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 Abstract— Optical fine and coarse spatial resolution multi-

spectral images are essential for monitoring land surface processes 

but are often affected by gaps due to cloud contamination and 

other factors. Gap-filling methods are vital for overcoming these 

issues, yet existing approaches struggle to accurately reconstruct 

pixels impacted by undetected thin clouds and shadows, 

particularly in fine spatial resolution images. This study 

introduces a comprehensive gap-filling method that identifies and 

reconstructs invalid pixels in both fine and coarse spatial 

resolution images. The method combines different spatial and 

temporal gap-filling methods. The specific combination of 

methods is orchestrated to adapt to each image, mainly on the 

basis of the fractional abundance and spatial pattern of cloud 

cover. To evaluate the performance, experiments were conducted 

using MODIS (coarse-resolution) and Landsat/OLI (fine-

resolution) images with artificial gaps (10%-90%) introduced at 

varying positions in cloud-free reference images. For coarse-

resolution images, the blue band showed the lowest Root Mean 

Square Error (RMSE) of 0.004 to 0.03, while the NIR band had 

higher RMSE (0.01-0.05). The Structural Similarity Index 

Measure (SSIM) ranged from 0.96 to 0.73 as gap percentages 

increased. For fine-resolution images, random gaps were 

reconstructed most effectively, with RMSE values for the blue 

band between 0.005 and 0.01, and NIR errors ranging from 0.01 

to 0.05. SSIM values ranged from 0.90 to 0.83 (blue) and 0.86 to 

0.71 (NIR), confirming the method reliability for time-series 

analysis and data fusion applications. 

 
Index Terms— Gap-filling, Remote sensing, Invalid pixels, Coarse 

spatial resolution, Fine spatial resolution. 
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I. INTRODUCTION 

igh spatial and temporal resolution multispectral 

remote sensing images acquired by space-borne 

sensors such as Landsat/OLI, Sentinel-2 sensor, and 

MODIS have transformed environmental monitoring by 

offering consistent, multi-temporal observations of the Earth 

surface [1]. In this study, these datasets are referred to as "fine-

resolution images" (high spatial and low temporal resolution, 

e.g., Landsat/OLI) and "coarse-resolution images" (low spatial 

and high temporal resolution, e.g. MODIS) and are widely used 

across various applications due to their complementary 

characteristics. Applications include global change monitoring 

[2], [3], [4], [5], crop monitoring [6], [7], [8], [9], [10], [11], 

water resource management [8], [12], [13], [14], and others.  

However, these datasets face persistent challenges, 

including contamination by clouds, shadows and aerosols, as 

well as sensor and algorithm malfunctions [15]. Such problems 

result in invalid and missing observations (gaps) in the spatial 

and temporal domains, significantly reducing the usability of 

both fine- and coarse-resolution images [16], [17]. Spatial gaps 

pose a greater challenge for analyses that rely on consistent and 

clear observations, such as Spatial and Temporal Fusion (STF) 

method [18], which aim to integrate fine- and coarse-resolution 

images [16], [19], [20]. Consequently, robust gap-filling 

techniques are required [21], to ensure and maximize the 

utilization of both fine- and coarse-resolution satellite data. To 

address this challenge, various gap-filling methods have been 

developed [21], [22], [23], [24], [25], [26]. 

Broadly speaking, gap-filling algorithms can be classified 

into three main categories: space-based, time-based and 

spatiotemporal (hybrid) methods [23]. The space-based 

methods rely solely on valid observations in the image 

containing spatial gaps to reconstruct the missing pixels. These 

methods assume that the missing and valid pixels within a 

single image (acquired on the same day) share similar statistical 

characteristics or texture information [27]. Notable examples of 

space-based methods include nearest neighbor interpolation 

[28], and the Kriging interpolation method [29]. While space-

based methods are relatively easy to implement and 

computationally efficient, they typically perform well only for 

images with small gaps [23]. Furthermore, these methods tend 

to be less effective in regions with complex or heterogeneous 

H 
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land cover, as they rely on the assumption of spatial 

homogeneity, which often does not hold in complex landscapes 

[24].  

The time-based methods leverage valid observations from 

the same location at different times (usually from close 

temporal acquisitions) to fill missing pixels [30]. These 

approaches assume that the reflectance or spectral 

characteristics of a given pixel do not change significantly over 

short periods of time or have periodic behavior, making the 

temporal interpolation feasible for filling gaps. The time-based 

methods are commonly used for reconstructing values of gap 

pixels in images of coarse-resolution but high temporal 

frequency. For instance, the Harmonic ANalysis of Time Series 

(HANTS) model [31], [32], [33] uses temporal information to 

reconstruct and smooth image time series by fitting harmonic 

functions that capture periodic features such as seasonal 

vegetation cycles [34].  

The spatiotemporal-based methods utilize both the spatial 

and temporal information to reconstruct missing pixels. These 

methods, often referred to as hybrid methods, leverage 

correlations across both spatial and temporal domains by 

integrating coarse-scale data with high temporal resolution and 

fine-scale data with high spatial resolution, thereby improving 

the gap-filling process. These approaches enable more robust 

reconstruction of missing data under varying conditions, 

improving the accuracy and reliability of the gap-filling 

process. Among the three types of gap-filling methods, 

spatiotemporal-based approaches provide a more reliable 

solution for reconstructing missing pixels [35], [36], [37]. This 

is supported by studies demonstrating that spatiotemporal 

methods leverage both spatial and temporal autocorrelation, 

leading to improved accuracy in pixel reconstruction [15], [35], 

[36], [37]. For example, one study highlighted that 

spatiotemporal techniques significantly improve data quality by 

utilizing information from both neighboring pixels and different 

time periods, resulting in superior performance in filling gaps 

in remote sensing data [38]. Furthermore, another investigation 

found that integrating spatiotemporal data with machine 

learning algorithms can lead high accuracy in reconstructing 

missing values, as demonstrated by validation against in situ 

measurements [35]. Nevertheless, there are still three primary 

challenges in gap-filling methodologies that must be addressed.  

The first challenge arises from the inherently different 

characteristics of fine- and coarse-resolution imagery. While 

the gap-filling objective applies to both type of data, their 

distinct spatial and temporal characteristics require different 

gap-filling methodologies. Fine spatial resolution data, such as 

30-meter resolution Landsat data, offer detailed spatial 

information critical for environmental monitoring, because the 

spatial patterns are much better delineated in high spatial 

resolution images [1], [39], [40]. Such data, however, have 

relatively low temporal resolution. In contrast, coarse spatial 

resolution images, such as MODIS with 250-1000meter 

resolution, provide high temporal resolution (e.g. daily 

observations) and are better suited for monitoring large-scale 

dynamic processes. The choice of distinct gap-filling 

methodologies for fine- and coarse-resolution images reflects 

the inherent trade-offs between their spatial and temporal 

resolutions. Despite these differences, existing methods often 

adopt a one-size-fits-all approach, which fails to leverage the 

unique characteristics of fine and coarse resolution imagery. 

Fine spatial resolution data, due to their sensitivity to spatial 

heterogeneity, require gap-filling methods that preserve spatial 

detail while avoiding artifacts that could distort fine-scale 

variability [41], [42]. This highlights the importance of tailored 

approaches to maintain data integrity in high-resolution 

applications. For instance, advanced interpolation or 

geostatistical methods, which are designed to reconstruct local 

spatial patterns, are often more suitable for fine-resolution data 

[43]. Conversely, coarse spatial data emphasize temporal 

continuity due to their frequent observations. Gap-filling 

approaches for gap-filling of coarse-resolution data must 

prioritize temporal consistency to ensure that the reconstructed 

values are consistent with the underlying temporal trends [44]. 

This often involves time-series-based techniques, such as 

harmonic analysis [45] or autoregressive models [46], which 

exploit the dense temporal information to predict missing 

values accurately. How-ever, these challenges differ 

significantly from those associated with fine-resolution data, 

where the accurate delineation of spatial patterns is paramount. 

The contrasting requirements underline the need for separate 

gap-filling methodologies that address the unique strengths and 

weaknesses of each type of data. The need for different 

methodologies is also underpinned by the intended applications 

of the gap-filled datasets. For instance, fine-resolution data 

support applications like as urban mapping [47], precision 

agriculture [48], and habitat monitoring [49], where spatial 

detail is paramount. Coarse-resolution data, however, facilitate 

large-scale studies such as phenological studies [50], [51], [52], 

climate monitoring, and biomass estimation [53], where 

temporal trends are paramount. In summary, the distinct spatial 

and temporal characteristics of fine- and coarse-resolution data 

require the use of separate gap-filling methods. For high-

resolution images, spatial correlation is crucial for accurately 

reconstructing missing data, while for low-resolution images, 

leveraging temporal features is essential to fill the feature gaps. 

To the best of our knowledge, numerous gap-filling methods 

have been developed (e.g., [17], [21], [22], [23], [24], [25], [54], 

[55], [56], [57], [58]. However, the need to use different 

methods for fine- and coarse-resolution images has not been 

explicitly addressed, leaving a critical gap in adapting gap-

filling techniques to the different characteristics of these 

datasets.  

The second challenge lies in accurately detecting cloud-

contaminated pixels, particularly thin clouds, in fine-resolution 

imagery. Clouds typically shows high reflectance in the visible 

and near-infrared bands, often resulting in abnormally bright 

pixels and pixels with lower brightness temperature in thermal 

bands. Thin clouds and shadows, on the other hand, pose unique 

challenges as they partially obscure the surface while allowing 

some radiance transmission, leading to mixed pixel values. 

Detected invalid pixels appear as spatial and/or temporal 

discontinuities in satellite imagery, often referred to as gaps or 

missing pixels. However, recent studies have further 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3551360

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3 

JSTARS-2025-00370  

highlighted the limitations of existing cloud and shadow 

detection methods, especially when dealing with high-

resolution images. Chen et al. [59] demonstrated that while 

deep learning-based cloud detection, such as multiscale 3D-

CNN, improves the accuracy of gap-filled pixels, it still 

struggles with thin clouds due to their spectral similarity to 

background objects such as water, mountains, and snow [59]. 

Similarly, Han et al. (2020) found that high-resolution shadow 

detection is prone to misclassification of cloud-contaminated 

pixels, often confusing dark non-shadow regions with actual 

shadows [60]. Zhang et al. [61] emphasized that many cloud 

removal methods rely on a single clear-sky reference image, 

which is often unavailable, leading to inconsistent results in 

high-resolution images [61]. Similarly, Lei, et al. [62] found 

that traditional shadow correction techniques often result in 

over-correction in some areas while leaving others under-

corrected, leading to inconsistencies in accuracy. These studies 

collectively highlight the ongoing difficulty in developing 

automated cloud and shadow detection algorithms that can 

effectively handle thin cloud layers and cloud shadows while 

maintaining reliability in high-resolution remote sensing 

imagery. According to the study conducted by Wang, et al. [23], 

a major challenge in detecting invalid pixels in fine-resolution 

Landsat images stems from the limitations of Quality 

Assurance (QA) flagging systems. These QA systems, while 

providing a basic framework for identifying gaps, often fail to 

detect subtle anomalies such as thin clouds and shadows. To 

overcome this shortcoming, Wang, et al. [23] proposed a 

methodology that combines QA flags with thresholding 

techniques and visual inspection. The thresholding approach 

leverages spectral reflectance properties to improve the 

accuracy of cloud and shadow detection, thereby addressing 

gaps left by QA algorithms. Although their method [23], 

improves the identification of invalid pixels, it has notable 

limitations. The reliance on visual inspection, while effective in 

identify the undetected invalid pixels, introduces significant 

drawbacks. It is time-consuming and inherently non-scalable, 

making it unsuitable for large-scale or automated applications. 

This reliance on manual processes highlights the need for more 

automated and scalable approaches that can maintain accuracy 

without requiring extensive human intervention. This challenge 

is less pronounced for coarse spatial resolution imagery, where 

cloud detection algorithms generally achieve higher accuracy in 

identifying clouds.  

This improved performance is largely attributed to their 

ability to leverage temporal information inherent in time-series 

data, which provides a richer context for detecting invalid 

pixels. For example, MODIS serves as a prime example of a 

satellite system optimized for high temporal resolution, 

revisiting locations daily. It employs advanced cloud detection 

mechanisms such as the MOD35 cloud mask and the internal 

MOD09 QA flags, which leverage information from multiple 

spectral bands alongside contextual algorithms to identify 

clouds and shadows [63]. The "state_1km" dataset, a critical 

component of the MODIS QA flags, has undergone extensive 

global validation to ensure reliability. Notably, these algorithms 

are highly effective at detecting even thin clouds, a challenge 

for many other remote sensing platforms. This capability 

significantly improves the accuracy of MODIS data in 

identifying invalid pixels, making it a reliable source for gap-

filling methods. Additionally, the integration of temporal 

continuity into these algorithms further bolsters their 

robustness, enabling consistent performance under varying 

atmospheric conditions.  

The third challenge is how to find valid observations to 

serve as primary information for gap-filling of fine spatial 

resolution data. Existing gap-filling methods, such as the 

Neighborhood Similar Pixel Interpolator (NSPI) proposed by 

Chen et al [54], typically rely on fixed-shape search windows 

to identify neighboring pixels with similar spectral 

characteristics. Similarly, Shen-Chuan, et al. [64] introduced a 

method that uses an adaptive search window combined with 

linear regression to restore missing pixels in remote sensing 

images. Their approach adjusts the size of the search window 

based on local image characteristics to identify suitable 

neighboring pixels for reconstruction. More recently, Guo, et 

al. [65], proposed the Class-based Linear rEgression and 

iterAtive Residual compensation (CLEAR) method for gap-

filling of optical images. By classifying time-series reference 

images, CLEAR characterizes annual land-cover dynamics to 

guide gap-filling steps. The method preliminarily fills gaps 

using class-based linear regression, assuming that pixels within 

the same land-cover class exhibit similar temporal changes, and 

refines predictions through iterative residual compensation that 

integrates neighboring pixels' residuals. Building on the 

methodologies reviewed, Chen, et al. [54], advanced gap-filling 

techniques by introducing an adaptive search window 

determined through spatial autocorrelation, paired with 

enhanced spatial and spectral weighting. This approach 

dynamically optimized the search window size to ensure the 

inclusion of sufficient valid neighboring pixels while 

maintaining computational efficiency. It complements 

previously discussed methods, such as the fixed-shape windows 

of NSPI [54], and the adaptive regression windows of Shen et 

al., by emphasizing both local spatial relationships and spectral 

similarity. These innovations significantly improve the 

definition of pixel similarity for identifying valid observations, 

which serve as the foundation for fine-resolution gap-filling. 

However, they also highlight the need for future approaches 

that integrate more flexible and dynamic search strategies. By 

accommodating complex spatial patterns among neighboring 

pixels and employing diverse search window configurations, 

such strategies could further enhance gap-filling accuracy, 

particularly in challenging landscapes. 

Therefore, to address aforementioned challenges, we 

proposed an adaptive gap-filling approach for multi-spectral 

satellite imagery. We introduced distinct gap-filling methods 

explicitly designed to optimize reconstruction for fine- and 

coarse-resolution imagery, separately. For images with fine- 

spatial resolution, our approach automatically identifies invalid 

pixels without relying on visual inspection. It then employs 

regression-based methods to reconstruct the values of the 

detected invalid pixels. This is achieved by dynamically 

utilizing varying search windows with different shapes and 
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orientations, effectively capturing different spatial patterns of 

valid observations of surface reflectance. For images with 

coarse spatial resolution, our approach relies on QA flags 

provided with the dataset to identify invalid pixels and fills the 

gaps by adapting to varying gap conditions. This is achieved 

through a combination of global regression, local regression 

and geo-spatial analysis, with the method selected based on the 

gap percentage in each image (day). The approach operates 

independently of auxiliary datasets, ensuring robust and reliable 

performance even under challenging conditions. 

II. DATA AND STUDY AREA 

A. Fine and coarse spatial resolution satellite data 

To implement and evaluate our method, we utilized two 

major datasets tailored for fine- and coarse-resolution images. 

For fine-resolution, we used atmospherically corrected surface 

reflectance and Land Surface Temperature (LST) from thermal 

infrared (TIR) data from Landsat 8 OLI/TIRS and Landsat 7 

ETM+ sensors. These datasets include four visible and near-

infrared bands (Blue, Green, Red, and NIR), one SWIR band, 

one TIR band, and the QA_PIXEL band. The QA_PIXEL band 

encodes pixel-level quality information related to clouds, cloud 

shadows, snow/ice, and water, as summarized in Table I. All 

available images and corresponding QA band from January 1, 

2018, to December 31, 2018, for our study area (Fig. 1) were 

downloaded from Google Earth Engine (GEE). 

For coarse spatial resolution, we used the MODIS Terra 

Surface Reflectance Daily Global 1 km dataset (MOD09GA, 

version 6.1, 10:30 AM). This dataset includes four spectral 

bands (Blue, Green, Red, and NIR) and the Reflectance Data 

State QA band (state_1km). Detailed information about the 

MODIS state_1km QA band is summarized in Table I. Images 

spanning from 2002 to 2022 were also obtained through GEE.  

MODIS dataset, with the high temporal resolution of Terra 

satellite (daily revisit), utilizes robust cloud detection 

algorithms, including the MOD35 cloud mask and the QA flags 

in MOD09 reflectance dataset [63]. These algorithms apply 

multiple spectral bands and contextual tests, offering reliable 

cloud and shadow identification. Pixels flagged as poor quality, 

i.e. those affected by clouds, shadows, or other atmospheric 

interferences, were classified as invalid observations. In 

contrast, pixels marked as good quality were retained as valid 

observations [66]. 

 
TABLE I 

QA FLAGS DETAILS FOR LANDSAT AND MODIS DATA 

Dataset QA Band Bit Description Values/Meaning 

Landsat QA_PIXEL 

Bit 0 Fill 0: Valid, 1: Fill pixel 

Bit 1 Dilated Cloud 0: No, 1: Yes 

Bit 3 Cloud 0: No, 1: Yes 

Bit 4 Cloud Shadow 0: No, 1: Yes 

Bit 5 Snow/Ice 0: No, 1: Yes 

Bit 7 Water 0: No, 1: Yes 

Bits 8–9 Cloud 

Confidence 

0: None, 1: Low, 2: Medium, 3: 

High 

Bits 10–

11 

Cloud Shadow 

Confidence 

0: None, 1: Low, 2: Medium, 3: 

High 

Bits 12–

13 

Snow/Ice 

Confidence 

0: None, 1: Low, 2: Medium, 3: 

High 

Bits 14–

15 

Cirrus 

Confidence 

0: None, 1: Low, 2: Medium, 3: 

High 

MODIS state_1km 

Bits 0–1 Cloud State 0: Clear, 1: Cloudy, 2: Mixed, 3: 

Not set (assumed clear) 

Bit 2 Cloud Shadow 0: No, 1: Yes 

Bits 3–5 Land/Water 

Flag 

0: Shallow ocean, 1: Land, 2: 

Ocean coastlines/lake 

shorelines, 3–7: Various water 

types 

Bits 8–9 Cirrus 

Detected 

0: None, 1: Small, 2: Average, 

3: High 

Bit 12 MOD35 

Snow/Ice Flag 

0: No, 1: Yes 

Bit 13 Adjacent to 

Cloud 

0: No, 1: Yes 

Bit 14 BRDF 

Correction 

Performed 

0: No, 1: Yes 

Bit 15 Internal Snow 

Mask 

0: No Snow, 1: Snow 

 

B. Study area 

The area selected to test and to evaluate the method is 

around Zhangy oasis located in the northeast region of China, 

spanning approximately 1,600 km2 (Fig. 1). This area was 

selected due to its heterogeneous land cover, which poses 

unique challenges for gap-filling methods. As illustrated in Fig. 

1, three highlighted regions showcase the diverse land cover 

types, further emphasizing the complexity of the study area. 

Moreover, this region frequently experiences thin clouds and 

shadows, which are often undetected by the QA flags, 

particularly in fine-resolution images. This characteristic 

provided an opportunity to assess the robustness of our invalid 

pixel identification technique (refer to section II.B.1) and 

ensure a thorough evaluation under demanding conditions.  

 

 
Fig. 1. The selected area for the experimental design and method 

testing. The red circle highlights three different land covers, which are 

enlarged at the bottom of the figure. Each red circle is numbered, with 

the corresponding view displayed as three separate squares with 

matching numbers. The case study area covers approximately 40 × 40 

km2.  

III. METHODOLOGY 

This study proposes a comprehensive gap-filling framework 

tailored to the distinct requirements of fine- and coarse-

resolution satellite imagery. For coarse-resolution images, gaps 
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are identified using QA flags provided with the dataset (i.e. 

MODIS QA dataset in this study), where pixels with lower 

values are classified as invalid. The method then calculates the 

Missing Pixel Percentage (MPP) for the dataset and applies a 

threshold-based approach to determine the appropriate gap-

filling technique. Depending on the MPP in the image on each 

day, gaps are filled using methods named as Global Regression 

Analysis (GRA), Local Regression Analysis (LRA), or Geo-

spatial Analysis (GA).  

For fine-resolution images, the process begins with 

thresholding techniques to identify invalid pixels, with 

thresholds based on quality flags (i.e. QA dataset from 

Landsat). For each gap pixel the gap-filling method utilizes 

dynamic search windows of varying shapes and sizes to adapt 

to spatial heterogeneity, constructing regression models from 

valid observations surrounding the gap pixel with valid pixel on 

the same position but at different times or spectral bands. The 

best regression model is selected by maximizing the coefficient 

of determination (R2), ensuring robust reconstruction. If a 

suitable model is not found, the search window is redefined, and 

the process is repeated until the R2 threshold is met. Any 

remaining unfilled pixels are handled using spatial interpolation 

techniques. This framework provides an effective, adaptable 

approach for addressing gaps in satellite imagery, ensuring 

reliable data reconstruction for both coarse- and fine-resolution 

datasets. The workflow of the proposed method is summarized 

in Fig. 2. 

 

 
Fig. 2. The overall workflow of the gap-filling methods in this study: 

left panel for coarse-resolution image; right panel for fine-resolution 

image. 

 

A. Gap-filling method for coarse spatial resolution image 

The gap-filling approach for coarse spatial resolution 

images presented here is part of our broader research efforts and 

has been detailed in [67]. This method is developed to fill gaps 

in datasets with coarse spatial resolution but high temporal 

resolution, such as MODIS. We have successfully applied this 

method for fill the gaps in MODIS land surface temperature 

(LST) images [67]. Only brief description of the procedure will 

be given in this paper. 

 

1) Invalid pixels identification and Missing Pixel 

Percentage (MPP) determination 

The accuracy of invalid pixel identification is critical for 

ensuring the reliability of gap-filling processes in both fine- and 

coarse-resolution imagery. Invalid pixels in coarse-resolution 

images were identified using only the QA flags available in the 

MODIS data products. The straightforward approach leverages 

the high temporal resolution of MODIS and its robust QA 

flagging system to ensure effective identification of invalid 

pixels. 

The MPP, which represents the percentage of invalid pixels 

relative to the total number of pixels in each image (e.g. study 

area), is calculated based on the QA flags in the MODIS 

products. Two thresholds, Minmpp (i.e., the threshold for 

conditions with minimal gaps) and Maxmpp (i.e., the threshold 

for conditions with significant missing data), are determined 

based on the first and last deciles of the MPP frequency 

distribution from our 2002-2022 dataset. These thresholds 

categorize the severity of gap and guide the selection of the 

appropriate reconstruction method. Specifically, when the MPP 

is below Minmpp, the method employs Local Regression 

Analysis (LRA) due to the availability of sufficient valid 

neighboring pixels. When the MPP is above Maxmpp, Global 

Regression Analysis (GRA) is applied, using broader spatial 

patterns for reconstruction. In intermediate cases, Geospatial 

Analysis (GA) is used to balance local and global information. 

This adaptive approach ensures optimal gap-filling efficiency 

under varying data loss conditions. Detailed information and 

parameter settings can be found in our previous work [67]. 

 

2) Reconstruction of reflectance values for invalid pixels 

in coarse spatial resolution images 

To guide the reconstruction process, a reference year is 

generated. The reference year is constructed by averaging the 

pixel values (e.g., surface reflectance) for each day of the year 

(1–365) across a long time series. To ensure temporal 

consistency and enhance spatial continuity, Temporal Fourier 

Analysis (TFA) is applied to the reference year dataset [68]. 

This process creates a smoothed temporal profile, accounting 

for the unique yearly temporal pattern of each pixel. By 

minimizing inconsistencies in the temporal profile, TFA 

ensures greater spatial coherence across the dataset, which is 

particularly critical for maintaining the large-scale patterns of 

coarse spatial resolution imagery. The refined reference year 

serves as a robust temporal baseline for the gap-filling process.  

Lastly, for each daily image, the following techniques will be 

applied based on the previously set MPP thresholds:  

Global Regression Analysis (GRA):  

When a given day MPP exceeds Maxmpp, indicating a high 

number of invalid pixels, GRA is applied. This method 

establishes a regression model between the valid observations 

(pixels) across the image (image with gap which is being 

processed) and same pixels in the reference year image. Then 

applies the established regression to the pixels in the reference 

year at the locations of gap pixels in the current image to fill the 

gaps. This approach captures broad temporal trends and ensures 
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that the reconstructed pixels align with the overall patterns of 

the dataset. GRA is particularly suited for scenarios where 

invalid pixels are widespread, as it reconstructs data by 

leveraging global relationships. 

Local Regression Analysis (LRA): 

 For moderate MPP values that fall between Minmpp and 

Maxmpp, LRA is employed. This method uses a moving window 

approach, using a regression between valid pixels in the spatial 

vicinity of the invalid pixel and the corresponding pixels in the 

reference year. The moving window dynamically adjusts its 

size to include sufficient valid observations, ensuring reliable 

reconstruction. 

Geo-spatial Analysis (GA):  

When the MPP is below Minmpp, indicating sparsely 

distributed invalid pixels, GA is applied. This method leverages 

Tobler's First Law of Geography, which states that closer 

entities are more related than distant ones. This principle 

underpins the use of neighborhood information and spatial 

analysis to reconstruct missing pixels, particularly when gap 

sizes are relatively small. In this approach, the reference image, 

corresponding to the same day of year (DoY) as the image being 

initially gap-filled, is segmented using the K-means clustering 

algorithm with K set to 5 to assign a class to each gap pixel. The 

decision to use K = 5 in the K-means clustering algorithm was 

guided by prior research [17], [69] applied this method to gap-

filling tasks. These studies indicated that an optimal K typically 

falls within the range of 3 to 7, which has been shown to work 

effectively for such applications. As a result, we chose the 

midpoint of this range as the fixed value for K in our study. 

Then the 10 nearest pixels within the same class are selected to 

calculate the weighted average of these pixels, with weights 

inversely proportional to their distance from the target pixel, 

ensuring closer pixels contribute more to the estimation. 

B. Gap-filling method for fine spatial resolution image 

A reconstruction method to fill values of the invalid pixels 

is proposed to alleviate the spatial discontinuity or identified 

invalid pixels in fine-resolution images. The core of this method 

is the correlation between valid observations surrounding a 

target gap pixel and those at the same spatial location but from 

different times and spectral bands. This process applies search 

windows of different shapes and sizes to explore different 

configurations of valid observations. The relationships are 

quantified by linear regression, with the equation with the 

highest R2 selected for gap-filling. In addition, a predefined 

correlation coefficient threshold (set to 0.8 in this study) 

ensures that only robust regression equations contribute to the 

reconstruction of the value in the gap pixel, thereby minimizing 

errors. If the initial equations do not meet the threshold, or if 

there are insufficient valid observations for a regression model, 

the size of the search window is incrementally increased. This 

adjustment continues until the threshold conditions are met or 

the window size reaches the image dimensions. In scenarios 

where a few pixels remain unfilled, interpolation methods using 

nearby valid observations are applied to fill these remaining 

gaps in step 3. The detailed technical implementation of our 

method is explained in the following sections. 

 

1) Invalid pixels identification in fine spatial resolution 

images 

The fine-resolution datasets, for example Landsat images, 

with their lower temporal frequency (16-day revisit), rely on 

simpler QA flags that are less effective in detecting thin clouds 

and shadows [23], [70]. An example of this failure is shown in 

Fig. 3. This inadequacy necessitates supplementary threshold-

based methods to identify undetected invalid pixels, especially 

in heterogeneous landscapes where cloud detection is more 

challenging. Hence, we combined the QA flags with a 

thresholding technique to detect additional invalid pixels.  

 

 

Fig. 3. An example of effectiveness of the Landsat QA layer in 

identifying cloud-affected pixels. The upper row (from left to right) 

shows: a clear Landsat 8 image (dated 2018-06-17, near the next 

cloudy Landsat 7 acquisition), a cloud-contaminated Landsat 7 image, 

and a Landsat 7 image overlaid with the QA layer highlighting clouds 

and shadows. The lower row presents a zoomed-in view of the same 

images.  

 

To implement our technique, we selected the blue, near-

infrared (NIR), and shortwave-infrared (SWIR) spectral bands, 

which are particularly effective in detecting shadows [70], [71]. 

Additionally, a thermal infrared (TIR) band was applied to 

identify clouds [72]. These bands were selected because 

shadows and clouds exhibit characteristic spectral signatures in 

these spectral ranges, making them ideal for distinguishing 

invalid pixels from valid observations.  

To establish thresholds for identifying clouds and shadows, 

the method first examines the pixels in a given image, in 

particular the ones flagged by the QA as clouds or shadows. 

Baseline thresholds are estimated by calculating the average 

pixel values for these flagged pixels in each of the selected 

bands. These thresholds serve as reference values for 

identifying other potentially invalid pixels.  

Once the thresholds are set, the method evaluates each pixel 

in a given image. If a pixel values in all three spectral bands fall 

below the shadow thresholds, it is flagged as a shadow pixel. 

Likewise, if a pixel value in the thermal band is below the cloud 

threshold, it is flagged as a cloud pixel. This process ensures 

that pixels potentially missed by the QA flags are identified and 

labeled correctly.  

To avoid misclassification, the method specifically excludes 

water, ice, and snow pixels from being flagged as clouds or 

shadows. These exclusions are informed by the original QA 

flags and supplemented by spectral indices like the Normalized 
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Difference Snow Index (NDSI) and Normalized Difference 

Water Index (NDWI), which reliably distinguish water and 

snow/ice from other surface features [73], [74], [75], [76], [77]. 

The reliability of Landsat QA for water, ice, and snow stems 

from their distinct spectral signatures in VNIR and thermal 

bands, which are well-captured by the QA algorithms. The 

detailed workflow for identifying invalid pixels in fine spatial 

resolution images is outlined in Fig. 4. 

 

 
Fig. 4. Detailed workflow for identifying invalid pixels in fine spatial 

resolution images. Critical parameters are highlighted in bold and red.  

 

2) Reconstruction of reflectance values for invalid pixels 

in fine spatial resolution images 

The following steps give the details of reconstruction of 

reflectance values for invalid pixels in fine-resolution image. 

Step 1) Configuration of the search windows 

To effectively reconstruct each missing pixel, we apply 

search windows that vary in shape, size and orientation (Fig. 5). 

This variation maximizes the extraction of relevant information 

for reconstructing the missing pixels. The design of these 

windows is important as they are used to capture the 

distribution of valid observations in the neighborhood of each 

gap. The dimensions of a search window are (v, u), where v is 

the number of columns and u is the number of rows. In this 

study, the initial size of each window is set to (9, 9) for a square 

window and (9, 5) or (5, 9) for rectangular windows, as these 

dimensions were found to be the most effective based on 

preliminary trial-and-error analyses. To set a directional search 

window for gap-filling in fine spatial resolution images, we 

retain a square-shaped search window but selectively utilize 

valid pixels along two specific diagonal directions. The selected 

pixels follow either (1) an upper-left to lower-right direction or 

(2) an upper-right to lower-left direction. Only the pixels along 

the selected diagonal direction within the search window are 

used for regression. Fig. 5 illustrates these directional 

configurations. For directional windows, the size remains the 

same as for the square shape, but the orientation of the pixels is 

different. If the number of valid observations in either setting is 

less than 75% of the window size (v × u), the window size is 

incrementally increased. 

 

 
Fig. 5. Configurations of a search window. (a): square Shape, (b) and 

(c): rectangular and (d) and (e): directional shape. Black: missing 

pixels; red board: target missing pixel to be filled. 

 

Step 2) Establishment of linear regression for gap-filling 

Assuming that the pixels close to each other have similar 

spatial and temporal characteristics, a separate linear regression 

of the pixel reflectance for each band (λ) between two paired 

windows, one in the target image on day t1, where gaps need to 

be filled, and one from another image on any different day (t2), 

can be established. The reflectances in the available pixel pairs 

at the same location in the two paired-image windows are used 

to estimate the unary linear regression as: 

𝑌𝑡1, 𝑤𝑚, 𝜆𝑘
 = 𝑎𝑡1,2, 𝑤𝑛, 𝜆ℎ

 +  𝑏𝑡1,2, 𝑤𝑛, 𝜆ℎ
·  𝑌𝑡2, 𝑤𝑛, 𝜆ℎ

   (1) 

where 𝑌𝑡1, 𝑤𝑚, 𝜆𝑘
 is the reflectance on day t1 in band  𝜆𝑘 in the 

available pixels in window 𝑤𝑚 , i.e. 𝑌𝑡1, 𝑤𝑚, 𝜆𝑘
∈

 {ρ𝑡1, 𝑤𝑚, 𝜆𝑘
(𝑖1, 𝑗1), ρ𝑡1, 𝑤𝑚, 𝜆𝑘

(𝑖1, 𝑗2), … … , ρ𝑡1, 𝑤𝑚, 𝜆𝑘
(𝑖𝐼 , 𝑗𝐽)} ; 

𝑌𝑡2, 𝑤𝑚, 𝜆ℎ
 is the reflectance array on day t2 for each band  𝜆𝑘 at 

the same locations of 𝑌𝑡1, 𝜆𝑘, 𝑤𝑚
, i.e. 𝑌𝑡2, 𝑤𝑚, 𝜆ℎ

∈

 {ρ𝑡2, 𝑤𝑚, 𝜆ℎ
(𝑖1, 𝑗1), ρ𝑡2, 𝑤𝑚, 𝜆ℎ

(𝑖1, 𝑗2), … … , ρ𝑡2, 𝑤𝑚, 𝜆ℎ
(𝑖𝐼 , 𝑗𝐽)} . 

 𝜆𝑘 and  𝜆ℎ are the spectral band indicators ranging from blue, 

red, green and to NIR bands of Landsat (k can be equal to h); 

 𝑤𝑚 (and  𝑤𝑛) is indicator for a search window in the set with 

m (and n) = 1, 2, …,5 as indicated in Fig. 5 (m can be equal to 

n). 𝑎𝑡1,2, 𝑤𝑚, 𝜆𝑘,ℎ
and 𝑏𝑡1,2, 𝑤𝑚, 𝜆𝑘,ℎ

 are regression coefficients 

estimated from least square fit. 

For each gap pixel in band k, in total 20 (= 5 window shapes 

x 4 bands) different linear regressions with the R2 values can be 

established. A R2 > 0.80 indicates a valid regression to fill the 

invalid pixels. The linear regression with the highest R2 value, 

denoted as window wX and band λH, is selected to calculate the 

value in the gap pixel using:  

𝜌𝑡1, 𝑤𝑥, 𝜆𝑘
(𝑖0, 𝑗0) =  𝑎𝑡1,2, 𝑤𝑋, 𝜆𝐻

+  𝑏𝑡1,2, 𝑤𝑋, 𝜆𝐻
· 𝜌𝑡2, 𝑤𝑋, 𝜆𝐻

(𝑖0, 𝑗0)     (2) 

where 𝑎𝑡1,2, 𝑤𝑋, 𝜆𝐻
 and 𝑏𝑡1,2, 𝑤𝑋, 𝜆𝐻

 are the coefficients taken 

from the linear regression with the highest R2 obtained from the 

previous step, 𝜌𝑡1, 𝑤𝑥, 𝜆𝑘
(𝑖0, 𝑗0) is the filled value of reflectance 

of band λk in window wx in the gap position (i0, j0) on day t1, 

𝜌𝑡2, 𝑤𝑋, 𝜆𝐻
(𝑖0, 𝑗0)  is the reflectance of band λH with window 

shape wX (corresponding to the regression with the maximum 

R2) at the same location (i0, j0) on day t2.  

If the number of valid observations in either set is less than 

75% of the window size (Column × Row), the search window 

size is incrementally increased and the regression process is 

repeated to seek for better results. This step is crucial for 
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gathering enough valid observations to establish a reliable 

regression.  

If the R2 value still remains below 0.80 after the search window 

has reached the size of the full image, we apply an alternative 

procedure (step 3). 

 

Step 3) Dealing with remaining unfilled pixels: 

The foundation of our procedure to reconstruct the 

remaining unfilled pixels is based on the fundamental principle 

of geography, as articulated by Tobler [78], which suggests that 

all entities are interconnected, but the degree of their 

relationship reduces with increasing spatial distance. Taking 

into account this fundamental principle, our objective is to 

reconstruct the pixels that cannot be filled using the regressions 

described above by using the nearest similar valid pixels. These 

pixels are identified by applying image segmentation to the 

image [17] closest in time to the date of the image being 

processed. The segmentation was performed using the K-means 

clustering algorithm, with K set to 5 (see section III.A.2). This 

algorithm categorizes the image into five distinct clusters. After 

determining the class of the target invalid pixel, we select the 

ten nearest pixels within the same class as reference pixels. The 

values at the missing pixel are then estimated as a weighted 

average of the reference pixels [79], where weights depend on 

the distance, giving higher weights to closer pixels. 

 

C. Experimental design for method evaluation 

To evaluate the performance of the proposed gap-filling 

method and its robustness under diverse conditions, two 

experiments were conducted. The experimental design included 

two main components: 1) assessing the accuracy of the gap-

filling process for both fine- and coarse-resolution images using 

artificially introduced gaps; 2) evaluating the identification of 

invalid pixels and its impact on gap-filling performance for 

fine-resolution images. These experiments were designed to 

systematically explore how different factors, such as error rates 

in invalid pixel identification and the size and spatial 

distribution of gaps, affect the method’s effectiveness. 

 

1) Evaluation of gap-filling performance using artificially 

introduced gaps 

Artificially introduced gaps are a primary method to 

evaluate the gap-filling performance for both coarse and fine- 

resolution images. This experiment was designed to assess how 

the percentage and position of gaps affected gap-filling 

accuracy. For this purpose, a clear image was selected, and 

three scenarios were considered: randomly introduced gaps 

with real cloud and shadow shapes (Fig. 6a), centrally 

introduced growing gaps (Fig. 6b), and corner-introduced 

growing gaps (Fig. 6c). The gap percentages varied from 10% 

to 90% of the total image area in these scenarios (Fig. 6), 

randomly positioned gaps mimic cloud and shadow shapes and 

are distributed throughout the image at different percentages. 

The central gaps were introduced as a circular shape expanding 

from the center of the image (Fig. 6, middle panel), while the 

corner gaps expanded from the top left of the image (Fig. 6, 

lower panel). To evaluate the gap-filling method using these 

gap-introduced images, the method was applied to each image, 

and the reconstructed reflectance of artificial gap pixels were 

compared with the original values from clear pixels. 

Performance metrics, as outlined in section. II.C.3, were then 

calculated to assess the method accuracy. 

 

 
Fig. 6. Different types of artificially introduced gaps (yellow color). 

(a), (b) and (c) are for artificial gaps generated by random, center and 

corner distributions, respectively. Each row indicates the percentage of 

gaps ranging from 10% to 90% (here only middle (50%) and extreme 

(10% and 90%) cases were represented). 

 

2) Impact of QA errors on invalid pixel identification and 

gap-filling in fine spatial resolution images 

To evaluate the impact of QA errors on invalid pixel 

identification and gap-filling for fine-resolution images, an 

experiment was conducted. Our method (Section III.A.2) relies 

on QA flags to set thresholds to identify clouds (using LST) and 

shadows (using reflectance), inconsistencies between QA flags 

and the actual conditions can affect the identification of invalid 

pixels. For instance, a QA layer that incorrectly flags valid 

observations as invalid will results in higher thresholds and a 

larger number of pixels being classified as invalid over the 

study area, which will improve the quality of the remaining 

valid pixels. To evaluate the on gap-filling performance, we 

designed an experiment using artificially generated images and 

QA layers (Table II).  

For each spectral band an artificial cloud-contaminated 

image was generated by combining a clear-sky with a 

contaminated image acquired several days apart. Visual 

inspection of the contaminated image was first performed 

separately for the Blue, NIR SWIR and TIR bands to 

preliminarily select the areas contaminated by either shadows 

or clouds. The initial thresholds for identifying either shadow 

or cloud pixels were estimated by averaging the corresponding 

band reflectance (or LST) for these visually detected pixels. 

This gave the shadow thresholds of 0.06 for the blue, 0.15 for 

the NIR and 0.1 for the SWIR band, with a cloud threshold of 

243K for the TIR band. Furthermore, the pixels below these 

thresholds in the contaminated images were marked as either 

shadow or cloud pixels, and the reflectance or LST values in 

these pixels in the clear-sky images were then replaced with the 
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reflectance or LST values from the contaminated image. This 

created the artificial contaminated images in different bands 

and an artificial QA layer (with clear, shadow and cloud flags) 

for further analysis. 

To analyze the impact of QA errors on the gap-filling 

performance, two scenarios were simulated and evaluated by 

manipulating the QA flags in the artificial QA layer created 

early:  

a) Failure in the QA: This is the situation where the pixels were 

either shadow or clouds, but marked as “clear” by the QA flag. 

50% of the pixels flagged as cloud and shadow were randomly 

reclassified as clear pixels without changing the reflectance 

values. This created a new artificial QA layer containing the 

pixels that were not detected as invalid pixels.  

b) Errors in the QA: This is the situation where the pixels were 

clear-sky, but marked as either shadow or cloud by the QA flag. 

In addition to the 50% undetected pixels, varying error rates 

between 5% and 50% (with 5% interval) of the cloud and 

shadow pixels initially identified by the artificial QA layer, 

were introduced; new images incorporating these varying errors 

were created by randomly replacing the clear-sky labels This 

introduced increasing level of errors into the artificial QA layer 

created in the previous step of this section. 

Each artificially manipulated QA layer was input into our 

invalid pixel identification method, leading to increasing 

threshold values and subsequent pixel identification. The gap-

filling method was then applied based on these identifications 

to evaluate the impact of varying QA errors on gap-filling 

performance.  

For clarity, each experiment was labeled sequentially, and 

the details of all experiments are presented in Table II. 

 
TABLE II 

EXPERIMENTAL DESIGN FOR EVALUATION OF THE GAP-FILLING 

METHOD FOR HIGH SPATIAL RESOLUTION IMAGE BY GENERATING 

ARTIFICIAL CONTAMINATED IMAGES AND QA LAYERS.  

Experiment no. Experiment Configuration 

Exp. 0 Baseline scenario, where the gap-filling method was 
applied directly to the pixels labeled as shadow and cloud 

in the QA layer with 50% failure, without utilizing our 

invalid pixel identification method 

Exp. 1 Using the QA with 50% failure as input to our invalid 

pixel identification method 

Exp. 2 Using the generated artificial QA with both 50% failure 

and 5% error as input  

Exp. 3 – Exp. 11 As Exp. 2 but error rates in the QA layer increasing from 

10% to 50% in 5% increments 

 

3) Evaluation Metrics: 

Four common indicators were used to evaluate the method 

performance. The Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) measure the difference between 

predicted and actual values. The Structural Similarity Index 

Measure (SSIM) measures texture similarity of the 

reconstructed pixels, focusing on the preservation of structure, 

contrast, and brightness from the valid pixels. Higher SSIM 

values indicate better retention of image details. Lastly, the R2 

evaluates the relationship between predicted and actual data, 

with higher values reflecting greater accuracy in estimating 

relative pixel values. For detailed formulations of these 

indicators, refer to [80]. 

IV. RESULTS 

We will present the results of the study in two main sections. 

Section IV.A presents the results for the coarse-spatial 

resolution image and Section IV.B shows the results for the 

fine-resolution observation, each section includes gap 

identification and gap filling and highlights the key issues to be 

addressed. 

 

A. Evaluation of gap-filling results for coarse-spatial 

resolution image 

1) Invalid pixels identification and reconstruction in 

coarse spatial resolution images 

The identification and reconstruction of invalid pixels in 

coarse resolution images were carried out as described in Sect. 

III.A.1 and III.A.2. In the original image (Fig. 7a), clouds and 

shadows are clearly distinguishable by their bright and dark 

appearances, respectively. Fig. 7b shows the pixels identified as 

invalid using the QA flags from MOD09A dataset. A visual 

comparison between the gapped image (Fig. 7b) with the 

original image (Fig. 7a) confirms that the QA flags effectively 

captured potentially invalid pixels, demonstrating their 

reliability in identifying clouds and shadows in coarse-

resolution images. This assessment is based on the alignment 

between QA-flagged pixels and visually identified invalid 

pixels, as illustrated in Fig. 7a and b. The accuracy of QA flags 

in coarse-resolution data, such as MODIS, has also been 

documented in previous studies [81], [82], which documented 

the performance of the QA in MOD09A in detecting invalid 

pixels under various conditions. Fig. 7c displays the gap-filled 

image on the same day, illustrating the reconstruction of the 

identified invalid pixels. Visual inspection reveals no 

noticeable discontinuities between the pre-existing valid 

observations and the reconstructed pixels. 

 

 
Fig. 7. Original (a), gapped (b) and gap-filled (c) MODIS reflectance 

images for 2018-06-09 (RGB is composed using red, NIR and blue 

bands of MODIS surface reflectance from MOD09A). 
 

2) Gap-filling performance using artificially introduced 

gaps for coarse spatial resolution image 

To evaluate the gap-filling method for coarse-resolution 

image, random gaps at various fractional abundances were 
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introduced in a selected clear image on 2018-08-22 (Fig. 7a). 

Our technique, described in Section III.A.2, was then applied to 

reconstruct reflectance values for these gaps. Error metrics, 

were calculated by comparing the reflectance values of 

reconstructed pixels with the reflectance of the corresponding 

original pixels. As shown in Fig. 8a, the RMSE values for the 

blue band range from 0.004 to 0.03 as the fractional abundances 

of gaps increase from 10% to 90%. The highest RMSE values 

were observed in the NIR band, ranging from 0.011 to 0.05 over 

different gap abundances. A similar trend is seen in the MAE 

values, where rising MAE values correspond to the increasing 

gap fractional abundances (Fig. 8b). Structural analysis using 

the SSIM index demonstrates that the method effectively 

reconstructs missing pixels while maintaining structural 

similarity across all bands (Fig. 8c). SSIM values range from 

approximately 0.96 to 0.73 as the gap percentage increases from 

10% to 90%. In summary, these evaluation results show that the 

method achieves good accuracy in reconstructing values of 

invalid pixels across the analyzed spectral bands. 

 

 
Fig. 8. Assessment of invalid pixel reconstruction in coarse-resolution 

images with various artificially introduced random gaps at different 

percentages (refer to Fig. 6a) for the reflectance of blue, red, green, and 

NIR spectral bands. The left panel illustrates RMSE, the middle panel 

depicts MAE, and the right panel shows SSIM, comparing the original 

to the reconstructed images. 

 

The good reconstruction performance up to a 90% gap 

fraction and the remarkably stability up to a gap fraction of 60% 

(Fig. 9) is explained by the similarity in the reflectance 

distribution in the remaining clear-sky pixels (Fig. 9). The latter 

implies that the clear-sky pixels used to reconstruct the gaps in 

each image follow a rather similar frequency distribution, 

notwithstanding the large difference in gap fraction. This 

highlight robustness of the gap-filling approach across varying 

gap levels. 

 

 

Fig. 9. Histograms of clear-sky pixel value distributions of random 

gaps introduced images for case 10% (a) and 90% (b) gaps in the four 

spectral bands (Blue, Red, Green, and NIR). 

B. Evaluation of gap-filling results for fine spatial resolution 

image 

 

1) Invalid pixels identification and reconstruction in fine 

spatial resolution images: 

According to Section III.B.2 (step 3), reconstructing each 

identified invalid pixel requires selecting the optimal regression 

equation between data pairs within a specified search window 

for each spectral band. This separate processing is essential 

because the regression equations differ across spectral bands, 

even when the spatial configuration of the search window 

remains constant. For instance, consider a fixed search window 

of 51 × 51 pixels and the task of reconstructing an invalid pixel 

at row i and column 𝑗. The correlation between valid 

observations surrounding the missing pixel and the 

corresponding valid observations on a different date at the same 

location varies across spectral bands, resulting in different 

coefficients of determination, intercept and slope for each band. 

Consequently, a regression equation optimized for gap 

reconstruction in one spectral band cannot be directly applied 

to another, as each band exhibits unique spatial correlations 

within the same search window (Fig. 10). Detailed information 

on the regression equations, including their slopes and 

intercepts, for each spectral band is provided s in Table III. 

 

 
Fig. 10. Histogram of the coefficient of determination (R²) values for 

regression models constructed between valid observations surrounding 

random missing pixels within a 51 × 51-pixel window and valid 

observations at the same locations but from the closest available date 

to the target image. The results are presented for four spectral bands: 

(a) Blue, (b) Green, (c) Red, and (d) NIR. Each histogram uniquely 

colored and titled according to the specific spectral band. 

 

TABLE III 

REGRESSION EQUATION DETAILS, INCLUDING SLOPE AND INTERCEPT, 

FOR 15 RANDOMLY SELECTED GAP PIXELS. THESE EQUATIONS WERE 

CONSTRUCTED BETWEEN VALID OBSERVATIONS SURROUNDING EACH 

MISSING PIXEL WITHIN A 51 × 51-PIXEL WINDOW AND CORRESPONDING 

VALID OBSERVATIONS FROM THE CLOSEST AVAILABLE DATE TO THE 

TARGET IMAGE. THIS TABLE COMPLEMENTS FIG. 10 BY PROVIDING 

QUANTITATIVE INSIGHTS INTO THE VARIABILITY OF REGRESSION 
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EQUATIONS ACROSS FOUR SPECTRAL BANDS: BLUE, GREEN, RED, AND 

NEAR-INFRARED (NIR).  
Position Blue Green Red NIR 

I J R2 
interce

pt 
slope R2 

interce

pt 
slope R2 

interce

pt 
slope R2 

intercep

t 
slope 

3 159 0.80 0.01 0.84 0.78 0.02 0.81 0.82 0.02 0.81 0.72 0 0.87 

4 157 0.81 0 0.86 0.78 0.01 0.84 0.82 0.02 0.84 0.74 -0.01 0.92 

16 132 0.78 0.01 0.8 0.78 0.02 0.78 0.83 0.02 0.8 0.67 0 0.87 

50 161 0.71 0.02 0.76 0.72 0.03 0.75 0.76 0.03 0.75 0.71 0 0.89 

53 448 0.71 0.01 0.76 0.68 0.02 0.73 0.74 0.02 0.73 0.61 0 0.82 

53 457 0.74 0.01 0.71 0.74 0.02 0.72 0.79 0.02 0.73 0.62 0 0.85 

54 486 0.82 0.02 0.67 0.85 0.03 0.66 0.89 0.03 0.66 0.67 0 0.86 

56 205 0.73 0.02 0.7 0.75 0.03 0.71 0.77 0.04 0.72 0.64 0.06 0.68 

163 231 0.81 0 0.89 0.86 0.01 0.88 0.88 0.01 0.87 0.91 0.02 0.87 

233 87 0.7 0.02 0.78 0.73 0.03 0.76 0.76 0.04 0.75 0.81 0.05 0.75 

235 33 0.91 0 0.85 0.9 0.01 0.81 0.92 0.01 0.84 0.84 0.01 0.84 

415 322 0.72 -0.02 1.1 0.68 -0.01 1.05 0.64 0.01 0.9 0.69 0 0.95 

476 432 0.83 -0.01 0.94 0.86 -0.02 0.96 0.86 -0.02 0.97 0.83 -0.01 0.9 

478 96 0.75 0 0.95 0.8 0 0.95 0.82 0.01 0.93 0.82 0.01 0.93 

502 68 0.83 0 0.94 0.86 0 0.98 0.87 0 0.98 0.87 -0.01 1.01 

 

The results of identification and reconstruction of invalid 

pixels in fine-resolution images were shown in Fig. 11. The 

method successfully identified most invalid pixels (see Fig. 3), 

although some valid pixels were misidentified as invalid due to 

their low reflectance values, which closely resembled shadows, 

particularly in the top-center region (Fig. 11 (b)). These pixels 

were subsequently reconstructed as described in Sect. III.B.2. 

A pairwise comparison between the gapped-image (middle row 

of Fig. 11) and the gap-filled image (bottom row of Fig. 11) 

indicates that the method effectively preserves spatial 

continuity, with no apparent artifact. Minor reconstruction 

errors are visible in the enlarged view (column no. 3 in Fig.11). 

Despite this, the method achieved highly satisfactory results, 

especially in urban areas (column no.1 in Fig. 11). 

 

 
Fig. 11. Original (top-row), gap-identified (middle row), and gap-filled 

(bottom row) Landsat-7 images from 2018-06-09, presented as an 

RGB composite using the red, NIR, and blue bands. The red squares 

highlight three regions of interest. Enlarged views of these regions (1, 

2, and 3) are displayed in the second to fourth columns on the right. 

Each column includes the original image (top), gap-identified image 

(center), and gap-filled image (bottom). The yellow polygons in region 

3 indicate the hypothesized gap locations in the original, gapped and 

gap-filled images (see Fig. 3). 

 

2) Gap-filling performance using artificially introduced 

gaps for fine spatial resolution image 

Artificial gaps were introduced and gap-filling of fine-

spatial images was evaluated (Fig. 11). This was done as shown 

in the first row of Fig. 6 and described in section III.B across 

four spectral bands: blue, green, red, and NIR. The method 

performance (Fig.12) remained relatively constant from 10% to 

60% gap fractional abundance. However, performance begins 

to decline as gap abundance increases from 70% to 90%. The 

greatest errors in reconstruction were observed in the NIR band, 

while the blue band exhibited the least errors. Following NIR, 

the red and green bands showed the second and third highest 

errors, indicating slightly lower performance in gap-filling. 

Specifically, RMSE and MAE values for the NIR band ranged 

from 0.014 to 0.048 and 0.011 to 0.028, respectively, as the gap 

abundance increased from 10% to 90%. At a 60% gap 

abundance, these metrics were 2% and 1.4%, respectively. The 

SSIM followed a similar trend. For instance, at a 10% gap 

abundance, SSIM values were approximately 0.91 for the blue 

band and 0.88 for the green band, while the red and NIR bands 

gave 0.87 and 0.86, respectively. At a 60% gap percentage, 

SSIM values remained relatively similar across all bands. 

However, at a 90% gap percentage, structural similarity 

between reconstructed and actual pixels decreased 

significantly, with SSIM dropping to 0.70 for the red and NIR 

bands and to 0.75 and 0.81 for the green and blue bands, 

respectively. 

 

 
Fig. 12. Evaluation of invalid pixel reconstruction in fine-resolution 

images across various artificially introduced random gaps at different 

percentages (see Fig. 6 (a)) for the reflectance of blue, red, green, and 

NIR spectral bands. The left plot displays RMSE, the middle plot 

shows MAE, and the right plot presents SSIM, all calculated between 

the actual images and the gap-reconstructed images. 

 

The spatial distribution of regression factors for invalid pixel 

reconstruction in fine-resolution images with 50% artificially 

introduced center gaps is illustrated in Fig. 13. These factors 

provide insight into the performance of the selected regression 

equations for gap-filling. Additionally, the pixel-level 

comparison highlights the degree of agreement between the 

reconstructed values and the actual reference values. 
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Fig. 13. Spatial distribution of regression factors for invalid pixel 

reconstruction in fine-resolution images for the experiment with 50% 

artificially introduced center gaps (see Fig. 6b) in the NIR reflectance 

image. (a) Overall view of the reconstructed image. (b – d) Regression 

factors: slope, intercept, and R2, respectively. (e, f) Pixel-level 

comparison between reconstructed values and actual reference values. 

 

To further evaluate fine-resolution image gap-filling, 

additional artificial gaps were introduced, with gap positions 

specifically considered (see section III.B and Fig. 6, (b) and 

(c)). The results of this experiment are presented in Table IV. 

Overall, the results indicate that as the gap abundance increases, 

gap-filling performance tends to decrease slightly, particularly 

for corner-expanding gaps compared to center-expanding gaps. 

For example, at a 10% gap abundance, the RMSE and MAE for 

center gaps were 0.015 and .012, respectively, with the highest 

R² and SSIM values being 0.88 and 0.94. For the same gap 

abundance of corner gaps, the RMSE and MAE were slightly 

higher at 1.69% and 0.0 124, while R² and SSIM values were 

slightly lower at 83% and 82%, respectively. For mid-range 

abundances, i.e. 20% to 80%, the performance of gap-filling 

decreased overall as gap percentage increased. For instance, at 

a 50% gap percentage, the evaluation metrics (RMSE, MAE, 

R², and SSIM) were 0.031, 0.02, 0.83, and 0.80, respectively. 

In contrast, for corner gaps at these same percentages, the 

metrics were 0.03, 0.02, 0.80, and 0.63, indicating lower 

performance than center-expanding gaps. 

 
TABLE IV 

EVALUATION METRICS COMPARING RECONSTRUCTED PIXELS IN 

ARTIFICIALLY INTRODUCED GAPS (RANDOM GAPS IN THE SECOND 

COLUMN, CENTER GAPS IN THE THIRD COLUMN AND CORNER GAPS IN 

THE FOURTH COLUMN) WITH THE ORIGINAL PIXELS ACROSS VARYING 

GAP PERCENTAGES FOR THE NIR BAND. THE ORIGINAL CLEAR IMAGE 

WAS ACQUIRED ON 2019-05-03. 

Gap 

% 

Random Gaps Center Gaps Corner Gaps 
RMSE MAE SSIM R2 RMSE MAE SSIM R2 RMSE MAE SSIM R2 

10 0.0163 0.0108 0.8589 0.9115 0.0150 0.0120 0.885 0.944 0.017 0.012 0.824 0.833 

20 0.0170 0.0112 0.8588 0.9008 0.0164 0.0125 0.877 0.905 0.018 0.013 0.853 0.728 

30 0.0179 0.0115 0.8546 0.894 0.0182 0.0166 0.854 0.844 0.020 0.014 0.840 0.712 

40 0.0198 0.0121 0.8475 0.8783 0.0341 0.0191 0.844 0.775 0.031 0.020 0.775 0.677 

50 0.0183 0.0122 0.8492 0.8999 0.0311 0.0198 0.838 0.803 0.030 0.020 0.800 0.627 

60 0.0204 0.0126 0.8483 0.8804 0.0320 0.0205 0.832 0.765 0.035 0.024 0.781 0.638 

70 0.0199 0.0132 0.8472 0.8887 0.0345 0.0202 0.830 0.728 0.040 0.024 0.795 0.620 

80 0.0216 0.0145 0.8543 0.8733 0.0314 0.0199 0.834 0.765 0.035 0.024 0.782 0.621 

90 0.0624 0.0381 0.7506 0.8419 0.0355 0.0254 0.827 0.718 0.032 0.023 0.792 0.673 

 

3) Invalid pixel identification and its impact on gap-filling 

in fine spatial resolution images based on the designed 

experiments: 

In previous sections, we qualitatively illustrated the results 

of the method's implementation on fine- and coarse-resolution 

images. In this section, to evaluate the method's performance 

quantitatively, a series of experiments were conducted using 

artificially created gaps (varying in size and position) and QA 

applied to clear images. Performance metrics were then 

calculated by comparing the reference clear-sky images with 

the reconstructed ones. 

Detailed experiments were conducted (section II.C.2) using 

an artificially created QA layer (Table V). In Exp. 0, where the 

QA layer alone was used to identify invalid pixels without any 

threshold adjustments, the MPP was 11.2%. In Exp. 1, 

thresholds were applied to identify clouds and shadows: the 

cloud threshold was set at 244.6 K (TIR band), while the 

shadow thresholds were set at 0.061 for the blue band, 0.18 for 

the NIR band, and 0.12 for the SWIR band, based on the invalid 

pixel identification technique (section III.B.1). This approach 

yielded an MPP of 15.1%. From Exp. 2 to Exp. 11, as the error 

increased, i.e. valid observations were mistakenly labeled as 

invalid in the QA layer), the thresholds and consequently the 

MPP also increased. For example, at a 5% error (section 

III.C.3), the cloud threshold was adjusted to 246.1, while the 

shadow thresholds were 0.0616 for the blue band, 0.1904 for 

the NIR band, and 0.1278 for the SWIR band. At a 50% error 

rate, these thresholds increased to 254.4, 0.0628, 0.2129, and 

0.1543, respectively, with the MPP reaching 36.4%. 

 
TABLE V 

IMPACT OF ERRORS IN QA ON THE INVALID PIXEL IDENTIFICATION 

FOR DIFFERENT EXPERIMENTS (SECT. C.2). IN THIS METHOD, SHADOW 

THRESHOLDS APPLY TO THE BLUE, NIR, AND SWIR BANDS, WHILE THE 

TIR BAND IS USED AS THE CLOUD THRESHOLD. THE MISSING PIXEL 

PERCENTAGE (MPP) INDICATES THE PROPORTION OF IDENTIFIED 

INVALID PIXELS RELATIVE TO THE TOTAL NUMBER OF PIXELS IN THE 

IMAGE. EACH EXPERIMENT IS DENOTED BY THE SHORT NOTATION ‘EXP. 

NO’. MORE DETAILED IN-FORMATION ABOUT THE EXPERIMENTAL 

DESIGN CAN BE FOUND IN SECTION C.2  

 
 Shadow threshold value Cloud 

threshold 

value 

 

Experiment QA 

Error 

% 

Blue NIR SWIR TIR MPP 

% 

Exp.0 0 -- -- -- -- 11.2 

Exp.1 0 0.0614 0.1867 0.1231 244.858 15.3 

Exp.2 5 0.0616 0.1904 0.1278 246.129 16.5 

Exp.3 10 0.0617 0.1945 0.1321 247.36 18.4 

Exp.4 15 0.0619 0.1971 0.1356 248.407 20.2 

Exp.5 20 0.0622 0.2005 0.14 249.518 23.0 

Exp.6 25 0.0623 0.2032 0.1426 250.427 25.5 

Exp.7 30 0.0622 0.2052 0.145 251.214 27.5 

Exp.8 35 0.0626 0.2074 0.1478 252.2 30.0 

Exp.9 40 0.0626 0.2092 0.1499 252.902 32.0 

Exp.10 45 0.0626 0.2115 0.1524 253.634 34.5 

Exp.11 50 0.0628 0.2129 0.1543 254.416 36.4 

 

Fig. 14 illustrates the impact of invalid pixel identification 

and varying error rates in QA on the performance of the fine-

resolution image gap-filling technique (section III.B.2). 

According to this figure, as the QA error increases, fewer, 

better-quality pixels are retained to estimate the regressions and 
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serve as predictors to fill the gaps. Therefore, in each 

experiment the accuracy of gap-filling is increased. For 

example, in Exp. 0, where invalid pixel identification was not 

applied, the R2 and SSIM values were the lowest, at 

approximately 50 % and 70 %. Additionally, the error metrics 

were the highest in this experiment, with MAE and RMSE 

values of about 0.035 and 0.065. In Exp. 1, the application of 

the invalid pixel identification technique led to a significant 

improvement in performance metrics. Specifically, the R2 value 

increased to 80%, and the SSIM improved to 88%. 

Additionally, the MAE and RMSE decreased to 0.01 and 0.028, 

respectively. These results confirm a notable enhancement in 

gap-filling accuracy. From Exp. 2 to Exp. 11, as the QA error 

rate increased, all performance metrics remained approximately 

comparable with those in Exp. 1, showing no visible changes. 

This consistency suggests that the technique maintains robust 

performance despite increasing QA error. 

 

 
Fig. 14. Sensitivity of fine-resolution image gap-filling to threshold 

setting. The top plot presents the R² and SSIM metrics, comparing 

reconstructed reflectance values with actual values across experiments, 

while the bottom plot displays error metrics (RMSE and MAE) for the 

same experiments. For further details on the experimental setup, see 

Table V and section III.C.2. 

V. DISCUSSION 

In this study, we introduced an adaptive technique for gap-

filling multi-resolution satellite images. This method was 

applied to gap-filling MODIS and Landsat images and 

evaluated through a thoughtfully designed set of experiments. 

The selected test area exhibits distinct characteristics, including 

undetected clouds (as shown in Fig. 1) which present challenges 

to gap-filling methods [23], [35], [70]. The discussion of our 

results is organized in separate subsections addressing different 

aspects of the study. 

 

A. Key benefits of the gap-identification method 

The identification of invalid pixels has a significant impact 

on gap-filling performance, as shown in section IV.A.1 and 

IV.B .1 and Fig. 7. According to Fig. 14, when the method relies 

solely on QA flags for fine-resolution images, the presence of 

undetected invalid pixels leads to a substantial decrease in gap-

filling accuracy. For instance, when the QA layer failed to 

identify 50% of the invalid pixels (section III.C.2), the RMSE 

between actual and reconstructed values increased to 

approximately 0.065. This decline in performance aligns with 

findings by Wang, et al. [23], who demonstrated similar 

reductions in gap-filling accuracy under conditions with thin 

clouds (referred to as invalid pixels in our study). Likewise, the 

presence of invalid pixels adversely affects the correlation and 

structural similarity between the gap-filled and original images, 

as reflected in the SSIM and R² metrics (see Fig. 14, Exp. 0). 

These results highlight the critical role of accurate identification 

of invalid pixels in ensuring the quality of reconstructed 

images. Our invalid pixel identification method offers three key 

benefits: (1) simplicity of implementation, (2) full automation 

without the need for visual inspection, and (3) rapid execution 

due to its reliance on a straightforward thresholding method. 

This approach minimizes computational complexity by 

avoiding resource-intensive mathematical operations, 

inherently leading to faster processing times. The use of 

predefined thresholds, a common approach in detecting clouds, 

shadows, and other anomalies (often appearing as darker or 

brighter spots) in satellite images, has been widely documented 

[71], [83]. However, these methods typically rely on either 

fixed thresholds or thresholds that require manual adjustment 

on a day-by-day basis through visual inspection [23], which 

makes it challenging to automate the process of setting 

thresholds and identifying invalid pixels. In contrast, our 

method used the QA flags to automate the threshold-setting 

process, enabling the detection of any undetected invalid pixels 

(Fig. 11 (b)). Setting thresholds based on QA flags, which 

inherently contain some level of error (as illustrated in Fig. 3), 

requires careful consideration. Our experiments show that 

errors in the QA led to different threshold settings (Table V). 

This implies that the number of pixels labeled as invalid by our 

method increases with higher error rates in the QA layer. While 

not all of these identified pixels were truly invalid, our gap-

filling technique consistently reconstructed them accurately 

(Fig. 14 Exp .1-11). It may seem unreasonable, but moving 

from Exp. 1 (MPP = 15.3%) to Exp. 11 (MPP = 36.4%), the 

estimated regressions applied to fill the gaps remained notably 

similar. This consistency in the regression estimations explains 

the stable gap-filling performance, which persisted even as QA 

error rates increased from 5% to 50%. A selection of these 

regressions is presented in Table IV. The key advantage of this 

approach is its ability to maximize the prevention of invalid 

pixels, ensuring robust and reliable reconstruction. 

 

 

 

 

 

 
TABLE IV 

REGRESSION DETAILS APPLIED TO FILL THE GAPS (AS DESCRIBED IN 

SECTION III.B.2) FOR IDENTIFIED INVALID PIXELS ACROSS EXPERIMENTS 

1 TO 11. FIVE INVALID PIXELS WERE RANDOMLY SELECTED AS 

EXAMPLES TO ILLUSTRATE THE RESULTS. THE REFERENCE VALUES 

CORRESPOND TO PIXEL LOCATIONS IN THE SELECTED CLEAR IMAGE, AS 

EXPLAINED IN THE EXPERIMENT IN SECTION III.C.2. FOR FURTHER 

DETAILS ABOUT THE EXPERIMENT, REFER TO TABLE V AND SECTION 

III.C.2. 
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i j Exp Slope Intercept R2 Predicted 
Reference 

value 

187 234 

1 0.879824 0.031216 0.895746 0.211598 

0.2125 

2 0.879634 0.031262 0.893403 0.211604 

3 0.878619 0.031504 0.889379 0.211638 

4 0.876663 0.031903 0.884281 0.211637 

5 0.869723 0.033773 0.873659 0.212084 

6 0.854281 0.037659 0.859788 0.212804 

7 0.848503 0.039289 0.856803 0.213249 

8 0.836038 0.042009 0.852742 0.213414 

9 0.880084 0.026816 0.924779 0.22216 

10 0.845888 0.034938 0.92371 0.222691 

11 0.846607 0.035292 0.926948 0.223205 

227 41 

1 0.888442 0.022738 0.826708 0.188468 

0.186293 

2 0.878944 0.025106 0.811678 0.189065 

3 0.882039 0.024314 0.846535 0.18885 

4 0.879788 0.024899 0.844005 0.189014 

5 0.87867 0.025208 0.839814 0.189115 

6 0.85077 0.032501 0.807167 0.191203 

7 0.86142 0.029763 0.843667 0.190452 

8 0.847092 0.03339 0.844492 0.191407 

9 0.838026 0.035859 0.841512 0.192184 

10 0.816696 0.041537 0.811542 0.193883 

11 0.810855 0.043146 0.817792 0.194402 

283 471 

1 0.956576 0.015962 0.870611 0.351263 

0.25001 

2 0.957932 0.01523 0.871763 0.351006 

3 0.961213 0.013831 0.870646 0.350758 

4 0.959378 0.014386 0.870534 0.35067 

5 0.960696 0.013999 0.873191 0.350745 

6 0.966014 0.011777 0.873564 0.350387 

7 0.964778 0.012382 0.874343 0.350559 

8 0.962318 0.012819 0.875505 0.350133 

9 0.970878 0.009562 0.877592 0.349876 

10 0.979775 0.006307 0.880494 0.349741 

11 0.972328 0.008963 0.88205 0.349786 

6 194 

1 0.669237 0.074303 0.740314 0.314996 

0.306275 

2 0.668304 0.074652 0.738346 0.315009 

3 0.668406 0.074629 0.736944 0.315023 

4 0.666355 0.075316 0.73389 0.314973 

5 0.662535 0.076671 0.727496 0.314954 

6 0.662512 0.07695 0.721603 0.315224 

7 0.66104 0.077627 0.714867 0.315372 

8 0.660806 0.077656 0.710721 0.315316 

9 0.663826 0.076972 0.708467 0.315718 

10 0.662313 0.077625 0.701436 0.315827 

11 0.668558 0.075271 0.741389 0.315719 

288 330 

1 1.37913 -0.07266 0.781555 0.213772 

0.21096 

2 1.380058 -0.0729 0.780058 0.213718 

3 1.381757 -0.07316 0.783825 0.213818 

4 1.379223 -0.07263 0.78485 0.213817 

5 1.384476 -0.0739 0.784644 0.213643 

6 1.38258 -0.07347 0.778575 0.213676 

7 1.384308 -0.07377 0.776157 0.213733 

8 1.386328 -0.07423 0.7682 0.21369 

9 1.385538 -0.07427 0.762023 0.213492 

10 0.960317 0.005655 0.918927 0.208376 

11 0.958381 0.006122 0.915951 0.208434 

 

B. Key benefits of the gap-filling method 

In addition to the novel approach for gap identification, our 

study emphasizes the importance of considering the inherent 

differences between fine- and coarse-resolution images, as 

these data types exhibit distinct characteristics [84]. For gap-

filling in coarse-resolution images, the method used in this 

study has also been comprehensively evaluated in our ongoing 

research, which is currently under review. Moreover, in this 

work, we demonstrated its capability to reconstruct coarse-

resolution reflectance images (Fig. 7). The method was 

evaluated using artificially introduced random gaps across four 

spectral bands (Fig. 8), highlighting its outstanding 

performance, in terms of accuracy of estimated pixel values and 

structural similarity, when comparing reconstructed and 

original pixel values across the full range in the fractional 

abundance of gaps (10% to 90%). This success is attributed to 

the use of temporal information in creating a reference year 

(section III.A.2) and an adaptive method that leverages spatial 

information, ensuring robust performance even when dealing 

with significant spatial gaps. Gap-filling in fine-resolution 

images, on the other hand, is more complex due to their lower 

temporal resolution [85]. The effectiveness of our innovative 

method for reconstructing invalid pixels in fine-resolution 

images has been demonstrated in multiple experiments, 

showing that the impact of gap abundance, size and position is 

relatively limited. The reconstruction of randomly distributed 

gaps is easier, since they provide sufficient valid observations 

within small search windows (section III.B.2, step 1), where the 

spatial correlation between pixels in the vicinity of gaps is 

stronger than for those farther away [86]. Consequently, the 

method performance for random gaps decreased only slightly 

across gap fractional abundance ranging from 10% to 60% (Fig. 

12) for all four spectral bands. This consistency is a key 

advantage of our gap-filling method in scenarios with 

distributed gaps. For instance, it can effectively reconstruct 

stripes caused by the Landsat 7 scan line failure [57], [58], a 

well-known example of distributed gaps. In contrast, gaps 

located at the center or corners of an image pose more 

significant challenges for gap-filling methods. However, when 

faced with these types of gaps, our method demonstrated strong 

performance in both scenarios, as highlighted in Table IV. 

Despite this, a general comparison between the two types of 

gaps reveals that corner gaps, particularly those with larger 

sizes, present greater challenges for gap-filling. This is because 

the method relies on building regression equations using valid 

observations surrounding the gap. In the case of corner gaps, 

valid observations are only available on one side of the gap, 

making it more difficult to meet the minimum correlation 

threshold (section III.B.2, step 3). In contrast, central gaps 

benefit from valid observations on all four sides, allowing for 

the development of stronger regression equations to accurately 

fill the gaps (Table IV). Overall, our gap-filling method showed 

exceptional performance when dealing with both types of gaps. 

The average RMSE for reconstructed pixels compared to 

original pixels across all gap sizes (10% to 90%) was 0.03 for 

center gaps and 0.06 for corner gaps. However, a notable 

difference was observed in the R2 values: 0.80 for center gaps 

and 0.68 for corner gaps, highlighting the superior performance 

of the method in handling center gaps. 

 

C. Method selection and its advantages 

The selection of the most appropriate gap-filling method for 

each specific case was based on a thorough evaluation of the 

spatial and temporal characteristics of the datasets to ensure 

optimal performance for both fine- and coarse-resolution data. 

High-spatial-resolution data present a significant challenge in 

preserving fine-scale spatial detail, as traditional interpolation 

methods often introduce distortions or blurring effects [87]. To 

address this, we employed an adaptive window approach with 

variable shapes combined with spectral and temporal 

regression, effectively preserving spatial detail without 

introducing distortions or blurring artifacts (Fig. 11). In 
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contrast, for coarse-resolution data, maintaining temporal 

coherence is critical, as abrupt inconsistencies can lead to 

misinterpretations in time-series analyses [88]. The selected 

method for coarse-resolution data successfully preserved 

temporal continuity while maintaining spatial consistency. Our 

previous work [67] further supports this finding, demonstrating 

that the applied approach effectively balances these two key 

aspects. Thus, our methodology prioritizes spatial consistency 

for fine-resolution data and temporal stability for coarse-

resolution data, ensuring that the reconstructed information 

aligns with the intrinsic properties of each dataset. The 

effectiveness of this approach is further supported by the 

smooth variation in performance across different gap sizes (Fig. 

8 and Fig. 12). For coarse-resolution images (see Sect. III.A.2), 

different gap-filling strategies were employed depending on the 

gap percentage. The absence of performance jitter (Fig.8) 

suggests that the applied methods do not introduce abrupt 

transitions or distortions that could arise from method-induced 

artifacts. Similarly, for fine-resolution images (see Sect. 

III.B.2), the adaptive gap-filling approach ensured that 

regression models are adjusted to local spatial characteristics, 

with variable-sized search windows maintaining spatial 

consistency (Fig.12). The smooth variation of performance 

metrics with gap percentage (Fig. 12) confirms the 

effectiveness of this strategy, as no artificial discontinuities or 

anomalies were introduced. 

In conclusion, our results suggest that using different gap-

filling methods for fine- and coarse-resolution images is 

advantageous compared to a one-size-fits-all approach. process. 

 

D. Prospective towards data fusion 

The methods presented in this study for gap-filling in both 

fine- and coarse-resolution images offer promising insights for 

advancing data fusion. Fusion methods, which integrate data 

from multiple sensors or combine images with different spatial 

and temporal resolutions (e.g., fine- and coarse-resolution), are 

instrumental for applications that require continuous and 

complete datasets [18]. The effectiveness of our gap-filling 

method in accurately reconstructing pixels across different 

spectral bands and gap configurations (random, central, and 

corner) highlights its potential as a foundational component in 

data fusion. A key strength of our method lies in its ability to 

manage the complexities of both fine- and coarse-resolution 

images. The automated invalid pixel identification process for 

fine images streamlines the detection of clouds, shadows, and 

other anomalies, eliminating the need for manual intervention. 

This adaptability is particularly valuable for data fusion, where 

inconsistencies in data stemming from undetected invalid pixels 

can compromise the quality of the final output. By 

incorporating our method’s robust pixel identification, fusion 

methods can effectively minimize the risk of introducing 

erroneous pixels, thereby enhancing both accuracy and 

structural integrity in fused images.  

Furthermore, the method strong performance in dealing 

with challenging gap scenarios, such as those located at image 

corners or centers, demonstrates its potential to improve the 

resilience of data fusion in addressing variable spatial 

discontinuities. This capability ensures reliable reconstruction 

even in complex cases, reinforcing the applicability of our 

approach in diverse data fusion contexts. The high consistency 

in performance across gap sizes, particularly for distributed 

random gaps, where structural similarity and correlation 

metrics remained robust (Figs. 7 and 11), suggests that our 

approach could enhance fusion methods that require frequent 

updates of valid observations. Additionally, the method ability 

to reconstruct complex patterns in fine-resolution images, 

including those affected by scan line corrector failures, opens 

new opportunities for its integration into real-world fusion 

applications [17].  

In summary, our gap-filling technique provides a reliable, 

automated, and high-performance solution that aligns well with 

the demands of data fusion methods. The method adaptability, 

ability to handle diverse gap scenarios, and strong 

reconstruction performance suggest significant potential for 

improving the accuracy and usability of data fusion in various 

applications. Future research could further explore integration 

strategies for this technique towards improved data fusion and 

evaluate its effectiveness across different environmental and 

operational conditions. 

 

E. Method limitations 

While our method demonstrates very good performance in 

gap-filling both fine- and coarse-resolution images, certain 

limitations must be acknowledged. First, as the gap size 

increases, the method requires multiple iterations to identify the 

optimal regression equation for each invalid pixel. This iterative 

process can significantly impact processing speed, particularly 

when applied to large images (e.g., exceeding 1000 × 1000 

pixels). The computational efficiency of the method is highly 

dependent on system configuration. On mid-range or standard 

systems, the gap-filling process is slower, potentially limiting 

its applicability to large datasets or time-sensitive operations. 

Additionally, memory usage scales with both the number of 

missing pixels and the complexity of spatial patterns within the 

image, requiring high-performance computing resources for 

optimal execution. 

For coarse-resolution images, the computational load 

remains relatively low due to predefined regression models and 

the global/local selection approach. However, fine-resolution 

images require an adaptive search process, where the dynamic 

selection of neighbouring pixels and regression models 

increases the computational load. This is particularly 

pronounced in heterogeneous landscapes, where the method 

must repeatedly adapt to local variability. 

Despite these computational challenges, our approach 

balances accuracy and efficiency by adaptively selecting 

regression strategies based on the spatial pattern and fractional 

cloud cover. Future work may focus on optimizing the 

algorithm using parallel computing techniques to improve 

processing speed for large-area applications. Second, the 

method faces challenges in reconstructing abrupt changes in 

surface reflectance. Such changes may not be captured in the 

valid observations surrounding the gap or in data from other 

dates. In these cases, the performance of gap-filling decreases, 

as the method relies heavily on spatial and temporal correlations 

to predict missing values. This limitation is particularly 

apparent in scenarios involving sudden environmental changes, 

such as floods or wildfire scars, where the available contextual 
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data may fail to reflect the true values of many pixels 

accurately. 

To address this, future enhancements of the method could 

incorporate additional data sources, such as higher temporal 

resolution imagery, auxiliary environmental datasets (e.g., SAR 

data for flood detection). Moreover, optimizing computational 

efficiency remains critical for large-scale applications, and 

future improvements may include parallel processing 

techniques or GPU acceleration to reduce processing time while 

maintaining accuracy. 

 

IV. CONCLUSION 

This study introduces an adaptive system combining 

different algorithms for gap-filling in both fine- and coarse-

resolution satellite images, addressing critical challenges in 

invalid pixel identification and reconstruction. By leveraging 

automated threshold-setting processes and spatial temporal 

correlations, the method effectively detects and reconstructs 

invalid pixels, even in challenging conditions such as 

undetected clouds and shadows. The specific combination of 

algorithms is orchestrated to adapt to each image, mainly on the 

basis of the fractional abundance and spatial pattern of cloud 

cover. The approach was rigorously evaluated through a series 

of experiments involving artificially introduced gaps of varying 

sizes and positions, demonstrating reliable performance across 

multiple spectral bands. For fine-resolution imagery, the 

method consistently achieved good results, particularly for 

randomly distributed gaps. The RMSE values for the blue band 

ranged from 0.005 to 0.03, representing the lowest errors, while 

the NIR band exhibited the highest errors, with RMSE values 

between 0.01 and 0.05 for gap abundance ranging from 10% to 

90%. A similar trend was observed in structural similarity, 

where SSIM values for the blue band ranged from 0.90 to 0.83, 

while the red and NIR bands showed values of 0.86 to 0.71, 

respectively in response to the same changes in gap abundance. 

Even in more challenging scenarios, such as gaps located at 

image corners or centers, the method demonstrated adaptability 

and resilience. For instance, the average RMSE for corner gaps 

was 0.015, while for center gaps, it was slightly higher at 0.017. 

SSIM values further highlighted this distinction, with center 

gaps achieving an average SSIM of 0.80, compared to 0.63 for 

corner gaps. These results underscore the method ability to 

maintain high accuracy and structural integrity across diverse 

gap configurations. For coarse-resolution imagery, the use of 

temporal information to create a reference year and the adaptive 

use of spatial data ensured strong reconstruction performance, 

even for large gaps. Despite its strengths, the method has certain 

limitations. Computational efficiency is highly dependent on 

system configuration, particularly for large-scale areas 

requiring multiple iterations to find optimal regression 

equations. Additionally, abrupt changes in surface reflectance 

within a single pixel pose challenges, as these changes may not 

be adequately captured by valid observations surrounding a gap 

pixel. Overall, the proposed method provides a reliable and 

efficient solution for gap-filling, with significant potential 

benefit to applications that require valid observations, such as 

the STF method. Additionally, the method holds promise for a 

wide range of applications, including environmental 

monitoring, agricultural analysis, and urban planning. Future 

research could focus on enhancing computational efficiency 

and addressing scenarios involving abrupt reflectance changes 

to further expand the method applicability and improve its 

performance. 
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