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Abstract

The purpose of this paper is to establish probabilistic models for still-water loads, based on design data, and the combined still-water and wave
load effects for semi-probabilistic and probabilistic design of floating production, storage and offloading vessels (FPSO). A new still-water load
model for FPSOs is proposed, based on a Poisson square-wave model, with a modified Weibull distribution for load intensity, which accounts for
load control during operation. The long-term variation of wave-induced load effects is modelled by a Poisson square-wave process. A new
solution for the combined effect is derived. A procedure for determining characteristic extreme values for individual and combined load effects,
and load combination factors, is established. The methodology is used to illustrate load combination factors suitable for typical FPSOs. This
approach is also shown to be useful in obtaining realistic load models, in terms of random variables, for use in reliability formulations.
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1. Introduction

A floating production, storage and offloading unit (FPSO)
represents an attractive concept for offshore production of oil
or gas. It is the foremost floating production facility, making up
almost 60-70% [1] of all floating systems in the world.

FPSO hulls are similar to those of trading tankers, except
that they have some extra topside equipment and an
arrangement for turret mooring. However, FPSOs operate in
a different way than tankers. For instance, cargo is
continuously being loaded and unloaded, implying that still-
water loads vary constantly. Moreover, the vessel operates with
zero speed, with or without weather vaning. Finally, the
offshore industry is greatly concerned about safety and applies
first principles, as well as reliability-based approaches, in
establishing rational design methodology.

The focus of this paper is the assessment of still-water and
wave-induced load effects, and their combination, for structural
design and safety analysis of FPSOs. Even though they are
slightly correlated, the two load effects are commonly
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estimated separately; therefore, their combined effects need
to be determined.

The load combination problem is virtually a superposition
of stochastic load processes. The main issue is that the maxima
of individual load processes will not occur simultaneously.
This implies that the maximum of the combined processes, in
general, is smaller than the sum of the maxima of the individual
load processes.

Load combination methods are dependent on the load
models. There is no adaptable method suitable for all types of
load models. For example, the Ferry-Borges method [2] is
suitable for Ferry-Borges load processes, the load coincidence
method [3] is mainly suitable for Poisson processes, while the
point crossing methods [4] is suitable for continuous stochastic
processes.

In addition, there are deterministic combination rules,
namely, the peak coincidence method, the Turkstra’s rule [5]
and the SRSS rule [6]. Wen [3] carried out a comprehensive
evaluation of different kinds of deterministic combination
rules. A detailed evaluation of Turkstra’s rule and SRSS rule
was made by Nass [7-9]. The general conclusion is that
Turkstra’s rule is non-conservative and the SRSS rule lacks
consistency.

Currently, the design of ocean-going ships is based on
adding the characteristic extreme values of still-water and
wave loads, which usually leads to over-design. As far as
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the stochastic combination of these loads for ocean-going ships
is concerned, Guedes Soares and Moan [10] initially
investigated their combination by the upcrossing rate method.
Furthermore, Guedes Soares [11] adopted the alternating
renewal model to reproduce the time variation of still-water
load effects (SWLE), in which the durations of voyages and
time in port are taken into account. The classical Ferry-Borges
and point crossing methods were adopted to predict combined
extreme values and determine load combination factors
suitable for ocean-going ships.

As indicated above, the characteristics of still-water and
wave loads for FPSOs differ even from those of tankers. Moan
and Jiao [12] and Wang and Moan [13] adopted the Poisson
square-wave model to reproduce the time variability of the
still-water and wave load effects. Based on operational data of
still-water bending moments for a particular FPSO, they found
that the hogging and sagging still-water bending moments
followed exponential and Rayleigh distributions. The wave
loading was modelled by a Weibull distribution. They
compared different load combination methods and established
load combination factors valid for a particular FPSO.

However, exponential and Rayleigh distributions for the
still-water bending moments may not be appropriate for
FPSOs in general and a more versatile distribution model is
desired. In actual operations, still-water bending moments
are subject to operational control. This means that, in
principle, the maximum allowable value cannot be
exceeded. However, some abnormal operations and excep-
tions may result in the allowable value being exceeded.
Therefore, the constructed distribution must be modified to
allow for such conditions.

Moreover, unlike the situation for ocean-going ships,
FPSOs may experience a continuous change in load conditions
owing to the loading—offloading cycle, i.e. being repeatedly in
sagging and hogging conditions. In addition, the procedure for
loading and offloading the vessel during one cycle has a direct
effect on the time variability of still-water bending moments.
This means that a short-term model for time variation of still-
water load effects over one cycle should be constructed.

Furthermore, high values of topside loads, combined with
the presence of the turret, may result in an uneven time fraction
in hogging and sagging of a FPSO, which has a direct effect on
the combined sagging and hogging extreme bending moments.

In addition, for FPSOs operating in different areas with
harsh and benign conditions, extremely diverse wave-induced
loads are experienced. This implies that the relative magnitude
of still-water and wave-induced loads varies and, hence, so do
the load combination factors.

Finally, it is noted that only data for still-water loads are
available when the design is carried out. Therefore, combi-
nation analysis needs to be based on available data.

The purpose of the present paper is to establish probabilistic
models for still-water loads based on the design data, as well as
for the combined still-water and wave load effects (e.g. vertical
bending moments amidship) for the semi-probabilistic and
probabilistic design of FPSOs. In particular, semi-probabilistic
methods, based on partial safety factors, are increasingly

adopted in modern design codes, while probabilistic methods
are applied to calibrate semi-probabilistic ones [14-16]. The
important goal is to develop a new solution for the combined
still-water and wave load effect by taking into account the
different features of still-water loads of a FPSO.

2. Still-water bending moment (SWBM) model
2.1. General

While the still-water load, due to gravity and buoyancy, may
contribute to 40-50% of the total global hull-girder load for
merchant vessels, the effect may be somewhat less for
production vessels in the North Sea. However, for new
barge-type models with a large block coefficient, Cg, the
still-water load could be much larger. Also, the still-water to
wave load in benign waters will be larger than for North Sea
conditions.

However, topside weight and the presence of a possible
turret result in a distribution of weight that differs from that of
tankers. The additional volume at the ends of ship-shaped
FPSOs, combined with limited ballast tanks, can create still-
water bending moment significantly larger than for traditional
tankers.

Some offshore production ships are converted tankers;
therefore, one might easily suggest that SWBM statistics for
tankers would be applicable to production ships. Moreover,
production ships experience a different mode of operation than
tankers. For instance, they undergo a continuous cycle of cargo
loading and off-loading, while tankers go to sea with a full load
or with ballast. Also, the frequency of load condition change is
different. Hence, the still-water load effect (SWLE) in
production ships differs from those in tankers and other
conventional ships. This has been clearly reflected in a
statistical analysis of SWLE by Moan and Jiao [12].

The designed FPSO will allow crude oil offloading in a
continuous round-the-clock operation at high flow-rate into a
shuttle tanker moored in tandem or side-by-side. The crude
oil would be directed to storage tanks by aligning valves
from the FPSO’s central control room. Tanks would be filled
in a predetermined sequence to maintain the vessel’s
hydrostatic stability and to keep stress levels in the hull
within allowable limits. However, a shortage of shuttle
tankers due to bad weather or a lack of storage capacity may
result in lost production several times a year. In general,
maximum required loading time might vary significantly
between ships since it depends on oil storage capacity and
maximum oil production rate of the vessels. Based on
available FPSO operating data [1], it can vary between
4 days and 1 month.

Since, the load only needs to comply with the upper limit of
bending moments or shear forces, the captain has significant
flexibility. Hence, he may not strictly follow the load manual
and, hence, produce larger variations in the still-water loads
than implied by the manual, and even result in exceeding the
allowable value.
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Table 1
Still-water bending moment of some existing FPSOs
FPSO Locations Sagging (Mj,,, GN m) Hogging (Mj,,, GN m) M,y p/Mgy

Rule® Design Rule® Design Sag Hog
1 NS 4.74 4.05 5:12 5.07 0.85 0.99
2 NS 5.53 10.8 5.54 1.96 1.95 0.35
3 NS 3.73 1.043 4.07 3.235 0.28 0.80
4 NS 1.15 1.052 1.29 1.309 0.92 1.02
5 WA 4.49 3.277 497 4323 0.73 0.87

NS, North Sea; WA, West Africa.
? Rule from Eq. (1).

To normalize the still-water bending moment, the following
formula may be used

Myysr =—0.065CL’B (Cg 4+ 0.7) in sagging (kNm) (1)

Mgy r = +0.015C,L*B(8.17— Cg)  in hogging (kN m)

where L is the ship’s length, B its beam, Cy is the block
coefficient and C is the wave coefficient given by:

’

3/2
300—L
A= | ———— K < L=
10.7 100 for 190 < L <300
10.75 for 300 < L <350
CI = (2)
32
L—350
e (e <L<
10.75 150 for 350 < L <500
\

These expressions apply for trading vessels and are not
relevant for FPSOs. In general, the global SWLE for ships
should be determined by direct calculation as the maximum
value under possible extreme load design conditions. While
still-water bending moments for original FPSOs were within
the regulation requirements for trading tankers, different
features of new models have resulted in still-water loads
that exceed the rule moment by up to 95% [17] (Table 1). It
is obvious that actual design values deviate significantly from
Eq. (1).

In the remaining part of this section, the long- and short-
term time variability of SWBM is described, followed by a
discussion on different parent distribution models of SWBM.

2.2. Long-term variability

As mentioned above, an FPSO undergoes a continuous
loading—offloading cycle. In one cycle, it will experience
maximum bending moments for both hogging and sagging.
The variation in the maximum SWBMs over different cycles
describes the long-term variation of SWBM.

Owing to the random arrival of shuttle tankers, different
FPSO loading capacities, weather conditions, uncertainty of
actual operations and so on, the duration of any one loading—
offloading cycle varies. If the correlation between two
successive cycles is neglected, a Poisson point process can
be used to describe the renewal of different cycles within the
lifetime of an FPSO. Furthermore, if the maximum SWBM
(sagging or hogging) in one cycle is known, the Poisson
square-wave model can be used to describe the long-term
variability of SWBM. However, over one cycle, an FPSO will
be successively hogging and sagging for different durations.
Therefore, two conflicting square-waves are now imbedded in
one cycle and their height and width correspond to the
maximum hogging and sagging SWBMs and the duration of
hogging and sagging, respectively.

As shown in Fig. 1, the proposed model consists of a
Poisson point process for the renewal time of successive cycles,
with a mean occurrence rate of voy = 1/E[7.,], where E[7,] is
the mean value of the duration 7., for any one cycle. At each
renewal instant, the SWBM is successively modelled by two
square waves. Their heights Mg st and My st correspond to
the maximum intensities of hogging and sagging SWBM in one
cycle, i.e. random variables with a distribution, which will be
discussed later. Their random widths 7, and 7 are the durations
of hogging and sagging, and are assumed to follow exponential
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Fig. 1. Modelling long-term SWBM variability.




130 W. Huang, T. Moan / Applied Ocean Research 27 (2005) 127-141

distributions. Their mean values are equal to pyE[7.,] and
DsE[Tcy], where py and pg are the probabilities in hogging and
sagging for the lifetime of one FPSO, respectively.

By adopting the above-mentioned model, and assuming that
intensities My st (Mswn,sT and Mgy st refer to hogging and
sagging) of SWBM in one cycle are independent and
identically distributed random variables, and that the square
wave height in each cycle is fully substituted by M, st, the
probabilistic distribution of maximum hogging (or sagging)
SWBM Mwmax,r over a reference period T can be approxi-
mated as follows [3]

Fytyppy (M) = eXp{rey TIL = Fyg o ()]} 3)

swmax,T

Using Eq. (3), all the extreme values of SWBM in any
reference period can be predicted; however, in practice, it is the
characteristic extreme value in any reference period T that is of
interest. This value is usually obtained by calculating the mean
number of upcrossing a certain level m for a load process. For
the present Poisson model, the mean number of upcrossing
some level m can be determined as follows:

Now(m,T) = vey T[1 —Fyy, o (m)] )

By considering Ng,,(m,T)=1, the corresponding character-
istic value in the reference period can be determined.

From Egs. (3) and (4), it is clearly seen that the prediction of
all extreme values is based on the distribution function F Mo
(m) of the maximum SWBM in one loading—offloading cycle,
as addressed below.

2.3. Short-term variability

In one typical loading—offloading cycle, the variation in
SWBM is referred to as the short-term variability. This is due
to difference in weight distribution, which successively change
the buoyancy, resulting in changes in SWBMs.

There are two kinds of weight distribution variations: (1)
where loading positions remain unchanged but the cargo or
weight varies; and (2) where the loading positions change.

Therefore, we define one load condition, with one fixed
combination of loading and offloading positions, as one
independent load condition. In one load condition, there is
one maximum SWBM, which is defined as the intensity of
SWBM corresponding to the load condition.

In fact, any one-load condition is the accumulated results of
previous load conditions. Therefore, a strong correlation must
exist between them. However, an assumption of independence
usually results in conservative estimates.

In one typical loading—offloading cycle, the FPSO tanks will
be filled in a predetermined sequence to maintain the vessel’s
hydrostatic stability and keep stress levels in the hull within
allowable limits, i.e. it will experience a fixed sequence of
loading and offloading.

However, the initially planned loading sequence might not
be strictly followed in actual operation, owing to human ‘error’
or exceptional situations, such as possible early unloading prior
to a storm, or repair of cracks. In addition, since the load only

needs to fulfil the upper limit to bending moments or shear
forces, the captain has significant flexibility in choosing
loading or offloading procedures, among the other features,
the loading positions.

In effect, this means that the loading—offloading sequence is
subject to uncertainty and the duration of any one loading
process, with fixed loading and offloading positions, is also
uncertain. Therefore, it is accepted that a stochastic point
process be adopted to model the renewal of a series of loading
processes with fixed loading and offloading positions, i.e. the
renewal of load conditions with time.

Strictly speaking, the renewal of load conditions is an
operational control process and it is very difficult to find an
appropriate model to describe it. From an engineering point of
view, a Poisson model is adopted, due to its simplicity, to
imitate the renewal of load conditions.

It is well known that, for a Poisson model, mean duration is
sufficient to describe the renewal of load conditions. The mean
value should be obtained from statistical analysis of actual
operational data. However, in the design stage, the actual
operational data is not available, so an estimated mean duration
value is desirable. Moreover, data for previous FPSOs are not
necessarily representative of future models.

In the design stage, the loading capacity of one FPSO is
known based on its oil tanks; therefore, its oil production rate is
not difficult to determine. Based on these two parameters, the
duration of one loading—offloading oil cycle can be approxi-
mately estimated. For example, for the FPSOs, Petrojarl I, A
and B, the duration of one cycle is 190/50, 920/200 and
1100/40 days, respectively [1]. Then, based on a predetermined
loading sequence from the manual, the number of different
combinations of loading—offloading positions or the number of
load conditions in one loading—offloading cycle can be
identified. Dividing the duration of one cycle by the number
of load conditions, the expected load condition duration can be
estimated.

The uncertainty of the mean duration of load conditions will
affect predicted extreme values. According to the principle of
order statistics, the predicted extreme value is larger when the
mean duration is smaller, because the number of independent
load conditions increases. However, when the operational
control of SWBM is taken into account, predicted extreme
values are basically independent of the number of load
conditions. The numerical analysis in Section 5 highlights
this point.

Based on the above considerations, the short-term model,
shown in Fig. 2, is assumed for a loading—offloading cycle. In
this model, any rectangle stands for one of the above-defined
load conditions, its height My, ; (Myws; and Mgy, refer to
sagging and hogging) stands for the intensity of SWBM under
the ith load condition, its width A7; (A7;, and A7 refer to
hogging and sagging durations) stands for the duration of the
corresponding load condition, while #; is the renewal instant of
load conditions.

Now, the probabilistic distribution of M, ; has to
be determined. According to the above analysis, My; is
the maximum SWBM in the ith load condition. Owing to the
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Fig. 2. Modelling short-term SWBM variability.

non-stationarity of the stochastic load process, the probabilistic
distributions of all the My, ; s are different. In particular, the
correlation of different My, ; values is difficult to describe and
determine. Therefore, some assumptions have to be made.

In the design stage, the statistical distribution of SWBMs,
based on all the design load conditions, can be obtained. In this
analysis, the design load conditions are a series of critical load
conditions, so the acquired distribution can be assumed as the
distribution of the maximum SWBM in one load condition. In
addition, the statistical analysis is performed based on all the
critical load conditions, so the time variation of SWBMs under
different load conditions is ignored. To some extent, it is
reasonable to assume M,,; to be independent and identically
distributed random variables My,.

Based on the above model, the continuous and non-
stationary stochastic process in one loading—offloading cycle
has been simplified, as an independent and identically
distributed stochastic sequence, which follows Poisson law,
to update. With such a short-term time variant model, it is very
convenient to predict the maximum SWBM in one loading—
offloading cycle.

According to the Poisson model, the conditional
distribution function of the extreme value of hogging
SWBMs Fy . (m|lm,=d,) in the deterministic hogging

swh,ST
duration d}, can be determined as follows:

dh
E[AT;y]

[1 — (m)] }
)

Here, Fyy,, (1) is the distribution function of My, and E[AT; ]
is the mean value of the duration A7;; of one hogging load
condition. Considering the randomness of 7y, the unconditional
distribution function Fy; . (m) is

FA/IS\V]].ST (nleh . (Zh) = F}/[swh (lﬂ)exp{ B

[1—Fyy,, (m)] } f;, (Ddt

t
F =|F -
A/IS\\'h,ST ("1) b[ A/ls\vh (’n)exp{ E[ATI,h]

(6)

where f; () is the density function of 7y, For prediction of
extreme values of higher levels, Fy, , () approaches 1 and can
be ignored. In addition, if we assume that 7, follows the

exponential distribution, then, Eq. (6) reduces to

1
1+ny, [1 _FMM(’”)]

(7

FMswh,ST (m)=

where np= E[Tpl/E[AT; 1]

With Eq. (7), the hogging or sagging extreme value in one
loading cycle can be estimated. Substituting the values into
Egs. (3) and (4), the statistical extreme values of the SWBM for
any FPSO in reference time 7 can be predicted.

2.4. The parent distribution

The parent distribution of SWBM should ideally be
constructed from actual operational data. However, at the
design stage, only data on assumed load conditions are
available; therefore, statistical analysis needs to be perforfned
on the design data.

Based on 453 actual still-water load conditions, Moan and
Jiao [12] and Wang and Moan [13] showed that the statistical
distribution functions of hogging and sagging SWBMs for
FPSO Petrojarl I were well fitted by exponential and Rayleigh
distributions, respectively. To cover these and other conditions,
a two-parameter Weibull distribution was adopted to model the
variation of the SWBM

m\b
F Msw,o(’”) =1—exp [_(;) }

where the scale parameter a and shape parameter b were
determined from the mean value and standard deviation,
respectively, of the design data of SWBM for the relevant
FPSO.

The distribution in Eq. (8) implies an M, well above the
maximum allowable value of SWBM:s. By recognizing that on-
board control of the SWBM will be exercised, it is reasonable
to truncate the Weibull distribution function at the maximum
allowable value my of SWBM. On the other hand, various
abnormal operations and exceptional situations may result in
an M,,, that exceeds the allowable design value. Guedes Soares
[18] introduced a truncated factor to decrease the probability of

®)
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exceeding the maximum allowable SWBM

PlMy, > my] = TR[1 —Fy; (mg)] ©))

sw,0
where Tr is the truncated factor, which is a measure of the
efficiency of existing on-board controls. Where there is no
control, Ty is equal to 1 and the initial Weibull distribution is
unchanged. For perfect control, Ty is zero and there is an exact
truncated distribution in which the maximum allowable value
is never exceeded. When Ty takes a value between 0 and 1, it
implies a partially control situation and the initial distribution
has to be modified to satisfy the probability axiom.

For values smaller than the allowable value m14, the modified
probability density function f; (x) is related to the initial
Weibull density function S, () by

stw (x) = TFfMSW‘O ) xE my (10)

where the correct factor is given by

. 1—-TR[1—F, Moo (my)]
’ Fy, o (mg)

(11

Values exceeding the allowable limit are described by the
upper tail of another Weibull density function Ju,,.(m). For this
new Weibull distribution Fy, _(m), the probability of exceed-
ing the allowable limit 24 should be as follows:

1 —Fy  (mg) = Tg[1 _FMSW,U(’”d)] (12)

Moreover, at the optimal operational control for SWBM, the
probabilistic density functions of the Weibull trail distribution
and the truncated distribution are assumed to be equal to each
other at my that is

S, (mg) = Tefy,, ,(mq) (13)

Based on Egs. (12) and (13), the two parameters of the new
Weibull distribution function can be determined.

After the above modifications, the probabilistic density and
cumulative distribution functions of SWBM, depending on the
extent of undertaken still-water load control, are as follows

Tefy,,,(m) 0<m<my
m) = ‘ 14
st\v( ) stw‘e ) A (14)
and
TpFy,,,(m) 0<m<my
Fy, (m) = ' (15)
" K Mz (m) m> mgy

Based on design sagging data for FPSO Petrojarl I, the
probabilistic density and cumulative distribution functions of
SWBM are displayed in Figs. 3 and 4, respectively.

It is obvious that, with closer operational control of SWBM,
values exceeding the allowable value are closer to nig. In
addition, there is little deviation among the mean values and
standard deviations of SWBM for different truncation factors.

£
L R NE——
- Tr=1.0, mean=530, SD=240
l&r Tr=0.5, mean=504, SD=212 1
14+ Tr=0.1, mean=488, SD=198 4
Tr=0.0, mean=484, SD=195
L2 N

800 1000 1200 1400 1600 1800
SWBM (MN.m)

0/

0 200 400 600

Fig. 3. SWBM density function for FPSO Petrojarl L.

3. Vertical wave-induced bending moment
(VWBM) model

In a long-term framework, wave elevation is a non-
stationary process that is modelled by taking wave elevation
as a sequence of discrete short periods of stationary Gaussian
waves, which are characterised by parameters, such as
significant wave height and average period.

Short-term VWBM corresponds to a steady (random) sea
state, which is considered stationary, with a duration of several
hours. Long-term statistics are derived by using the total
probability theorem for all short-term sea states over the
relevant long-term scatter diagram.

Long-term VWBM is then modelled as a Poisson square-
wave process (Fig. 5). The peak of each individual VWBM,
M, is consequently approximated by the following two-
parameter Weibull distribution

Fy (m) = 1—exp [—(%) q} (16)

where g and g are the scale and shape parameters, respectively.
In the case of non-linear load effects, both parameters in Eq.
(16) may be different for hogging and sagging VWBM. Here,

1.02

1

0.98

0.96

0.94

0.92

0.9

1

800 900 1000 1100 1200 1300 1400
SWBM (MN.m)

Fig. 4. Upper part of the SWBM distribution function for FPSO Petrojarl L
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Fig. 5. Long-term VWBM variability (sagging or hogging).

the non-linear difference between hogging and sagging
VWBM is taken into account by assuming the traditional
regulation values of VWBM to be the characteristic extreme
value over 20 years. The corresponding uncertainty is
evaluated from direct calculation by the DnV standard code,
Nauticus [19].

Even if actual values used for FPSOs are determined by
direct analysis, it is convenient to use IACS rule values [20] for
hull girder moments as a reference value

Myrs(—) = —0.11C,L*B(C, +0.7) (kN m)

a7
sagging moment
My gi(+) = 0.19C,L*BC, (kN m)

(18)

hogging moment

where L and B are in metres, Cy, should not be smaller than 0.6,
and C; depends on the vessel length L

10.75—(3 —0.01L)'3 90 < L < 350
10.75 300 < L < 350

10.75 — (0.0067L —2.33)"5  350<L

G = 19

In addition, independence between individual peaks is
assumed due to the long-term statistical average characteristic
of the statistical distribution of M.

With the Poisson model, the distribution of extreme values
for wave-induced bending moments in reference period 7' can
be determined as follows:

Fg, o () = Fyy (m)exp {~y T[1 —F), ()1}

The mean number of upcrossing a level of m in reference
period 7 is

Ny(m,T) = v, T[1 _FMW(m)] (21)

where »,, is the mean occurrence rate of peak values for
VWBMSs, which can be determined by long-term statistical
analysis of VWBMs. Based on Egs. (16), (20) and (21), all the
characteristic extreme values of the VWBMs can be predicted.

4. Combined extreme values of SWBM and VWBM

The load combination method is based on load models and
the correlation between loads. It seems that the assumption of
independence between still-water and wave-induced bending
moments at least for trading vessels may be adequate [11,13].
No information about correlation is available for FPSOs as yet.
Hence, independence between the SWBM and VWBM is
assumed.

The combination of hull girder bending moments needs to
be achieved separately for hogging and sagging, as shown in
Fig. 6. For example, the main contribution to hogging moments
occurs in period 7. However, there is a possibility that the
hogging moments occur in period 7, if the hogging contribution
from wave load is large. Nevertheless, the probability is very
small, so, in the context of engineering application, the second
contribution is ignored.

In the deterministic hogging duration 7,,=dj,, according to
Poisson model in Section 3 (Eq. (20)), the conditional
distribution Fy, , (m|m, = dy) of the maximum VWBM My,
can be determined as follows

Fy  (mlm, = dy) = Fyy (m)exp{—vy,dy[1 22)

w,th w,h

— Fy,,,(m)1}

where Fy,,, (m) is the distribution function of the long-term
hogging peak values My, for wave-induced vertical bending

= exp{_VWT[l _FIVIW (”1)]} (20) moments_
A A
M(1) Hogging ?AKTTT T I
|
* |
P Ti—1 ’<MS vh, ST TC,)‘ A >
= iy T Pl Tl _
i1 ti¢ ¢¢l+l sws,ST | tit1 t
-l
Sagging v

Fig. 6. Model of combined SWBM and VWBM.
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Based on the assumption of independence between the
SWBM and VWBM, the unconditional distribution F, Mo, 771

of the combined maximum hogging bending moment Mwh
for hogging duration 7, can be determined as follows

Fowwn(m) = P[Mgyy < m]
= P[Mgyup < m|7'.,l = f|P[r, =]

= P[MS\Vh,ST + M‘V»Th < ’”lTh = f]P[Th = f]
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different operational control for SWBM, are shown in Fig. 7.
The rational variation of the combined parent distribution
functions with the truncation factors can be clearly seen.

= P[Mswh,ST < m'—yllww,‘rh = ym Th = t]P[M\V,Th = leh = f]P[Th = f]

o0

= dyJsth,ST(m—yle,Th =yN 7y = Dfyy,, Olra = 0f;, (DAt
0

VenFar, (M = y)fu,, )

(23)

VenVywFa,,, (m— )’)fM\m )]

Vendar,, OV, (M —y)

4 dy
J Vsl = Fpy  (m =] + vy [1—Fp 0N+ v {waspll — Fyy m—y)] + vy [1 —Fy )] + v

swh w,h

}/Tl'l 2 M (}’)f My, (m— y)

swh

where the density function fM‘.,.T,‘()’,Th: t) of the maximum
VWBM in the deterministic hogging duration 7,=dj;, can be
determined from Eq. (22), and 7, is still assumed to follow an
exponential distribution as before: vy, = 1/E[A7;;] and
Vep = I/E[Th]' Msw\vh, Mswh,ST and M\v,'rh are, respectively,
combined, still-water and wave-induced maximum hogging
bending moments for hogging duration 7y,. Fywnst () is the
distribution function of Mwnst and Fy () is the parent
distribution function of the hogging SWBM M,,y,. Correspond-
ingly, fu,, () is the probabilistic density function of the long-
term hogging peak values M, ,, of VWBM.

Eq. (23) is equivalent to the parent distribution of the
combined bending moment, in which the information on
uncertainty and time variability of SWBM and VWBM is
incorporated satisfactorily. Numerical analysis in Section 5
shows that the Eq. (23) is a very robust solution.

For FPSO Petrojarl I, based on design sagging data, the
equivalent combined parent distribution functions, with

1

0.99 +
098+
0.97
0.96
095+
0.94 1

093] |

2600 2800 3000 3200 3400

Combined bending moment (MN.m)

2400

Fig. 7. Upper part of equivalent combined parent distribution function.

+ p
uOVA-rh[l—FM O +vy[1—=Fy, m—=01+v  {ypnll —Fpp )]+ vg[l —Fy (m—y)] + v}

dy

swh w,h

If the maximum combined hogging bending moment in one
loading—offloading cycle is taken as Mgywp, the distribution
function Fj;, . (m) of the combined extreme bending moment
M max, T in reference period 7' can be obtained analogous to Eq.
(3) as follows

FM

Lo max,T

(m) = exp{—v, T[1 —Fy,

swwh

(m)1}

Also, the mean number of upcrossing some level m of the
combined load process can be determined as follows:
N.(m,T) = VCyT[l —Fy  (m)]

swwh
Based on Egs. (23)—(25), all types of the characteristic
extreme values for the combined load process can be predicted.

24

(25)

5. Numerical analysis

In the following numerical analysis, three different and one
general FPSOs are considered. The necessary initial data are
summarized in Table 2, which are based on Refs. [1,12,17].

Here, L, B and Cy are length, breadth and block coefficient
of the FPSOs under consideration. i, and oy, are the mean
value and standard deviation of SWBM, which have been
normalized with respect to the rule reference value. H and S
stand for respectively, hogging and sagging conditions; E[7y]
is the mean duration of one typical loading—offloading cycle. p;
and py, are the probabilities in sagging and hogging conditions
of one FPSO. my is the allowable value, which is also
normalized with respect to the rule reference value. For FPSO
Petrojarl I, the rule reference sagging moment, according to ‘
the DnV Rule [12], is 1100 MN m. For comparison, the
hogging SWBM is also normalized by it, although the rule
hogging moment exists. Similarly, for FPSO A and B, the
bending moments are normalized by the rule hogging moment
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Table 2

SWBM parameters for three typical FPSOs

FPSO L (m) B (m) Cy M G E[7.,] (days) ps(on) ny
Petrojarl 194.2 32 0.82 48.2(S) 21.8(S) 4 0.75(0.25) 79.2(S)
Design NS 36.6(H) 19.2(H) 72.6(H)
Petrojarl 194.2 32 0.82 29.7(S) 16.8(S) 4 0.75(0.25) 79.2(S)
Actual NS 12.9(H) 11.8(H) 72.6(H)
FPSO A 278 45 0.85 12.7(S) 9.5(S) 4 1/6(5/6) 60 (S)
Design NS 29.7(H) 22.4(H) 75.5(H)
FPSO B 280 54 0.83 31.1(S) 18.6(S) 28 3/8 (5/8) 73 (S)
Design WA 40.1(H) 22.5(H) 87 (H)

NS, North Sea; WA, West Africa.

of Eq. (1), because the hogging condition is dominated. The
reference data for the three FPSOs are all based on design load
conditions.

As can be seen for FPSO Petrojarl I (Table 2), based on
design load conditions,-the SWBM data have larger mean
values and standard deviations, but smaller coefficients of
variation, compared to actual operational load conditions.

Environmental parameters for two typical operating
locations for FPSOs are given in Table 3. Data in the second
row of Table 3 is based on Ref. [12]; the remaining data is
based on DnV standard code Nauticus [19]. k is the ratio of the
characteristic value over 20 years and the rule reference value
of VWBM from Egs. (17)-(19); ¢ is the Weibull shape
parameter and 7, is the mean long-term peak values of
VWBM.

5.1. Predicted extreme values of SWBM

For FPSO Petrojarl I, operational data of SWBM are
available. Therefore, based on the data for Petrojarl I in
Table 2, the extreme sagging values of SWBM are initially
predicted to evaluate the developed model for SWBM
(Table 4).

For the four different truncation models, all the predicted
extreme values increase, as expected, with the design period.
For extreme values with the same return period, e.g. 20 years,
they decrease, as expected, with the decrease in truncation
factors. The sensitivity of the predicted extreme values to the
number of load conditions also decreases with the decrease in
truncation factors.

For the initial parent distribution for SWBM, predicted
extreme values, based on design data, are larger than those
based on actual operational data. For fully and partially
truncated models, regardless of the design or operational data
applied, predicted extreme values are very close. This means
that, for the initial parent distribution, predicted extreme values
are dominated by the uncertainty of SWBM, while for the fully
truncated models, they are dominated by the operational
control of SWBM.

The results obtained by Wang and Moan [13] (Table 4, in
italic) are smaller than those of the developed model, but are
very close to the extreme values based on operational data by
the developed model. The reason is that the model of SWBM
by Wang and Moan [13] is also based on operational data.

The slight difference between them is due to the different
SWBM model and the different method of predicting
extreme values.

5.2. Combined extreme values and combination factors

The purpose of load combination analysis is to determine
the factors which can be applied to the secondary loadings,
compared to the primary loadings, in the context of the level 1
or 2 method of structural reliability. If M, r and M, 7 are,
respectively, defined as the characteristic values of SWBM and
VWBM in reference time 7, the combined characteristic
extreme value M, 7 can be expressed in the following formats

Mc,T = M\V,T = \bstsw,T or MC,T = Msw,T & w\vM\v,T (26)

where Y, and V,, are factors between 0 and 1. In Eq. (26),
there are two kinds of expressions. The expression adopted is
dependent on which individual load process is dominant.
Obviously, load combination factors will depend on the return
periods of characteristic extreme values for combined and
individual loads. Generally, load combination factors decrease
with increasing design lifetime, because the probability of
simultaneous occurrence of individual extreme load values
decreases with time.

When load combination factors, based on the characteristic
extreme values in reference period T, have been determined,
the extreme value of the combined load process in reference
period T can be approximated as

Mc max,T = M\v max,T + ‘//stsw max,T

where M max. 75 Mywmax,7 80d Mgwmayx 7 are the extreme values of
the combined, wave-induced and still-water load effects in
reference period 7, respectively, and are random variables.
Eq. (27) is a very convenient formula, used in reliability
analysis. It implies that the initial time variant problem, in

@7)

Table 3

Long-term VWBM parameters for three typical locations

Location k=M, 20/M " q T
North Sea (harsh) 1.1233 1.0 6.29
Petrojar] I

North Sea (harsh) 1.1 1.0 10
West Africa (benign) 0.3 0.8 8

® My rue given by Eq. (17) or (18).
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Table 4
Extreme SWBM values for FPSO Petrojarl I

M, (MN m)\T (years)

Design data Operational data

1 20 50 100 1 20 50 100
Initial parent distribution (Tr=1.0)
E[AT]=1h 1508 1710 1765 1805 1204 1413 1472 1515
E[A7;]=1 day 1246 1496 1562 1609 942 (896)" 1191 (1100)* 1258 (1155)° 1307 (1195)*
E[A7;]=4 days 1104 1388 1461 1512 807 1082 1155 1208
(1 cycle)
Truncated distribution (Tr=0.5)
E[AT]=1h 1143 1234 1258 1276 1005 1101 1127 1146
E[A7;]=1 day 1016 1137 1167 1189 874 999 1031 1053
E[A71;]=4 days 944 1086 1120 1144 782 946 982 1007
(1 cycle)
Partial truncated distribution (Tr=0.25)
E[A7T;]=1h 993 1040 1052 1061 925 974 986 996
E[A7;]]=1 day 926 990 1006 1017 852 922 938 950
E[A7;]=4 days 886 963 981 994 772 894 913 926
(1 cycle)
Partial truncated distribution (Tr=0.1)
E[AT]=1h 914 935 940 944 886 907 912 916
E[A7;]=1 day 883 913 920 925 840 885 892 897
E[A7;]=4 days 863 900 909 914 766 872 881 886
(1 cycle)
Fartial truncated distribution (Tr=0.0)
E[Ar]=1h 871 872 872 872 870 871 871 871
E[A7;]=1 day 866 871 871 871 833 869 871 871
E[A7;]=4 days 850 871 871 871 762 863 868 870
(1 cycle)

* Data from Wang and Moan (1996) [13].

which loads are stochastic processes, can be reduced to a time
invariant process, in which loads are random variables that are
easily dealt with. Moreover, the explicit formula, in term of
both load effects My maxr andMgy payr, allows model
uncertainty to be readily incorporated in the reliability formula.

In reliability analysis of marine structures, annual extreme
values are of interest. Eq. (27) implies the following mean
values and standard deviations for annual extreme values of the
combined load effects

Me, annual = Mw, annual e %,U«sw, annual (28)
and

2 — 2.2
Uc, annual — U\v, annual & ‘ps Usw, annual (29)

Where fic annuals Hw,annual 04 fsy annual a€ Mean annual extreme
values of combined, wave-induced and still-water load effects
respectively; Gcannuals Owannual A0d Ogy annuat @re the corre-
sponding standard deviations. In Section 5.3, it will be shown
that Eq. (27) gives an accurate representation of the extremes,
i.e. Egs. (28) and (29) give an accurate estimate of the true
e annual ANd O annuar Of the combined load processes.

5.3. Numerical analysis for combined extreme values
5.3.1. Case study 1: Petrojarl I

Based on the methods outlined in Sections 2—4 and data in
Tables 2 and 3, the predicted characteristic extreme values and

load combination factors were obtained for FPSO Petrojarl 1,
and are shown in Tables 5 and 6.

All predicted combined extreme values increase, as
expected, with the service period. Similar to the extreme
values for SWBM, the combined extreme values, based on the
different truncation models, decrease with the decrease in
truncation factors. However, load combination factors gener-
ally increase with a decrease in truncation factor.

The load combination factors of VWBM are larger than
those for SWBM,; the reason being that wave-induced load is
generally larger than still-water load in the harsh conditions.
However, load combination factors for SWBM are of primary
interest in this case.

Load combination factors, based on the initial and partially
truncated models, decrease, as expected, with increasing
design period, which agrees well with the general conclusion
of extreme analysis. However, the load combination factors of
SWBM, based on the fully truncated model, are nearly constant
with varying service period, and are larger than those based on
initial and partially truncated models. This fact can be
explained as follows.

When the truncated model is adopted, extreme SWBM
values are practically constant; the increase in combined
extreme values with design period is primarily caused by the
increase in extreme VWBM values. Hence, the differences
between the combined and VWBM extreme values remain
nearly the same and the load combination factors of SWBM
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Table 5
Extreme values and combination factors for Petrojarl I 1 (1) E[A7;]=1 day

T (years)

Sagging Hogging

1 20 50 100 1 20 50 100
The initial distribution (Tr=1.0)
My (MNm) 1246 1496 1562 1609 967 1250 1325 1378
My, 7 (MN m) 1834 2190 2299 2381 709 2041 2142 2219
M7 (MN m) 2800 (2364)" 3190 (2720)" 3300 (2829)" 3380 (2911)* 2310 (2112)" 2680 (2444)* 2790 (2545)" 2870 (2622)*
Vsw 0.78 0.67 0.64 0.62 0.62 051 0.49 0.47
Y 0.85 0.77 0.76 0.74 0.79 0.70 0.68 0.67
Partial truncated distribution (Tr=0.5)
My,7(MNm) 1016 1137 1167 1189 843 983 1017 1042
M, 7 (MN m) 1834 2190 2299 2381 1709 2041 2142 2219
M.+ (MN m) 2640 3000 3110 3190 2210 2550 2650 2730
Vsw 0.79 0.71 0.69 0.68 0.59 0.52 0.50 0.49
Y 0.89 0.85 0.85 0.84 0.80 0.77 0.76 0.76
Partial truncated distribution (Tr=0.1)
My,r (MNm) 883 913 920 925 782 822 830 835
My, 7 (MN m) 1834 2190 2299 2381 1709 2041 2142 2219
M. (MN m) 2570 2930 3040 3120 2170 2500 2610 2680
Vsw 0.83 0.81 0.81 0.80 0.59 0.56 0.56 0.55
Yy 0.92 0.92 0.92 0.92 0.81 0.82 0.83 0.83
Truncated distribution (Tr=0.0)
My, MNm) 866 871 872 872 772 798 799 799
My, 7 (MN m) 1834 2190 2299 2381 1709 2041 2142 2219
M7 (MN m) 2560 (2318)" 2920 (2674)* 3030 (2783)" 3110 (2865)" 2160 (2128)" 2500 (2460)" 2600 (2561)* 2680 (2638)*
Vsw 0.84 0.84 0.84 0.84 0.58 0.58 0.57 0.58
2 0:92 0.94 0.94 0.94 0.81 0.83 0.84 0.85

Numbers in italics are the relevant numbers.
@ By Turkstra’s rule.

remain practically constant. Secondly, with increasing design
period, extreme SWBM values have reached the maximum
allowable level and the maxima of SWBM and VWBM will
occur simultaneously with a higher probability. Hence, larger
combination factors are obtained.

By comparing Tables 5 and 6, it can be seen that ¥, slightly
increases when E[A7,] is made smaller, i.e. the number of load
conditions increases.

For Petrojarl I, which operates in the North Sea, the
combined load is dominated by VWBM, which should be taken
as the primary load effect. Correspondingly, SWBM should be
taken as the secondary load effect. Therefore, the combination
factors for SWBM are of interest. Furthermore, because
Petrojarl I mainly operate in sagging conditions, the
combination factors for sagging SWBM are relevant. These
factors are indicated by italics in Tables 5 and 6. Table 5 also
shows the combined extreme values obtained by Turkstra’s
rule. It is apparent that the extreme values are underestimated
by Turkstra’s rule.

In reliability analysis, annual extreme values and their
uncertainty are also pertinent. Table 7 shows the means and
standard deviations of annual extreme values for combined and
individual loadings in italics. As expected, they decrease with
decreasing truncation factors. In addition, based on Egs. (28)
and (29) and the acquired annual load combination factors of
SWBM (shown in italics in Tables 5 and 6), the estimated

means and standard deviations of annual extreme values are
given in Table 7. It is evident that the approximate results are
very close to those based on exact combination analysis. This
implies that the predicted load combination factors can be
applied in combining the annual maximum for SWBM and
VWBM in the failure function for reliability analysis.

5.3.2. Case study 2: FPSO A

Table 8 shows load combination factors for FPSO A
operating in the North Sea. It is interesting to note that, when
the operational control effect is neglected, the predicted
hogging SWBM and VWBM extreme values are close.
Hence, the corresponding combination factors are nearly
equal. When the operational control effect is taken into
account, the extreme values of hogging SWBM obviously
decrease with decreasing truncation factors, and the corre-
sponding load combination factors are different. Unlike FPSO
Petrojarl I, which mostly operates in sagging conditions, FPSO
A operates in hogging conditions. Hence, the extreme values of
sagging SWBM are very small and much smaller than the
corresponding mg, and the truncation does not affect
the extreme values of sagging SWBM. For this reason, the
combination factors of sagging SWBM are very small and do
not vary with different operational control of SWBM. Since
wave loads are dominant, the relevant combination factors are
those for hogging SWBM, which are shown in Table 8 (in
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Table 6
Extreme values and combination factors for Petrojarl I 1 (2) E[A7;]=3h

T (years)

Sagging Hogging

1 20 50 100 1 20 50 100
The initial distribution (Tr=1.0)
Mg,r MNm) 1425 1640 1698 1741 1170 1413 148 1528
M, 7 (MN m) 1834 2190 2299 2381 1709 2041 2142 2219
M. 7 (MN m) 3000 3370 3480 3560 2500 2850 2960 3040
Vsw 0.82 0.72 0.70 0.68 0.68 0.57 0:55 0.54
Y 0.86 0.79 0.78 0.76 0.78 0.70 0.69 0.68
Partial truncated distribution (Tr=0.5)
Myyr MNm) 1103 1203 1229 1247 945 1057 1087 1108
M, 7 (MN m) 1834 2190 2299 2381 1709 2041 2142 2219
M. 7 (MN m) 2760 3120 3230 3310 2340 2680 2780 2860
Vsw 0.84 0.77 0.76 0.74 0.67 0.60 0.59 0.58
Y 0.90 0.88 0.87 0.87 0.82 0.80 0.79 0.79
Partial truncated distribution (Tr=0.1)
My, r(MNm) 905 928 934 938 813 839 845 850
My, 7 (MN m) 1834 2190 2299 2381 1709 2041 2142 2219
M7 (MN m) 2660 3010 3120 3200 2280 2610 2710 2790
Vsw 0.91 0.88 0.88 0.87 0.70 0.68 0.67 0.67
Y 0.96 0.95 0.95 0.95 0.86 0.87 0.87 0.87
Truncated distribution (Tr=0.0)
My,7 (MNm) 871 872 872 872 795 799 799 799
M, 7 (MN m) 1834 2190 2299 2381 1709 2041 2142 2219
M. 7 (MN m) 2640 3000 3110 3190 2270 2600 2700 2780
Vsw 0.93 0.93 0.93 0.93 0.71 0.70 0.70 0.70
Y 0.96 0.97 0.97 0.97 0.86 0.88 0.89 0.89

Numbers in italics are the relevant numbers.

italics) and exhibit the same variation in truncation factors as
FPSO Perojarl 1.

5.3.3. Case study 3: FPSO B

Tables 9 and 10 show analogous results for FPSO B
operating in West Africa. For FPSOs in benign waters, still-
water load is dominant and the combination factor y,, of
VWBM is the most significant. It can be seen that y,, is large,
although the extreme values of VWBM are small. The reason
being that wave-induced load is a rapid time-variant process
and its maxima meet the maxima of SWBM with a greater
probability, resulting in higher combination factors. Therefore,
combination factors are not only dependent on the relative

magnitude of individual loads but also on their time variation.
Because FPSO B mainly operates in hogging conditions, the
most important combination factors are those for hogging
VWBM, as shown in Tables 9 and 10 (in italics). The
difference between Tables 9 and 10 is due to the different shape
parameters for Weibull distribution of the long-term VWBM
peak values. Evidently, combination factors are not sensitive to
larger shape parameters.

5.3.4. Case study 4: sensitivity analysis for a generic FPSO
The effect of different relative SWBM and VWBM

magnitudes on load combination factors is evaluated as

shown in Table 11. Here, their relative magnitude is defined

Table 7
Mean and standard deviation of annual extreme values for Petrojarl I

Initial Tr=1.0 Tr=0.5 Tr=0.1 Tr=0.0

Hannul Tannual Mannul Tannual Hannul Tannual Hannul Cannual
E[A7]=1 day
SWBM (MN m) 1293 111 1038 54 888 14 866 6
VWBM (MN m) 1902 152 1902 152 1902 152 1902 152
Combined (MN m) 2871 168 2706 156 2636 155 2625 155
Egs. (28) and (29) 2911 175 2722 158 2639 152 2629 152
E[AT;]=3h
SWBM (MN m) 1466 94 1122 44 909 10 870 1
VWBM (MN m) 1902 152 1902 152 1902 152 1902 152
Combined (MN m) 3064 162 2828 155 2719 154 2704 154
Egs. (28) and (29) 3104 170 2845 156 2729 152 2711 152

Numbers in italics are the relevant numbers.
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Table 8
Combination factors for FPSO A in harsh conditions E[A7;]=1 day

T (years)

Initial Tr=0.5 Tr=0.1 Tr=0.0

1 20 100 1 20 100 1 20 100 1 20 100
Sagging conditions
VYaw 0.20 0.16 0.14 0.20 0.15 0.14 0.19 0.15 0.14 0.19 0.14 0.14
Y 0.78 0.71 0.68 0.78 0.72 0.71 0.78 0.72 0.73 0.78 0.72 0.73
Hogging conditions
Vsw 0.79 0.70 0.66 0.77 0.66 0.61 0.79 0.76 0.74 0.79 0.78 0.79
/2 0.82 0.69 0.64 0.85 0.77 0.74 0.88 0.88 0.88 0.88 0.90 091
Numbers in italics are the relevant numbers.
Table 9
Combination factors for FPSO B in benign conditions (1) 1=0.8, E[A7;]=1 day

T (years) )

Initial Tr=0.5 Tr=0.1 Tr=0.0

1 20 100 1 20 100 1 20 100 1 20 100
Sagging conditions
Vsw 0.93 0.87 0.84 0.92 0.85 0.81 0.91 0.87 0.85 0.90 0.88 0.88
Yw 0.84 0.68 0.61 0.83 0.70 0.64 0.82 0.79 0.78 0.81 0.81 0.82
Hogging conditions
Vsw 0.96 091 0.89 0.95 0.89 0.86 0.95 0.92 0.90 0.94 0.93 0.93
2 0.87 0.70 0.63 0.86 0.72 0.67 0.86 0.83 0.82 0.86 0.87 0.88
Numbers in italics are the relevant numbers.
Table 10
Combination factors for FPSO B in benign conditions (2) #=1.332, E[A7;]=1 day

T (years)

Initial ) Tr=0.5 Tr=0.1 Tr=0.0

1 20 100 1 20 100 1 20 100 1 20 100
Sagging conditions
Vsw 0.95 0.91 0.90 0.94 0.89 0.87 0.93 0.91 0.89 0.93 0.91 091
Y 0.90 0.79 0.74 0.89 0.79 0.75 0.88 0.85 0.83 0.87 0.86 0.87
Hogging conditions
Vaw 0.97 0.94 0.93 0.97 0.93 091 0.96 0.94 0.92 0.96 0.95 0.95
Y 0.92 0.80 075 091 0.81 0.76 0.91 0.87 0.85 091 0.90 0.91
Numbers in italics are the relevant numbers.
Table 11
Sensitivity analysis for a general FPSO
T 1 year 20 years 100 years
Initial distribution (Tr=1.0)
c 0.5 25 5.0 0.5 2.5 5.0 0.5 2:5 5.0
Vsw 0.94 0.82 0.74 0.91 0.71 0.64 091 0.67 0.60
V2% 0.76 0.84 0.89 0.64 0.76 0.85 0.61 0.73 0.83
Tr=0.5
Yew 0.93 0.83 0.77 0.89 0.76 0.71 0.88 0.73 0.68
Vi 0.79 0.89 0.93 0.68 0.86 0.92 0.65 0.85 091
Tr=0.1
Vsw 0.94 0.90 0.85 0.93 0.88 0.83 0.92 0.87 0.83
Y 0.86 0.95 0.96 0.84 0.95 0.96 0.83 0.95 0.97
Tr=0.0
Vsw 0.97 0.93 0.87 0.97 0.92 0.88 0.98 0.93 0.88
2 0.93 0.97 0.97 0.94 0.97 0.98 0.96 0.97 0.98

The numbers in italics are the relevant numbers.
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by ratio ¢ of extreme VWBM values over 20 years and the
allowable SWBM value. The allowable SWBM value is
assumed to be 100 units, while the mean and standard deviation
of SWBM are 60 and 30 units, respectively. The mean duration
of a load condition and the loading—offloading cycle are 3 h and
4 days, respectively. The probability of sagging or hogging is
assumed to be 0.75. The shape parameter and long-term peak
VWBM value are 1.0 and 10 s, respectively.

In general, with variations inrelative magnitudes forindividual
loads, load combination factors for SWBM and VWBM vary to
different degrees, which are dependent on the operational control
of SWBM. For the initial SWBM model, the load combination
factors show clear variations with relative magnitudes of SWBM
and VWBM, while those for the fully truncated model do not
display evident variations, and those for the partially truncated
models are between the previous two models.

6. Conclusions

Based on a Poisson square-wave model, a new still-water
load model for FPSOs is proposed. Using SWBM design data,
SWBM intensity is modelled by a Weibull distribution, which
is further modified to account for operational control of
SWBM. Long-term variations in wave-induced load effects are
also modelled by a Poisson square-wave process. A new
approach for combined SWBM and VWBM is derived. A
procedure for determining characteristic extreme values for
combined, still-water and wave-induced bending moments is
established. Valid load combination factors, suitable for typical
FPSOs, are provided, in which a time-variant formula for
reliability analysis can be reduced to a time-invariant process.
Numerical analyses are performed to assess the sensitivity of
the results to different parameters.

It is shown that the extreme values of still-water and
combined loads can be greatly overestimated if operational
control is not accounted for. On the other hand, the control is
unlikely to be perfect. Hence, the partially truncated model is
recommended to account for control of SWBM. A truncation
factor should be determined from actual operational data;
however, available operational data for FPSOs are insufficient
to reliably determine truncation. Therefore, it is recommended
to, conservatively, base it on the operational experience of
trading vessels, such as tankers [11], and use a truncation factor
of 0.5.

When operational control is ignored, the number of
independent still-water load conditions has a significant effect
on predicted extreme values. When operational control is taken
into account, extreme SWBM values are mainly dominated by
the maximum allowable value and insensitive to the number of
independent load conditions.

An important goal of this research was to explore valid load
combination factors for semi-probability design of FPSOs. In
general, combination factors depend on the parent distribution,
time variation and relative magnitude of individual loads. For
still-water load with a slow time-variation, the SWBM
combination factor is mainly dominated by its relative
magnitude to wave-induced load. For wave-induced load

with a rapid time-variation, the VWBM combination factor is
determined, not only by its relative magnitude to still-water
load, but also its time variation. The fast time-variation of
VWBM will result in an increase in the corresponding
combination factor, despite its smaller relative magnitude in
some conditions. For instance, in benign waters, the wave-
induced load is much smaller than the still-water load, but with
larger combination factors.

In the harsh condition of the North Sea, in which wave-
induced load is dominant, and for FPSOs mainly operating in
sagging conditions, the relevant combination factors of sagging
SWBM with a truncation factor of 0.5 are about 0.80, 0.75 and
0.70 for return periods of 1, 20 and 100 years, respectively,
while for FPSOs operating in hogging conditions, the
respective relevant hogging combination factors are about
0.8, 0.65 and 0.60.

In the benign conditions of West Africa, in which still-water
load is dominant, based on a particular FPSO working mainly
in hogging conditions, the relevant combination factors of
hogging VWBM are about 0.85, 0.70 and 0.65 for return
periods of 1, 20 and 100 years, respectively.

It is also shown that maximum combined still-water and
wave loading can be well represented by the maxima of still-
water and wave loading and the obtained load combination
factors. In this way, structural reliability analysis is simplified.
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