
The Effects of Entropy Regularization
and Lyapunov Stability Constraint on

Multi-Agent Reinforcement Learning for
Autonomous Driving.

Thesis report

by

Mohamed Madi

to obtain the degree of
Master of Science

in Mechanical Engineering
at the Delft University of Technology

August 23, 2022

Student number: 5136539
Project duration: September 2021 - July 2022

Supervisors: Dr. Wei Pan

Abstract

High level decision making in Autonomous Driving (AD) is a challenging task due to the
presence of multiple actors and complex driving interactions. Multi-Agent Reinforcement
Learning (MARL) has been proposed to learn multiple driving policies concurrently to solve
AD tasks. In the literature, multi-agent algorithms have been shown to outperform single-
agent algorithms and rule-based algorithms. Also several techniques have been employed to
facilitate convergence in policy learning such as parameter sharing and local reward design.
Further, functional safety in AD has been addressed with techniques such as unsafe action-
masking. However, there is a gap in the literature on the study of the effects of entropy reg-
ularization and on policies learned with closed-loop stability guarantee to solve AD tasks in
MARL. In this thesis, research gaps are addressed in entropy regularization and Lyapunov
stability constrained policy objectives applied to Autonomous Driving in MARL. Specifi-
cally, it is demonstrated on the lane-keeping task with 2 agents that entropy regularization
improves training stability. It was also shown that in stochastic multi-agent algorithms on
the lane-keeping task, a Lyapunov constrained policy objective performs better in average
episode returns, success rate and collision rate than a policy objective without a Lyapunov
constraint with low measurement noise perturbation. However, an algorithm with a stochas-
tic actor performs worse than that with a deterministic actor in stability and lane center
proximity on the lane-keeping task.

1

Acknowledgements

I would like to thank my thesis supervisor Dr. Wei Pan for his continued support and expert ad-
vice throughout the duration of my project. His advice and guidance in research direction has
been invaluable.

I would also like to thank my friends and family, especially my parents, Twfik Madi and Mariann
Gellért who have supported and motivated me in my pursuit of a Master of Science degree in Me-
chanical Engineering. I would also like to thank my fiancée Edna Ivonne Mart́ınez Corona for her
support and motivation throughout the duration of my project.

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Preliminaries . 5

1.2.1 Single-Agent Reinforcement Learning . 5
1.2.2 Multi-agent Reinforcement Learning . 7

2 Related Work 8
2.1 Single-Agent Reinforcement Learning Algorithms and Applications 8
2.2 Multi-Agent Reinforcement Learning Algorithms and Applications 10
2.3 Algorithms overview . 15
2.4 Stability in MARL . 18

3 Research Goals 19
3.1 Research Findings . 19
3.2 Research Gaps . 19

4 Methods 21
4.1 Simulation Environment . 21
4.2 Observation Space . 21
4.3 Action Space . 22
4.4 Reward Scheme . 22
4.5 Framework . 23
4.6 Algorithms . 23
4.7 Training . 26
4.8 Evaluation . 26
4.9 Implementation Details . 27

5 Results 27
5.1 Training . 27
5.2 Evaluation . 28

6 Discussion 31
6.1 Training . 31
6.2 Evaluation . 31

7 Conclusion 32

8 Appendix 38
8.1 Algorithms Classification . 38
8.2 Detailed Training Results . 40
8.3 Additional equations . 42

3

List of Figures

1 Straight road scenario in SMARTS simulator. 21
2 Learning curves for agents trained with MADDPG, MADSPG, and MADSPG-

LYAP algorithms. The figure shows the mean and 1 standard deviation from the
mean of 5 trials per algorithm. The episode returns for each trial are averaged over
the last 200 episodes. 28

3 Learning curves for agents trained with MADDPG, MADSPG, and MADSPG-
LYAP algorithms. The figure shows the mean and 1 standard deviation from the
mean of only trials where convergence is observed. The episode returns for each
trial are averaged over the last 200 episodes. 29

4 Evaluation results of MADDPG, MADSPG and L-MADSPG for metrics based on
all 5 trials per algorithm. The noise difficulty level is increased by increasing stan-
dard deviation of Gaussian noise added to input observations of agents. 31

5 Learning curves for agents trained with MADDPG for 5 trials 40
6 Learning curves for agents trained with MADSPG for 5 trials 41
7 Learning curves for agents trained with L-MADSPG for 5 trials 41

List of Tables

1 Difficulty levels corresponding to mean-zero Gaussian noise added to observation
features distc and steeringego with varying standard deviations of noise. 27

2 A summary of the algorithms employed to tackle multiple driving scenarios. The
algorithms are categorized based on driving scenario, algorithm type, traffic set-
ting and simulator used. The algorithm types are rule-based, single agent (SA)
RL, Fully Centralized (FC) MARL, Fully Decentralized (FD) MARL, Centralized
Training Decentralized Execution (CTDE) MARL and Networked Agent Learning.
The traffic setting homo refers to training in an all AV environment, whereas het-
ero refers to training in a mixed setting with both AV and HDVs. The algorithms
are cited based on the papers in which they are utilized. 40

4

1 Introduction

1.1 Motivation

Autonomous Driving (AD) has been proposed as a solution to transportation issues such as road
accidents, access to mobility and fuel savings. AD is a promising solution to road accidents since
94% of road accidents are attributable to human-error [1]. An AD system constitutes several
modules including perception, localization and mapping, navigation, motion planning and con-
trol. According to [2], perception level tasks are well understood in the AD domain but the no-
tion of driving policies remains less understood. Moreover, AD systems have achieved high pre-
cision on perception level tasks due to advancements made in deep learning architectures [3].
The investigation of high-level decision making in autonomous driving is motivated by the na-
ture of the driving task. The driving task involves navigating in evolving configurations of the
environment and interacting with different road users. A machine learning approach can be used
to learn effective driving policies that are capable of handling the complexity of the driving task.
Supervised learning algorithms are not suitable for tasks such as learning driving strategies and
high-level decision making [3]. In driving tasks, an AV agent is required to take optimal actions
in evolving configurations of the environment at consecutive time-steps. Learning to take opti-
mal actions in sequential decision processes is the focus of Reinforcement Learning. Furthermore,
learning driving policies in the presence of multiple road users is a multi-agent problem that re-
quires multi-agent learning [4].

1.2 Preliminaries

1.2.1 Single-Agent Reinforcement Learning

In a single agent setting, an RL agent interacts with its environment through trial and error in a
sequence of time-steps to learn a policy that maximizes the agent’s sum of future rewards. The
agent observes its environment state and takes an action according to a policy for which it re-
ceives a reward. Single-agent reinforcement learning problems can be mathematically formalized
as Markov Decision Processes (MDPs). An MDP is a tuple (S,A, P,R, γ) where:

• S is the set of all valid states.

• A is the set of all valid actions.

• P : S × A → P(s) is the transition probability function. P (st+1|st, at) that denotes the
probability of transitioning into state st+1 by taking action at in state st.

• R : S ×R→ R is the reward function that is given by rt = R(st, at).

• γ ∈ (0, 1] is the discount factor which discounts future rewards.

The assumption in an MDP is that the state is fully observable by the agent, and the system has
the Markov property which means that state transitions are only dependent on previous time-
step states and actions and no prior history. An agent selects an action at ∈ A at time-step t
when in state st ∈ S according to a policy π and transitions into state st+1 ∈ S with transition
probability P (st+1|st, at) and receives a reward rt = R(st, at). A stochastic policy is a probability
distribution over actions π(a|s). The goal of a reinforcement learning agent is to learn a policy

5

that maximizes the expected return. The infinite-horizon discounted return is the discounted sum
of all rewards obtained from the start of an episode:

R(τ) =

∞∑
t=0

γtrt (1)

τ denotes a trajectory, which is the sequence of states and actions encountered by an agent in an
episode:

τ = (s0, a0, s1, a1, ...) (2)

The objective function J(π) to be maximized is the expected return, where the expectation is
with respect to the probability distribution over trajectories generated using the policy π, P (τ |π):

J(π) =

∫
τ

P (τ |π)R(τ)

J(π) = Eτ∼π[R(τ)]

The goal of an RL agent is then to find the optimal policy π∗[5]:

π∗ = argmax
π

J(π) (3)

An important concept in Reinforcement learning is the value function which is a measure of the
value of a state or state-action pair. The state-value function V π(s) denotes the value of starting
in state s and taking actions according to policy π forever after:

V π(s) = Eτ∼π[R(τ)|s0 = s] (4)

The state-action value function Qπ(s, a) denotes the value of starting in state s and taking an
arbitrary action a, then following the policy π forever after:

Qπ(s, a) = Eτ∼π[R(τ)|s0 = s, a0 = a] (5)

RL algorithms can be categorized into model-free and model-based algorithms. In model-free al-
gorithms, the agent does not learn or have access to a model of its environment. In other words,
the agent does not have access to state-transition functions. Model-based algorithms on the other
hand require learning a model of the environment dynamics. Another branching point for algo-
rithms is what agents learn. In value-based methods, agents learn an approximator Qϕ(s, a) for
the optimal action-value function Q∗(s, a). The actions are selected according to:

a = argmax
a

Qϕ(s, a) (6)

An example algorithm that utilizes Q-learning is DQN [6].

In policy-based methods, the policy πθ(a|s) is parameterized by θ . These algorithms typically
optimize the parameters θ by gradient ascent on the objective J(π). They can also use an ap-
proximator Vϕ(s) which is used in updating the policy. An example of a policy based algorithm
is A2C [7]. Actor-Critic algorithms are hybrid algorithms that combine the two families. In these

6

algorithms, the actor is the policy π that is used to select actions. The critic is the value func-
tion that “criticizes” the actions produced by the actor. In policy-gradient methods, the policy
parameters are updated according to:

θk+1 = θk + α∇θkJ(πθk) (7)

The gradient of the objective function ∇θkJ(πθk) can be analytically formulated as an expecta-
tion:

∇θJ(πθ) = Eτ∼πθ
[

T∑
t=0

∇θ log(πθ(at|st))R(τ)] (8)

The gradient can be estimated using sample trajectories:

∇̂θJ(πθ) =
1

|D|
∑
τ∈D

T∑
t=0

∇θ log(πθ(at|st))R(τ) (9)

where D is a set of trajectories τii=1,..N .

1.2.2 Multi-agent Reinforcement Learning

The multi-agent reinforcement learning problem can be formalized using a Markov Game (MG)
under the assumption that the environment state is fully observable by the agent [5]. A Markov
Game is defined by a tuple (N , S, {Ai}i∈N , P, {Ri}i∈N , γ) where

• N = {1, .., N} denotes the set of N agents in a game.

• S is the state space observed by all agents.

• Ai denotes the action space of the ith agent. The total action space A of all agents is A :=
A1 ×A2 × ...×AN .

• P : S × A → P (s) is the transition probability function P (st+1|st, at) that denotes the
probability of transitioning into state st+1 by agents taking the joint action at in state st.

• Ri : S ×A→ R is the reward function for the ith agent and is given by rit = Ri(st, at).

• γ ∈ (0, 1] is the discount factor which discounts future rewards.

In a Markov Game, each agent i ∈ N chooses its action ait ∈ Ai according to its own policy
πi(a

i|s) based on its observation of state s ∈ S. Let a−i denote the actions of all agents other
than agent i. The system transitions into state st+1 with transition probability P (st+1|st, ait, a−i

t)
and each agent receives its own reward that is a function of its own actions and the actions of all
other agents rit = Ri(st, a

i
t, a

−i
t). The joint policy π is given by π := (π1(a1|s), π2(a2|s), ..., πN (aN |s)).

Each agent aims to maximize its own objective that is a function of the joint policy π. The ob-
jective to be maximized is given by

J i(π) = Es∼p,a∼π[

∞∑
t=0

γtRi(st, at)] (10)

7

where at = (ait, a
−i
t) is sampled from the joint policy π and st is sampled from the start-state

distribution p. Consequently, the state-action and state value functions are given by

Qi
π(s, a) = Es∼p,a∼π[

∞∑
t=0

γtRi(st, at)|s0 = s, a0 = a] (11)

V i
π(s) = Es∼p,a∼π[

∞∑
t=0

γtRi(st, at)|s0 = s] (12)

An important concept in multi-agent reinforcement learning is the Nash Equilibrium [5]. The
Nash Equilibrium is the joint policy π∗ = (π1∗, ..., πN∗) such that for any s ∈ S and i ∈ N

V i
πi∗,π−i∗(s) ≥ V i

πi,π−i∗(s) (13)

The Nash equilibrium is an equilibrium point from which no agent deviates if any algorithm con-
verges. In multi-agent reinforcement learning, the performance of each agent is not only depen-
dent on the actions taken by the agent, but also on the performance of all other agents. Several
challenges arise in the MARL setting [5]. For instance, value based methods fail to converge to
the Nash equilibrium in general-sum Markov games [8]. There are several other goals which have
been formulated for MARL such as learning to communicate. Another challenge in MARL is the
non-stationary environment. The reward and the current state not only depend on the previous
state and action taken, but also on the action taken by other agents whose policies are constantly
evolving over time. MARL algorithms also suffer from scalability issues, since the joint action
space increases exponentially with the number of agents. Several approaches have been proposed
to deal with the non-stationary environment problem in MARL [9]. These include using memory
based models that save transitions in a long term memory, allowing agents to communicate with
each other by message sharing, sharing a common policy function by all agents in the environ-
ment and gradient information sharing between agents during training.

Multi-agent reinforcement learning algorithms can be categorized as follows: Fully centralized
(FC), fully decentralized (FD), centralized training and decentralized execution (CTDE), and
networked agent learning (NL) [4]. In the fully centralized training paradigm, each agent is con-
trolled by a central controller. The central controller has access to each agent’s actions, observa-
tions and rewards. Agents can have access to these parameters as well as local policies of each
agent [5]. In the centralized training decentralized execution paradigm, each agent shares infor-
mation with all agents globally during training, but each agent executes its own policy locally. In
the fully decentralized paradigm, there is no information exchange between agents during train-
ing and execution, and each agent learns its own policy without access to other agent policies. In
Networked agent learning, each agent shares information only with its neighbors in the network.
This constitutes a special case of decentralized execution/training [5].

2 Related Work

2.1 Single-Agent Reinforcement Learning Algorithms and Applications

Single-agent reinforcement learning algorithms have been explored in different driving scenarios
and tasks such as lane keeping, lane changing, ramp merging, overtaking, intersections and mo-
tion planning. In [10], the authors employ a Twin Delayed Deep Deterministic Policy Gradient

8

algorithm TD3 [11] as an RL baseline and compare its performance to the rule-based algorithms
Intelligent Driver Model IDM [12] and Autonomous Emergency Braking Model AEB [10] in the
single-agent setting. The authors compare the performance of these agents in an unsignalized in-
tersection scenario with Human Driven Vehicles (HDVs) with evaluation metrics success rate and
average duration time, to test safety and efficiency, respectively. It was concluded that the TD3
algorithm after training performed better than the rule-based algorithms with at least a 90% suc-
cess rate and better average duration time in a deterministic test. In a stochastic test, the TD3
algorithm achieved a higher success rate than IDM and AEB but a higher average duration time
compared to AEB in 2 of the 3 tested tasks (left turn, right turn, going straight).

To optimize traffic flow at unsignalized intersections, the authors in [13] implement a single-agent
RL algorithm based on PPO [14] that serves as an intersection management control unit in a
mixed traffic setting with Connected and Autonomous Vehicles (CAVs) and Human Driven Ve-
hicles (HDVs). The RL agent sends stop commands to CAVs on routes with higher priority to
allow for HDVs on lower priority routes to cross an intersection optimizing overall performance.
This work differs from DRL based approaches that deal with individual AV navigation and con-
trol such as [10]. Their proposed algorithm termed Courteous Virtual Traffic Signal Control (CVTSC)
is evaluated on a 3-way intersection against road signs and adaptive traffic light controllers in the
SUMO [15] traffic simulator on the traffic management task. The CVTSC algorithm outperforms
the baselines in terms of mean and standard deviation of travel time of vehicles on simulated and
real traffic. The throughput of intersections is also shown to increase with increasing CAV per-
centage among the traffic participants.

In [16], the authors employ a single-agent Double Deep Q Network DDQN [17] algorithm for
AV navigation through an unsignalized intersection in the presence of pedestrians. The algo-
rithm also utilizes a belief update LSTM (Long Short-Term Memory) model and a future colli-
sion prediction LSTM model. The belief update network is used to output a perceived state rep-
resentation, given imperfect observations of pedestrian states. The imperfect observations consist
of noisy inputs that are generated by adding Gaussian noise to the input features. The future
collision prediction model utilises an LSTM network to predict the future location of pedestri-
ans in the neighborhood of the ego vehicle. The future locations are used to extract trajectories
which are compared to the ego vehicle trajectory and if a collision results from the ego vehicle
action, the unsafe action is masked and a deceleration action is output by a high-level controller.
The authors compared the performance of their algorithm SRL to a rule based agent that uti-
lizes Time To Collision TTC in the CARLA simulator on a 4-way unsignalized intersection sce-
nario. Compared to the rule-based agent, the SRL agent achieved 0% collision episodes and 92%
successful episodes compared to 62% collision episodes and 38% successful episodes for the rule-
based agent on an intersection scenario that was similar to the one seen in training. However,
the rule-based agent was able to achieve a higher average speed and a faster average intersection
crossing time. The test results also show that an RL-agent without the future collision predic-
tor and the belief update model cannot guarantee collision free navigation, compared to the SRL
agent with 0% collision episodes.

In [18], authors test the PPO [14] and SAC [19] algorithms in different maps that are composed
of road blocks including straight roads, roundabouts and intersections in random configurations.

9

It was shown that increasing the number of scenes in which the agents were trained increases the
generalizability of the trained agents. Also in [18], the Reward Shaping and Lagrangian variants
of both PPO and SAC (PPO-RS, SAC-RS, PPO-Lag, SAC-lag) and Constrained Policy Op-
timization (CPO) [20] algorithms were trained and tested in safe exploration tasks in diverse sce-
narios with static and movable obstacles. It was shown that SAC baselines achieve higher success
rates compared to PPO baselines.

2.2 Multi-Agent Reinforcement Learning Algorithms and Applications

MARL algorithms have been applied to scenarios such as car-following, lane-overtaking, high-
way merging and intersection navigation. In [21], the authors propose a decentralized-execution
MARL algorithm MA2C for a highway on-ramp merging scenario. The authors formulated the
on-ramp merging problem as a Partially Observable MDP with networked agents. Their proposed
algorithm uses an Actor and Critic Network for each agent that share a FC layer. Furthermore,
the policy network parameters are shared among all agents during training. Learning is therefore
centralized by parameter sharing. The authors test their algorithms against several MARL base-
lines, MAA2C [22], MAPPO [23] and MAACKTR [23] that share parameters of the policy
among all agents in mixed traffic, which means in the presence of AVs and Human Driven Vehi-
cles (HDVs). The algorithm also utilizes a local reward function, action masking and a priority-
based safety supervisor. The reward for each agent is an average reward dependent on the vehi-
cles in the neighborhood of the ego-vehicle. The authors argue that averaging global rewards of
all vehicles leads to a large communication overhead and the credit assignment problem. Invalid
action masking is used in this algorithm to assign close to zero probabilities to invalid/unsafe ac-
tions to prevent undesirable system behaviors and invalid policy updates. The authors observed
better performance in the shared network design compared to the separate actor and critic net-
work design. The performance difference was attributed to the fact that in a separate network,
the actor may not produce optimal actions until the critic network is well trained. Tests in differ-
ent traffic densities shows better performance of MA2C compared to benchmarks, evaluated using
collision rate and average speed of vehicles which are indicative of safety and efficiency.

In [24], Parameter Sharing DDPG PS-DDPG is used to learn lane keeping and over-taking be-
haviors in autonomous vehicles in an all AV agents setting. The proposed network is a single
Actor-Critic Network that is shared for all agents. The proposed algorithm also uses a single
replay buffer that is shared for all agents. The authors argue that sharing a single Actor-Critic
network in this way allows for homogeneous agents to benefit from the learning experience of
other agents, where the network is updated by each agent for every time step. The authors ar-
gue that this would increase the speed of training. Moreover, a single shared replay buffer would
allow the agents to learn from a diverse set of experiences, which is possible due to the homoge-
neous nature of the trained agents. The authors compared the performance of PS-DDPG against
vanilla DDPG [25] for multiple agents, in the Gym-TORCS [26] simulation platform. In the
lane-keeping task, the rewards obtained by PS-DDPG were robust to the increase in the number
of agents in training, as opposed to DDPG which showed a decrease in the rewards obtained with
an increase in the number of trained agents. PS-DDPG also required a fewer number of episodes
to learn lane-keeping and overtaking behavior.

In [27], the authors propose a multi-agent advantage actor critic MA2C algorithm for the lane-

10

changing task that is similar to the algorithm used in [21]. The algorithm was evaluated in a
modified gym-based highway-env simulator with mixed traffic participants. The algorithm uses
parameter sharing and a multi-objective reward function that takes into account driver comfort.
The HDVs utilize IDM [12] for longitudinal control and the MOBIL [28] model for lateral con-
trol. Similar to [21], the MAA2C algorithm in [27] uses an Actor-Critic network where the Actor
and Critic networks share a hidden layer. The reward function contains an additional term for
driving comfort that penalizes rapid accelerations/decelerations. The authors also evaluate their
proposed algorithm with varying human driver aggressiveness and varying traffic densities. Their
results show that parameter sharing achieved higher episode rewards and lower variance com-
pared to the non-parameter sharing variant of the algorithm. The authors also evaluated their
algorithms against MADQN [29], MAACKTR [30] and MAPPO [14]. MA2C outperformed
all baselines in low traffic density. MADQN achieved higher average rewards in medium and high
traffic densities compared to MA2C but with a higher variance of rewards which can cause unsta-
ble training.

In [31], the authors propose a multi-agent delayed A3C MAD-A3C algorithm to train multiple
homogeneous agents (all AVs) in a signalized intersection scenario. Their algorithm utilizes two
sub-modules for predicting acceleration and steering angle separately. Each sub-module is com-
posed of a convolutional neural network that encodes information from a series of images that
represent the navigable space, path, obstacles and traffic signs. The traffic signs and obstacles
(other traffic participants) are color-coded in these images based on their state and their prior-
ities. Each sub-module outputs a mean value and state value, and accelerations or steering an-
gles are sampled from Gaussian distributions centered at those mean values. The algorithm was
trained and evaluated in different difficulty level intersections and also compared to the TTC [32]
algorithm, which is a rule-based algorithm. The evaluation metrics used are reaches, crashes, off-
roads and time-overs. The TTC algorithm computes the TTC of vehicles approaching from the
left and right adjacent lanes based on the time to reach an imaginary line that coincides with the
longitudinal axis of the ego-vehicle. It was shown that with a higher number of simultaneous traf-
fic participants, the MAD-A3C algorithm performs better than the rule-based TTC algorithm.
Experiment results in [31] show that the proposed network is able to learn the right of way rule
based on the traffic signs and the priority to the right rule. This was validated using an infrac-
tion evaluation metric, which measures the percentage of incidents in which a vehicle crosses an
intersection before vehicles with a higher priority.

It is worth mentioning the work in [33], where the authors propose a game theoretically optimal
auction, a game-theory based approach to navigating unsignalized intersections. The GamePlan
algorithm proposed determines which vehicles at an intersection should move first based on driver
observed vehicle trajectories and velocities which indicate aggressiveness. The authors argue that
DRL based methods such as in [31] cannot guarantee collision free and deadlock free navigation
and they do not generalize well to unseen environments. The assumptions made in the Game-
Plan algorithm are that agents take turns navigating intersections one at a time and that they do
not communicate with each other. The authors evaluated GamePlan against DRL based methods
including [31] and other RL and game-theoretic approaches in a 4 way multi-lane intersection, us-
ing success rate, deadlock rate and collision rate as evaluation metrics. GamePLan was shown to
have zero collisions and deadlocks. Limitations in this paper are that GamePLan does not plan
beyond the turn-based ordering.

11

In addition to algorithms proposed for navigating challenging driving scenarios, there are sim-
ulators that have been proposed for MARL research in driving scenarios. One such platform is
SMARTS [4]. The goal of SMARTS is to provide a MARL dedicated research platform that
provides diverse driver behavior models for social vehicles that result in diverse interactions. SMARTS
provides challenging driving scenarios such as un-protected left turns, intersections, roundabouts
and double merge. The authors also provide a classification of MARL algorithms applied to AD
M0-M5, with M0 agents following hard coded rules to M5 agents that reason about the reper-
cussions of local actions on global traffic state such as congestion. SMARTS utilizes ”bubbles”
where control of social vehicles is handed over from background traffic provider to social agents
to produce diverse and realistic interactions at locations of interest. The authors of SMARTS
compared the performance of the following algorithms: Independent learning algorithms DQN
[34], PPO [14], centralized training algorithms MAAC, MF-AC [35], MADDPG [36], Net-
worked Fitted-Q [37] and fully centralized CommNet [38]. These algorithms were tested in
the following scenarios: two-way traffic, double-merge and unprotected intersection. The authors
evaluate the performance of these algorithms using collision rate and completion rate and it was
shown that MADDPG performed better than most algorithms especially in the intersection sce-
nario. SMARTS also provides behavioral performance metrics such as safety, stability, agility and
control diversity.

The double-merge scenario was also used in [2] to test a multi-agent algorithm that decomposes
policy learning into learning a policy for Desires and trajectory planning with hard constraints
which is not learned. The authors propose the decomposition of the policy in this form to mit-
igate the large variance of the gradient estimate that results from a low probability of accident
occurrence. The desires policy πDs is a mapping from states to a discrete set of desires, which
are used in a cost function. The trajectory planning function πT selects a trajectory that mini-
mizes the aforementioned cost function. This decomposition also leads to driving trajectories that
provide comfort whilst maintaining functional safety.

To address the problems of generalization to unseen environments and safe exploration, the au-
thors in [18] propose the MetaDrive simulation platform. It differs from SMARTS [4] in the
additional areas of generalization and safe exploration tasks which are designed to test single-
agent algorithms and in the map generation process which enables the generation of many dif-
ferent driving scenarios. MetaDrive provides the following MARL benchmarking scenarios: toll-
gate, bottleneck, parking lot, roundabout, intersection. The MARL algorithms Independent Prox-
imal Policy Optimization IPPO [14], and centralized critic algorithms Concat-CCPPO [39]
and Mean Field MF-CCPPO [35] were trained and evaluated in these scenarios and the success
rates of the algorithms were compared. It was shown that MF-CCPPO outperformed IPPO in
most scenarios and that Concat-CCPPO performed poorly compared to the other baselines. This
was attributed to the concatenation method which makes learning difficult by expanding input
dimensions.

In [40], the author presents the Multi-Agent Connected Autonomous Driving MACAD-Gym
simulation platform to enable research on multi-agent reinforcement learning algorithms in the
autonomous driving domain. The author trained independent RL agents that utilize the IM-
PALA [41] algorithm to navigate a partially observable 3-way signalized (stop-sign controlled)

12

intersection with homogeneous agents. The algorithm utilizes raw camera observations as input
to a Convolutional Neural Network followed by a fully connected layer with weight sharing of this
layer among all agents. Training is centralized in this manner due to the sharing of layer weights
among all agents. The MACAD-Gym platform also provides training in heterogeneous environ-
ments under different settings such as cooperative and competitive settings. The performance of
the trained agents was evaluated using cumulative mean episodic rewards.

In [42], a parameter-sharing Soft Actor Critic PS-SAC algorithm is used to learn driving poli-
cies for homogeneous agents AVs navigating in a roundabout scenario. All agents in the environ-
ment share the same copy of a policy that is updated using the experiences collected by all agents
from a shared experience replay buffer. During execution, each agent uses a copy of the trained
policy to map its local observations to actions. The authors in [42] classify their algorithm as
centralized-training decentralized-execution as the learning is centralized with parameter shar-
ing. The performance of the algorithm was evaluated using success rate and collision rate in the
roundabout scenario with different traffic densities. The robustness of the algorithm was evalu-
ated by varying noise added to the accelerations of other agents and varying road geometry. The
success rate of the PS-SAC algorithm was higher in less dense traffic situations in experiments
with varying noise and road geometry. Additionally, the success rate of the trained policies in the
evaluation experiments did not decrease significantly due to the addition of Gaussian noise which
suggests that the policy is robust against deviations from expected behavior of other vehicles seen
during training.

In [43], authors use a Graphical Convolutional Network combined with DDPG to train con-
nected and autonomous vehicles (CAVs) for bottleneck congestion mitigation. Position and veloc-
ity information of both HDVs and CAVs is fed into a fully-connected network encoder to gener-
ate node embeddings. The node embeddings are then fed into a graphical convolutional network
along with an adjacency matrix that contains information on the network topology. The GCN
outputs embeddings that are then input to an actor-critic network that utilizes the DDPG algo-
rithm. The actor network outputs individual accelerations for each CAV. This algorithm falls un-
der the fully centralized paradigm due to the presence of a central controller. The authors com-
pared the performance of the GCN-DDPG algorithm with that of the rule-based IDM model on
two highway bottleneck networks, one moderately congested and the other severely congested.
It was observed that the DRL based controller achieved higher episode rewards compared to the
rule-based controller. Furthermore, the duration and intensity of the congestion was smaller for
the DRL based controller compared to the rule-based controller. This was done by plotting a
time-space heat map of mean traffic speeds. The throughput of the DRL based controller was also
higher than that of the rule-based controller.

In [44], the authors also implement a Graphical Convolutional Network to train CAVs to
navigate in mixed traffic settings. Their algorithm utilises PPO with critic networks sharing pa-
rameters and actor networks sharing parameters for the CAV agents. The relationship between
CAVs and neighboring vehicles is captured using a dynamic adjacency matrix. Furthermore, an
attention mechanism is added to selectively integrate features from neighboring CAVs. This al-
gorithm differs from the one used in [43] which utilizes one network to predict the actions of all
agents collectively and the observations of all agents are fed into one network. This constitutes a

13

fully centralized scheme. On the other hand, the algorithm in [44] has separate actors and crit-
ics for each agent where only the local observations of neighbors in the network are input to each
agent network. Therefore, the execution of this algorithm is decentralized . The authors com-
pared the performance of their algorithm to that of DDPG, PPO, MADDPG, and MAPPO [14]
on the car-following, unsignalized intersection navigation and merging scenarios in the flow sim-
ulation platform. The car following task was evaluated on a ring network where it was shown
that CAVG achieved the lowest accelerations and highest returns. This was indicative of better
shock-wave mitigation compared to the other algorithms. In the intersection navigation task, a
figure eight network was used to test the algorithms for safety and efficiency. The CAVG algo-
rithm did not achieve the highest velocity but had the lowest accelerations and highest returns
which showed that the algorithm is able to sacrifice speed for safer navigation of intersection.
The authors also conducted experiments with increasing CAV penetration rates. It was shown
that the performance of CAVG was robust to increased penetration rates compared to MADDPG
and DDPG which showed an initial increase in return followed by a drop in return. The authors
attributed this behavior to a a larger policy space to explore with increasing number of actors.

In [9], the author presents centralized-training decentralized-execution algorithms, Multi-Agent
Message Sharing Network MA-MeSN and Multi-Agent Broadcast Network MA-BoN, that
use DQN as the baseline model. These algorithms both use a message generating network and
a behavior policy network. For each agent, the message network in MA-MeSN generates mes-
sage actions from other agents private observations. These messages are concatenated and fed to
the policy network along with the agent’s private observations to evaluate a state-action-message
value function. In MA-BoN, the partial observations of all agents are used to generate a single
broadcast message that is used by all agents to generate a behavior action. To achieve decentral-
ized execution, two techniques are implemented. In the first, behavior cloning is used to train the
decentralized agent action policies, using the centralized policy that was trained with the mes-
sage sharing network. In the second technique, the behavior policy is used with a memory mod-
ule that is local to each agent. The memory module is an LSTM network that maps each agent’s
private observation to messages generated by other agents. The trained LSTM networks are used
during execution to simulate messages generated by other agents in the environment. The perfor-
mance of these algorithms is compared to DIAL [45] and CommNet in terms of the cumulative
reward achieved per episode in a highway driving scenario that was simulated using robots on a
treadmill. MA-MeSN and MA-BoN achieved higher cumulative rewards compared to DIAL and
CommNet in training on the highway environment. MA-BoN also shows better scalability (slower
drop in average cumulative rewards) compared to CommNet and DIAL as the number of agents
in the environment increases. In terms of the decentralized execution techniques, Cooperative
Distributed Behavior Cloning achieved higher cumulative rewards compared to other techniques
such as DQN with Stabilized Experience Replay. With CoDBC, each agent’s independent policy
is trained iteratively while using the centralized cooperative policy obtained during training for
other agents. In contrast, the memory module is able to achieve higher cumulative rewards com-
pared to CoDBC in a fewer number of episodes. For a classification of algorithms surveyed in the
literature, refer to Table 2 in the Appendix.

14

2.3 Algorithms overview

Many multi-agent reinforcement learning algorithms utilized in experiments build upon single-
agent variants. Deep Q Network (DQN) [34] is an off-policy value-based method, where a Q-
function is learned by minimizing the following loss function:

L(θ) =
1

|D|
∑
d

(r(s, a) + γmax
a′

Qθ′(s′, a′)−Qθ(s, a))
2 (14)

where D refers to a set of transition tuples used to update the Q-function. The actions can be
taken based on epsilon-greedy action selection, where the action that maximizes the Q-function
approximation is selected with a probability of (1 - ϵ). Multi-agent algorithms that are exten-
sions of this algorithm are MADQN, evaluated in [27] and MA-MeSN and MA-BoN, evaluated in
[9]. Deep Deterministic Policy Gradient (DDPG) [25] is an off-policy actor-critic algorithm that
learns a Q-function and a deterministic policy. The policy is updated by gradient ascent on the
policy parameters with the following gradient estimate:

∇θ
1

|D|
∑
τ∈D

Qϕ(s, µθ(s)) (15)

The Q-function is learned by gradient descent on the Q-function parameters with the following
gradient estimate:

∇ϕ
1

|D|
∑
τ∈D

(Qϕ(s, a)− y)2 (16)

where y denotes the target and is given by:

y(r, s′, d) = r + γ(1− d)Qϕtarg
(s′, µθtarg

(s′)) (17)

where targ denotes target networks whose parameters are updated using the main network pa-
rameters by polyak averaging. Multi-agent variants of DDPG, namely PS-DDPG and GCN-DDPG
were evaluated in [21] and [43] respectively. The TD3 [11] algorithm is also an off-policy actor-
critic algorithm that learns a deterministic policy in continuous action spaces. The algorithm
learns two Q-functions and uses the smaller of the two in the targets used to update the Q-functions.
The target is given by:

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qϕi,targ (s
′, a′(s′)) (18)

where a′ is the action obtained from a target actor network with the addition of Gaussian noise
that serves to smooth out the Q-function values (target policy smoothing). The policy is updated
by gradient ascent on the policy parameters using one of the Q-functions as done in (15). Proxi-
mal Policy Optimization [14] is an on-policy algorithm that utilizes a stochastic actor. The policy
parameters are updated by maximizing the following objective via gradient ascent:

θk+1 = argmax
θ

1

|DkT |
∑
τ∈Dk

T∑
t=0

min(
πθ(at|st)
πθk(at|st)

Aπθk (st, at), g(ϵ, A
πθk (st, at))) (19)

where A is an advantage estimate, ϵ is a hyperparameter and g is piece-wise defined function that
is a function of A and ϵ. The objective function aims to take the largest step possible in updat-
ing policy parameters without causing a collapse in performance. Multi-agent variants of PPO,

15

namely MF-CCPPO and Concat-CCPPO were evaluated in [18], and GCN-PPO was utilized in
[44]. SAC [19] is an off-policy actor-critic algorithm that utilizes maximum entropy reinforcement
learning. The policy objective function is given by:

J(π) = Eτ∼π[

∞∑
t=0

γt(R(st, at, st+1) + αH(π(at|st)))] (20)

where H denotes the entropy of the policy and is given by:

H(π(at|st)) = Ea∼π[− log(π(at|st))] (21)

The policy objective maximizes the expected future rewards and expected future entropy of the
policy. This prevents policies from converging early to bad local optima and ensures sufficient
exploration. The policy update step is given by:

∇θ
1

|D|
∑
τ∈D

(min
i=1,2

Qϕi
(s, aθ(s))− α log(πθ(aθ(s)|s))) (22)

where aθ(s) is an action sample. The action sample is obtained by a deterministic function of
state, policy parameters and Gaussian noise. SAC also learns two Q-functions and the Q-function
update is given by:

∇ϕ
1

|D|
∑
τ∈D

(Qϕ(s, a)− y)2 (23)

where the target y is give by:

y(r, s′, d) = r + γ(1− d)(min
i=1,2

Qϕtarg,i(s
′, a′θ(s

′)− α log(πθ(a
′
θ(s

′), s′))) (24)

In [21], the authors propose a Multi-Agent Actor Critic (MA2C) algorithm with a shared actor
critic network. The objective function to be maximized for the network is given by:

J(θi) = Jπθi − β1J
Vϕi + β2H(πθi(st)) (25)

where β1 and β2 are weighting coefficients for the value-function objective and the entropy reg-
ularization terms, and Jπ and JV denote the policy and value function objectives respectively.
The policy objective that is maximized is given by:

Jπθi = Eπθi
[log(πθi(ai,t|si,t))A

πθi
i,t] (26)

where A is an advantage function. The Value function objective that is to be minimized is given
by:

JVϕi = min
ϕi

EDi
[ri,t + γVϕi

(si,t+1)− Vϕi
(si,t)]

2 (27)

This differs from the SAC [19] algorithm as the policy objective does not explicitly maximize
the entropy of the policy, and the entropy term is weighted against the value function objective.
Also, the value function target does not include the entropy term. The authors in [21] do not per-
form an ablation study on the effect of including the entropy term in the overall objective func-
tion. Further, the authors in [27] utilize a multi-agent advantage actor critic algorithm that has

16

the same value objective and policy objective functions utilized in [21], and no entropy regulariza-
tion term. The MAA2C algorithm evaluated in [21] is a parameter sharing variant of Advantage
Actor Critic (A2C) [7]. A2C is an on-policy actor-critic algorithm that utilizes an n-step advan-
tage estimate in policy updates. The n-step advantage estimate is given by:

Aϕ(s, a) =

n−1∑
k=0

γkrt+k+1 + γnVϕ(st+n+1)− Vϕ(st) (28)

The policy parameters of the actor are updated using the following gradient estimate:

∇θJ(θ) =
∑
t

∇θ log(πθ(s, a))Aϕ(s, a) (29)

The value-function parameters are updating with the following loss function:

L(ϕ) =
∑
t

(Aϕ(s, a))
2 (30)

A3C [7] is similar to A2C except the actor and critic networks can be updated asynchronously. A
multi-agent variant of this algorithm, MAD-A3C, was evaluated in [31]. In A3C, multiple copies
of a global actor-critic network are trained in parallel on multiple instances of the environment.
The gradients obtained by the different learners are used to update a global copy of the actor
and critic networks. In A3C, the learners can update the global copy as soon as the gradients are
computed, and hence the gradient updates for each learner can be asynchronous. Further, A3C
utilizes entropy regularization, where the policy update is given by:

∇θJ(θ) =
∑
t

∇θ log(πθ(s, a))(Aϕ(s, a) + βH(πθ(st)) (31)

Parameter sharing variants of single agent algorithms MAA2C, MAPPO and MAACKTR [23],
DDPG, SAC were evaluated in [21, 24, 42] which involves learning a single shared policy for all
agents during training. The policy update rules are the same for the single agent variants of these
algorithms except that a single policy is shared among homogeneous agents, and each agent’s ex-
periences are used to update the shared policy during learning. The algorithms in [21] and [27]
can be classified as centralized-training decentralized-execution algorithms with networked agents.
In [23], parameter-sharing is described as the most centralized learning method. Although, the
policy parameters are shared among all agents, each agent only shares its local observations with
neighbors in its network. In [4], the authors evaluate Multi-Agent Deep Deterministic policy Gra-
dient (MADDPG)[36] algorithm, a multi-agent off policy actor-critic algorithm that utilizes a
centralized critic learned for each agent and separate actors that are executed independently dur-
ing test time. Each agent learns a Q-function by minimizing the following loss:

L(θi) =
1

S

∑
j

(yj −Qµ
i (x

j , aj1, .., a
j
N))2 (32)

where x denotes the full state information and aji denotes the ith agents actions in a sample j ∈
S where S is the set of samples. The target y is computed using:

yj = rji + γQµ′

i (xj ′, a′1, .., a
′
N)|a′

k=µk
′(ojk)

(33)

17

where µ′ denotes the target actor, k denotes the agent index and o denotes agent local observa-
tion. Each agent updates its actor using the following gradient estimate:

∇θiJ =
1

S

∑
j

∇θiµi(o
j
i)∇ai

Qµ
i (x

j , aj1, .., a
j
N)|ak=µk(o

j
k)

(34)

Other Multi-Agent algorithms that have been explored in the previous works mentioned include
CommNet [38] and Networked-fitted Q [37]. CommNet is a fully centralized multi-agent algo-
rithm that learns a mapping from all agent states to all agent actions. It additionally utilizes a
communication channel which the agents can access.

2.4 Stability in MARL

Multi-Agent RL algorithms implemented in previous experiments on driving tasks neglect the
guarantee of closed-loop stability of the learned control policies. A dynamical system is stable if
the system state trajectory starts in the vicinity of an equilibrium point and stays close to it [46].
Stability is closely related to safety, robustness and reliability and should therefore be considered
when deploying agents in safety-critical applications such as the driving task. Furthermore, it is
necessary for policies in driving tasks to be stable and resilient against disturbances and measure-
ment noise. It can be hypothesized that policies learned for AD tasks with closed-loop stability
guarantee are resilient to external disturbances and measurement noise. In [47], the authors uti-
lize Lyapunov’s method in control theory to propose a single-agent actor-critic algorithm that
can guarantee the closed-loop stability of learned policies. Their proposed framework (Lyapunov
Actor-Critic) utilizes a Lyapunov critic function and the following policy objective that is based
on Lyapunov’s energy decreasing condition Lt+1 − Lt < 0:

J(θ) = E(s,a,s′,c)∼D[β(log(πθ(fθ(ϵ, s|s))) +Ht) + λ(Lc(s
′, fθ(ϵ, s

′))− Lc(s, a) + αc)] (35)

where β and λ are temperature parameters, Ht is an entropy lower bound. Lc denotes the Lya-
punov critic function and fθ denotes a deep neural network parametrized by θ that is a function
of state s and Gaussian noise ϵ. In [47], the performance of LAC was compared to SAC and Lya-
punov constrained PPO on five robotic control problems including CartPole and HalfCheetah. It
was shown that LAC converged stably in all experiments with the lowest variance. To evaluate
stability, the state trajectories were observed in relation to reference trajectories on the problem
of Gene Regulatory Networks. It was shown that LAC was better able to track the reference tra-
jectories whereas SAC either diverged or oscillated around the reference trajectories. In another
experiment, LAC outperformed the other algorithms in robustness to external disturbances. In,
[46], the authors utilize a Lyapunov constrained policy objective formulated for a decentralized
multi-agent Soft Actor Critic algorithm and is given as:

Jπi
(ϕi) = Esi,t∼D

[Eπϕi
[αi log(πϕi

)−Qθi(si,t, ai,t, āN i,t)]

+ βEπϕi
[−Qθi(si,t+1, ai,t+1, āN i,t+1) + lδ||a

πϕi
i,t − ai,t||2 +Q(si,t, ai,t, āN i,t) + ψ(st)]] (36)

where β is a temperature parameter that controls the Lyapunov term and āN i,t+1 denotes the
mean action of neighbors of agent i in a Network. It was shown in [46] that the policies learned
with the Lyapunov constrained objective were resilient to measurement noise in the form of Gaus-
sian noise added to the states of the agents in a consensus control problem. In another exper-

18

iment, external disturbances were added to the control actions of agents trained with the Lya-
punov constrained policy objective in the form of Gaussian noise. On the consensus control prob-
lem, the agents could still maintain consensus even under external disturbances [46].

3 Research Goals

3.1 Research Findings

Based on an investigation into the different algorithms proposed to solve driving tasks for Au-
tonomous Vehicles, the following key findings are present. Firstly, Reinforcement Learning algo-
rithms outperform rule-based algorithms in both the single-agent and multi-agent frameworks.
In general, Reinforcement Learning algorithms achieve higher success rates and lower collision
rates than rule-based algorithms as noted in [10, 16]. However, it was shown that rule-based al-
gorithms outperform Reinforcement Learning algorithms in terms of average speed, which in-
dicates higher efficiency. This conclusion drawn on efficiency however can be contested by the
results in [43], which show that Reinforcement Learning algorithms are better able to mitigate
bottleneck congestion compared to rule-based algorithms as measured by mean traffic speeds
and throughput. Moreover, Reinforcement Learning algorithms scale better than rule-based al-
gorithms as the number of traffic agents increases [31]. Another key finding is that multi-agent
algorithms in general outperform single-agent algorithms that are applied to multi-agent settings
as observed in [4, 18, 24, 44], which are usually referred to in the literature as independent learn-
ers. The assumption made in independent learning is that the other agents constitute part of the
environment, and their policies are not taken into account when taking actions in the environ-
ment. Independent learners suffer from the non-stationarity problem in multi-agent settings. To
overcome the non-stationarity problem, multiple algorithms utilize a parameter sharing variant
of single-agent algorithms as was done in [21, 24, 27, 40, 42, 44]. Furthermore, it was also shown
in [31, 40] that having a single actor-critic network with parameter sharing results in better per-
formance compared to separate actor and critic networks due to the delayed convergence of critic
networks which can impede the performance of these algorithms. An important issue that was
addressed in RL algorithms used to solve navigation tasks was functional safety [2]. This is due
to the fact that RL algorithms optimize an objective function by estimating a gradient and low-
accident probabilities result in high variance gradient estimates which prevents multi-agent algo-
rithms from converging to optimal policies [2]. Further, it was shown in [16, 33] that reinforce-
ment learning algorithms alone cannot guarantee collision free navigation. In [16], the RL algo-
rithm had to be augmented with a future collision detector to mask unsafe actions. Unsafe action
masking was also used in [21].

3.2 Research Gaps

From the previous discussion, it is evident that MARL algorithms outperform single-agent algo-
rithms when multiple agents learn concurrently in their environment. Also, several techniques
have been employed to facilitate convergence of these algorithms to an optimal policy such as
parameter sharing. There are also several techniques used in the literature to improve safety of
learned policies such as unsafe action masking. However, there is a gap in the literature on the
study of the stability of learned policies for autonomous driving tasks. In this report, stability of
algorithms during training is used to refer to the variance in the performance of algorithms dur-

19

ing training observed across different random seeds or hyper-parameters. Stability in testing is
used to refer to the stabilizing characteristic of learned policies when agents are subject to mea-
surement noise or external disturbances. In [21, 27], parameter-sharing of actor-critic networks
was shown to achieve lower variance across runs with different random seeds compared to a non-
parameter sharing variant of the MA2C algorithm. It was shown in [21, 27] that a local reward
design achieved lower variance across different training instances compared to a global reward de-
sign. In [4], the authors compare the performance of several state-of-the-art MARL algorithms
evaluated on scenarios such as the double merge scenario and compute several behavior metrics
including a stability metric. The stability metric implemented in [4] is the average variance in
distance to the center of the lane across all agents over all episodes. In [42], the authors evalu-
ate the robustness of a parameter-sharing multi-agent SAC algorithm by adding Gaussian noise
to the accelerations of other agents in a round-about scenario. They evaluate the performance of
PS-SAC in success rate across varying traffic densities and varying standard deviation of noise
and observe that the success rate does not decrease significantly with increasing standard devia-
tion of Gaussian noise. In [44], it was shown that MARL algorithms were able to stabilize vehicle
velocities and mitigate shock-waves in a car-following scenario in a ring road.

Furthermore, there exists a research gap in the study of the effect of entropy regularization in
multi-agent algorithms on performance in driving tasks. Soft Actor Critic (SAC) is a single agent
algorithm that utilises maximum entropy reinforcement learning and was used to learn driving in
random road configurations in [18] for a single-agent. According to [19], the entropy augmented
policy objective incentivizes the policy to explore more widely and it can capture multiple modes
of optimal behavior. It was shown in [19] that SAC outperforms other single-agent algorithms
DDPG, PPO and TD3 in continuous control tasks in terms of learning speed and average episode
returns. The authors in [19] also show that utilizing a stochastic actor with entropy regulariza-
tion improves stability in training compared to a deterministic actor. Stability in this case refers
to stability across different random seeds. SAC performed more consistently than a deterministic
counterpart which does not maximize the entropy of the policy. In [21], the authors augment the
policy objective with an entropy regularization term, but the effects of this term on performance
of learned policies was not evaluated. Further, a multi-agent variant of A3C [7] is evaluated in
[31] to train AV agents in a signalized intersection scenario. According to [7], inclusion of the en-
tropy regularization term prevents early convergence to sub-optimal deterministic policies. The
authors in [31] do not perform a study to investigate the effect of the entropy term in the policy
objective on algorithm performance during training. These aforementioned gaps give rise to the
following thesis questions:

1. Can the performance of a multi-agent reinforcement learning algorithm be improved with en-
tropy regularization on the lane-keeping task?

In addition, a research gap exists in the study of stable control policies in MARL algorithms ap-
plied to autonomous driving tasks. Inspired by the work in [47, 46] on RL algorithms with stabil-
ity guarantee utilizing a Lyapunov-constrained policy objective, the following thesis questions can
be asked:

2. Can policies trained with a Lyapunov constraint show stabilizing behavior when subject to

20

measurement noise on the lane-keeping task?

3. Can Lyapunov constrained policy learning show improved performance during training on the
lane keeping task?

4 Methods

4.1 Simulation Environment

For the experiments, the SMARTS [4] simulation platform was chosen since it is a dedicated
multi-agent reinforcement learning research platform for autonomous driving with diverse scenar-
ios and customizable observation and action spaces. For the experiments, the straight road sce-
nario was chosen as the driving environment due its simplicity and an all AV agents setting was
chosen to limit the non-stationarity introduced from social vehicles interacting with AV agents
in the environment. The goal of the AV agents is to reach a target position at the end of a 200
m straight-road segment at the center of each agent’s lane in the agents’ respective lanes while
avoiding collisions and off-road incidents. The straight-road segment is composed of 3 lanes with
a lane width of 3.2 m each. 2 agents are instantiated on either side of the road (far-left and far-
right lanes) with one lane left empty between the agents (middle lane). Fig 1 shows an illustra-
tion of the simulation environment.

Figure 1: Straight road scenario in SMARTS simulator.

4.2 Observation Space

The observation space for each agent consists of a vector of continuous values with the following
features:

1. distg: the euclidean distance from the ego vehicle position to the goal position normalized
by the distance from start position to goal position

2. distc: the signed lateral error from the center of the lane closest to the ego vehicle normal-
ized by half the lane width

3. egorel−h: the difference between the lane heading and the ego vehicle heading in radians.

4. neighborrel−h: the difference between the heading of the closest neighbor vehicle and ego
vehicle heading in radians.

21

5. steeringego: the steering angle of the front wheels of the ego vehicle in radians.

6. relx: the relative x position between the closest neighboring vehicle and the ego vehicle in
meters.

7. rely: the relative y position between the closest neighboring vehicle and the ego vehicle in
meters.

4.3 Action Space

At every time-step, the agents output continuous values for acceleration, deceleration and steer-
ing rate. The output values range [0,1] m

s2 for acceleration and deceleration and [-1,1] rad
s for

steering rate. The steering rate is the amount of change in steering angle in radians per second.

4.4 Reward Scheme

The reward received by each agent from the environment is calculated according to the following
formula:

rtotal = c1rd + c2rg + c3rh + rcol + roff + rreach−goal + rreach−max (37)

where c1, c2, c3 denote constants that are used to weigh different reward components.

1. rd: This denotes the reward received by the agent based on distance traveled in meters in
one step.

2. rg: This denotes the reward received by the agent based on distance to goal in current and
next time-steps and is given by:

rd = distgoalcurr
− distgnext

(38)

Based on this formula, the agent receives a negative reward if the next time-step distance is
larger than the current time-step distance.

3. rh: This denotes the reward received based on the heading error of the ego vehicle with re-
spect to the lane heading in current and next time-steps and is given by:

rh = relhcurr − relhnext (39)

The agent receives a positive reward for heading closer to the lane heading and a negative
reward for deviating further from the lane heading.

4. rcol: The agent receives a negative reward of −100 in the event of a collision.

5. roff : The agent receives a negative reward of −100 if the agent is off-road.

6. rreach−goal: The agent receives a positive reward of +100 for reaching the goal position.

7. rreach−max: The agent receives a penalty of −5 if the maximum episode steps are reached,
otherwise a reward of 0.5 is received.

22

4.5 Framework

The multi-agent decision making problem can be modeled using a Partially Observable Markov
Game (POMG) [36]. Unlike in a Markov Game, in a POMG, each agent can only observe its lo-
cal environment and there is no explicit communication between agents. A POMG is defined by a
tuple (N , S, {Ai}i∈N , {Oi}i∈N , {Ωi}i∈N , P, {Ri}i∈N , γ), where N = {1, ..., N} denotes the set of
N agents in a game, S denotes the environment state for all agents, Ai denotes the action space
of the ith agent and Oi denotes the local observation space of the ith agent. Ω is an observation
function that maps the environment state S to agent local observation Oi, Ωi : S → Oi. P de-
notes the state transition function that represents the probability density of transitioning from
state st to state st+1 given the joint action of all agents at ∈ At, P : S × A × S → [0,∞). Each
agent receives a reward value given its own reward function Ri : S × A × S → R. The objective
for each agent is to learn a policy πi that is a mapping πi : Oi ×Ai → [0,∞).

4.6 Algorithms

MADDPG [36]: Multi-Agent Deep Deterministic Policy Gradient is a multi-agent off policy
actor-critic algorithm that utilizes a centralized critic learned for each agent and separate actors
that execute actions independently during test time. Each agent learns a Q-function by minimiz-
ing the following loss:

L(ϕi) =
1

S

∑
j

(yj −Qµ
i (x

j , aj1, .., a
j
N))2 (40)

where x denotes the full state information and aji denotes the ith agent’s action in a sample j ∈ S
where S is the set of samples. The target y is computed using:

yj = rji + γQµ′

i (xj ′, a′1, .., a
′
N)|a′

k=µk
′(ojk

′) (41)

where µ′ denotes the target actor, k denotes the agent index and o′ denotes the next agent local
observation. Each agent updates its actor using the following gradient estimate:

∇θiJ ≈ 1

S

∑
j

∇θiµi(o
j
i)∇ai

Qµ
i (x

j , aj1, .., a
j
N)|ak=µk(o

j
k)

(42)

MADSPG [48]: Multi-Agent Deep Stochastic Policy Gradient is similar to the MADDPG [36]
algorithm except that a stochastic actor is used to output actions for each agent. In [48], the au-
thors utilize MADSPG to learn a policy for the application of Dynamic Spectrum Access where
IoT devices compete for time slots to transmit event information. The algorithm proposed in
this thesis is the same except for the policy objective. The policy objective utilized in this re-
port maximizes Qi

ϕ(x, ã1, ..., ãN) whereas the gradient of the policy objective in [48] is given by

∇θiJ ≈ 1
S

∑
j ∇θi log πθi(ai|oi)Qi

ϕ(x, ã1, ..., ãN)|ãk∼πθk(ak|ok). Furthermore, an entropy-regularization
term is added to the policy objective. The policy parameters are updated by maximizing the fol-
lowing policy objective for each agent:

J(θi) = E
oi,x∼D,ζ∼N

[Qi
ϕ(x, ã1, ..., ãN)− α log(πi

θ(ãi|oi))]|ãk∼πθk(ak|ok) (43)

where the actions ãk are sampled from a Normal distribution. The reparameterization trick is
used to compute a deterministic function of state, policy parameters and independent Gaussian

23

noise. The Q-value parameters are updated by gradient descent on the following loss function:

L(ϕi) =
1

S

∑
j

(yj −Qi(x
j , aj1, .., a

j
N))2 (44)

where aj denotes an action from a sample j from the replay buffer. The target yj is given by:

yj = rji + γQ
′

ϕi
(xj ′, ã1

′, .., ãN
′)|ãk

′∼πk
′(ojk

′) (45)

where Q
′

ϕi
denotes the target Q-value function and ãk

′ is an action sample from a reparameter-
ized Normal distribution, for which the mean and standard deviation are output by the target
actor π′.

L-MADSPG: Lyapnov MADSPG is an extension of the MADSPG algorithm with the addi-
tion of a Lyapunov-constraint in the policy objective to guarantee the closed-loop stability of the
learned policies. The mathematical formulations that follow are based on the work in [46].

The following definition holds for the stability of stochastic discrete-time systems:

Definition 1: Let the origin st = 0 be the equilibrium point. The origin is said to be stable in
probability if lims0→0 P[supt>0 ||st|| > ϵ] = 0 for any ϵ > 0. The origin is asymptotically stable
with probability one if it is stable in probability and lims0→0 P[limt→∞ ||st|| = 0] = 1

The following Lemma was proposed by the authors in [46]:

Lemma 1: Let L be a continuous positive definite and radially unbounded function. Define a set
Sλ = {s : 0 ≤ L < λ} with λ > 0. Assuming:

Eat [L(st+1|s)]− L(st) ≤ −ψ(st),∀t (46)

where ψ(st) ≥ 0 is continuous for any st ∈ Sλ. Then the following statements apply according to
[46]:

For any s0 ∈ Sλ, st converges to {st ∈ Sλ : ψ(st) = 0} with probability at least 1 − L(s0)
λ .

Moreover, if ψ(st) is positive definite on Sλ, and there are two K class functions h1 and h2 such
that h1(||st||2) ≤ L(st) ≤ h2(||st||2), the system state st will converge to 0 with probability one.

A cost function for each agent is introduced and is defined as follows:

Definition 2: A cost function is feasible, if and only if, ci(si,t, ai,t) > 0 ∀si,t ̸= si,T ,∀ai,t ̸= ai,T
and ci(si,T , ai,T) = 0, where si,T is the target state and ai,T is the target action.

Based on this definition of a feasible cost function, a performance function Li is proposed as fol-
lows:

Li(s, ai,a) =

∞∑
t=0

γtLci(si,t, ai,t,at) (47)

24

where ci is a cost function for agent i, γL ∈ [0, 1) is a discount factor and a denotes the actions of
agents other than agent i in the learning environment. The following assumption is made for the
stabilization of agents in a Markov Game:

Assumption 1: Assuming that all agents can be stabilized based on Definition 1, there exists a
control policy for each agent i such that Li is a Lyapunov function candidate.

In the following section, the state s is replaced by x to denote the full-state information where
x = {o1, ..., oN} is a set of local observations ok. Based on Lemma 1, Assumption 1, (47) and the
policy objective in (43), the following constrained policy improvement is formulated:

πi = argmax
πi

E
oi,x∼D,ζ∼N

[Qi
ϕ(x, ã1, ..., ãN)− α log(πi

θ(ãi|oi))]|ãk∼πθk(ak|ok)

s.t E
oi,x∼D

[Li(xt+1, ai,t+1,at+1)]− Li(xt, ai,t,at) ≤ −ψ(xt) (48)

Furthermore, ψ(xt) is a positive definite function where ψ(xt) = κici(xt, ai,t,at) and κ > 0 is
a constant. It is possible to transform the hard constraint in (48) into a soft constraint using the
Lagrangian method:

πi = argmax
πi

E
oi,x∼D,ζ∼N

[Qi
ϕ(x, ã1, ..., ãN)− α log(πi

θ(ãi|oi))]|ãk∼πθk(ak|ok)

+ βi E
oi,x∼D

[Li(xt+1, ai,t+1,at+1)− Li(xt, ai,t,at) + ψ(xt)] (49)

(49) can always result in a stable control policy if it is assumed that the agents start with a fea-
sible control policy. Instead of assuming that agents start with a feasible control policy, Lya-
punov’s energy decreasing condition is used to guarantee the closed loop stability of the learned
policies. Also in (49), the next state xt+1 is determined by the current policy and in order to use
a replay buffer, (49) has to be modified. Assume that the Lyapunov function Li is Lipschitz con-
tinuous with respect to ai,t. The following assumption is introduced for deterministic discrete-
time systems:

Assumption 2: Consider the deterministic discrete-time system xt+1 = f (xt, at,at). The non-
linear dynamics f is Lipschitz continuous with respect to ai,t if ||f (xt, a

2
i,t,at) − f (xt, a

1
i,t,at)||2 ≤

lf ||a2i,t − a1i,t||2 where lf is a Lipschitz constant.

The Lyapunov function can be parameterized with a DNN and since the DNN must be bounded,
it is assumed that the Lyapunov function Li is also Lipschitz continuous with respect to the state
xt with Lipschitz constant lL. Let a feasible policy be one in which the system is stable and a
Lyapunov function exists. Suppose Assumption 2 holds, then the following Theorem is intro-
duced to guarantee that the new policy following the policy improvement step is also feasible [46].

Theorem 1: Let πi,old be a feasible policy for data collection and Lπi,old
(x) is the Lyapunov

function. A new policy πi,new will also be a feasible policy if there exists:

Lπi,old
(xt+1) + lLlf ||a

πi,new

t − a
πi,old

t ||2 − Lπi,old
(xt) ≤ 0 (50)

25

Proof of Theorem 1 is provided in [46]. The negative cost function is chosen as the reward and
hence the negative Q value function is used as the Lyapunov candidate. Based on this and follow-
ing Theorem 1, the following Lyapunov constrained policy objective is minimized:

Jπi = E
oi,x∼D,ζ∼N

[α log(πi
θ(ãi|oi))−Qi

ϕ(x, ã1, ..., ãN)]|ãk∼πθk(ak|ok)

+ E
oi,x∼D,ζ∼N

βρi
[−Q′

ϕi
(xt+1, ã1,t+1, ...ãN,t+1)|ã′

k∼πk
θtarg

(a′
k|o

′
k)

+ lδ||ã
πθi(|oi)
i,t − ai,t||2 +Qϕi(xt, a1,t, ...aN,t)|ak∼D + ψ(xt)] (51)

where lδ is a constant, and ψ(xt) is a positive-definite function. An intuitive choice for ψ is the
reward value. However, since the reward in this implementation can assume negative values, a
sigmoid activation σ was applied to the rewards ψ(xt) = σ(ri(xt, ai,t,at)) + ϵ. βρi

denotes a
temperature that controls the Lyapunov term and is parameterized by a Deep Neural Network
with parameters ρ. The DNN, takes as input local observations and actions sampled from a re-
play buffer (oi, ai) ∼ D. βρi

is updated to minimize the following objective:

Jβi
= − E

oi,x∼D,ζ∼N
βρi

(oi, ai)[−Q′
ϕi
(xt+1, ã1,t+1, ...ãN,t+1)|ã′

k∼πk
θtarg

(a′
k|o

′
k)

+ lδ||ã
πθi(|oi)
i,t − ai,t||2 +Qϕi(xt, a1,t, ...aN,t)|ak∼D + ψ(xt)] (52)

In (51), a clipped value for β is used and the value is clipped in the range (0,1) to prevent large
values which can affect the convergence of the algorithm. Large values of β can result from un-
stable control policies in training since there is no assumption made that the starting control
policies must be feasible. The Q-value function parameters are updated according to (44)

4.7 Training

For training, 5 trials are run with 2 agents for each of the learning algorithms for 2000 episodes
per trial and a maximum episode limit of 300 steps. An initial exploration phase was implemented
during training to encourage early exploration where actions are randomly sampled from a uni-
form distribution over the action space for the first 50 episodes. The agents are instantiated at
the start of every episode at 5m and 10m from the start of their lanes respectively. An episode
terminates if either of the agents is involved in a collision or off-road incident or if the maximum
steps per episode limit is reached. An episode also terminates and is a success if either of the
agents reach their goal position at the end of the road while the other agent remains on the road.
The average episode rewards obtained over the course of training are observed for agents trained
in self-play with MADDPG, MADSPG and L-MADSPG in separate trials to observe the effects
of entropy regularization and the Lyapunov-stability constraint on the performance of agents dur-
ing training and on the convergence of the policies.

4.8 Evaluation

For the evaluation scenario, the policies learned from each of the training trials are run for 500
episodes. The performance of the learned policies is evaluated by measuring success rate, collision
rate, off-road rate, time-out rate, average lateral error per episode and average standard deviation
of average lateral error per episode (averaged for the 2 agents). The evaluation trials are run with

26

model weights saved during training that achieved the highest episode returns averaged over the
last 10 episodes. The stability of the learned policies is assessed by adding mean-zero Gaussian
measurement noise to two of the observation dimensions, namely distc and steeringego with vary-
ing standard deviations of noise as seen in Table 1 and comparing the performance of the learned
policies.

Noise level distc steeringego
Easy 0.0 0.0
Medium ζ ∼ (0, 10−4) ζ ∼ (0, π ∗ 10−4)
Hard ζ ∼ (0, 10−3) ζ ∼ (0, π ∗ 10−3)

Table 1: Difficulty levels corresponding to mean-zero Gaussian noise added to observation fea-
tures distc and steeringego with varying standard deviations of noise.

4.9 Implementation Details

Feed forward neural networks are used for the actor and critic networks with 2 hidden layers
and units [200,100] each with ReLU activation for the hidden layers. For the stochastic actors
in the MADSPG and L-MADSPG algorithms, the output vector of the hidden layer is fed to two
FC layers which output mean and standard deviation vectors. The mean and standard devia-
tion outputs are used to construct a Normal distribution from which raw actions are sampled.
A Sigmoid function is used for the acceleration and deceleration dimensions and a tanh func-
tion for the steering rate dimension for raw actions after sampling. Furthermore, a feed forward
neural network is also used for the Lyapunov network with 3 hidden layers and units [64,64,16]
each. The objectives are optimized using Stochastic Gradient Descent with the ADAM optimizer
and a batch size of 1024 samples. The learning rates for the actor, critic, and Lyapunov networks
are set to 1e-3, 1e-2 and 5e-3 respectively. The training was done on an NVIDIA GeForce 840M
GPU.

5 Results

5.1 Training

The learning curves for each of the trained algorithms can be seen in Fig 2. In comparison with
MADDPG, MADSPG is more stable in training and achieves faster convergence of learned poli-
cies. The greater stability in training is indicated by lower variance in average episode returns
over 5 trials. However, MADDPG achieves higher peak average episode returns compared with
MADSPG. Furthermore, L-MADSPG achieves higher peak average episode returns in training
compared with MADSPG indicating better performance and comparable average episode returns
in comparison with MADDPG. However, the variance of the average episode returns over 5 tri-
als are larger for L-MADSPG compared to MADSPG indicating lower stability in training over
the course of all trials. The variance of the average episode returns of L-MADSPG is lower than
that of MADDPG indicating better stability over the course of all trials. Based on the raw data
from each of the trials in Fig 5, Fig 6, Fig 7 in the Appendix section, the results show that the
policies trained demonstrate two different behaviors in average episode returns in separate trials.

27

Figure 2: Learning curves for agents trained with MADDPG, MADSPG, and MADSPG-LYAP
algorithms. The figure shows the mean and 1 standard deviation from the mean of 5 trials per
algorithm. The episode returns for each trial are averaged over the last 200 episodes.

In some trials, it can be seen that the average episode returns increase slowly followed by conver-
gence. In others, the average episode returns climb rapidly achieving considerably higher episode
returns followed by a collapse in performance. The results in Fig 3 show the mean and variance
of average episode returns of trials where convergence is observed.

Based on the results shown in Fig 3, it can be observed that MADSPG and L-MADSPG show
better performance in training compared with MADDPG. Furthermore, MADSPG and L-MADSPG
are more stable in training as shown by lower variance achieved in comparison with MADDPG.
The lowest variance and highest average episode returns are seen for L-MADSPG. When com-
paring L-MADSPG with MADSPG, L-MADSPG achieves higher average episode returns and is
more stable as observed by lower variance.

5.2 Evaluation

The evaluation results for models trained in all 5 trials with MADDPG, MADSPG and L-MADSPG
with varying standard deviation of noise can be seen in Fig 4. Across all trials, MADDPG achieves
lower average lateral error in comparison with MADSPG and L-MADSPG over all difficulty lev-
els as can be seen in Fig 4a. The average lateral error of MADSPG and L-MADSPG are com-
parable. In Fig 4b, MADDPG achieves the lowest average of standard deviation of the average
lateral error across all difficulty levels of noise. MADSPG achieves the highest average standard
deviation of average lateral error with low variation in results across noise levels. Compared to
MADSPG however, L-MADSPG achieves considerably lower average standard deviation of av-

28

Figure 3: Learning curves for agents trained with MADDPG, MADSPG, and MADSPG-LYAP
algorithms. The figure shows the mean and 1 standard deviation from the mean of only trials
where convergence is observed. The episode returns for each trial are averaged over the last 200
episodes.

erage lateral error on the easy and hard noise levels. On the medium noise level, MADSPG and
L-MADSPG perform similarly. Based on these results, MADDPG achieves better proximity to
lane center as indicated by lower average lateral error compared to MADSPG and L-MADSPG.
With the addition of Gaussian noise to the input observations, MADDPG is most stable as indi-
cated by lowest average standard deviation of lateral error. Furthermore, L-MADSPG is more
stable than MADSPG on the easy and hard noise levels, and both achieve comparable stabil-
ity on the medium noise level. The average episode returns are highest for L-MADSPG on the
easy and medium difficulty noise levels as seen in Fig 4c. On the hard noise level however, MAD-
DPG achieves relatively higher average episode returns compared to L-MADSPG and MADSPG.
The highest success rates were achieved with L-MADSPG seen in Fig 4d, considerably outper-
forming MADDPG and MADSPG on the easy and medium noise levels. However, the success
rate for L-MADSPG was lower on the hard noise level, where MADDPG achieved the highest
success rate. From Fig 4e, it can be observed that MADDPG across all difficulty levels achieved
the highest collision rates, with L-MADSPG achieving the lowest collision rates on the easy and
medium difficulty levels while performing comparably to MADSPG on the hard noise level. The
off-road rates for MADDPG were lowest across-all noise levels with higher rates for MADSPG
and L-MADSPG as seen in Fig 4f. In Fig 4g, it can be observed that MADDPG has the highest
time-out rates compared to MADSPG and L-MADSPG on the easy and medium difficulty levels.
On the hard noise level, The time-out rate was considerably higher for L-MADSPG compared
with MADDPG and MADSPG.

29

(a) Average lateral error vs varying noise levels.
(b) Standard deviation of average lateral error vs
varying noise levels.

(c) Average episode returns vs varying noise lev-
els.

(d) Success rate vs varying noise levels.

(e) Collision rate vs varying noise levels. (f) Off-road rate vs varying noise levels.

30

(g) Time-out rate vs varying noise levels.

Figure 4: Evaluation results of MADDPG, MADSPG and L-MADSPG for metrics based on all
5 trials per algorithm. The noise difficulty level is increased by increasing standard deviation of
Gaussian noise added to input observations of agents.

6 Discussion

6.1 Training

Based on the results from Fig 2 and Fig 3, MADSPG is more stable in training compared to
MADDPG. This is indicated by the reduced variance over the training trials. Therefore, it can
be stated that a stochastic actor with entropy regularization is more stable in training compared
to a deterministic actor with no entropy regularization. Furthermore, based only on trials where
learning converged, MADSPG achieved faster convergence and higher average episode returns
compared with MADDPG. Moreover, based on converged trials, a Lyapunov constrained policy
objective achieves more stable training compared to a policy objective without a stability con-
straint as indicated by the lower variance in training. A Lyapunov constrained policy objective
performs similarly to a policy objective without Lyapunov constraint in terms of average episode
returns. This is based on a comparison between the performance of L-MADSPG and MADSPG.

6.2 Evaluation

From the evaluation results in Fig 4a and Fig 4b, MADDPG achieves significantly lower aver-
age lateral error and average standard deviation of average lateral error compared with MAD-
SPG and L-MADSPG. This indicates that a stochastic actor with entropy regularization reduces
lane-tracking performance and is less robust to measurement noise. A stochastic actor with en-
tropy regularization is also less stable as indicated by the higher average standard deviation of
lateral error compared with a deterministic actor. This is expected as a stochastic actor can sam-
ple from more actions which leads to more deviations from the lane center. However, a Lyapunov

31

constrained policy objective leads to improved stability compared to a policy objective without a
stability constraint as indicated by the significantly lower average standard deviation of average
lateral error of L-MADSPG compared with MADSPG on two of the three noise difficulty levels.
This suggests that the Lyapunov constraint leads to policies learned that mitigate the effects of
increased stochasticity of learned policies. It can also be concluded that the addition of increas-
ing measurement noise does not lead to significant degradation of lane-tracking performance and
stability in all three algorithms.

Furthermore, a Lyapunov constrained policy objective achieves the highest returns and highest
success rates on two of the three noise difficulty levels (easy and medium). Counter-intuitively,
this indicates that a policy learned with Lyapunov constraint sacrifices stability and lane-tracking
performance for higher returns and successful episode completion. However, at high noise level,
MADDPG significantly outperforms MADSPG and L-MADSPG in average returns and success
rate. This indicates that a stochastic actor with entropy regularization does not perform well
with high measurement noise. It could be stated that since stochastic actors can sample non-ideal
actions, at a higher noise level, there is a higher chance of deviating further from the lane center
since the actor can sample non-deal actions based on non-accurate observations which in turn de-
grades performance. At a low noise level however, the stochasticity can lead agents to explore
more actions and help agents travel further towards their goal distance. Furthermore, at high
level of measurement noise, a Lyapunov constrained policy objective performs similarly to that
without the stability constraint on average returns, and even reduced performance on success
rate. MADDPG significantly outperforms MADSPG and L-MADSPG in terms of success rate at
high noise level. This means that more often, a deterministic policy guides agents to reach their
goal positions at the end of the road. However, it should be noted that agents can also reach the
end of the road segment but be slightly off the goal position resulting in ”non-successful” episode
completion. Moreover, a stochastic actor with entropy regularization significantly reduces colli-
sion rate compared to a deterministic actor without entropy regularization. This could be due to
the fact that a stochastic policy has more actions to sample from when the agents are on a colli-
sion trajectory, and more often are able to avoid collisions. It can also be observed that the ad-
dition of a Lyapunov constraint achieves similar or lower collision rates compared to a stochastic
algorithm without the Lyapunov constraint. This suggests that the Lyapunov constraint can lead
to safer learned policies in algorithms with stochastic actors. Also a stochastic actor with entropy
regularization and Lyapunov constrained policy objective reduce time-out rates on low difficulty
noise levels. On the high noise level, Lyapunov constrained policy objective suffers high time-out
rates compared to policies without Lyapunov stability constraint. This indicates that the policies
learned with the Lyapunov constraint exploit the reward scheme by exhausting the episode steps
limit. It is possible that a reward scheme that penalizes slow moving agents or higher penalties
for exceeding the maximum episode steps can result in lower time-out rates and possibly higher
average returns on high noise level.

7 Conclusion

The work in this thesis is aimed at investigating the effects of entropy regularization and a multi-
agent policy objective with Lyapunov stability constraint on the performance of agents on lane-
keeping. From the discussion above, it can be concluded that compared to a deterministic pol-

32

icy, an algorithm with a stochastic actor, and further, an algorithm with Lyapunov constrained
policy objective achieve higher average episode returns and are more stable in training. This is
based on results from trials where training converged. From the evaluation metrics for a scenario
with added measurement noise, a Lyapunov constrained policy objective achieves better stabil-
ity compared to a similar algorithm without the Lyapunov constraint as indicated by the reduced
average standard deviation of average lateral error of L-MADSPG vs MADSPG. However, a de-
terministic actor is better able to stay close to the lane center and avoid deviations indicating
more stable behavior compared to the two algorithms with stochastic actors. Furthermore, the
addition of Lyapunov constraint results in higher average returns and success rates compared to
algorithms without stability constraints on low and medium measurement noise levels. However,
the performance of the algorithm with Lyapunov constraint suffers at high noise levels in terms of
success rate. Also, it was demonstrated that a stochastic actor with entropy regularization signifi-
cantly reduces collision rates and moreover, a Lyapunov constraint further reduces collision rates.
In summary, the addition of entropy regularization achieves more stable training and although
a Lyapunov constrained policy objective (L-MADSPG) is less stable with addition of measure-
ment noise compared with MADDPG, L-MADSPG is still as stable or more stable compared
with MADSPG. L-MADSPG also outperforms other algorithms in average returns, success rate
and collision rate at low measurement noise levels.

References

[1] Santokh Singh. Critical reasons for crashes investigated in the national motor vehicle crash
causation survey. Technical report, 2015.

[2] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforce-
ment learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

[3] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A sur-
vey. IEEE Transactions on Intelligent Transportation Systems, 2021.

[4] Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, Weinan
Zhang, Montgomery Alban, Iman Fadakar, Zheng Chen, et al. Smarts: Scalable multi-
agent reinforcement learning training school for autonomous driving. arXiv preprint
arXiv:2010.09776, 2020.

[5] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A
selective overview of theories and algorithms. Handbook of Reinforcement Learning and Con-
trol, pages 321–384, 2021.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

[7] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning, pages 1928–1937.
PMLR, 2016.

33

[8] Martin Zinkevich, Amy Greenwald, and Michael Littman. Cyclic equilibria in markov games.
Advances in Neural Information Processing Systems, 18:1641, 2006.

[9] Sushrut Bhalla, Sriram Ganapathi Subramanian, and Mark Crowley. Deep multi agent re-
inforcement learning for autonomous driving. In Canadian Conference on Artificial Intelli-
gence, pages 67–78. Springer, 2020.

[10] Yuqi Liu, Qichao Zhang, and Dongbin Zhao. A reinforcement learning benchmark for au-
tonomous driving in intersection scenarios. arXiv preprint arXiv:2109.10557, 2021.

[11] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[12] Arne Kesting, Martin Treiber, and Dirk Helbing. Enhanced intelligent driver model to access
the impact of driving strategies on traffic capacity. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 368(1928):4585–4605, 2010.

[13] Shengchao Yan, Tim Welschehold, Daniel Büscher, and Wolfram Burgard. Courteous be-
havior of automated vehicles at unsignalized intersections via reinforcement learning. arXiv
preprint arXiv:2106.06369, 2021.

[14] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[15] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang
Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Eva-
marie Wießner. Microscopic traffic simulation using sumo. In 2018 21st international confer-
ence on intelligent transportation systems (ITSC), pages 2575–2582. IEEE, 2018.

[16] Kasra Mokhtari and Alan R Wagner. Safe deep q-network for autonomous vehicles at
unsignalized intersection. arXiv preprint arXiv:2106.04561, 2021.

[17] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[18] Quanyi Li, Zhenghao Peng, Zhenghai Xue, Qihang Zhang, and Bolei Zhou. Metadrive: Com-
posing diverse driving scenarios for generalizable reinforcement learning. arXiv preprint
arXiv:2109.12674, 2021.

[19] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Interna-
tional conference on machine learning, pages 1861–1870. PMLR, 2018.

[20] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimiza-
tion. In International conference on machine learning, pages 22–31. PMLR, 2017.

[21] Dong Chen, Zhaojian Li, Yongqiang Wang, Longsheng Jiang, and Yue Wang. Deep multi-
agent reinforcement learning for highway on-ramp merging in mixed traffic. arXiv preprint
arXiv:2105.05701, 2021.

34

[22] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient large-scale fleet management
via multi-agent deep reinforcement learning. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, pages 1774–1783, 2018.

[23] Justin K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin Black. Re-
visiting parameter sharing in multi-agent deep reinforcement learning. arXiv preprint
arXiv:2005.13625, 2020.

[24] Meha Kaushik, K Madhava Krishna, et al. Parameter sharing reinforcement learning archi-
tecture for multi agent driving behaviors. arXiv preprint arXiv:1811.07214, 2018.

[25] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-
ing. arXiv preprint arXiv:1509.02971, 2015.

[26] Gym-torcs. https://github.com/ugo-nama-kun/gym_torcs, 2016.

[27] Wei Zhou, Dong Chen, Jun Yan, Zhaojian Li, Huilin Yin, and Wanchen Ge. Multi-agent
reinforcement learning for cooperative lane changing of connected and autonomous vehicles
in mixed traffic. arXiv preprint arXiv:2111.06318, 2021.

[28] Arne Kesting, Martin Treiber, and Dirk Helbing. Connectivity statistics of store-and-forward
intervehicle communication. IEEE Transactions on Intelligent Transportation Systems,
11(1):172–181, 2010.

[29] Guanglin Ji, Junyan Yan, Jingxin Du, Wanquan Yan, Jibiao Chen, Yongkang Lu, Juan Ro-
jas, and Shing Shin Cheng. Towards safe control of continuum manipulator using shielded
multiagent reinforcement learning. IEEE Robotics and Automation Letters, 6(4):7461–7468,
2021.

[30] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-
region method for deep reinforcement learning using kronecker-factored approximation. Ad-
vances in neural information processing systems, 30, 2017.

[31] Alessandro Paolo Capasso, Paolo Maramotti, Anthony Dell’Eva, and Alberto Broggi. End-
to-end intersection handling using multi-agent deep reinforcement learning. arXiv preprint
arXiv:2104.13617, 2021.

[32] Richard Van Der Horst and Jeroen Hogema. Time-to-collision and collision avoidance sys-
tems. 1993.

[33] Rohan Chandra and Dinesh Manocha. Gameplan: Game-theoretic multi-agent planning with
human drivers at intersections, roundabouts, and merging. arXiv preprint arXiv:2109.01896,
2021.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[35] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field
multi-agent reinforcement learning. In International conference on machine learning, pages
5571–5580. PMLR, 2018.

35

https://github.com/ugo-nama-kun/gym_torcs

[36] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in neural
information processing systems, 30, 2017.

[37] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Başar. Finite-sample anal-
ysis for decentralized batch multiagent reinforcement learning with networked agents. IEEE
Transactions on Automatic Control, 66(12):5925–5940, 2021.

[38] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with back-
propagation. Advances in neural information processing systems, 29, 2016.

[39] Avik Pal, Jonah Philion, Yuan-Hong Liao, and Sanja Fidler. Emergent road rules in multi-
agent driving environments. arXiv preprint arXiv:2011.10753, 2020.

[40] Praveen Palanisamy. Multi-agent connected autonomous driving using deep reinforcement
learning. In 2020 International Joint Conference on Neural Networks (IJCNN), pages 1–7.
IEEE, 2020.

[41] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed
deep-rl with importance weighted actor-learner architectures. In International conference on
machine learning, pages 1407–1416. PMLR, 2018.

[42] Fabian Konstantinidis, Ulrich Hofmann, Moritz Sackmann, Jörn Thielecke, Oliver De Can-
dido, and Wolfgang Utschick. Parameter sharing reinforcement learning for modeling multi-
agent driving behavior in roundabout scenarios. In 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC), pages 1974–1981. IEEE, 2021.

[43] Paul Young Joun Ha, Sikai Chen, Jiqian Dong, Runjia Du, Yujie Li, and Samuel Labi.
Leveraging the capabilities of connected and autonomous vehicles and multi-agent reinforce-
ment learning to mitigate highway bottleneck congestion. arXiv preprint arXiv:2010.05436,
2020.

[44] Tianyu Shi, Jiawei Wang, Yuankai Wu, Luis Miranda-Moreno, and Lijun Sun. Efficient con-
nected and automated driving system with multi-agent graph reinforcement learning. arXiv
preprint arXiv:2007.02794, 2020.

[45] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learn-
ing to communicate with deep multi-agent reinforcement learning. Advances in neural infor-
mation processing systems, 29, 2016.

[46] Qingrui Zhang, Hao Dong, and Wei Pan. Lyapunov-based reinforcement learning for decen-
tralized multi-agent control. In International Conference on Distributed Artificial Intelli-
gence, pages 55–68. Springer, 2020.

[47] Minghao Han, Lixian Zhang, Jun Wang, and Wei Pan. Actor-critic reinforcement learning
for control with stability guarantee. IEEE Robotics and Automation Letters, 5(4):6217–6224,
2020.

36

[48] Rahif Kassab, Apostolos Destounis, Dimitrios Tsilimantos, and Mérouane Debbah. Multi-
agent deep stochastic policy gradient for event based dynamic spectrum access. In 2020
IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Com-
munications, pages 1–6. IEEE, 2020.

37

8 Appendix

8.1 Algorithms Classification

Scenario
Rule-
based

SA FC FD CTDE Networked Traffic Simulator

Unsign-
alized
Inter-
section

IDM[10]
AEB[10]

TD3[10] hetero
RL-
CIS[10]

PPO[13] hetero SUMO[13]
TTC[16] DDQN[16] ped CARLA[16]

DQN[4]
PPO[4]

Comm-
Net
[4]

MAAC[4]
MADDPG[4]
MF-AC[4]

Net-
Fitted
Q[4]

hetero SMARTS[4]

PPO[18]
MF-CCPPO
[18]
Concat-CCPPO
[18]

homo Meta-
Drive[18]

IDM[44] DDPG[44]
PPO[44]

MAPPO[44]
(PS)
MADDPG[44]
GCN-PPO[44]

hetero flow[44]

signalized
Inter-
section

TTC[31] MAD-A3C[31] homo CAIRO[31]

IMPALA[40]
(PS)

homo
MACAD-
Gym[40]

Random
Config

PPO[18]
SAC[18]

hetero
Meta-
Drive[18]

PPO[18]
MF-CCPPO
[18]
Concat-CCPPO
[18]

homo
Meta-
Drive[18]

on-ramp
merging

MA2C[21]
MAA2C
[21]
MAPPO
[21]
MAA
CKTR
[21]
(PS)

hetero
MARL-
CAVs[21]

IDM [44] DDPG[44]
PPO[44]

MAPPO[44]
(PS)
MADDPG [44]
GCN-PPO [44]

hetero flow[44]

lane-
keeping

DDPG[24] PS-
DDPG
[24]

homo
Gym-
TORCS[24]

38

IDM [44]
DDPG[44]
PPO[44]

MAPPO[44]
(PS)
MADDPG [44]
GCN-PPO [44]

hetero flow[44]

Comm-
Net[9]

MA-MeSN
[9]
MA-BoN
[9]
DIAL[9]

homo VREP[9]

lane-
changing

DDPG[24] PS-
DDPG
[24]

homo
Gym-
TORCS[24]

MA2C[27]
MADQN
[27]
MAA
CKTR
[27]
MAPPO
[27]

hetero
highway-
env[27]

double-
merge

DQN[4]
PPO[4]

Comm-
Net[4]

MAAC[4]
MADDPG[4]
MF-AC[4]

Net-
Fitted
Q[4]

hetero SMARTS[4]

two-way
traffic

DQN[4]
PPO[4]

Comm-
Net[4]

MAAC[4]
MADDPG[4]
MF-AC[4]

Net-
Fitted
Q[4]

hetero SMARTS[4]

tollgate PPO[18]
MF-CCPPO
[18]
Concat-CCPPO
[18]

homo
Meta-
Drive[18]

bottleneck
PPO[18]

MF-CCPPO
[18]
Concat-CCPPO
[18]

homo
Meta-
Drive[18]

GCN-
DDPG
[43]

hetero SUMO[43]

roundabout
PPO[18]

MF-CCPPO
[18]
Concat-CCPPO
[18]

homo
Meta-
Drive[18]

IDM [42] PS-SAC[42] homo NA

parking PPO[18]
MF-CCPPO
[18]
Concat-CCPPO
[18]

homo
Meta-
Drive[18]

39

Table 2: A summary of the algorithms employed to tackle multiple driving scenarios. The algo-
rithms are categorized based on driving scenario, algorithm type, traffic setting and simulator
used. The algorithm types are rule-based, single agent (SA) RL, Fully Centralized (FC) MARL,
Fully Decentralized (FD) MARL, Centralized Training Decentralized Execution (CTDE) MARL
and Networked Agent Learning. The traffic setting homo refers to training in an all AV environ-
ment, whereas hetero refers to training in a mixed setting with both AV and HDVs. The algo-
rithms are cited based on the papers in which they are utilized.

8.2 Detailed Training Results

Figure 5: Learning curves for agents trained with MADDPG for 5 trials

40

Figure 6: Learning curves for agents trained with MADSPG for 5 trials

Figure 7: Learning curves for agents trained with L-MADSPG for 5 trials

41

8.3 Additional equations

The average lateral error per step is computed using:

avg l.e =
erroragent1 + erroragent2

2
(53)

The average lateral error per episode is computed using:

avg l.e =
avg l.e1 + avg l.e2 + ...+ avg l.en

n
(54)

The average standard deviation over all episodes is computed using:

avg S.D. =

√
(n1 − 1)s21 + (n2 − 1)s22 + (n3 − 1)s23...

n1 + n2 + n3...− k
(55)

where ni is the number of steps in episode i, si is the standard deviation of average lateral error
in episode i and k is the number of episodes.

42

	Introduction
	Motivation
	Preliminaries
	Single-Agent Reinforcement Learning
	Multi-agent Reinforcement Learning

	Related Work
	Single-Agent Reinforcement Learning Algorithms and Applications
	Multi-Agent Reinforcement Learning Algorithms and Applications
	Algorithms overview
	Stability in MARL

	Research Goals
	Research Findings
	Research Gaps

	Methods
	Simulation Environment
	Observation Space
	Action Space
	Reward Scheme
	Framework
	Algorithms
	Training
	Evaluation
	Implementation Details

	Results
	Training
	Evaluation

	Discussion
	Training
	Evaluation

	Conclusion
	Appendix
	Algorithms Classification
	Detailed Training Results
	Additional equations

