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Abstract

Due to their lightweight, compact, and stiff properties, origami structures have become of
increasing importance in the field of engineering. Many applications of origami structures
have been found, ranging from deployable solar arrays to roof panel design. However, most
current methods of origami modeling assume facets to be infinitely stiff, or approximate a
folded structure using bar-hinge models, creating fast but often inaccurate simulations. To
design fast and accurate origami models, progress is being made into incorporating origami
modeling in the Finite Element Method (FEM). Folds can be incorporated in FEM either on
conforming meshes using interface elements or on non-conforming meshes using enriched
elements. When implementing an arbitrarily located fold on an existing mesh using interface
elements, re-meshing would be required. However, when using enriched elements, no re-
meshing is required, which would be an advantage in fold pattern optimization of origami
structures.

This thesis is therefore aimed at deriving foldable Kirchhoff-Love plate elements, using a
mixed /hybrid element formulation in combination with an enriched finite element formula-
tion. By using a mixed/hybrid element formulation, an enrichment function on the plate
can be greatly simplified, because the discontinuous rotation field is evaluated only at the
boundaries of the enriched elements. As a preliminary one-dimensional study, a foldable
beam element is examined, and different options for a moment field enrichment are investi-
gated with respect to accuracy and stability. Thereafter, six foldable plate elements of vary-
ing complexity are derived in detail, using constant and linear moment fields. Stability of
the elements is improved by local condensation of the enriched elements, or by applying a
precondition matrix. All enriched elements are formulated using linear folds; curved folds
are modeled by piecewise linear approximations of the curve within each enriched element.

The enriched formulation is evaluated using several benchmark tests. Foldable constant
moment elements are found to have a convergence behavior similar to the behavior found
using standard FEM on a conforming mesh. Foldable linear moment elements are found to
attain lower convergence rates than expected. In the enriched elements a trade of between
accuracy and matrix condition is observed, elements with lower errors have worse condition
numbers and vice versa.
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Introduction

Origami, the ancient art of paper folding, originates from fourteenth century Japan [1]. Re-
cently, more and more applications for origami in engineering have been found, for instance:
deployable solar arrays and antennas [2, 3], acoustic beam steering [4], self-folding robots
[S], design of metamaterials [6], and deployable shelters [7]. For the proper design of these
origami structures, adequate modeling tools are required to accurately predict their mechan-
ical behavior.

Current modeling tools, such as rigid foldability analysis [8] and truss-based analysis [9],
approximate kinematic and structural properties, but are limited in the accurate modeling of
deformable origami and design flexibility for structural optimization. When folds are seen as
discontinuities in the rotational field, enriched finite element methods, like the Discontinuity-
Enriched Finite Element Method (DE-FEM) [10] and the Interface-enriched Generalized Fi-
nite Element Method (IGFEM) [11], could prove to be useful in origami modeling. Using
these methods, a fold pattern and underlying finite element discretization can be decoupled,
creating an accurate and flexible method for origami modeling.

1.1. Numerical methods for origami modeling

Three main numerical approaches for origami modeling can be found in the literature, in
increasing order of complexity, they are:

* Rigid foldability analysis, as introduced in [8], is used when mechanical properties
are not important for a design, but kinematic properties are. It models rigidly foldable
structures, ignoring mechanical effects of facet deformation and torsional fold stiffness.
The model is constructed by creating constraints around fold vertices [12], and pro-
jecting the folded structure on these constraints. Although rigid origami simulations
are useful to model a folding process, the problem of introducing finite stiffness in the
simulated structures and calculating accurate stress distributions remains.

* Truss-based analysis is used when there is no interest in the minutiae of the displace-
ment and stress distributions throughout the origami structure, but there is interest
in the overall mechanical behavior of the structure, or the effects of varying stiffness
[9]. In truss-based analysis, the origami structure is modeled as a pin-joint network
where each vertex of the origami structure is modeled as a pin joint connected to the
other vertices via bar elements. Bending behavior of the fold is added by adding degrees
of freedom (DOFs) containing the fold angle to the bars along fold lines, and coupling
the fold angle to a torsional stiffness (Kr,,4). Bending behavior of the facets is added by
triangulating the facets and adding DOFs in a similar way as for the folds, but with a
higher torsional stiffness (Kfqcer > Kro1a), @s in Figure 1.1. The power in this method
lies in its simple description of the internal mechanics and kinematics, which can be
used to create a general design for an origami structure, but not for analysing detailed
designs.
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Figure 1.1: A pin joint representation of a simple origami structure. Facets are triangulated to add a facet stiffness, Kgqcer- Along fold
lines the torsional stiffness K14 is added. [9]

* The finite element method with interface elements is used in the modeling of struc-
tures with predefined fold patterns along which interface elements elements can be
placed. Simple interface elements behaving like hinges with a torsional stiffness have
been used in [13]. More complicated hinge elements include kinematic and constitutive
equations particular to folds [14]. In [13], it is found that in certain origami structures,
where membrane deformations are dominant, creating hinge elements which take into
account compression and stretching of the crease line could improve accuracy of the
solution. Although interface elements in combination with finite element analysis can
create highly accurate descriptions of displacement and stress distributions, it lacks
flexibility. Hinge elements need to be placed on the interface between two plate or shell
elements, and the mesh thus needs to be conforming to the fold-pattern. Imposing
an arbitrary fold on an existing mesh would thus require a modification of the mesh.
Modifying a mesh is not desired in problems where the fold-pattern is not known a pri-
ori, such as fold-pattern optimization, where creating a fold-conforming mesh for every
intermediate design would take considerable computational time.

In Table 1.1, based on the described literature, an overview of the capabilities of the meth-
ods is given; the methods are rated for their design flexibility and accuracy in their calculated
displacement field and stress distribution. All three methods are able to calculate the dis-

Displacement field | Stress distribution | Design flexibility
Rigid foldability analysis v X -
Truss-based analysis - - -
Interface elements v v X

Table 1.1: The three existing methods for origami modeling rated in their displacement and stress distribution accuracy, and their design
flexibility.

placement field and stress distribution to varying accuracy, but none of the methods combine
accurate solutions with design flexibility. Using interface elements in combination with the
Finite Element Method (FEM), highly detailed descriptions of the displacement and stress
distribution are achieved. However, design flexibility is limited, and needs to be improved.
Enriched Finite Element Analysis (Enriched FEM) is a method which can be used to impose
a fold on a finite element mesh, without the need for a conforming mesh. Using Enriched
FEM to model folds could result in a highly accurate and flexible modeling tool.
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1.2. Enriched finite element method

Enriched FEM is a method used to introduce discontinuities on finite elements. Since a fold
can be seen as a discontinuity in rotation, these methods show great promise in fold mod-
eling. In enriched FEM, the standard finite element approximation space is augmented with
functions reflecting a priori known information about the problem [15]. The augmentation
is based around designing adequate enrichment functions for the standard shape functions
of an element. An example of enriched FEM are the eXtended/Generalized Finite Element
Methods (X/GFEM) [16, 17]. X/GFEM allows any function ¥(x), to be added to a local finite
element space {, using a partition of unity, }.;c; N;(x) = 1 on Q and 0 everywhere else, as:

jes
u”(x) :ZuiNi(x) +Zb,1vj(x)2\yk(x), (1.1)
i€l Tl kek

where u; are the standard element DOFs, N(x) the standard shape functions, b; the enriched
DOFs (added to the standard nodes), and W(x) the enrichment function. In X/GFEM the
completely cracked element in Figure 1.2 is modeled by introducing the Heaviside function
as the enrichment function, W(x) = H(x), where the enriched DOFs (b;) of the completely
cracked element are located at the circled standard element nodes. Elements containing a
crack tip are furthermore enriched using asymptotic crack tip functions. Using standard
quadrature on the enriched element, the enrichment function will not be properly integrated
because it is by definition a discontinuous function. Quadrature for the enriched element
is commonly done by partitioning the element into subdomains called integration elements,
as in Figure 1.3; on these integration elements, standard Gaussian quadrature is used for
numerical integration.

C'\ %)
L/ 1V
(\ 7\
L/ \J/
. . . Figure 1.3: The cracked surface as in Figure 1.2 with the en-
Figure 1.2: 2D cracked surface with enriched DOFs for the riched elements divided into triangular sub-elements for nu-
completely cracked element located at the circled nodes. [16] merical integration. [16]

An often observed problem in enriched FEM is ill-conditioning of the stiffness matrix lead-
ing to a loss of accuracy [18]. Different methods can be used to improve conditioning, pre-
conditioning improves the matrix condition but requires extra computational steps like post-
processing and the formulation of the precondition matrix [19]. In the Stable Generalized
Finite Element Method (SGFEM) [18], the finite element space is enriched with functions
representing the a priori known solution minus the used standard shape functions. Using
this finite element space, the enrichment and standard finite element interpolation become
almost orthogonal with respect to the inner energy product, causing an improved matrix
condition [20]. The Strongly Stable Generalized Finite Element Method (SSGFEM) [21], is the
subject of ongoing research to find stable and accurate X/GFEM formulations. A X/GFEM is
an SSGFEM if it has the same order of convergence and similar matrix condition as standard
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P = Nf” I Néz)

J o = Né” + Nl(zl

Figure 1.4: An enriched triangular finite element divided into a triangular (1) and a quadrilateral (2) sub-element by the enriched nodes
located at the intersection of the discontinuity and element edge. The enrichment functions connected to the enriched nodes are con-
structed by combining two Lagrangian shape functions on sub-elements (1) and (2). [22]

FEM, and if the condition of the enriched part of the stiffness matrix is bound independent
of mesh and discontinuity.

The main advantage of X/GFEM is the method’s ability to model discontinuities, without
the need to create a conforming mesh for the problem. This flexibility comes at the cost of a
demanding geometric engine, which needs to detect discontinuities and subdivide elements
into integration elements. A difficulty of the method is the correspondence between the DOFs
of enriched elements and adjacent non-enriched elements. Due to the enriched DOFs being
located at the standard nodes, the standard DOFs at these nodes do not correspond to the
displacements at these nodes. The lack of a direct physical connection between displacement
and the DOFs at enriched nodes creates difficulties in physical interpretation of the results,
and the implementation of Dirichlet boundary conditions.

An alternative to X/GFEM is the Interface-enriched Generalized Finite Element Method
(IGFEM) [11]. IGFEM was initially proposed for problems with jumps in their gradient field,
also known as weak discontinuities. An example of such a problem would be the displace-
ment field of a composite material with different material phases in parts of the overall struc-
ture. The main advantage of IGFEM over X/GFEM is the location of the enriched DOFs;
instead of locating them at the standard nodes they are located at newly generated enriched
nodes, positioned at the intersections between discontinuities and element edges, as illus-
trated in Figure 1.4. In IGFEM the formulation of the enriched finite element space becomes:

Nen

ut(x)= ) N@u; + ) s;¥®)a;, (1.2)
L)

where the first part represents the standard FEM formulation, n,, is the number of enriched
nodes, ¥; the enrichment functions, a; the enriched DOFs, and s; a scaling parameter for
the enrichment. To ensure continuity throughout the mesh, enriched DOFs are shared be-
tween adjacent elements. The enrichment functions are constructed by combining standard
Lagrange shape functions in integration elements created by the discontinuity, as shown
in Figure 1.4. At standard nodes, the enrichment functions vanish, allowing the standard
DOFs to retain their physical interpretation. A major advantage of IGFEM is the easy imple-
mentation of Dirichlet boundary conditions. Since standard DOFs retain their physical in-
terpretation, boundary conditions can be implemented using standard FEM procedures|[11].
Enriched element stiffness matrices can become ill-conditioned when discontinuities come
arbitrarily close to standard nodes. To partially solve this problem the scaling factor s; is in-
troduced, which decreases the enrichment function for enriched nodes close to the standard
nodes. As in X/GFEM standard Gaussian integration on the enriched element can not be
performed, and sub-elements are used to define the quadrature.

Many applications and advancements of IGFEM have already been implemented and
tested. In [23] the hierarchical interface-enriched finite element method (HIFEM) is intro-
duced as an improvement upon IGFEM. HIFEM is used to model problems including many
discontinuities and multiple interfaces crossing a single element. Within the IGFEM frame-
work, curved interfaces can be modeled by piecewise linear approximations of the interface
within an element, this approximation can cause an increase in error. In [22] this error is
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decreased by increasing the number of integration elements in h-IGFEM, or by using higher
order integration elements in p-IGFEM. Due to the higher-order enrichment functions, p-
IGFEM more accurately captures the stress concentration in the vicinity of interfaces, and
it is found to be superior to h-IGFEM. Besides the application of IGFEM to 2D problems,
the method is also proven to work for 3D problems in [24, 25]. For many problems, the
convergence behavior of IGFEM with a non-matching mesh, was found to be similar to the
convergence behavior of standard FEM using a matching mesh [11, 24]. Often, equal con-
vergence rates and similar levels of accuracy are found, using IGFEM and standard FEM.

Building upon IGFEM, the Discontinuity-Enriched Finite Element Method (DE-FEM) is
introduced in [10]. The main advancement of DE-FEM over IGFEM lies in the ability to model
both weak and strong discontinuities by adding not only weak but also strong enrichment
functions. Strong enrichment functions are needed in problems where the solution field
includes a jump, an example is the modeling of a cracked surface. Using DE-FEM, the
formulation of the enriched finite element space becomes:

u(x) = ) N@u; + ) s¥i@a; + ) s;X;(X)B;, (1.3)
2, N sttt )

where the first two terms are the IGFEM formulation, X; are the strong enrichment functions
and B; the enriched DOFs located at enriched nodes. Strong enrichment functions are created
similarly to the weak enrichment functions, by combining Lagrange shape functions on the
subdomains created by the discontinuity.

1.3. Enriched methods for plates

Most existing research on enriched plate elements has been focused on deriving cracked
plate or shell elements using X/GFEM. Although, the aim of this thesis is to derive foldable
plate elements, reviewing the current work on enriched plate elements for strong discon-
tinuities gives a good indication of the possibilities and difficulties in enriching plate ele-
ments. A cracked plate element using Reissner-Mindlin plate theory was first introduce in
[26]. In Reissner-Mindlin plates, the displacement and rotational fields are not directly re-
lated, and only C°-continuity is required for both fields. Separate enrichment functions can
thus be defined for both fields, and completely cracked elements are enriched using simple
step functions, as commonly used in X/GFEM. In addition, elements containing a crack tip
are enriched using specialized crack tip enrichment functions for plates. The formulation
of [26] is extended to shells and crack propagation in [27]. A difficulty in modeling cracked
shell elements with large displacements is the correct representation of the crack opening.
The director, a unit vector representing the direction in which the plate displaces, is different
in the two subdomains created by a crack. For this reason, a different interpretation of the
X/GFEM enrichment is implemented in [27]. Instead of decomposing the displacement in a
standard and enriched displacement field, the director field is enriched using decomposed
degrees of freedom as:

ug; = Ut + Hy (§)uy, (1.4)
Ok = 035 + Hg (§)0xs, (1.5)

where the DOF's uy;, 6;, are defined using their standard part uf?, 05.%, and their discon-
tinuous part ug;, 0g;, and Hg($) is a function discontinuous over the crack. Consequently,

the displacement field is defined as:

4 4
h
=) Ne@ue+ Y SN @A, (16)
K=1 K=1

where Aty (6xk;) are the nodal director variables as a function of the nodal rotations 6y;, Nk
the standard shape functions, h the plate thickness, and ¢; the out of plane coordinate.
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I' : boundary

between each domain

2,

Figure 1.5: A cracked finite element mesh, crack tip enrichmnets span the entire domain depicted by Q.

In [28] the effect of crack tip enrichments in shell elements is examined. Using crack-tip
enrichments, more accurate fracture behavior can be modelled, at the expense of increased
computational time and matrix condition number. Reissner-Mindlin plate theory is known
to cause shear locking for thin plates. In [26], the enriched plate elements are based on
standard locking free Reissner-Mindlin plate elements, but in the enriched elements shear
locking is again observed. A solution for the shear locking in enriched plate elements, is the
use of Kirchhoff-Love plate elements, which generally do not suffer from shear locking.

In Kirchhoff-Love plate elements, the displacement w and rotation ¢ are related through
Vw = ¢. This relation causes the shape function for both fields to be coupled, and requires
the displacement to be C!-continuous in elements and over inter-element boundaries [29]. In
enriched Kirchhoff-Love plate elements, the enrichment functions of the displacement field
need to reflect both discontinuities in the displacement and the rotational field. In [30] a
cracked Kirchhoff-Love plate is derived using X/GFEM. Completely cracked elements are
enriched with a step function spanning one element, but crack tip enrichmnets often span
several elements, as shown in Figure 1.5. Implementing the crack tip enrichment using
X/GFEM, each node of the elements in the crack tip enriched finite element space Q, is en-
riched, and many enriched DOFs are included. Generally, a lot of additional DOFs in a crack
tip area leads to a high condition number [31]. To reduce the additional DOFs connected to
the crack tip enrichment, XFEM DOF gathering with pointwise matching, as in [31], is used for
the crack tip enrichment. Using this technique, the displacement field within Q, is enriched
with only four additional DOFs as:

4

uf = Y M@+ ) BHEONE + ) aF®) in g, (17

€N, i€h i=1

where the first two terms is the standard X/GFEM formulation, c; the four enriched DOFs,
and F, the four enrichment functions. Since the crack tip enrichments F; offend C!-continuity
over the boundary between the Q; and Q, (I' in Figure 1.5) integral matching is applied on the
displacement (uq, u,) to ensure rotational continuity in the two subdomains (4, Q,), as:

J u AdT = J u,AdT VA E A, (1.8)
r r
where A is a space of appropriate multipliers to ensure inter-element continuity. Advancing
on [30], a cracked Kirchhoff-Love shell element is derived in [32]. As was the case in the
cracked Reissner-Mindlin plate, the director field is discontinuous along the crack and is
thus enriched. In the cracked elements a piecewise enrichment strategy is used, described
in [32] as: “ ...an independent interpolation for the displacement for both sides of a cracked
finite element.” Instead of augmenting the finite element space by adding a discontinuous
displacement enrichment to the standard displacement interpolations, a fully discontinuous
finite element space is thus used.

Not much work on enriched plate elements for fold modeling has been done, but recent
work by Barbieri et al. [33] introduces the possibility of including folds in non-linear plates
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using an enriched formulation. Instead of using a finite element setting, Barbieri et al. uses
a meshfree setting to model a plate and its discontinuities, and is thus not an enriched
FEM. A von Karman plate is used to model flat plates that develop ridge like deformations
as a result of the applied loads, the plates are thus not used to model pre-folded structures.
Furthermore, since no fold stiffness is introduced, the model is not yet suited to accurately
model the mechanics of origami structures. The plate is based in Reissner-Mindlin theory,
and only an enrichment for the rotational field is introduced. The problem of shear locking is
solved by using a full third order polynomial basis for the shape functions, obtained using the
Reproducing Kernel Particle Method (RKPM) [34]. This method allows the accurate modeling
of plates with a thickness to length ratio of up to % = 1072. The main aim of Barbieri et al. is
to show that it is possible to model folds, using the same methods developed for cracks, and
the results in Figure 1.6 clearly illustrate this possibility. To avoid shear locking in foldable
plates, it is suggested to use Kirchhoff-Love plates in combination with X/GFEM. To account
for the fold, Barbieri et al. proposes to introduce the discontinuities of the rotational field
directly into the derivatives of the displacement field enrichment.

— 60

41 48

0] 1 36
0.1 | 24
0.2 1 12
< 03] 0
0.4 12
-0.5 -24
0.4 \ 5

0.3 07 0-8
Y/L 0.2 . 0.6 . -48
0 0.3
0.2 X/L

Figure 1.6: A folded plate modeled using the finite strain large deformation enriched plate derived in [33].

1.4. Mixed/hybrid elements

Elements derived using a different field in their formulation than the field they calculate
in their matrix equations are called mixed/hybrid elements [35]. Using another field, be-
sides the displacement or rotational field in the finite element formulation, could simplify
enrichment functions. Generally, a mixed/hybrid element formulation is constructed by in-
troducing interpolation functions for two types of fields; the primary and the auxiliary field:

u = L(x)q, (1.9)

where u” is the primary field that is of main interest, q are the primary DOFs, and L(x) are
the shape functions. As auxiliary field, often the element stress is used:

o' =P(x)B, (1.10)

where o” is the auxiliary field, B the auxiliary DOFs, and P(x) the auxiliary shape functions.
Using these fields, a problem specific energy function for a finite element can be expressed
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as [35]:
U= —%BTAB +B'Bq—f'q, (1.11)

where f is a vector containing the applied loads, 4 is a matrix connected to the energy inside
an element, and B a matrix connecting the auxiliary and primary fields. In the energy func-
tion, kinematic relations are often enforces via Lagrange multipliers. Using virtual variations,
the final stiffness equations can be expressed as:

Kq=B'A™'Bq =f. (1.12)

A mixed/hybrid element formulation may simplify the enrichment functions, required for
a folded plate element. Using IGFEM or DE-FEM, C°- continuous and C~!-continuous shape
functions can be added in a finite element formulation. A folded plate element has a displace-
ment field which is C°-continuous and rotation field which is C~!-continuous. Furthermore,
the enrichment functions created from Lagrange shape functions in DE-FEM and IGFEM
can not be used since they would create weak discontinuities along inter-element bound-
aries, and would thus violate continuity requirements for Kirchhoff-Love plate elements. A
solution could be to use integral matching as in [30] to ensure C!-continuity, but this would
increase the complexity of the shape functions and quadrature used in enriched elements.
Enriching the displacement field to model foldable Kirchhoff-Love elements thus requires
complex enrichment functions. Contrary to the displacement field, the moment field of a
folded plate is C°-continuous, and no inter-element moment continuity is required in a fi-
nite element formulation. Using the moment field in a mixed/hybrid formulation could thus
greatly simplify the enrichment procedure for a folded plate.

To develop further understanding of the use of mixed/hybrid plate formulations in com-
bination with enriched FEM, some non-enriched elements are examined. Many different
mixed /hybrid plate formulations have already been proposed. A mixed/hybrid plate element
is formulated using Reissner-Mindlin plate theory in [36], where as governing equations,
a modified Hellinger-Reissner principle is used. In this governing equation, the potential
energy within an element is expressed in terms of the curvature as a function of displace-
ment, rotation, and shear strain. This allows for an independent interpolation for the shear
strain, next to the standard interpolation for the displacement and rotation. By introducing
an independent shear strain interpolation, the problem of shear locking is reduced and the
Reissner-Mindlin elements can be used for relatively thin plates. In [37] the hybrid stress
model (HSM) element is formulated, using as governing equations a hybrid stress functional,
derived from the Hellinger-Reissner principle for Kirchhoff-Love plates. The hybrid stress
functional can be derived from the complementary potential energy for plates by relaxing the
natural boundary conditions, and assuming the geometrical boundary conditions to be sat-
isfied [37]. A more detailed derivation of the hybrid stress functional derivation can be found
in [38]. In the HSM-element, the only field defined on the plate’s surface is a linear moment
field. On its boundaries interpolation functions for the displacement and rotation are still
required. In a folded plate, enrichment functions for the displacement field would thus only
need to be defined on the boundary of the element, and only the moment field would require
enrichment functions on the plate’s surface.

In [39], among other elements, two Kirchhoff-Love plate elements are derived using a
mixed/hybrid formulation, much like the HSM formulation. The two elements assume a
constant or a linear moment field in the element, resulting in the KL0 and KL1 element
respectively. The difference between the linear moment HSM and KL1 elements is the location
and number of DOFs used. The triangular HSM element uses only 9 DOFs, located at the
element nodes, while the triangular KL1 element uses 12 DOFs, located at the element nodes
and sides. As explained in [39], a linear moment plate element has 3 rigid body modes and 9
deformation modes, using less than 3+ 9 = 12 DOFs in a linear moment element, could lead
to elements which react too stiff or contain spurious energy modes.

Besides the non-enriched mixed/hybrid elements, several examples of enriched elements
using a mixed/hybrid formulation are found. A Timoshenko beam and Reissner-Mindlin
plate containing a material interface are derived in [40]. These elements have continuous
displacement and rotational fields, but a discontinuous strain field. Using X/GFEM, the
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displacement field is enriched with the enrichment function found in [41], which is a hat
function similar to the enrichment used in IGFEM. Next to the enriched displacement, an
enriched strain field is used as auxiliary field. Although the resulting enriched plate element
is based in Reissner-Mindlin plate theory, no locking behavior is observed, which is achieved
by a proper choice in strain field interpolations. In [42], the use of X/GFEM in combination
with a hybrid/mixed formulation to impose interfacial element constraints is examined. The
paper proposes a method which is able to enforce a variety of interface constraints via the use
of auxiliary variables. Instead of using virtual variations on the weak formulation to arrive
at Equation 1.12, the method defines the stiffness matrix in terms of primary and auxiliary
variables, and removes auxiliary variables using static condensation on a local element level.

1.5. Research goal

In order to use optimization algorithms for origami design, flexible modeling methods need
to be derived that are able to easily relocate fold lines independently of the mesh. Enriched
FEM in combination with a hybrid element formulation has great promise in the derivation
of folded elements. Furthermore, Kirchhoff plate theory has the preference over Reissner-
Mindlin plate theory, because origami structures are often made of thin sheet materials for
which Reissner-Mindlin plates suffer from shear locking. By deriving foldable plate elements
this thesis attempts to answer the question:

Can mixed/hybrid Kirchhoff plate elements be enriched using IGFEM to create enriched
elements for the accurate modeling of origami structures?

This question can be split into three parts:

1. Can the potential energy equation of a folded plate be expressed in terms of the moment
field within the plate?

2. What enrichment functions are required in a mixed/hybrid plate to accurately model
the behavior specific to a fold?

3. How does the matrix condition number change for a folded plate element, and how can
it be improved?

1.6. Outline

The thesis begins with an investigation into the problem by developing a foldable beam ele-
ment in Chapter 2. Two options in deriving a foldable beam element emerge from the potential
energy formulation and are investigated. Both elements are compared in matrix condition
number and accuracy of the solution. Using the lessons learned in the folded beam derivation
three plate elements are enriched with a fold in Chapter 3: the KLO and KL1 elements [39]
and the HSM element [37]. Several enrichment techniques are implemented resulting in six
foldable elements; the KLOMW  KL0®), KLO©), HSM®  KL1® and KL1() elements. Appropriate
enrichment functions for the elements are derived. In Chapter 4 the three enriched plate ele-
ments are compared in accuracy and stability. The accuracy is tested for straight and curved
folds by comparing to analytical and numerical solutions. The matrix condition number is
tested for folds close to element edges and for a system with an increasingly fine mesh. Fi-
nally, in Chapter 5 the results are discussed and suggestions for further advancement of the
methods used are given.






Foldable Beam

Developing foldable Kirchhoff-Love plate elements using IGFEM, some problems are expected.
The displacement field enrichment in IGFEM would lead to C°-continuity across neighboring
element edges, and would thus violate the continuity constraints for Kirchhoff-Love plates.
A mixed/hybrid formulation is investigated, to solve the continuity problem for IGFEM in
foldable Kirchhoff-Love plate elements. In mixed/hybrid bending elements, a moment field
interpolation is used, instead of a displacement field interpolation. Since the moment field
does not have to conform to any continuity requirements, the IGFEM enrichment functions
can be used to enrich the moment field. As a first step towards the derivation of mixed /hybrid
foldable plate elements a foldable beam element will be investigated. Since the beam element
is one-dimensional the focus will be on the enriched method, without obscuring the derivation
with the tedious bookkeeping, that is required for 2D plates. The lessons learned in this
exercise will be used as an input in the 2D plate derivation.

2.1. 1D Problem definition
In Figure 2.1 a beam of length L with a fold located at x = xr is depicted, the beam has a
displacement field w(x), and rotation field ¢(x). Standard DOFs are defined on the standard
nodes at x = 0 and x = L as w;; and ¢, ;, and on the enriched node at x = xr, enriched DOFs
are defined as wr, Wri and d);—r. Point loads F;;, and M;, are applied on the standard nodes,
a distributed load, q(x), is applied on the entire beam, and a force is applied on the fold A-.
Compared to standard beam elements, the loads at the left node are oppositely defined. This
is done to connect positive loads to positive displacements. To account for the discontinuity,
the domain Q is subdivided into two subdomains,

Q:0<x<xp, 2.1)

Qy:xp<x <1,

and the discontinuity T. (2.2)

The two subdomains do not include the discontinuity since different kinematic and consti-
tutive equations apply at the discontinuity; strictly speaking there are two different values
for the rotation at the discontinuity. A short hand notation is introduced to account for ap-
proaching the discontinuity form the left (to x1), or approaching the discontinuity from the
right (to xf). Functions approached from either the left or the right will be defined as:

lim f(x) = f(xf) = fi. (2.3)
X-XE
Standard kinematic relations are used on the two subdomains,
b= ong, i=12
X)=——0n i 1=1,4
0x (2.4)

0
K(x) = % on {;,

11



12 2. Foldable Beam

w1 wr + q(x) w2

ceib——ebds Ty

x=0 X = Xp x =1L

Figure 2.1: The discretized foldable beam element, with a hinge located at the fold (depicted as a cross). The DOFs located on the
enriched node at x = xr., differ from approaching the fold from either the left (¢F, wr) or the right (¢, wit), with the exception of wp
which is located exactly at the fold. Point loads F; and M; are applied on the standard and enriched nodes, and a distributed force q(x)
is applied on the entire element. The loads applied on the standard nodes and the force applied on the fold (Fr-) will be used as the
external load application in the potential energy derivation.

where ¢(x) is the rotational field, defined as the derivative of the displacement field w(x), and
k(x) is the curvature field, defined as the derivative of the rotational field. At the disconti-
nuity, standard kinematic relations do not hold. Instead, to ensure displacement continuity
throughout the beam, the displacement on the discontinuity is constrained as:

wr =wf =wron . (2.5)

No extra kinematic relations for the rotational field are required, since it will be discontinuous
on the fold. As constitutive equation, the standard relation between moment and curvature
is used:

M(x) =Elk(x)on Q;, i=1,2 (2.6)

where E denotes Young’s modulus and I the moment of inertia. In addition, it is assumed
that the fold behaves as a rotational spring, and a relation between moment and rotation is
posed:

My = ke(¢f — ¢r) = kAo, (2.7)
where My is the moment at the fold and k, the rotational stiffness at the fold in Nmrad~".

2.2. Foldable beam derivation

A mixed/hybrid foldable beam element is derived using shape functions for the internal mo-
ment field. Auxiliary DOFs connected to the moment field are used in the element formula-
tion, but are removed using virtual variations in the discretization. The standard non-foldable
mixed /hybrid beam element formulated in [13], will be expanded with additional terms con-
cerning the discontinuities on the fold. Firstly, the potential energy of a deformed beam is
described, and the kinematic equations are enforced by means of Lagrange multipliers. Sec-
ondly, the multipliers are interpreted via virtual variations, and the formulation is simplified
by using integration by parts.

2.2.1. 1D modified potential energy derivation
The modified potential energy stored in a deformed folded beam, with the kinematic equations
enforced via Lagrange multipliers, is expressed as:

Xr

1 5 ow d¢p 1 5 B
l'[=f EEIK +/11(¢—a)+/12(1c—a)—q(x)w dx+§ktA¢) + Az3(wr —wp)+
0
L

+ 1 5 ow a¢p
Ag(wr —wp) + f EEIK + As(p — a) + Ag(k — a) —q)wedx+W, (2.8)

A
xr
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where W, the potential energy of the externally applied loads on the system is:

W = F1W1 + M1¢1 - F2W2 - M2¢2 - Fl"Wl". (29)

The differences of sign in W are due to the non-standard sign convention. This sign conven-
tion is used to allow for an easier interpretation of the results in the modified potential energy
derivation. In the element discretization the sign convention can be changed to the standard
convention for beams. The full derivation of the modified potential energy equation, its in-
terpretation, and simplification, can be found in Appendix A. Important results are found in
the interpretation of the Lagrange multipliers; C° moment continuity within the element is
ensured when the function is varied to the rotation ¢:

Mlgz = Mlgt = ke(df — ¢5) = keAdp = Mr. (2.10)
Furthermore, if no external force is applied on the fold, the moment field within the element

becomes C!-continuous:

oM

ox =K =0. (2.11)

X
If no force is applied on the fold, the derivative of the moment field is thus constant over
the entire element, no weak moment field enrichment is needed, and standard linear shape
functions can be used in the entire element.

Two final expressions for the modified potential energy are found, one derived with a force
applied on the fold, and one derived without a force applied on the fold. Using a force applied
on the fold, the final potential energy equation is:

i
n‘fr Ve o°M dx + [MOT=T + 2k ad2+
= [{-5m + (5o — 400 widx + LTS + Sk

0

oM < oM
Wy + wrl —

ox

oM

Wi —
0 0x

oM

0x
"
Xr

0x

)+
xr

(1, (oM , )
f_ﬁM | g2y 900 widx + M@l + W, (2.12)

L

where the displacement on the fold wr is still present in the expression, since it is energetically

coupled to the force on the fold. The two terms integrating the moment field over the two
subdomains fni —%M 2dx, represent the bending energy in the beam. The term representing
the bending energy in the fold is the same as the standard potential energy equation for

springs: %ktmpz. Lastly, the terms representing the potential energy of the reaction forces in

2)

When no external load is applied on the fold, the moment field becomes linear and the
displacement on the fold (wr) is removed from the expression, resulting in:

oM

the beam are found as: [M¢]§Z§,‘F +[M@)k, + Z—Z JWi Z—ZL w, + wl—< . oM
r

+
xr dx

W]__

Ly (2M dx + MO + Shoag? + 22
M+ (S = g0 wfdx + MG + Sk 0

0x

L

oM +f 1M2+ o°M dx + [Mo]L, + W, (2.13

ax LWZ A ZEI azx q(x) w X [ ¢]XF ’ ( - )
xr
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because the displacement on the fold is removed, one DOF less will be needed in the dis-
2

cretization. One term has not yet been discussed (ZTIZ - q(x))w, this term can be partially

omitted because only linear functions for M(x) are used, 32M/dx? = 0. The distributed load

term —q(x)w, is also omitted in the discretization, and applied instead via an equivalent load

vector in Appendix B.

2.2.2. 1D discretization

Two different stiffness matrices are derived; one using the modified potential energy as shown
in Equation 2.12, resulting in the “6 DOF system”, and one using the modified potential
energy as shown in Equation 2.13, resulting in the “S DOF system”. In all cases the equation
is discretized by evaluating three matrices: the A-matrix, which contains the potential energy
terms on the two subdomains; the B-matrix, which contains the potential energy terms on
the boundaries; and the K;-matrix containing the terms of the fold energy. In discretized
form, the modified potential energy is written as:

1 T T 1 T T
H=—§mAm—mBu+§uKtu—fu, (2.14)
where m is a vector containing auxiliary DOFs concerning the moment field, u is a vector
containing the displacement and rotation DOFs, and fis the vector containing the externally
applied point loads. To transform the potential energy equation to a normal stiffness relation
it is varied with respect to m:

on
oIl = adm ={-Am —Bu}-ém = 0. (2.15)

The equation is rewritten to find an expression for m, to allow the auxiliary DOFs to be
removed,

m=-A"1Bu. (2.16)

To formulate the stiffness matrix, the modified potential energy equation is varied with respect
to u,

oIl
ol = ——su=(-m'B+uk, - f16u = 0. (2.17)

The expression for m is inserted, and making use in advance of the fact that A is a symmetric
matrix, the equation is rewritten as:

(B'A"'B+KDu=Hf (2.18)

resulting in the stiffness matrix:

K =B'A™B +K|. (2.19)

This formulation and Equation 2.19 holds for all elements derived in this thesis, with the
difference being the details of the vectors u and f, and the 4, B ,and K; matrices.

Moving on to the formulations of the 5 and 6 DOF systems, the displacement vectors are
defined as:

u, = [wy, ¢1, Wy, ¢, wr, Ag] for 6 DOFs,

2.20

u}; = [Wl, ¢1, Wy, (1)2, A¢] for 5 DOFS, ( )
where the rotation at the fold is simplified to a jump in rotation as: ¢f — ¢ = A¢. The 5
and 6 DOF systems have similar definitions for the A-matrix, but they differ in the auxiliary
DOFs and shape functions used in the moment interpolation:
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XF L L
—%mTAm =— f %Mzdx - f %Mzdx = mwﬁi f NONOTdxm® for 6 DOFs,
0 xf 0
- ) . (2.21)
—lmTAm =— f iMde - f iMde —mer L f NONSTgxm® for 5 DOFs
2 2E1 2E1 2k, ’
0 xf 0

where N®®T and mG9T are the shape functions and auxiliary DOFs for the 5 and 6 DOF sys-
tem defined in Equations 2.26 and 2.27. The bending stiffness k, of the beam is introduced
as: k, = El, and is assumed to be constant throughout the entire beam. The B-matrices are
defined as:

m'Bu = [M¢p]s — MA +6M oM + oM oM for 6 DOF
u = [M¢]; ¢ ax 0W1 ax LW2 Wr 9x " ax - o S,
r r (2.22)
—m'Bu = [M¢]} — MA +6—M _ for 5 DOF
u = [Mo]g ¢ ax wy ax LW2 o S,

and can be written down by hand using the appropriate shape functions and auxiliary DOFs.
Finally, the K,-matrix and force vectors are defined as

1 1
EuTKtu = EktA(pz, (2.23)

—fu=FEw, + M ¢, — Fw, — My, — Fowp for 6 DOFs, (2.24)
—fu=Fw, + My¢, — Fw, — My, for 5 DOFs. (2.25)

The stiffness matrices are calculated using the symbolic toolbox in MATLAB. As an in-
terpolation field for the 6 DOF discretization, standard linear shape functions enriched with
only a weak enrichment as found in [11] are used:

0=<=¢<¢r

fcicr T N®"m®), (2.26)
rs¢ =

s
MO(§) = Ny (M + N, (M, +W()a = (1-M; +EMy +a ?—1
ér—1

with the auxiliary DOFs, m®" = [M;, M,, «a], the generalized coordinate { = x/L, and the
discontinuity at { = xp/L. The enrichment function is defined such that it has a height of
1 at the fold, coupling the enriched DOF a to the moment added at the fold. In the 5 DOF
discretization, only linear shape functions are used:

M5(&) = Ny (E)My + Ny()My = (1 — )My + EMy, = NO'm®), (2.27)

with the auxiliary DOFs, m®)" = [M;, M,].
The 6 DOF B-matrix is found as:

1 1 L -1 0 0 —L(ér—1)
BG — -1 0 1 —L 0 Lfl" , (2.28)
Lf-L L L
ér ér-1 &E-¢r
and the 6 DOF A-matrix is calculated in MATLAB as:
1 l EF_Z
L 2 . 21
A6 = — 1 sr+l 2.2
3k, | 2 1 2 (2.29)
_ér—2  §r+1 1

2 2
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Note the symmetry in the A-matrix, used in the stiffness matrix formulation, originating from
the NN' term. The rotational stiffness matrix K ¢, 1S @ 6 X 6 matrix consisting of mostly zeros,
except for the diagonal value with its index equal to the index of A¢ in the displacement
vector, which is equal to k;. Using Equation 2.19, the 6 DOF stiffness matrix is calculated
as:

r(3ér+1) 3¢+ 9 3 3(2&r+1) 6
L3&3 L2&2 L3¢r(ér-1) L2¢p L3&E(¢r-1) L2¢p
Gr+3) 3 _1 3 _2
Lér L2(§r—1) L L2EE(§r—1) L
3(3ér—4) 3(r-2) _3(2¢r-3) 6
3 —1)3 2 —1)2 3 —1)3 2 —
K6 = ky - L((gfrr_:)) L (51"3 1) L fréfr 1) 2¢r-n | (2.30)
L(ér-1) L2&r(ér—1)2 L3 .
symim. TRRG-D 2 D
4, ke
L + kp

Furthermore, the 5 DOF B-matrix is found as:

1{1 L -1 0 —-L¢r—-1)
5 _ — r
B® = L [—1 0 1 -L Lér ’ (2:31)
and the 5 DOF A-matrix is calculated in MATLAB as:
1
L |1 =
52 2
A 3%, % 1]. (2.32)

It can be seen that both B®> and A® are submatrices of B® and 4°. Combining B> and A> and
using a 5 X 5 K; matrix, the 5 DOF stiffness matrix is found as:

12 6 12 6 6(2ér-1)
3 2 T2 TR
i % % _266-2)

L 152 Le 6(2$L 1)

i
K5=k,- Tz Yz . (2.33)
4 2(3ér-1)
symm - -
438 -3¢r+1) | ke

L kp

As can be seen K° contains only terms bounded for 0 < & < 1, and is a much simpler matrix
than K. Furthermore, K® contains terms divided by & or & — 1, which are unbounded when
the enriched node approximates standard nodes and é- = 0 or ¢ = 1. These unbounded
terms are expected to cause ill-conditioning of the enriched stiffness matrix.

2.3. Numerical results and verification

Both the 5 and 6 DOF systems are verified using the test case in Figure 2.2, with the values
as in Table 2.1. In Figure 2.2, a beam of length L, with a fold at xr, and constant bending
stiffness E;1; = E,I, = k;, is clamped on its left side at x = 0, and loaded on its right side at
x = L with a force F. Only one folded beam element is used in the calculations. The right tip

ky, k, F L
100Nm?2 | 500Nmrad=" [ 10N | 1 m

Table 2.1: Values used in the beam calculations, for the problem in Figure 2.2, with the analytical solution in Equation 2.34.

displacement w;, is calculated for varying fold location ¢ = xp/L and compared to the linearly
exact solution:
B FL? N FL?(1 — &r)?

"2 = 3k, k,

(2.34)
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F
N\ v &
\ Vi
—> x = x=1

Figure 2.2: A beam of Length L, folded at x = xr, clamped at x = 0 and loaded with a force F at x = L.

In Figure 2.3, the 5 and 6 DOF system are both found to be exact under this load case; this
is due to the fact that under the applied force, the moment field within the beam is linear,
and both the 5 and 6 DOF system use linear interpolations for the moment field.

6 DOF matrix results

5 DOF matrix results

1072 1072
55 T T T T 55 T T T T
51 | 51 |
45| | 45| |
) )
4t | 4t |
35| | 35| |
3 | | | | 3 | | | |
0 02 04 06 08 1 0 02 04 06 08 1
$r $r

Figure 2.3: The right tip displacement w, of the beam in Figure 2.2, the results are calculated with the 5 and 6 DOF system and both are
exact compared to the solution in Equation 2.34.

2.4. 1D matrix condition

As an indicator of stability of the solver and numerical accuracy, often the condition number
of the stiffness matrix is computed as:

— Amax
X A ’

min

(2.35)

where A,,,, is the largest eigenvalue of the stiffness matrix and 4,,;, is the smallest non-zero
eigenvalue. Modeling discontinuities using enriched formulations often causes ill-conditioning
of the system matrices, characterized by large condition numbers. The condition number is
calculated for the 5 and 6 DOF systems, and compared to a system of two hinged beam ele-
ments on a matching discretization. The hinged system is constructed by connecting two Eu-
ler beam elements, as found in [43]. One beam of length L& with DOFs u' = [wy, ¢4, wr, ¢r],
and another beam of length L(1 — &) with DOFs u' = [wp, ¢f, w,, ¢,], are connected via a
hinge element with stiffness matrix:

K=k [_11 _11] ¢>E]_ (2.36)

o
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$r

Figure 2.4: The matrix condition of the assembled folded beam element and the 5 and 6 DOF system, calculated using the parameters
in Table 2.1.

The hinged beam element simulates the case when local re-meshing is applied to a beam
element to account for an arbitrary fold placement. Assembling the two beam elements and
the hinge element, a system is formulated containing the 7 DOFs: wy, ¢4, ¢r, wr, ¢f, wy, ¢;.
The matrix condition of the 5 and 6 DOF system can be found in Figure 2.4, the 5 DOF system
performs very well with a condition number of y = 20. Furthermore its condition number is
bounded and has a maximum value of y = 21.9 at {r = 0 and & = 1. The 6 DOF system does
not achieve bounded condition numbers, and performs slightly better than the assembled
system when the fold location is not around ér = 0.5, and worse when the fold is at ér = 0.5.
Following standard procedure in IGFEM [11] to improve the condition number of the 6

DOF system, a scaling parameter s is introduced as:
£ osesg

MS@) = (1— M, +EMy +5-af § oo
P — G<Es<t’
ér-1
Because a mixed /hybrid element formulation is used, the introduction of the scaling param-
eter in this manner has no effect on the final stiffness matrix, as explained in Appendix C.
Another method of introducing a scaling parameter, is by inserting it directly into the dis-
placement vector as: u' = [wy, ¢q, Wy, ¢o, Sy - Wr, s¢ - A¢]. This method is also investigated in
Appendix C, and although it improves the condition numbers of the 6 DOF system, it does not
lead to the drastic improvements needed to attain similar condition numbers as the 5 DOF
system. A common method of improving condition numbers, is by using a precondition ma-
trix. The condition number of the 6 DOF system is improved by using a jacobi preconditioner
of the form:

(2.37)

K' = PKP, (2.38)

where the precondition matrix is defined as:
P = , 2.39
Lj e (2.39)

J
and no scaling parameter is used. The matrix condition numbers can be found for a beam
with zero fold stiffness in Figure 2.5a, and for a beam with a fold stiffness of k; = 500 in Figure
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2.5b. The condition number of the preconditioned 6 DOF system is drastically improved, and
decreased slightly below the 5 DOF system condition number for low k;.

T T T C T I I .
1 06 E Assembled Beam elements E [~ Assembled Beam elements ||
E _— 5 DOF system E 1 06 E _— 5 DOF system E|
[~ —_— 6 DOF system m E —_— 6 DOF system E
105 ? Preconditioned 6 DOF system E 5 [ Preconditioned 6 DOF system | |
g | 10° ¢ g
104 E E 4 I i
s F & ~ 10% | E
103 E F 1
g g 103 | E
10? E E I B
i ] 10% ¢ E
10t £ E F 1
L \ \ \ ! § 10t & | ! ! ! E
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
$r $r
(a) Condition numbers y, calculated using a fold stiffness of k; = 0 (b) Condition numbers y, calculated using a fold stiffness of k; = 500

Figure 2.5: The matrix condition for assembled, 5 DOF, 6 DOF, and preconditioned 6 DOF systems for varying the fold location &,
calculated for one element constructed using the material parameters in Table 2.1.

The 5 DOF system has the exceptional property of a condition number which does not grow
to infinity, for discontinuities located at the boundaries; ér = 0 and ¢ = 1. Furthermore, for
these discontinuities, the 5 DOF system still achieves analytically exact solutions. Using
a preconditioner on the 6 DOF system drastically improves the condition number, but the
condition number does not become bounded. For discontinuities at éf = 0 and & = 1, the 6
DOF stiffness matrix has elements which grow to infinity, and the preconditioner can not be
applied to improve condition number.

2.5. Condensed foldable beam element

The number of DOFs in the 5 DOF system can be decreased one final time, resulting in
a foldable beam element with the exact same DOFs as a non-foldable beam element, and
thus no enriched DOFs. In Appendix D, the 5 DOF system is condensed using the static
condensation algorithm as described in [44]. Another way of condensing the system, in line
with the mixed/hybrid element formulation, can be defined. By splitting the displacement
vector into the standard beam element displacement vector u* = [w;, ¢, wy, ¢,], and the
jump in rotation A¢, the discretization can be changed to:

1 . T 4 T 1 Tut
M= —5;m Am —m'Bsu* —m'B;A¢ + §A¢ktA¢—fu , (2.40)

where the B-matrix as defined for the 5 DOF system is split into the 2 x4 Bg-matrix, connected
to the DOF's in u*, and the 2 X 1 By-matrix, connected to A¢, as B> = [Bg, Bg]. Using similar
steps as in the discretization in Section 2.2.2, the potential energy is firstly varied with respect
to Ag:

o1

WM(P = (-m'Bg + k;Ap) 5A¢p = 0, (2.41)

and rewritten to find an expression for A¢:
A¢ = ki 'BLm. (2.42)

The next step is to find an expression for m, and to substitute the expression for A¢ in this
equation to remove the enriched DOF from the discretized potential energy equation. This is
done by varying with respect to m:

o1

%(Sm = (—Am — Bsu* — BpA@) - 6m = (—Am — Bsu* — Bpk;'Bym) - 6m = 0, (2.43)
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and rewriting to find an expression for m:
m = —(A + Bgk;*B;) 'Bsu*. (2.44)

To find the condensed stiffness matrix, the potential energy equation is varied with respect
to u*, and the expression for m is substituted as:

a1l
ﬁdu‘* = (-m'Bs — f") 6u* = (B5(A + Bgk; 'By) " 'Bsu* — f) - Su* = 0, (2.45)

resulting in the condensed stiffness matrix:
K© =BL(A +Bgk;'BL) By = BLAZ'B;. (2.46)

In Equation 2.46, all terms concerning the potential energy due to the fold (k;!, Bg) are now
part of the newly formed A, -matrix. The A-matrix generally contains the bending energy in the
beam. The folding energy thus becomes part of the internal deformation energy in the beam,
instead of the energy due to the reaction forces, contained in the B-matrix. Furthermore,
the condensed stiffness matrix derivation can be seen as a continuation of the mixed/hybrid
method, where A¢ is used as an auxiliary, instead of a primary DOF.

T T T
2 2 [ Condensed 4 DOF system | |

B — 5 DOF system
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Figure 2.6: The condition numbers of the 5 DOF and condensed 4 DOF elements for varying fold location &, calculated
using the material parameters in Table 2.1.

The condensed formulation for the 4 DOF folded beam stiffness matrix is tested using the
test case in Section 2.3, and achieves the same exact results as the 5 and 6 DOF formulations.
More interesting is the condition number of the condensed folded beam, as Found in Figure
2.6. The condition number of K(©), has decreased with respect to the condition number of
K®), and remains bounded for 0 < & < 1.

2.6. Discussion

Two methods for deriving a foldable element have been used; the 6 DOF derivation, which
implements a weak enrichment in the moment field, and the 5 DOF derivation, which uses
no enrichment function. Both systems achieve the same level of numerical accuracy. The
disadvantage of the 5 DOF system is the fact that a force cannot be straightforwardly imple-
mented on the fold, whereas using the 6 DOF system this can be easily done. To compensate
for this fact, a method is derived to implement a force on the fold for the 5 DOF system in
Appendix B. The force is applied on the fold via a work equivalent load vector, derived using
the applied moment interpolations and relations between moment, curvature, rotation, and
displacement.

The matrix condition numbers of both formulations are compared. In the 6 DOF system,
the condition numbers are unbounded for folds approximating standard element nodes, while
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the condition numbers of the 5 DOF system remain fairly constant and are bounded. The
condition numbers of the 6 DOF system can be drastically improved by using a precondition
matrix. Even though the preconditioned 6 DOF system achieves a well-conditioned stiffness
matrix, it still requires some post-processing to calculate the element DOFs, and the precon-
ditioner can not be applied for folds located at standard element nodes. The 5 DOF system
and preconditioned 6 DOF system attain similar condition numbers, but the 5 DOF system
is preferred since it is easier to implement, uses less DOFs, and requires no post-processing.
Condensing the 5 DOF system improves the matrix condition even further, and may reduce
computational time as less DOFs are needed to model a problem.

The increase in condition number of the 6 DOF system for folds approximating standard
nodes, can be explained by investigating the displacement DOFs wr and w;, of the fold and
standard node respectively. When a fold approximates a standard node these DOFs should
become equal wr = w;, and the stiffness matrix becomes linear with respect to these DOFs.
The 6 DOF system condition numbers can be slightly improved by introducing an optimized
scaling factor for the enriched DOFs, as shown in Appendix C. The optimal scaling factor can
be interpreted as defining an enrichment, such that it has a constant jump in derivative at

the fold. Introducing a moment field enrichment, defined by a constant jump in derivative

at the fold, connects the enrichment to the force at the fold: K = oM

aM L
I le - Ele’ which is
energetically conjugate to wr. The changed definition also forces the enrichment function to
tend to zero near the standard node locations, removing some of the linearity’s in the system.
Although the condition numbers of the 6 DOF system are improved by introducing the scaling

function, they remains worse than the 5 DOF system condition numbers.






Foldable Plate

Advancing on the procedure developed for a foldable beam, several foldable plate elements will
be derived. In the foldable beam formulation, a C1-continuous moment field lead to improved
condition numbers, relative to a C°-continuous moment field. For this reason, no load will
be applied on the fold, resulting in a Cl-continuous moment field in the plate, that does not
require an enrichment. Although no moment field enrichment will be required, enrichment
functions will be defined for the rotation and displacement on the element boundary. As
found in the scaled moment enrichment for the 6 DOF beam in Equation C.11, and suggested
in [33], the discontinuous rotational field will be implemented by introducing a discontinuity
directly in the derivative of the displacement field.

Based on three different standard plate elements, six foldable elements will be derived.
Besides four foldable elements containing enriched DOFs, two foldable elements containing
only standard DOFs will be derived by condensing the elements locally. Since condition
numbers of the condensed beam in Section 2.5 were improved, it is expected that condition
numbers will be improved by condensing the plate elements. The foldable elements are based
on three standard elements: the KL0 and KL1 elements [39] (a constant moment, and a linear
moment plate element), and the HSM element [37] (another linear moment plate element).
The KLO element will be enriched using either one or two enriched DOFs, the KL1 and HSM
elements will both be enriched using two enriched DOFs. As explained in Chapter 1, the
difference between the KL1 and HSM elements is the location and number of DOFs: the HSM
element uses only 9 DOFs, 1 displacement and 2 rotations at each node, whereas the KL1
element uses 12 DOFs, 1 displacement at each node, one displacement at each side, and 2
rotations at each side.

3.1. 2D problem definition

In Figure 3.1, an arbitrarily shaped plate domain () in the x — y plane, with closed boundary
I'=0Q\Q, is depicted. An out of plane displacement field, w(x,y), and an in plane rotational
vector field, ¢(x,y), are defined on the plate. Because different kinematic and constitutive
equations hold on the domain and fold line, the domain Q is divided into two subdomains

and a fold line:
Q=0Q,UQ, Ul such that,

0, NQ, =0, and, (3.1)
51 N 52 = FF'

The subdomain Q; (Q,) has a closed boundary I'; (), where the subdomain boundaries are

defined as: .
I =0;\Q; i=1,2, such that,

;=T + T},
I+ =T,
[} =12 =T

23
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Figure 3.1: A foldable plate element located in the x — y-plane with a displacement field in the z-direction w(x, y), and a rotation field in
the x — y-plane ¢ (x,y). It is loaded on the boundary T by a distributed force in z direction, Fr-(x,y), and a distributed moment vector
in the x — y-plane, mr(x, y).

Three fold lines (IE, T2, and I'z) are defined because approaching the fold from either Q; or
Q,, different values for the rotation are defined. A short notation for functions approaching
the fold line from either side is defined:

lim fr)=f} i=1,2 (3.3)
r-Tg

The plate is loaded on the boundary I' by a distributed force in the z direction F-(x,y), and a
distributed moment in the x — y plane mr(x,y). On the plate domain (), a distributed load is
applied q(x,y). Furthermore, the outward normal, n,, n,, and n of Q,, Q,, and Q respectively,
are related by:

‘n1 = —nz on FF?

n,=nonlj, (3.4)

n, =non I},
On the two subdomains, standard kinematic equations for the rotation and the curvature of
the plate are used:

¢(r) =Vw() on Q; UQ,,

3.5
C(T) = V¢(T) on Ql U Qz, ( )

where the curvature C, is a symmetric 2 X 2 matrix which can be written in vector form:
k' = [C11, Cy2, 2C1y]. (3.6)

On the fold line, standard kinematic relations do not hold, as the rotation is discontinuous.
To ensure a C°-continuous displacement field at the fold, we define:

wi = wi = wr on Iy. (3.7)
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Although it is possible to implement different material parameters on the subdomains created
by the fold, it is chosen to use constant parameters for simplicity, and because origami
structures are often made from one piece of sheet material. Standard linearly elastic material
properties are assumed as:

m = Dk Onﬂluﬂz,

3.8
M=DC OnﬂlUQZ, ( )
where m is the moment vector derived from the 2 X 2 symmetric moment matrix M as:
m' = [Myy, My, My3). (3.9)
The constitutive matrix D, is defined on (; as:
1
p-_ |, 11/ 8 (3.10)
= — 01, .
2A-v) |y o v
2
and its counterpart, the fourth order stiffness tensor D, is defined on Q; as:
t3 21
Dijkl = E u (5ij5jl + Sil(sjk) + mé‘”é‘kl where, (3.11)
A= v 3.12
T A+va-2v) (3.12)
= £ 3.13

where E denotes the Young’s modulus, ¢ the plate thickness, v the Poisson’s ratio, and §;;
the Kronecker delta function. In the modified potential energy derivation, the fold is modeled
as a torsional spring relating rotations and moments in the 2D x — y plane:

Tr= J. K7 (¢t — ¢f)dSy = f KrA¢pdSk on Iy, (3.14)
I'r I'p

where K is a 2 X 2 torsional stiffness matrix, which will be simplified and specified in the
element discretization.

3.2. 2D modified potential energy derivation

The modified potential energy derivation for a foldable plate, is similar to the modified poten-
tial energy derivation for a foldable beam. The full modified potential energy derivation can be
found in Appendix E; only the important results are discussed in this section. The modified
potential energy term for a deformed foldable plate, with its kinematic relations enforced by
Lagrange multipliers (4, A,, 43, A4, 15, and 4¢), is expressed as:

n=|

1
{EKTDK +Al,3 : (¢ - VW) + A2,4 : (C - V¢) - qW} dAl‘l'

i

1

By not including an externally applied force on the fold, a C!-continuous moment field inter-
polation can be used in the elements, as in the derivation of the modified potential energy
equation it is found that:

mn=mronT, (3.16)
(V-Mp) -ny =—(V-Mf) -n, = (V-M{) -ny on I, (8.17)
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where the relation between n; and n, is inserted. Using integration by parts, the modified
potential energy equation is simplified, and surface integrals containing the displacement
and rotation are transformed into boundary integrals:

1
~m'D'mdA; —J (w-(V-M)-n,, —¢ -Mn}dS+
r

n--|
qQ 2

i

f {1A¢TKTA¢+A¢ -Mnl}dSF —f[Frw +mr¢r]d5'—f qwdA. (3.18)
re (2 r Q

3.3. 2D discretization

3.3.1. Discretized matrix definitions

As can be seen in the modified potential energy function in Equation 3.18, interpolation
functions for the displacement and rotational field at the boundaries are needed in the dis-
cretization. In addition, enrichment functions need to be defined for boundaries intersected
by the fold. Firstly, the modified potential energy equation is discretized, using the same
formulation as the discretized modified potential energy equation of the beam:

1

2uTKFu - flu, (8.19)

1
= —EBTAB —B'Bu +
where the auxiliary DOFs f8, are related to the moment field interpolation in the plate, and
the A-matrix is defined:
1 1 1
—=B'AB =—| -m'Dlmd4; = —J’ —m'D~'mdA. (3.20)
2 0 2 q 2

Constant material parameters are assumed throughout the entire element, which simplifies
the two integrals over (;, to one integral over (). The B-matrix is defined by an integral over
the element boundary I', and the fold line I:

—ﬁTBu=—fr{w-(V-M)-n—<,t>-Mn}dS+fF Ag - Mn,dSg, (3.21)

Additionally, the B-matrix is split into two parts as: B = [Bs, Bg], where the standard B-matrix
(Bs) and enriched B-matrix (Bg) are defined:

BTBu = BTBSU.S + BTBEuE (322)

—B'Bsug = — fr {ws - (V-M) -ny, — ¢ps - Mn}ds, (3.23)

—B'Bpuy = — f {(Wwe-(V-M)-ny, —¢y-Mn}dS+ | Ad-Mn,dS. (3.24)
r I'r

The displacement vector u is split into a part containing only standard DOFs ug, and a part
containing only enriched DOFs uy as: u' = [u}, u}|. Furthermore, ws and ¢ are the dis-
placement and rotation due to the standard element interpolations only, w; and ¢, are the
displacement and rotation due to an enriched interpolation function, and A¢ is the jump in
rotation at the fold I'x. The torsional stiffness matrix is defined using:

1 1
SubKoup = fr SAPTK ApdS, (3.25)
F

where K as found in Equation 3.19, is defined as a matrix with the same size as the final
stiffness matrix K, containing mostly zeros, and with K, assembled in the lower right corner:

o 0 ] . (3.26)

K,,=[® 2
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Finally, a work equivalent load vector f, is defined using:
r Q

where interpolation functions for w and ¢ at I', will be introduced in the discretization, allow-
ing for a numerical evaluation of fr [Fw+mrr]dS, to defined f. No interpolation functions for
the displacement field w(x, y) on Q will be introduced, making the derivation of an equivalent
load vector for a pressure q cumbersome.

Following the same procedure as in Section 2.2.2, the final stiffness matrix is defined as

K=B'A"'B+K,. (3.28)

Furthermore, to define the two condensed plate elements, the modified potential energy equa-
tion is discretized as:

1 1
IT= —EﬂTAB ~B'Bsu — B'Brug + Eu}iKtuE - flu, (3-29)

and following the procedure as in Section 2.5, this will result in the condensed stiffness
matrix:

K© =BL(A+BgK;'BL) 'Bg (3.30)

3.3.2. Triangular element parameterization

(x3, ¥3)

(x£, ¥#)

(x1, y1

niz (x2, ¥2)

Figure 3.2: The folded reference triangle, with a coordinate system located at its centroid. Besides the standard corner nodes (depicted
as dots) two enriched nodes (depicted as cross) are added at the intersection of the fold (the dashed line) and element boundary.

In Figure 3.2, a general triangular element is defined, with the origin of the local coordinate
system at its centroid. For each of the three element sides and the fold line, the cosine and
sine (C;;, Sij, Cp, and Sg) of the angle between the outward normal n, and the x-axis are
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calculated:
Ay; i
Cij = cos(yy) = 7 (3.31)
ij
. Ax .
Sij = sin(yi)) = =/ (3.32)
ij
Ayr
Cr = cos(yr) = T (3.33)
. Axp
Sp = sin(yr) = —T, (3.34)
where:
Ax;j = x; —x; and Ay;; = y; — yi, (3.35)
Axp = x2 — xt and Ayp =y — yi, (3.36)
(8.37)

and the lengths of the element sides and the fold line are defined as:

lp = /Ax,% + Ay?. (3.39)

(3.40)
Additionally, the surface area of the element S, is calculated:
=l12+123+L31’ (3.41)
2
Sa = \/a(a —liz)(a =) (a—13). (3.42)

Following [37], the cosine and sine are denoted without their subscripts as ¢ and S, respec-
tively. Furthermore, the location of the enriched node on a folded edge sf is calculated as:

Axj; = xf — x(s;j = 0) and Ay}, = y§ — y(s;; = 0), (3.43)
st= /Axil}2 + Ayl-l;-2 for i,j € {1,2,3}. (3.44)

Finally, using Figure 3.3, the outward normal n, and a transformation between global and
local rotations are defined:

n'=[C S (3.45)

wel € =S||wy
ol |
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(x5 y) s=lj,n=1

Ws
s /m
My, ‘\ n \Vi j

w
* (i, ¥1), s=0,n1=0

Figure 3.3: One of the three element edges defined in the global coordinate system (x, y) with local edge coordinate s and generalized
edge coordinate n = li Each boundary has two local rotations w, and w ¢ energetically conjugate to two local reaction moments My,
ij

and M, respectively.

3.3.3. General B-matrix definition

The main differences between standard and foldable plate elements are contained in the B-
matrix. For this reason the general B-matrix definition requires some extra attention, before
particular foldable elements are derived. As explained in Section 3.3.1, the B-matrix is split
into an enriched and non-enriched part as: B = [Bs, Bg].The standard B-matrix (B is equal
to the non folded B-matrices in [37, 39]. This matrix is related to the energy consumed by
the reaction forces at the element boundaries, and is defined:

—BTBSu = —.[ {WS . (VM) n—¢sMn}dS
r
e i B R e
T My,, +My, | |S S C||wss| |Myx Myy||[S

== L {WSQTI - W,nMnn - W,SMns} ds. (347)

The rotations of an element edge as shown in Figure 3.3, are defined as derivatives of the
displacement field, ¢, = ow/0n = w,, and ¢s = 0w/0ds = w. The terms concerning the moment
field are simplified to distributed reaction forces and moments defined on the boundary in
Figure 3.3 as:

Qn = C(Mxx,x + Mxy,y) + S(Myy,y + Mxy,x)’ (3-48)
Mpn = CCM . + 2CSM,,, + SSM,,, (3.49)
Mps = —SCM . + (CC — SS)M,,, + SCM.. (3.50)

Because triangular elements have three straight boundary segments, the standard B-matrix
is defined by the three sub-matrices B,,, B,3, and B3, corresponding to each of the three
element edges. The sub-matrices B;; can be assembled to form the matrix Bs. To define the
sub-matrices, Equations 3.48 to 3.50 are written in vector format and gathered in R;;, and
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the standard element shape functions are assembled in L;;, a

[ Qn
—Myn =Rij(5)ﬁ, (3.51)
—Mns
Ws
Wsn | = Lij(s)uyj, (3.52)
| Ws,s

where u;; is a vector containing the standard DOFs attached to the element edge connecting
corner nodes i and j. To discretize Equation 3.47, the generalized coordinate n = s/l;; is used,
and the sub-matrices are defined:

1
B;j = lijf Rij(m)'Li;(m)dn. (3.53)
0

(xp ¥i), s=lLjn=1

(xi' yi)' S=0! n =0

Figure 3.4: A folded boundary of an element, where the jump in rotation along the fold line (Awﬁ) is projected on the edge local coordinate
system as two jumps in rotation (Aw ,, and Aw ). Expressed in the edge coordinate s, the intersection between element edge and fold
line is located at s = sr.

Besides the standard B-matrix, the enriched B-matrix (Bg) is derived, defined in Equation
3.24 as:

—B'Bu= —f {wg - (V-M) -n,, — g -Mn}ds+f A¢p - Mn,dsg
r Tr

cC -S||lw;—w M, M Cc
— | {wpQ,, — wg My, — wg M ds+f [ H o "] [ xy”]ds
J;{ EUn EniInn Es ns} S € wi —w? M,, M,|[S|"F

_f {WEQn - WE,nMnn - WE,sMns} ds + f {(W}l - W,12’L)M1Iin + (Wé - W,E)Mrlis} dSF
r Tr

_f {WEQn - WE,nMnn - WE,sMns} ds — f AWnMrI:ndSF' (3-54)
r I'r

where the first part in —B'Bzu is defined using only enrichment functions (wg). Furthermore
Qn, My, and M, are the same terms as used in the B definition, found in Equations 3.48
to 3.50. If a jump in rotation perpendicular to the fold would exist, a strong discontinuity
would be introduced as: wi —w# = Aw = Aw,ds, hence this jump in rotation is assumed to
be zero, Aw; = 0. The jump in rotation is thus simplified to a jump in rotation along the fold
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line only, Awf, as shown in Figure 3.4, this jump in rotation is energetically conjugated to a
moment along the fold:
MTI:TI = CFCFMxx + ZCFSFMxy + SFSFMyy' (355)

Furthermore, the jump in rotation is defined as a valley fold: Aw, = w% — w}, causing the
change in sign before frF AwE ML, dsp. Using the simplified jump in rotation, the 2D relation
between jump in rotation and moment along the fold,

Tr= | Ko@h-opdsy = | Kradsy, (3.56)
I'r g
can be simplified to a 1D relation:

TF = kt(W’%’ - W}L)dSF = ktAVV,ndSFJ (357)
T'r I'r

where k; is the torsional stiffness per unit length of the fold, and Tr the moment along the
fold line.

In the fold local coordinate system (sg, ny), two enriched DOFs are defined, as shown in
Figure 3.5. Since, in Equation 3.54, the first integral to define B, is evaluated in the edge local
coordinate system (s,n), a transformation between (s, nr) and (s,n) is needed. To transform
the jump in rotation, Aw?%; to the edge local coordinate system, the angle 6; from Aw?%; to Aw;;
as shown in Figure 3.4 is defined as:

T

9i=2

+Vij — V- (3.58)

The transformation of the jump in rotation is consequently defined as:

AW,nij _ sin(Qi) F
[Aw,sij] - [005(91') AWni (3.59)

where the cosine and sine are defined as:

T
COS(Gl‘) = COS(E + ]/U - ]/F) = SFCL'j - CFSL'j = CGi' (360)
. . 7-[
51n(6i) = Sll’l(z + ]/L] - ]/F) = CFCij + SFSij = Sgi. (361)

Since a positive jump in rotation corresponds to a valley fold, the vectors representing the
jump in rotation will point outward of the element, as shown in Figure 3.5. This definition
causes the calculated angle 6; at the second enriched node (6; in Figure 3.5), to be rotated
by 7 radians with respect to 0; as: 0; = 0; —n. To compensate for this fact the transformation
at the second enriched node (where sp = lp) is multiplied by -1 as:

-
AW,Sl']'
where Equations 3.60 and 3.61 are used to calculate Cy; and Sy;.

The displacement field of an edge intersected by the fold is enriched with a weak enrich-
ment function ¥(n), and the rotation field with its derivative W(n) ; as:

—Soi
AwE
_Cel nt

(3.62)

w(n) = ws +wg = Ny (mMu;; + Y()Awg;, (3.63)
Wn(M) = Wspn + Wy = Nd)n (n)uij + ¥ (n)AW,nij' (3.64)
Ws m = Wss + Wgs = Nw,s (r/)uij + lp,s(n)AW,sijr (3.65)

The standard interpolation functions N,,(n), Ny, s(7), and N4 _, are used only in the standard
B-matrix formulation in Equation 3.47, and not in the enriched B-matrix formulation. In the
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Figure 3.5: An arbitrary triangular plate element with two enriched DOFs representing a jump in rotation added. Since the enriched DOFs
represent a valley fold, and integration over the boundary is performed counterclockwise, the vector representing the enriched DOF will
always be pointing outward of the element.

enriched B-matrix definition, only the weak enrichment of the displacement field is used:

wg () = Y Aw,; = () Aw,;Coj, (3.66)
_ _ AW,iiSHi
WE,n(n) - l'p,s(n)AW,nij - lp,n (n)T: (3-67)
ij
_ _ Awy, Coi
wg (1) = \P,s(n)AW,sij = Lp,n (Tl)l—, (3.68)

ij
The further derivation of the enriched B-matrix is similar to the standard B-matrix derivation.

Reaction forces and moments at the boundaries (Q,,, My, M,s) are discretized as in Equation
3.51, using R;;, and the enriched displacements and its derivatives are discretized in Llfj as:

Coi¥(m)
WE Sgi¥ (M
Wen|=|" 1 |Awn = LiAwg,. (3.69)
WE s Coi¥(mn

Using these definitions, the enriched B-matrix is derived by formulating and assembling
three sub-matrices; two matrices related to the enrichments on the element edges B, and
one matrix related to an integral over the fold line BE. Firstly, the two sub-matrices for the
two element edges intersected by the fold are defined. This corresponds to the first part of
the enriched B-matrix definition in Equation 3.54:

1
BTBLE Aw,fli = J;{WEQn - WE,nMnn - WE,sMnS} ds = BTlijJ;) Rij(n)Tij(n)dn AW,I;LL" (3-70)

resulting in:

1
BL =1, jo Ry (n)'LE, (). @.71)

The second part of the enriched B-matrix definition is constructed from an integral over the
fold line. An interpolation for the jump in rotation is introduced as:

Aw}, () = N g (ug, (3.72)
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where uf = [Awfli, AW’fl ;], and a generalized fold coordinate is introduced as 1 = sg/lp. Fur-

thermore, a transformation from g to M}, is introduced as:

Min =R () B, (3.73)

where the relation in Equation 3.55 is represented by Ry (). Using these matrices, the second
part of the enriched B-matrix is defined:

1
BBE u, = j AWEMEdsp = BTl f RL () Nag (1)d7 s, (3.74)
0

I'r

resulting in:

1
B = Iy ]0 RL () Nag (1)d1. (3.75)

Consequently, the enriched B-matrix (Bg) for a foldable element is constructed by assembling
the sub-matrices as: _

B; =B, BL|+BE, (3.76)
where B and B, are connected to Aw”,; and Aw, ; respectively, and Bf; is connected to both
enriched DOFs. The final B-matrix is constructed by combining B; and B as:

B = [Bs, Bj]. (3.77)

Additionally, the work equivalent load vector for a distributed load applied on one element
edge, can be defined using the edge displacement interpolations in Equations 3.52 and 3.69.
Inserting these displacement definitions in Equation 3.27, we attain:

lij
fTu = JF[FFW + mr¢r]ds = f {[FF m}] Luul] + [Fl" m};] LZAW'I;U} dSi]', (378)
0

where mp are the distributed edge moments, defined in the edge local coordinate system
mf = [Mrp,, Mrps], and K the distributed edge force. Furthermore, the integral is evaluated
numerically, and the second term within the integral is only used when a load is applied on
one of the enriched edges.

3.3.4. KLO element enriched with one DOF

In this section, a one DOF enriched foldable KL0 element (the KL0()-element) will be derived.
As shown in Figure 3.6, the element has only one enriched DOF, which will result in a con-
stant jump in rotation over the entire fold line. Using Figures 3.4 and 3.5, we have explained
how the jumps in rotation (Awfli and Aw_fl ;) can be projected on the element edges. To project
the single jump in rotation on the element edges, we assume: Aw} = Awh, = Awf ..

Firstly, the A-matrix, related to the bending energy of the plate, is derived following [39].
The A-matrix does not differ for the foldable and non foldable elements, because the same
moment interpolation field can be used in the foldable and non-foldable elements. A constant
moment matrix A, is defined by the shape function:

m = I8, (3.79)

where [ is a 3 X 3 identity matrix, m the moment vector, and f; the vector containing the
auxiliary DOFs. In the constant moment plate elements, the auxiliary DOFs are thus exactly
equal to the moment vector of the plate. Using Equation 3.20, the constant moment A-matrix
is defined by:

Lo 1 Tp-1 1o -1
_E 3ACB3:_E 9.‘l’nD mdAZ—EB3 nD dAﬁ:;, (380)

resulting in:

1
Ac =507 and A7" = =D. (3.81)

a




34 3. Foldable Plate

¢n3

Figure 3.6: The one DOF enriched KLO element (KLO™-element). On the fold line, one enriched DOF is added, repre-
sented by the red arrow Aw ;.

In the KLOMW-element, the standard B-matrix is denoted By, and the enriched B-matrix

is denoted Bg(l). Because a constant moment field is used, derivatives of the moment field

are zero, resulting in no internal reaction forces at the boundary: Q,, = 0. This causes the

term wQ,, to drop from the B-matrix definition. The transformation between f; and [M,,,,, M;;]
—-CC =SS —2CS

is defined as:
_Mnn _ — pc
[—Mns] =lcs -cs —cc- 55)]B3 = RijBs (3.82)

and on the three element edges, a linear interpolation field is used for the displacement:

W
wm) =[1-n n] [Wf] : (3.83)
j
The rotation perpendicular to the edge is defined as the derivative of the edge displacement:
1 1 w;
we=sw,m) =5[-1 1 [ ] (3.84)
S 1 l [ ] w;

Furthermore, no interpolation function for the rotation along the edge is needed, because it
is assumed to be constant, and since wQ,, dropped from the equations, the displacement w
does not need to be included in the L;; matrix formulation:

w 0 1 0] W™
[W:]:[_l 0 1] l‘l’nk = Liju;. (3.85)
’ l l W]

Combining these matrices using Equation 3.53, results in:

. —¢cs  —lcC cs
BEIO =1, f RELOdn=| CS —1,;SS —cs |, (3.86)
0 (CC—5S) —1,;2¢5 —(CC —SS)

and the standard B-matrix By, can be constructed by assembling B/"°.
Since the standard edge displacement uses linear shape functions, a linear enrichment
function is defined. To connect the enrichment function ¥(n), to the enriched DOF Aw?,
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the function should have a constant jump in derivative at the enriched node. The optimally
scaled enrichment function for the foldable beam, found in Appendix C, is such a function,
and the edges are thus enriched using:

Ly — —n(1—-nr) 0<n<nr
‘P(n)—lu{ e(—n) nr<n<1’ (3.87)

with its derivative forming the strong enrichment for the edge rotation:

¥, () ~(1-nr) 0<n<n
l_pl — i — T — = 1T .
() » { e s<n<1 (3.88)
where nr = sp/l;; is the fold location expressed in the generalized coordinate. The displace-
ment field enrichment is zero at the standard nodes and has a jump in derivative of 1 at
the fold, it thus does not interfere with the standard element DOFs and can be coupled to
the enriched DOF. Using the enrichment function, the first part of the enriched B-matrix as

found in Equation 3.71, is calculated as:

) nr 1
E= _lijfo (MyySgi + MysCop) $i(m)dn — Li; | (MnnSe; + MpsCoi) Ws(m)dn
nr
= _lij (MpySgi + MpsCo;) [‘Pl(n)]gr - lij (MpySg; + MpsCo;) [Lpl(n)]rllr =0. (3.89)

Due to the constant moment used in the element, the enrichment on the element edge does
not contribute to the element stiffness matrix. Nonetheless, it is still used in post processing
the solution to find the enriched node displacement wy; as:

W.
wr = [1—np np] [Wl] + W (nr) Co, AWE,. (3.90)

J
The second contribution for the enriched B-matrix consists of an integral over the fold line,

where a constant jump in rotation is used Aw,(n) = Aw,,, and a transformation between the
moment field and Mf, is defined as:

ME, = [CeCr SeSr 2CkSr|Bs = REBs. (3.91)

Using these functions, the enriched B-matrix is defined as:

1
BiBEus = | awhMEudsy = Ll | REdn awh, (3.92)
I'r 0
resulting in:
1 CFCF CFCF
BI®W =BE =1, f SeSp |dn = Up | SeSk |. (3.93)
0 |2C;Sp 2Cs Sk

Furthermore, from the definition of the torsional stiffness matrix:

1 T (€] 1 F F
EuEFKt ugp = . EAW,n(SF)ktAW,n(SF)dSF' (3-94)
F

we find that it is simplified to a torsional stiffness coefficient as:

kY = 1k, (3.95)

Using the defined matrices, the stiffness matrix is formulated by assembling B{® into By,
and assembling the final B-matrix as:

Byom = [BKL0: 35(1)]- (3.96)
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Consequently, the stiffness matrix is formulated as:

KKLO(l) =B (1)AleKLo(1) + K}E}); (3.97)

1
KLO

where K (Fl) is constructed as a 7 X 7 matrix containing mostly zeros, but with Kt(l) assembled
in the lower right corner, at the diagonal term related to Aw?,.

Finally, a distributed edge load is applied on the element by inserting the standard dis-
placement and rotation as found in Equations 3.83 and 3.84, and enriched interpolations
found in Equations 3.87 and 3.88, into Equation 3.78. Since no displacement field is defined
on the element domain (), the application of a distributed pressure q is a bit more difficult. In
the 5 DOF beam formulation, a distributed force was applied via a relatively complex equiva-
lent load vector, as described in Appendix B. To apply a surface pressure in the foldable plate
formulation, a similar method would result in an increasingly complex equivalent load vector
computation. For this reason a constant surface pressure is applied on the KL0®-element,
using the same load vector as found for its non-enriched counterpart in [39]:

qS
flugom ===[1 0 1.0 1 0 0lugg, (3.98)
where the displacement vector is assembled as: u}(LO(l) = [W1, Pn1, Wa, Pnas W3, Pz, AWh].

3.3.5. KLO element enriched with 2 DOFs

The KLO element is a constant moment element, and thus only requires a constant jump in
rotation to capture the potential energy in the fold. However, in that case, enriched DOFs
cannot be shared between neighboring elements, which may cause the displacement field
across enriched element edges to become discontinuous, since neighboring elements can
have different jumps in rotation. To solve this problem, the enriched element in Figure 3.7
(the KLO®)-element) is introduced. This foldable element has two enriched DOFs, resulting in
a linear interpolation for the jump in rotation along the fold. Since the two enriched DOFs are
located on the enriched nodes, they can be shared between neighboring elements, resulting
in a continuous displacement field.

Figure 3.7: The two DOF enriched KLO element (KLO0()-element). On each enriched node (depicted as a cross) one
enriched DOF is added, represented by the red arrows Awﬁl1 and Aw_",'13.

The first part of the KL0®) -element derivation is exactly the same as the KLO"Y-element
derivation. The derivation diverges from the KL0®) derivation at Equation 3.92, where the
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enriched B-matrix is defined. Using the two enriched DOFs, a linear interpolation for the
jump in rotation is defined as:

W (1) = Nagp (Mug N awF |- (3.99)
W,n]

Since the edge enrichment does not influence the stiffness matrix, the enriched B-matrix is
defined as:

F(2 1 T CFCF ] lF CFCF CFCF
B{® = lpf RE Npgp(mdn = lpf SeSe [[1—n nldn = - | SFSe - SESE |, (3.100)
0 r 265y 20:Sp  2CpSp

The torsional stiffness matrix is defined, using the linearly varying jump in rotation:

1 19 (1 —
Eugxg%E = uTEzFf 31 ”] ke[L=n n]dnug, (3.101)
0o 41
resulting in the 2 X 2 matrix:
112 1
KD = Lok, [1 2]. (3.102)

To formulate the KL0O® -element, the B-matrix is assembled as:
By o = [BI(LOv 35(2)], (3.103)

and the stiffness matrix is defined as:

Ky1o =Bl yA- Byroe + K&, (3.104)

where K }(72), is constructed as an 8 X8 matrix containing mostly zeros, but with K EZ) assembled
in the lower right corner.

Furthermore, an equivalent load vector for distributed edge loads is constructed similarly
as in the KL0M-element, by inserting the standard edge interpolations and enriched inter-
polation functions into Equation 3.78. Furthermore, a constant surface pressure is applied
via a similar load vector as used in the non-enriched KL0-element in [39]:

S
fTuKL0(2>=qT“[1 001010 0 0|ugge, (3.105)

where the displacement vector is assembled as: U], o) = [W1, $n1, Wo, Pz, W3, Ppz, Awhy, Awh ],

3.3.6. Enriched KL1 element

A foldable KL1 element (the KL1®)-element) is derived using the standard and enriched DOFs
as shown in Figure 3.8. The A-matrix derivation of the enriched KL1 element is equal to the
derivation in [37]. To derive the linear moment A-matrix (4;), a linear moment field interpo-
lation field is defined:

p O 0
o 0 p
where the shape functions are defined using the vector p:
p=[1 x . (3.107)

In the derivation of the constant moment A-matrix (4.), three auxiliary DOFs are introduced,;
in the derivation of 4;, nine auxiliary DOFs are introduced in 84. Consequently, the linear
moment A-matrix is defined using:

Lo 1 p-1 Lo p-1
~ 5BYABy =~  m'D mdA = —= _P'D PdAB,, (3.108)
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Figure 3.8: The KL1 element with one displacement DOF at each of its six nodes (depicted as dots), two rotational DOFs at each edge,
and one enriched DOF at each enriched node (depicted as a cross).

resulting in:
A =J- P'D~1PdA. (3.109)
Q

Due to the diagonal nature of P, we can simplify 4; as in [37]:

c11® 2@ 3P
A= P P 3P|, (3.110)
31D 3@ 33D

where ¢;; are the components of D1, the inverse material stiffness matrix, and ® is defined

as:
1 x y

d>=prpdA=f x x* xy|dA. (38.111)
a oy xy y?

Because the origin of the local coordinate system is located at the centroid of the triangle, ®

can be simplified using the surface area of the element:

S, 0 0
=0 a vy, (3.112)
0 ¥ v
where a, ¥, and y are defined as:
S,
a= é(xf + x2 + x2), (8.113)
S,
Y = 75y + X232 + x3¥3), (3.114)
S,
v = ;0 +37 +39). (3.115)

The element stiffness matrix is calculated using the inverse of A; [37]:

di @1 d,®' d@7t
A7t = |dp @71 dpp @7 dp3®7, (3.116)
d3; @71 d3®7' dad7!
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where d;; are the components of D, and the matrix ®~! is defined as:

1 ay —P? 0 0

bl=— " 0 Say —=S.u|. (3.117)
_ 2 a a
Sq(ay —¥?) 0 —Sa S,

From Equations 3.48 to 3.50, the transformation between g and [Q,,, —M,,,, —M,s], can be
constructed using the linear moment field interpolation:

r d d a ad a a a a
Q, Co- 55 Ca +5- Co 5@ 65 +S-

~Mpn|=|-cc -SS —-2¢Ss |m=|-cc -SS ~2cs | PBo

| —Mys cS —-CS SS—-ccC cS —-CS SS-cc

[ 0 C 0 0 0 S 0 S C

—CC —CCx —CCy —SS —SSx —SSy -2CS —2CSx —2CSy |By =R}Bs,
CS CSx CSy —CS —CSx —CSy (S§S—CC) (SS—CC)x (SS—CC)y

(3.118)

where the global coordinates on the element edge can be calculated using the generalized
coordinate 7, as: x = x; + nAx;; and y = y; + nAy;;. The standard displacement and rotation
interpolation along the edges are defined as in [39]:

Wi
wi = [1-m@A-2n) 4n(l-n) n2n-1)] lWij ) (3.119)
wj
1 Wi
ws() =—[-3+4n 4-8n —1+4n]|w;|, (3.120)

wa( =[1-n n] [i:’

Jt

], (3.121)

where the displacement is defined in terms of the corner node displacements (w;, w;) and the
mid node displacement (w;;), and the edge rotations ¢nij and ¢nﬁ’ are the rotation of edge ij

at nodes i and j respectively. All interpolation functions are assembled in Ll-lj as:

w A-m@-279) 0 4n(l-m 0 n(2n-1) cpM,Z,-
_ 0

1-7n 0 n 0 1
M —3+47 0 4-87 0 —1+44n mij Ll]ul]' (3.122)
w Bae— i
S lij lij lij njt

and using Equation 3.53, the B;; matrix is formed as:

1
B!t = l,-jfo R};'L};dn, (3.123)

and the sub-matrices B;; can be assembled to form By, .

In line with the standard edge displacement in equation 3.119, a quadratic edge en-
richment function is defined. At the enriched node, the enrichment function should be
C°-continuous, and have a jump in derivative equal to one. Furthermore, it is not desir-
able for the enrichment function to interfere with the standard DOFs. At the corner nodes,
the enrichment function and its derivative should thus be zero. To formulate an enrichment
function which is able to fulfill these requirements, a piecewise quadratic function is defined:

L <s< 2 <s<
Py 0<s<sr :{Cls +Cs+C; 0<s<sr (3.124)

q =
i) {lpR sr<s<lL Cis?+Css+Cs sp<s<L ’
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and six requirements are defined as:

WL(0) = WR(L) = 0,
W(sr) = YR (sr),

awt vt
dwR dwt

W(Sr) - K(sr) =1

Lastly, the six parameters (;, are defined using the six requirements:

lij = sr

61:_ 62:C3:O,

)
ZlijSF
Sr Sr lijsr

Ch=o—  Co= " and G = — =L .
720 (se = L) > lij = sr ¥ 2(l;j — sr)

(3.125)
(3.126)

(3.127)

(3.128)

(3.129)

(3.130)

A piecewise linear rotation enrichment as in Figure 3.10, is defined as the derivative of the
piecewise quadratic displacement enrichment W. A disadvantage of the displacement en-
richment can be found in Figure 3.9, the enrichment is not zero at the mid side node (at
s = 0.5), and will thus interfere with the mid side displacement w;;. Another property of the
enrichment is that when the enriched node approximates the corner nodes (sp - 0, sp - [;5),
the entire displacement enrichment tends to zero W9(s) —» 0. Moreover, the rotation enrich-

ment is bounded as: —1 < Wi(s) <1 for 0 < sp <.

1072

1072

1072

1072

-0.1

Weak displacement enrichment W4

0 0.2

0.4

0.6

0.8

S

-0.8

Strong rotation enrichment ¢

0 0.2

0.4

0.6

0.8 1

S

Figure 3.9: The displacement field enrichment for an edge of
length 1 with an enriched node at sy = 0.25.

Figure 3.10: The rotational field enrichment for an edge of
length 1 with an enriched node at sy = 0.25.

All the enrichment functions on a boundary segment are assembled into L’fj as:

CoiW(s)
w
Iw,n‘ = [Se:¥9(S)s | AW, = LEAWE, (3.131)
Wsl  [CoiP(s),s

and using Equation 3.71, the contribution of the enrichment functions to the enriched B-

matrix becomes:

nr 1
BE = lij {J; R%jTijdr] +L R%jTijdn},
r

(3.132)
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which is evaluated numerically, and where ij and Rfj are transformed to the local coordinate
n. To define the second part of the enriched B-matrix, the moment along the fold is defined
as:

ME, = [CE Cix Ciy S& Six Siy 2CpSp 2CpSpx ZCFSFy]Bg =R.B,, (3.133)
and using a linear interpolation for Awf, as in Equation 3.99, Bf is defined as:

Ck
Cix
Cy

1 1 Sﬁ F

T Aw? .

B'Bfug =f My, Awhdsg :BTlFf R Npgpdnug :ﬂTlFf Stx |[t=n n]dn [Awly] (8.134)

T'r 0 0 S,%y nj
2CpSg

ZCFSFx

| 2CrSFy ]

resulting in:

|
N R

Cil 2
F F F F
F _ S2] X1 Ax X1 Ax
By =1 F 2t 2 3
F F F F
A A
2CpSpl) | L &7 o 4 &y
2 6 2 3

(3.135)

where [ is a 3 X 3 identity matrix.
The enriched B-matrix for the KL1® element is formed by assembling the two Bi-matrices,
connected to the two enriched edges, and the Bf -matrix, connected to the fold line:

B, =B} B{|+BI (3.136)

where i and j are the indices of the two enriched DOFs. Finally, the B-matrix for the foldable
KL1 element is assembled as:

By 1@ = [Bk1 Bi]. (3.137)

Since the same linear moment interpolation for the jump in rotation (Aw,(®) = Ny (M)ug)
is used in the KL1® and KL0®-element derivation, both elements use the same torsional

stiffness matrix K gz)’ as defined in Equation 3.102. Using these definitions, the stiffness
matrix is formulated as:

Ky =B, AT By + K, (3.138)

where K ,(:2) is constructed as an 14X 14 matrix containing mostly zeros, but with K EZ) assembled
in the lower right corner.

Furthermore, to apply a constant surface pressure on the plate, ta similar load vector as
in the non-enriched KL1-element in [39] is used:

S
fTuKLI(Z)zq:S_a[O 100010001000 0]“1{1,1(2): (3.139)
where the displacement vector is assembled as:

uI{L1(2) = [ Wi Wz Pnzz $nzz W2 Wzi Pnzr Praz W3 Wiz Pniz Pnar AWy Awy; ]

(3.140)
Moreover, a distributed edge load is again applied by inserting the defined enriched and
standard edge interpolations into Equation 3.78.
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3.3.7. Enriched HSM element

The HSM element is a linear moment element, similar to the KL1 element, it is enriched using
the standard and enriched DOFs as shown in Figure 3.11, resulting in the foldable HSM®)-
element. Since both the HSM and KL1 elements use a linearly varying moment field, a large
part of their derivation is similar, and the derivation of the HSM(®-element diverges from the
KL1® element only in the formulation of the standard B-matrix.

x Awh,

Figure 3.11: The enriched HSM element with one displacement DOF and two rotational DOFs at each standard node (depicted as dots),
and one enriched DOF at each enriched node (depicted as a cross).

The main differences between the HSM and KL1 element derivation are thus the standard
DOFs and shape functions used. The standard HSM-element uses one displacement (w;) and
two rotational DOFs (¢,; and ¢,,;) at each corner node, resulting in 9 standard DOFs. The
rotational DOFs are defined in the global coordinate system, and are transformed to the edge
local coordinate system using Figure 3.12:

wsl _|C S ||dx
[W_n]_[s _C] ¢y]. (3.141)

The standard displacement and rotation interpolation along the edges are defined as [37]:

w(n) = Hp1w; + Hpowj + Hyyw + Hipwgj, (3.142)
wa(m) =1 —nwy; + MWy, (3.143)
1
ws(m) = F(HOLnWi + HOZ,nWj + Hll,nW,si + HlZ,nW,sj)’ (3.144)
ij

where the shape functions are defined as:

Hoy = 1 — 302 + 213, (3.145)
Hy, = 3n% — 213, (3.146)
Hyp = Lij(n — 2n* + 1), (3.147)
Hip = 1;j(—n* + 1), (3.148)
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(x5 y) s=lj,n=1

W,
% N A \m
DN

S —

bx

(i, ¥1), s=0,n1=0

Figure 3.12: One of the three element edges of the HSM element. The rotation defined in the global coordinate system ¢, and ¢,,, are
transformed to the local rotations w , and w5, using the angle y;;.

and their derivatives as:

Ho1, = —61 + 612, ( )
Hozpy = 61— 612, ( )
Hll,n = ll-j(l —4n + 37]2), (3.151)
Hip, = 1;(=2n + 3n?). ( )
( )

The global rotations are transformed to the edge local rotations using Equation 3.141, and
all standard shape functions are assembled as:

wi
w Hyy  CHypy SHq, Hy, CHy, SHi, (‘»in
=1 0 SA-n —-CA-n 0 Sn o —Cn [[Pyvi]| = LHSMy,
Vvl;’n Ho1g CHi1p SHi1y Hozpy  CHizym  SHizm || Wj L” Uij» (3.154)
s Lj Lj Lj Lj Lj bj 1|y
¢y}

Finally, the matrices are combined into B{*" as:

(3.155)

1
BZ_SM — lijfo R%jTLZ_SMdn

and the standard B-matrix (Bysy) is formed by assembling the three B[*"

Since the KL1® and HSM® elements use the same linear moment field, enriched DOFs
(Aw’fu-), edge enrichment (Y9(s)), and interpolation for the jump in rotation (N,4 (7)), the exact

-matrices.

same enriched B-matrix (B;) and torsional stiffness matrix (K §2)) are used in the HSM®)-
element, as in the KL1®-element. To formulate the stiffness matrix the B-matrix is thus

assembled as:
Bysu@ = [Busm,Bil, (3.156)

and the stiffness matrix is formulated as:

Kysye =B @AiBysy@ + KE:Z) (3.157)

T
HSM
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where K gz) is constructed as an 11 x 11 matrix containing mostly zeros, with K EZ) assembled
in the lower right corner.

As was done in all previous elements, a constant surface pressure is applied on the plate,
via a similar load vector as in the non-enriched HSM-element in [37]:

T _ an
flugsye = T[ 10010010 01 0]Juysya, (3.158)
where the displacement vector is assembled as:

uLSM(Z)z[ Wi Ox1 Py1 W2 Pz Py Wz Prz Pyz Awyy Awy; ] (3.159)

Moreover, a distributed edge load can be applied by inserting the enriched and standard
interpolation functions into Equation 3.78.

3.3.8. Two condensed foldable plate elements
Two more foldable plate elements are defined, by condensing the foldable KLO and KL1 ele-
ments locally. Firstly, the KLO(Y-element is condensed using Equation 3.30:

1 -1
Kiio© = Bluo (A + BEVkDBEYT)  Buao, (3.160)

resulting in a foldable KL0)-element with the exact same DOFs as the non-enriched KLO
element. Investigating the condensed formulation, the only difference between the standard
non-foldable KL0-element and the KL0()-element is found in an addition to the A.-matrix of
-1
BEWK®D T BIMT where:
Ct  C2SZ 23Sy
- l
BEFOKM ™ gEMr _ st sto20si. (3.161)
t
2C3S; 2CpS3 4C%S2

If a fold approximates a standard element node, the fold length [ decreases to zero, and the

addition to the A.-matrix will also decrease: 35(1)1{5”_135(1” - @, causing the KL0©)-element
to converge to a standard non-foldable KLO-element. Furthermore, investigating the general
condensed formulation in Equation 3.30 and the KL0© formulation in Equation 3.160, it is
found that the only difference between condensed KL0O™ and KL0®elements would be in the
B:K;'BL term, for which it is found that:

ByK;'BL = Bg(l)Kt(l)_lBg(l)T — BE(Z)KEZ)_lBI;(Z)T. (3.162)

Condensing the KLO®M and KL0® elements, thus results in the exact same 6 DOF foldable
KLO0©)-element. Another foldable element is created by local condensation of the KL1()-
element, resulting in the 12 DOF foldable KL1(9)-element:

PR
Kypa0 = Bipa (Al +B{K§2) Bl) By, (8.163)

By condensing the KL1®-element, enriched DOFs can not be shared between neighboring
elements, which may introduce an enriched edge continuity error in the KL1(°)-element.

Since the enriched DOFs are condensed out of the elements, the calculation of the en-
riched node displacement is a bit more difficult. To calculate this displacement, firstly the
auxiliary DOFs ar computed as:

B =—(A+B;K:'BY)  Bgug, (3.164)
secondly the enriched DOFs can be computed as:

u; = K;'BLB, (3.165)
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and the edge displacement is calculated by inserting the enriched DOF into Equation 3.63.
To apply a constant surface pressure on the condensed elements, the exact same load

vectors as found in [39] can be used, as the condensed elements contain the exact same DOFs

as their non-foldable counterparts. On the KL0(9)-element a constant pressure is applied as:

qS
flugoeo ==-[1 01 0 1 0fuggo, (3.166)

where the displacement vector is assembled as: u;ao(c) = [Wy1, Pn1, W2, Ppna, W3, Pn3], and on

the KL1(°-element a constant pressure is applied as:

1 g5
fug0 = T[ 010001000 10 0]ugwo (3.167)
where the displacement vector is assembled as:

u}{Ll<c)=[W1 Waz Pnzs Pnzz W2 W31 Pnzi Pniz Wz Wiz Pniz Ppor |- (3.168)

Furthermore, since the enriched DOFs are removed from the elements, a distributed edge
load is applied by only using the standard displacement and rotation interpolations:

li]'
flu= f [Fw +mpr]dS = f [ mb|Ljudsg;, (3.169)
r 0

where in L;; only the standard edge interpolation functions are present.

3.4. Overview of the enriched elements

In this chapter several different foldable elements have been derived. Based on the KLO-
element the KLOM, KL0© and KLO® elements are derived, based on the KL1-element the
KL1® and KL1(9-elements are derived, and based on the HSM-element, the HSM® -element
is derived. An overview of the different matrices used in these elements can be found in Table
3.1. Two different A-matrices are defined; the constant moment A.-matrix, used in all foldable

KLOW | KLO® | KLO© | KL1® | KL1© | HSM®

A A, A, A, A, A, A,
ke | kP | kP | kY| kP KD | KD
BS B{(jL() B{(]-LO Bg-LO Bg(le Bg'Ll BgSM

By | BE | B{® | B | BL,Bf | BL,Bf | BB

Table 3.1: The matrices used in defining the six different foldable elements. Several different matrices are defined to use as A and
K¢-matrices, and several different sub-matrices are defined to be assembled into the Bs and Bg-matrices.

KL0-elements, and the linear moment 4;-matrix, used in the foldable KL1 and HSM-elements.
Furthermore, two different torsional stiffness matrices are defined; Kt(l) is used when only
one enriched DOF is introduced (in the KLO® and KL0©-elements), and K? is used when
two enriched DOFs are introduced (in the KL0®, KL1®), KL1(9), and HSM(?-elements). The
matrices used to assemble B (B;;), are dependent only on the base element used to create the
foldable element. The foldable KL0-elements use two different enriched B-matrices dependent
on the amount of enriched DOFs; the KLO™ and KL0©) elements introduce only one enriched
DOF and use Blé(l), while the KL0® -element introduces two enriched DOFs and uses BIC:(Z).
Since the KL1® | KL1(), and HSM® elements use the exact same moment field interpolation
and edge enrichment, all three elements use the same matrices to assemble Bj.

An advantage of the non-enriched moment fields, is the relatively easy construction of the
B and A-matrices, which are exactly the same as in the non-foldable element formulations.
Furthermore, introducing a weak enrichment in the moment field of the KL0-element would
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have been illogical, since it would increase the order of the constant moment field interpo-
lation to linearly varying interpolation. Introducing a weak moment field enrichment in the
linear moment KL1®, KL1(9), and HSM® elements, would presumably lead to the introduc-
tion of more enriched DOFs, as was also found in the 6 DOF beam element. Introducing more
enriched DOFs may be disadvantageous, since generally the introduction of more enriched
DOFs, leads to worse matrix condition numbers [31].

An additional cause of error in the foldable elements may be identified. The KL0O™ and
KLO®)-elements introduce only one enriched DOF, and have a constant jump in rotation
along the entire internal fold line. Since neighboring enriched elements can have different
internal jumps in rotation, the edge enrichment in these neighboring elements, calculated
using Equation 3.69, may differ. On the edge between neighboring enriched elements, a local
strong discontinuity may thus be present, causing an enriched edge continuity error in the
KLO®M and KL0©-elements. The KL0®-element solves this problem by adding two enriched
DOFs, placing them on the element edges, and sharing these DOFs between neighboring
enriched elements. Contrary to the KL1®-element, enriched DOFs are not shared between
neighboring elements in the KL1(9)-element, which is expected to introduce an enriched edge
continuity error. Furthermore, since the KL1®, KL1(), and HSM® elements use a higher
order moment field, they are expected to achieve lower errors, and higher convergence rates,
than the KLO®, KL0©), and KL0® elements.

In this chapter, C!-continuous moment interpolations were used, as this was suspected to
result in well conditioned stiffness matrices, but investigating the KL0(")-element, a possible
source for ill-conditioning of the stiffness matrix is found. The final stiffness matrix of the
foldable element is defined as:

Bi1o
Ky o =B )AEIBKLO(U + K(Tl) - [BF(l)T At [BKLO Blc:(l)] + K(Fl)
c

.
KLO(1

— _ F(1
B}(LOAC 1BKLO BTKLOAC 1BC( )
= | pF@) FQ)! r@ ol G170
B."V A;'By,, Bc U A;'B. +K;

When a fold approaches one of the element nodes, the length of the internal fold line decreases
lr = 0, which also causes Bg(l) and Kgl), as defined in Equations 3.93 and 3.95, to decrease,

Bg(l) - @ and K,_Sl) — 0. Due to the decrease of these sub-matrices, the stiffness matrix will
converge to:

Bk1oA: By @
] ol

resulting in some of its eigenvalues decreasing to zero, which will result in an ill-conditioned
stiffness matrix. The condensed KL0()-element does not suffer from a similar problem, since
when the internal fold length decreases to zero, the condensed element converges to a stan-
dard non-foldable KLO-element, as explained in Section 3.3.8. Furthermore, inspecting the
stiffness matrix definitions of the KL0®, KL1® and HSM® elements, they are expected to
suffer from a similar problem as the KL0"-element, when folds approach a standard element
node, but the condensed KL1(©) element is expected to remain well conditioned.
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To investigate the accuracy of the KLOW | KL0® | KL0©, KL1® KL1(9), and HSM® elements,
their convergence behavior is examined for straight and curved folds. The convergence be-
havior of the elements is tested using a displacement error norm. Besides the element accu-
racies, their matrix condition numbers will be examined, as ill-conditioned stiffness matrices

are often found in enriched FEM.

In all tests, unless stated otherwise, the material parameters shown in Table 4.1 are used.

4.1. Convergence analysis on a square plate

EINm™2] [k, [Nmrad"m " [ L [m] [ ¢t [m] | v FINm™][ [ P [Nm~?]

69 - 10° 500 1 0.01 0.33 | 100 100

Table 4.1: The material parameters used in the square plate calculations throughout this chapter. Either a distributed force F is applied
on side C, or a constant pressure P is applied on the entire square plate surface in Figure 4.1

To examine the foldable plate elements, an L
x L square plate as shown in Figure 4.1, with
material parameters as in Table 4.1, is analyzed.
The plate is discretized using a structured mesh
defined by N, the number of elements on one of
the plate edges, resulting in a mesh with N x N x 2
triangular elements. In Figure 4.1, we use N = 3
to discretize the plate, resulting in 3 X3 X2 = 18
triangular elements. Furthermore, a vertical fold
is imposed at at x = xf, side A is clamped and
the edge rotation of sides B and D is fixed ¢, = 0.
Using these boundary conditions, displacements
can be calculated using a clamped beam approx-
imation. Two test cases are derived: in the first
test case, a distributed force F [Nm~'] is applied
on side C, resulting in linear moments through-
out the plate. In the second test case, a pressure
P [Nm™2] is applied on the plate surface. The
convergence behavior is characterized using an
error in displacement:

2
EI.: w: —wh
e = llz(llwzl)l (41)
i=1"i
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A Xf

B

Figure 4.1: An L X L square plate with a horizontal fold at x =
x¢ and number of border elements N. side A is clamped con-
straining both rotation and displacement, either a distributed
force is applied on side C or a pressure is applied on its entire
surface.
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where I is the number of corner nodes, w; the analytical corner node displacement, and w/*
the FEM displacement. Because no interpolation field for the displacement in the elements is
derived, the error is evaluated at the corner nodes instead of integration points. To investigate
the error convergence, the logarithmic slope of the error with respect to the number of DOFs
(#D), is calculated as:

log (e;/e;)
"0 = 1og (#D, /#D;)’ (4-2)
where e; = e(#D;).

Besides the foldable element solutions, a standard FEM solution is constructed, using
the hinged KLO elements as found in [13, 45]. This solution is used to analyze the difference
between error behavior and condition numbers, of the foldable elements and a standard
FEM solution. To implement the hinged KLO elements for arbitrarily located folds, local
re-meshing is applied in those elements cut by a fold, as illustrated in Figure 4.2. In this re-
meshing procedure, a parent element, intersected by the imposed fold, is divided into three
sub-elements on which standard KLO elements are inserted. Comparing a foldable and a
hinged KLO solution, only one foldable element needs to be inserted on the parent element,
while three KLO elements are inserted on the three partitioned elements, in the hinged KLO
solution. Besides the three standard KLO elements, a hinge element is inserted on the fold

line, with stiffness matrix [13]:
1 —1||ef
KhuF = kt [_1 1 ] [d)z?] ) (43)

where the DOFs (¢f, ¢f) are the standard edge rotations of the KL0-element, located on the
hinged edge, as shown in Figure 4.2.

Parent element Partitioned elements

-
-

Figure 4.2: To implement the hinged KLO element, local re-meshing is applied in those elements intersected by the fold, to split a parent
element into three partitioned elements. On the parent element with three standard nodes (the round nodes), a fold line is introduced
(the red dashed line), which splits the parent element into a triangle and a quadrilateral, and adds two nodes (the square nodes). The
quadrilateral is triangulated by adding an element boundary (the blue line), resulting in the final three partitioned elements. On the three
partitioned elements standard KLO elements are inserted, furthermore a hinge element is inserted on the hinged boundary created by
the fold line, to connect ¢ and ¢5.

4.1.1. Distributed edge load
Using a beam approximation, the displacement of the plate, loaded on edge C by a distributed
force F, is calculated as:

) _Fx3 F(L—x)xz 0 OSXSXf
wH(x) = 3D + —p + F(L—x};()t(x—xf) <x<L ' (4.4)
where the material parameter D is defined as:
Et?
D (4.5)

T 12(1 -2
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In Figure 4.3, the error convergence of the plate folded at x; = 0.5 can be found. Since
this problem contains only a linear moment filed, and a linear moment field interpolation
is used in the KL1®-element derivation, it finds exact solutions for this problem. However,
the KL1(9-element does not find exact solutions, due to the enriched edge continuity error
described in Section 3.4. Furthermore, the KL1(9-element shows a different convergence
behavior than the other elements: it initially converges with r¢;,, # —2, and only towards the
end converges with r¢;,g & —1. The K L0®)-element also has an initially higher convergence
rate, but the convergence stabilizes quickly to a rate of r¢;,4 ® —1. All other elements have a
fairly constant convergence rate of r¢;,4 & —1. Although the HSM®_-element is also derived
using linear moments, it does not yield exact solutions, this will be further elaborated on in
Section 4.1.3.

T T T T T T T T T T 1T T T T 17T TTT] T T T 11T T T T 17171
—8— k0@
—&— kLo
1071 - ®- kLo© [ 100 |- N
HsM(2)
- - kL1(©
10—3 - —A— KLOHinge | | 10_2 | N
) )
10—5 [ 1 . . ] 10_4 | k
) » <o
1077 | ‘ 1 1070} 1
(| Ll | Lol Lol L] ! Lol L]
10! 107 103 10* 10° 1072 1071 10°
DOFs h
(a) The relation between displacement error and number of DOFs. (b) The relation between displacement error and mesh size h.

Figure 4.3: The displacement error convergence using the plate in Figure 4.1 with the values in Table 4.1, the plate is simplified to a
clamped beam by clamping side A and fixing the rotations of sides B and D as: ¢, = 0. A fold is located at x = % and a distributed
force F [Nm~"] is applied on side C.

4.1.2. Distributed surface pressure
The displacement of the plate under a surface pressure P [N m_z], is calculated as:

PL(L — x)x3 O x)2x? N pxt (0 0<x=<xf

[ — 2 _
3D 4D gD 1| MG cx<y
2k;

w®(x) =

(4.6)

where the material parameter D is calculated as in Equation 4.5. The error convergence of
the plate, folded at x; = 0.5, can be found in Figure 4.4, all elements attain a convergence rate
of r¢joy = —1. With respect to the number of DOFs used, the elements can be divided into
three groups with similar levels of accuracy, ranked from worst to best, they are: the KL0™
and KL0) elements, the hinged KL0O and KL0® elements, and the KL1(), KL1®) and HSM®
elements. Since the KLO™ and KL0() elements use the same moment field interpolation, and
assume a constant jump in rotation, they attain the exact same errors with respect to the
element size h. In Figure 4.4a, it seems like these elements attain different errors, but this
is due to the fact that the KL0)-element uses less DOFs than the KL0™-element.

Even though the foldable KL1 and HSM elements use a higher order moment field inter-
polation than the foldable KLO elements, they attain the same convergence rate of ¢,y = —1.
Furthermore, a higher convergence rate is initially observed in the KL1(°)-element, as was
the case in Figure 4.3, but as the KL1(®-error approaches the KL1®-error, the convergence
rate of the KL1(9-element stabilizes at r¢;,; = —1, and the KL1® and KL1( elements attain
similar displacement errors.
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Figure 4.4: The displacement error convergence using the plate in Figure 4.1 with the values in Table 4.1, the plate is simplified to a
clamped beam by clamping side A and prescribing the rotations of sides B and D as: ¢, = 0. A fold is located at xy = % and a
distributed pressure P [N m~2] is applied on the plate surface.

4.1.3. HSM®-element investigation
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(a) The displacement error covergence for the plate, calculated using (b) The visualized displacement calculated using the HSM(®)-element.
the several foladble element formulations. Using the reference solution Almost no folding behavior is observed and the solution is close to the
in Equation 4.4, all elements except the HSM ()-element converge to solution of a non-foldable plate.

the exact solution.

Figure 4.5: The plate in Figure 4.1, with a fold imposed at xy = 0.45. A distributed force is applied on side C, side A is clamped and the
rotation of sides B and D is fixed ¢,, = 0.

A linear moment interpolation is used in the HSM®-element formulation, and only linear
moments were present in the test in Section 4.1.1. The HSM®-element was thus expected to
achieve numerical accuracy in this test case, but did not. Furthermore, testing the solution
for a fold at almost any other location than x; = 0.5, a different behavior of the HSM (@)_element
is found. As shown in Figure 4.5a, the HSM® solution does not converge to the reference
solution for the problem in Section 4.1.1, but with a fold imposed at x; = 0.45. In Figure
4.5b the displacement of the plate, calculated using the HSM®-element, is visualized; only
a relatively small fold angle can be found in the solution. The fold angle, calculated using
the HSM®-element converges to Aw, ~ 1.1-1073, while the analytically calculated jump in
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rotation is:
My  F(L—x7) 100 (1—0.45)
ke k, - 500

Aw, = = 0.11[rad]. 4.7)
Folding stiffness is thus overestimated in the HSM®-element.

To further investigate the HSM®-element, the displacement error is calculated for several
fold locations in Figure 4.6. Using Figure 4.1, a plate is constructed using eleven border
elements (N = 11), folds are imposed between 5/11 < xy < 6/11, side A is clamped, and
a pressure P [Nm™2] is applied on the plate surface. Only when the fold is located at the
center of the plate (x; = 0.5) does the HSM (?)_element achieve accurate solutions. The error
of the HSM®-element could be an implementation error, to verify that this is not the case, a
non-folded plate is analyzed. The square plate in Figure 4.1 is used to test the non-foldable
HSM-element, side A is clamped, the rotations of sides B and D are fixed, and a distributed
force F is applied on side C, but no fold is imposed. A non-folded analytical solution is

constructed as:
Fx® F(L-x)x?
3 = 4~ 7
WEW =35t %
resulting in the error convergence in Figure 4.7, where the non-foldable standard HSM-
element converges as expected. Furthermore, the fault in the HSM®)-element can not be
attributed to the enriched implementation, since the HSM® and KL1® elements use the
exact same enriched matrices and implementation, and no large errors are found in the
KL1®-element. It is concluded that the fault in HSM®-element is not due to a fault in its
implementation. For the remainder of this thesis the HSM()-element will be omitted from the

results.

(4.8)
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Figure 4.6: The displacement error of the folded plate with
a pressure applied on its surface. Using Figure 4.1, a mesh
is created with 11 edge elements (N = 11), and folds are
imposed between % < x < %. Only for a fold located

Figure 4.7: The displacement error of the plate in Figure 4.1
with a distributed force F applied on Side C, side A is clamped,
and the rotation of sides B and D are fixed ¢, = 0. No fold
is implemented in the plate and the convergence is calculated
at the center of the plate does the HSM () -element achieve using the non-foldable standard HSM-element.

accurate results.

An explanation for the error in the HSM(®-element is found in [39]; in a non-enriched
plate element with linear moments, 9 independent generalized stresses are introduced, rep-
resented by the 9 components of B4 in the HSM® and KL1® derivation. The 9 generalized
stresses are energetically conjugated to 9 generalized deformations. Adding the three rigid
body modes of a plate to the 9 deformations 9+ 3 = 12 DOF's are needed to accurately model
a non-folded linear moment plate. Using less DOFs than deformation modes, may lead to
overestimated element stiffness [39]. In the foldable HSM and KL1 elements, 2 extra modes
of deformation are imposed on the plate; a constant jump in rotation at the fold, and a lin-
early varying jump in rotation at the fold. To accurately represent a foldable linear moment
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plate, 9+2+3 = 14 DOFs are needed. The KL1®-element introduces these 14 DOFs, but the
HSM®-element introduces only 11 DOFs. Introducing less DOFs than needed, not all modes
of deformation can accurately be represented, and the folding stiffness is overestimated.

4.1.4. Tilted fold convergence

To test problems of a higher complexity, the plate
in Figure 4.8 is used, where a tilted fold is im-
posed on the plate at x; = 0.71 — 0.5x, a dis-
tributed force F is applied on side C, but the ro-
tation of sides B and D is not fixed ¢, # 0. Pois- D
son effect will be present in the plate, because .
¢, # 0 on sides B and D, an analytical solution N
can thus not be made using a beam approxima-
tion. Since constructing an analytical solution \
for a square plate with an imposed tilted fold is a 4 “\
fairly cumbersome process, a reference solution I
is constructed using hinged KLO-elements on a \
reference mesh. Figure 4.9 illustrates the con- \

struction of a reference mesh, and two conver- \
gence meshes, such that all corner nodes in the
convergence meshes overlap with a corner node \q rCy
in the reference mesh. In the figure, two conver- :
gence meshes are defined by N, = 1,2, and one XF B

reference mesh is defined by N,.r = 4, where N,

and Ny, are the amount of ele.ments on one of the Figure 4.8: A square plate, discretized using N elements on
square plates edges. By defining the convergence gach of its edges, resulting in a total of N X N x 2 triangular
mesh and reference mesh such that N,y = 2PN, elements. Atilted fold is impose on the plate at x = x; —rcs
is always valid for some p € {1,2,3,..}, the corner * Side A is clamped and a distributed force F is applied on

nodes overlap, and the displacement at the cor- side C.
ner nodes in the reference mesh can be used as a
reference solution (w;), to compute the displace-
ment error in Equation 4.1.
Ne=1 N, =2 . Nref=4'

L NN

Figure 4.9: An example of the construction of convergence and reference meshes. Two convergence meshes are constructed using
N¢ = 1,2, and one reference mesh is constructed using N,.y = 4. All corner nodes of the convergence mesh, constructed using
N, = 2 (depicted as green dots), overlap with some of the corner nodes in the reference mesh (depicted as green dots). Furthermore,
all corner nodes of the reference mesh constructed using N, = 1 (depicted as blue dots) overlap with some of the corner nodes of the
reference mesh (the dots with blue borders).

To test the square plate in Figure 4.8, a reference mesh is defined by N,..; = 256, and con-
vergence meshes are defined by N, = 1,2,4,8,16,32, 64,128, resulting in Figure 4.10. Although
the displacement error of the KL1®-element remains lower than the error of all other fold-
able elements, the convergence rate is decreased to r¢;,4, ~ —0.76. All foldable KL0-elements
and the KL1()-element are still found to converge with rC1og & —1. Contrary to the previous
tests, the KLO® and hinged KLO solutions do not converge to similar errors, as the hinged
KLO solution achieves a slightly lower error. A visual representation of the displacement can
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be found in Figure 4.11, most displacement in the plate is due to the jump in rotation on the
fold line. An inaccurate jump in rotation will thus lead to large errors in displacement, and
the displacement error is dominated by the calculation of the jump in rotation. In Appendix
F, several other test cases are investigated where several other straight folds are imposed on

the square plate.
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Figure 4.10: The displacement error of the folded plate in Figure 4.8 using a hinged KLO element with Ny = 256 as reference solution.
Besides the convergence of the enriched KL0 and KL1 elements the convergence of the hinged KL0-element to its own reference mesh
solution is calculated. As test parameters the values in Table 4.1 are used, side A is clamped and the distributed force is applied on side
C. The fold is imposed at xy = 0.71 — 0.5y. A visual representation of the displacement can be found in Figure 4.11.
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Figure 4.11: The displacement of the plate in Figure 4.1, constructed using N. = 32. A fold is imposed at x¢

distributed force is applied on the right edge. The fold is modeled using the K L1(®)-element.
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4.2. 2D matrix condition
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Figure 4.12: Two plate elements, folded by a vertical crease Figure 4.13: The matrix condition for all foldable elements.
at varying locations &. No precondition matrix is applied to improve condition num-
ber. The condition numbers of the condensed systems are
bounded and can be evaluated at £ = 0 and & = 1, the

condition of all other foldable elements is unbounded and not
evaluatedat§ = 0and & = 1.

The condition number of the assembled KLO hinge, enriched, and condensed KL0 and KL1
elements, are evaluated using the problem in Figure 4.12, and the parameters in Table 4.1.
The condition number is computed as:

_ Anax
X=-— (4.9)

min

where 1,4, is the highest eigenvalue and 4,,;,, the lowest non-zero eigenvalue of the stiffness
matrix. As can be seen in Figure 4.13, the matrix condition number of the condensed systems
remains fairly constant for folds in the entire element domain. In fact, the condition number
of the condensed elements is bounded, and at { = 0 and ¢ = 1, the condition numbers of the
KLO®) and KL1() elements are 86.3 and 17051 respectively. In all other element formulations,
the matrix condition number is unbounded for folds approaching £ = 0 or £ = 1. The KL1®
element has the highest condition number over the largest part of the element domain, but
the condition number for folds close to element boundaries is of main concern, as it is un-
bounded. Investigating the condition close to ¢ = 0 the hinged KLO solution performs worst,
followed by the KL1®, KL0O®  KLO®W, KL1() and KL0©) elements.

The hinged KLO solution is basically a standard FEM solution, where a fold is imposed on
the mesh by partitioning elements into sub-elements, as described in Figure 4.2. Following
this procedure, relatively small standard KLO elements will be inserted in the mesh for folds
approaching ¢ = 0 or { = 1, causing an ill-conditioned stiffness matrix. Furthermore, inves-
tigating the cause of ill-conditioning in the KL1®, KL0®), and KLO™ elements, their highest
eigenvalues are found to remain fairly constant, while their lowest eigenvalues are found to
rapidly decrease, causing the increase in condition number. The decreased eigenvalues may
be caused by the enriched B-matrices converging to zero By — 0, as anticipated in Section
3.4. Inspecting the enriched B-matrix of the two elements in Figure 4.12, it is found that the
enriched B-matrix of the upper right triangle decreases to zero for £ - 0, and the enriched
B-matrix of the lower left triangle converges to zero for £ — 1. In both elements, the enriched
B-matrix thus decreases when the fold approaches one standard element node, causing an
increase in matrix condition number due to a decrease of the lowest non-zero eigenvalue.
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To improve the matrix condition of the foldable elements, a preconditioner is used as:

K’ = PKP, (4.10)

where the precondition matrix is defined as:

P =—L (4.11)

Using the this preconditioner, condition numbers are found as in Figure 4.14, the condition
of the non-condensed foldable elements is significantly improved. On the non-condensed
elements, no preconditioner can be applied for folds crossing standard nodes at £ = 0 or
¢ = 1. For these folds, diagonal terms related to the enriched DOFs became zero, and the
preconditioner could not be computed. The condition number of the condensed elements is
also improved, but since the condensed elements already have bounded condition numbers,
using a preconditioner is not strictly necessary.
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Figure 4.14: The matrix condition calculated using Figure 4.12, improved using the preconditioner in Equation 4.11. The
condition number of the condensed systems is bounded and evaluated at ¢ = 0 and ¢ = 1, the condition of all other
foldable elements is unbounded and could not be evaluated at § = 0 and & = 1.

To calculate the condition numbers upon mesh refinement, the plate as shown in Figure
4.1 is used with a fold located at x; = 0.5, where the mesh is refined by increasing N, the
number of elements located on an edge. In Figure 4.15, all elements are found to have a fairly
constant increase in condition number. In this test, the mesh and fold line are constructed
such that the enriched elements achieve their optimal condition number (as found at £ = 0.5
in Figure 4.13), Figure 4.15 is thus used as a base-line for folds causing ill-conditioning.
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Figure 4.15: The matrix condition upon increasing N, the number of edge elements in the problem in Figure 4.1. A fold is located
at x; = 0.5, this causes the fold to intersect all elements at the optimal location for condition number (§ = 0.5 in Figure 4.12). No
preconditioner is applied to improve matrix condition.

To introduce ill-conditioned elements to the mesh refinement, the plate in Figure 4.8 is used,
where no boundary conditions are applied, and a fold is introduced at:

x; = 041+ 0.2y, (4.12)

which results in Figure 4.16. Upon mesh refinement, the tilted fold may approximate stan-
dard nodes in certain elements, resulting in an ill-conditioned stiffness matrix. The hinged
KLO solution is the first to attain a significant increase in condition number with respect
to Figure 4.15, while in all foldable elements, only a slight increase of condition number is
found.
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Figure 4.16: The matrix condition upon increasing N, the number of edge elements in the problem in Figure 4.8. The fold is located at
Xg = 0.41 + 0.2y, and no preconditioner is applied to improve matrix condition.

To introduce a further increase in condition number, on the plate in Figure 4.8, a fold is
imposed at:

x; = 0.334 + 0333y, (4.13)

which results in Figure 4.17. Almost all stiffness matrices rapidly become ill-conditioned,
and only the condensed elements remain well-conditioned. As expected from Figure 4.13,
the hinged KLO solution attains the highest condition numbers.
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Figure 4.17: The matrix condition upon increasing N, the number of edge elements in the problem in Figure 4.8. The fold is located at
xf = 0.334 + 0.333y, and no preconditioner is applied to improve condition numbers.

To improve the condition numbers of the problem in Figure 4.17, the preconditioner as in
Equation 4.11 is applied, resulting in Figure 4.18. The condition number of all foldable
formulations is improved, and while the largest improvements can be found for the hinged
KLO, KLO®, KLO™W and KL1® elements, a slight improvement is also found for the condition
numbers of the KL0() and KL1() elements.
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Figure 4.18: The matrix condition upon increasing N, the number of edge elements in the problem in Figure 4.8. The fold is located at
Xr = 0.334 + 0.333y and the condition is improved using the preconditioner as defined in Equation 4.11.

4.3. Curved fold convergence

EINM™2] [k, [Nmrad~"m™" [ h[m] [ v R[m] | Re[m] | g [Nm™2?]
69-10° | 500 001 [033]2 1.5 -100

Table 4.2: Parameters used for the plate in Figure 4.19, and to derive the analytical solution in Equations 4.14, ??.

Via a similar approach as in [22], curved folds can be modeled by making piecewise linear
approximations of the fold; within each element, a linear fold segment is created between
the two enriched nodes, located at the intersections of the element edge and fold. Using no
addition to the folded element formulation, it should thus be possible to model curved folds.
A test for modeling curved folds is described in Figure 4.19. The test consists of a plate of
radius R = 2 m, which is clamped at its outer edge, on which a pressure ¢ = —100 Nm~2 is
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applied, and a circular fold with a radius Ry = 1.5 m is imposed.

Figure 4.19: A circular plate with radius R on which a circular fold with radius Rg is imposed. The plate is clamped on its outer edge, a
pressure is applied on its entire surface, and the material parameters in Table 4.2 are used.

Starting from the equations found in [46], an exact analytical solution is derived in Appendix
G. The symbolic expression for the displacement function is quite lengthy, and thus not
displayed in this thesis. Using the material parameter in Table 4.2, the exact solution for the
displacement field is found as:

~ gr*  0.01057r2
w(r) = o5+~ — 000525, 0 <r <Rp, (4.14)

gr*  0.0092372

W =gpt T2

+—0.00297Inr — 0.00330, R <7 <R (4.15)

Figures 4.20 and 4.21, show the deformed circular plate, in the outer ring, where Rr <r <
R, relatively small displacement is found. Furthermore, in Figure 4.20, a jump in rotation
can clearly be seen at the fold, causing relatively large displacements in the inner folded circle
where r < Rg.

ndata.platedisplacement

Figure 4.20: The scaled displacement of the circular folded plate in Figure 4.19, calculated using the KL1(®)-element on a mesh defined
by mesh size h = 0.125.

In Figure 4.22, the displacement error convergence for curved folds is shown, the foldable
KLO elements perform quite well with a relatively constant convergence rate of r¢,y = —1.
Although the foldable KL1 elements achieve the lowest error, their convergence rate is not
stable; the KL1(9-element initially converges with a rate of r¢,,; & —1, but the rate slowly
decreases when more DOFs are used. Furthermore, the KL1(®-element has an initial slow
convergence rate, which increases when the KL1®-error approaches the KL1(®)-error, but
decreases again when more DOFs are used.
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Figure 4.21: The displacement of the circular folded plate in Figure 4.19, calculated using the KL1()-element on a mesh defined by
mesh size h = 0.125.
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Figure 4.22: The displacement error of the circular plate in Figure 4.2 with the material parameters in Table 4.2, the foldable KL0 elements
achieve relatively stable convergence rates, while the convergence rate of the foldable KL1 elements slowly decreases.

An explanation for the convergence behavior of the foldable KL1 elements, is found using
Figure 4.23, where: a curved fold, the linear approximation of the curved fold, the vectors
representing the enriched DOFs (Aw,fl(l), Aw,fl(z)) and their orientation (1Y, (®), and the actual
jump in rotation Aw} are displayed. Since the linear fold segments are not aligned, the

enriched DOFs (Awyfl(l), Aw,fl(z)) are not aligned with the actual jump in rotation Awk, which
introduces an enriched edge continuity error. When the two elements are assembled, we
impose Aw,gll) = AW,%Z) = Aw,gfl), and the edge enrichment in the two neighboring elements is

calculated as:

W,gl) ) = AW_S{D cos (6W)W(n) # Aw,gfl) cos (6@)¥(n) = Wéz)(r)). (4.16)
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Due to the two different orientation of the linear fold segments (6" # (), the displacement
enrichment of the two neighboring elements is not equal, causing an additional continuity
error. Furthermore, since there is no contribution of the edge enrichment to the stiffness
matrix in the foldable KL0O-element formulations, they are not influenced by this error.

Figure 4.23: Two triangular elements cut by a curved fold (red) which is interpolated as two linear fold segments (dashed). At the shared
boundary of the two elements, the DOFs representing the jump in rotation in the two elements (Awfl(i), Aw,i(z)) are not aligned with the

real tangential vector representing the jump in rotation (Awf;'l).



Discussion and conclusions

This thesis was aimed at developing methods for accurate and flexible origami modeling.
Adopting an enriched mixed /hybrid formulation, interpolation functions for the moment field
were used, which imposed less continuity constraints in Kirchhoff-Love plate elements. Six
foldable plate elements were derived; three foldable constant moment elements (KLO™, KL0(©),
KL0®), and three foldable linear moment elements (KL1®, KL1©), HSM®). This work should
be seen as a first step towards enriched origami modeling. However, in realistic origami
problems, changes in director field and membrane stresses will be present. Since the foldable
elements, derived in this thesis, do not take these effects into account, they are not yet suited
for origami modeling.

5.1. Discussion

5.1.1. Foldable beam derivation

In Chapter 2, enriched mixed/hybrid FEM was investigated in the context of origami mod-
eling, by deriving foldable beam elements. A modified potential energy equation was formu-
lated, where kinematic equations were imposed on a potential energy equation via Lagrange
multipliers. Subsequently, the Lagrange multipliers were interpreted via virtual variations
of the potential energy equation. Besides the standard Euler-Bernoulli kinematic relations,
imposed on the subdomains of the beam, kinematic relations were imposed on the fold to
guarantee C°-continuity. In the derivation, either an externally applied force at the fold F
could be introduced, resulting in an enriched C° continuous moment field, or F could be
excluded from the derivation, resulting in an unenriched C'-continuous moment field. Im-
plementing a weak moment field enrichment in the discretization, a DOF representing the
displacement at the fold wr needed to be added to the foldable element. Two foldable beam
elements were thus derived; the 6 DOF beam, including wr and an enriched moment field,
and the 5 DOF beam, excluding wr and using no moment field enrichment.

Both the 5 and 6 DOF beam elements achieved exact results for a linear reference solu-
tion. Furthermore, the 6 DOF beam was found to have significantly worse condition numbers
than the 5 DOF beam. Whereas the 5 DOF beam achieved relatively constant and bounded
condition numbers, the condition numbers for the 6 DOF beam were unbounded for folds
approaching standard element nodes. Following the IGFEM procedure to improve matrix
condition [11], a scaling parameter was introduced to the moment field enrichment in the 6
DOF beam element. Unfortunately, this did not change matrix condition numbers. Imple-
menting a Jacobi preconditioner, the 6 DOF beam condition numbers could be significantly
improved, and similar condition numbers as in the 5 DOF beam element were observed. To
reduce the amount of DOF's and further improve matrix condition of the 5 DOF foldable beam,
it was condensed to a 4 DOF foldable beam; the condensation may be seen as an extension of
the mixed/hybrid formulation where, besides a moment field, a folded rotational field is im-
posed on the system. The 4DOF beam had better condition numbers than the 5 DOF beam,
and the 5 DOF beam had better condition numbers than the 6 DOF beam, which indicates
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that using less enriched DOFs may cause improved condition numbers, as also found for the
cracked plates in [31].

An advantage of the 6 DOF beam over the 5 DOF beam, was the fact that using the 6 DOF
beam a force I could easily be applied at the fold, while this was more challenging in the 5
DOF beam. K- was applied on the 5 DOF beam via the relatively complex work-equivalent load
vector, derived in Appendix B, and both the 5 and 6 DOF foldable elements, were found to
achieve accurate results, when loaded by a force at the fold. An advantage of the 5 DOF beam
over the 6 DOF beam, is its ability to accurately model problems where a fold is located exactly
at a standard element node, whereas in the 6 DOF beam, certain terms of the stiffness matrix
grow to infinity for these folds, and the stiffness matrix becomes uninvertible. As the 5 DOF
beam element used less DOFs and had excellent condition numbers, it was chosen to derive
the foldable plate elements using a C*-continuous non-enriched moment field interpolation,
by foregoing the application of a force on the fold in the modified potential energy derivation.

5.1.2. Constant moment plates

Firstly, two non-condensed foldable elements were defined; the KL0(-element, which adds
only one enriched DOF, and the KL0®-element, which adds two enriched DOFs. Since a
constant moment field was used, the bending energy in the fold could be evaluated using
a constant jump in rotation, resulting in only one enriched DOF located at the center of
the internal fold line. However, this DOF could not be shared between neighboring enriched
elements, causing a difference of the jump in rotation on the shared folded element edges, and
thus an enriched edge continuity error. To fix the enriched edge continuity error, the KL0®)-
element was derived which adds two DOF's to the KL0-element, one per enriched node, such
that enriched DOF's could be shared between neighboring elements. Although an enrichment
function for the displacement field was defined on the element edge of both elements, it did not
contribute to the stiffness matrix, due to the constant moment in the plate. To improve matrix
condition number, the KL0M-element was condensed locally, before assembly into the global
stiffness matrix, resulting in the KL0(®-element. Since the KLOM-element contained the
enriched edge continuity error, it is assumed that the KL0(®)-element would also contain this
error. Moreover, as condensing the KL0® and KL0® elements resulted in the same KL0©)-
element, local condensation thus introduced an enriched edge continuity error, when applied
on the KL0O®-element. To allow a comparison with a standard FEM solution, the hinged KL0
solution was constructed by local re-meshing of parent elements into sub-elements, and
implementing hinged KLO elements as in [13, 45].

As shown in Chapter 4, all foldable KLO elements, and the hinged KL0 solution, were found
to achieve an error convergence of r¢;,, = —1, for all tests including straight or curved folds.
The KLO™W and KL0© elements achieved the exact same errors with respect to the mesh size,
due to both elements having an enriched edge continuity error. Since the KL0%-element does
not contain this error, it achieved slightly lower errors. In the simple test cases in Sections
4.1.1 and 4.1.2, where a beam approximation could be used as a reference solution, the
KLO®-element converged to similar errors as the hinged KLO0 solution. However, in the more
complex test cases for a tilted fold in Section 4.1.4 and for a curved fold in Section 4.1.4,
the hinged KLO solution achieved slightly lower errors than the KL0® solution. Since the
hinged KLO solution implemented three partitioned elements, with separate moment fields,
around the fold, it was able to accurately capture the complex moment field around the
fold. Contrarily, the foldable KLO solutions only implemented one element with one constant
moment on the fold, and could thus less accurately capture the moment field around the
fold, resulting in a slightly higher error.

Whereas, in terms of error, the hinged KL0 solution performed best of all constant moment
elements, it attained the highest and unbounded condition numbers, as shown in Figure
4.13. The KLOMW and KLO® elements performed better in terms of condition, but also had
unbounded condition numbers. A great improvement in condition number was found in
the KL0()-element, which had the lowest and bounded condition numbers. As explained
in Section 3.3.8, the only change in the KL0)-element with respect to the standard KLO
element, is an addition to the A-matrix. Furthermore, when a fold approximated one standard
node, this addition converged to zero, and the condensed element became a standard well
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conditioned non-foldable KLO-element, resulting in the bounded condition numbers of the
KLO)-element. Using a simple Jacobi precondition matrix, the condition numbers of the
hinged KLO solution, the KLO®, and the KL0® elements could be greatly improved, as shown
in Figure 4.14. The condition numbers of the KL0(©)-element were also improved by applying
the precondition matrix, but as the element already achieved low and bounded condition
numbers, an improvement is not necessary.

5.1.3. Linear moment plates

Besides the three foldable constant moment elements, three foldable linear moment elements
have been derived: the KL1®, KL1©) and HSM® elements. An enrichment function for the
displacement field on the element boundaries was constructed, such that it contained a
constant jump in derivative at the discontinuity. Due to the linear moment field used in
these elements, the displacement field enrichment did contribute to the stiffness matrix. The
KL1(9)-element was constructed by local condensation of the KL1®-element, which intro-
duced an enriched edge continuity error in the KL1()-element, as enriched DOFs could not
be shared between neighboring elements. The enrichment procedure was mostly dependent
on the moment field interpolation, and since the standard KL1 and HSM elements used the
same moment field interpolations, the enrichment procedures of the KL1 and HSM elements
were exactly the same.

It was expected that the linear moment elements would have better convergence behavior
than the constant moment elements. However, this was not the case. When a distributed
pressure was applied on the plate in Section 4.1.2, the displacement error of all foldable
linear moment elements was found to converge with the same rate as the constant moment
elements. After close investigation of the HSM®)-element in Section 4.1.3, it was found to be
completely inaccurate, because it overestimated fold stiffness, as it did not contain enough
DOFs to accurately capture all modes of deformation. Since most displacement in a folded
plate is due to its folding deformation, the error in fold angle caused a large error in dis-
placement field. Furthermore, the error in HSM®-element could already be found in the
standard element; in Figure 4.7, the standard HSM-element was found to have a relatively
small displacement error in a test were only a linear moment field would be present, and the
linear moment HSM-element could be expected to achieve exact results. The small error in
the standard HSM-element is thus magnified when folding deformations are introduced, and
the HSM(?)-element was not further investigated.

The KL1)-element was found to attain higher errors than the KL1®-element, due to
the enriched edge continuity error, introduced by the local condensation. When the mesh
increased and element size decreased, the enriched edge length also decreased, generally
causing the enriched edge continuity error to decrease, and the KL1(9-error to approximate
the KL1®-error. Furthermore, the foldable KL1 elements were found to have unstable con-
vergence behavior; when a tilted straight fold was imposed on a square plate in Section 4.1.4,
the convergence rate of the elements decreased. An explanation for the lowered convergence
rate could be over-constraining of the moment field. Since the enriched DOF Aw,, is directly
coupled to the moment field at the fold, sharing enriched DOF's between elements may cause
C° moment continuity to be imposed between enriched elements, and due to this extra con-
straint the elements may be less good at describing the complex moment field around the
fold. Besides the lowered convergence rate for tilted straight folds, the convergence rate of
the KL1®-element was found to be unstable and to decrease for curved folds in Section 4.3.
Due to the linear approximation of a curved fold, a mismatch is introduced in the mapping of
the enriched DOF on the enriched edges of neighboring elements. The mismatch in mapping
caused an enriched edge displacement field discontinuity, and introduced an extra error in
the KL1(®-element.

Investigating the matrix condition numbers of the KL1® and KL1(®) elements, similar re-
sults as for the constant moment elements were found. The KL1®-element had relatively
bad unbounded condition numbers, while the KL1(?-element attained bounded condition
numbers. As seen in Figure 4.13, the condition numbers of the foldable KL1 element were
generally worse than those of the foldable KL0-elements. As shown in Figure 4.14, the con-
dition numbers could again be greatly improved using a Jacobi preconditioner.
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5.1.4. Achievements and limitations

Whereas most existing numerical origami modeling techniques are either flexible or able to
accurately calculate facet deformations, as described in Section 1.1, the methods presented
in this thesis combined flexibility and accuracy. Even though folded origami structures can
not yet be modeled with the foldable plate elements in this thesis, the methods presented
may be expanded to create folded shell elements suited for modeling origami structures.
In comparison to the enriched plate elements, described in Section 1.3, the advantage of
the mixed/hybrid formulation with a C!-continuous moment field was that no enrichment
needed to be defined on the element domain Q, which simplified the formulation of enrich-
ment functions and integration elements. Only on the boundary segments intersected by
the fold, enrichment functions were defined, and 1D integration elements were created. By
implementing a displacement enrichment defined by a constant jump in derivative, as pro-
posed in [33], no scaling of the displacement enrichment function is needed as it naturally
decreases to zero for folds approximating standard nodes, and the rotational enrichment is
bounded by +1.

In [26], known locking-free elements were used to create cracked plate elements, but after
enrichment of the elements, some locking behavior was again observed. Similarly, the KL1
element showed decreased convergence rates, after an enrichment was applied, while the
foldable KLO elements did not show decreased convergence rates. Since the main difference
between the KL0O and KL1 enrichment procedure, is the contribution of an edge enrichment
function to the element, the decreased convergence rates may be caused by introducing these
enrichment functions.

KLO® [ KLOW | KL0© [ KL1® [ KL1© | hinged KLO
Condition number ++ ++ Nur + 4+ +
Error convergence +++ +++ +++ ++ + +++
Absolute error + + + ++4+ +++ ++
Enriched edge continuity v X X v X v/

Table 5.1: The six different foldable element formulations rated in their condition number, error convergence, and absolute error. Addi-
tionally their insurance of enriched-edge continuity is summarized, and a relation between error, condition numbers, and enriched-edge
continuity can be found.

Between all elements, the KL0(©-element achieved the best overall results, as it had: con-
vergence behavior similar to the standard FEM hinged K L0 solution, bounded condition num-
bers, and no enriched DOFs. In [21], a GFEM is a Stable GFEM (SGFEM), if it yields optimal
order of convergence and the conditioning of the GFEM is not worse than that of the standard
FEM, i.e. there exists a constant L > 0, independent of the mesh, such that:

XGFEM o | < oo, (5.1)

XFEM

where ysrem and ypgy are the condition numbers of the enriched part of the stiffness matrix
and standard standard part of the stiffness matrix respectively. Following this definition,
the KLO(9-element can be said to be a stable enriched element. The KL1(°-element can
not be said to be stable, as it does not yield optimal order of convergence. The condition
numbers of all other elements were not bounded, but could be greatly improved using a
Jacobi preconditioner. In Table 5.1, all elements are compared in convergence behavior,
condition number, and enriched edge continuity. Generally, elements which do not ensure
enriched edge continuity, attain worse errors but better condition numbers, than elements
which do ensure enriched-edge continuity. For example, condensing the elements introduces
the enriched edge continuity error, and the condensed elements thus attain better condition
numbers, but worse errors than their uncondensed counterparts. Furthermore, the lower
order KLOW and KL0® elements attain worse absolute errors and better condition numbers,
than the higher order KL1®-element.
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5.2. Conclusion

In this thesis a mixed /hybrid formulation was successfully used to create foldable Kirchhoff-
Love plate elements. Furthermore, all three sub-questions in Section 1 have been answered:

1. A modified potential energy equation in a foldable plate can be formulated in terms of
the moment field, by imposing kinematic relations particular to a foldable structure on
a potential energy equation via Lagrange multipliers.

2. To accurately model foldable plate elements, no enrichment for the moment field is
required. In foldable linear moment plate elements, displacement enrichments are re-
quired on folded element edges, while in constant moment plate elements, the edge
enrichment functions do not contribute to the stiffness matrix. By defining a displace-
ment enrichment, such that it has a constant jump in derivative at the fold, the enriched
DOF is connected to the jump in rotation, rather than the displacement at the fold.

3. Matrix condition numbers of non-condensed foldable elements are unbounded for folds
approximating standard element nodes, due to the enriched B-matrix converging to a
null matrix, causing enriched parts of the global stiffness matrix to also converge to
a null matrix. Furthermore, linear moment elements attain worse condition numbers,
than constant moment elements. The matrix condition can be improved using two
methods; either a Jacobi preconditioner, or a local element condensation can be used.

Even though folded shell elements have not yet been defined, this thesis proves that using a
mixed /hybrid formulation, discontinuities can be modeled in plate elements, and advancing
on the elements in this thesis, folded shell elements may be formulated. Additionally, many
more discontinuous problems, such as elements containing cracks or material interfaces,
may be modeled using similar methods as the mixed /hybrid enriched formulation presented
in this thesis.

5.3. Outlook and recommendations

Several recommendations for the advancement of the presented foldable plate elements, and
further development of the enriched mixed/hybrid methods used can be made:

* Some challenges were encountered in the foldable KL1 elements, as they did not achieve
optimal convergence. Furthermore, convergence rates decreased, due to an error in
the mapping of enriched DOFs, when curved folds were analyzed. As illustrated in
Figure 4.23, the linear approximation of the curved fold resulted in an enriched edge
continuity error. To remove this error, instead of using the orientation of the linear
approximations of the fold, the orientation of the actual curved fold (8 in Figure 5.1)
could be computed, and used to project the enriched DOF on the enriched edge of
neighboring elements. Using these globally defined angles, should result in enriched
edge continuity and remove the error. Furthermore, the foldable KL1 elements were
found to converge with lower rates than the non-foldable KL1 element. Since no concrete
cause for this behavior was found, further research is required into the causes and
solutions for the lowered convergence rate.

* In this thesis, only elements containing a single fold were examined, since origami struc-
tures often contain many intersecting folds, future work could extend the elements to
multiple folds. Multiple non-intersecting folds, may be introduced in an element by in-
troducing multiple enriched B-matrices as: B = [Bs, By, Bg,], and multiple K,-matrices,
without changing any of the sub-matrix definitions. Elements containing intersecting
folds may require more attention; on vertices where folds intersect, a fold can change
from a ridge to a valley fold, creating a strong discontinuity in fold angle. This problem
may be addressed by introducing constraint equations, as in rigid foldability analysis
[12], around the fold vertex. These constraints may be added into the modified potential
energy equation via Lagrange multipliers, and the fold can be enriched using a strong
enrichment inspired by DE-FEM [10].
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Figure 5.1: Two triangular elements cut by a curved fold (red) which is interpolated as two linear fold segments (dashed). At the shared

boundary of the two elements, the DOFs representing the jump in rotation in the two elements (Aw,fl(l), Aw_fl(z)) are not aligned with

the real tangential vector representing the jump in rotation (Aw_’;"l). Instead of using the orientation of the linear approximation of the fold
line (8™ and () the actual orientation of the fold line & may be used to project the jump in rotation on the element edge, removing
the enriched edge continuity error.

* Another limitation of the current work is that only foldable plate elements were derived,;
elements which form ridge-like structures from a flat configuration. This formulation
only allows for structures developing small fold angles to be modeled. In [33], a foldable
shell derivation in a mesh free setting is used to model folded structures, by incremen-
tally increasing the fold angle via a non-linear analysis. Shell elements are needed, as
in these folded structures membrane stresses are present. Extending the formulation
in this thesis to shell elements, this method could also be used in combination with the
presented methods to model small fold angles, in foldable origami structures.

* Future work may be done on developing folded shell elements, in which the folds con-
tain large fold angles a priori of deformation, such that the deformation of complicated
folded origami structures could be precisely examined. In these folded elements, weak
discontinuities in the moment field may be introduced across the fold line. Adding weak
enrichments to the moment field of a constant moment element would be illogical, as
adding a weak enrichment would increase the order of the moment interpolation. Al-
though no moment field enrichment may be needed in these elements, the a priori fold
angle would still cause a discontinuity in director field. A director field discontinu-
ity, may be introduced via a director field enrichment, coupled to the fold angle, using
similar methods as in the cracked plate in [27]. In a linear moment element, a weak
moment field enrichment may be needed. Furthermore, in an a priori folded element,
the weak discontinuity may depend on the fold angle and force applied on the element
only. If shell elements are used to model the folded structure, auxiliary DOFs con-
cerning membrane stresses/forces may be introduced, when the elements are derived
via a mixed/hybrid formulation. Since the a priori fold angle and stresses/forces in
the system may be known, a weak moment enrichment could be formulated, without
adding enriched auxiliary DOFs, but using the auxiliary DOFs concerning the mem-
brane stresses/forces. The suggestion is thus to extract a weak moment field enrich-
ment from the a priori known fold angle in the element, instead of introducing it using
extra auxiliary DOFs.

* Another future research direction could be the more general application of the mixed/
hybrid enriched methods, presented in this thesis. Via these methods, the minimum
amount of enriched DOFs may be introduced in problems containing discontinuities.
Furthermore, local condensation may be used to greatly improve matrix condition and
decrease the size of the enriched stiffness matrix, although this may come at the cost
of a loss of accuracy. A possible application could be the enrichment of constant
stress/strain triangles including weak discontinuities, due to a material interface. In
such an element, a weak discontinuity in displacement field would lead to a strong dis-
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continuity in strain field, but when a stress field interpolation is used in combination
with a mixed/hybrid formulation, no strong discontinuity may be added, as this would
result in a loss of equilibrium at the material interface. Even if no stress field enrichment
would be needed, additional terms may be required to account for energy consumed on
the discontinuity, or a weak displacement enrichment located on the element boundary.
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Potential energy formulation for a folded
beam

In this appendix, the full potential energy derivation for a folded beam will be discussed. We
use the conventions used in Section 2.1. In the potential energy function we include the
bending stiffness of the beam, the torsional stiffness of the fold, and potential energy of the
loads. It is assumed no external moments are applied at the fold, resulting in the following
potential energy equation:

xXr L

T 1 1 1

= j SEIK? —qCow | dx + SkeAp? + f SElK —qwdx + W, (A1)
0 +

xr
where W, the potential energy due to the loading of the beam, is defined as:
W = F]_Wl + M1¢1 - F2W2 - Mz(i)z - FFWF' (A2)

In Equation A.1 there is an opportunity to introduce different Young’s moduli or moment of
inertia for both subdomains. It is chosen to keep both values constant since most origami
structures are made from a single sheet of material and will have constant Young’s modulus
and moment of inertia. Because we will be looking at different fields for u(x), ¢(x), and x(x)
their kinematic relations are enforced via Lagrange multipliers, as will the relation between
wr, wi and wy:

T ow d¢ 1 _
l'[=f EE]K +/11(¢—a)+/12(1c—a)—q(x)w dx+§ktA¢) + A3(wr —wp)+
0

+ 7 1., aw o¢p
Ag(Wr —wr) +J- EEIK + As5(p — a) + Ag(k — a) —q)wedx+W. (A3)

r
Xr

A.1. Interpretation of Lagrange multipliers

Physical meaning is given to the six Lagrange multipliers by means of virtual variations.
First, the modified potential energy function is varied with respect to k as:

Xr L

an

all = a&c = J{EIK + Ay} 6kdx + f {Elx + 24} 6kdx =0, (A.4)
0 +

r

73



74 A. Potential energy formulation for a folded beam

resulting in,

Ay =—Elk =—M on Qq, (A.5)
A¢ = —Elx = —M on Q,. (A.6)
Inserting Equations A.5, A.6, and the relation between moment and curvature in Equation

2.6, into Equation A.3, results in a new modified potential energy function, where k, 4, and
¢ are removed:

n—xr Lz em2® 4, ow dx + ~k,Ag? + 1 -
—f oM T Moo+ (b - o) —a(wpdx + SkeAd® + A3 (wr — wr)+
0
L
A(wi +f ! M2+Ma¢+/1 ow dx+W. (A7
4‘(WF WF) 2F1 dx 5(¢ ax) q(x)W X . ()

A
Xr

Secondly, the new modified potential energy function is now varied with respect to ¢:

a1l = a—n&p = }F{Mi +1 }6¢dx + ke (bF — dr)(BPE — 5¢7)
- a¢ - J dx 1 t r r r r

L
d

y
Xr

The moments applied at the ends of the beam, entered into the equation. To eliminate these
terms, the moment field is moved from the domain integrals to boundary evaluations, using:

o8¢
0x

Inserting this into the varied functional results in:

_ sy M A
—a( ¢)—a ®. (A.9)

Xr

oM X=Xr
on= | {Al _ a}&/)dx + [MBGLZST +ke(9 — ) (B — 6br)

0

oM
+ /15 - = 5¢dx + [M6¢]fo+ + M16¢1 - M25¢)2 = O, (A10)
0x X=Xr

s
Xt

and we conclude for the Lagrange multipliers that:

oM

Al = a on ‘0‘1’ (A11)
oM

A5 = =— on Q. (A12)

Only the terms within the integral in Equation A.10 are interpreted. To interpret the other
results, they are grouped together as:

[ME@Tozo” +ke(dit — ) (O —8¢F) +[MEPL ks + M1 8y — M8y = Mz — k(P — b )85 +
My = M|)8¢py + (M|, — M3)8¢; + (ke(pt — ¢r) — M| £)6¢f = 0. (A13)
Rewriting the equations, moment continuity within the element is achieved as:

M|z = M|y = ke(@f — ér) = kA = Mr. (A.14)
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Back-substituting the Lagrange multipliers into the modified potential energy equation only
two multipliers remain:

H_f 1M2+M6¢+6M oM ow d
- 2E1 0x 6x¢ dx 0x q()w ( dx

1
+ SheAp? + A3 (wr = wp) + Ag (Wit — wr)
L
+f Lz 22 M, OMOw dx+W. (A15
2EI ox 6x¢ dx 0x 4w dx - (A19)

y
Xr

The last Lagrange multipliers are given physical meaning by varying with respect to w as:

-
oIl = ow = F oM 9 owdx + A3(8 owp
=50 W—f —Q(X)—aa wdx + A3(6wp — dwr)

0

+ oM 0
+ A, (6wft — Swr) + J. —q(x) — % 9x dwdx
xt
+ F16W1 - F26W2 - FF6WF. (A16)
The term within the integral is simplified using:
oMéw d (oM 62M6 A 17
ox ax _dx\ax'” ax2 oW (A17)

resulting in the varied functional:

T a2M oM T
f {—f(x) + 7% }6wdx - [E(SW] + A;(Swp — dwp )+
0 x=0
L _
N 92M oM _ "
Ag(6wpr — bwr) + f —f(x)+ 7% Swdx — ESW + F,éw; — F,6wy, — F-dwr.  (A.18)
ot x=xf

r

The functional is simplified and relevant terms are grouped together as:

Xr

L
J-aZM 6d+f62M 6d+aM+F6
0 xF
oM oM B
- WL—I—FZ 6W2+(A3—/14—FF)6W1—‘— ax_+l3 (SWF
r

oM
+<— +/14>6w1f. (A.19)
ox it

From these equations, we conclude for the Lagrange multipliers that:

oM
A3 =— —ax K (A.20)
Xr
aM
A= — —| . )
4 x|, (A.21)
Xr
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Furthermore, we retrieve that:

oM

B=-— K (A.22)
oM

FZ = - a . . (A23)

Looking at the leftover terms within the integrals, we can conclude in a weak sense for both
subdomains Q; and Q, that:

9*M
f m — q(X) dx = 0. (A24)
In a strong sense this implies that:
M
q(x) = ¥ and, (A.25)
oM

Equation A.22, A.23, and A.26 contain the generally known equilibrium condition for beams
where:

oM
—Q() =F(x) =—->-, (A.27)

A final conclusion which can be drawn from the variation with respect to w is,

oM
0x

oM

13_14: Ox

= R (A.28)

+
xr Xr

If no force would be applied at the fold this would mean that 1; = A4, resulting in:

oM

_ oM
dx -

- - (A.29)

r

n
r

Assuming no force is applied on the fold simplifies the moment field in the element, which
can be one linear function over the entire element. If the application of a force on the fold
is to be maintained, standard linear interpolations with a weak enrichment should be used
in the discretization. Finally, back substituting Equation A.20 and A.21 into the potential
energy equation, all Lagrange multipliers are interpreted as:

H—f 1M2+Ma¢+aM oM ow d +1kA2
- 2E1 0x 6x¢ Jx 0x qCw dx 2t ¢
0

oM M|,

x _(Wr—Wr)—a +(Wr—Wr)+
X7 x
L
f Lz g8 My MW dx+W. (A30
A 2E1 0x axd) dx Ox qCw  dx - (A30)
Xr

A.2. Simplification of the potential energy function

Terms from the integral are moved to the boundaries to remove the need for interpolating
functions for ¢(x) and w(x) on the beam. This is done by applying two mathematical relations.
Firstly we use:

Ma¢— d M oM A.31
a—a( ¢)—g¢, (A.31)
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A.2. Simplification of the potential energy function

and insert it into the modified potential energy function to remove ¢(x) from the integral:

T o1 aM ow e 1
f { 2 q(x)w} dx + [Mo]," + Ektmi)z—

= T 2EI dx 0x
0
oM M|,
x _(Wr—Wr)— I +(Wr —wr)+
Xr Xr

2 _

f—i oM ow COw'bdx + [Mplie + W. (A32)
2El ox ox 1 i T A

A
xr

Secondly we use:

Mow  d oM +62M Ass
xox - axlax Mt e (A.33)

and insert it into the modified potential energy function to remove dM/0x from the integral:

-
= fr L + oM _ x) |widx — a—MW " +[M@TyT + lk Ag?—
2E1 o2x 1 ax |, o T2t

L
oM _ N +f Lo, (0 4
Xr Xr xir
om I +[Mplis +W. (A34
axW x+ (p x['t' " ( " )

Different terms concerning the displacement are present in the potential energy function.

The terms containing wi and wjt are removed by using:

B N om 1
Wr —wr) - o= +(Wr—Wr)— Eradip
xr xr

oM 1T oM
6xW ox

oM oM + oM oM A35
0x 0W1 0x sz W\ ox + Ox|_) (A.35)
Xr Xr

resulting in the modified potential energy function:

xr

r 9°M x=x= 1 5

I =f TR T —q(x) lwidx + [Mp],—o" + EktAcp +
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Assuming no external force is applied on the fold and Equation A.29 to hold, we simplify the
potential energy formulation one final time to:

wi—
0

H—J Loy o°M dx + M1 4 Lragz + M
0

oM

0x

L
2
w, + f {_L M2+ (‘22";’ - q(x))w} dx+ [MolL, +W. (A37)

L

Two potential energy equations are derived, and will be used to discretize the folded beam.
Equation A.36 contains wr and will lead to a 6 DOF beam element, while Equation A.37 does
not contain wr which will lead to a 5 DOF foldable beam element.



Load application foldable beam

B.1. Equivalent load vector derivation

No interpolation field for the displacement is used in deriving the folded beam elements. This
causes the application of a distributed force through an equivalent load vector to become
difficult. In this section, it will be shown that with some extra calculations it is possible to
apply a distributed load, and even a point load at the fold. All calculations are done using
the S DOF system. A constant distributed load is applied to the system as:

q(x) =c. (B.1)

In reality, this would lead to a quadratic shape of the moment field in the beam, since:
M(x) = fq(x)dxdx = 0(x?), (B.2)

we thus expect a residual error when calculating the displacements of the beam under a dis-
tributed load. The equivalent load vector is computed by discretizing the part in the potential
energy term concerning distributed loads,

xr

9°M : 0*M
f {m - q(x)} wdx + J- {ﬂ — q(x)} wdx. (B.3)
0 x¥

r

Since linear shape functions are used for the moment field, d?M/dx? = 0, and this term
can be removed from the equation. Only functions for the moment M(x) are used in the
discretization, and interpolations for the displacement field w(x) need to be defined to con-
struct an equivalent load vector. Combining Equation 2.6, the relation between moment and
curvature, and the relation between rotation and curvature in Equation 2.4, we find:

ér 1
L L
66 = 1 | M©ds + = [ Moz, B.4)
b1 b2
0 &t
Using the interpolation field as in Equation 2.27, the rotational field is calculated as:
L 1 1
Pr () = — 1 — 58)My + 5§2My + CT{ on Qy, (B.5)
ki1 2 2
L 1 1
PR(E) = — {(E — S&OMy + 587M, + Cf} on ;. (B.6)
kpo 2 2
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Integrating once more, an expression for the displacement field is found as:

12
L(f)__{( 52__53)M1+ E3M2+C15+C2} on {, (B.7)

wR L2 (1 2 3 L
(f)—— (5¢ ——f M+ =8 My + CR§+ CF{ on Q,. (B.8)
Four boundary conditions are needed to calculate the four different integration constants:

$(0) = ¢, and ¢(1) = ¢, (B.9)
w(0) = w; and w(1) = w,. (B.10)

Inserting these conditions in the displacement function, results in the integration constants
of:

$1kp1 Wi Kpy
ch = and ¢} = —, (B.11)
k 1
CR = % — 5 My +M,) and (B.12)
wakpy 1 Wakpy @2k

CR = - =@M, + M) = Cf = += (M1 +2My). (B.13)

L? L2 L

The displacement function, w(§), contains both auxiliary DOFs from the vector m, and pri-
mary DOFs from the vector u. It follows that the discretized form of Equation B.3 will contain
both auxiliary and primary DOFs. writing the left and right displacements in matrix form,
we find:

wh (&) =N"(m + W:(u, (B.14)
wk(&) =NR(f)m+WR(f)u, (B.15)
1
N:() = —[ 52 53, —53], (B.16)
NR(&) = k—[—gf3 —EZ - —6 - —53 - —f + ] (B.17)
b2
WL(&) = [1,L£,0,0, 0], (B.18)
WE(§) =1[0,0,1,L( — 1),0]. (B.19)

Inserting w(¢) and q(x) into Equation B.3, simplified using d°M/dx? = 0, we find:
st
—cL f w(é)dé —cL f w(&)dE = —cL f {NL(Om + WE()u}dé

1
—cL f (NR@E)m + WR(&)u}dé = —-L"m — fou, (B.20)
St

where the equivalent load vector will be defined using:

& 1
L7 = chNL(f)df + chNR(f)df, (B.21)
0 &t

ér 1
= CLfWL(f)df+cLJ.WR(f)d€. (B.22)
0 &
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In Equation B.21 there is an integration over a cubic function. In the stiffness matrix calcula-
tion, only quadratic terms are evaluated. Performing these calculations analytically, results
in:

L= LPc [ky(68F — 46 + 1) + (kp — k1) (462 — &)

= B.2
2ak K, | Ja (682 — 8 +3) + (e — ket |20d (B.29)
ér
25
2
£ =Lc|1-¢& | (B.24)
L(§r—1)*
2
0
Inserting these terms in the potential energy derivation causes it to take a shape of:
1 1
= —EmTAm—mTBu+ EuTKtu—fTu—LTm—fgu. (B.25)

Following the known procedure to formulate the stiffness matrix, the equivalent load vector
is calculated. Firstly, we vary with respect to m:

o1
oIl = a—m(Sm ={-Am —-Bu-L}dm =0, (B.26)

and rewrite to find the expression for m,

m=-A"'Bu—-A"lL. (B.27)
Secondly, we vary with respect to u:
ol
ol = ——6u={-m'B +u'K, - f —f}5u=0, (B.28)

and insert the term for m, making use of the fact that A is a symmetric matrix:
(BTA"'B+KN)u=f+f, —BTA™lL, (B.29)
an equivalent load vector is found of the form:

f,, =f —BTA L. (B.30)

B.2. Testing the equivalent load vector

q(x)

F

|_> X = Xr x=1L

Figure B.1: A clamped folded beam loaded with a distributed force and an moment and force on the right end.

To test the application of the distributed forces on the beam, the test case as shown in
Figure B.1 is used, with parameters as in Table B.1. A constant load is applied on the entire
element. The 5 DOF system is compared to the assembled system, containing the 7 DOFs:
u’ = [wy, ¢1, ¢, wr, ¢f, wy, ¢,]. In the 7 DOF system, to account for the distributed force,
an equivalent load vector is added as:

cL cL? cl2 cL cl?Z L cl?
FJ:[_a o _cla cLooclp oy el where, (B.31)
2 12 12 2 12 2 12
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EIINm?] [ kNm | F[N] [ q)[Nm™"] | &
100 500 |10 |1 0.5

Table B.1: Values used in testing distributed force formulation.

As exact solution for the tip displacement at x = L, we use:
1
Fi2 ot Ly (LoF +3c1)

W2=W(X=L)=ﬁ+@+ k.

(B.33)

Both systems aThe defined equivalent load vector is thus sufficiently accurate to capture the
behavior of the system when a constant distributed load is applied.

B.3. Applying a force on the fold

One possibility lacking in the 5 DOF system, which the 6 DOF system has, is the ability to
add a force on the fold. Using the functions in Equations B.15 for the displacement of the
beam, it is possible to apply a force on the fold in the 5 DOF system. In the potential energy
derivation of the 5 DOF system, it is assumed that /i = 0 and Equation A.29 should still hold
resulting in a C!'-continuous moment field. After the discretization, F- is again introduced
into the modified potential energy dfunction:

W = F1W2 + Mld)l - F2W2 - M2¢2 - Fl"Wl". (834)

Doing this is not much different than how the distributed load is added. While discretizing,
the distributed load is ignored, and we assume:

92M
f {W - f(x)} dx =0, (B.35)

but it is added when computing the equivalent load vector. In adding F- we ignore it’s exis-
tence in the modified potential energy formulation, and we assume:

3=, =F =0, (B.36)

and apply it after discretization, using an equivalent load vector. Either the left or right equa-
tion for the displacement field ,w*(¢) or wR(¢), can be used to calculate the fold displacement.
The fold displacement is calculated using the left displacement field as shown in Equation
B.15, resulting in:

wh(E) = NE(Em + WG, (B.37)

N = Lt la lg (B.38)
P kp 27T 607 60T :
WL(%F) = [11 Lfl‘: 0' 0! 0] (839)

As in Equation B.20, the potential energy due to the load is expressed using the vectors L
and f.. No integration is required to represent —F-wr, we find:

- FFWF = —LTm — fl-u, (B40)
where the different terms are defined as:
L"(¢r) = K- N*(¢r) and f.(ér) = K - WE(Ep). (B.41)

The further derivation is equal to the derivation for the equivalent load vector for a distributed
force, again resulting in Equation B.30. Using this equivalent load vector, the test case in
Figure B.2 is used to compare the 6 and 5 DOF system, loaded by a force on the fold. As test
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parameters the values in Table B.1 are used, with an additional load on the fold of £~ = 10N.
As analytical solution for the right tip displacement, we use:

Dy = L,FI2 G + L3 o Lo(o * F +ker) FL3
W=D =w,=—5 3E] k, 3El’

(B.42)

where,

__loFle | (F+ L2
T EI 2E1
Both the 5 and 6 DOF system are found to achieve numerical accuracy when a force is applied

on the fold.
F
Eyl, T

(B.43)

Figure B.2: A clamped folded beam loaded with by a force on the fold and a force at its free end. The parameters as in Table B.1 are
used with an addition of a fold force of Fr = 10






Scaling of the 6 DOF system

In this appendix we investigate the possibility of improving the matrix condition of the 6 DOF
beam system by introducing the scaling paramter s. Firstly, we introduce s using the method
of IG-FEM [11] as:

0<n<nr

n
Me(m) =1 —-n)M; +nM, +s - - )
mM=A-mMM; +nM; +s-«a L p et

nr—1

(C.1)

We look at the matrices used in formulating the stiffness matrix, and notice on which loca-
tions the scaling parameter will multiply the values. For the B-matrix, we find that it will be
scaled by:

111111
B¢=1]1 1 1 1 1 1],
s s s S s s
and the A-matrix is scaled by:
1 1 s
Aé=1]1 1 s
s s s?
Resulting in the scaling of the stiffness matrix:
1 1 s
1
i
K?:B§A§B§=11511—111111
11 Ills s s s s s
11 sfly § @
1 1 s
111111
111111
111111
11111 1| ©4
111111
111111

We thus conclude that straightforward scaling of the enrichment function will not change
the stiffness matrix and its conditioning.

Since introducing a scaling parameter as commonly done in IGFEM has no effect on the
matrix condtion number, other methods of introducing a scaling parameter to improve the
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6 DOF condition number are investigated. A way of introducing the scaling parameter is by
inserting it directly into the displacement vector as: u' = [wy, ¢1, Wy, ¢3, S, - Wp, sp - Ad].
Firstly only scaling wr causes the elements in the B-matrix to be scaled with:

1111 £+ 1

Sw
By =1 1 11 = 1, (C.5)
1111Si1

and no change in the A matrix, resulting in the scaled stiffness matrix:

[ 1 1 1 1 = 1
1 1 1 1 = 1
Sw
. 11 1 1 = 1
K5, s = v C.6
Tl 1 1 1 = (©8)
I T S U U S
Sw Sw Sw  Sw  S&  Sw
11 1 1 = 1
| Sw
Scaling A¢ has similar effects, and results in the scaled stiffness matrix:

SR [ RE & |~ e |-

'§”|H T S Y N
Llr P R, B, R R
Ll mr B R R R
Ll r » R R R
Llr R R B, R R

Calculating the matrix condition number as a function of the scaling at ér = 0.1, and using
zero rotational stiffness in the fold, results in Figure C.1 and C.2. The optimal scaling factor
for wr lies at infinity, but the condition number does not change significantly after a scaling
of s = 10. The optimal scaling factor of A¢ is slightly below s = 0.1. Both scaling methods
have a minimum condition number of y = 1-103.
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Matrix condition for scaled wr

Matrix condition for scaled A¢

i T T T T T T T T T T T ™ \Hut LU LL R A1) B I 11 B N A1) O B M R AL B B R RRL
107 p E ]
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Sw S¢

Figure C.1: The matrix condition of the 6 DOF system for
varying the scaling s of wr for a beam with a fold located at
&ér = 0.1 and the material parameters as in Table 2.1, using
zero fold stiffness

Figure C.2: The matrix condition of the 6 DOF system for
varying the scaling s of A¢ for a beam with a fold located at
&r = 0.1 and the material parameters as in Table 2.1, using
zero fold stiffness

To optimize the condition number, the scaling of wr and A¢ is combined. By dividing wr by
sy instead of multiplying, the condition plot is flipped along the vertical axis causing the two
optima in Figure C.1 and C.2 to overlap. Using a scaling of u' = [wy, ¢¢, w,, ¢, %, A¢ -s], the
condition numbers as shown in Figure C.3 are found. The condition numbers are calculated
using the material parameters found in Table 2.1, but with zero fold stiffness, the effects
of the rotational stiffness are later examined. The optimal condition number decreased to

Matrix condition for scaled u’ = [wy, ¢, Wy, Ps, % A - s]

106

10°

10*

103

e=]

1073

1072

107t
s

10°

101

Figure C.3: The matrix condition of the 6 DOF system for varying the scaling s of u" = [wy, ¢, Wy, ¢, % A¢ - s] for
a beam with a fold located at & = 0.1 and the material parameters as in Table 2.1, but using zero fold stiffness.

x = 558, and can be found at s* = 0.1. The beam stiffness k; does not influence the condition
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number because it is used as a pre-multiplier of the stiffness matrix, although it is expected
that choosing different k; and k, on the two subdomains of the beam will change the condition

number. Adding higher values of k; causes the matrix condition number to worsen and the
optimal value of s to increase. It is noted that for :—; < 50 the optimizer does not change
significantly, and only the optimal condition increases.

To improve the 6 DOF beam element, the optimal scaling s* as a function of & is found in
MATLAB using the optimizer fminbnd(). The DOFs are scaled usingu' = [wy, ¢1, W, ¢, %, Ag-
s], and the problem is simplified by assuming no rotational stiffness at the fold, k; = 0. Opti-
mizing for a minimal matrix condition number results in the scaling in Figure C.4a, accom-
panied by the optimal condition in Figure C.4b. An estimate for the optimizer s* is found
as:

s@r) = (1 —=$r)ér, (C.8)

this function approximates the optimal scaling well at the borders of the domain but does
not fit the optimal scaling well around ér = 0.5. As can be seen in Figure C.4b, this does not
matter much for the final condition number.

0 25 [ | | ° | | N E —_— OptiLnized)( E
! [ ] [ ] - @  Approximate optimal x |-
0.2+ . 103 E E
% 0.15| 4= i |
10% 1 E
0.1 — - 1
—_— Optimizer s* [ B
5 . 10_2 [ @®  Approximate optimizer s* o | 101 - -
] ] | | E | | | | 3
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
$r $r
(a) The optimizer s* for varying ér. (b) The optimal y for varying ér

Figure C.4: The optimal scaling factor s* ,introduced as u' = [wy, @1, W, @5, % A¢ -s], and optimal matrix condition for a beam with
varying fold location & using the material parameters as in Table 2.1. The optimized values are calculated in MATLAB and approximated
with a scaling factor of s(ér) = (1 — ér)ér.

An interpretation of the physical effect of the scaling function can be given by examining its
effect on the enrichment function. In the 6 DOF B-matrix formulation, wr is only multiplied
by the enriched auxiliary DOF a at Bs3, and not by the other auxiliary DOFs M; and M,. In

Equation 2.22, Bs; represents the term:
_1[o¥ av c.9
_ - L af ’ ( N )

xl" fl"+ af fl:

oM
ox

oM

Bsz =
o ox
r

which only includes derivatives of the enrichment function. Multiplying the enrichment func-
tion with the introduced scaling for wr results in:

3 §

= 0=8s¢ = 0=8{s¢ §1—-¢&) 0<é&<§
A sr = (1 — d ¢ — r r
which has a jump in derivative at the fold of:
B g —a-gy=—1 (C.11)
af §r+ a{ fl: - r r)— ) .
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ensuring a constant jump in derivative independent of fold location. As can be seen in Equa-
tion 2.11, the jump in derivative of the moment field at the fold is equal to the force at the
fold. By introducing this scaling factor the auxiliary DOF « is thus connected to the force at
the fold and multiplied by the displacement at the fold in the B-matrix. A possibility is that
because the force and displacement at the fold are energetically conjugated, this results in
better condition number.






5 DOF static beam condensation

Using the static condensation algorithm as described in [44], the 5 DOF folded beam element
is condensed to a 4 DOF system. The stiffness matrix is split into a standard and an enriched
part by defining the sub matrices:

2!
M
K K u? 1 f4-
5., — |*11 12| . — —
K -u [K21 Kzz] Aq,’)] F, [0] (D.1)
M,
0

where u*' = [wi, 1, w,, ¢,] is the standard displacement vector of a beam element, K, the
standard stiffness matrix of an Euler beam, K, the 4 x 5 upper right part of K> as,

_ 6kp(28r—1)
LZ
__2kp3ér-2)
_ L
Kiz =1 exyee-1) (©-2)
LZ
_ 2kpBér-1)

L
and K, is the lower right part of K° as:
4kp(3§¢ —3¢r + 1)
22 = 1 +

Due to the matrix symmetry, it is know that K1,
equations is found as:

ke. (D.3)

K,,. The lower part of the system of

K21u4 + K22A¢) = 0, (D4)
and rewritten to find an expression for the jump in rotation:

To remove the jump in rotation from the equation, the expression for A¢ is substituted into
the upper part of the system of equations to find:

Kiu* + K00 = (K — K1K33 Ko )u* = 4, (D.6)
resulting in the new enriched 4 X 4 stiffness matrix:
K* =K, _K12K521K21' (D.7)

which is a symmetric stiffness matrix constructed from the standard Euler beam stiffness
matrix, K1, with an enrichment representing energy terms of the jump in rotation. The for-
mulated condensed stiffness matrix attained the same conditioning and numerical accuracy
as the condensed stiffness matrix in Section 2.5.
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Potential energy formulation for a folded
plate

In this appendix, the full modified potential energy derivation for a foldable plate is discussed.
The standard potential energy equation is derived including the bending stiffness, torsional
stiffness in the fold, and the potential energy due to the applied loads as:

1 1
M= f {—KTDK - qw} dA; + f T TK;APdSp — f [FFw + mp¢r]dS, (E.1)
a; |2 rp 2 r

where the inegral over (); represents the two integrals overr sub domains Q; and Q,. The
kinematic equations are added via Lagrange multipliers:

1
= f {EKTDK +2A13-(@—Vw)+A,,: (C—Ve)— CIW} dA;
Q

i
.f

where 4; and A, are the Lagrange multipliers in sub-domain (;, and 43 and A, are the La-
grange multipliers in sub-domain Q,. A; and A3 are vectors and A, and A, are matrices.
During the derivation the Lagrange multipliers will switch between vector and matrix nota-
tion, when the curvature switches between notations as:

{%A¢TKTA¢ + 2.5 (Wl} - WF) + /16(W1" - Wg)} dSp - f [FFW + mr‘¢r‘]d5, (E2)
r

F

A= [A11 Ay A12] ) (E.3)
where we assume the Lagrange multipliers to be symmetric, A;, = A,;.

E.1. Interpretation of Lagrange multipliers

The Lagrange multipliers are interpreted by means of virtual variations. We firstly vary with
respect to k:

ol = —38k = f {DK +2,,} 6kdA; = 0, (E.4)
ok o ’

resulting in the Lagrange multipliers:

1214 = _DK = -—m on QI,Z or, (E5)
Ay =M. (E.B)
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94 E. Potential energy formulation for a folded plate

Back substituting Equation E.5, and substituting the relation between moment and curva-
ture in Equation 3.8, we find:

r1=JQ

1
{—EmTD‘lm +A13-(p—Vw)+M:Vep — qw} dA;+

1
fr {EAqST = TK ;AP + As (Wt — wr) + Ag(wp — ng)} dSy — fr [Fw +mp¢r]dS. (E.7)

To interpret 4, 3 the function is varied with respect to ¢:

o1
oM = %&p = f {136 + M : V6 } dA; +f AP'K ASPdSy — f mr - S¢prdS =0 (E.8)
Q; I'r r
The divergence within the first integration is simplified using integration by parts:

M :VSpdA, = — | 6¢-(V-M)dA; + f Spr - Mnds, (E.9)
Qi O-i ri

where n is the vector normal to the boundary in the x —y plane. Substituting the integration
by parts into the varied potential energy function:

an—a—n&p—] (2 -5¢—5¢-(V-M)}dA.+j S¢r - MndS
—a¢ - o 1,3 i r; r

+f AP'K ASPdS; — f mr - 6¢prdS = 0. (E.10)
Tr r
The Lagrange multipliers can now be interpreted as:

2.1,3 :VM on Ql,Z' (E11)

Splitting the sub-domain boundaries I} into I] + I =T, and Iy, we find on the boundaries:
{AP'K A8 + Min, 8¢, + Min,0¢,}dSy + J (Mn —mp) - §¢rdS = 0, (E.12)
Te r
and we conclude that on the outer element boundary:

Mn =mronT. (E.13)

Furthermore inserting the variational relation for the jump in rotation Ad¢ = 5¢p; — 5¢,, we
find on the fold line that:

{0d'K 1 (501 — 5¢2) + Min, - 51 + Min, - 5¢,}dSy

I'r

= fr {((KrAp + Min,) - 6¢p, — (KrAp — Min,) - 5, }dSp, (E.14)

resulting in moment continuity at the fold as:

K;Ap = —Mln,, (E.15)
KTA¢ = M%nz = _M%nl, (E16)
Mln, = Mén,. (E17)

Back substituting the Lagrange multipliers into the modified potential energy function all
multipliers are removed from the domain integral:

HZL

1
{—EmTD_1m+V-M-¢—V-M~Vw+M:V¢—qw}dAi+

i

1
fr {§A¢7KTA¢ + As (Wi — wp) + A (Wp — wﬁ)} dSy — fr [Fw +mppr]dS. (E.18)
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To interpret the last multipliers, the function is varied with respect to w as:

all
on = %SW = f {-V-M -Véw — qéw}dA4; +f {As (6wt — 8wr) + A6 (Swr — Sw)} dSk
Q; g

—j Féw=0. (E.19)
r

Integration by parts is again used to simplify the term within the domain integral:

_L'

13

v-M-vawdAi=f 5w-(v-(v-M))dAi—f sw- (V- M) -ndS;
Q; ]

= —f Sw-(V-M)-n;dS;, (E.20)

15

where we use the fact that no quadratic shape functions for m will be used causing: V-(V-M)) =
0. Substituting the integration by parts into the varied functional we attain:

ol = —déw = —J qéwdA; —J Sw-(V-M) - -n;dS;
Q; T;
+ | {As(6wi — dwp) + A6 (Swr — Swd)} dSp — f F-éwdS = 0. (E.21)
I'r r

Splitting I; into I'» and I}, and combining I} into I' = I} + [} results in:

f {8wt(As — (V- M}) " ny) — SwE (A6 + (V- M}) - n3) + Swr(Ze — As)} dSp

I'p
fﬂ

We conclude for the Lagrange multipliers that:

qéwdA; — f Sw{F+ (V-M) -n}dS =0. (E.22)
r

i

/15=(VM%-)n1 on Fp, (E23)
2‘6 = _(V . M12-) ‘n, on FF, (E24)
As = /16 on FF! (E25)

Where we note the effect of not applying a force on the fold, as was the case for the beam,
this results in a C'-continuous moment field throughout the plate. Furthermore, a relation
between the moment and the force on the boundary is retrieved as:

F=—(V-M) -nonT. (E.26)

One term error term remains: fﬂ, qéwdA4;, which is the potential energy term due to the
L

applied surface pressure, and will be applied via an equivalent load vector after element dis-
cretization. Back substituting the Lagrange multipliers, a modified potential energy equation
is found as:

n:fn

1
{—EmTD_1m+V'M'¢—V'M‘VW +M:V¢)—qw}dAi+

i

J {%A¢TKTA¢ (VM) -y (it = wr) = (V- M) - (o — wﬁ)} sy

r
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E.2. Simplification of the potential energy equation

Terms concerning w and ¢ are still present in the surface integral. Since we only want to
use a moment field interpolation on the surface, these terms need to be removed. We start
by inserting the relation n; = —n, on [:

1
l'[=f {—EmTD‘1m+V-M-¢—V-M-Vw+M:V¢—qw}dAi+
Q

i

1
J- {§A¢TKTA¢ +(V-M) -n,(wt — Wﬁ)} dSp — f [Ffw +mper]dS. (E.28)
Tr r
Secondly, the formulation is simplified by using integration by parts as:
J- ¢ - (V-M)dA; = —f V¢ : MdA; +f ¢ - Mn;dS;, (E.29)
Q; Q; T

and substituting it into the modified potential energy function:

L

1
Im= f {—EmTD_lm—V-M-VW—qW}dAi+j ¢-Mnl-d5i
Q; i

J {%A¢TKTA¢ +(V-M) -n,(wi — wg)} dSg — j [Fw +mppr]dS. (E.30)
e r

To remove Vw from the integration over the sub-domains, integration by parts is again used:
Vw - (V-M)dA; = —f w- (V- (V-M))d4; +f w-(V-M)- -nds;
Q; Q; T

= w-(V-M) -ndS;, (E.31)
Ty

where we again assume no quadratic or higher order shape functions will be used for M.

Substituting the equation in the modified potential energy function, we find:

1
Inm= —J {EmTD_1m+qw}dAi —J W(VM)nldSl‘}‘ ¢-Mnl-d5i
Q r

i i ¥

f {%AtpTKTAqS +(V-M)-n,(wt — ng)} dSy — f [Fw +mppr]dS. (E.32)
Tr r

Again splitting I} into I} and Iz, and combining I} into I' = I} + I, we attain:

1
= —f {EmTD‘1m+qw}dAi —J- w-(V-M) -ndS+J- ¢ - Mn;dS
Q; r Iy
1
fr {§A¢TKTA¢ £ (VM) g~ wR) — i (V- M) -my —wE - (V- M) 'nz}dSF
F
r

To remove wr completely from the equation, the relation between n, and n, is inserted:

-],

L

1
{EmTD_1m+qw}dAi —J w - (VM) -nidSi + ¢ -MnidSl-
r Ty

f lAqﬂl(TAcpdsF - f [Fw +mrer]dS. (E.34)
Tp 2 r
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Finally we again split boundaries [; and use the relation between n, and n, on I+ to combine
¢, and ¢, into A¢p = ¢, — ¢, and find:

1
-m'D™mdA; —f fw-(V-M) -n—¢ - -Mn}dS+
r

n--|
Q. 2

1
I'r r Q;
The modified potential energy equation for foldable plates is very similar to the modified
potential energy equation for foldable beams. The functional contains four evaluations:

1. An integral over the element domain, which evaluates the bending energy in the element,
and will be related to the A-matrix

2. An evaluation on the outer element boundary I', which considers the energy due to the
reaction forces of the element, and will be related to the Bs-matrix

3. An evaluation on the fold I'r, which considers the torsional spring and the reaction forces
of the element, and will be related to the K,-matrix and Bg-matrix

4. An evaluation of the energy due to applied loads on the surface Q and boundary I', which
will be related to the load vector f.






Further convergence analysis results on
a square plate

\W rc
\\ f x
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Figure F.1: A square plate discretized using N elements on each of its edges, resulting in a total of N X N triangular elements. Either
a tilted fold is impose on the plate at x = xy — rcy * x, Side A is clamped and a distributed force F is applied on side C, or no fold is
imposed on the plate side A is clamped, the rotation of sides B and D is fixed, and a constant pressure is applied on the pate’s surface.

In Chapter 4, the convergence behavior of the square plate in Figure F.1 was investigated.
Besides the results presented in Section 4.1, other results were generated which illustrate
the degradation of the KL1®-element convergence rate. Firstly, to illustrate the already
low convergence rate of the foldable KL1 and HSM elements, a non-folded square plate is
examined. The plate in Figure F.1 is used without imposing a fold, and thus only standard
elements are used, side A is clamped, the rotation of sides B and D are fixed ¢, = 0, and a
pressure is applied on the plate’s surface. Using the material parameters in Table 4.1, an
analytical solution is derived as:

PL(L —x)x® PL(L—x)*x*> Px*
( ) 4 ( ) 4

@ () = o~
W () 3D 4D 8D

(F.1)
resulting in the standard element convergence behavior found in Figure F.2. Due to the
higher order moment field interpolation, the standard KL1-element achieved a convergence
rate of r¢;,g ® —2. Contrary to the convergence of r¢;,y ® —2 found in Figure 4.7, the standard
HSM-element only achieves a convergence rate of r¢;,; = —1. Investigating the results for the
standard HSM elements is [37], the HSM element is also found to have varying convergence
rates, for different test cases.
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Figure F.2: The displacement error convergence of the folded plate in Figure F.1 where no fold is imposed on the system. Side A is
clamped, the rotation of sides B and D is fixed ¢, = 0, and a constant pressure is applied on the plate’s surface. Since no fold is
imposed only standard elements are used and the linear moment HSM and KL1 elements are found to attain higher convergence rates.

Secondly, some more tilted folds are examined, using the plate in Figure F.1, but with
an imposed tilted fold. All further results in this Appendix are computed using a hinged
KLO element solution as a reference solution, following the method as described in Section
4.1. Subsequently, the displacement error is calculated using Equation 4.1. Firstly, a fold
is inserted at x; = 0.51 — 0.1y, resulting in Figure F.3. All foldable KL0 formulations converge
as expected, the KL1(®-element converges slightly slower with a convergence rate of TClog ~
—0.95. The KL1(9-element converges slightly faster, this is due to the decrease in enriched
edge continuity error. Increasing the complexity of the problem, a fold is inserted at x; =
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Figure F.3: The displacement error convergence of the folded plate in Figure F.1 using a hinged KLO element on a reference mesh defined
by Nyer = 256. As test parameters the values in Table 4.1 are used, side A is clamped and the distributed force is applied on side C. A
fold is implemented at xf = 0.51 — 0.1y.

0.61—0.3y, resulting in Figure F.4. The convergence rate of the KL1®-element decreased even
further to r¢,,, & —0.82. The convergence rate of the KL1(9-element begins relatively high.
Since the KL1(®)-element has an enriched edge continuity error, and the KL1? element does
not, the KL1() error can not be lower than the KL1® error. When the KL1(®) error approached
the KL1® error, the KL1(© convergence rate decreases, and the KL1() error remains higher
than the KL1® error. Finally, Figure F.5 shows the convergence rate when a fold is applied
at x; = 0.21+0.5y, in this figure it can clearly be seen that the convergence rates of the K L1®
and KL1(c) elements has degraded.
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Figure F.4: The displacement error convergence of the folded plate in Figure F.1 using a hinged KLO element on a reference mesh defined
by Nyey = 256. As test parameters the values in Table 4.1 are used, side A is clamped and the distributed force is applied on side C. A

fold is implemented at xf = 0.61 — 0.3y.
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Figure F.5: The displacement error convergence of the folded plate in Figure F.1 using a hinged KLO element on a reference mesh defined
by Nyef = 256. As test parameters the values in Table 4.1 are used, side A is clamped and the distributed force is applied on side C. A
fold is implemented at xf = 0.21 + 0.5y.






Analytical solution circular fold

Figure G.1: A circular plate with radius R and a circular fold at radius R < R. The plate is simply supported on its outer edge, and a
pressure is applied on its entire surface.

To analyze curved folds, an analytical solution is derived for the problem in Figure G.1.
The problem consists of a circular plate of radius R = 2 m, clamped on its outer edge. A
circular fold with radius R = 1.5 m is imposed on the plate, and a pressure of g = =100 Nm~2
is applied on its entire surface. Furthermore, the material parameters as in Table G.1 are
used. The polar coordinate r is defined as the distance from the center of the plate. For a
circular plate, loaded by a pressure on its surface a general solution is found in [46]:

_dw  qr® Cr G GA
¢() dr 16D 2 r’ (G1)
_a LG nrtc G.2
W) = s+ S Gl 4 G, @2)
where the material parameter D is defined as:
D= il G.3
T 12(1 —v?)’ (G.3)
Furthermore, the moment per unit length tangential to r is defined as:
dp v B+v)qgr? C,D(1+v) C,D(1-v)
M, =D (E + ;d’) =- 16 - 2 + 72 (G4)

103



104 G. Analytical solution circular fold

EINm™] [ k. [Nmrad™"m=" [ A[m] [ v R[m] | Rg[m] | ¢ [Nm™?]
69-10° | 500 001 [033]2 1.5 100

Table G.1: Values used in the circular plate calculations.

The problem is split into two domains:
QO ={r:0<r<Rg}, (G.5)
Ot ={r:Rp <r <R} (G.6)
On the two domains, two solutions are defined:
dw  qr® Cir G
16D 2 T
qr*  Cyr?

w (r)=m+ 7 +C; Inr + (3, (G.8)
on Q~, and
dw qr®  Ccfr cf
+ _—— —e—— e —— — —
= = 2 (G-9)
4 +..2
+ _ar Cir + +
wr(r) = ) + 2 +C Inr + (3, (G.10)

on Q. To interpret the constants six integration constants, Cy, C;, C3, Cf, ¢, ¥, six bound-
ary conditions are defined. Firstly, due to the clamped outer edge, the rotation and displace-
ment at r = R are 0:

wt(R) =0, (G.11)
»*(R) = 0. (G.12)

Furthermore, the displacement field at r = R should be continuous:
wt(Rp) —w™ (Rp) = 0. (G.13)

Because the circular plate is a symetric problem, it can be assumed that there is no rotation
at the center of the plate:

$~(0) =0. (G.14)
The final two boundary conditions are constructed by imposing moment continuity at the
fold. The moment per unit length at the fold due to the two displacement fields are defined:

(B+v)qr? CiD(1+v) N C;D(1—v)

M, = T > 2 (G.15)
B+wv)qr? Ccfp(1+v) CiD(1-v)
+ - _ —
M, = 16 > + 2 , (G.16)
and the moment in the fold is defined as:

Mg = ke (9T (Rp) — &~ (Rp)). (G.17)

Using these definitions the final two boundary conditions are defined as:
Mg — My (Rp) =0, (G.18)
Mgp — M} (Rp) = 0. (G.19)

Using the symbolic toolbox in MatLab, the six integration constants are interpreted. As the

found symbolic solution is quite lengthy, it is not displayed in this thesis. For the material
parameters in Table G.1, the solution becomes:

-y = I + 0.01057:" 0.00525 G.20

W = 5p 4 ' ’ (G.20)

o qrt N 0.00923 %12
W' (") = 1D 4

+ —0.00297 Inr + —0.00330. (G.21)
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