; the measure of strength is based on the order of magnitude of the
associated non-linear forcing term. When a new harmonic component is added,
its amplitude is assumed to be zero in the grid point immediately upstream of it.
Strong initial growth is therefore perceived immediately downstream of it. Finally,
inherent to the PSE approximations, the complex streamwise wavenumber of each
mode is iteratively updated at each streamwise station to a threshold of 107¢/Re
(where Re is the Reynolds number), ensuring slow chordwise changes in the pertur-
bation shape function. By considering only a single fundamental mode and disabling
non-linear interactions, the procedure provides solutions to the Linear Parabolised
Stability Equations (LPSE). In this case, the solutions are independent of the initial
mode amplitude, which is arbitrarily matched to the NPSE and DNS amplitude at
a selected x-position.

B.2. TWO-DIMENSIONAL SPANWISE BIGLOBAL
Two-dimensional linear stability analysis is additionally employed in this thesis to
assess mechanisms of unsteady instability of the steady perturbed flow downstream of
the step'. A two-dimensional plane-marching stability approach has been considered,
popularly known as PSE-3D (Paredes et al., 2015), which is here formulated using a
non-orthogonal coordinate system. The flow case investigated in this thesis requires
the use of a non-orthogonal coordinate system because it is periodic in the z-direction,
i.e., parallel to the step, while the smallest gradients are encountered in a direction,
that is approximately aligned with the crossflow vortex. The latter direction, denoted
xg, is non-orthogonal versus the y-z plane. The angle between the leading-edge-
orthogonal z- and non-orthogonal xy-directions is denoted by 6.

The plane-marching stability approach is derived in three steps. First, the Navier-
Stokes equations are linearised about the steady perturbed flow, gpp (2.10). To
this end, the instantaneous flow is decomposed into the steady perturbed flow and
unsteady perturbations with infinitesimal amplitude, gp;;. Substituting this de-
composition into the Navier-Stokes equations, cancelling the terms that form the
governing equations for gpp, and dropping the nonlinear terms in gf; produces

IThe method description is derived from a publication by the author (see Groot et al. (2025)).
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the linearised Navier-Stokes equations. Second, the linearised Navier-Stokes equa-
tions are transformed to the non-orthogonal coordinate system. Third, the following
stability ansatz, that leverages slow evolution in the xy-direction, is imposed:

Zo

qgiG(xg,y, Zg,t) = qBig(Ig,y, Zg) exXp [i (/ Oég(fg) dfg — wt) + c.C., (Bl)

6,0
where gpig = [liBic Uic Weic Ppic]® contains the perturbation shape functions,
is the wavenumber in the zy-direction, w is the angular frequency, x4 g is initialization
location, and ¢ indicates the integration-variable equivalent of xg.

Substituting ansatz (B.1) into the linearised Navier-Stokes equations and drop-
ping the second-order xy-derivatives of gp;g yields the plane-marching stability equa-
tions. Upon dropping the xyp-dependence of Gpic and «ay, the stability problem re-
duces to a two-dimensional (i.e., in the zg)-y plane) eigenvalue problem, that is
referred in this thesis to as the local approach. The reader is referred to Groot
et al. (2025) for all relevant details of the non-orthogonal transformation and the
full system of stability equations. In the Q-nomenclature of Groot et al. (2025) that
precisely disambiguates the assumptions made in the stability approaches, the plane-
marching approach deployed here corresponds to: Qs = 0, 3 = Q, = 1, while the
local approach sets: 25 = Q; =0 and Q, = 1.

The systems of partial differential equations are closed with boundary, initial,
and auxiliary conditions. Periodic boundary conditions are imposed at the spanwise
boundaries and no-slip conditions are imposed at the wall and free stream boundaries;
the y-momentum equation is used as a compatibility condition for the pressure at
wall and free-stream boundaries. The local, spatial eigenvalue problem is solved
with the Arnoldi algorithm (for complex gy, upon specifying a value of w) in order
to obtain the initial condition at a location immediately downstream of the step,
namely x = 1780p. Ansatz (B.1) in itself does not guarantee that the xg-derivative of
the perturbation shape functions @i are small; the xg-dependence of both ay and
gpic in ansatz (B.1) is leveraged for this purpose. Given a reasonable initial guessed
solution for a given z-station, the xg-derivative of the shape functions is iteratively
minimised by updating ay with the following auxiliary condition:

- Oqgi 1 0
// gpicM SEG dy dze 1
ki 2 ;o M= , (B.2)

~ ~ ’ 1
// qgiGMqBiG dy dze O O

where gh, = [0B,¢ Thiq Whq Phig) and the superscript H indicates Hermitian trans-
position. The perturbation-pressure contribution is dropped, because it is directly
linked to the velocity perturbations for incompressible conditions. This condition
was deemed satisfied when relative ay-differences were recorded to drop below a
threshold: |aftt — af|/laktt < 2.2 x 10710,
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Perturbation amplification is quantified with N-factors, calculated as follows:

N(z) = - /ﬂf ap,i(79(Z)) secO(z) dz + %ln Egig(z)

o Epic(xo)’ (B:3)

where: Epic(z) = // (|asic(zo(z), y, 29)|2 + |oBic|* + \@Big|2) dy dz,

Z is the integration-variable equivalent of the orthogonal z-coordinate, and zq is here
taken to correspond to the initialisation location near the step.

The stabilisation procedure proposed by Andersson et al. (1998) enables the use
of a high resolution in the streamwise direction immediately downstream of the step,
without having to drop any potentially relevant terms to eliminate the residual el-
lipticity (Herbert, 1997). In the Q-nomenclature of Groot et al. (2025), 2, = 1 is set
here. A small, constant value of the stabilisation length scale s = O(dp) renders the
plane-marching approach effective for the most-amplified perturbation immediately
behind the step. Solution convergence is demonstrated as s is reduced (see table 8.2).
For more details on the stabilisation approach, see Groot et al. (2025).

The plane-marching BiG equations and boundary conditions are discretised by
using finite differences. Central differences are used in z (tenth order) and y (sixth
order), while fixing the stencil width and moving the evaluation point for derivatives
toward a given boundary when necessary. A BiQuadratic mapping (Groot et al., 2018,
§ 3.1.4) is used in z to produce an approximately uniform distribution ((2;1, zi2) /A =
(—1,1)/6, with z/A, € [-1/2,1/2]). Another BiQuadratic mapping is used in y
to highly cluster the grid around the shear layer of interest ((yi1,¥i2, Ymax)/00 =
(0.5,2,24.92)).

Upon using a Chebyshev Gauss-Lobatto node-distribution in the computational
&-domain with € € [—1,1] (Groot et al., 2018, § 3.1.1), nodes are clustered toward the
boundaries to avoid the Runge phenomenon. The wall-normal mapping parameters
were chosen to maximise the resolution for the most unstable z-instance of the most
amplified mode as computed with the local approach (with maximal —ayg ;sec6 in
x for f = 12 kHz; |Aag,;/ag| = 3.0 x 107 or less, upon reducing the number
of nodes by 10% in each direction), see figure B.1 (a) for an example grid. The
number of nodes (N, = 300, N, = 200) yields an negligible error in «y ; (specifically:
|Acg i/agi| = 8.0 x 1075 or less) at a location where the same mode is less-well
resolved based on the mapping setting, see figure B.1 (b). Second-order backward
differences (backward Euler) are used in xg. Steps of Axz/dy = 0.1 are taken from
the step up to @s/dp = 7.38, whereafter a larger stride of Axz/dy = 1 is used. All
integrals over spatial coordinates are computed using numerical approaches with
similar or higher orders of accuracy as the finite differences in the corresponding
directions.

Finally, the angle 6 = 60,;;, which forms between the zgy-coordinate and the
leading-edge-orthogonal x-coordinate in the large-amplitude step case s.C, is iter-
atively found at every considered z-station by minimising the quantity

J{Cam ) (o) (oY om0
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FIGURE B.1: Grid resolving step-mode; as computed with the local BiG approach at zst/dp = 1.18
(a) and 10.38 (b) at 12 kHz. Grid (gray lines), isolevels of |ap;g| (filled contours; 1/8, 2/8,... 7/8 of
maximum) and upp (solid lines: 10%, 20%,... 90% of maximum; dashed line: reverse flow).
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FIGURE B.2: (a) Chordwise evolution of 8 = Omin (that minimises expression (B.4), green squares)
and the direction of the inviscid streamline (black circles) corresponding to case s.C. (b) Chordwise
evolution of the maximum (red lines) and root-mean-square (e.g., equation (B.4); green lines) in the
z-y plane of the z- (dashed lines) and zg¢-derivatives (solid lines) and the y-derivative of the velocity
in the direction of the inviscid streamline (black line, independent of the choice for #). The vertical
red line indicates the step location.

that is, the root-mean-square of the relevant dgpp/dx¢-derivatives in the z-y plane.
The angle 6 = 60,3, is shown alongside the inviscid streamline angle for case s.C' in
figure B.2 (a). It is furthermore demonstrated in figure B.2 (b), how the xg-derivatives
are about an order of magnitude smaller than the z-derivatives (comparing solid
coloured versus dashed lines) and how these xg-derivatives are more than an order
of magnitude smaller than the principal shear associated to the velocity in direction
of the inviscid streamline.
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Jordi Casacuberta Puig
By Silvia Casacuberta Puig

summer of 1992 while the city celebrated the Olympic Games. He grew up

between the volcanoes of Olot and the sea of Mallorca, nourished by the love
and support of his parents Maria Teresa and Carles, his extended family, and Joke,
who hailed from the Netherlands and made him discover the Stroopwafels early in
his life. I joined the family some years later —I was lucky to be the younger sibling,
as it endowed me with the great gift of never having spent a day in my life without
having Jordi by my side.

Jordi was always the best student in the class, graduating with honors throughout
the school years. He also found time to become a phenomenal basketball player, a
passion of his that continues to this day, and to win literary contests that were per-
formed in Barcelona’s Opera House (El Liceu). His love for fluid mechanics became
evident early on: his high school thesis, which earned him numerous awards, studied
Gaussian processes on viscous flows. I can still remember Jordi dropping shampoo
down a surface of porous volcanic rock with our father in our living room. Jordi en-
rolled in Universitat Politécnica de Catalunya and earned a Bachelors in Aerospace
Engineering, where his interest in fluid mechanics solidified. His Bachelors thesis was
really two full theses in one: Jordi produced a study of the wall shear stress in the
aorta in collaboration with Hospital Sant Pau as well as an open access guide to
learn OpenFOAM (under the great motto: let your dreams flow).

His passion for fluid mechanics brought him to Delft, and in the summer of 2014
we all drove there together from Barcelona to settle Jordi into his new adventure.
Jordi completed an MSc in Aerospace Engineering from TU Delft, while also doing
an internship in Germany on industrial CFD. Jordi found a home in the research
group that he would then stay on for his PhD, joining the dedicated supervision of
Prof. Marios Kostonis & Prof. Stefan Hickel. Jordi’s research on laminar-turbulent
transition has taken him to conferences all around the globe, as well as to the world
of entrepreneurship through his aircraft-wing patent (and even to the worlds of Ni-
etzsche and of Greek philosophy).

During his years at Delft, Jordi has also taught and mentored many students,
guiding them through the journey of research. I have always admired the spark in
his eyes when he tells us about his students over the dinner table, and how clearly
he loves sharing his enthusiasm for his field with others. I understand how fortunate
these students are —I, too, had Jordi as my role model and teacher growing up. I

J ordi came into the world as an “Olympic baby”, born in Barcelona during the
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still remember how he helped me with my high-school physics homework. He would
even calculate the projectile motion of an olive stone under air resistance, then test
his results by launching them down our hallway while preparing for Olot’s annual
longest-throw contest.

Jordi has certainly let his dreams flow, and they have carried him to the enormous
milestone of this PhD thesis. In the way, his motion through life —a perfect balance
between the patience of laminar order and the spark of turbulence when curiosity
takes hold— has touched everyone fortunate enough to share his current.
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PHILOSOPHICAL NOTE:
LAMINAR-TURBULENT
TRANSITION AND THE

STRIVING OF THE
HUMAN SPIRIT
(BACK COVER)

thetic phenomenon is existence and the world eternally justified.” Building on

this proposition, the present essay contends that conducting a PhD thesis in
science may be conceived as an artistic practice: one that enacts the tragic aesthetics
of Greek culture and thereby constitutes a form of existential justification. At the
same time, it warns against the progressive Apollonisation of scientific theses: the
privileging of structure and quantifiable deliverables within narrowly defined time
horizons at the expense of their Dionysian dimensions, which distorts the balance
of scientific-artistic creation. What, then, might Nietzsche’s interpretation of classi-
cal aesthetics, the dynamics of fluid flows, the form of the scientific thesis, and the
striving of the human spirit have in common?

Nietzsche’s proposition is situated within the polarity of two artistic drives that,
while apparently opposed, are in fact complementary within Greek culture: the Apol-
lonian and the Dionysian. The Apollonian, named after Apollo —the god of light,
dream, and prophecy— represents order, structure, clarity, rational knowledge, and
moderation. The Dionysian, named after Dionysus —the god of intoxication and
ecstasy— embodies chaos, the dissolution of boundaries, formless flux, instinct, and
excess (Smith, 2000).

Psychologically, the Apollonian may be understood as the human necessity for
conscious control, rational planning, and the maintenance of order (comparable to
Freud’s ego and superego), while the Dionysian corresponds to unconscious impulses
and emotional release. Taken in isolation, the Apollonian reduces life to sterile ra-
tionalism; the Dionysian, left unchecked, collapses into destructive excess.

According to Nietzsche, the Greek tragedy of the fifth century BC (exemplified

O ne of Friedrich Nietzsche’s most provocative claims is that “only as an aes-
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in the works of Aeschylus and Sophocles) embodies a unique synthesis of the Apol-
lonian and the Dionysian. It unites the Apollonian principle of form, measure, and
representation (akin to the plastic arts of sculpture) with the Dionysian principle of
rhythm and music, producing an art form that affirms life by reconciling struggle with
beauty (Smith, 2000). For Nietzsche, the tragic synthesis shows that difficulty, far
from negating existence, becomes the medium through which meaning emerges, for
it is inseparable from passion and willingness in any genuine affirmation of existence.

A central argument of Nietzsche’s The Birth of Tragedy is that the rise of Socratic
rationalism (mediated into Greek drama above all through the plays of Euripides)
signals the decline of Greek tragedy. Socratic culture, with its faith that reason is
both the source of virtue and the path to salvation, displaced the tragic worldview
by imposing a purely Apollonian foundation masked as morality (Smith, 2000). For
Nietzsche, this shift inaugurates the long decline of Western metaphysics: the gradual
subordination of life to asceticism, reactive nihilism (see the work of Deleuze), and
passive obedience to static objective orders, thereby weakening the existential Will
(in Schopenhauer’s sense) that once enabled individuals to affirm existence and the
world by creating, striving, discovering, and self-overcoming.

The tension between the Apollonian and the Dionysian has been invoked in analo-
gies concerning types of researchers. Albert Szent-Gyorgyi, the recipient of the 1937
Nobel Prize in Physiology or Medicine, observed that “in science the Apollonian
tends to develop established lines to perfection, while the Dionysian relies on in-
tuition and is more likely to open new, unexpected alleys for research.” He further
elaborates: “The Apollonian clearly sees the future lines of his research. Not so the
Dionysian, who knows only the direction in which he wants to go out into the un-
known and relies, to a great extent, on accidental observations.” “A discovery must
be, by definition, at variance with existing knowledge [...] A great deal of conscious
or subconscious thinking must precede a Dionysian’s observations. There is an old
saying that a discovery is an accident finding a prepared mind.” The Apollonian thus
embodies continuity, refinement, and methodological discipline, while the Dionysian
embodies rupture, creativity, and openness to chance in discovery.

Concerning a thesis in fluid mechanics, the tension between the Apollonian and
the Dionysian manifests itself with particular intensity in both its scientific and meta-
physical dimensions. It appears first in the very substance of the natural world: the
duality of laminar and turbulent states of fluid motion. Laminar flow —ordered, pre-
dictable, and layered— constitutes the epitome of the Apollonian, a dream of clarity
and stability. Yet this dream is fragile: at the slightest provocation, it breaks down
into turbulence —flow that is disordered, seemingly unpredictable, but inherently
containing coherent emergent forms. In between lies instability, the periodic eternal
recurrence that debates between Apollonian rectitude and Dionysian excess. Because
of instability, the fluid flow is never in static order, never granted a final state; its
being means always becoming.

Second, the act of conducting a thesis in fluid mechanics mirrors the structure
of Greek tragedy: it begins with Apollonian clarity and rational planning, but is
inevitably destabilised by Dionysian uncertainty; a necessary tension in the transi-
tioning (or, becoming) of the self. As the work progresses, the researcher comes to
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realise that the Socratic promise of poetic justice through knowledge (with its custom-
ary deus ex machina®) does not apply here. Computer simulations and experiments
fail despite rigorous preparation; hypotheses do not yield conclusive results despite
accurate execution; articles are rejected despite months of careful labour. The initial
Apollonian structure is thus rapidly confronted by one of the two faces® of Dionysus,
namely, bitterness and destruction. Like Oedipus’s fate*, the Apollonian tragic hero
par excellence, the researcher does not always hesitate because of moral failing or
negligence, but because of what could not be known in advance. Yet it is precisely
when the initial plan trembles and the Will is embodied, that the second face of
Dionysus unexpectedly reveals itself: creativity and joy. Out of the collapse of cer-
tainty emerges the possibility of novelty: an affirmation not in spite of the failure,
but through it.

A scientific thesis, therefore, cannot be understood without the Dionysian ele-
ments that make novelty possible, for a thesis is not only the execution of predefined
goals, but also a canvas upon which the researcher expresses himself. Novelty, by
definition, lies beyond pre-established objectives; it is never fully contained within
the Apollonian plan. In this sense, the discovery at the heart of a thesis is also
an aesthetic event: the transfiguration of doubt and failure into the joy of insight
through creation and receptivity to the unexpected. Fear not to welcome Dionysus
into one’s research, and into one’s life, for even the smallest step may redirect the
course of inquiry in unforeseen and beautiful ways.

2The expression deus ez machina (literally, “god from the machine”) originates in classical Greek
tragedy, where a god would be lowered onto the stage by a mechanical crane (méchané) to resolve a
seemingly unsolvable plot. In a broader sense, it designates any artificial or improbable intervention
that abruptly resolves a dramatic or intellectual problem. Nietzsche criticises this device, insofar
as it replaces the tragic confrontation by an Apollonian illusion of resolution.

3In Greek mythology, Dionysus embodies a dual nature: he is both the bringer of ecstasy, fertility,
and communal joy, and the force of frenzy, destruction, and dissolution. This ambivalence is often
analogised to wine, his sacred drink, which can uplift the heart and inspire creativity in moderation,
yet intoxicate and ruin when taken to excess.

4Qedipus is the mythical king of Thebes in Sophocles’ tragedy Oedipus Tyrannus. Despite his
intelligence and determination to save his city, he fails because he is unaware of his true parentage:
in trying to avoid the oracle’s prophecy, he unknowingly kills his father and marries his mother.
His downfall arises not from moral corruption, but from circumstances hidden from his knowledge.
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