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Abstract. The paper provides a brief overview of recent computational studies of flow and heat transfer control by rotary
oscillations of an infinite circular cylinder at a relatively broad set of imposed frequencies and amplitudes [1, 2]. A study for
a previously unreachable high subcritical Reynolds number Re = 1.4× 105 showed that the efficiency of this control method
increases with Re concerning the issue of drag and lift reduction. High-frequency oscillations even lead to around 90 % reduction
of the drag. However, the benefits for heat transfer enhancement is not that obvious as the bulk Nusselt number shows only small
variations. At the same time its angular distribution around the cylinder becomes much more homogeneous due to oscillations
which practically can prevent local overheats.

INTRODUCTION

Most flows regimes over bluff bodies feature a natural unsteady quasi-periodic vortex shedding forming the well-
known Karman vortex street [3]. A circular cylinder is often selected as the model problem featuring complex physics
of separated flows [4, 5]. Strong unsteadiness leads to the quasi-periodic drag and lift forces acting on the cylinder,
meaning that possible scenario of undesired events include vortex-induced vibrations [6]. To manipulate the flow
characteristics one typically applies relevant control schemes. The goal may be to influence the shedding mechanism
or thermal boundary layer, alternate the drag and lift forces and enhance or suppress the heat flux from the surface.
Control methods can modify the flow characteristics by applying various geometry modifications like roughness [7],
grooves [8], splinter plates [4], or affecting boundary layer directly with hydrophobic layer on the surface of the
object [9], boundary layer suction or blowing [10], or by other means like electromagnetic field forcing [11], inline or
transverse oscillations [12, 13] etc.

Rotary oscillations of the cylinder with an optimal rotary oscillation frequency and amplitude can lead to a signifi-
cant drag reduction by intensive redistribution of pressure azimuthal profile. For instance, the drag reduction of 85 %
was previously achieved in experiment for Re = 1.5× 104 [14]. Later this result was qualitatively reproduced for a
wide range of rotary amplitudes and frequencies by a two-dimensional [15] and three-dimensional numerical simula-
tions [16], although drag reduction obtained at the optimal parameters was 53 %. Recently we extended these findings
to higher Re = 1.4×105, which is at least one order of magnitude higher which was considered in previous studies.
It was demonstrated that this control technique is more efficient at higher Reynolds numbers within subcritical flow
regime [1]. However the effect of this method on the heat transfer is not straightforward [2], but allows to reduce local
overheats.

PROBLEM FORMULATION

We study an air flow with the incoming uniform velocity U0 over a circular cylinder of the diameter D. The Reynolds
number of the flow is Re = U0D/ν = 1.4× 105 where ν is the kinematic viscosity. The key characteristics are the
drag and lift coefficients representing the non-dimensional drag and force values defined as:
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CD =
FD

ρU2
0 D

, CL =
FL

ρU2
0 D

,

where ρ , FD and FL - the density of the air flow, drag and lift forces acting on the cylinder, respectively.

The heat transfer was also considered for the imposed constant heat flux on the surface of the cylinder. The Nusselt
number is defined as:

Nu =
Re Pr qw

U0 [Tw −T0]

where Pr = 0.71 is the Prandtl number, qw denotes the heat flux while Tw and T0 are the temperature at the surface of
the cylinder and at the inflow. We impose rotary oscillations by applying a tangential velocity Uw on the cylinder wall
as:

Uw
θ (t) = Ω(t)U0, Ω(t) = Ω sin(2π fet),

where Ω, fe and t are the non-dimensional amplitude, frequency of imposed oscillations and time, accordingly, nor-
malized with D and U0. Further we use the ratio f = fe/ f0 normalized by the natural shedding frequency f0 at
considered Re. We analyse the data from a set of URANS simulations of the described configuration obtained using
an open-source unstructured finite-volume computational code T-Flows [17, 18]. The wall-integrated Reynolds-stress
model [19] is employed on a mesh containing 2.24× 106 hexahedral cells corresponding to a rectangular domain of
the size Lx × Ly × Lz = 25D× 20D× 2D along the streamwise, vertical and spanwise direction, respectively. The
computed cases with imposed rotary oscillations cover a wide range of parameters, i.e. a non-rotating cylinder as well
as f = 1− 5 for Ω = 1− 3. An extensive validation of the flow field and heat transfer is presented in [1, 2, 20]. All
simulations were performed on Re = 1.4×105 with URANS RSM [19] model, time-averaged data and instantaneous
data were validated against LES simulations with dynamic subgrid-scale model [21] for few selected parameters of
rotary oscillations.

RESULTS

To visualize the flow changes imposed by rotation, Fig. 1 shows the isosurface of the Q-criterion for a non-rotating
case and Ω = 2, f = 2.5. While the flow over a stationary cylinder produces three-dimensional coherent structures
and a relatively wide wake, the rotation suppresses three-dimensional evolution of large-scale structures and enforces
the Karman vortex street, keeping the rolls almost two-dimensional. To highlight the influence of oscillations on the
drag and lift coefficients we show Fig. 2 where the evolution of CD and CL in time for f = 2.5 and different Ω is
presented. Compared to a non-rotating case the drag significantly drops already for Ω = 1. Further increase of the
amplitude leads to nearly sinusoidal signal corresponding to a quasi-laminar flow. Figure 3 shows how the drag and lift
coefficient vary in the Ω− f plane. A significant reduction occurs for f > 1. With a further increase of frequency, CD
continues to decrease but at a slower pace. There is a notable difference in the drag reduction for different rotational
amplitudes. The highest decrease of CD occurs for Ω = 2 and the lowest for Ω = 1, while for Ω = 3 it falls in between,
but closer to the CD values for Ω = 1.

The distribution of the time-averaged Nusselt number 〈Nu〉(θ) around the cylinder is shown in Fig. 4 demonstrating
two distinguished peaks for most cases, at the front and at the rear central points of the cylinder. The bulk Nusselt
number varies within 10 % for all cases. For the non-rotating case the rear of the cylinder 〈Nu〉(θ = 180◦) is higher
than the value at the front (θ = 0◦) which is typical for high Reynolds number flow. The front 〈Nu〉 is the result of
a thin laminar boundary layer formed by impingement which grows as the air moves around the cylinder causing a
decrease in local 〈Nu〉. The lowest value is reached approximately at the initial separation point θsep. The turbulent
flow influences the heat transfer in the back of the cylinder (θ = 180◦) and it is primarily defined by alternately shed
large-scale vortical structures. The circumferential 〈Nu〉 profile becomes more homogeneous. This feature can be
used to suppress local overheats in practical applications.
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FIGURE 1. Isosurface of Q = 0.5 for non-rotating case (left and Ω = 2, f = 2.5 (right) coloured with instantaneous streamwise
velocity.
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FIGURE 2. (a) Drag and (b) lift coefficient against time for the frequency f = 2.5.
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FIGURE 4. Circumferential distribution of 〈Nu(θ)〉 for considered cases: the stationary cylinder, Ω = 1, f = 1, Ω = 1, f = 2.5,
Ω = 1, f = 4.
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CONCLUSION

We provide a brief overview of recent computational studies of flow and heat transfer control by rotary oscillations
of an infinite circular cylinder at a relatively large set of imposed frequencies and amplitudes [1, 2]. A study on a
previously unreachable high subcritical Reynolds number Re = 1.4× 105 showed that the efficiency of this control
method increases with Re concerning the issue of drag and lift reduction. High-frequency oscillations even lead to
around 90 % reduction of the drag. However, the benefits for heat transfer enhancement is not that obvious as the bulk
Nusselt number shows only small variations. At the same time its angular distribution around the cylinder becomes
much more uniform due to oscillations which practically can prevent local overheats.
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