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In this article we describe Athena, a 
system that provides for semi-automated 
karyotyping of metaphase spreads. The 
system is based upon the Macintosh I1 
computer. It uses software that is written 
entirely in C and consists of approxi- 
mately 200 Kbytes of executable code. 
Athena provides automated segmenta- 
tion of metaphase images into individual 
chromosomes, automated measurements 
on each banded chromosome, and auto- 
mated classification into the standard 
Paris-convention karyotype. Further- 
more, the system provides the ability to 
construct one or more chromosome 

data bases to represent the types of meta- 
phase spreads and staining techniques 
that may be used in a given laboratory. 
Because we believe that it is impossible 
to construct a system that can achieve 
perfect segmentation, perfect separation 
of touching and overlapping chromo- 
somes, perfect localization of the cen- 
tromeres, and perfect classification, the 
system offers the possibility for interac- 
tion at each of the above stages using the 
well-accepted Macintosh user interface. 

Key terms: Automated chromosome anal- 
ysis, karotyping, pattern recognition 

For more than 25 years medical scientists, physical 
scientists, mathematicians, engineers, and computer 
scientists have attempted to automate the analysis of 
metaphase chromosome spreads. In an important sense 
automated karyotyping was one of the first problems in 
digital image analysis and pictorial pattern recogni- 
tion. That there are still a number of on-going and 
healthy research efforts in this field-approximately 
25 years after the publication of Ledley (16,171 and 
Neurath (28)-shows that the problem is both exquis- 
itely difficult and extremely important. It should be 
remembered, however, that it was less than 35 years 
ago that the correct number of chromosomes in the 
normal human chromosome complement, 46, was first 
enumerated (36). Furthermore, accurate and reproduc- 
ible identification of each of the 24 possible chromo- 
some classes became possible only after development of 
banding stains by Caspersson and his co-workers (4,5) 
in 1970. 

Technical developments of the past 10 years have 
contributed significantly to automated karyotyping, 
and there now are more than ten companies producing 
systems for computer processing of digitized chromo- 
some images. These systems range from those that can 
only be described as “electronic scissors” to systems 
that combine metaphase finding as  well as pattern 
classification of banded chromosomes to achieve a re- 
sult that requires a minimum of human interaction. 

We (Young, Mayall, and the Delft group) have been 
involved for more than 15 years in research into vari- 
ous aspects of the quantitative and automated analysis 
of digitized chromosome images. This research has cov- 
ered virtually all aspects of the quantitative analysis of 
chromosome images and includes the following: 

1. Metaphase finding (3) 
2. Automatic focusing (15,251 
3. Analysis of banding patterns (11,34,35,38) 
4. Centromere location (6,27,38) 
5. Chromosome aberrations (20,21,22,43) 
6. Accurate DNA measurements from digital im- 

7. DNA species within chromosomes (41) 
ages (14,23,24,26,27) 
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Based on these developments, we decided in 1987 that 
we were in a position to construct a karyotyping work- 
station based upon a modern, low-cost computer “plat- 
form,” the Apple Macintosh I1 personal computer. With 
the exception of automated metaphase finding, we had 
assembled the “software” components required to gen- 
erate a karyogram automatically, given a metaphase 
cell. The components consisted of the following: 

1. Image segmentation to find individual objects; 
2. Procedures for eliminating non-chromosome-like 

3 .  Procedures to separate touching chromosomes; 
4. An accurate method for chromosome rotation; 
5. An accurate procedure to locate centromeres; 
6. An intuitive but quantitative way to describe 

banding patterns; 
7. A context-sensitive classification procedure based 

upon relative length, centromeric index, and band de- 
scription. 

MATERIALS AND METHODS 
The Athena workstation consists of a Macintosh I1 

computer (Apple Computer, Cupertino, CAI with 16 
MHz MC68020 processor, MC68881 floating point co- 
processor (the Macintosh Ilcx provides a MC68030 pro- 
cessor, a MC68882 floating point co-processor, and a 
20% improvement in speed), 5 MBytes RAM, 80 
MBytes high-speed hard disk, Cohu 4810 CCD camera 
(Cohu, San Diego, CA), small black and white video 
monitor, Quickcapture (Data Translation, Marlboro, 
MA) frame grabber, and a Spectrumi8 Series I1 (Super- 
Mac Technology, Sunnyvale, CA) integrated 8-bit deep 
color and grey-level video card driving a SuperMac 19 
inch high-resolution color monitor displaying 1,024 x 
768 pixels. A hard copy can be produced either by Post- 
Script-coded halftone printing on a Laserwriter or true 
grey-level printing using a dry-silver paper laser 
printer. The software development environment for 
this project is MPW (1) offering C, Pascal, object-ori- 
ented Pascal, and assembly language. 

Athena is organized around the concept of a case 
study. A case study represents the analysis of the cy- 
togenetic material from a single individual. The user 
initiates a session with the program by “double-click- 
ing” (or opening) the program icon shown in Figure 1. 
Thus, the user initiates and interacts with the program 
along lines defined in the Macintosh user protocol (2). 

Details of Athena operation are described in the com- 
panion article by Mayall et al. (37). We now describe 
technical details of the three major steps in karyotyp- 
ing: 

1. Segmentation of the metaphase spread image; 
2. Analysis of individual chromosome images; 
3. Classification of the chromosomes into a karyo- 

objects; 

gram. 
Segmentation 

The fundamental technique used for segmentation is 
a combination of shading correction, thresholding, and 

Athena 
FIG 1. The Icon for the Athena program. 

binary image operations. Shading correction is offered 
as an option t o  remove (possible) effects associated with 
non-uniform camera sensitivity or  illumination condi- 
tions, and to diminish the effects of non-specific back- 
ground staining. Shading correction is accomplished 
through the use of the grey-level morphologic filtering 
operations dilation (maximum) and erosion (mini- 
mum). The estimate of the background shading S from 
an original image I is given by 

S = Min,(Max,(I)) 

where n is the neighborhood (support) of the filter. In 
this case the filter is always square of size n, and the 
value of n should be chosen to be larger than the di- 
ameter of the largest object (usually an interphase nu- 
cleus) to be found in the image. The corrected image is 
then given by 

11) 

C = WHITE + (I - S) 
12) 

where WHITE is simply the maximum possible value 
(usually 255) in the absorption image. A threshold is 
used to convert the image into a binary representation 
where the chromosomes and other objects are black (1) 
and the background is white (0). Various possible al- 
gorithms to select the threshold are displayed in the 
Segmentation window (Fig. 2 ) .  The threshold selection 
algorithms have been described previously (33,40,42). 

Binary image filtering is used to reduce the inevita- 
ble “false-positives’’ and “false-negatives’’ produced by 
thresholding. The operations erosion, dilation, propa- 
gation, exclusive-or, skeletonizing, and anding are used 
to  eliminate small artifacts and large objects, to fill 
holes inside chromosomes, and to separate touching 
chromosomes. The actual algorithms used to imple- 
ment these operations take advantage of techniques 
that we have developed (39). 

Chromosomes that touch only slightly are separated 
by eroding the binary image a few times and then com- 
puting the background skeleton (exo-skeleton). This 
exo-skeleton forms dividing lines that separate the 
touching chromosomes. This technique is illustrated in 
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Segmentation Procedure Specification: 

0 Shading Correction 
Shading Filter Size: 

Choose ‘ Interactive Threshold’ o r  one o f  the algorithms ... 
0 Interactive Threshold 
0 ISOOATA (Ridler 0 Caluard) 
@ Maximum Triangular Distance 

0 O I O O R  algorithm 

0 Minimum Between Two Maxima 
0 UniModal Background Symmetric 
0 Minimum After MaHimum 

Offset from knee: % 0 Fixed Threshold Ualue: [q 

I Erosions to Separate Touching Objects: 

Minlmum ObJect Area: 150 1 Pixels 

Maximum Ob-iect Area: 1100001 Pixels 

FIG. 2. The user chooses the parameters associated with shading correction, thresholding, and binary 
image filtering 

Figure 3. At the completion of the segmentation phase 
the user can correct the remaining errors through the 
use of the mouse and a menu interface (42). 

Analysis 
The analysis phase consists of 1) determining the 

orientation of the major axis of each chromosome and 
rotating the individual chromosomes so that their ma- 
jor axes are vertical (13), 2) determining the cen- 
tromere position using the technique developed by 
Visser (381, and 3) measuring the chromosome length, 
the centromeric index, and the band descriptions as  
described by Visser (38). 

Rotation of chromosomes. The rotation angle is 
estimated from the first- and second-order moments of 
inertia of the binary image associated with the chro- 
mosome. The classic technique of bilinear interpolation 
is used to perform the rotation of the individual grey- 
level chromosome images given the rotation angle. 
Care is taken to  implement the rotation in such a way 
that the DNA distribution is not distorted (12). 

Centromere detection and centromeric index. 
Automatic centromere location has proven to be a dif- 
ficult task, and no available technique achieves com- 
plete success. Many techniques search for a pair of 
concavities along the chromosome contour. Pairs of op- 
posite concavities then form candidates for the cen- 
tromere position. Athena’s automatic centromere de- 
tector searches for two points having the shortest 
distance between the left and the right contour of a 
chromosome (see Fig. 4). In order t o  avoid detection at  
the ends of the chromosomes (telomeres), a certain dis- 
tance from the top and bottom of the chromosomes is 
skipped. The user specifies this value as a percentage. 

The default value of 15% approaches the centromeric 
index of the acrocentric chromosomes of classes 13 
through 15. All techniques using the morphologic char- 
acteristic of a centromere-indentation a t  two sides 
along the medial axis-will degrade in performance for 
images with many clusters of touching and overlapping 
chromosomes that have to be separated manually, as 
the “artificial” boundary does not reflect the “natural” 
boundary. 

We define the centromeric index as 

Length of the short arm (P terminal) 
Total length of chromosome 

CI = x 1000 ( 3 )  

This produces a number in the interval 0 < CI < 500. 
Measuring the band parameters. Assuming ab- 

sorption imagery, bands are considered as  dark regions 
of the chromosome. An optical density-based threshold 
selects the dark parts as regions potentially bearing a 
band. In this way the detection of vague bands and 
vague connections between clearly separated bands is 
avoided. The default value of the threshold is set to 0.1, 
which corresponds to a transmittance of =80% in the 
band relative t o  the background. 

The selected regions are then Laplace filtered along 
the main (medial) axis. This second-order derivative 
filtering leads to the detection of hills (negative areas) 
and valleys (positive areas) in the grey value image. 
All hill-points are labeled, and every set of connected 
points forms a candidate for a band. For each band, 
parameters are calculated such as area, total optical 
density, begin, end, and middle position relative to the 
top. From this information a subset of the bands is 
extracted and used for classification. Athena uses the 
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FIG 4. Centromere finding using the shortest distance method (38). 
a: Grey-level chromosome image (chromosome 7). b Grey-level chro- 
mosome image and corresponding edges. c: Chromosome edge image. 
d Skip 15% from the telomeres. e: Find the shortest distance between 
the opposite contours, i.e., centromere position. 

which results may be added based on the analysis of 
new metaphases, and some parameters associated with 
the classification algorithms. 

Before classification we have measured the feature 
vector, x, for each unclassified chromosome. Further, 
we know the estimated frequency distribution of a fea- 
ture vector for each of the 24 chromosome classes 
p(xlwj) (from the training database) and the a priori 
probability for a chromosome to belong to a class j ,  
P(w,). The a priori probability is based upon biological 
information. (A healthy human being has 22 homolo- 
gous autosomal pairs and 2 sex chromosomes.) This 
information offers the opportunity to use the non-para- 

bility P(w~(x) that each individual chromosome belongs 

FIG 3. Separation of touching chromosomes. a: Cluster of three 
touching chromosomes and circumscribing edges. b: Original edges 
and binary mask of the cluster after a couple of erosions-the cluster 

metric Bayes' to calculate the a posteriori proba- 

is split into three bodies. c: Exo-skeleton of the eroded mask. d: The 
exo-skeleton is used to decompose the cluster into three individual 

to class 0; (see 8): 

chromosomes. PiXIWj)PiWJ) 
P(WilX) = 

p(x) 
(4a) 

24 

central position of the following bands as the chromo- 
some band features: 

p(x) = 2 P(XIWJ)P(W,) (4b) 

This rule can be shown to produce, on average, the 
classification with the minimum numbers of errors. 

For practical reasons we assume that the features 
are independent, so equation 4a can be rewritten as 

J = 1  

1. Darkest band on the chromosome 
2. Band having the largest area 
3. Distal band on the short arm 
4. Distal band on the long arm 
5. Band closest to  the centromere on the long arm. 

After rotation, centromere localization, and band 
measurement, the seven features-length, CI, and the 
five band positions-are assembled (see Fig. 5). The 
user may examine the data by summoning the Features 
window from the Windows menu. 

Classification 
The final phase of processing is the classification of 

the chromosomes on the basis of the measured features. 
Athena allows the user to indicate the name of the 
database that will serve as the standard for classifica- 
tion (the training set), the name of the database to 

rI la,pix"lWJ)PiwJ) 
P ( W J I X )  = " 15) 

P(x) 

where x, is an element of the feature vector x, that is, 
one of the seven measurements, and {a,ln = 1, . . . ,7} 
are weighting coefficients. The additional coefficients 
{a,} are not part of the Bayes' test but are available to 
the user to reflect local peculiarities of use. The Bayes' 
test is used by setting a, = 1 for n = 1,2, . . . ,7. The 
setting of the coefficients are selected through a stan- 
dard Macintosh dialog box. 

Estimating the frequency distributions. The fre- 
quency distributions (or class conditional probability 
density functions) are estimated from a learning set of 
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demo - L i s t  Mode  
obj I eng th 

1 480 
2 380 
3 360 
4 420 
5 580 
6 320 
7 530 
8 360 
9 320 
10 450 
1 1  440 
12 550 
13 250 
14 690 
15 200 

c I ndex 
44 1 
196 
162 
325 
443 
370 
355 
193 
37 1 
375 
334 
320 
150 
500 
266 

f irstB 
166 
236 
138 
226 
I8 1 
2 I8 
169 
375 
484 
133 
204 
200 
560 
181 
700 

lasts 
843 
763 
736 
76 1 
767 
750 
81 1 
750 
687 
755 
818 
836 
560 
877 
700 

LargeB 
166 
763 
389 
226 
767 
484 
5 18 
375 
687 
755 
488 
836 
560 
326 
700 

cent0 
562 
236 
389 
464 
560 
484 
5 I8 
375 
484 
544 
488 
390 
560 
659 
700 

FK 5. The measurements per chromosome are displayed and 
stored in a list mode. Object number refers to the order in which the 
chromosomes were found in the image and not to  their class. The 
positions of the bands are relative to  a normalized length of 1,000 per 

chromosome. Thus object 1 has a last band a t  84.3% of the distance 
from the top of the chromosome. Six of the seven measurements are 
shown here. The last measurement is seen by “scrolling” to the right. 

patterns (database) with known class membership. Be- 
cause the band features used are non-parametric, the 
problem of estimating p(xiw,) cannot be reduced to the 
problem of estimating the parameters of a distribution 
such as  the mean and standard deviation of a hypoth- 
esized Gaussian distribution. 

Athena uses the histogram approach to transform a 
data set into a probability density function. The range 
of each feature xi of vector x is divided into a fixed 
number of equal intervals or bins. The number of data 
points falling into each bin is counted and forms the 
basis for the probability estimate. The number of bins 
strongly depends on the size of the learning set and the 
underlying distribution. For Gaussian distributions 
the number of bins should be about fl (where N is the 
size of the learning set). Because the distribution of 
each chromosome’s length is approximately Gaussian 
and fills about one-third of the total range, 3m is a 
good estimate for the total number of bins to use. As an 
example, if we have 40 chromosomes per class, then the 
number of bins should be about 3m = 20. 

Context-sensitive classification. After computing 
the a posteriori probabilities for each chromosome, a 
context-sensitive classifier assigns the chromosomes to 
the possible classes. It is assumed that the metaphase 
contains two copies of each autosome and two sex chro- 
mosomes, XX for females and XY for males. An excep- 
tion is made when there is an abnormal number of 
chromosomes in the cell, e.g., Down’s syndrome. The 
classification is a two-step process. 

In the first step, all chromosomes are ordered in de- 
creasing length, building a list with the longest chro- 
mosomes first. The chromosome classes are also or- 
dered in a list of decreasing length: 1 through 7 ,  X, 8 
through 22,  and Y. These two lists are then associated 
with each other: the first and second chromosomes from 

the length list with chromosomes class 1, the next two 
chromosomes with chromosome class 2 ,  and so forth. 

After this initial classification based upon length, we 
assign cost factors to the surrounding classes that 
make a transfer to another class over longer distances 
less likely. Distance is defined as  the absolute differ- 
ence in class number between start class and end class. 
Thus, moving a chromosome from class 2 to class 6 is a 
distance of 4. Athena (in the current version) assigns 
no cost (C = 0) to classes with a distance smaller than 
or equal to a pre-defined window size (default size = 3) 
from the current class leaving the a posteriori proba- 
bilities P(ojix) for j in (class-window) 5 j 5 
(class +window) unchanged. An infinite cost (C = x) 
is assigned to all classes with a distance larger than the 
window size from the current class making the a pos- 
teriori probabilities P(wjlx) zero for all j in the inter- 
vals: 0 5 j < (class-window) and (class + window) < 
j 5 24 with (class-window) z 0 and (class + window) 
5 24. 

All chromosomes are initially attached to the class 
with the highest a posteriori probability, still avail- 
able, according to the Bayes’ rule. The limit of two 
chromosomes per class is taken into account resulting 
in transfers where more than two chromosomes per 
class are found. This procedure continues until all chro- 
mosomes are either classified or rejected. A chromo- 
some will be rejected if its a posteriori probability for 
the remaining classes is lower than a given minimum 
probability threshold (default P,,, = .005). 

The default values were chosen for standard meta- 
phase spreads as  obtained through amniocentesis and 
G band staining. Of particular importance is the ability 
to construct a database as well as  a classifier that  is 
“tuned” to  the procedures and material within a given 
laboratory environment. That is, Athena can be used to 
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Table 1 
Accuracy of the Five Centromere Location Schemes Described in  the Text“ 

Chromosome Shortest Convex Width Width Convex 
No. distance, c/r’ hull, 9f profile, ‘k (1) profile, % (2) profile, c% 
1 76.5 52.9 73.5 64.7 85.3 
2 80.0 71.4 77.1 62.9 91.4 
3 92.3 43.6 74.4 59.0 78.9 
4 100.0 72.1 83.7 69.8 90.5 
5 95.6 73.3 95.6 44.4 91.1 
6 89.2 75.5 83.8 86.5 91.9 
7 87.8 82.9 90.2 87.8 87.8 
8 92.3 97.4 97.4 76.9 97.4 
9 81.1 78.4 94.6 81.1 89.2 

10 89.7 92.3 82.1 74.4 87.2 
11 78.6 73.2 85.7 61.9 76.2 
12 83.3 69.0 83.3 73.8 83.3 
13 95.3 92.1 41.9 83.7 66.7 
14 97.5 72.5 17.5 85.0 52.6 
15 97.3 92.1 34.2 92.1 72.7 
16 83.3 88.4 86.0 76.7 100.0 
17 82.1 71.8 35.9 84.6 82.1 
18 92.5 92.7 36.6 92.7 95.1 
19 53.5 82.9 48.8 67.4 83.3 
20 69.2 86.5 74.4 69.2 94.9 
21 86.8 39.4 34.2 71.1 50.0 
22 62.5 63.9 57.5 35.0 61.8 
X 96.6 82.2 100.0 89.7 96.6 
Y 80.0 80.0 40.0 80.0 60.0 
Average 85.1 76.1 67.9 73.8 81.9 

indicated by the “expert” was considered as  an error in  centromere location. 
“Nine hundred twenty-four chromosomes (32) were used in  this study. A deviation of more than one pixel from the position 

construct de novo a database specific for a particular 
application or  laboratory. 

RESULTS 
In this section we present some of the results 

achieved with the techniques incorporated in Athena. 
Some of these results-such as the centromere detec- 
tion accuracy and the classification accuracy-were 
generated in previous studies. The procedures, how- 
ever, have been incorporated unchanged into this pack- 
age and thus are representative of the results that can 
be achieved. 

Centromere Location 
In this comparison we look at five techniques for de- 

termining the position of the centromere of banded 
chromosomes. The first technique is based upon the 
smallest distance across the chromosome (38). The sec- 
ond technique uses the maximum deviation from the 
convex hull of the chromosome to the chromosome con- 
tour itself (31). The third technique uses a polynomial 
fit to  the width profile of the chromosome to find the 
centromere (44). The profile is filtered and the deepest 
minimum is used as the centromere; if no clear mini- 
mum exists-as, for example, in many acrocentric 
chromosomes-the inflection point is used to deter- 
mine the centromeric position. The fourth technique 
uses the difference between a “standard” width profile 
and the measured profile (18). The last method, the 

convex profile technique, is based upon the deviation 
between the width profile and its convex hull (30). 

In all of the comparisons, the chromosomes were first 
rotated and straightened (13). The details of the entire 
experiment are described in de Muinck Keizer (7). The 
results are shown in Table 1. In a prior study (71, an 
additional technique based upon the measurement of 
local curvature (9) was examined. This technique led to 
an average accuracy of 15% and was thus discarded. 
The shortest distance method thus provides a signifi- 
cant improvement in the correct identification of the 
centromere position when compared to the other tech- 
niques. Its accuracy, however, remains below 90%. 
This indicates that, on the average, at least five chro- 
mosomes per metaphase would have to  be corrected 
interactively. 

Classification Accuracy 
The complete procedure for classification described 

above has been tested on the same set of 924 chromo- 
somes used for the centromere study. The test set was 
identical with the learning set because of the relatively 
small number of chromosomes per class (-20). The re- 
sults, starting from the correct centromere positions, 
are shown in Table 2 together with a comparison to  
Granum’s WDD functions (10) on the same chromo- 
somes. 

Further, the two techniques-Laplacelband descrip- 
tion versus WDD functions-were also compared on a 
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Table 2 
Results of the Classification of 924 Chromosomes" 

Leiden Laplacel band WDD 
data set descriptors, 5% functions, Q 
Error rate 4.0 4.1 
Rejects 0.0 1.6 

(34,351 for both classification techniques. 
"In this experiment the test set equaled the learning set 

much larger data set obtained from Lundsteen (19). 
The results are given in Table 3. 

In the LaplaceiBand Descriptors technique, 7,284 
chromosomes were classified, and the test set did not 
equal the learning set (34). Bent chromosomes were 
classified but not straightened. In the WDD technique, 
6,985 chromosomes were classified, and the test set did 
equal the learning set. Furthermore, bent chromo- 
somes were excluded from the classification procedure. 

The use of the learning set as the test set in the 
testing of the WDD function approach and the exclu- 
sion of bent chromosomes means that the value of 2.1% 
must be considered as highly optimistic. It is not pos- 
sible for us to conclude that the technique we have 
implemented-a context-sensitive classifier based 
upon bands identified by a form of Laplace filtering-is 
better than the WDD classifier. We can conclude, how- 
ever, that it offers a reasonable accuracy. Further, the 
description developed by this classifier is much closer 
to the verbal description offered by cytogeneticists and 
embodied in the Paris convention (29). It is possible to 
read the numbers in Figure 5 and know-for any given 
chromosome-what that will mean in terms of banding 
pattern. 

DISCUSSION 
We have described in this article a software system 

for the (semi-)automatic analysis of metaphase spreads 
based upon a Macintosh I1 personal computer. This sys- 
tem takes full advantage of the hardware facilities in 
the computer: the 32-bit address space, the high-speed 
disk, the floating point co-processor (required for chro- 
mosome rotation and straightening), the 8-bit deep dis- 
play for color and grey levels, and the mouse-based 
user interface. For an indication of the total perfor- 
mance the reader is referred to the companion article 
by Mayall et al. (37). In testing Athena on a variety of 
metaphase spreads, the actual processing time for au- 
tomatic segmentation and classification averaged only 
90 seconds on a Macintosh I1 and would be even less on 
a Macintosh IIcx. 
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