

Urban computational fluid dynamics
simulations set-up validations

Master thesis in Geomatics

Maren Hengelmolen
January, 2024

MSc thesis in Geomatics

Urban computational fluid dynamics
simulations set-up validations

Maren Hengelmolen

January 2024

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics

Maren Hengelmolen: Urban computational fluid dynamics simulations set-up validations (2024)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Delft University of Technology

Supervisors: Clara Garcı́a-Sánchez
Hugo Ledoux

Co-reader: Azarakhsh Rafiee

http://creativecommons.org/licenses/by/4.0/

Abstract

Computational Fluid Dynamics (CFD) simulations for residential areas are becoming in-
creasingly important as the urban population keeps growing and extreme weather condi-
tions due to climate change are becoming more prevalent. Since CFD simulations simulate
and visualise fluid flows, users can analyse and predict air flows in urban environments,
giving insight in pollution, heat dissipation, and weather conditions. Performing these sim-
ulations demands expertise and time: 3D urban models must be prepared, and pre-run
setups must be defined to obtain accurate results. Partial automation can streamline this
process. Therefore, we developed a method that identifies geometric errors and defines
mesh parameters for the open source CFD software OpenFOAM. This method follows the
ISO19107 standard and recent CFD guidelines for urban areas, ensuring accurate simulation
results. We validated algorithms with a variety of urban models and parameters, and anal-
ysed the workflow developed for the mesh parameters definition. Additionally, we created
a prototype, in the form of a web application, in which these algorithms are implemented.
Our prototype will simplify the use of CFD simulations for urban areas, making them more
accessible to everyone.

v

Acknowledgements

This thesis is written as a master end project for the Master Geomatics at Delft University
of Technology. My interest in three dimensional data and CFD simulations led me to this
topic. In this thesis, I explore ways to simplify the use of urban CFD simulation. I developed
a prototype, using C++ and Python programming, that handles some preparation tasks of
geometries and pre-run setups for CFD simulations. These tasks are time-consuming , prone
to errors and require some expertise. Using the prototype discussed in this thesis, users
get feedback on their model and pre-run setups that are required for realistic simulation
results.

I would like to thank my supervisors Clara Garcı́a-Sánchez and Hugo Ledoux, for their
time and effort in guiding me. They were always ready to help me out, even though their
schedules were filled to the brim with appointments. I would also like to thank my co-
reader, Azarakhsh Rafiee, for her valuable feedback on the report, and Peter van Oosterom
for his interest and his thought-provoking questions during the official meetings.

A big thank you to my friends for the support and necessary distraction. I would like to
express my deepest gratitude to my parents and sister Vera for their support and encour-
agements. Last but not least, I would like to thank Joep, who had to hear all my complaints
and doubts, for his support, patience and advice.

Thank you all !

Maren Hengelmolen
Delft, 2024

vii

Contents

1. Introduction 1
1.1. Background and motivation . 1
1.2. Objective and research questions . 2
1.3. Scope . 2
1.4. Obtained results . 2
1.5. Thesis outline . 3

2. Theoretical background and related work 5
2.1. CFD simulations in urban areas . 5

2.1.1. Urban physics and CFD simulations . 5
2.1.2. Governing equations in CFD simulations 6
2.1.3. OpenFOAM, an open CFD software . 9

2.2. CFD guidelines for urban simulations . 10
2.2.1. Computational domain . 11
2.2.2. Computational grid . 14
2.2.3. Region of interest . 16
2.2.4. Related work . 18

2.3. The validation of 3D geometries . 18
2.3.1. The importance of valid geometries . 18
2.3.2. The ISO19107 standard and its implementation 18
2.3.3. Related work . 21
2.3.4. The open-source software val3dity . 21

2.4. 3D geometries in CFD simulations . 24

3. Methodology 25
3.1. Approach . 25

3.1.1. User perspective . 25
3.1.2. Architecture . 26

3.2. Geometric validations . 27
3.2.1. Separate building and terrain validation 27
3.2.2. Topological relationships between buildings and terrain validation . . . 27
3.2.3. Required validations for meshing in OpenFOAM 30

3.3. Preparation for CFD simulation steps . 35
3.3.1. Overview . 35
3.3.2. Model orientation . 37
3.3.3. Evaluation height . 39
3.3.4. Computational domain . 40
3.3.5. Refinement boxes . 44
3.3.6. Roughness height . 46
3.3.7. Maximum number of cells . 48
3.3.8. At least 10 cells per cube root of the building volume 50
3.3.9. At least 10 cells per building separation 52

ix

Contents

3.3.10. Region of Interest (RoI) . 55
3.3.11. Ground refinement . 56
3.3.12. Creating configuration files for OpenFOAM: blockMeshDict and snap-

pyHexMeshDict files . 58

4. Implementation 59
4.1. Prototype . 59
4.2. Datasets . 65

5. Results and analysis 67
5.1. Geometric validations . 67

5.1.1. Topological relationships between buildings and terrain validation . . . 67
5.1.2. Required validations for meshing in OpenFOAM 72

5.2. Preparation for CFD simulation steps . 81
5.2.1. Flow direction d f low . 82
5.2.2. Computational domain . 85
5.2.3. Evaluation height . 89
5.2.4. Roughness height . 89
5.2.5. Maximum number of cells . 91
5.2.6. At least 10 cells per cube root of the building volume 92
5.2.7. Building distribution . 94
5.2.8. Region of Interest . 97
5.2.9. Ground refinement . 97
5.2.10. Number of refinement boxes . 98

5.3. Comparison between CFD simulations with mesh parameters of an Open-
FOAM tutorial and the prototype . 99

6. Conclusions, discussion and recommendations 107
6.1. Conclusions . 107
6.2. Discussion . 110
6.3. Recommendations . 112

A. Topological relationships validations 113

B. Ground surfaces 117

C. Sharp angles validations 121

D. Sliver triangles validations 123

E. Short edges validations 125

F. CFD tests 127
F.0.1. Evaluation height huser . 127
F.0.2. Roughness height z0 . 132
F.0.3. Maximum number of cells Nmax . 134
F.0.4. Height of the tallest building hmax . 136
F.0.5. Ground refinement . 139

G. User Interface IV: explanation 143
G.1. Mesh definition parameters . 143

x

Contents

G.2. Geometric validation parameters . 146
G.3. Results . 148

H. blockMeshDict file 151

I. snappyHexMeshDict file 155

xi

List of Figures

2.1. Background mesh in OpenFOAM. Adapted from ”User Guide version 11” by
Greenshields, C. J., 2023. 9

2.2. Mesh generation in SnappyHexMesh (a) Cell division at edges, (b) Cell divi-
sion at surfaces, (c) Cell removal within geometry boundaries, (d) Cell refine-
ment in specific regions, (e) Cell vertices displacement to geometry bound-
aries, and (f) Mesh layers at specific locations. Adapted from ”User Guide
version 11” by Greenshields, C. J., 2023. 10

2.3. Minimum domain dimensions adapted from Franke and Baklanov (2007). . . . 12
2.4. Profile view of Figure 2.3 adapted from Franke and Baklanov (2007). 13
2.5. Connection of two neighbouring cells. 15
2.6. Regions of Interest (RoI), defined by (a) Tominaga et al. (2008), (b) Tong et al.

(2016), and (c) Liu et al. (2018). From ”Influence of surrounding buildings on
wind flow around a building predicted by CFD simulations” by Liu, et al.,
2018, Science Direct, 96:1749–1761e. 17

2.7. 3D primitives based on the ISO19107 standard. From ”val3dity: validation of
3D GIS primitives according to the international standards” by Ledoux (2018). 19

2.8. Assertions describing a valid 2D polygon. From ”3D modelling of the built
environment” volume v0.8. by Arroyo Ohori et al. (2022). 20

2.9. Supported 3D primitives by val3dity. From ”val3dity: validation of 3D GIS
primitives according to the international standards” by Ledoux (2018). 22

2.10. Error codes in val3dity. From ”val3dity: validation of 3D GIS primitives ac-
cording to the international standards” by (Ledoux, 2018). 23

3.1. User perspective of the prototype. 25
3.2. Architecture of the prototype. The parts indicated in dashed lines were devel-

oped during this thesis. 27
3.3. Possible topological relationships between buildings and terrain considered

by validation (z: height of the building, zt: height of the terrain, and ζ: thresh-
old). 28

3.4. Dihedral angle. 30
3.5. Example of a sliver triangle. 32
3.6. Intersections used in methods implemented in Algorithm 3.5. 33
3.7. Workflow of the mesh parameters definition method. 36
3.8. (a) Flow directions considered by Algorithm 3.6 (b) Example of 3D city model

orientations. 37
3.9. Evaluation height used in the prototype. 39
3.10. Initial cell dimensions based on the evaluation height. 39
3.11. Minimum computational domain dimensions adapted from Blocken (2015). . . 41
3.12. Adjustment of domain dimensions after each iteration i based on blockage

ratio BR performed by Algorithm 3.9. 42
3.13. Adjustment of domain dimensions after each iteration i based on directional

blockage ratios BRH (blue) and BRL (green) performed by Algorithm 3.10. . . 42

xiii

List of Figures

3.14. Example of refinement boxes. 46
3.15. Adjustment of cell dimensions based on the roughness height (hcellxwcell : cell

dimensions, hr: minimum cell height based on CFD guidelines related to the
roughness height, and hmin: stored minimum cell height). 47

3.16. Adjustment of cell dimensions based on the maximum number of cells Nmax
given by users. 48

3.17. Adjustment of cell dimensions to fit at least 10 cells per cube root of the build-
ing volume. 51

3.18. Number of cells per building separation. 53

4.1. Pipeline of the prototype. 59
4.2. User Interface I: Input file. 60
4.3. User Interface II: Input parameters. 61
4.4. User Interface IV: Explanation. 62
4.5. User Interface II: Histogram showing the street width/building separation

distribution. Bin with the highest frequency value is illustrated in yellow. . . . 62
4.6. User Interface III: Results. 64
4.7. Datasets: simple shapes. 66
4.8. Datasets: 3D city models. 66

5.1. Testing topological relationships validation with single building models, hav-
ing horizontal floors with a height of 0, and horizontal terrain surfaces with
a height of zt. Threshold value ζ is set to 1. Terrain surfaces and building
vertices forming topological errors are highlighted in green and yellow, re-
spectively, as they are incorrectly positioned in relation to each other (Section
3.2.2). 67

5.2. Testing topological relationships validation with single building models, hav-
ing horizontal floors with a height of 0, and terrain surfaces with variable
heights within a range zt. Threshold value ζ is set to 1. Terrain surfaces and
building vertices forming topological errors are highlighted in green and yel-
low, respectively, as they are incorrectly positioned in relation to each other
(Section 3.2.2). 68

5.3. Testing topological relationships validation with single building models, hav-
ing floors with variable heights z, and terrain surfaces with variable heights zt.
Threshold value ζ is set to 1. Terrain surfaces and building vertices forming
topological errors are highlighted in green and yellow, respectively, as they
are incorrectly positioned in relation to each other (Section 3.2.2). 68

5.4. Testing topological relationships validation with single buildings and without
ground surfaces. zt is the height at which buildings must be placed. The
lowest z-value of the buildings (zmin) is 0. Threshold value ζ is set to 1. 69

5.5. Topological errors in the Centre of Delft indicated by green edges: buildings
must be aligned with the lowest z-value of the urban model (zt = zmin). 69

5.6. Underground containing the lowest z-value of the Centre of Delft zmin. 70
5.7. Topological errors in the Centre of Delft indicated by green edges when a

ground level of 1 is selected (zt = zg). 70
5.8. Underground containing the lowest z-value zmin with the topological errors

indicated by green edges when a ground level zg of 1 is selected (zt = zg = 1). . 71
5.9. Topological errors within the TU Delft campus model indicated in green. . . . 71
5.10. Two connected triangles. 72

xiv

List of Figures

5.11. Sharp angles identification of two connected triangles with a threshold value
θ of 90◦. θ1 and θ2 are the angles illustrated in Figure 5.10. ϕ1 is the first angle
between these triangles and ϕ2 is the second one. Note that no sharp angle
is identified with a threshold value of 0◦, as neighbouring faces are defined
as faces having two common and two uncommon vertices. Sharp angles are
indicated in green. 73

5.12. Roof . 73
5.13. Sharp angles identification with roofs and a threshold value θ of 90º. θ is the

angle illustrated in Figure 5.12. Sharp angles are indicated in green. 73
5.14. Sharp angles identification between buildings with a threshold value θ of 45º.

Sharp angles are indicated in green. 74
5.15. Cone and roof models. 74
5.16. Sliver triangles identification with cones (n: number of triangles, d and h:

distances as illustrated in Figure 5.15, and SP: sliver parameter), and different
threshold values σ for the sliver parameter. Sliver triangles are indicated in
green. 75

5.17. Sliver triangles identification of roofs (n: number of triangles, d and h: dis-
tances as illustrated in Figure 5.15, and SP: sliver parameter), and different
threshold values σ for the sliver parameter. Sliver triangles are indicated in
green. 75

5.18. Short edges identification of cones (n: number of triangles, d and h: distances
as illustrated in Figure 5.15, and r: radius), and different threshold values for
the length of edges. Short edges are indicated in green. 76

5.19. Short edges identification of cones (n: number of triangles, h: distance as
illustrated in Figure 5.15, and r: radius), and different threshold values for the
length of edges. Short edges are indicated in green. 76

5.20. Overlapping buildings identification with two buildings. Buildings that are
overlapping are indicated in green. 77

5.21. Sharp angles identification with real-world data (θ: sharp angles threshold, n:
number of sharp angles, and θmean: mean angle of sharp angles within urban
model). Sharp angles are indicated in blue. 78

5.22. Sliver triangles identification with real-world data. (σ: sliver parameter thresh-
old (2xperimeter/area), n: number of sliver triangles, SPmean: mean sliver pa-
rameter of sliver triangles within urban area, and Amean: mean area of sliver
triangles within urban area). Sliver triangles are indicated in blue. 78

5.23. Short edges identification with real-world data (λ: short edges threshold, n:
number of short edges, and lmean: mean length of short edges within urban
model). Short edges are indicated in blue. 79

5.24. Overlapping buildings identification with real-world data (n: number of build-
ings, and noverlapping: number of overlapping buildings). 80

5.25. Model rotation of a simple cube (left) and the Centre of Delft (right). 84
5.26. Model rotation of the TU Delft campus 2. White surfaces in the rotated model

are water surfaces that have not rotated with the rest of the model. 85
5.27. Recommended domain dimensions depending on the chosen blockage ratio

(BR) for Maastoren (BR: blockage ratio (Franke and Baklanov, 2007), BRL:
blockage ratio in the lateral horizontal direction (Blocken, 2015), and BRH :
blockage ratio in the lateral vertical direction (Blocken, 2015)). 87

5.28. Meshes for models with different hmax. Roughness height values z0 of 0.25
and 2m are used. 88

xv

List of Figures

5.29. Meshes for the Centre of Delft based on different target evaluation heights
huser: (a) 1.5m, (b) 3m, (c) 5m, (d) 10m, and (e) 20m. 89

5.30. Suggested meshes for the Centre of Delft with different roughness height val-
ues z0. 90

5.31. Number of buildings with less than 10 cells per cube root building volume
(3
√

buildingvolume) within real-world datasets. 93
5.32. Number of invalid building separations, indicated in green, in the model with

21 identical cubes (wcell : cell width, dseparation: separation threshold, min: min-
imum distance needed, which is (wcell/8)*8+(wcell/4)*2, and score: percentage
of valid buildings). Cubes are separated with distances of 75, 100, and 125m. 95

5.33. Invalid buildings separations, indicated in green, within the Begijnhofbuurt
(Amsterdam) and Ouddorp files. 96

5.34. Region of Interest definition with Ouddorp (a) without target building (b)
with target building. 97

5.35. Profile view of meshes with ground refinement (z0 = 0.5m): (a) Centre of Delft
(b) Ouddorp. 98

5.36. Mesh generated for the Centre of Delft with three refinement boxes. 99
5.37. 3D view CFD simulations with mesh parameters from (a) Tutorial (b) Prototype.100
5.38. Slide at 5m of CFD simulation with mesh parameters from tutorial. 101
5.39. Slide at 5m of CFD simulation with mesh parameters from prototype. 101
5.40. Mesh tutorial (slide at 5m). Background mesh (blockMeshDict) and final mesh

(snappyHexMeshDict) contain 5000 and 185 749 cells, respectively. 102
5.41. Mesh prototype (slide at 5m). Background mesh (blockMeshDict) and final

mesh (snappyHexMeshDict) contain 1 410 579 and 4 328 987, respectively. 102
5.42. Velocity profiles. Rough changes are indicated with red crosses. 103
5.43. Location at which the velocity was evaluated indicated in red. 104
5.44. Residuals of the prototype. 104
5.45. Residuals of the tutorial. 105

6.1. Example of building separations: (a) accurate (b) inaccurate 111

A.1. Testing topological relationships validation with single building models, hav-
ing horizontal floors with a height of 0, and horizontal terrain surfaces with
a height of zt. Threshold value ζ is set to 1. Terrain surfaces and building
vertices forming topological errors are highlighted in green and yellow, re-
spectively, as they are incorrectly positioned in relation to each other (Section
3.2.2). 113

A.2. Testing topological relationships validation with single building models, hav-
ing horizontal floors with a height of 0, and terrain surfaces with variable
heights within a range zt. Threshold value ζ is set to 1. Terrain surfaces and
building vertices forming topological errors are highlighted in green and yel-
low, respectively, as they are incorrectly positioned in relation to each other
(Section 3.2.2). 114

A.3. Testing topological relationships validation with single building models, hav-
ing floors with variable heights z, and terrain surfaces with variable heights zt.
Threshold value ζ is set to 1. Terrain surfaces and building vertices forming
topological errors are highlighted in green and yellow, respectively, as they
are incorrectly positioned in relation to each other (Section 3.2.2). 114

xvi

List of Figures

A.4. Testing topological relationships validation with single buildings and without
ground surfaces. zt is the height at which buildings must be placed. The
lowest z-value of the buildings (zmin) is 0. Threshold value ζ is set to 1. 115

B.1. Normal angles computed for a ground surface f 118
B.2. Ground surfaces identification for single buildings with ground surfaces hav-

ing the same slope. θt represents their angles with the terrain. Surfaces are
selected that have an angle with regard to the terrain lower than θ, and have all
their vertices lower than threshold value h. Ground surfaces are highlighted
in green. 118

B.3. Ground surfaces identification for single buildings with ground surfaces with
different slopes. Each building has two ground surfaces with normals N1 and
N2. θx is the angle between vectors (0, 0, -1) and (xn, 0, -1) as represented in
Figure B.1, and θy is the same angle but then in the y-direction, resulting in
the angle between (0, 0, -1) and (0, yn, -1). 119

C.1. Two connected triangles. 121
C.2. Sharp angles identification of two connected triangles with a threshold value

θ of 90◦. θ1 and θ2 are the angles illustrated in Figure C.1. Only one of the
two triangles varies in angle (θ1), the other one remains at 0◦. The threshold θ
is set to 90◦. Sharp angles are indicated in green. 121

C.3. Sharp angles identification of two connected triangles with a threshold value
θ of 90◦ and 45◦. θ1 and θ2 are the angles illustrated in Figure C.1. ϕ1 is the
first angle between these triangles and ϕ2 is the second one. Sharp angles are
indicated in green. 122

C.4. Same validations performed as explained Figure C.3, but then with negative
angles. 122

D.1. Cone and roof models. 123
D.2. Sliver triangles identification with cones (n: number of triangles, d and h:

distances as illustrated in Figure D.1, and SP: sliver parameter), and different
threshold values σ for the sliver parameter. Sliver triangles are indicated in
green. 123

D.3. Sliver triangles identification of roofs (n: number of triangles, d and h: dis-
tances as illustrated in Figure D.1, and SP: sliver parameter), and different
threshold values σ for the sliver parameter. Sliver triangles are indicated in
green. 124

E.1. Short edges identification of cones (n: number of triangles, h: height, and r:
radius), and different threshold values for the length of edges. Short edges
are indicated in green. 125

E.2. Short edges identification of cones (n: number of triangles, h: height, and r:
radius), and different threshold values for the length of edges. Short edges
are indicated in green. 126

E.3. Short edges identification of cones (n: number of triangles, h: height, and r:
radius), and different threshold values for the length of edges. Short edges
are indicated in green. 126

F.1. Mesh parameters suggested by the prototype for the Centre of Delft with an
evaluation height huser of 1.5m. 127

xvii

List of Figures

F.2. Mesh parameters suggested by the prototype for the Centre of Delft with an
evaluation height huser of 3m. 128

F.3. Mesh parameters suggested by the prototype for the Centre of Delft with an
evaluation height huser of 5m. 129

F.4. Mesh parameters suggested by the prototype for the Centre of Delft with an
evaluation height huser of 10m. 130

F.5. Mesh parameters suggested by the prototype for the Centre of Delft with an
evaluation height huser of 20m. 131

F.6. Mesh parameters suggested by the prototype for the Centre of Delft with
different roughness height values z0. 132

F.7. Mesh parameters suggested by the prototype for Ouddorp with different
roughness height values z0. 133

F.8. Mesh parameters suggested by the prototype for Ouddorp with different
number of cell limits values Nmax. 134

F.9. Mesh parameters suggested by the prototype for the Centre of Delft with
different number of cell limits values Nmax. 135

F.10. Mesh parameters suggested by the prototype for Maastoren, the Centre of
Delft, and Ouddorp with a roughness height value z0 of 0.25m. 136

F.11. Mesh parameters suggested by the prototype for Maastoren, the Centre of
Delft, and Ouddorp with a roughness height value z0 of 0.5m. 137

F.12. Mesh parameters suggested by the prototype for Maastoren, the Centre of
Delft, and Ouddorp with a roughness height value z0 of 2m. 138

F.13. Mesh parameters suggested by the prototype for the Centre of Delft with a
roughness height value z0 of 0.25m when a ground refinement (GR) is applied
with and without number of cells limit Nmax. 139

F.14. Mesh parameters suggested by the prototype for the Centre of Delft with a
roughness height value z0 of 0.5m when a ground refinement (GR) is applied
with and without number of cells limit Nmax. 140

F.15. Mesh parameters suggested by the prototype for Ouddorp with a roughness
height value z0 of 0.25m when a ground refinement (GR) is applied with and
without number of cells limit Nmax. 141

F.16. Mesh parameters suggested by the prototype for Ouddorp with a roughness
height value z0 of 0.5m when a ground refinement (GR) is applied with and
without number of cells limit Nmax. 142

xviii

List of Tables

2.1. Meteorological scales. 5

3.1. hmax multiples used to define default refinement box dimensions. 45
3.2. Example of cell dimensions per refinement level (cell ratio is 1). 45

4.1. Classification of the results . 63
4.2. Datasets. 65

5.1. Matrix showing 3D models per test case. 82
5.2. Influence of the flow direction on the mesh suggested by the prototype for the

Centre of Delft (Nmax: 30 million cells, z0: 0.5m). 83
5.3. Suggested domain dimensions for Maastoren, depending on the chosen block-

age ratio (BR) (hmax (x), (y), (z): number of hmax in the x, y, and z direction;
BR: blockage ratio (Franke and Baklanov, 2007), BRL: blockage ratio in the
lateral horizontal direction (Blocken, 2015), and BRH : blockage ratio in the
lateral vertical direction (Blocken, 2015)). 86

5.4. Suggested domain dimensions for the Centre of Delft, depending on the cho-
sen blockage ratio (BR) (hmax (x), (y), (z): number of hmax in the x, y, and z
direction; BR: blockage ratio (Franke and Baklanov, 2007), BRL: blockage ra-
tio in the lateral horizontal direction (Blocken, 2015), and BRH : blockage ratio
in the lateral vertical direction (Blocken, 2015)). 86

5.5. Suggested domain dimensions for Ouddorp, depending on the chosen block-
age ratio (BR) (hmax (x), (y), (z): number of hmax in the x, y, and z direction;
BR: blockage ratio (Franke and Baklanov, 2007), BRL: blockage ratio in the
lateral horizontal direction (Blocken, 2015), and BRH : blockage ratio in the
lateral vertical direction (Blocken, 2015)). 86

5.6. Influence of hmax on the cell and domain dimensions (Nmax = 30 million cells,
z0 = 0.25m). 87

5.7. Influence of hmax on the cell and domain dimensions (Nmax = 30 million cells,
z0 = 2m). 88

5.8. Influence of the target evaluation height huser on the cell dimensions and final
evaluation heights (Nmax = 30 million, z0 = 0.5m). huser (0-3) indicates the final
maximum huser (cells with refinement level 0) and minimum huser (cells with
refinement level 3). 89

5.9. Resulting cell dimensions hxw, distances between the bottom boundary and
first evaluation nodes hnode, and number of cells approximation Napprox. for
the Centre of Delft (Nmax = 30 million). The distance between the bottom
boundary and first evaluation nodes from this boundary is denoted hnode. . . . 90

5.10. Recommended cell dimensions for Ouddorp with different limits for the num-
ber of cells Nmax (z0 = 0.5m, huser = 1.5m). 91

5.11. Recommended cell dimensions for the Centre of Delft with different limits for
the number of cells Nmax (z0 = 0.5m, huser = 1.5m). 91

xix

List of Tables

5.12. Number of cells approximation for TU Delft campus 2. 91
5.13. Number of valid buildings identified in the model with 21 identical cubes.

Cube root of one cube (3
√

Cube) equals 123.31m. 92
5.14. Comparison between approximated number of cells Napprox. and final number

of cells N f inal with or without ground refinement (GR) for the Centre of Delft
(Nmax = 30 million cells, z0 = 0.25m). 98

5.15. Comparison between approximated number of cells Napprox. and final number
of cells N f inal with or without ground refinement (GR) for Ouddorp (Nmax =
30 million cells, z0 = 0.25m). 98

5.16. Comparison between two meshes suggested for the Centre of Delft. The same
input parameters are used, except for the number of refinement boxes. 99

6.1. Classification of the results . 109

xx

List of Algorithms

3.1. Topological relationships validation. 29

3.2. Sharp angles identification. 31

3.3. Sliver triangles identification. 32

3.4. Short edges identification. 32

3.5. Overlapping buildings identification. 34

3.6. Model orientation. 38

3.7. Evaluation height (2 refinement boxes). 40

3.8. Computational domain without blockage ratios. 43

3.9. Computational domain with BR. 43

3.10. Computational domain with BRH and BRL. 44

3.11. Refinement box. 46

3.12. Roughness height (2 refinement boxes). 47

3.13. Maximum number of cells. 49

3.14. Cells per cube root of the building volume I. 51

3.15. Cells per cube root of the building volume II. 52

3.16. Cells per building separation I. 54

3.17. Cells per building separation II. 54

3.18. RoI definition without target building Ia. 55

3.19. RoI definition with target building Ib. 55

3.20. RoI definition II. 56

3.21. Ground refinement. 56

B.1. Ground surfaces. 117

xxi

Acronyms

AIJ Architectural Institue of Japan

BAG Register of Buildings and Addresses

CFD Computational Fluid Dynamics

CGAL Computational Geometry Algorithms Library

COST Cooperation in Science and Technology

FOAM Open Field Operation and Manipulation

ISO International Organization for Standardization

LES Large Eddy Simulation

OBJ Wavefront Object

OGC Open Geospatial Consortium

RANS Reynolds-Averaged Navier-Stokes

RoI Region of Interest

Simple Semi-Implicit Method for Pressure-Linked Equations

STL Stereolithography

UI User Interface

xxiii

Symbols

Topological relationships validations
ζ Distance threshold between terrain and buildings
z Building height
zg Ground level
zmin Minimum z-value in the 3D model
zt Target height or height of the terrain surfaces

Sharp angles identification
θ Angle threshold between two triangular building faces (◦)
ϕ1 First angle between two triangular faces (◦)
ϕ2 Second angle between two triangular faces (◦)

Sliver triangles identification
SP Sliver parameter
σ Sliver parameter threshold used to define sliver triangles

Short edges identification
l Edge length
λ Length threshold used to define short edges

Mesh parameters definition
BR Blockage ratio κ Turbulent kinetic energy
BRH BR in the lateral vertical direction N Number of cells in mesh
BRL BR in the lateral horizontal direction Nboxes Number of refinement boxes
btarget Target building (x, y) Napprox. Number of cells approximation in mesh
Dbox Refinement boxes dimensions (m) NblockMesh Number of cells in background mesh
d f low Flow direction (◦) Nmax Maximum number of cells
dmax Largest building dimension (m) rmin Target cell ratio
dseparation Maximum street width (m) u Unit parameter
ϵ Passive scalar Ure f Velocity value (m/s)
hcell Cell height (m) wcell Cell width (m)
hmax Height of the tallest building (m) zre f Velocity height (m)
hmax Maximum cell height (m) z0 Maximum roughness height (m)
hmin Minimum cell height (m)
huser Target evaluation height (m)

xxv

1. Introduction

1.1. Background and motivation

Computational Fluid Dynamics (CFD) simulations are a powerful tool to address societal
challenges within urban environments (Blocken, 2015). As they simulate and visualize fluid
flows, users can analyse and predict flow behaviours within cities, such as wind, pollution,
and heat flows. With the growing population in urban areas (The World Bank, 2022) and
the rise of extreme weather conditions due to climate change, these CFD simulations are
becoming increasingly important. This development, for example, lead to more natural
ventilation and storm resistance in the build environment. These simulations are able to
support urban planning, e.g. by preventing strong wind flows due to the architecture and/or
distribution of buildings. In other words, CFD simulations help to create or maintain a
balance between urban flows ensuring a comfortable environment within residential areas.

CFD simulations represent the air surrounding the urban area by a computational domain,
which is characterised by turbulent flows displaying chaotic behaviours and described by
Navier-Stokes (NS) equations. Due to their infinite degrees of freedom, these flows are very
challenging to solve and ”often considered as the ”last grand challenge” of classical physics”
(Benzi and Toschi, 2023). Therefore, a mesh is generated that divides the domain into cells.
For each of these cells, the flow value is computed by solving a simplified version of the NS
equations (Blocken, 2015; Franke and Baklanov, 2007). The quality of these meshes, which is
mainly dependent on the grid resolution and cell quality, is essential for accurate simulation
results (Blocken, 2015).

CFD simulations require accurate pre-run setups. These are proposed in different CFD
guidelines. Properly following these guidelines ensures realistic simulation results. Cur-
rently, users must manually define these pre-run setups, which is time consuming, prone to
errors, and requires some expertise. However, partial automation can streamline this pro-
cess. This would help increase the ease of use of CFD simulations. The guidelines include
recommendations for the meshing process, which include domain dimensions, cell sizes and
cell shapes. A tool that computes these mesh parameters based on these suggestions might
contribute to further popularisation of CFD simulations.

Besides this, the quality of the geometries within 3D urban models is also crucial in per-
forming accurate CFD simulations (Wagner et al., 2015). To guide the increasing use of
geometric data for spatial analyses, international standards for geographical information
were developed. Standards that help create valid 3D geometric datasets and encourage the
interoperability and exchange of geographical data. Though these international standards
do take into account most geometric aberrations, some additional geometries can also affect
the mesh quality, such as sharp angles, short edges, and sliver triangles (Paden et al., 2022;
Piepereit et al., 2018). Additionally, incorrect topological relations between buildings and
terrains can lead to unrealistic simulation results. In the real world, most buildings do not
have strong flows passing beneath them.

1

1. Introduction

In this thesis a method is developed that defines mesh parameters and validates geometries
for accurate CFD simulations in urban areas. Recent CFD guidelines and international stan-
dards for geographic information are implemented. An additional prototype in the form of
a web application is also developed that executes this method. Further development of this
prototype can contribute to simplifying the use of CFD simulations in urban areas.

1.2. Objective and research questions

The aim of this thesis is to develop a method that validates geometries and defines mesh
parameters to simplify the use of CFD simulations in urban areas. Therefore, the most
recent CFD guidelines and international standards for geographic information are used.
Additionally, a prototype is created, in the form of a web application, that executes this
method and could be converted to an open source tool. To achieve these objectives, the
following sub-questions are addressed:

• Which geometric validations should be performed for CFD simulations in urban areas?
And how to implement them?

• Which method(s) could be used to compute CFD mesh parameters and generate high
quality meshes for urban CFD simulations in OpenFOAM?

• How to report errors, warnings and results to the users?

• How to validate the quality of the methodology?

1.3. Scope

The focus lies on identifying and reporting geometric errors; hence, repairing tasks are not
included. The method is developed based on building and terrain features and is not tested
with vegetation and other type of infrastructure. In addition, semantic validation functions
are not integrated. The mesh parameters definition algorithms create configuration files for
OpenFOAM, which is a widely used open-source software, to encourage the use of CFD
simulations. This thesis focuses on rectangular domains since they are common (Mirzaei
and Carmeliet, 2013) in CFD simulations for urban areas.

1.4. Obtained results

A prototype was created in the form of a web application to help users prepare their 3D
urban models for CFD simulations. First, geometric errors and warnings are identified in
accordance with ISO19107, an international standard for geographical information related
to vector geometries and topology. Second, CFD mesh pre-run setups are defined based on
recent CFD guidelines for urban areas. These parameters are generated in output files com-
patible with OpenFOAM. Finally, this prototype warns users when certain CFD guidelines
cannot be satisfied.

2

1.5. Thesis outline

1.5. Thesis outline

This report is organized as follows:

• Chapter 2 addresses theoretical background based on literature. It introduces CFD
simulations in urban areas and discusses how 3D geometries can be validated.

• Chapter 3 describes the method used to validate 3D geometries and define CFD pa-
rameters for the meshing process. It also explains most of the developed algorithms.

• Chapter 4 provides information on the method implementation, and introduces the
user interface/web application.

• Chapter 5 presents and analyses the obtained results.

• In Chapter 6, the conclusions and recommendations are drawn.

3

2. Theoretical background and related
work

In this chapter, theory and work relevant for the development of the method, identifying
geometric errors and mesh parameters definition, are presented. First, the chapter addresses
CFD simulations in urban areas (Section 2.1), and relevant guidelines for accurate simulation
results (Section 2.2). Subsequently, the chapter provides necessary information on geometric
validations (Section 2.3), and geometric issues related to the CFD meshing process (Section
2.4).

2.1. CFD simulations in urban areas

2.1.1. Urban physics and CFD simulations

Most analyses in urban physics are conducted within the lower part of the Atmospheric
Boundary Layer (ABL) (Blocken, 2015), also known as Planetary Boundary Layer (PBL)
(AMS, nd). The ABL is the lowest part of the troposphere, which extends 10-20km above
the ground (AMS, nd), and is directly influenced by the surface of the Earth (Brancher et al.,
2017). Its height varies depending on surface properties (e.g. frictional drag, pollutant emis-
sions, and heat transfer) (Seetha et al., 2023), and can range from several tens of meters in
situations with strong statically stable situations (laminar flows) to kilometres in statically
unstable situations (turbulent flows) (AMS, nd). Within the ABL, various weather phenom-
ena can occur that can be classified on their horizontal spatial and temporal scales (Blocken,
2015; Habby, nd; AMS, nd), as shown in Table 1.

Table 2.1.: Meteorological scales.
Meteorological
scales Horizontal size Duration Examples of atmospheric

phenomena

Macroscale Many hundreds of
kilometers Days Cyclones, hurricanes

Mesoscale Several hundred
kilometres 1-24 hours

Thunderstorms, precip-
itation bands, mountain
waves, sea and land
breezes

Microscale 2km or less Minutes to
hours

Tornadoes, rainbows,
convective updrafts and
downdrafts

5

2. Theoretical background and related work

In urban physics, flows that are analysed and modelled on the meteorological microscale are
usually referred to as Computational Fluid Dynamics (CFD) models (Blocken, 2015). This
microscale environment defines the ABL as the computational domain. Therefore, at its
boundaries, physical properties such as wind velocity and direction, temperature, humidity,
and pressure (Christou, 1998), are specified. These boundary conditions can be data from
the meteorological mesoscale. CFD models can also be applied on a building scale, covering
an even smaller area (100 metres or less) (Blocken, 2015).

2.1.2. Governing equations in CFD simulations

The flows within the ABL are turbulent (Blocken, 2015) characterized by chaotic behavior.
Chaotic flows do not have a widely recognised definition, but they are often described as
flows without constant or periodic motion (Liou, 2008). They can also be described as
”rotational, intermittent, highly disordered, diffusive and dissipative” (Markatos, 1986). Due
to their large degrees of freedom, understanding these flows is extremely challenging and is
often considered the ”last grand challenge” of classical physics (Benzi and Toschi, 2023).

In CFD, the Navier-Stokes (NS) equations are used to describe fluid motions, covering the
conservation of mass, momentum, mass, energy and scalar. They can be written as follows
(Blocken, 2015):

• Conservation of mass (2.1) and momentum (2.2 and 2.3)

δui
δxi

= 0 (2.1)

δui
δt

+ uj
δui
δxj

= −1
ρ

δp
δxi

+
δ

δxj
(2νsij) (2.2)

sij =
1
2
(

δui
δxj

+
δuj

δxi
) (2.3)

where

– ui: instantaneous velocity

– xi: instantaneous position

– p: instantaneous pressure

– t: time

– ρ: density

– ν: molecular kinematic viscosity

– sij: strain-rate tensor

• Conservation of scalar

δθ

δt
+ uj

δθ

δxj
=

1
ρcp

δ

δxj
(k

δθ

δxj
) (2.4)

where

6

2.1. CFD simulations in urban areas

– θ: instantaneous temperature

– k: thermal conductivity

– cp: specific heat capacity

• Conservation of scalar

δc
δt

+ uj
δc
δxj

=
δ

δxj
(D

δc
δxj

) (2.5)

where

– c: instantaneous concentration

– D: molecular diffusion coefficient or molecular diffusivity

Since solving these equations is highly challenging and almost impossible due to limited
computational resources, the equations must be simplified. There are two main simplifica-
tion methods: Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES)
(Blocken, 2015).

RANS is the most common simplification method and can be divided into steady and un-
steady RANS (Blocken, 2015). Steady RANS is developed for steady flows, meaning that the
flow conditions can vary at different locations, but not with time. The flow conditions in
unsteady RANS, on the other hand, can change with both time and location (CREST Foun-
dation Studies, nd). The RANS equations are a decomposition of the NS equations into a
mean and a fluctuation component (Blocken, 2015).

• RANS equations for the conservation of mass (2.6) and momentum (2.7 and 2.8)

δUi
δxi

= 0 (2.6)

δUi
δt

+ Uj
δUi
δxj

= −1
ρ

δP
δxi

+
δ

δxj
(2νSij − u′ju

′
i) (2.7)

Sij =
1
2
(

δUi
δxj

+
δUj

δxi
) (2.8)

where

– Ui: mean velocity

– P: mean pressure

– u′i: Reynolds stresses, which is a fluctuation component and represent the influ-
ence of turbulence on the mean flow

– Sij: mean strain-rate tensor

• RANS equations for the conservation of energy

δΘ
δt

+ Uj
δΘ
δxj

=
1

ρcp

δ

δxj
(k

δΘ
δxj
− u′jθ

′) (2.9)

where

7

2. Theoretical background and related work

– Θ: mean temperature

– θ′: turbulent heat fluxes, which is a fluctuation component and represent the
influence of turbulence on the heat transfer

• RANS equations for the conservation of scalar

δC
δt

+ Uj
δC
δxj

=
δ

δxj
(D

δC
δxj
− u′jc

′) (2.10)

where

– C: mean concentration

– c′: turbulent mass fluxes, which is a fluctuation component and represent the
influence of turbulence on the mass transfer

Steady RANS uses time-average and unsteady RANS applies ensemble-average of the NS
equations. Both methods do not directly simulate turbulence but rely on statistical mod-
eling. This is because the number of unknown variables exceeds the number of RANS
equations due to the introduction of new variables. Consequently, these equations cannot
be solved. Turbulence models are then used to approximate Reynolds stress values. For
temperatures and concentrations, the Boussinesq approximation for buoyancy is often used
(Blocken, 2015).

Since the ABL is turbulent and turbulent flows are considered unsteady, using unsteady
RANS is theoretically more appropriate (Blocken, 2015; COST, 2023). However, unsteady
RANS requires high spatial resolution (Blocken, 2015; COST, 2023). Therefore, Franke et
al. recommend using LES or hybrid URANS/LES instead. With LES, large-scale turbulence
can be resolved by applying spatial filtering to the NS equations, which removes small
turbulent eddies. The filter usually has the same dimensions as a grid cell at that specific
location. Small-scale turbulent flows are approximated by using statistics (Blocken, 2015;
COST, 2023). Hybrid URANS/LES combines URANS near walls, as LES is computationally
expensive, with LES in the remaining area (Blocken, 2015; COST, 2023). Both LES and hybrid
URANS/LES outperform RANS and URANS (Blocken, 2015; COST, 2023).

Despite the recommendation for unsteady methods in ABL simulations, steady RANS re-
mains the most widely used in urban physics (Blocken, 2015; COST, 2023), and often pro-
vides satisfactory results (Blocken, 2015; Blocken, 2014). On the other hand, LES is the
preferred approach for unsteady flows and is increasingly used (COST, 2023). However, the
execution time is often high, and high-quality experimental data are needed as input data,
which are sometimes difficult to obtain (COST, 2023). Moreover, more information and
guidelines are available for RANS simulations, making it a more attractive option in many
cases (Blocken, 2015). This thesis focuses on RANS simulations, because of its popularity in
urban physics and the extent of information.

8

2.1. CFD simulations in urban areas

2.1.3. OpenFOAM, an open CFD software

To increase the ease of use of CFD simulations in urban areas, this research focuses on the
widely used open source CFD software OpenFOAM. Three main steps can be identified
while performing CFD simulations with this software. First, a computational domain is
generated around the input geometry. Next, a mesh or computational grid subdivides this
domain into cells (e.g. hexahedra, tetrahedra, polyhedra). Finally, the flow values are com-
puted at the centre point of each cell by using one of the available solvers. These can be
chosen by the users based on the fluid properties and specific simulation requirements. For
each of these steps, the users must execute one or several commands/utilities (Greenshields,
2023).

The two first commands are essential to generate an adequate mesh. The first one is the
surfaceFeatures command, which identifies the surfaces features (edges and vertices) of the
input geometry. This utility enables the final mesh to properly mesh the geometry edges.
Then, a computational domain is generated and divided into hexahedral cells by using
the blockMesh utility. Its specifications, such as domain size and cell dimensions, can be
added in the blockMeshDict file. The resulting domain is named the background mesh. It
is important to note that its cells must maintain an aspect ratio of approximately 1 to aim
for the highest mesh quality with snappyHexMesh. In addition, there must be at least one
intersection between a cell edge and the input geometry. Figure 2.1 shows an example of a
background mesh in 2D.

Figure 2.1.: Background mesh in OpenFOAM. Adapted from ”User Guide version 11” by
Greenshields, C. J., 2023.

After the background mesh generation, the final mesh can be modeled using the snappy-
HexMesh command, which is only compatible with triangulated surface geometries in Stere-
olithography (STL) and Wavefront Object (OBJ) files. For this reason, this research focuses
on these two formats. Figure 2.2 illustrates the different steps during this meshing process.
First, the cells are divided into smaller cells at the surfaces and edges of the input geometry.
Second, cells with 50% or more of their volume within the geometry are removed. Third,
cells located within user defined regions are refined. Finally, vertices of cells partially within
the geometry are adjusted to align with the boundaries of the geometry. The mesh quality
might be low, however, there are tools available that allow users to verify it and identify
settings that can be adjusted for improvement. After the final mesh is generated, the CFD
simulation can start.

9

2. Theoretical background and related work

a b c

d e f

Figure 2.2.: Mesh generation in SnappyHexMesh (a) Cell division at edges, (b) Cell division
at surfaces, (c) Cell removal within geometry boundaries, (d) Cell refinement in specific
regions, (e) Cell vertices displacement to geometry boundaries, and (f) Mesh layers at
specific locations. Adapted from ”User Guide version 11” by Greenshields, C. J., 2023.

2.2. CFD guidelines for urban simulations

The following CFD guidelines for urban areas are explored. Most of them address RANS
simulations, which is the most widely used method in urban physics (Blocken, 2015). As
stated earlier in Section 2.1.2, this thesis also focuses on these simulations.

• Franke and Baklanov (2007) published the COST Action 732, which provides best prac-
tice guidelines (BPG) for CFD simulations in the urban environment. It is based on
literature research and extracts the most general guidelines from existing ones for
RANS simulations in urban and industrial environments. COST stands for the Euro-
pean Cooperation in Science and Technology (COST), which is a funding organisation
that promotes research networks, known as COST Actions. Scientists from various dis-
ciplines have the opportunity to initiate a COST Action based on their specific interest
(COST, 2023).

• A working group from the Architectural Institute of Japan (AIJ), which is a non-
profit organisation for academics in architecture (AIJ), proposed CFD guidelines for
pedestrian-level wind simulations. Unlike COST Action 732, these guidelines are not
based on literature research, but on seven test cases for which CFD predictions, wind
tunnel test results and field measurements were compared (Tominaga et al., 2008).

• Tong et al. (2016) experienced with CFD simulations on indoor-outdoor models (i.e.
buildings with windows) to define suitable dimensions for the Region of Interest (RoI)
for ventilation flows prediction. In contrast to the other listed guidelines, they used
Large Eddy Simulations (LES).

• Existing CFD guidelines for urban areas lacked a clear definition of the Region of
Interest (RoI). Liu et al. (2018) worked on a concrete approach to define this region.

• Blocken (2015) discussed some existing guidelines, and proposed some new ones to
perform accurate CFD simulations for urban areas.

10

2.2. CFD guidelines for urban simulations

2.2.1. Computational domain

The computational domain is defined as ”an external volumetric region that surrounds the
building model, where the basic flow equations are discretized and solved” (Abu-Zidan
et al., 2021). Its dimensions have a significant role in the accuracy of CFD simulation results
(Franke and Baklanov, 2007; Tominaga et al., 2008; Blocken, 2015; Abu-Zidan et al., 2021),
and are depended on the size of the 3D city model and the specified boundary conditions
(Franke and Baklanov, 2007).

Different shapes can be used for the computational domain. While Franke and Baklanov
(2007) assume a rectangular shape, their guidelines can also be applied to round and oval
domains (Paden et al., 2022). The other referenced guidelines in this section can also be
followed for rectangular, oval, and round domains.

The top boundary should be placed at an adequate height to avoid local venturi effects
(Abu-Zidan et al., 2021), which are flow accelerations and pressure reductions occurring
in narrow areas (Oxford University Press, nd). According to Franke and Baklanov (2007),
the distance between the top boundary of the computational domain and the height of the
tallest building, denoted as Hmax, should be at least 5·Hmax. The guidelines by Tominaga
et al. (2008) state that the height must be at least 5·Hmax for single buildings and depends
on the terrain category of the surroundings (Tominaga et al., 2008) for urban areas. The
classification is based on the location of the model regarding the city, building height, and
the distance from the sea- or lakefront (Hisashi et al.).

Local venturi effects can also arise when the lateral boundaries are placed too close to the 3D
urban model (Abu-Zidan et al., 2021). Franke and Baklanov (2007) suggest a distance of at
least 5·Hmax from the 3D city model to the boundary for single building models. For urban
areas, this distance is allowed to be slightly smaller (Franke and Baklanov, 2007). However,
Tominaga et al. (2008) advise to maintain 5·Hmax as a minimum for single buildings, as well
as for urban areas.

The approach flow enters the computational domain through the inflow boundary, situated
in front of the 3D city model (Franke and Baklanov, 2007). According to Franke and Bak-
lanov (2007), a distance of at least 5·H should be maintained between this boundary and
the 3D city model for single building models. Blocken (2015) state that this is also true for
urban models. Tominaga et al. (2008) do not specifically recommend guidelines for urban
areas. However, they indicate that the location of the inlet boundary should be determined
based on the upwind area covered by a smooth flow in the wind tunnel. Errors can occur in
cases where this distance, also known as the upstream domain length, is insufficient. When
fluid interact with buildings, their behavior change. The area covering these flows is called
the wind-blocking region. An inadequate upstream domain length can lead to incorrect
simulation results within this area (Abu-Zidan et al., 2021; Blocken and Carmeliet, 2006).

The wake flow can leave the computational domain through the outflow boundary, which is
located behind the 3D city model. The distance between the model and the outflow bound-
ary should be considerably greater than that between the model and the inflow boundary
(Franke and Baklanov, 2007) to avoid flow recirculation (Abu-Zidan et al., 2021). Tominaga
et al. (2008) recommend a distance of 10·H for single buildings while Franke and Baklanov
(2007) advise a distance of at least 15·H. According to Franke and Baklanov (2007), this
distance can be reduced for urban areas, depending on the boundary conditions.

11

2. Theoretical background and related work

Figure 2.3.: Minimum domain dimensions adapted from Franke and Baklanov (2007).

Franke and Baklanov (2007) also suggest to use the blockage ratio (BR) defined by the Verein
Deutscher Ingenieure, the Association of German Engineers, in 2005. This ratio is computed
by comparing the front area of the urban model Aurban, the side facing the wind (inlet
boundary), to the front area of the computational domain Adomain. The BR should remain
below 3% (Franke and Baklanov, 2007; Tominaga et al., 2008) to prevent venturi effects on a
global scale (Abu-Zidan et al., 2021).

BR =
Aurban
Adomain

, BR ≤ 3% (2.11)

To avoid artificial accelerations in CFD simulations with large horizontal features like wide
buildings or urban models, Blocken (2015) introduced a decomposition of the blockage ratio
and the limit of 3% in the lateral horizontal BRL and vertical BRH directions. The first
ratio describes the relation between the length of the urban area Lbuilding and the length
of the domain Ldomain. The second one defines the ratio between the height of the urban
area Hbuilding and the height of the domain Hdomain. These directional blockage ratios must
remain below 17%, which is the square root of 3%.

BRL =
Lbuilding

Ldomain
, BRL ≤ 17% (2.12)

BRH =
Hbuilding

Hdomain
, BRH ≤ 17% (2.13)

12

2.2. CFD guidelines for urban simulations

Figure 2.4 illustrates the front area of the domain (inlet boundary) with the parameters
needed for computing the blockage ratios.

Adomain

Aurban

Lurban

Ldomain

Hurban

Hdomain

Figure 2.4.: Profile view of Figure 2.3 adapted from Franke and Baklanov (2007).

Guidelines implemented in the prototype

A selection of guidelines is considered for the prototype:

• Franke and Baklanov (2007) require a minimum distance of 5·H between the model
and the boundary. Tominaga et al. (2008) suggest a less explicit definition which relies
on the terrain category of the surroundings. Given that the prototype does not focus
on the semantics of the 3D model, the top boundary of Franke and Baklanov (2007) is
implemented.

• Both Franke and Baklanov (2007) and Tominaga et al. (2008) recommend a distance of
5·H for the lateral boundaries. While Tominaga et al. (2008) consider this distance as a
minimum requirement, Franke and Baklanov (2007) allow it to be slightly shorter. Like
Tominaga et al. (2008), the prototype considers this distance as a minimum to avoid
local venturi effects leading to inaccurate results.

• The definition of Tominaga et al. (2008) for the inlet boundary is less concrete than the
one of Franke and Baklanov (2007). Tominaga et al. (2008) rely on the upwind area
covered by a smooth flow in the wind tunnel, which is not applicable in this thesis since
no wind tunnels are involved. Besides, Tominaga et al. (2008) focus on single building
models instead of urban models for the inlet boundary. The prototype focuses on the
definition of Franke and Baklanov (2007), which uses an upstream domain length of
5·H.

• Franke and Baklanov (2007) recommend a distance of 15·H for the outlet boundary,
which can be reduced for urban areas. Tominaga et al. (2008), on the other hand,
suggest a distance of 10·H for single buildings. Since Franke and Baklanov (2007)
define the outlet boundary for urban areas rather than single building models, the
prototype focus on the guidelines of Franke and Baklanov (2007).

13

2. Theoretical background and related work

• The directional blockage ratios of Blocken (2015) are specifically developed to avoid
simulation errors with urban models, which is not the case for the blockage ratio of
Franke and Baklanov (2007). Yet, the prototype considers both the blockage ratios of
Blocken (2015) and Franke and Baklanov (2007).

2.2.2. Computational grid

The domain is modelled as a continuous medium (OpenFOAM, 2015) governed by the
Navier-Stokes equations, which describe the relation between ”the velocity, pressure, tem-
perature, and density of a moving fluid” (Hall, 2021). These equations are non-linear, and
pose a significant challenge in solving them directly. However, discretizing the domain, also
called meshing, helps to linearize these equations (OpenFOAM, 2015) and obtain a possible
solution (SimScale, 2023). This discretized domain is called the computational grid, which
represents ”the locations in space at which model quantities are calculated, known as ”grid
points” or “grid cells”” (Arthur and Angevine, 2023).

OpenFOAM obtains a solution for these linearized equations by using an iterative method
(Greenshields, 2023), which uses an initial value to generate a new value. The new value then
replaces the initial one, and the process is repeated several times until the values converge to
a final solution (Kováčová and Richtáriková, 2020). For this process, Blocken (2015) suggest
to use second-order discretization schemes, instead of first-order schemes, for more accurate
simulation results.

Franke and Baklanov (2007) focus on the two most common discretization methods in CFD
software: the Finite Volume (FV) and Finite Difference methods (FD). The first method
subdivides the domain into smaller volumes or cells, and at the center of each cell, the
Navier-Stokes equations are resolved. The resulting value is attributed to the entire cell
(OpenFOAM, 2010). The second method uses discrete points, for which the equations are
solved. A solution is only attributed to that specific point (Shukla et al., 2011). OpenFOAM
uses the Finite Volume Method (FVM) (OpenFOAM, 2010).

It is essential to generate computational grids with high quality to prevent inaccurate results
and/or convergence problems. A high grid resolution and cell quality is therefore needed
(Blocken, 2015). Franke and Baklanov (2007) recommends the following:

• Regular grids are preferred to irregular ones.

• The expansion ratio between two neighbouring cells must remain below 1.3 in regions
of high gradients.

• The line connecting the centroids of two neighbouring cells, passing through a face f ,
must be parallel to the normal vector of f .

14

2.2. CFD guidelines for urban simulations

Normal
vector

Face f

Centroid A Centroid B

Cell A Cell B

Figure 2.5.: Connection of two neighbouring cells.

• The grid lines should be perpendicularly aligned to walls (bottom boundary of the
domain).

• In the Region of Interest (ROI), a minimum of 10 cells per cube root of the building
volume (3

√
buildingvolume) and 10 cells between two buildings should be used as an

initial minimum grid resolution. The grid must be refined to determine the correct
resolution.

• Three systematically refined grids are necessary for the Richardson extrapolation, with
a refinement factor of at least 3.4 (Blocken, 2015).

• The evaluation height of 1.5-2 meters should be aligned with the 3rd or 4th cell of the
computational grid (Blocken, 2015).

Many of these guidelines are confirmed by Tominaga et al. (2008), or share similarities with
their recommendations:

• They advise to use smaller cells around buildings to get more accurate flow simula-
tions. Like the COST Action 732, they recommend a minimum of 10 cells on each side
of the buildings and a stretching ratio of 1.3 or less in these areas.

• A minimum grid resolution of approximately one-tenth the scale of the building is
suggested.

• The evaluation height, typically within the range of 1.5 and 5 meters above ground
level, should align with the 3rd cell or higher from the ground surface.

• The number of finer cells should be at least 1.5 times the number of coarser cells in each
dimension, which is consistent with COST Action 732 that recommends a minimum
ratio of 3.4 between two neighbouring cells (1.53 = 3.375).

• To avoid large aspect ratios of cells, they advise to use grid lines perpendicular to walls
(bottom boundary of the domain) or ground surfaces.

(Tominaga et al., 2008) also stated that the first evaluation node must be placed at least the
roughness height from the wall, which is the bottom boundary of the domain.

Guidelines implemented in the prototype
The guidelines of Franke and Baklanov (2007) and Tominaga et al. (2008) are quite similar,
with minor differences observed in the evaluation height and linear refinement require-
ments. Franke and Baklanov (2007) suggest to generate the 3rd or 4th cell at a height of 1.5-2
meters, while Tominaga et al. (2008) recommend modeling it at a range of 1.5-5 meters. Also,
the ratio between neighboring cells is 3.4 for Franke and Baklanov (2007) and 3.375 for Tom-
inaga et al. (2008). However, OpenFOAM automatically generates a linear refinement of 2,

15

2. Theoretical background and related work

making this guideline irrelevant for the developed prototype. Others are already considered
by this software. Consequently, this thesis focuses on the following guidelines:

• Regular grid,

• A minimum of 10 cells per cube root of the building volume,

• A minimum of 10 cells between two buildings,

• A number of three refinement grids,

• An evaluation height between 1.5-5m, which is a combination of the guidelines sug-
gested by Blocken (2015) and Tominaga et al. (2008),

• The first evaluation node placed at a minimum distance of at least the roughness height
from the ground.

2.2.3. Region of interest

The level of detail of the surrounding buildings significantly impacts the simulation results
around the target building (Liu et al., 2018; Garcı́a-Sánchez et al., 2021). However, modelling
all buildings in the domain would be computationally expensive. So, defining the surround-
ing buildings to be modeled to avoid poor simulation results around the target building and
long execution time would be useful.

These buildings can be identified by defining a Region of Interest (RoI) or Influence Region.
Tong et al. (2016) defines this region as ”the area where the surrounding buildings must be
modeled explicitly to predict the ventilation flow rate accurately” in urban areas. Tominaga
et al. (2008) and Liu et al. (2018) also proposed such a Region of Interest for urban wind
simulations.

According to Tominaga et al. (2008), the buildings within a radius of 1 or 2 times hmax
(height of the tallest building), denoted as H in Figure 2.6, are part of the RoI. They also
recommend to add the street blocks in each direction around this region to the RoI. However,
for areas outside this selected region, it is suggested to use simplified geometries or adjust
the roughness instead of modeling any building.

Tominaga et al. (2008) and Tong et al. (2016) used 3D models of cubes with a specific distri-
bution to define their guidelines on the Region of Interest (RoI). However, the structure of
urban areas is much more complex. Selecting building blocks might be difficult due to the
variability in building distribution within urban areas (Liu et al., 2018).

Therefore, Liu et al. (2018) worked on a more concrete approach by performing CFD sim-
ulations using different geometric models. They concluded that the buildings around the
target building within a radius of at least 3·L, where L is the maximum dimension of the
target building, are within the RoI.

16

2.2. CFD guidelines for urban simulations

Figure 2.6.: Regions of Interest (RoI), defined by (a) Tominaga et al. (2008), (b) Tong et al.
(2016), and (c) Liu et al. (2018). From ”Influence of surrounding buildings on wind
flow around a building predicted by CFD simulations” by Liu, et al., 2018, Science Di-
rect, 96:1749–1761e.

Note that large buildings outside the domain can have a significant impact on the flow field
inside the RoI. As a rule of thumb, buildings with height hmax within a distance of 6·hmax
from the RoI should be represented in the domain (Franke and Baklanov, 2007).

Guidelines implemented in the prototype
The prototype developed in this research focuses on the guidelines defined by Liu et al.
(2018) due to their more precise definition.

17

2. Theoretical background and related work

2.2.4. Related work

Preparing geometries for CFD simulation is a time-consuming task (Paden et al., 2022).
Therefore, Paden et al. (2022) introduced a workflow that automatically reconstructs 3D ge-
ometries for microscale urban flow simulations from 2D geographical datasets (e.g. cadastral
data, topographic datasets) and aerial pointcloud-based elevation data. This workflow con-
siders CFD guidelines on the Region of Interest (RoI), described in Section 2.2.3, and the
ones on the domain dimensions, discussed in Section 2.2.1. Buildings within the RoI are
reconstructed, and the size and shape of the resulting 3D model meet the minimum require-
ments for the domain. The workflow led to satisfying results and was implemented in a tool
called City4CFD (https://github.com/tudelft3d/City4CFD).

2.3. The validation of 3D geometries

2.3.1. The importance of valid geometries

3D urban models, also known as 3D city models, represent an urban environment by using
3D (vector) geometries and eventually semantics (Biljecki et al., 2015). In the past decades,
these models were mainly used for visualisation; nowadays, they are increasingly used for
data analysis and simulations in a wide range of domains (Biljecki et al., 2015). A challenge
here is combining existing models primarily created for visualisation with GIS software,
which started to specify minimum requirements to ensure correct performance. This is
difficult, in particular since these requirements are not always the same. Additionally, the
many definitions for 3D primitives added to this confusion (Ledoux, 2013), such as for
polygons for which multiple definitions exist, even in the mathematical field (Grünbaum,
2003; Ledoux, 2013).

To increase the interoperability and exchange of geographical data, the International Orga-
nization for Standardization (ISO) and the Open Geospatial Consortium (OGC) developed
standards to define basic primitives (ISO19107) (ISO, 2019) and how to digitize them (OGC,
2016, 2011). Since the quality of 3D city models is crucial to perform simulations such
as CFD, verifying geometries in accordance with the ISO19107 could be a ”useful starting
point” (Wagner et al., 2015). However, these standards are often interpreted differently and
are not always easy to implement, which leads to invalid geometries (van Oosterom et al.,
2005). Therefore, tools were created identifying these errors (Section 2.3.3). Implementing
them within the prototype developed in this thesis can contribute to more accurate CFD
simulations, as users can improve geometries within their 3D models.

2.3.2. The ISO19107 standard and its implementation

The ISO19107 standard provides conceptual schemas and operations to describe geospatial
data, including vector geometries and topology (ISO, 2019). This standard defines geometric
primitives from 0D to 3D and is used to represent real-world features in GIS (Arroyo Ohori
et al., 2022). Figure 2.7 shows some examples of 3D primitives along with their correspond-
ing classification names.

18

https://github.com/tudelft3d/City4CFD

2.3. The validation of 3D geometries

Figure 2.7.: 3D primitives based on the ISO19107 standard. From ”val3dity: validation of 3D
GIS primitives according to the international standards” by Ledoux (2018).

The standard ISO19107 states that a d-dimensional primitive is composed of (d-1)-dimensional
primitives (Arroyo Ohori et al., 2022) and can be part of another d-dimensional primitive to
form an aggregate or composite (Ledoux, 2018). An aggregate is a set of d-dimensional prim-
itives that can overlap or be disconnected (topological relationships are not considered); a
composite is a set of d-dimensional primitives that form a d-manifold, which is a shape that
can be deformed to resemble/represent the d-dimensional Euclidean space in a continuous
and invertible way (Weisstein, nd; Arroyo Ohori et al., 2022; Ledoux, 2018). In GML, these
primitives are named Multi* and Composite* where, for example, * can be replaced by Surface
or Solid (Arroyo Ohori et al., 2022; Ledoux, 2018).

In practice, curves (GM Curves) and surfaces (GM Surfaces) are often considered as linear or
planar, respectively. With this in mind, Arroyo Ohori et al. (2022) summarised the validation
rules for 3D primitives. It is worth noting that ”for a three-dimensional primitive to be valid,
all its lower-dimensionality primitives should also be valid” (Ledoux, 2013).

• A 2D Polygon is valid when the six assertions from OGC (2011) in Figure 2.8 are
followed.

19

2. Theoretical background and related work

Figure 2.8.: Assertions describing a valid 2D polygon. From ”3D modelling of the built
environment” volume v0.8. by Arroyo Ohori et al. (2022).

• Since a MultiSurface consists of Polygons, it is valid when each of them are valid.

• A CompositeSurface is valid when, similar to MultiSurfaces, its Polygons are valid. Addi-
tionally, these polygons can not overlap and/or be disjoint.

• The validity of Solids can be verified by generalising the six assertions developed for
Polygons to 3D, except for the third one. In other words, Polygon can be replaced by
Solid, Ring by Shell, and hole by cavity. A Shell represents the boundary of a Solid
(Ledoux, 2013).

1. Solids are topological closed;

2. The boundary of a Solid consists of a set of Shell that make up its exterior and
interior boundaries;

3. No two Shells in the boundary cross and the Rings in the boundary of a Solid
may intersect at a Point by only as a tangent;

4. A Solid may not have cut lines, spikes or punctures;

5. The interior of every Solid is a connected point set;

6. The exterior of a Solid with 1 or more cavities is not connected. Each cavity
defines a connected component of the exterior.

• Each Solid forming a MultiSolid must be valid.

• A CompositeSolid is valid when the interiors of each Solid are not overlapping and form
a single solid after unification.

Standards help to increase the interoperability and exchange of geographical data; however,
as mentioned earlier, they are often interpreted differently and are not always easy to im-
plement. This leads to invalid geometries (van Oosterom et al., 2005). Therefore, validation
tools were developed, which are discussed in the following section.

20

2.3. The validation of 3D geometries

2.3.3. Related work

In contrast to 3D datasets, well-defined rules and open-source tools exist to perform geo-
metric validations in 2D. The most known are JTS Topology Suite and GEOS (Ledoux, 2013).
The former is a Java library that allows the creation and manipulation of geometries (JTS, a)
and provides some validation tools (e.g. isValid() for topological checks) (JTS, b). The second
started as a C++ port of JTS Topology Suite and nowadays, they still share the majority of
their algorithms (GEOS).

Several software tools exist that validate 3D datasets, such as ArcGIS Pro, Oracle Spatial,
and CityDoctor. Yet, they do not respect all the definitions within ISO19107 and/or do not
support aggregates and composites (Ledoux, 2018; Ledoux, 2013). However, Ledoux (2018)
developed open source software, named val3dity, that validates 3D primitives according to
ISO19107. This tool applies the common exception, as mentioned previously, that they need
to be linear or planar.

2.3.4. The open-source software val3dity

val3dity is an open-source software that validates 3D primitives based on ISO19107, with
the common GIS exception that they need to be linear or planar. This tool was developed
by Ledoux (2018) and is available as a command-line-only software or web application. It is
compatible with the CityJSON, OBJ, OFF, POLY, and IndoorGML formats.

Figure 2.9 illustrates 3D primitives supported by val3dity. Given the requirement for prim-
itives to be linear or planar, LinearRings and Polygons are represented as linear GM Curves
and planar GM Surfaces, respectively. Figure 2.9 shows also that a Solid is formed by an
external Shell and may contain internal Shells. These Shells can be intersected and/or discon-
nected within MultiSolids. However, Shells within CompositeSolids can only interact under the
condition that the interiors of each Solid are non-overlapping and form a single solid after
unification.

21

2. Theoretical background and related work

Figure 2.9.: Supported 3D primitives by val3dity. From ”val3dity: validation of 3D GIS
primitives according to the international standards” by Ledoux (2018).

As mentioned earlier, ISO19107 states that ”for a three-dimensional primitive to be valid,
all its lower-dimensionality primitives should also be valid” (Ledoux, 2013). Hence, Ledoux
(2018) implemented a hierarchical validation method that, consequently, avoid ”cascading”
errors (errors caused by errors in primitives with lower dimensionalities). Given a Com-
positeSolid, this methods executes the following steps. First, LinearRings and Polygons are
validated using planar graphs and 2D validation methods (Ledoux, 2013). Second, the vali-
dation of Shells, formed by these primitives, is performed. This includes testing the planarity
and orientation of the surfaces of these Shells (Ledoux, 2013). Third, the topological relarion-
ships between the Shells forming Solids are verified. To validate the topological relationships
between these Shells, the concept of Nef polyhedron is used (Ledoux, 2013) that stores neigh-
bourhood information around the vertices of these Solids (Arroyo Ohori et al., 2022). Finally,
CompositeSolids, which comprises a set of Solids, are validated.

Figure 2.10 summarizes the errors that val3dity can identify. The majority of them corre-
spond to primitive validations, yet, some errors are categorized under ”CityGML Objects”
and ”Others”. The first category checks whether CityGML contains geometry and non-
overlapping BuildingParts (primitives representing buildings); the second one verifies the
schema of the input file. Figure 2.10 also shows that higher dimensionalities result in more
validations. For example, a CompositeSolid validation includes all the existing validations
except those in the ”CityGML Objects” and ”Others” classes. However, a MultiSurface can
be verified by the validations within the LinearRing and Polygon classes.

22

2.3. The validation of 3D geometries

Figure 2.10.: Error codes in val3dity. From ”val3dity: validation of 3D GIS primitives accord-
ing to the international standards” by (Ledoux, 2018).

Not all errors are considered critical to users, hence, val3dity takes into account some user-
defined tolerances.

• Snap tolerance: Two vertices are considered identical if they are separated by this value
or less (default: 0.001)

• Planarity tolerance: ISO19107 requires all vertices of a planar surface to lie on one
plane, which is almost impossible with real-world data (Ledoux, 2013). For this reason,
val3dity considers this parameter defining the maximum distance between a point and
a fitted plane (Ledoux, 2018) (default: 0.001)

23

2. Theoretical background and related work

• Overlap tolerance: Two Solids that overlap or are disconnected by this value or less are
considered properly connected (default: -1, which stands for disabled).

The topological relationship is only verified between BuildingParts, meaning that floating
buildings over the terrain are considered as valid (Ledoux, 2018). This is an issue while
running CFD simulations (e.g. simulated non-existent flows under buildings). One of the
objectives of this thesis is to develop this missing validation.

2.4. 3D geometries in CFD simulations

A large number of small geometric details might affect the mesh generation (Piepereit et al.,
2018), even though they are valid based on the ISO19107 standard. These geometries include
sharp angles, short edges, small distances between buildings, and overlapping buildings
(Paden et al., 2022). Additionally, slivers can also lead to mesh issues (Smith, 2014). Iden-
tifying these geometries might help users simplify their geometries to improve the mesh
quality and consequently, their CFD simulations.

Park et al. (2020) developed an automatic building simplification method for finite volume
method (FVM), which is a discretisation method also used in OpenFOAM (Section 2.2.2).
This simplification method includes merging a set of solids (forming one building) into a
single solid. Additionally, faces representing details or curves are deleted and replaced.
Piepereit et al. (2018) also contributed to the simplification of geometries for CFD simula-
tions by introducing a sweep-plane algorithm that eliminates edges shorter than a given
threshold.

24

3. Methodology

This chapter presents the methodology used to identify geometric validations and define
mesh parameters. First, the chapter introduces the approach (Section 3.1.1). Subsequently,
the chapter delves into developed methods for geometric validations (Section 3.2) and mesh
parameters definition (Section 3.3).

3.1. Approach

3.1.1. User perspective

A prototype in the form of a web application has been developed that enables users to
perform geometric validations of their 3D city models, and computes mesh parameters for
CFD simulations in OpenFOAM.

Web application

Input
parameters

1. Geometric validation

2. Mesh parameters
 computations

Mesh
parameters

Workflow

Geometric errors
and warnings

x = ...

1. Upload files 3. Feedback2. Computations
and validations

Browse

Workframe

Thank you.

Please wait for the
results.

Geometric errors

Output files containing:

Geometric warnings

x = ...

3D model

Input parameters
x = a
y = b

Meshing parameters

3D model

Figure 3.1.: User perspective of the prototype.

25

3. Methodology

To obtain geometric validation results and CFD mesh parameters, users have to upload their
3D city model (only linear and planar geometries with triangulated faces are allowed) and
specify some parameters (listed in Section 4.1). After completing the input data, the web
application returns geometric errors and warnings in the form of reports and 3D models. It
also generates two OpenFOAM files, blockMeshDict and snappyHexMeshDict, that contain
mesh parameters according to the CFD guidelines for urban models.

3.1.2. Architecture

Figure 3.2 shows the architecture of the prototype, which comprises the following compo-
nents:

• Input data: Users upload their 3D city model and specify parameters for geometric
validations and mesh parameters definition. OBJ and STL formats with triangular
faces are supported by this prototype.

• Geometric validation: This component can be divided into three parts:

– Separate building and terrain validation: Validates the geometries within the 3D
urban model according to the ISO19107 standard, with the common exception
that they need to be linear or planar. The open source software val3dity, described
in Section 2.3.4, is used to perform this validation.

– Topological relationships between buildings and terrain validation: Checks the
correct positioning of buildings on terrain to avoid incorrect simulation results.
As stated in Section 2.3.4, val3dity does not verify the topological relation between
buildings and terrain features. However, this is important for the CFD meshing
process. Having space between buildings and terrain features would lead to in-
correct simulation results. These floating buildings are reported to users. In
addition, buildings that are too far below the ground line are also identified and
reported to users.

– Required validations for meshing in OpenFOAM: Identifies geometries that could
lead to inappropriate meshing, such as sharp angles, short edges, sliver triangles
and/or overlapping buildings.

• CFD mesh parameters definition: Computes mesh parameters according to the recent
CFD guidelines selected in Chapter 2.2. Users receive two files, blockMeshDict and
snappyHexMeshDict, that include mesh and cell dimensions. Also, information is given
on how many and which buildings respect some of these CFD guidelines.

• Output data: Errors, warnings and mesh parameters are retrieved and reported to
users.

26

3.2. Geometric validations

Figure 3.2.: Architecture of the prototype. The parts indicated in dashed lines were devel-
oped during this thesis.

3.2. Geometric validations

3.2.1. Separate building and terrain validation

As explained in Section 2.3, building and terrain objects must be validated based on the
ISO19107 standard. Therefore, the val3dity library, which verifies whether 3D primitives are
conform to this standard, is implemented within the prototype. More information on this
software can be found in Section 2.3.4.

3.2.2. Topological relationships between buildings and terrain validation

The validation of topological relationships involves verifying whether building objects are
correctly positioned on terrain surfaces. As described in Section 2.4, floating buildings must
be avoided and, therefore, identified. In fact, these buildings result in inaccurate CFD sim-
ulation results, as in the real world, no such strong flows would pass beneath them. Also,
buildings with ground surfaces placed below terrain surfaces with a distance higher than a
threshold ζ are considered invalid. Figure 3.3 illustrates some possible topological relation-
ships between building and terrain features, along with their corresponding validity status.
The example shown are based on flat terrains, yet, this validation method also considers
terrains with slopes.

The validation method considers two types of 3D city models: the ones with terrain surfaces,
and the ones without them. The reason is that terrains are not always modeled. The method

27

3. Methodology

that defines ground surfaces (based on geometry) is described in Appendix B. Hence, two
methods were developed:

• Method 1: with terrain
For each building, the location of every vertex v of every ground surface fg is analysed.
A fg is correctly positioned if all v are placed on the terrain surface ft placed below, or
located slightly below within a specific threshold ζ. By default, a predefined threshold
ζ of 0.5 is applied, however, users are allowed to select another one.

• Method 2: without terrain
Every vertex v of each ground surface must be aligned with zt, which is the lowest z
coordinate of the 3D model (zmin) or a user-defined ground level (zg). v is allowed to
be lower than zt within a certain threshold ζ. Similar to the first method, this threshold
has a default value of 0.5, and can be changed by users.

if > z ≥ – ξ

if z < – ξ

all z = all z > all z < several z =
several z >

Figure 3.3.: Possible topological relationships between buildings and terrain considered by
validation (z: height of the building, zt: height of the terrain, and ζ: threshold).

For a model with terrain, Algorithm 3.1 first creates an AABB tree that stores the terrain
surfaces in 2D. Then, this algorithm projects each ground surface fg to 2D and checks if
it intersects any of the surfaces ft in the AABB tree. If there is an intersection, fg and
all corresponding ft are converted back to 3D. The position of each vertex v of fg relative
to these ft is then verified. If v is higher or separated from ft by a distance greater than
threshold ζ, the relationship between this v and ft are considered invalid.
If there are no terrain surfaces, Algorithm 3.1 compares the vertices v of each ground surface
fg with zt, which can be the lowest z-value of the model or a user-defined ground level. In
other words, it compares whether buildings are on the same horizontal plane. If v is higher
or separated from zt by a distance greater than ζ, the relationship between v and zt is
considered as an error.

28

3.2. Geometric validations

Algorithm 3.1: Topological relationships validation.
Data: buildings B containing ground surfaces fg formed by vertices v, terrain

surfaces ft, threshold ζ, and ground level zg (optional)
Result: map topo errors

1 topo errors← map that stores topological errors (vertices from fg, surfaces ft
located below these vertices and distances between them);

2 if terrain = true then
3 mterrain ← map (x, y) with z of vertices from every ft;
4 Tterrain ← AABB tree that stores terrain surfaces in 2D ft2D;
5 for all b ∈ B do
6 for all fg ∈ b do
7 fg2D ← fg in 2D;
8 L ft ← list with ft2D intersecting fg2D using fg2D and Tterrain;
9 for all ft2D ∈ L ft do

10 ft ← converted ft2D to 3D using mterrain;
11 Pft ← plane created with ft;
12 for all v ∈ fg do
13 position← relative position between v and ft (positive when v

higher than ft) ;
14 d← distance between v and ft;
15 if d > ζ OR position = positive then
16 add v, ft and d to topo errors;

17 else
18 zt ← z value at which the ground surfaces of the buildings should be placed

(zmin);
19 if zg = false then
20 zt ← lowest z value of the buildings;

21 else
22 zt ← zg;

23 for all b ∈ B do
24 for all fg ∈ b do
25 for all v ∈ fg do
26 z← z value of v;
27 if z < (zt − ζ) OR z > zt then
28 x ← x value of v;
29 y← y value of v;
30 vz ← vertex (x, y, zt) ;
31 d← distance between v and vz;
32 add v, ft and d to topo errors;

29

3. Methodology

3.2.3. Required validations for meshing in OpenFOAM

Sharp angles, sliver triangles, and short edges might affect the quality of the mesh generated
in OpenFOAM, which lead to inaccurate CFD simulation results (Section 2.4). For this
reason, validation methods were developed to identify these geometries.

Sharp angles

In this context, sharp angles are angles between two faces smaller than a specified threshold
θ. To identify these sharp angles, the prototype calculates the dihedral angle ϕ between
each face f and a neighbouring face n. Two faces are neighbours if they have two vertices
in common and do not share the other two vertices. To achieve this, the prototype first
determines the common vertices shared by two faces (P and p0 as illustrated in Figure 3.4),
as well as the vertices unique to each face (p1 and p2 in Figure 3.4). Next, three vectors,
namely v⃗0, v⃗1 and v⃗2 are defined to facilitate the computation of ϕ, which can be calculated
using the following formula:

ϕ = arccos
(b⃗0× b⃗1) · (b⃗0× b⃗2)

|b⃗0× b⃗1||b⃗1× b⃗2|
(3.1)

If ϕ or (360− ϕ) are found to be less than or equal to a specified threshold angle θ, expressed
in degrees, the two faces are defined as sharp angles. The default value of θ is set to 2◦, but
can be modified by users.

P

θ f

n

Figure 3.4.: Dihedral angle.

30

3.2. Geometric validations

Algorithm 3.2: Sharp angles identification.
Data: building faces fb with their neighbouring faces n and threshold angle θ
Result: vector sharp angles

1 sharp angles← vector that stores sharp angles (two faces, and angle between them);
2 for all f ∈ fb do
3 A f ← area of f;
4 if A f > 0 then
5 for all n ∈ f do
6 An ← area of f;
7 if An > 0 then
8 ϕ1 ← dihedral angle between f and n;
9 ϕ2 ← 360-ϕ1;

10 if ϕ1 ≤ θ then
11 pair ← pair containing f , n and ϕ1;
12 if pair /∈ sharp angles then
13 add pair to sharp angles;

14 if ϕ2 ≤ θ then
15 pair ← pair containing f , n and ϕ2;
16 if pair /∈ sharp angles then
17 add pair to sharp angles;

Sliver triangles

Sliver triangles are very thin triangles, as illustrated in Figure 3.5. To detect them, a sliver
parameter SP was defined by using the following formula (Artwork Conversion Software,
nd):

SP =
2× area
perimeter

(3.2)

SP is computed for each face within the 3D city model (including triangular faces). When
SP is lower than or equal to a certain threshold σ, the corresponding face is considered a
sliver. The default value of this threshold is set to 0.005, but can also be user-defined. Note
that faces with collinear vertices are not identified as sliver triangles. These geometries are
already considered as errors by the val3dity tool (Section 3.2.1).

31

3. Methodology

Sliver triangle

Figure 3.5.: Example of a sliver triangle.

Algorithm 3.3: Sliver triangles identification.
Data: building faces fb and sliver threshold σ
Result: vector sliver triangles

1 sliver triangles← vector storing faces with their sliver parameter s;
2 for all f ∈ fb do
3 SP← sliver parameter of f ;
4 v1 ← vertex 1 of f ;
5 v2 ← vertex 2 of f ;
6 v3 ← vertex 3 of f ;
7 if SP ≤ σ and f /∈ sliver triangles and v1, v2, v3 ̸= collinear then
8 add f and SP to sliver triangles;

Short edges

Short edges are edges shorter than a specific threshold λ. To detect these short edges, the
length l of every edge e that forms a face f within a building b is computed. If the length l
is found to be shorter than or equal to the defined threshold λ, e is defined as a short edge.
Edges with a l value of 0 (i.e. edges with identical vertices) are not identified as short edges,
since the val3dity tool (Section 3.2.1) already considers them as errors.

Algorithm 3.4: Short edges identification.
Data: building faces fb formed by edges e and threshold length λ
Result: vector short edges

1 short edges← vector storing edges with their length l;
2 for all f ∈ fb do
3 for all e ∈ f do
4 l ← length of e;
5 if l < λ and e /∈ short edges and l > 0 then
6 add e and l to short edges;

32

3.2. Geometric validations

Overlapping buildings

As discussed in Section 2.4, overlapping buildings might be an issue during the CFD mesh-
ing process. Therefore, Algorithm 3.5 identifies overlapping buildings. First, this algorithm
checks for each building whether it intersects another building. If an intersection is found,
the algorithm computes its volume. If the calculated volume is zero, the two buildings are
considered non-overlapping; otherwise, they are regarded as overlapping. For this method,
two conditions must be satisfied: the buildings must bound a volume, and must not be
self-intersecting. In cases where these conditions are not met, a second method is applied,
which uses the ground surfaces of these buildings. This alternative method checks if there
are shared areas in 2D between the ground surfaces of these two buildings. If such a shared
region exists and has an area greater than zero, the buildings are identified as overlapping.
The intersections used in each method are illustrated in Figure 3.6.

Figure 3.6.: Intersections used in methods implemented in Algorithm 3.5.

33

3. Methodology

Algorithm 3.5: Overlapping buildings identification.
Data: buildings B
Result: vector overlapping buildings

1 overlapping buildings← vector storing pairs of building that overlap;
2 for all b ∈ B do
3 for all bb ∈ B do
4 if b ̸= bb then
5 volb ← volume of b;
6 volbb ← volume of bb;
7 if volb AND volbb > 0 then
8 if b AND bb ̸= self-intersecting then
9 i← intersection between b and bb;

10 voli ← volume of i;
11 if voli > 0 then
12 add b and bb to overlapping buildings;

13 else
14 A← total area of intersection ground surfaces of b and bb;
15 gsb ← ground surfaces of b;
16 gsbb ← ground surfaces of bb;
17 for all f ∈ gsb do
18 for all f f ∈ gsbb do
19 i← intersection between f and f f ;
20 a← area of i;
21 add a to A;

22 if A > 0 then
23 add b and bb to overlapping buildings;

34

3.3. Preparation for CFD simulation steps

3.3. Preparation for CFD simulation steps

3.3.1. Overview

Figure 3.7 shows the workflow of the mesh parameters definition method for CFD simula-
tions in urban areas. The blocks of the workflow can be classified into input data, algorithms,
inter-algorithm data, and output data.

First, the method needs the input data listed on the upper right corner of Figure 3.7. Subse-
quently, a set of algorithms are executed. The majority of them are based on CFD guidelines
except for two: the first algorithm aligns the input model with the incoming flow in Open-
FOAM, and the fourth algorithm prevents the final mesh from getting too computationally
expensive. For each of these algorithms, the data generated or modified by one algorithm
and reused by another one is showed. The most exchanged inter-algorithm data is the cell
dimensions. It is worthwhile to note that at each time the cell dimensions are modified,
the domain and refinement boxes dimensions are adjusted. This is to ensure that an integer
number of cells can fit in each of them. Finally, Figure 3.7 shows that data intended for users
are generated. These output data comprise:

• A 3D city model (OBJ) oriented for CFD simulation in OpenFOAM,

• Buildings that satisfy the required minimum number of cells,

• The Region of Intereset (RoI),

• blockMeshDict files from OpenFOAM, which contains domain/background mesh in-
formation,

• snappyHexMeshDict files from OpenFOAM, which includes specifications for the re-
finement boxes.

The mesh parameters definition method is further explained in the following sections.

35

3. Methodology

Figure 3.7.: Workflow of the mesh parameters definition method.
36

3.3. Preparation for CFD simulation steps

3.3.2. Model orientation

The first step is to align the 3D city model with the incoming flow simulated in OpenFOAM.
Therefore, Algorithm 3.6 aligns the user-defined flow with the x-axis in OpenFOAM by
using the rotation matrix along the z-axis (Equation 3.3). Figure 3.8 illustrates the angles
considered by this algorithm (a), and shows some examples of the orientation process (b).
Similar to the angles in this figure, users must specify their flow directions in degrees. The
resulting model is used throughout the mesh parameters definition method, and must be
used to perform the CFD simulation. For this reason, the oriented model is made available
to users.

Rz(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (3.3)

Figure 3.8.: (a) Flow directions considered by Algorithm 3.6 (b) Example of 3D city model
orientations.

37

3. Methodology

Algorithm 3.6: Model orientation.
Data: 3D city model citymodel with vertices V and user-defined flow direction d f low
Result: 3D city model with the correct orientation rotated citymodel

1 Vrotated ← vector with rotated vertices;
2 for all v ∈ V do
3 x ← x-coordinate of v;
4 y← y-coordinate of v;
5 z← z-coordinate of v;
6 f ← ((d f low − 90) · π)/180;
7 xrotated ← x · cos f − y ∗ sin f ;
8 yrotated ← x · sin f − y ∗ cos f ;
9 protated ← point(xrotated, yrotated, z);

10 add protated to Vrotated;

11 rotated citymodel ← new OBJ file with the rotated vertices;

38

3.3. Preparation for CFD simulation steps

3.3.3. Evaluation height

The initial cell dimensions are based on guidelines for evaluation heights, which are heights
at which flows are analysed. For CFD simulations at pedestrian level, these evaluation
heights are usually set between 1.5 and 2m. For drones, for example, these could be set at
10m. The prototype considers a combination of two sets of guidelines: Franke and Baklanov
(2007) suggest an evaluation height of 1.5-2m at the 3rd or 4th cell from the ground, and
Tominaga et al. (2008) recommend this height to be 1.5-5m at the 3rd cell or higher. It uses
an evaluation height ranging from a minimum hmin (default: 1.5m), which is the user-defined
target height huser, to a maximum of 5m hmax (Figure 3.9). However, both hmin and hmax are
set to the user-defined target height, when this value is higher than 5.

-
(default:1.5-5m)

Figure 3.9.: Evaluation height used in the prototype.

Algorithm 3.7 was developed to define initial cell dimensions. It assigns hmax as the initial
cell height hcell . Since maintaining a cell ratio of approximately 1 is beneficial (as explained
in Section 2.2.1), the initial cell width wcell was set to the same value as hcell . In addition, the
algorithm stored the minimum height hmin to avoid the hcell from being lower than required
during the following steps. Finally, the algorithm defines the initial computational domain
and refinement boxes, which are described in Sections 3.3.4 and 3.3.5, respectively. Figure
3.10 summarizes the defined parameters after running this algorithm.

: minimum height based on a user-defined
evalua�on height (default: 1.5m)

: maximum height based on an evalua�on
height of 5m (when 5m) or

store

Figure 3.10.: Initial cell dimensions based on the evaluation height.

39

3. Methodology

Algorithm 3.7: Evaluation height (2 refinement boxes).
Data: user-defined evaluation height huser
Result: initial cell dimensions wcellxhcell , and minimum cell height hmin

1 hmin ← (huser/2.5) · 8;
2 if huser ≤ 5 then
3 hmax ← (5/2.5) · 8;

4 else
5 hmax ← (huser/2.5) · 8;

6 hcell ← hmax;
7 wcell ← hcell ;
8 define the initial computational domain;
9 define initial refinement boxes;

3.3.4. Computational domain

The dimensions of the computational domain were defined based on the guidelines of
Franke and Baklanov (2007), which suggest distances between the 3D city model and do-
main boundaries as illustrated in Figure 3.11. More information about these guidelines are
given in Section 2.2.1. As described in Section 2.1.3, OpenFOAM subdivides this domain
into hexahedral cells. The resulting domain is referred to as background mesh, and must
contain a whole number of cells.

Algorithm 3.8 was written to determine the domain dimensions described by Franke and
Baklanov (2007) and define the background mesh. Figure 3.11 shows that the domain di-
mensions depend on the height of the tallest building hmax. Consequently, the initial step
involved identifying this height within the 3D city model. Next, this height was used to
compute the x, y, z coordinates of the domain. Finally, the dimensions were adjusted to
ensure an integer number of cells fit within the domain.

40

3.3. Preparation for CFD simulation steps

Figure 3.11.: Minimum computational domain dimensions adapted from Blocken (2015).

The prototype allows users to consider two additional set of guidelines within the computa-
tional domain definition. The first set describes a blockage ratio BR between the flow-facing
area of the 3D city model, and the area of the inlet boundary of the domain (Franke and
Baklanov, 2007). BR should remain below 3%. The second set suggests two blockage ratios:
the lateral horizontal blockage ratio BRL, and the vertical blockage ratio BRH . BRL is the
ratio between the length of the urban area facing the flow direction and the length of the
inlet boundary; and BRH is the one between the height of the tallest building and the height
of the computational domain. Both BRL and BRH must remain below 17%.

Algorithms 3.9 and 3.10 were developed for both of these additional guidelines, and are
executed after Algorithm 3.8. Users are allowed to choose one of these optional guidelines.
Algorithm 3.9 involves verifying whether BR is respected, and incrementally increases the
length and height of the inlet boundary until BR is below 3% (Figure 3.12). Algorithm 3.10
ensures that the ratios BRL and BRH do not exceed 17% by iteratively increasing the length
and/or the height of the inlet boundary until this limit is reached (Figure 3.13). Finally, the
algorithms check whether an integer number of cells can be inserted into the domain, and
slightly adjust the domain coordinates if necessary.

41

3. Methodology

Adomain

i=2

dwind1 unit 1 unit

i=3

i=1

i=0

1 unit

Aurban

Figure 3.12.: Adjustment of domain dimensions after each iteration i based on blockage ratio
BR performed by Algorithm 3.9.

i= 3, 2, 1, 0

dwind1 unit 1 unit

i=3

i=2

i=1

i=0

1 unit

Aurban

Figure 3.13.: Adjustment of domain dimensions after each iteration i based on directional
blockage ratios BRH (blue) and BRL (green) performed by Algorithm 3.10.

42

3.3. Preparation for CFD simulation steps

Algorithm 3.8: Computational domain without blockage ratios.

Data: 3D city model citymodel with extremities (cxmin, cymin, czmin) and
(cxmax, cymax, czmax), and cell dimensions wcellxhcell

Result: boundary box domain
1 hmax ← height of the tallest building within the citymodel;
2 dxmin ← cxmin − 5 ∗ hmax;
3 dxmax ← cxmax + 15 ∗ hmax;
4 dymin ← cymin − 5 ∗ hmax;
5 dymax ← cymax + 5 ∗ hmax;
6 dzmin ← czmin;
7 dzmax ← czmax + 5 ∗ hmax;
8 adjust (dxmin, dymin, dzmin) and (dxmax, dymax, dzmax) to fit a whole number of cells

with dimensions wcellxhcell within this region;
9 create a bounding box domain with extreme points (dxmin, dymin, dzmin) and

(dxmax, dymax, dzmax);

Algorithm 3.9: Computational domain with BR.
Data: 3D city model citymodel, boundary box domain with extremities

(dxmin, dymin, dzmin) and (dxmax, dymax, dzmax), and cell dimensions wcellxhcell
Result: boundary box domain

1 Aurban ← front area of citymodel;
2 Adomain ← front area of domain;
3 BR← Aurban/Adomain;
4 while BR > 3% do
5 dymin ← dymin − 0.01;
6 dymax ← dymax + 0.01;
7 dzmin ← dzmin − 0.01;
8 dzmax ← dzmax + 0.01;
9 update BR;

10 adjust (dxmin, dymin, dzmin) and (dxmax, dymax, dzmax) to fit a whole number of cells
with dimensions wcellxhcell within this region;

11 assign new extremity values (dxmin, dymin, dzmin) and (dxmax, dymax, dzmax) to
domain;

43

3. Methodology

Algorithm 3.10: Computational domain with BRH and BRL.
Data: 3D city model citymodel, boundary box domain with extremities

(dxmin, dymin, dzmin) and (dxmax, dymax, dzmax), and cell dimensions wcellxhcell
Result: boundary box domain

1 Lurban ← length of citymodel;
2 Ldomain ← length of domain;
3 BRL ← Lurban/Ldomain;
4 Hurban ← height of citymodel;
5 Hdomain ← height of domain;
6 BRH ← Hurban/Hdomain;
7 while BRL > 17% do
8 dymin ← dymin − 0.01;
9 dymax ← dymax + 0.01;

10 update BRL;

11 while BRH > 17% do
12 dzmin ← dzmin − 0.01;
13 dzmax ← dzmax + 0.01;
14 update BRH ;

15 adjust (dxmin, dymin, dzmin) and (dxmax, dymax, dzmax) to fit a whole number of cells
with dimensions wcellxhcell within this region;

16 assign new extremity values (dxmin, dymin, dzmin) and (dxmax, dymax, dzmax) to
domain;

3.3.5. Refinement boxes

As mentioned earlier in Section 2.2.2, a minimum number of three refinement boxes is sug-
gested for CFD simulations in urban areas. However, two refinement boxes are often used
in practise. That is why the prototype allows users to chose between two or three refine-
ment boxes. A refinement box delineates an area where the cell dimensions are reduced to
increase the number of cells in which the Navier-Stoke equations can be solved. This cell re-
finement increases the resolution within this area, and consequently enhances the accuracy
of the simulation.

In general, with three refinement boxes, the first box is placed directly around the urban area
and is a bit higher (e.g. half of hmax) than the tallest building hmax; the second box surrounds
the first and extends slightly toward the outflow boundary; the last box is placed around
the second one. With two refinement boxes, only the two first of these boxes are generated.
Figure 3.14 shows an example of refinement boxes defined for an urban CFD simulation.
The refinement boxes should have the same proportions as the computational domain. Like
the domain, the refinement box dimensions are thus determined by the distance between
their boundaries and the urban model. These distances are multiples of the height of the
tallest building hmax. Table 3.1 shows these multiples used as default values. However, users
are allowed to change them.

44

3.3. Preparation for CFD simulation steps

Table 3.1.: hmax multiples used to define default refinement box dimensions.
Boundary: Inlet Outlet Lateral Top

Box 1 0.5 0.5 0.5 1.5
Box 2 2 6 2 2
Box 3 3 9 3 3

A refinement level must be specified for each refinement box. In OpenFOAM, integers
can be used to specify refinement levels. Level 0 corresponds to cells without refinement,
and with each subsequent refinement level, a cell is divided into 8 smaller cells. Table 3.2
provides an example of cell dimensions per refinement level, assuming a cell ratio of 1.
As illustrated in Figure 3.14, the closer the refinement box is to the urban area, the higher
the refinement level of the cells. Given that the domain contains cells without refinement,
and the prototype considers cells with a refinement level of 4 around the buildings when
three refinement boxes are used, box 1, box 2, and box 3 have refinement levels 3, 2, and 1,
respectively. With two refinement boxes, the level around the buildings is 3. Also, the levels
in boxes 1 and 2 are 1 and 2, respectively.

Table 3.2.: Example of cell dimensions per refinement level (cell ratio is 1).
Refinement level Cell width Cell volume Example

0 wcell wcell
3 wcell = 8

1 wcell/2 (wcell/2)3 wcell = 4
2 wcell/4 (wcell/4)3 wcell = 2
3 wcell/8 (wcell/8)3 wcell = 1
4 wcell/16 (wcell/16)3 wcell = 0.5

45

3. Methodology

Box 1

Box 3

Domain

Urban area

Box 2

hmax

Box1

Box2

Box3

Domain

Figure 3.14.: Example of refinement boxes.

Algorithm 3.11 was executed for each refinement box. To compute the coordinates of the
boxes, it uses the multiple of the height of the tallest building, as explained above. Then, the
dimensions were adjusted to ensure an integer number of cells (with the correct refinement
level) fits within the box.

Algorithm 3.11: Refinement box.
Data: 3D city model citymodel with extremities (cxmin, cymin, czmin) and

(cxmax, cymax, czmax), cell dimensions wcellxhcell , height tallest building hmax,
and factors f inlet, f outlet, f lateral, f top (hmax multiples in each direction)

Result: boundary box re f inementbox
1 xmin ← cxmin − f inlet ∗ hmax;
2 xmax ← cxmax + f outlet ∗ hmax;
3 ymin ← cymin − f lateral ∗ hmax;
4 ymax ← cymax + f lateral ∗ hmax;
5 zmin ← czmin;
6 zmax ← czmax + f top ∗ hmax;
7 adjust (dxmin, dymin, dzmin) and (dxmax, dymax, dzmax) to fit a whole number of cells

with dimensions wcellxhcell within this region;
8 create a bounding box domain with extreme points (dxmin, dymin, dzmin) and

(dxmax, dymax, dzmax);

3.3.6. Roughness height

The centre point of the first cells from the bottom boundary should be placed at a minimum
distance of at least one roughness height z0 from the wall (bottom boundary)(Tominaga

46

3.3. Preparation for CFD simulation steps

et al., 2008), which is the bottom boundary of the computational domain. Consequently,
the cell dimensions hcellxwcell and the minimum cell height hmin may have to be redefined.
To verify whether this is the case, Algorithm 3.12 computes the minimum cell height hr to
satisfy this condition and then compares hr to the current hmin and hcell . Figure 3.15 shows
several scenarios that might occur. In short, the value of hmin must be modified if hr exceeds
the current value of hmin, and the cell dimensions hcellxwcell should match hrxhr if hr is higher
than both hmin and hcell .

<

>

<

>

Figure 3.15.: Adjustment of cell dimensions based on the roughness height (hcellxwcell : cell
dimensions, hr: minimum cell height based on CFD guidelines related to the roughness
height, and hmin: stored minimum cell height).

Algorithm 3.12: Roughness height (2 refinement boxes).
Data: roughness height z0, cell dimensions hcellxwcell , and minimum cell height

hmin
Result: cell dimensions hcellxwcell , and minimum cell height hmin

1 hr ← z0 · 2 · 8;
2 if hr > hmin then
3 hmin ← hr;
4 if hmin > hcell then
5 hcell ← hmin;
6 wcell ← hcell ;
7 redefine the computational domain;
8 redefine the refinement boxes;

47

3. Methodology

3.3.7. Maximum number of cells

An important limitation is the available memory of computers (Franke and Baklanov, 2007).
Therefore, the prototype allows users to limit the total number of cells of the mesh N by
indicating a threshold Nmax (default value: 30 · 106 cells). Note that the mesh quality might
not be guaranteed if this number is too low for the computational domain/geometry in
question.

Algorithm 3.13 ensures that Nmax is not exceeded by increasing the cell dimensions until
N is lower than or equal to Nmax. However, when N is significantly lower than Nmax, the
algorithm attempts to maximize the resolution by reducing the cell dimensions.

Figure 3.16.: Adjustment of cell dimensions based on the maximum number of cells Nmax
given by users.

48

3.3. Preparation for CFD simulation steps

Algorithm 3.13: Maximum number of cells.
Data: total number of cells N, threshold Nmax, cell dimensions hcellxwcell , and

minimum height hmin
Result: cell dimensions hcellxwcell

1 reduction← 0;
2 increase← 0;
3 while N > Nmax and increase = 0 do
4 reduction← 0;
5 hcell ← hcell + 0.1;
6 wcell ← wcell + 0.1;
7 redefine the computational domain;
8 redefine the refinement boxes;
9 redefine N;

10 while N < Nmax and hcell ≥ hmin and reduction = 0 do
11 increase← 1;
12 hcell ← hcell − 0.1;
13 wcell ← wcell − 0.1;
14 redefine the computational domain;
15 redefine the refinement boxes;
16 redefine N;

17 if hcell < hmin OR N > Nmax then
18 hcell ← hcell + 0.1;
19 wcell ← wcell + 0.1;
20 redefine the computational domain;
21 redefine the refinement boxes;
22 redefine N ;

To estimate the number of cells in a mesh, the following steps are followed for 3D models
without terrain. Here a mesh with two refinement grids is assumed.

1. Compute the number cells around buildings.

a) Compute the area of each building face.

b) Determine the number of cells with refinement level 3 per area.

c) Multiply this number by 4, as there are 4 rows needed to transition from one
refinement level to the next.

d) Repeat steps 1b and 1c with cells refined at level 2.

2. Compute the number of cells within refinement box 1 (excluding cells around build-
ings).

a) Compute the volume of refinement box 1 (without building volume and the total
cell volume occupied by cells around buildings).

b) Divide this volume by cell volume with refinement level 2 to determine the num-
ber of cells within this region.

3. Compute the number of cells within refinement box 2.

a) Compute the volume of refinement box 2 (without refinement box 1).

49

3. Methodology

b) Divide this volume by cell volume with refinement level 1 to find the number of
cells within this region.

4. Compute the number of cells within the remaining area of the domain

a) Compute the volume of the remaining area of the domain (without refinement
boxes 1 and 2).

b) Divide this volume by cell volume with refinement level 0 to find the number of
cells within this area.

5. Sum up all number of cells to approximate the total number of cells in the mesh.

When 3D models include terrain surfaces, this number of cells is approximated by perform-
ing the following computations.

1. Perform the same computations as in step 1 of the number of cells approximation for
models without terrain.

2. Compute the volume beneath the terrain surfaces within refinement box 1, refinement
box 2, and the remaining area of the domain.

3. Compute the volume of refinement box 1 and subtract the volume occupied by the
terrain (volume under terrain surfaces).

4. Repeat step 3 for refinement box 2.

5. Repeat step 3 for the remaining area of the domain.

6. Divide these volumes by the corresponding cell volume (cell volume with refinement
level 1 in box 2, refinement level 1 in box 2, and refinement level 0 in the remaining
area of the domain) to find the number of cells in each region.

7. Sum up all these determined number of cells to estimate the total number of cells in
the mesh.

3.3.8. At least 10 cells per cube root of the building volume

At least 10 cells per cube root building volume is recommended. Algorithms 3.14 and
3.15 check for each building whether this requirement is met. This verification consists of
computing the cube root of the building volume, dividing it by the width of the cell with the
highest refinement level, and comparing it to 10. If the result is greater than 10, the building
is valid; otherwise, it is considered invalid. If not all buildings meet this requirement, the
cell width is iteratively reduced. The verification is performed again at each iteration. The
iterations stop if all buildings respect this guideline, the cell ratio becomes lower than a
specific threshold rmin, or the maximum of cells Nmax is reached. This cell ratio should
be approximately 1, as explained in Section 2.1.3. Assuming that the cell height is 1m, a
cell ratio of 1.20 corresponds to a cell width of 0.80m. After each cell width reduction, the
domain and refinement box dimensions were adjusted to ensure that a whole number of
cells fit into them.

Users are provided with output data showing the buildings that do and do not respect the
guideline mentioned above. First, the number of valid buildings is computed. Second, two
OBJ files are shared: one containing valid buildings and one with invalid buildings. These

50

3.3. Preparation for CFD simulation steps

output files are generated to allow users to adjust their cell ratio threshold rmin and cell
refinement levels.

Figure 3.17.: Adjustment of cell dimensions to fit at least 10 cells per cube root of the building
volume.

Algorithm 3.14: Cells per cube root of the building volume I.
Data: buildings B
Result: pair with valid buildings sn in %

1 N ← total number of buildings;
2 Nvalid ← total valid buildings;
3 for all b ∈ B do
4 v← volume of b;
5 if v ≥ 0 then
6 add v to V;
7 cubeRoot← 3

√
v;

8 wcell3 ← cell width at refinement level 3;
9 if cubeRoot/wcell3 ≥ 10 AND cubeRoot/hcell3 ≥ 10 then

10 add 1 to Nvalid;

11 sn ← Nvalid/N;
12 return sn;

51

3. Methodology

Algorithm 3.15: Cells per cube root of the building volume II.
Data: minimum ratio rmin
Result: cell dimensions hcellxwcell , and pair with valid buildings sn in %

1 s← output Algorithm 3.14;
2 r ← cell ratio hcell/wcell ;
3 while sn < 1 AND r ≤ rmin and N ≤ Nmax do
4 wcell ← wcell − 0.1;
5 r ← redefine cell ratio;
6 redefine the computational domain;
7 redefine the refinement boxes;
8 redefine s;

9 if N > Nmax OR r > rmin then
10 wcell ← wcell + 0.1;
11 r ← redefine cell ratio;
12 redefine the computational domain;
13 redefine the refinement boxes;
14 redefine s;

15 return sn;

3.3.9. At least 10 cells per building separation

A building separation is considered as the distance between two buildings and should mea-
sure at least 10 cells. Algorithms 3.16 and 3.17 are developed to verify this requirement.
However, this minimum might lead to excessive mesh complexity as some cities might have
narrow streets. Therefore, these algorithms exclude separations below a specific distance
dseparation. The default value of this threshold is 2m, but could also be user-defined. To
help users determine an appropriate threshold, a histogram showing the street width dis-
tribution is displayed. Connected buildings are also excluded from verification because the
separations are non-existent.

Figure 3.18 illustrates the cell distribution within the urban area. It shows that each build-
ing is surrounded by 4 rows of cells with refinement level 3 and the remaining cells have
refinement level 2. This means that, to satisfy the guideline mentioned above, there must be
at least 8 cells with refinement level 3 and 2 cells with refinement level 2 within dseparation.
Algorithm 3.17 verifies this requirement for each building by using the distances between its
ground surface vertices and those of the other buildings. If this condition is not met for all
buildings, the cell width wcell is iteratively reduced by steps of 0.1. The verification is per-
formed again at each iteration. The iterations stop if all separations respect this guideline,
the cell ratio gets lower than a specific threshold rmin (user-defined or default value 1.20), or
the maximum of cells Nmax is reached. After each cell reduction, the domain and refinement
box dimensions are adjusted to ensure that an integer number of cells fit into them.

Users are informed on the valid and invalid buildings with regard to this building separation
guideline. First, the number of valid buildings is provided. Second, two 3D models are
generated: one showing the valid building separations, and another containing the invalid
ones. In addition, a text file is supplied including details on the invalid separations, such
as vertex coordinates, distance, and maximum number of cells that can fit. These output

52

3.3. Preparation for CFD simulation steps

files are generated to allow users to adjust their cell ratio threshold rmin and cell refinement
levels.

Refinement
level 2

Refinement
level 3

Distance d

8 cells refinement level 3
+

N cells refinement level 2

Distance d

Figure 3.18.: Number of cells per building separation.

53

3. Methodology

Algorithm 3.16: Cells per building separation I.
Data: buildings B, and distance threshold dseparation
Result: percentage of valid buildings sn in %

1 wcell3 ← cell width at refinement level 3;
2 wcell2 ← cell width at refinement level 2;
3 min← 2 · 4 · wcell3 + 2 · wcell2;
4 N ← total number of buildings;
5 Nvalid ← total valid buildings;
6 compute distances between buildings;
7 for all b ∈ B do
8 v← volume of b;
9 if v ≥ 0 then

10 sinvalid ← invalid separations;
11 for all s ∈ sb do
12 if s ̸= −1 and s ≤ min then
13 add s to sinvalid;

14 map sinvalid to b;
15 if sinvalid is empty then
16 add 1 to Nvalid;
17 label b valid;

18 else
19 label b invalid;

20 sn ← Nvalid/N;

Algorithm 3.17: Cells per building separation II.
Data: minimum ratio rmin
Result: cell dimensions hcellxwcell , and valid buildings sn in %

1 s← output Algorithm 3.16;
2 r ← cell ratio hcell/wcell ;
3 while N ≤ Nmax and sn < 1 and r ≥ rmin do
4 wcell ← wcell − 0.1;
5 r ← redefine cell ratio;
6 redefine the computational domain;
7 redefine the refinement boxes;
8 redefine s;
9 redefine N;

10 if N > Nmax or r > rmin then
11 wcell ← wcell + 0.1;
12 r ← redefine cell ratio;
13 redefine the computational domain;
14 redefine the refinement boxes;
15 redefine s;
16 redefine N;

54

3.3. Preparation for CFD simulation steps

3.3.10. Region of Interest (RoI)

As explained in Section 2.2.3, the prototype focuses on the Region of Interest (RoI) intro-
duced by Liu et al. (2018) and described as a multiplier of the largest building dimension L
around the target buildings. As they suggest to include buildings within a radius of at least
3·L around the target building, the prototype applies this recommendation.

Algorithm 3.20 defines the RoI. Users have the option to specify a target building by indicat-
ing one of the vertices from its ground surfaces. In this case, the algorithm defines the centre
of the RoI as the centroid of this target building. When no target building is specified, its
centre is set to the centre of the 3D city model. At the end, the buildings intersecting with
the defined RoI are stored.

The RoI is generated to indicate to users which buildings are within this area. Two OBJ files
are provided to users: one with the buildings within this region, and one demonstrating the
RoI with a cylindrical shape. Additionally, a TXT file is given listing buildings inside the
RoI.

Algorithm 3.18: RoI definition without target building Ia.
Data: 3D city model citymodel with extremities (cxmin, cymin, czmin) and (cxmin,

cymax, czmax)
Result: Region of Interest RoI

1 px ← cxmin+cxmin
2 ;

2 py ← cymin+cymin
2 ;

3 p← Point (px, py);
4 max ← maximum building dimension;
5 r ← 3 ·max;
6 RoI ← define RoI with p and r;

Algorithm 3.19: RoI definition with target building Ib.
Data: x coordinate target x, and y coordinate y
Result: Region of Interest RoI

1 px ← x;
2 py ← y;
3 p← Point (px, py);
4 search to which building b p belongs;
5 c← centroid of building b;
6 max ← maximum dimension of b;
7 r ← 3 ·max;
8 RoI ← define RoI with c and r;

55

3. Methodology

Algorithm 3.20: RoI definition II.
Data: Buildings B, target indicator target, x coordinate target x, and y coordinate y
Result: buildings in RoI BRoI

1 RoI ← Region of Interest defined by Algorithm 3.18 or 3.19 depending on target;
2 for all b ∈ B do
3 intersection← boolean that indicates whether b and RoI intersect;

4 if intersection = true then
5 add b to

3.3.11. Ground refinement

At the end of the mesh parameters definition process, parameters for a ground refinement
are defined. Therefore, Algorithm 3.21 determines the cell at which huser is located and uses
this value to compute the distance h from the ground at which the cells must be refined with
the highest refinement level.

Algorithm 3.21: Ground refinement.
Data: target evaluation height huser
Result: height of layer with cells refined at level 3 h, and cell in which huser is

located cell
1 hcell3 ← cell height at refinement level 3;
2 if huser is at the 3rd cell from the ground then
3 h← 3 · hcell3 ;
4 cell ← 3;

5 else if huser is at the 4th cell from the ground then
6 h← 4 · hcell3 ;
7 cell ← 4;

8 else if huser is at the 1st or 2nd cell from the ground then
9 h← 3 · hcell3 ;

10 cell ← huser
hcell3

;

As presented in Figure 3.7, two snappyHexMesh files with ground refinement are reported
to users: one with cell limitation, and one without. For the last one, Algorithm 3.13 must be
executed again, yet, with a different method to approximate the number of cells N.

To approximate the number of cells for a mesh with ground refinement, the following steps
are followed (when two refinement boxes are applied). This method is developed for 3D
models without terrain surfaces, as models with terrain have already ground refinement
due to cells around geometries having the highest refinement level.

1. Compute the number of cells around buildings (as described in Section 3.3.7).

2. Compute the number of cells in refinement box 1.

a) Compute the area occupied by cells around buildings.

56

3.3. Preparation for CFD simulation steps

i. Compute the perimeter of each building (approximated using the alpha-
shape).

ii. Divide this perimeter by the width of cells with refinement level 3.

iii. Multiply the resulting number by 4 to obtain the number of cells around
buildings in 2D.

iv. Multiply this number by the area of cells with refinement level 3.

b) Find the number of cells with refinement level 3 due to ground refinement.

i. Compute the area of refinement box 1 (without the building area and the area
occupied by cells around buildings, computed in step 2e).

ii. Divide this area by the area of cells with refinement level 3 (wcellxwcell) and
multiply the resulting number by the number of layers needed for the ground
refinement.

c) Multiply the total number of cells by the corresponding cell volumes to find the
volume occupied by these cells.

d) Subtract the resulting volume from the volume of refinement box 1 and divide
this number by cells with refinement level 2.

3. Compute the number of cells in refinement box 2.

a) Compute the area of refinement box 2 (without refinement box 1).

b) Find the number of cells with refinement level 3 due to ground refinement, as
described in 2b but then with refinement box 2.

c) Find the number of cells with refinement level 2 due to ground refinement: repeat
the previous step but with refinement level 2 and a factor of 4 instead of the
number of layers needed for the ground refinement (for the transition from one
cell refinement to the other).

d) Compute the total volume occupied by cells due to ground refinement and sub-
tract this volume from the volume of refinement box 2, and divide this number
by cells with refinement level 1.

4. Compute the number of cells in the remaining area of the domain.

a) Repeat the three first steps as for the second refinement box, but replace ”refine-
ment box 2” by ”the remaining area of the domain”, and ”refinement box 1” by
”refinement box 2”.

b) Determine the number of cells with refinement level 1 due to ground refinement.

c) Compute the total volume occupied by cells due to ground refinement and sub-
tract this volume from the volume of this remaining area, and divide this number
by cells with refinement level 0.

5. Sum up all the computed numbers of cells to approximate the total number of cells
within the mesh with ground refinement.

57

3. Methodology

3.3.12. Creating configuration files for OpenFOAM: blockMeshDict and
snappyHexMeshDict files

As described in Section 2.1.3, the blockMesh and snappyHexMesh functions are used to gen-
erate meshes in OpenFOAM. Therefore, the blockMeshDict and snappyHexMeshDict files are
needed. By using the domain dimensions, refinement box dimensions, cell sizes, and ground
refinement settings defined with the developed workflow, they can be created.

In the blockMeshDict file (Appendix H), the final background mesh is defined by specifying
the dimensions of the domain and the number of cells in each direction. The latter is com-
puted by dividing one of the three domain dimension by the cell height hcell or width wcell ,
depending on the direction.

The snappyHexMeshDict file (Appendix I) contains information on the refinements within
the mesh. First, it specifies the dimensions and refinements levels for each refinement box.
Second, if a ground refinement is needed (Section 3.3.11), it should also be added. This is
achieved by defining a plane with a vertex corresponding to the lowest corner of the domain
and a normal vector (0, 0, 1).

58

4. Implementation

This chapter introduces the prototype in which the method, identifying geometric errors
and defining mesh parameters, is implemented (Section 4.1). The chapter also presents the
datasets used to test and validate the prototype (Section 4.2).

4.1. Prototype

The geometric validation and mesh parameters definition algorithms (backend) were written
in C++ as it is fast and includes useful libraries. The Computational Geometry Algorithms
Library (CGAL), which provides valuable tools for geometrical operations, was the most
important library (https://www.cgal.org/).

The backend also includes programs for specific tasks. The val3dity tool (https://github.
com/tudelft3d/val3dity) was used to verify individual building and terrain geometries.
This program allows the validation of 3D primitives according to the international stan-
dard ISO19107, as described in Section 2.3.4. The CFD software OpenFOAM (https://www.
openfoam.com/), introduced in Section 2.1.3, and the visualisation application ParaView
(https://www.paraview.org/) were used to partially test the mesh parameters definition
algorithms.

The user interface (UI) was created in Flask (https://flask.palletsprojects.com/en/3.
0.x/), a web application framework written in Python. This framework was chosen due to
its ability to build a UI in a relatively fast and easy way (the development of a UI was not
the main objective of this thesis).

Figure 4.1 illustrates the pipeline of the prototype.

Figure 4.1.: Pipeline of the prototype.

59

https://www.cgal.org/
https://github.com/tudelft3d/val3dity
https://github.com/tudelft3d/val3dity
https://www.openfoam.com/
https://www.openfoam.com/
https://www.paraview.org/
https://flask.palletsprojects.com/en/3.0.x/
https://flask.palletsprojects.com/en/3.0.x/

4. Implementation

User Interface I: Input file
Figure 4.2 shows the first page of the user interface, where users have to upload their 3D city
model. In addition, they have the option to generate a histogram showing the distribution of
street width/building separation. This histogram is provided to help users find an adequate
threshold dseparation, as explained in Section 3.3.9.

Figure 4.2.: User Interface I: Input file.

User Interface II: Parameters and User Interface IV: Explanation
After uploading the input file, parameters for geometric validations and mesh parameter
definition can be set. Explanations are provided for each parameter (Figure 4.4). Therefore,
users can click on the parameters for which they need information. The prototype directs
them to the corresponding explanation in user interface IV.

The following parameters have to be chosen by users. For most of them, the default values
are already set. The maximum roughness height z0 is the only parameter that is required to
be inserted by users.

Mesh parameters definition:

• Flow direction d f low,

• Target evaluation height htarget,

• Unit parameter u,

• Blockage ratio BR,

• Number of refinement boxes Nboxes,

• Dimension domain definition:

– Height of the tallest building hmax, or

60

4.1. Prototype

– Largest building dimension dmax.

• Refinement boxes dimensions Dbox,

• Maximum roughness height z0,

• Maximum cell ratio rmin,

Geometric validations:

• Parameters needed for val3dity:

– Snap tolerance,

– Planarity tolerance,

– Overlap tolerance.

• Topological relationships threshold ζ,

• Ground level zt,

• Sliver triangles threshold θ,

• Short edges threshold λ,

• Sharp angles threshold θ,

• Parameters for ground surfaces definition:

– Maximum height h,

– Angle θ with regard to the height of the terrain.

More information on these parameters can be found in Appendix G providing the explana-
tion given on User Interface IV.

Figure 4.3.: User Interface II: Input parameters.

61

4. Implementation

Figure 4.4.: User Interface IV: Explanation.

As mentioned earlier, there is an option in User Interface I to display a histogram with the
street distribution to help users find the most appropriate separation threshold for buildings
dseparation. Figure 4.5 illustrates an example of such a histogram. The bin with the highest
number of street widths/building separations is shown in yellow.

Figure 4.5.: User Interface II: Histogram showing the street width/building separation dis-
tribution. Bin with the highest frequency value is illustrated in yellow.

User Interface III: Results
After setting the parameters listed previously, the prototype identifies geometric errors and
defines mesh parameters, and provides results to users (Figure 4.6). Each result is labeled
by error, warning, or advice. Table 4.1 presents this classification.

62

4.1. Prototype

Table 4.1.: Classification of the results
Results Class
Separate building and terrain validation (val3dity) Indicated as error by

the prototype, however,
val3dity has its own clas-
sification.

Topological relationships between buildings and terrain Error: floating building
Warning: buildings too
far below terrain surfaces
or ground level

Sharp angles Warning
Short edges Warning
Sliver triangles Warning
Overlapping buildings Warning
Aligned 3D city model with incoming flow Advice
Region of Interest (RoI) Advice
Background mesh parameters (blockMeshDict) Advice
Refined mesh parameters (snappyHexMeshDict) Advice
Buildings satisfying required minimum of cells Warning

The following output files are given to users:

• val3dity report (json), which describes errors and warnings from the separate building
and terrain validations performed by the val3dity software.

• Topological errors, sharp angles, sliver triangles, overlapping buildings, and short
edges in OBJ and TXT formats indicating their locations.

• Rotated 3D model, which is aligned with the incoming flow in OpenFOAM.

• blockMeshDict (Appendix H) and snappyHexMeshDict (Appendix I), which contain mesh
parameters.

• Buildings and building separations with insufficient cells in OBJ and TXT formats,
which indicates the locations of these buildings. In addition, the number of buildings
and separations with sufficient cells is presented.

• Region of Interest (RoI) in OBJ and TXT formats, which indicates the locations of the
buildings within the RoI.

More information on these output files can be found in Appendix G providing the explana-
tion given on User Interface IV. .

63

4. Implementation

Figure 4.6.: User Interface III: Results.

The code of the prototype can be found here: https://github.com/MarenHengelmolen/

thesis.

64

https://github.com/MarenHengelmolen/thesis
https://github.com/MarenHengelmolen/thesis

4.2. Datasets

4.2. Datasets

The 3D models used to test the prototype are listed below and illustrated in Figures 4.7 and
4.8. All datasets are in the Wavefront Object (OBJ) format, except for the TU Delft campus 1,
which is in Stereolithography (STL) format. The reason why the focus lies on these formats
is that the meshing tool snappyHexMesh from OpenFOAM is only compatible with them. The
second to fifth datasets are retrieved from 3DBAG (https://3dbag.nl/en/viewer), which
provides up-to-date 3D building models of the Netherlands.

Table 4.2.: Datasets.
3D model Source Format Size Buildings Area (m2) Description
Simple shapes Self-made OBJ 1-70 kB 0-21 25-780 000 Cubic shape, rectangular

shape, cone, simple roof
model, two connected tri-
angles, single building
models with or without
terrain, and cubes (21
identical cubes equally
separated). All of them,
except the last one, can
vary in size.

Ouddorp 3DBAG OBJ 0.25 MB 170 692 829 A (part of a) village sit-
uated on the coast, char-
acterized by small build-
ings of approximately the
same height. The tallest
building is 9.40m.

Maastoren 3DBAG OBJ 2.59 MB 675 1 130 656 The third largest build-
ing of the Netherlands
(168.05m), located in Rot-
terdam, and its surround-
ing environment.

Centre of Delft 3DBAG OBJ 2.6 MB 1 019 283 831 A main square with a
church of 72.01m and sur-
rounded by city blocks
with tight alleys or sepa-
rated by canals.

Begijnhofbuurt 3DBAG OBJ 5.34 MB 714 692 829 This district in Amster-
dam is one of the most
densely built areas in the
Netherlands. The highest
building is 56.11m.

TU Delft campus 1 GEO50151 STL 0.98 MB 103 522 802 Part of the TU Delft cam-
pus with the EWI build-
ing (89.42m).

TU Delft campus 2 City4CFD OBJ 45 MB 72 17 640 0002 Part of the TU Delft cam-
pus with the EWI build-
ing (89.42m).

65

https://3dbag.nl/en/viewer

4. Implementation

3D model Source Format Size Buildings Area (m2) Description
Buildings OpenFOAM OBJ 12.9 MB 26 32 086 Small building model

that represents a city and
consists of mostly high
buildings (the highest
one is 76m).

Cube/rectangle Cone Roof

Connected triangles Single building Cubes

Figure 4.7.: Datasets: simple shapes.

Centre of Delft Ouddorp Maastoren

Begijnhofbuurt TU Delft campus 1 TU Delft campus 2

Buildings

Figure 4.8.: Datasets: 3D city models.

1GEO5015: Modelling wind and dispersion in urban environments course. Note that, in contrast to OBJ, STL is
not compatible with val3dity, however, the prototype uses a rotated version of the input file, which is in OBJ.

2Only buildings: 636 052 m2

66

5. Results and analysis

In this chapter, results and analysis are presented. First, the chapter delves into the valida-
tions of the methods and algorithms used to identify geometric errors (Section 5.1). Then,
the results of the mesh parameters definition method are discussed (Section 5.2).

5.1. Geometric validations

5.1.1. Topological relationships between buildings and terrain validation

Self-made simple shapes (Section 4.2) are developed to test the topological relationships
validation method. These models consist of single buildings with or without terrain, and
can be classified into the following categories.

• Single buildings with horizontal floors and terrain
The height of the terrain varies. Figure 5.1 illustrates some test cases for which the
threshold ζ remains the same and is set to 1. It shows that the method selects the
terrain surfaces lower than the ground surfaces of the building, or the ones higher
than a specific threshold from these surfaces.

Figure 5.1.: Testing topological relationships validation with single building models, having
horizontal floors with a height of 0, and horizontal terrain surfaces with a height of zt.
Threshold value ζ is set to 1. Terrain surfaces and building vertices forming topological
errors are highlighted in green and yellow, respectively, as they are incorrectly positioned
in relation to each other (Section 3.2.2).

• Single building with horizontal floors and sloped terrain
The height of the terrain varies, but ζ remains the same. Figure 5.2 shows these models,
and demonstrates that the algorithm identifies the terrain surfaces incorrectly placed
with respect to the buildings. For example, in the second case, the terrain surface on

67

5. Results and analysis

the right of the building remains unselected because its highest vertex is located at a
distance less than ζ from the ground surface positioned above it.

Figure 5.2.: Testing topological relationships validation with single building models, having
horizontal floors with a height of 0, and terrain surfaces with variable heights within a
range zt. Threshold value ζ is set to 1. Terrain surfaces and building vertices forming
topological errors are highlighted in green and yellow, respectively, as they are incorrectly
positioned in relation to each other (Section 3.2.2).

• Single building with sloped floors and terrains
The height of the terrain surfaces and building floors vary. Threshold ζ remains the
same and is set to 1. Figure 5.3 demonstrates that buildings having their ground
vertices partially placed on the terrain are considered invalid. In addition, it shows
that buildings with floors slightly sloped can be considered as valid, as long as these
ground surfaces are not higher or separated with a larger distance than ζ from the
terrain.

Figure 5.3.: Testing topological relationships validation with single building models, having
floors with variable heights z, and terrain surfaces with variable heights zt. Threshold
value ζ is set to 1. Terrain surfaces and building vertices forming topological errors are
highlighted in green and yellow, respectively, as they are incorrectly positioned in relation
to each other (Section 3.2.2).

• Single building without terrain
The height zt at which the building must be placed varies, and the threshold ζ is set to

68

5.1. Geometric validations

1. Figure 5.4 illustrates that the method indicates the building vertices that are higher
than zt, or separated with a distance higher than ζ.

Figure 5.4.: Testing topological relationships validation with single buildings and without
ground surfaces. zt is the height at which buildings must be placed. The lowest z-value
of the buildings (zmin) is 0. Threshold value ζ is set to 1.

More test cases can be found in Appendix A. The method used to identify topological rela-
tionships errors is based on ground surfaces (Section 3.2.2). So, it is also important that these
ground surfaces are selected properly. Therefore, the algorithm selecting these surfaces was
also tested. The results are presented in Appendix B.

The validation of topological relationships was also tested using 3D models representing
existing areas in the city of Delft. First, the validation was performed with the centre of
Delft, which does not contain terrain features. Initially, no ground level zg was inserted;
therefore, the method assumed that the buildings should be placed at the lowest z-value of
the buildings zmin. The target height zt is thus zmin. Figure 5.5 illustrates that almost all
buildings were considered invalid, as indicated by the green edges at the bottom of them.
This can be explained by the underground feature illustrated in Figure 5.6. With a ground
level of 1 (zt = zg = 1), fewer buildings seem to be selected (Figure 5.7), and in contrast to the
first scenario, the green edges indicating errors suggest that the buildings must be placed
higher (Figure 5.8).

Figure 5.5.: Topological errors in the Centre of Delft indicated by green edges: buildings
must be aligned with the lowest z-value of the urban model (zt = zmin).

69

5. Results and analysis

Figure 5.6.: Underground containing the lowest z-value of the Centre of Delft zmin.

Figure 5.7.: Topological errors in the Centre of Delft indicated by green edges when a ground
level of 1 is selected (zt = zg).

70

5.1. Geometric validations

Figure 5.8.: Underground containing the lowest z-value zmin with the topological errors in-
dicated by green edges when a ground level zg of 1 is selected (zt = zg = 1).

Subsequently, the TU Delft campus file was used including terrain surfaces. As can be
seen in Figure 5.9, almost all terrain surfaces placed under buildings were selected. This is
probably due to small differences between the height of buildings and terrain objects. Yet,
since space between buildings and terrain surfaces can drastically affect the CFD simulation
results, these errors must be identified.

Figure 5.9.: Topological errors within the TU Delft campus model indicated in green.

71

5. Results and analysis

The tests presented above demonstrate that topological errors were accurately identified
with different building and terrain shapes, threshold values, and ground level values. Also,
these errors seem to be correctly detected in real-world models. In short, based on the
validations performed, this method appears to work properly.

5.1.2. Required validations for meshing in OpenFOAM

Sharp angles

To test whether the prototype is able to identify sharp angles, two connected triangles were
modeled that are able to rotate around the axis passing through their common vertices
(Figure 5.10). First, the sharp angles identification was performed several times with one
of the triangles at 0º and the other one at different angles (first four triangles in Figure
5.11). The threshold θ remains the same for all tests. Second, both triangles were rotating
and different thresholds were used (two last models in Figure 5.11). Third, a roof was
modeled with different sizes to verify whether the algorithms was selecting all faces with
small angles between them (Figure 5.12). Finally, two connected buildings were modeled to
verify whether the algorithm identifies sharp angles between buildings.

Figure 5.10.: Two connected triangles.

72

5.1. Geometric validations

Figure 5.11.: Sharp angles identification of two connected triangles with a threshold value
θ of 90◦. θ1 and θ2 are the angles illustrated in Figure 5.10. ϕ1 is the first angle between
these triangles and ϕ2 is the second one. Note that no sharp angle is identified with a
threshold value of 0◦, as neighbouring faces are defined as faces having two common and
two uncommon vertices. Sharp angles are indicated in green.

Figure 5.12.: Roof

Figure 5.13.: Sharp angles identification with roofs and a threshold value θ of 90º. θ is the
angle illustrated in Figure 5.12. Sharp angles are indicated in green.

73

5. Results and analysis

3D model Error

º

Figure 5.14.: Sharp angles identification between buildings with a threshold value θ of 45º.
Sharp angles are indicated in green.

Figure 5.11 illustrates that the method correctly identifies sharp angles between two con-
nected triangles. Additionally, it shows that both angles (ϕ1 and ϕ2) between these triangles
are evaluated. This is demonstrated by the two first cases on the right in this figure: the first
one has an angle ϕ2 lower than the threshold value of 90º, and the second has an angle ϕ2
lower than this value. Figure 5.13 shows that the method accurately detects multiple sharp
angles in an object. For example, the faces at the bottom and sides of roof (a) were selected
as the angles between them are smaller than threshold value of 90◦. Figure 5.14 demon-
strates that the algorithm correctly identifies sharp angles between buildings. In this figure,
the connected faces from both roofs form an angle of 45º, which is correctly recognized as a
sharp angle since the threshold was set to 90º.

Sliver triangles

The sliver triangles identification method was validated by using different models of cones.
Each of them are divided into a certain number of triangles. The algorithm was executed
with different thresholds. The results are summarised in Figure 5.16, and the algorithm
seems to work properly as it selects the triangles having a sliver parameter lower than a
specific threshold. Another validation method was to perform this validation with a roof
with different sizes (Figure 5.17). It seems that the algorithm is able to select multiple
triangles with different sliver parameters lower than a specific threshold.

d

hh

d

Figure 5.15.: Cone and roof models.

74

5.1. Geometric validations

Figure 5.16.: Sliver triangles identification with cones (n: number of triangles, d and h:
distances as illustrated in Figure 5.15, and SP: sliver parameter), and different threshold
values σ for the sliver parameter. Sliver triangles are indicated in green.

Figure 5.17.: Sliver triangles identification of roofs (n: number of triangles, d and h: distances
as illustrated in Figure 5.15, and SP: sliver parameter), and different threshold values σ
for the sliver parameter. Sliver triangles are indicated in green.

Short edges

To verify whether the short edges identification method, the same shape was used as for the
sliver triangles (Section 5.1.2). Again, the cone was divided into a x number of triangles,
and different threshold values λ were used during the validation. Figure 5.18 and 5.19
shows the results, and demonstrates that edges shorter than or equal to a threshold λ are

75

5. Results and analysis

selected. Thus, based on these validations, this short edges identification method seems to
work properly.

Figure 5.18.: Short edges identification of cones (n: number of triangles, d and h: distances
as illustrated in Figure 5.15, and r: radius), and different threshold values for the length
of edges. Short edges are indicated in green.

Figure 5.19.: Short edges identification of cones (n: number of triangles, h: distance as
illustrated in Figure 5.15, and r: radius), and different threshold values for the length of
edges. Short edges are indicated in green.

Overlapping buildings

To test Algorithm 3.5, pairs of buildings were modeled with different positions, including
separated buildings, connected buildings, and overlapping buildings. Figure 5.20 shows
these models and demonstrates that an error occurs only when buildings overlap. Note that
intersections are allowed, as demonstrated by the connected buildings.

76

5.1. Geometric validations

Separated
buildings

Connected
buildings

Overlapped
buildings

-

3D model Errors

-

Figure 5.20.: Overlapping buildings identification with two buildings. Buildings that are
overlapping are indicated in green.

Real-world data

The algorithms that identify sliver triangles, sharp angles, and short edges were also tested
using three different 3D city models representing the Begijnhofbuurt in Amsterdam, TU
Delft campus, and Centre of Delft (Section 4.2). Figure 5.21, 5.22, and 5.23 show the results
of these tests. For all of them, it can be observed that the number of errors identified
increases with higher threshold values, which is as expected.

As described in Section 17, faces with collinear vertices are excluded during the identification
of sliver triangles. Before filtering out these geometries and setting the threshold values to 0,
the TU Delft campus file contained 52 sliver triangles. These selected geometries appeared
to be mainly faces formed by collinear vertices. Since they are not necessarily sliver triangles
and are already considered as errors by val3dity, the algorithm filters them out. Figure
5.22 demonstrates that this filtering task works properly, as no sliver triangles were selected
when the threshold value was set to 0.

Unlike the algorithm for identifying sliver triangles, no errors were detected when the algo-
rithm for identifying short edges was run with a threshold value of 0. However, it was noted
that edges with identical vertices could also be selected as short edges, which may not be
the most appropriate labeling and would already be considered as an error by val3dity. For
this reason, an edge with identical vertices was added to the Centre of Delft file, which was
indeed identified by the algorithm. After implementing the filter to exclude these edges, no
short edges were selected, indicating that this filter works as expected.

77

5. Results and analysis

Figure 5.21.: Sharp angles identification with real-world data (θ: sharp angles threshold, n:
number of sharp angles, and θmean: mean angle of sharp angles within urban model).
Sharp angles are indicated in blue.

Figure 5.22.: Sliver triangles identification with real-world data. (σ: sliver parameter thresh-
old (2xperimeter/area), n: number of sliver triangles, SPmean: mean sliver parameter of
sliver triangles within urban area, and Amean: mean area of sliver triangles within urban
area). Sliver triangles are indicated in blue.

78

5.1. Geometric validations

Figure 5.23.: Short edges identification with real-world data (λ: short edges threshold, n:
number of short edges, and lmean: mean length of short edges within urban model). Short
edges are indicated in blue.

The algorithm for identifying overlapping buildings was tested using the previously men-
tioned datasets and the one representing Ouddorp. Figure 5.24 presents the number of
overlapping buildings for each dataset. The results indicate that test files with higher build-
ing density (Begijnhofbuurt and Centre of Delft) contain more overlapping buildings than
the one with lower building density (Ouddorp). This could be explained by the complexity
of modeling dense building models, which are more prone to geometric errors. The TU Delft
campus file appears to be the only one without overlapping buildings, which is striking as
overlapping buildings seem to common. Based on this qualitative assessment, the algorithm
appears to work correctly.

79

5. Results and analysis

Figure 5.24.: Overlapping buildings identification with real-world data (n: number of build-
ings, and noverlapping: number of overlapping buildings).

80

5.2. Preparation for CFD simulation steps

5.2. Preparation for CFD simulation steps

To evaluate the method to define mesh parameters presented in Section 3.3, several test
cases were used. Each of them addresses a different sub-algorithm that is responsible for a
single user-defined parameter or CFD guideline. Each model was then analysed on several
parameters with a focus on cell dimensions suggested by the prototype. For the different
parameters and guidelines from these sub-algorithms, the following question(s) were for-
mulated and then explored for the individual test cases. The datasets (shown in Section 4.2)
to analyse these parameters or guidelines are summarised in Table 5.1. The test cases mainly
address meshes with two refinement boxes and models without terrain features.

• Flow direction d f low: Does the 3D city models rotate around the z-axis in accordance
with the flow directions illustrated in Figure 3.8? How does this orientation influence
the cell dimensions defined by the prototype?

– Cube: is the rotation correctly performed based on these flow directions?

– Centre of Delft: is the orientation correct for all buildings?

– TU Delft campus 2: is the orientation also correct for terrain features?

• Computational domain: Are the required minimum dimensions always followed? Are
the blockage ratios BR, BRH , and BRL respected when applied? How does the height
of the tallest building hmax influence the recommended cell dimensions?

Three models with different hmax were selected:

– Maastoren of Rotterdam: contains the third largest building of the Netherlands
(hmax = 168.05m),

– Centre of Delft: includes the ”Nieuwe Kerk” of Delft (hmax = 72.01m),

– Ouddorp: represents a village with small buildings of approximately the same
height (hmax = 9.40m).

• Evaluation height huser: When is the evaluation height respected?

– Centre of Delft: contains a diverse range of building objects separated by various
distances.

• Roughness height z0: Is the roughness height always respected?

– Centre of Delft: used for the same reasons as huser.

• Maximum number of cells Nmax: Is this limit always respected? How does it affect
the final cell dimensions? Is the number of cells within the final mesh adequately
estimated?

– Centre of Delft: used for the same reasons as huser.

• At least 10 cells per cube root of the building volume: Is this guideline correctly veri-
fied? Is the cell ratio rmin always respected? What is the impact on the cell dimensions?

– Cubes: mainly to answer the first question as the volume of a cube can be easily
verified.

81

5. Results and analysis

– Ouddorp and TU Delft campus 1: contain mainly small and large buildings,
respectively. The difference in building dimensions makes it possible to observe
to what extent this guideline is followed under different circumstances.

• At least 10 cells per building separation: Is the minimum number of cells per build-
ing separation correctly calculated? Is the cell ratio always respected? How does it
influence the final cell dimensions?

– Cubes: mainly to answer the first question as the model contains cubes separated
with distances that can be readily verified.

– The building distributions of Ouddorp and Begijnhofbuurt differ significantly.
The first model contains buildings that are almost all separated with a relatively
large distance; the second one represents the most densely built district of the
Netherlands. The difference in building distribution makes it possible to observe
to what extent this guideline is followed under different circumstances.

• Region of Interest (RoI): is the RoI correctly defined?

– Ouddorp: represents small buildings that are widely distributed, making it easier
to verify whether the RoI is correctly defined.

• Ground refinement: what is the impact of the ground refinement on the final cell
dimensions? How accurate is the approximation of the number of cells within the
final mesh?

– Centre of Delft: used for the same reasons as huser.

• Number of refinement boxes: does the mesh parameters definition also work for
meshes with three refinement boxes?

– Centre of Delft: used for the same reasons as huser.

Table 5.1.: Matrix showing 3D models per test case.
3D models Cube Cubes Delft Ouddorp Maastoren Begijnhofbuurt TU Delft
Flow direction
Computational domain
Evaluation height
Roughness height
Max. number of cells
Building volumes
Building separations
RoI
Ground refinement
N. refinement boxes

5.2.1. Flow direction d f low

Figure 5.25 and 5.26 show that 3D models align with the incoming flow simulated in Open-
FOAM, which flows along the x-axis. The first figure demonstrates the correct orientation
with models without terrain features; the second one illustrates that all surfaces are rotated

82

5.2. Preparation for CFD simulation steps

with a model with terrain surfaces, except for the water surfaces. This should be an easy fix
in the algorithm, it is related to the semantics. The angles applied correspond to commonly
used wind directions, as illustrated in Section 3.3.2. The flow direction does not seem to
impact cell dimensions, but it does influence the domain dimensions (Table 5.2). This is
due to the minimum and maximum x and y coordinates of the urban area that change with
different angles.

Table 5.2.: Influence of the flow direction on the mesh suggested by the prototype for the
Centre of Delft (Nmax: 30 million cells, z0: 0.5m).

d f low (◦) 0◦ 45◦ 157.5◦ 270◦

hxw (m) 8x6.68 8x6.68 8x6.68 8x6.68
Domain volume (m3) 1.1 · 109 1.3 · 109 1.2 · 109 1.1 · 109

83

5. Results and analysis

Figure 5.25.: Model rotation of a simple cube (left) and the Centre of Delft (right).

84

5.2. Preparation for CFD simulation steps

Figure 5.26.: Model rotation of the TU Delft campus 2. White surfaces in the rotated model
are water surfaces that have not rotated with the rest of the model.

5.2.2. Computational domain

To test whether the method adheres to the required minimum dimensions for the domain,
three models were selected with different hmax: Maastoren (hmax = 168.05m), Centre of Delft
(hmax =72.01m), and Ouddorp (hmax = 9.40m). Tables 5.3, 5.4, and 5.5 present the results.

The domain dimensions computation was executed multiple times:

• Without blockage ratios,

• With blockage ratio BR defined by Franke and Baklanov (2007),

• With blockage ratios in the lateral horizontal BRL and vertical BRH directions defined
by Blocken (2015).

The following can be observed:

• With or without blockage ratios, the minimum domain dimensions are maintained in
each model: there should be a minimum of 20 · hmax, 10 · hmax, and 5 · hmax in the x, y,
and z directions, respectively.

• If the method applies BR, BR is respected in each case: BR should be lower than or
equal to 3%.

• If the method uses BRL and BRH they are both respected in each case: both BRL and
BRH should be lower than or equal to 17%.

85

5. Results and analysis

The method works as expected. However, Figure 5.27 shows that the domains respecting
BR or both BRL and BRH are very large in the y-direction. The question is whether this
affect the simulation results, as the CFD guidelines suggest a larger distance between the
urban model and the outflow boundary than the one between this model and the lateral
boundaries (Section 2.2.1). Also, their total sizes appear to be much larger than the domain
without BR and since one of the objectives is to create a mesh parameters definition method
for average users, this might be an issue.

Table 5.3.: Suggested domain dimensions for Maastoren, depending on the chosen blockage
ratio (BR) (hmax (x), (y), (z): number of hmax in the x, y, and z direction; BR: blockage
ratio (Franke and Baklanov, 2007), BRL: blockage ratio in the lateral horizontal direction
(Blocken, 2015), and BRH : blockage ratio in the lateral vertical direction (Blocken, 2015)).

no BR BR BRL and BRH

3 hmax (x) 20.06 20.04 20.04
hmax (y) 10.07 19.77 31.24
hmax (z) 5.03 7.12 5.12
BR 0.07 0.03 0.03
BRL 0.39 0.25 0.17
BRH 0.17 0.12 0.17

Table 5.4.: Suggested domain dimensions for the Centre of Delft, depending on the chosen
blockage ratio (BR) (hmax (x), (y), (z): number of hmax in the x, y, and z direction; BR:
blockage ratio (Franke and Baklanov, 2007), BRL: blockage ratio in the lateral horizontal
direction (Blocken, 2015), and BRH : blockage ratio in the lateral vertical direction (Blocken,
2015)).

no BR BR BRL and BRH

hmax (x) 20.09 20.05 20.09
hmax (y) 10.04 26.79 35.83
hmax (z) 5.07 6.30 5.07
BR 0.07 0.03 0.03
BRL 0.42 0.22 0.17
BRH 0.17 0.14 0.17

Table 5.5.: Suggested domain dimensions for Ouddorp, depending on the chosen blockage
ratio (BR) (hmax (x), (y), (z): number of hmax in the x, y, and z direction; BR: blockage
ratio (Franke and Baklanov, 2007), BRL: blockage ratio in the lateral horizontal direction
(Blocken, 2015), and BRH : blockage ratio in the lateral vertical direction (Blocken, 2015)).

no BR BR BRL and BRH

hmax (x) 20.14 20.14 20.14
hmax (y) 10.29 248.30 317.22
hmax (z) 5.75 5.75 5.75
BR 0.13 0.03 0.03
BRL 0.86 0.21 0.17
BRH 0.16 0.16 0.17

86

5.2. Preparation for CFD simulation steps

Figure 5.27.: Recommended domain dimensions depending on the chosen blockage ratio
(BR) for Maastoren (BR: blockage ratio (Franke and Baklanov, 2007), BRL: blockage ratio
in the lateral horizontal direction (Blocken, 2015), and BRH : blockage ratio in the lateral
vertical direction (Blocken, 2015)).

To analyse the effect of the height of the tallest building hmax on the mesh parameters defini-
tion, mesh parameters for the same three models were computed with a limitation Nmax of
30 million cells and roughness heights values z0 of 0.5 and 2m. Table 5.7 demonstrates that
the cell dimensions are most impacted by the roughness value. In fact, the same cell sizes
were advised for the three models when z0 was 2. However, the domain dimensions differ
significantly as they depend on hmax, which was expected (Section 5.2.2). The model with
the highest building, Maastoren, ends up having the largest domain. Table 5.6 shows that a
lower roughness value results in greater cell dimensions in models with higher hmax, which
can be explained by the maximum number of cells allowed. Large domains need larger cells
to achieve the same density as smaller domains.

Table 5.6.: Influence of hmax on the cell and domain dimensions (Nmax = 30 million cells, z0
= 0.25m).

Dataset Maastoren Delft Ouddorp
hmax (m) 168.05 72.01 9.40
hxw (m) 12.9x12.84 5.4x5.39 4.8x4.01
Vdomain (m3) 1.24 · 1010 1.08 · 109 5.38 · 107

87

5. Results and analysis

Table 5.7.: Influence of hmax on the cell and domain dimensions (Nmax = 30 million cells, z0
= 2m).

Dataset Maastoren Delft Ouddorp
hmax (m) 168.05 72.01 9.40
hxw (m) 32x26.68 32x26.68 32x26.68
Vdomain (m3) 1.26 · 1010 1.12 · 109 6.15 · 106

Figure 5.28.: Meshes for models with different hmax. Roughness height values z0 of 0.25 and
2m are used.

The prototype gives the option to select the largest building dimension dmax instead of the
height of the largest building hmax to define the domain dimensions. This would solve
issues that occur using the Ouddorp model. When hmax is used, the model is very close
to the domain boundaries (Figure 5.28), as the height of the buildings is very small. This
suggestion of using dmax is mentioned by Liu et al. (2018).

88

5.2. Preparation for CFD simulation steps

5.2.3. Evaluation height

Table 5.8 shows that the target evaluation height huser influences the cell dimensions. Greater
evaluation heights seem to result in larger cell dimensions. Also, huser is only respected in
cells with the highest refinement level. Therefore, a refinement grid should be added to the
ground. In addition, this table demonstrates that with lower huser values, huser might not
be satisfied as the first evaluation node must be at least z0 from the ground. In this test
case, where z0 is set to 0.5, it leads to a minimum cell height of 2.5 (z0 · 2 · 2.5). Consequently,
achieving huser becomes impossible, even with the most refined cells. In short, the evaluation
height seems to always be respected as long as the roughness height allows it. Thus, the
method seems to work correctly for the evaluation level.

Table 5.8.: Influence of the target evaluation height huser on the cell dimensions and final
evaluation heights (Nmax = 30 million, z0 = 0.5m). huser (0-3) indicates the final maximum
huser (cells with refinement level 0) and minimum huser (cells with refinement level 3).

huser (m) 1.5 3 5 10 20
hxw (m) 8x6.60 9.6x8.01 16x13.35 32x26.68 64x53.35
huser (m) (0-3) 20-2.5 24-3 40-5 80-10 160-20

a b c

ed

Figure 5.29.: Meshes for the Centre of Delft based on different target evaluation heights huser:
(a) 1.5m, (b) 3m, (c) 5m, (d) 10m, and (e) 20m.

5.2.4. Roughness height

The evaluation nodes, which are placed at the centre of the cells, must be located at a
minimum distance equal to the roughness height z0 from the ground. This requirement
previously mentioned is the most important one within the mesh parameters definition, and
that is why it should always be respected. Appendix F demonstrates that this condition was
met in each test case.

89

5. Results and analysis

To analyse the impact of the roughness height, the mesh parameters definition was per-
formed on the Centre of Delft with different values of z0. The results are presented in Table
5.9 and Figure 5.30. First, it appears that cell dimensions increase with higher z0 values,
which is as expected. Second, while the height of the lowest evaluation nodes exceeds z0,
the cell dimensions remain the same with z0 values between 0.25 and 0.03. This is probably
due to the method trying to maintain the target evaluation height of 1.5m at the 3rd cell from
the ground.

Table 5.9.: Resulting cell dimensions hxw, distances between the bottom boundary and first
evaluation nodes hnode, and number of cells approximation Napprox. for the Centre of Delft
(Nmax = 30 million). The distance between the bottom boundary and first evaluation
nodes from this boundary is denoted hnode.

z0 (m) 0.03 0.10 0.25 0.5 1 2
hxw (m) 5.4x5.39 5.4x5.39 5.4x5.39 8x6.68 16x13.35 32x26.68
hnode (m) 0.34 0.34 0.34 0.5 1 2

Figure 5.30.: Suggested meshes for the Centre of Delft with different roughness height values
z0.

90

5.2. Preparation for CFD simulation steps

5.2.5. Maximum number of cells

The tests in Appendix F show that the number of cells limit is not exceeded with respect to
the approximation of the number of cells. However, this is not always true for the number
of cells in the final mesh generated by snappyHexMesh. On average, based on these tests,
the approximation deviates from the final cell count by -12.12%. It seems to be difficult to
determine why there is more difference in some cases than in others as OpenFOAM applies
some optimisation tasks (e.g. local refinements) hard to understand during the meshing
process. Users would be informed by this average accuracy.

The 3D models representing Ouddorp and the Centre of Delft were used to test the mesh
parameters definition method with different number of cells limits Nmax. Tables 5.10 and
5.11 present the results. With a lower limit, the cell dimensions increase, which can be
explained by the fact that dividing the domain by a lower number results in larger cells.
These tables show that after a certain cell limit, the cell dimensions remain constant. This is
probably due to the roughness height and/or target evaluation height requirements.

Table 5.10.: Recommended cell dimensions for Ouddorp with different limits for the number
of cells Nmax (z0 = 0.5m, huser = 1.5m).

Nmax 1000 106 10 · 106 30 · 106 50 · 106 80 · 106 100 · 106

hxw (m) 285.7x285.69 12.1x11.3 8x6.68 8x6.68 8x6.68 8x6.68 8x6.68

Table 5.11.: Recommended cell dimensions for the Centre of Delft with different limits for
the number of cells Nmax (z0 = 0.5m, huser = 1.5m).

Nmax 1000 106 10 · 106 30 · 106 50 · 106 80 · 106 100 · 106

hxw (m) 432.3x432.26 19x19 8x7.93 8x6.68 8x6.68 8x6.68 8x6.68

The mesh parameters definition primarily focuses on models without terrain; however, a
method was also developed for models with terrain features. For this reason, the number of
cells approximation was also estimated for the TU Delft campus 2 file, which include terrain
surfaces, and three different cell dimensions. Table 5.12 shows the difference between the
approximated and final number of cells. As can be observed, the approximation seems to
be more accurate with small cell dimensions. However, the method needs further valida-
tions before assessing its accuracy. Therefore, it should be tested with different 3D urban
models.

Table 5.12.: Number of cells approximation for TU Delft campus 2.
hxw (m) 8x6.68 11.9x11.84 26.7x26.67
Napprox. 68 439 813 17 404 501 2 406 529
N f inal 69 908 126 20 072 872 2 975 629
Difference (%) -2 -13 -19

91

5. Results and analysis

5.2.6. At least 10 cells per cube root of the building volume

In the final mesh, there must be at least 10 cells per cube root building volume. To test
whether the algorithm identifies correctly the buildings not meeting this requirement, three
models were tested.

First, a model containing 21 cubes with identical dimensions (150x100x125) was tested. The
results are presented in Table 5.13. The cell dimensions shown in this table were defined
based on their cube root volume of 123.31m. To fit 10 cells within this value, the cell height
and width should be approximately 12.33m. As the method evaluates this requirement with
the most refined cells (level 3 in this case), the maximum cell dimensions without refinement
should be (12.33x8)x(12.33x8). Observe that in the two first cases, where the cell heights
and widths are below 12.33 · 8, the cubes were considered valid. However, the other cases
result in invalid cubes, as the cell dimensions exceed this value. Also, the last two cases
demonstrate that both the width and height can have a maximum of 12.33 · 8; otherwise, the
cubes are considered invalid.

Table 5.13.: Number of valid buildings identified in the model with 21 identical cubes. Cube
root of one cube (3

√
Cube) equals 123.31m.

wcell hcell 10 · wcell 10 · hcell Valid
10x8 10x8 100 100 100%

12.30x8 12.30x8 123 123 100%
12.34x8 12.34x8 123.4 123.4 0%
12.30x8 12.34x8 123 123.4 0%
12.34x8 12.3x8 123.4 123 0%

Second, the models of Ouddorp and TU Delft campus were tested, which contains mostly
small and large buildings, respectively. For each test case, the mesh parameters definition
was applied with three different roughness heights z0 as they have the greatest influence on
the cell dimensions (Section 5.2.4). Figure 5.31 shows the resulting invalid buildings. In each
case, an increase of z0 results in the selection of more invalid buildings. However, it can be
observed that the number of buildings identified in Ouddorp remains relatively consistent
compared to the model representing the TU Delft campus. This contrast can be explained
by the number of small buildings in Ouddorp and the amount of large buildings within the
TU Delft campus model.

92

5.2. Preparation for CFD simulation steps

= 0.5

3D model

= 1

= 2

Two buildings Ouddorp TU Delft campus

Figure 5.31.: Number of buildings with less than 10 cells per cube root building volume
(3
√

buildingvolume) within real-world datasets.

From the tests above, the method seems to correctly identify buildings with insufficient cells
per cube root building volume. In addition, the test cases presented in Appendix F show
that the cell ratio, which was set to a maximum of 1.20, is always respected.

93

5. Results and analysis

5.2.7. Building distribution

CFD guidelines recommend to maintain at least 10 cells per building separation. To verify
whether the method detects buildings that are not separated with sufficient cells, three
models were tested.

First, the method was performed multiple times with the same model as described in Section
5.2.6, containing 21 cubes separated by distances of 100 (dx) and 75 (dy) in the x and y
directions, respectively. Figure 5.32 shows the results. Note that the focus does not lie
on diagonal distances which are equal to 125. Given that a geometry is surrounded by
a minimum of 4 rows with the most refined cells (level 3 in this case), there must be a
minimum of 8 cells with refinement level 3 and 2 cells with refinement level 2 to ensure a
number of 10 cells between two buildings. Based on this information, separation thresholds
dseparation, which exclude separations below this specified value, were defined. In addition,
to respect the requirement mentioned above for dx and dy, the cell width at refinement
level 3 should be 6.25 and 8.33, respectively. This leads to maximum cell widths without
refinement wcell of 6.25 · 8 and 8.33 · 8.These values were used to define wcell in Figure 5.32.
The following can be observed:

• (a): Since dseparation is higher than dx and dy, these separations were not taken into
account and all cubes/buildings were considered valid.

• (b) and (c): wcell is higher than the maximum wcell for both directions. In case (b),
cubes were labelled invalid only due to dx (dy was not taken into account). In case (c),
cubes were considered invalid due to both separations.

• (d): cubes were considered invalid due to wcell , which was higher than 6.25 · 8 but
lower than 8.33 · 8.

• (e) and (f): all cubes are valid, wcell is lower than both 6.25 · 8 and 8.33 · 8.

94

5.2. Preparation for CFD simulation steps

Figure 5.32.: Number of invalid building separations, indicated in green, in the model with
21 identical cubes (wcell : cell width, dseparation: separation threshold, min: minimum dis-
tance needed, which is (wcell/8)*8+(wcell/4)*2, and score: percentage of valid buildings).
Cubes are separated with distances of 75, 100, and 125m.

Figure 5.33 illustrates the results obtained from two other models: one representing the Be-
gijnhofbuurt in Amsterdam (high building density), and one representing Ouddorp (low
building density). Several observations can be made. First, as the roughness height de-
creases, fewer buildings are classified as invalid. Second, the number of invalid distances
decreases as the value of dseparation increases. Finally, the number of invalid buildings seems
to be higher in the Begijnhofbuurt model compared to the Ouddorp model, which can be
explained by the higher building density of Begijnhofbuurt.

95

5. Results and analysis

Begijnhofbuurt Ouddorp

= 0.005

3D model

= 0.5

= 0.5

= 2

= 2

= 2

= 10

= 10

Figure 5.33.: Invalid buildings separations, indicated in green, within the Begijnhofbuurt
(Amsterdam) and Ouddorp files.

The method appears to correctly identify buildings with separations with insufficient cells.
In addition, the test cases presented in Appendix F show that the cell ratio, which was set to
a maximum of 1.20, is always respected. However, the number of buildings following this
requirement appears to be relatively low. In fact, it varies between 0.58% and 21.18%. Yet,
this can be expected, as it is nearly impossible to respect all CFD guidelines.

96

5.2. Preparation for CFD simulation steps

5.2.8. Region of Interest

The Region of Interest (RoI) was tested using the model representing Ouddorp. First, the
RoI was generated without a target building. Figure 5.34 (a) demonstrates that the algorithm
selects the centre of the 3D model as the centre of the RoI. Subsequently, the RoI was gener-
ated with a target building. Figure 5.34 (b) shows that the centre of the RoI is on the target
building and that the radius of the RoI is significantly smaller. This is due to the algorithm
that considers the highest dimension of the target building as the radius of RoI when there
is a target building; otherwise, it takes the highest dimension of the buildings within the
3D model. As this target building is much smaller than the largest building within the 3D
model, the resulting RoI is relatively small.

a

b

Figure 5.34.: Region of Interest definition with Ouddorp (a) without target building (b) with
target building.

5.2.9. Ground refinement

Tables 5.14 and 5.15 present the results obtained when a ground refinement is applied to
the Centre of Delft and Ouddorp. When the ground refinement is applied without cell lim-
itation, the cell dimensions remain the same and the number of cells in the mesh increases,
which is expected. When a cell limitation is set, the cell dimensions may increase to respect
this maximum, as demonstrated in Table 5.14. On average, the cell approximation deviates
by -22.2% from the final cell count (Appendix F), which is worse than the approximation
without ground refinement. Similar to the latter approximation, it is difficult to make an
accurate approximation of the final cell number as OpenFOAM applies some optimisation
tasks hard to understand.

97

5. Results and analysis

Table 5.14.: Comparison between approximated number of cells Napprox. and final number
of cells N f inal with or without ground refinement (GR) for the Centre of Delft (Nmax = 30
million cells, z0 = 0.25m).

No GR GR, no Nmax GR, with Nmax

hxw (m) 5.4x5.39 5.4x5.39 6.2x6.16
Napprox. 29 515 237 40 503 050 29 736 376
N f inal 44 194 102 65 682 877 40 976 798

Table 5.15.: Comparison between approximated number of cells Napprox. and final number
of cells N f inal with or without ground refinement (GR) for Ouddorp (Nmax = 30 million
cells, z0 = 0.25m).

No GR GR, no Nmax GR, with Nmax

hxw (m) 4.8x4.01 4.8x4.01 4.8x4.01
Napprox. 20 575 779 22 467 191 22 467 191
N f inal 18 841 020 29 792 968 29 792 968

8

b

a

Figure 5.35.: Profile view of meshes with ground refinement (z0 = 0.5m): (a) Centre of Delft
(b) Ouddorp.

5.2.10. Number of refinement boxes

The test cases focus primarily on two refinement boxes; however, the prototype gives the op-
tion to users to select three refinement boxes. To verify whether this option works properly,
some meshes with three refinement boxes were generated for the Centre of Delft. Figure 5.36
shows one of these meshes, and demonstrates that there are indeed three meshes defined.
Table 5.16 compares two meshes with the same input parameters, except for the number of
refinement boxes. Observe that the cell dimensions are greater with three refinement boxes,
which is expected as there are refinement levels. The final numbers of cells are approx-
imately the same, however, the number of cell approximation for three refinement boxes
seems to be less accurate. This should be further explored.

98

5.3. Comparison between CFD simulations with mesh parameters of an OpenFOAM tutorial and the prototype

Figure 5.36.: Mesh generated for the Centre of Delft with three refinement boxes.

Table 5.16.: Comparison between two meshes suggested for the Centre of Delft. The same
input parameters are used, except for the number of refinement boxes.

Two refinement boxes Three refinement boxes
hxw (m) 8x6.68 16.1x13.43
Napprox. 13 629 727 27 509 576
N f inal 17 601 037 19 167 071
Difference (%) -22 -30

5.3. Comparison between CFD simulations with mesh
parameters of an OpenFOAM tutorial and the prototype

To demonstrate the difference between CFD simulations with and without CFD guidelines
for urban areas, two CFD simulations were performed. The first one uses mesh parame-
ters from an OpenFOAM tutorial named windAroundBuildings, which simulates wind flows
around a set of buildings presented in Section 4.2 (”Buildings”); the second one includes
mesh parameters suggested by the prototype.

A modified version of the windAroundBuildings tutorial was used for both CFD simulations.
First, Atmospheric Boundary Layer (ABL) conditions were added by including the ABLcon-
ditions directory from another tutorial named turbineSiting. Additionally, the following pa-
rameters were configured:

• Roughness length z0: 0.5 m

• Velocity value Ure f : 5 m/s (in the x-direction)

• Velocity height zre f : 10 m

99

5. Results and analysis

• Turbulent kinetic energy κ1: 1.5

• Passive scalar ϵ2: 0.03

The next step was to run the simulations, using this modified version of the tutorial includ-
ing the input file ”Buildings”, and the two sets of mesh parameters (i.e. different sets of
blockMeshDict and snappyHexMeshDict files). To perform them, the simpleFoam solver was
used, which solves incompressible and turbulent flows in steady-state situations by using
the SIMPLE algorithm (OpenFOAM, nd). SIMPLE is a widely used approach to solve equa-
tions of fluid mechanics (Khawaja and Moatamedi, 2018).

Figure 5.37 illustrates the simulation results in 3D. The domain dimensions applied by the
tutorial (a) are much smaller than the ones recommended by the prototype (b) and do not
follow the CFD guidelines. The latter seems to lead to simulation errors as Figures 5.38 and
5.39 show some differences in the velocity values around the buildings facing the incoming
flow (on the left). The flows from the tutorial (Figure 5.38) have higher velocity values (8-10
m/s) compared to the flows from the prototype (approx. 6 m/s) (Figure 5.39). These higher
values are probably due to insufficient upstream domain length (distance between the inlet
boundary and building model).

Figure 5.37.: 3D view CFD simulations with mesh parameters from (a) Tutorial (b) Prototype.

1κ: energy possessed by turbulent flows resulting from motion (Britannica, 2023).
2ϵ: quantity convected by fluids without influencing their dynamic behaviours, such as temperature or salinity

(Kerr, 1981).

100

5.3. Comparison between CFD simulations with mesh parameters of an OpenFOAM tutorial and the prototype

Figure 5.38.: Slide at 5m of CFD simulation with mesh parameters from tutorial.

Figure 5.39.: Slide at 5m of CFD simulation with mesh parameters from prototype.

Figures 5.40 and 5.41 illustrates the resulting meshes from the tutorial and prototype, re-
spectively. It shows that the tutorial used larger cells, with its background mesh containing
cells of 14x14, while the prototype suggests cells of 8.01x8. Compared to the tutorial, the
prototype contains 282 times more cells in the background mesh and 23 times more cells
than the final mesh. This difference lead to more accuracy in the mesh of the prototype, as
the tutorial applies a smaller domain and larger cells. Furthermore, the tutorial uses one
refinement box instead of two. These boxes allow to find a balance between accurate re-
sults and an adequate computational performance. Smaller cells often lead to more accurate
results but can result in computationally expensive simulations. They enable smooth tran-
sitions between flow values inside the region of interest (around buildings) and remaining
area of the domain. Applying more refinement boxes improves the smoothness of these
transitions.

101

5. Results and analysis

Figure 5.40.: Mesh tutorial (slide at 5m). Background mesh (blockMeshDict) and final mesh
(snappyHexMeshDict) contain 5000 and 185 749 cells, respectively.

Figure 5.41.: Mesh prototype (slide at 5m). Background mesh (blockMeshDict) and final mesh
(snappyHexMeshDict) contain 1 410 579 and 4 328 987, respectively.

Figure 5.42 presents the velocity profiles of both simulations at the front of the urban model
(Figure 5.43), which represents the magnitude of the velocity in relation with height. The
velocity magnitude is 0 m/s at the ground and increases with the height. This figure demon-
strates that smoother velocity profile of the prototype compared to that of the tutorial. This
is due to the larger cells and lower number of refinement boxes applied in the tutorial, which
lead to larger differences between cell/flow values. Additionally, it can be observed that the
velocity profile of the tutorial stops at a lower height due to its smaller domain.

102

5.3. Comparison between CFD simulations with mesh parameters of an OpenFOAM tutorial and the prototype

Figure 5.42.: Velocity profiles. Rough changes are indicated with red crosses.

Finally, the residuals were plotted to observe the convergence of velocity U, turbulent kinetic
energy κ, and passive scalar ϵ values (Figures 5.44 and 5.45). The same behaviour can
be observed for both simulations: the values decreases and converges to a certain value.
However, the tutorial converges already around 500 iterations and the prototype a bit before
5000 iterations. The residual values are higher for the tutorial than the one of the prototype,
which indicate a higher accuracy of the prototype.

103

5. Results and analysis

Figure 5.43.: Location at which the velocity was evaluated indicated in red.

Figure 5.44.: Residuals of the prototype.

104

5.3. Comparison between CFD simulations with mesh parameters of an OpenFOAM tutorial and the prototype

Figure 5.45.: Residuals of the tutorial.

To conclude, the results described above suggest that the mesh parameters of the prototype
lead to more accurate results. However, its simulation time was much larger (3 hours and
10 minutes) than the one of the prototype (7 minutes).

105

6. Conclusions, discussion and
recommendations

6.1. Conclusions

The aim of this thesis was to develop a method that validates geometries and defines mesh
parameters to simplify the use of CFD simulations in urban areas. To reach this objective,
a prototype was created, in the form of a web application, that executes this method. The
following four research questions were explored during the thesis.

Which geometric validations should be performed for CFD simulations in urban areas?
And how to implement them?

These questions were answered by literature review and by translating the identified valida-
tions into code. The chosen validations are described below.

Standards were developed to define basic primitives (ISO19107) (ISO, 2019) and provide
guidelines for their digitization (OGC, 2016, 2011), with the aim of enhancing the interoper-
ability and exchange of geographical data. As the quality of geometries plays an important
role in CFD simulations, verifying them based on the ISO19107 standard could be a “useful
starting point” (Wagner et al., 2015). Therefore, the validation tool named val3dity devel-
oped by Ledoux (2018) was implemented in the prototype. This was done by including the
val3dity library in the C++ script of the prototype.

However, one important geometric validation is missing in this validation tool: the topolog-
ical relationship between buildings and terrain features. Consequently, floating buildings
over terrains are allowed, leading to incorrect simulation results (in reality, buildings are
always connected to the ground). To address this, an additional validation was added that
identifies buildings with ground surfaces higher than terrain surfaces (i.e. floating build-
ings), and buildings separated with a user-defined distance from these surfaces. In the
absence of terrain features, the ground level is used instead, which can be user-defined or
the lowest z-value.

Another validation involves identifying overlapping buildings, as they can affect the mesh
quality. To do so, the intersections between buildings are computed. When their volume
is non-zero, buildings are considered overlapping. However, this method cannot always be
applied when buildings are incorrectly defined (not bounding a volume or self-intersecting).
An alternative method was developed that calculates the area of the intersections between
ground surfaces in 2D. If this area is non-zero, the buildings are identified as overlapping.

Finally, small geometric details might also affect the meshing process, including sharp an-
gles, short edges, and sliver triangles. To help users simplify their geometries, algorithms
were implemented that identify these shapes. These algorithms iterate over (triangular)
faces, and evaluate the angles between them, their edge lengths, and sliver parameters. If

107

6. Conclusions, discussion and recommendations

these values are lower than a user-defined threshold, they are identified as one of these small
geometries.

Which method(s) could be used to compute CFD mesh parameters and generate high
quality meshes for urban CFD simulations in OpenFOAM?

This question was first investigated by literature review to select guidelines ensuring high
quality meshes for CFD simulation in urban areas. Then, a method was developed that
combines the chosen guidelines and translated into code.

Guidelines were developed to define accurate pre-run setups for CFD simulations in urban
areas. Considering the scope of the thesis, only CFD guidelines related to the preparation of
geometries and mesh parameters definition were discussed. Since not all guidelines can be
satisfied at the same time, a selection must be made based on their relevance and implemen-
tation possibilities (i.e. potential to be formalized and translated to axioms and code, and
possibilities within OpenFOAM). The selected guidelines cover the computational domain,
computational grid (mesh), and Region of Interest (RoI).

Based on the chosen guidelines, a workflow was created that returns the following data to
users:

• The 3D model aligned with the incoming flow simulated in OpenFOAM,

• Configuration files containing mesh parameters for CFD simulation in urban areas
(blockMeshDict and snappyHexMeshDict),

• Advice and information on the input model aiming to help users find a balance be-
tween simulation accuracy and performance (e.g. number of buildings satisfying one
of the guidelines, buildings needed to run a realistic simulation).

Figure 3.7, presented in Section 3.3.1, illustrates this workflow. More information on the
methodology used can be found in Section 3.3.

How to report errors, warnings, and results to users?

This question was approached by first dividing the results from geometric validations and
mesh parameters definition into errors, warnings, and advises (Table 6.1). This classifica-
tion was based on their type of information and influence on CFD simulations. Second, a
prototype of a web application was created presenting the results to users with their corre-
sponding class. Some results are directly visible on the user interface; others are returned as
OBJ files, TXT files, and/or configuration files for OpenFOAM and can be downloaded.

108

6.1. Conclusions

Table 6.1.: Classification of the results
Results Class
Separate building and terrain validation (val3dity) Indicated as error by

the prototype, however,
val3dity has its own clas-
sification.

Topological relationships between buildings and terrain Error: floating building
Warning: buildings too
far below terrain surfaces
or ground level

Sharp angles Warning
Short edges Warning
Sliver triangles Warning
Overlapping buildings Warning
Aligned 3D city model with incoming flow Advice
Region of Interest (RoI) Advice
Background mesh parameters (blockMeshDict) Advice
Refined mesh parameters (snappyHexMeshDict) Advice
Buildings satisfying required minimum of cells Warning

How to validate the quality of the methodology?

Different methods were used to validate the quality of the methodology:

• Simple shapes: Algorithms performing geometric validations and computing CFD
mesh parameters were tested using simple shapes. Some examples are cubes, cones
and single buildings with or without terrain. This validation method allows to clearly
identify and remove errors in these algorithms. When no more errors can be detected,
one can conclude that their basis is solid.

• Real-world datasets: Some geometries are not directly considered during the devel-
opment of algorithms, for example, faces with collinear vertices. For this reason, al-
gorithms were also tested with real-world datasets, which can contain unexpected
geometries. In this way, the algorithms can be improved to make them more robust
and adaptable to different scenarios.

• Mesh generations in OpenFOAM: Several meshes were generated in OpenFOAM
with different input files and parameters (e.g. roughness values, evaluation heights).
The data from these meshes were compared to values computed by the prototype.
These evaluations involved visual observations (with the 3D viewer ParaView) and
numerical assessments (e.g. using the checkMesh command from OpenFOAM). This
approach helped to verify the accuracy of the used methodology for mesh parameters
definition.

• Comparison between OpenFOAM tutorial and prototype:: Two CFD simulations
were performed: one with mesh parameters from an OpenFOAM tutorial and one
with parameters suggested by the prototype (Section 5.3). The same input model
and other simulation pre-run setups were used. As the tutorial does not follow CFD
guidelines for the meshing process, their influence on the simulation results could be
analysed. Thus, this approach provides insights in the contribution of the prototype.

109

6. Conclusions, discussion and recommendations

6.2. Discussion

During the building definition, a function from the CGAL Polygon Mesh Processing package
that identifies and splits connected components was used. This tool efficiently computes
separate building objects, in a satisfactory manner. However, buildings are often defined
based on individual solids, even though they may consist of multiple solids in the input files.
Additionally, multi-surfaces were sometimes considered as buildings, resulting in buildings
without volumes. While this does not influence the CFD simulations themselves, it can affect
the statistics presented to users (e.g. number of overlapping buildings).

Thresholds were used to identify sliver triangles, short edges, and sharp angles based on
default or user-defined values. However, their optimal values remain unknown. In other
words, it is unclear at which dimensions these geometries pose a problem for the meshing
process. Further research is needed to determine the optimal values for these thresholds.
Moreover, their values are likely to depend on the input model and purpose of the CFD
simulation, which also makes it difficult for users to choose the most appropriate values.
For example, a higher Level of Detail (LoD), which often leads to more geometric details
and smaller geometries, can lead to better simulation results (Garcı́a-Sánchez et al., 2021).
Therefore, smaller threshold values would be more suitable. Yet, this might also lead to
lower mesh quality (and simulation results) and a more computationally expensive simula-
tion. So, at present, choosing appropriate threshold values is based on experience with CFD
simulation and thus still requires some expertise.

The topological relationships validation algorithm seems to work properly. However, it is
strongly dependent on the method that defines ground surfaces of buildings. Building sur-
faces lower than a given threshold z and with an angle smaller than a threshold θ with
regard to the ground are considered as ground surfaces. This approach might lead to incor-
rect results when, for example, buildings contain internal geometries, or have heights lower
than z and flat roofs.

A selection of CFD guidelines was made and implemented in the mesh parameters defi-
nition. The following observations were done, based on validations presented in Section
5.2:

• The models were correctly rotated based on the input flow.

• The minimum requirements for the domain dimensions and optional blockage ratios
seem to be respected. The blockage ratios result in very large domains, especially in
the y-direction. This might affect the simulation results, as guidelines suggest larger
dimensions in the x-direction (direction of the incoming flow). Also, larger domains
lead to more computationally expensive simulations, which is not beneficial.

• The prototype successfully follows the roughness height z0: the first evaluation node
from the ground is always at a minimum of z0.

• The target evaluation height was respected as long as the roughness height condition
can be satisfied, which is as expected.

• The number of cells within the mesh is approximated and differs on average by -
12.12% with the mesh generated in OpenFOAM. These differences vary between 3 to
38% (absolute values). It was difficult to determine a more accurate approximation due
to certain tasks applied by OpenFOAM to optimize the mesh, which require further
effort to understand.

110

6.2. Discussion

• The identification of buildings with insufficient cells at each side (per cube root build-
ing volume) or per building separation appears to work as expected. One limitation
here is the computation of building separations, which are considered as the distance
between a vertex of the convex hull from Building A and one from building B. This
method can be accurate (Figure 6.1 a), but there are some cases in which it is not (Fig-
ure 6.1 b). Additionally, the test cases in Sections 5.2.6 and 5.2.7 demonstrate that the
requirements for the minimum number of cells per building and separation are rarely
met. Yet, satisfying all CFD guidelines is nearly impossible, so this was to be expected.
These identifications give only an indication of the extent to which the guidelines are
followed.

Figure 6.1.: Example of building separations: (a) accurate (b) inaccurate

• The Region of Interest (RoI) is correctly defined based on the guidelines of Liu et al.
(2018).

• The ground refinement was shown to be correctly applied. Yet, the number of cell
approximation differs by -22.2% with the final mesh generated in OpenFOAM, which
is a larger difference than the approximation without ground refinement. Additionally,
the number of cells approximation for ground surfaces is based on the perimeter of
buildings approximated using their convex hull, which is less accurate than using their
actual perimeters.

The CFD guidelines themselves, however, cannot all be satisfied at the same time. This is
not necessarily a limit of the prototype but more of the guidelines itself.

Errors, warnings, and results are provided to users in the form of reports and visualisa-
tions. The prototype contributes to the simplification of using CFD simulations for urban
areas. However, users still need sufficient expertise to set suitable input parameters for ge-
ometric validation and mesh parameters definitions. To help users with choosing adequate
parameters, explanation is provided for each of these within the prototype.

The prototype helps users with preparing their geometries and defining pre-run setups for
CFD simulations in urban areas, which are time consuming and prone to errors. This was
achieved by identifying geometries that might affect the CFD meshing process and compute
mesh parameters for OpenFOAM based on CFD guidelines. The used methods for these
tasks had led to satisfactory results. This prototype is a small step towards making realistic
urban CFD simulations available for everyone, which would be beneficial as issues related
to flows in residential areas are likely to increase.

111

6. Conclusions, discussion and recommendations

6.3. Recommendations

As described in the discussion (Section 6.2), the dimensions at which sliver triangles, sharp
angles, and short edges may affect the CFD mesh are unknown. Currently, users have to
choose these threshold values based on their experience. It would be useful to investigate
their optimal values, and whether they depend on input models and/or simulation param-
eters (e.g. types of mesh).

The prototype could be improved with a more robust algorithm that identifies ground sur-
faces. The used method relies on two thresholds: one for the maximum height of ground
surfaces, and one for the angle between ground and terrain surfaces (Appendix B). It would
be useful to add an algorithm able to identify them without these indications, as reducing
the preparation tasks is one of the objectives. Removing some parameters could contribute
to this.

The observed difference of 12.12% in the number of cell approximations in a mesh without
ground refinement and 22.22% with ground refinement from the actual number requires
further investigation. These discrepancies appear to be due to optimisation tasks performed
by OpenFOAM during the meshing process, which require thorough investigation to be
understood.

As mentioned earlier, some CFD guidelines can not be respected at the same time. Further
work could explore guidelines that are both achievable and lead to realistic results in urban
areas.

The prototype can further be developed to contribute to simplify the use of CFD simulations
in urban areas. Some ideas include implementing boundary conditions of the domain and
expanding the range of domain types (e.g. round and oval). Currently, only rectangle
domains are considered.

112

A. Topological relationships validations

In this appendix, some more validations are showed for the topological relationships vali-
dations, discussed in Section 5.1.1.

Figure A.1.: Testing topological relationships validation with single building models, having
horizontal floors with a height of 0, and horizontal terrain surfaces with a height of zt.
Threshold value ζ is set to 1. Terrain surfaces and building vertices forming topological
errors are highlighted in green and yellow, respectively, as they are incorrectly positioned
in relation to each other (Section 3.2.2).

113

A. Topological relationships validations

Figure A.2.: Testing topological relationships validation with single building models, having
horizontal floors with a height of 0, and terrain surfaces with variable heights within a
range zt. Threshold value ζ is set to 1. Terrain surfaces and building vertices forming
topological errors are highlighted in green and yellow, respectively, as they are incorrectly
positioned in relation to each other (Section 3.2.2).

Figure A.3.: Testing topological relationships validation with single building models, having
floors with variable heights z, and terrain surfaces with variable heights zt. Threshold
value ζ is set to 1. Terrain surfaces and building vertices forming topological errors are
highlighted in green and yellow, respectively, as they are incorrectly positioned in relation
to each other (Section 3.2.2).

114

Figure A.4.: Testing topological relationships validation with single buildings and without
ground surfaces. zt is the height at which buildings must be placed. The lowest z-value
of the buildings (zmin) is 0. Threshold value ζ is set to 1.

115

B. Ground surfaces

Algorithm B.1 defines ground surfaces. For each vertex v of every face f that forms a
building b, the z coordinates z1, z2, and z3 were retrieved and compared to a threshold
height h (default value: 3). If all these z coordinates are lower or equal to h, the normal
vector n (xn, yn, zn) of f is computed. Then, θx and θy are calculated (Figure B.1), which are
the angles between vectors (0, 0, -1) and (xn, 0, -1) and between vectors (0, 0, -1) and (0, yn,
-1), respectively. If these angles are lower than a threshold angle θ (default: 45◦) and zn is
lower than 0◦, f is considered as a ground surface.

Algorithm B.1: Ground surfaces.
Data: Buildings B forming of faces fb, height h, and threshold angle θ
Result: Ground surfaces gs

1 for all b ∈ B do
2 for all f ∈ fb do
3 z1 ← z coordinate of vertex 1;
4 z2 ← z coordinate of vertex 2;
5 z3 ← z coordinate of vertex 3;
6 if z1 ≤ h and z2 ≤ h and z3 ≤ h then
7 n← normal vector of f ;
8 xn ← x coordinate of n;
9 yn ← y coordinate of n;

10 zn ← z coordinate of n;
11 θx ← abs(arctan xn

zn
) · 180

π ;
12 θy ← abs(arctan yn

zn
) · 180

π ;
13 if θx ≤ θ and θy ≤ θ and zn < 0 then
14 label f as ground surface gs;

15 else
16 label f as not a ground surface;

117

B. Ground surfaces

z

x

f

Figure B.1.: Normal angles computed for a ground surface f .

The ground surfaces algorithm was validated by using single building models with different
ground surfaces and different threshold values h and θ. First, single building models with
two ground surfaces having the same slopes were tested. The results are illustrated in Figure
B.2. Then, single building models were tested with two ground surfaces having different
slopes. Figure B.3 shows the results. It demonstrates that Algorithm B.1 verifies both angles
θx and θy. For one of the surfaces in the second case, the normal of the first face N1 has
a θx value of 50 ◦, and θy value of 45 ◦. As θx is greater than the threshold value θ, it is
not considered as a ground surface. The ground surfaces are highlighted in green in both
figures.

Figure B.2.: Ground surfaces identification for single buildings with ground surfaces having
the same slope. θt represents their angles with the terrain. Surfaces are selected that have
an angle with regard to the terrain lower than θ, and have all their vertices lower than
threshold value h. Ground surfaces are highlighted in green.

118

Figure B.3.: Ground surfaces identification for single buildings with ground surfaces with
different slopes. Each building has two ground surfaces with normals N1 and N2. θx is
the angle between vectors (0, 0, -1) and (xn, 0, -1) as represented in Figure B.1, and θy is
the same angle but then in the y-direction, resulting in the angle between (0, 0, -1) and (0,
yn, -1).

119

C. Sharp angles validations

In this appendix, some more validations are showed for the sharp angles identification,
discussed in Section 5.1.2.

Figure C.1.: Two connected triangles.

Figure C.2.: Sharp angles identification of two connected triangles with a threshold value θ
of 90◦. θ1 and θ2 are the angles illustrated in Figure C.1. Only one of the two triangles
varies in angle (θ1), the other one remains at 0◦. The threshold θ is set to 90◦. Sharp angles
are indicated in green.

121

C. Sharp angles validations

Figure C.3.: Sharp angles identification of two connected triangles with a threshold value
θ of 90◦ and 45◦. θ1 and θ2 are the angles illustrated in Figure C.1. ϕ1 is the first angle
between these triangles and ϕ2 is the second one. Sharp angles are indicated in green.

Figure C.4.: Same validations performed as explained Figure C.3, but then with negative
angles.

122

D. Sliver triangles validations

In this appendix, some more validations are showed for the sliver triangles identification,
discussed in Section 5.1.2.

d

hh

d

Figure D.1.: Cone and roof models.

Figure D.2.: Sliver triangles identification with cones (n: number of triangles, d and h: dis-
tances as illustrated in Figure D.1, and SP: sliver parameter), and different threshold values
σ for the sliver parameter. Sliver triangles are indicated in green.

123

D. Sliver triangles validations

Figure D.3.: Sliver triangles identification of roofs (n: number of triangles, d and h: distances
as illustrated in Figure D.1, and SP: sliver parameter), and different threshold values σ for
the sliver parameter. Sliver triangles are indicated in green.

124

E. Short edges validations

In this appendix, some more validations are showed for the short edges identification, dis-
cussed in Section 5.1.2.

Figure E.1.: Short edges identification of cones (n: number of triangles, h: height, and r:
radius), and different threshold values for the length of edges. Short edges are indicated
in green.

125

E. Short edges validations

Figure E.2.: Short edges identification of cones (n: number of triangles, h: height, and r:
radius), and different threshold values for the length of edges. Short edges are indicated
in green.

Figure E.3.: Short edges identification of cones (n: number of triangles, h: height, and r:
radius), and different threshold values for the length of edges. Short edges are indicated
in green.

126

F. CFD tests

F.0.1. Evaluation height huser

Figure F.1.: Mesh parameters suggested by the prototype for the Centre of Delft with an
evaluation height huser of 1.5m.

127

F. CFD tests

Figure F.2.: Mesh parameters suggested by the prototype for the Centre of Delft with an
evaluation height huser of 3m.

128

Figure F.3.: Mesh parameters suggested by the prototype for the Centre of Delft with an
evaluation height huser of 5m.

129

F. CFD tests

Figure F.4.: Mesh parameters suggested by the prototype for the Centre of Delft with an
evaluation height huser of 10m.

130

Figure F.5.: Mesh parameters suggested by the prototype for the Centre of Delft with an
evaluation height huser of 20m.

131

F. CFD tests

F.0.2. Roughness height z0

Figure F.6.: Mesh parameters suggested by the prototype for the Centre of Delft with differ-
ent roughness height values z0.

132

Figure F.7.: Mesh parameters suggested by the prototype for Ouddorp with different rough-
ness height values z0.

133

F. CFD tests

F.0.3. Maximum number of cells Nmax

Figure F.8.: Mesh parameters suggested by the prototype for Ouddorp with different number
of cell limits values Nmax.

134

Figure F.9.: Mesh parameters suggested by the prototype for the Centre of Delft with differ-
ent number of cell limits values Nmax.

135

F. CFD tests

F.0.4. Height of the tallest building hmax

Figure F.10.: Mesh parameters suggested by the prototype for Maastoren, the Centre of Delft,
and Ouddorp with a roughness height value z0 of 0.25m.

136

Figure F.11.: Mesh parameters suggested by the prototype for Maastoren, the Centre of Delft,
and Ouddorp with a roughness height value z0 of 0.5m.

137

F. CFD tests

Figure F.12.: Mesh parameters suggested by the prototype for Maastoren, the Centre of Delft,
and Ouddorp with a roughness height value z0 of 2m.

138

F.0.5. Ground refinement

Figure F.13.: Mesh parameters suggested by the prototype for the Centre of Delft with a
roughness height value z0 of 0.25m when a ground refinement (GR) is applied with and
without number of cells limit Nmax.

139

F. CFD tests

Figure F.14.: Mesh parameters suggested by the prototype for the Centre of Delft with a
roughness height value z0 of 0.5m when a ground refinement (GR) is applied with and
without number of cells limit Nmax.

140

Figure F.15.: Mesh parameters suggested by the prototype for Ouddorp with a roughness
height value z0 of 0.25m when a ground refinement (GR) is applied with and without
number of cells limit Nmax.

141

F. CFD tests

Figure F.16.: Mesh parameters suggested by the prototype for Ouddorp with a roughness
height value z0 of 0.5m when a ground refinement (GR) is applied with and without
number of cells limit Nmax.

142

G. User Interface IV: explanation

G.1. Mesh definition parameters

Flow direction
The 3D city model needs to be aligned with the incoming flow as simulated in OpenFOAM,
which flows along the x-axis. The figure below shows the angles used for this parameter (a)
and some examples of rotations (b). A default value of 90º is used, corresponding to a 3D
model without rotation.

Target evaluation height
The height at which flows are analysed is referred to as evaluation height. For CFD simula-
tions at pedestrian level, this evaluation height is usually set between 1.5 and 2m (Blocken,
2015). For drones, for example, this could be set at 10m. A default value of 1.5m is applied.

143

G. User Interface IV: explanation

Unit parameter
One unit in the 3D model is considered as 1 meter. When another unit is required, this can
be changed by this parameter.

Domain definition
The minimum domain dimensions outlined by Franke and Baklanov (2007) are taken into
consideration. They suggest distances between urban models and domain boundaries as
illustrated in the figure below. Note that the height of the tallest building (hmax) is used;
however, the largest building dimension (dmax) can also be applied (Liu et al., 2018). For
this reason, users are allowed to choose between hmax and dmax.

Furthermore, there is an option to choose between two sets of blockage ratios. The first set
describes a blockage ratio BR between the wind-facing area of the 3D city model, and the
area of the inlet boundary of the domain (Franke and Baklanov, 2007). BR should remain
below 3%. The second set suggests two blockage ratios: the lateral horizontal blockage ratio
BRL, and the vertical blockage ratio BRH. BRL is the ratio between the length of the urban
area facing the wind direction and the length of the inlet boundary; and BRH is the one
between the height of the tallest building and the height of the computational domain. Both
BRL and BRH must remain below 17%.

BR =
Aurban
Adomain

, BR ≤ 3% (G.1)

BRL =
Lbuilding

Ldomain
, BRL ≤ 17% (G.2)

144

G.1. Mesh definition parameters

BRH =
Hbuilding

Hdomain
, BRH ≤ 17% (G.3)

No blockage ratios are selected by default.

Refinement boxes
A refinement box delineates an area where the cell dimensions are reduced to increase the
number of cells in which the Navier-Stoke equations can be solved. A minimum number
of three refinement boxes is suggested for CFD simulations in urban areas (Franke and
Baklanov, 2007). However, in practise, two refinement boxes are often used. For this reason,
the option is given to choose between two or three refinement boxes.

In general, with three refinement boxes, the first box is placed directly around the urban area
and is a bit higher than the tallest building; the second box surrounds the first and extends
slightly toward the outflow boundary; the last box is placed around the second one. With
two refinement boxes, only the two first of these boxes are generated. Also, the closer the
refinement box is to the urban area, the higher the refinement level of the cells. The figure
below shows an example of refinement boxes defined for an urban CFD simulation.

Note that the refinement boxes should maintain the same proportions as the computational
domain, except for the one the closest to the urban area.

The dimensions of the refinement boxes can be indicated by setting multiples of hmax or
dmax (dependent on which values was used to define the domain) for the inlet, outlet,
lateral and top boundaries. For example, the settings box 1: 2 6 2 2 imply 2xhmax (or dmax)
between the urban area and the inlet, lateral, and top boundaries of the refinement box,
and 6xhmax (or dmax) between the urban area and the outflow boundary of the refinement
box.

The following default values are set for each refinement box: box 1: 0.5 0.5 0.5 1.5, box 2: 2
6 2 2, and box 3: 3 9 3 3.

Maximum roughness length
The centre point of the first cell should be placed at a minimum distance of at least one
roughness height z0 from the wall (Tominaga et al., 2008), which is the bottom boundary
of the computational domain. Therefore, the maximum roughness height used in the CFD
simulation must be indicated.

145

G. User Interface IV: explanation

Maximum number of cells
An important limitation is the available memory of the computers (Franke and Baklanov,
2007). Therefore, users have the option to specify the total number of cells in the final mesh.
A default value of 30 million cells is set.

Note that the method used approximates this number of cells. There is no guarantee that it
matches the actual number generated by OpenFOAM. On average, this number differs by
-12.12% when no ground refinement is applied, and -22.20

Maximum cell ratio
The cell ratio is defined as the cell height divided by its width. Ideally, its value should be
1; however, a higher cell ratio is allowed to meet more CFD guidelines, such as ensuring
at least 10 cells per cube root of the building volume and building separation (Franke and
Baklanov, 2007; Blocken, 2015; Tominaga, 2008). A default value of 1.20 is selected, which
corresponds to a cell with a height of 1m and a width of 0.80m.

Maximum building separation and street distribution
A building separation is considered as the distance between two buildings and should mea-
sure at least 10 cells (Franke and Baklanov, 2007; Blocken, 2015; Tominaga, 2008). This min-
imum might lead to excessive mesh complexity as some cities might have narrow streets.
Therefore, separations below a specific distance are excluded, which can be set with the
maximum building separation parameter. The default value of this threshold is 2m, but
could also be user-defined.

To help users determine an appropriate threshold, a histogram displaying the street width
distribution can be displayed. This can be achieved by selecting the street distribution option
when uploading the 3D model and configuring the parameters.

Target building
A target building is the building on which the focus lies during a CFD simulation.

This parameter is used to define the Region of Interest (Rol), which selects buildings around
the target that should be modeled in more detail. This region allows to find a balance
between accurate simulation results and computational performance. In fact, the level of
detail of surrounding buildings significantly impacts the simulation results around the target
building (Garcı́a-Sánchez, 2021). However, modelling all buildings in the domain would
be computationally expensive. The RoI applied is introduced by Liu et al. (2018), which
recommend to include buildings within a radius of at least 3·L around the target building.

Users have the option to specify a target building by selecting the target building option and
indicating one of the vertices from its ground surfaces. When no target building is specified,
its centre is set to the centre of the 3D city model. At the end, the buildings intersecting with
the defined RoI are stored.

G.2. Geometric validation parameters

val3dity
Standards were developed to define basic primitives (ISO19107) (ISO, 2019) and provide
guidelines for their digitization (OGC, 2016, 2011), with the aim of enhancing the interoper-
ability and exchange of geographical data. As the quality of geometries plays an important
role in CFD simulations, verifying them based on the ISO19107 standard could be a “useful

146

G.2. Geometric validation parameters

starting point” (Wagner et al., 2015). Therefore, the validation tool named val3dity devel-
oped by Ledoux (2018) was implemented.

val3dity is an open-source software that validates 3D primitives based on ISO19107, with
the common GIS exception that they need to be linear or planar. More information on this
software can be found on the val3dity GitHub page.

val3dity takes into account some user-defined tolerances.

• Snap tolerance: two vertices are considered identical if they are separated by this value
or less (default: 0.001),

• Planarity tolerance: ISO19107 requires all vertices of a planar surface to lie on one
plane, which is almost impossible with real-world data (Ledoux, 2013). For this reason,
val3dity considers this parameter defining the maximum distance between a point and
a fitted plane (Ledoux, 2018) (default: 0.001),

• Overlap tolerance: two Solids that overlap or are disconnected by this value or less are
considered properly connected (default: -1, which stands for disabled).

Topological relationships thresholds
The validation of topological relationships involves verifying whether building objects are
correctly positioned on terrain surfaces.

During this validation, the following buildings are identified:

• Floating buildings (in reality, buildings are always connected to the ground),

• Buildings separated by a specific distance from terrain surfaces.

This distance is defined by the topological relationships threshold, with a default value of
0.5m.

In the absence of terrain features, the ground level is used instead of terrain surfaces. This
level corresponds to either a user-defined value or the lowest z-value in the input model.
The former can be indicated by selecting the ground level option and inserting the required
value.

Sliver triangle threshold
Sliver triangles are triangles with a sliver parameter lower than a specific threshold, which
can be indicated with this parameter. This sliver parameter is defined by using the following
formula (Artwork Conversion Software, n.d.):

They are identified to help users simplify their geometries, as small geometric details might
affect the meshing process.

Short edge threshold
Short edges are edges shorter than a specific threshold (m), which can be indicated with this
parameter. They are identified to help users simplify their geometries, as small geometric
details might affect the meshing process.

Sharp angle threshold
Sharp angles are angles between two faces smaller than a specified threshold (º), which can
be indicated with this parameter. They are identified to help users simplify their geometries,
as small geometric details might affect the meshing process.

147

G. User Interface IV: explanation

SP =
2× area
perimeter

(G.4)

Ground surfaces
For the topological relationships validation, the ground surfaces of buildings are used.
Building surfaces lower than a given threshold h (default: 3m) and with an angle smaller
than a threshold theta (default: 45º) with regard to the ground are considered as ground
surfaces. The figure below illustrates this method.

h

Ground
surfaces

Terrain

Note that these values must carefully be selected. In fact, this approach might lead to
incorrect results when, for example, buildings contain internal geometries, or have heights
lower than h and flat roofs.

G.3. Results

Separate building and terrain validation
Report describing errors and warnings from the separate building and terrain validations
performed by the val3dity software. More information can be found on the val3dity GitHub
page.

Topological relationships errors
Both OBJ and TXT files are given to users to visualise topological relationships.

• Input model with terrain surfaces:

– OBJ file showing terrain surfaces and vertices of ground surfaces that are not
correctly positioned (i.e. vertices higher than terrain surfaces, or separated with a
distance higher than a specific value),

– TXT file indicating terrain surfaces t by their centroids and vertices of ground
surfaces by their coordinates that are not correctly positioned. Also, the distance
between them is given.

148

G.3. Results

• Input model without terrain surfaces:

– OBJ file showing vertices of ground surfaces that are not correctly positioned with
regard to the ground level (i.e. vertices with a z-value higher than ground level, or
separated with a distance higher than a specific value). This is done by visualising
these vertices and the same vertices but with the z-value of the ground level.

– TXT file indicating the pairs of vertices previously described with the distance
between them.

Sharp angles
Both OBJ and TXT files are given to users to visualise sharp angles. In the TXT file, pairs
of faces representing these sharp angles are indicated. For each face, their centroid is pro-
vided.

Sliver triangles
Both OBJ and TXT files are given to users to visualise sliver triangles. In the TXT file, these
angles are indicated by their centroids.

Short edges
Both OBJ and TXT files are given to users to visualise short edges. In the TXT file, pairs of
vertices representing these edges are indicated.

149

G. User Interface IV: explanation

Overlapping buildings
Both OBJ and TXT files are given to users to visualise overlapping buildings. In the TXT file,
pairs of overlapping buildings are indicated with their corresponding centroids.

Rotated 3D model
Aligned input model with the incoming flow in OpenFOAM based on the flow direction.
This OBJ file can be used to run the CFD simulation.

blockMeshDict
OpenFOAM configuration file in which the background mesh is defined, including domain
dimensions and number of cells in each direction.

snappyHexMeshDict
OpenFOAM configuration file in which parameters for the final mesh are defined such as
dimensions and refinement levels of the refinement boxes. Additionally, it includes param-
eters for the ground refinement box when required.

Region of Interest (RoI)
A cylinder representing the RoI and the buildings within this area are provided as two
separate OBJ files. The former can be used to recompute the mesh parameters and run the
CFD simulation for a better balance between accuracy and computational performance; the
latter can be used with the input model to visualise buildings that must be included and
the ones that can be excluded. Additionally, a TXT file is returned providing the centroid of
buildings within the RoI.

Buildings with insufficient cells
Both a OBJ and TXT file are given to users to show buildings with less than 10 cells per cube
root of the building volume. In the TXT file, the location of these buildings are provided by
their centroids.

Building separations with insufficient cells
Both a OBJ and TXT file are given to users to show buildings with separations that are
shorter than 10 cells. In the TXT file, the location of these buildings are provided by their
centroids.

150

H. blockMeshDict file

This is an example of a blockMeshDict file describing a rectangular domain using the coordi-
nates and number of cells defined under backgroundMesh.

/*--------------------------------*- C++ -*----------------------------------*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https://openfoam.org

\\ / A nd | Version: 7

\\/ M anipulation |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * //

backgroundMesh

{

xMin 83705.36188;

xMax 85684.86188;

yMin 447014.64375;

yMax 448266.54375;

zMin -2.60500;

zMax 440.19500;

xCells 185;

yCells 117;

zCells 41;

}

convertToMeters 1;

vertices

(

($:backgroundMesh.xMin $:backgroundMesh.yMin $:backgroundMesh.zMin)

($:backgroundMesh.xMax $:backgroundMesh.yMin $:backgroundMesh.zMin)

($:backgroundMesh.xMax $:backgroundMesh.yMax $:backgroundMesh.zMin)

($:backgroundMesh.xMin $:backgroundMesh.yMax $:backgroundMesh.zMin)

151

H. blockMeshDict file

($:backgroundMesh.xMin $:backgroundMesh.yMin $:backgroundMesh.zMax)

($:backgroundMesh.xMax $:backgroundMesh.yMin $:backgroundMesh.zMax)

($:backgroundMesh.xMax $:backgroundMesh.yMax $:backgroundMesh.zMax)

($:backgroundMesh.xMin $:backgroundMesh.yMax $:backgroundMesh.zMax)

);

blocks

(

hex (0 1 2 3 4 5 6 7)

(

$:backgroundMesh.xCells

$:backgroundMesh.yCells

$:backgroundMesh.zCells

)

simpleGrading (1 1 1)

);

edges

(

);

boundary

(

inlet

{

type patch;

faces

(

(0 3 7 4)

);

}

outlet

{

type patch;

faces

(

(1 5 6 2)

);

}

ground

{

type wall;

faces

(

(0 1 2 3)

);

}

152

top

{

type symmetry;

faces

(

(4 7 6 5)

);

}

left

{

type symmetry;

faces

(

(0 4 5 1)

);

}

right

{

type symmetry;

faces

(

(3 2 6 7)

);

}

);

mergePatchPairs

(

);

// *** //

153

I. snappyHexMeshDict file

This is an example of a snappyHexMeshDictfile with three refinement boxes and ground
refinement. When two refinement boxes are applied, the definition of refinementBox3 can be
removed. Also, the refinement levels for the refinement boxes and ground refinement can
be decreased by one level. Without ground refinement, the two parts defining ground can be
removed.

/*--------------------------------*- C++ -*----------------------------------*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https://openfoam.org

\\ / A nd | Version: 7

\\/ M anipulation |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object snappyHexMeshDict;

}

// * //

#includeEtc "caseDicts/mesh/generation/snappyHexMeshDict.cfg"

castellatedMesh on;

snap on;

addLayers off;

geometry

{

buildings

{

type triSurfaceMesh;

file "Binnenstad.obj";

}

ground

{

type searchablePlane;

planeType pointAndNormal;

155

I. snappyHexMeshDict file

pointAndNormalDict

{

basePoint (83705.4 447015 -2.605);

normal (0 0 1);

}

}

refinementBox1

{

type searchableBox;

min (84030.09688 447335.64375 -2.60500);

max (84639.99687 447945.54375 180.99500);

}

refinementBox2

{

type searchableBox;

min (83922.67288 447228.64375 -2.60500);

max (85035.47287 448052.54375 224.19500);

}

refinementBox3

{

type searchableBox;

min (83850.23587 447159.09375 -2.60500);

max (85251.93587 448122.09375 720.99500);

}

};

castellatedMeshControls

{

features

(

{ file "Binnenstad.eMesh"; level 1; }

);

refinementSurfaces

{

buildings

{

level (4 4);

patchInfo { type wall; }

}

}

refinementRegions

{

156

refinementBox1

{

mode inside;

levels ((1E15 3));

}

refinementBox2

{

mode inside;

levels ((1E15 2));

}

refinementBox3

{

mode inside;

levels ((1E15 1));

}

ground

{

mode distance;

levels ((2.02500 4));

}

}

locationInMesh (84030.09688 447335.64375 180.99500);

nCellsBetweenLevels 4;

maxGlobalCells 150000000;

}

snapControls

{

explicitFeatureSnap true;

implicitFeatureSnap false;

}

addLayersControls

{

layers

{

"CAD.*"

{

nSurfaceLayers 2;

}

}

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

157

I. snappyHexMeshDict file

minThickness 1e-3;

}

meshQualityControls

{}

writeFlags

(

// scalarLevels

// layerSets

// layerFields

);

mergeTolerance 1e-6;

// *** //

158

Bibliography

About AIJ.

JTS | Documentation.

JTS | FAQ.

Abu-Zidan, Y., Mendis, P., and Gunawardena, T. (2021). Optimising the computational
domain size in CFD simulations of tall buildings. Heliyon, 7(4):e06723.

AMS. Atmospheric boundary layer - Glossary of Meteorology.

AMS. Macroscale - Glossary of Meteorology.

AMS. Mesoscale - Glossary of Meteorology.

AMS. Microscale - Glossary of Meteorology.

AMS. Troposphere - Glossary of Meteorology.

AMS (n.d.). Glossary of meteorology. https://glossary.ametsoc.org/wiki/Welcome.

Arroyo Ohori, K., Ledoux, H., and Peters, R. (2022). 3D modelling of the built environment,
volume v0.8.

Arthur, R. S. and Angevine, W. M. (2023). 5 - What’s next: Boundary layer prediction
methods. In Hiscox, A. L., editor, Conceptual Boundary Layer Meteorology, pages 101–114.
Academic Press.

Artwork Conversion Software (n.d.). Sliver Definition and Removal.

Benzi, R. and Toschi, F. (2023). Lectures on turbulence. Physics Reports, 1021:1–106.

Biljecki, F., Ledoux, H., Du, X., Stoter, J., Soon, K. H., and Khoo, V. H. S. (2016). The most
common geometric and semantic errors in CityGML datasets. IV-2/W1:13–22.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Applications of
3D City Models: State of the Art Review. ISPRS International Journal of Geo-Information,
4(4):2842–2889.

Blocken, B. (2014). 50 years of computational wind engineering: Past, present and future.
129:69–102.

Blocken, B. (2015). Computational fluid dynamics for urban physics: Importance, scales,
possibilities, limitations and ten tips and tricks towards accurate and reliable simulations.
91:219–245.

Blocken, B. and Carmeliet, J. (2006). The influence of the wind-blocking effect by a building
on its wind-driven rain exposure. Journal of Wind Engineering and Industrial Aerodynamics,
94(2):101–127.

159

https://glossary.ametsoc.org/wiki/Welcome

Bibliography

Bogdahn, J. and Coors, V. (2010). Towards an automated healing of 3D urban models.

Brancher, M., Griffiths, K. D., Franco, D., and de Melo Lisboa, H. (2017). A review of odour
impact criteria in selected countries around the world. Chemosphere, 168:1531–1570.

Britannica, T. E. o. E. (2023). Kinetic energy | Definition, Formula, Units, Examples, & Facts
| Britannica.

Christou, M. D. (1998). II.5. - Consequence Analysis and Modelling. In Kirchsteiger, C.,
Christou, M. D., and Papadakis, G. A., editors, Industrial Safety Series, volume 6 of Risk
assessment and management in the context of the seveso II directive, pages 193–230. Elsevier.

COST (2023). About COST - Funding Research Networking.

CREST Foundation Studies (n.d.). 3. Fluid Dynamics. In Fundamentals of Fluid Mechanics.

Ellul, C., Zlatanova, S., Rumor, M., and Laurini, R. (2013). Geometric validation of 3D city
models based on standardized quality criteria. In Urban and Regional Data Management,
pages 203–216. CRC Press, 0 edition.

Franke, J. and Baklanov, A. (2007). Best Practice Guideline for the CFD Simulation of Flows in
the Urban Environment: COST Action 732 Quality Assurance and Improvement of Microscale
Meteorological Models.

Garcı́a-Sánchez, C., Vitalis, S., Paden, I., and Stoter, J. (2021). The impact of level of detail
in 3d city models for cfd-based wind flow simulations. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-4/W4-2021:67–72.

GEOS. GEOS.

Greenshields, C. J. (2023). User Guide.

Grünbaum, B. (2003). Are Your Polyhedra the Same as My Polyhedra? In Aronov, B., Basu,
S., Pach, J., and Sharir, M., editors, Discrete and Computational Geometry: The Goodman-
Pollack Festschrift, Algorithms and Combinatorics, pages 461–488. Springer, Berlin, Heidel-
berg.

Habby, J. (n.d.). Scales of motion. https://www.theweatherprediction.com/habyhints3/

733/.

Hall, N. (2021). Navier-Stokes Equations.

Hisashi, O., Yasuo, O., and Hitomitsu, K. Wind Load Provisions of the Revised Building
Code in Japan.

Hu, H. H. (2012). Chapter 10 - Computational Fluid Dynamics. In Kundu, P. K., Cohen,
I. M., and Dowling, D. R., editors, Fluid Mechanics (Fifth Edition), pages 421–472. Academic
Press, Boston.

ISO (2019). ISO 19107:2019(en) geographic information — spatial schema.

Karki, S., Thompson, R., and McDougall, K. (2010). Data validation in 3D cadastre. In
Neutens, T. and Maeyer, P., editors, Developments in 3D Geo-Information Sciences, pages
92–122. Springer Berlin Heidelberg, Berlin, Heidelberg.

160

https://www.theweatherprediction.com/habyhints3/733/
https://www.theweatherprediction.com/habyhints3/733/

Bibliography

Kerr, R. M. (1981). Theoretical Investigation of a Passive Scalar such as Temperature in Isotropic
Turbulence. PhD thesis. ADS Bibcode: 1981PhDT........88K.

Khawaja, H. and Moatamedi, M. (2018). Semi-implicit method for pressure-linked equations
(simple) solution in matlab®. The International Journal of Multiphysics, 12:313.

Kováčová, M. and Richtáriková, D. (2020). 8 - Critical forces and collisions. How to solve
nonlinear equations and their systems. In Martı́n-Vaquero, J., Carr, M., Queiruga-Dios,
A., and Richtáriková, D., editors, Calculus for Engineering Students, Mathematics in Science
and Engineering, pages 157–178. Academic Press.

Labetski, A., Vitalis, S., Biljecki, F., Arroyo Ohori, K., and Stoter, J. (2023). 3d building metrics
for urban morphology. 37(1):36–67.

Ledoux, H. (2013). On the validation of solids represented with the international standards
for geographic information: On the validation of solids represented with the international
standards. 28(9):693–706.

Ledoux, H. (2018). val3dity: validation of 3d GIS primitives according to the international
standards. 3(1):1.

Liou, W. W. (2008). Chaotic Flows. In Li, D., editor, Encyclopedia of Microfluidics and Nanoflu-
idics, pages 246–248. Springer US, Boston, MA.

Liu, S., Pan, W., Zhao, X., Zhang, H., Cheng, X., Long, Z., and Chen, Q. (2018). Influence
of surrounding buildings on wind flow around a building predicted by CFD simulations.
140:1–10.

Markatos, N. C. (1986). The mathematical modelling of turbulent flows. Applied Mathematical
Modelling, 10(3):190–220.

Mirzaei, P. A. and Carmeliet, J. (2013). Dynamical computational fluid dynamics modeling of
the stochastic wind for application of urban studies. Building and Environment, 70:161–170.

OGC (2011). OpenGIS® implementation standard for geographic information - simple fea-
ture access - part 1: Common architecture. OGC 06-103r4, version 1.2.1.

OGC (2016). OpenGIS® geography markup language (GML) encoding standard. OGC 07-
036r1, version 3.2.2.

OGC (2021). OGC city geography markup language (CityGML) part 1: Conceptual model
standard. OGC 20-010, version 3.0.

OpenFoam. OpenFOAM: User Guide: snappyHexMesh.

OpenFOAM (2010). OpenFOAM guide/Finite volume method (OpenFOAM) - Open-
FOAMWiki.

OpenFOAM (2015). OpenFOAM guide/Discretization - OpenFOAMWiki.

OpenFOAM (n.d.). OpenFOAM: API Guide: applications/solvers/incompressible/simple-
Foam/simpleFoam.C File Reference.

OpenFoam (n.d.). OpenFOAM: User Guide: OpenFOAM®: Open source CFD : Documen-
tation.

161

Bibliography

Oxford University Press (n.d.). venturi effect.

Paden, I., Garcı́a-Sánchez, C., and Ledoux, H. (2022). Towards automatic reconstruction of
3d city models tailored for urban flow simulations. 8:899332.

Park, G., Kim, C., Lee, M., and Choi, C. (2020). Building Geometry Simplification for Im-
proving Mesh Quality of Numerical Analysis Model. Applied Sciences, 10(16):5425.

Piepereit, R., Deininger, M., Kada, M., Pries, M., and Voß, U. (2018). A sweep-plane algo-
rithm for the simplification of 3D building models in the application scenario of wind
simulations. The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLII-4/W10:151–156.

Seetha, C. J., Mehta, S. K., Kakkanattu, S. P., Purushotham, P., Betsy, K. B., and Musaid, P. P.
(2023). Characteristics of the atmospheric boundary layer during transient conditions of
the Indian summer monsoon. Theoretical and Applied Climatology.

Shojaei, D., Olfat, H., Quinones Faundez, S. I., Kalantari, M., Rajabifard, A., and Briffa, M.
(2017). Geometrical data validation in 3D digital cadastre - A case study for Victoria,
Australia. Land Use Policy, 68:638–648.

Shukla, A., Singh, A. K., and Singh, P. (2011). A Comparative Study of Finite Volume
Method and Finite Difference Method for Convection-Diffusion Problem. American Journal
of Computational and Applied Mathematics, 1(2):67–73.

SimScale (2023). What Are Navier-Stokes Equations? | SimWiki.

Smith, R. (2014). Sliver Treatment Strategies for CFD | Symscape.

The World Bank (2022). Overview. https://www.worldbank.org/en/topic/

urbandevelopment/overview.

Therias, A., Theodoridou, E., Papadimitriou, C., Visser, F., Zhang, F., and Panagiotidou, I.
(2022). Removing shared faces in 3d datasets for numerical simulations.

Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., and Shirasawa,
T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment
around buildings. 96(10):1749–1761.

Tong, Z., Chen, Y., and Malkawi, A. (2016). Defining the influence region in neighborhood-
scale CFD simulations for natural ventilation design. 182:625–633.

UNEP (2021). 5 ways to make buildings climate change resilient. http://www.unep.org/

news-and-stories/story/5-ways-make-buildings-climate-change-resilient.

van Oosterom, P., Quak, W., and Tijssen, T. (2005). About Invalid, Valid and Clean Polygons.
In Developments in Spatial Data Handling, pages 1–16. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Wagner, D., Alam, N., Wewetzer, M., Pries, M., and Coors, V. (2015). Methods for geometric
data validation of 3D city models. The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XL-1/W5:729–735.

Weisstein, E. W. (n.d.). Homeomorphic.

162

https://www.worldbank.org/en/topic/urbandevelopment/overview
https://www.worldbank.org/en/topic/urbandevelopment/overview
http://www.unep.org/news-and-stories/story/5-ways-make-buildings-climate-change-resilient
http://www.unep.org/news-and-stories/story/5-ways-make-buildings-climate-change-resilient

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Palatino.

	Introduction
	Background and motivation
	Objective and research questions
	Scope
	Obtained results
	Thesis outline

	Theoretical background and related work
	CFD simulations in urban areas
	Urban physics and CFD simulations
	Governing equations in CFD simulations
	OpenFOAM, an open CFD software

	CFD guidelines for urban simulations
	Computational domain
	Computational grid
	Region of interest
	Related work

	The validation of 3D geometries
	The importance of valid geometries
	The ISO19107 standard and its implementation
	Related work
	The open-source software val3dity

	3D geometries in CFD simulations

	Methodology
	Approach
	User perspective
	Architecture

	Geometric validations
	Separate building and terrain validation
	Topological relationships between buildings and terrain validation
	Required validations for meshing in OpenFOAM

	Preparation for CFD simulation steps
	Overview
	Model orientation
	Evaluation height
	Computational domain
	Refinement boxes
	Roughness height
	Maximum number of cells
	At least 10 cells per cube root of the building volume
	At least 10 cells per building separation
	Region of Interest (RoI)
	Ground refinement
	Creating configuration files for OpenFOAM: blockMeshDict and snappyHexMeshDict files

	Implementation
	Prototype
	Datasets

	Results and analysis
	Geometric validations
	Topological relationships between buildings and terrain validation
	Required validations for meshing in OpenFOAM

	Preparation for CFD simulation steps
	Flow direction dflow
	Computational domain
	Evaluation height
	Roughness height
	Maximum number of cells
	At least 10 cells per cube root of the building volume
	Building distribution
	Region of Interest
	Ground refinement
	Number of refinement boxes

	Comparison between CFD simulations with mesh parameters of an OpenFOAM tutorial and the prototype

	Conclusions, discussion and recommendations
	Conclusions
	Discussion
	Recommendations

	Topological relationships validations
	Ground surfaces
	Sharp angles validations
	Sliver triangles validations
	Short edges validations
	CFD tests
	Evaluation height huser
	Roughness height z0
	Maximum number of cells Nmax
	Height of the tallest building hmax
	Ground refinement

	User Interface IV: explanation
	Mesh definition parameters
	Geometric validation parameters
	Results

	blockMeshDict file
	snappyHexMeshDict file

