FROM GEO-DATA TO LINKED DATA: AUTOMATED
TRANSFORMATION FROM GML TO RDF

Linda van den Brink, Paul Janssen
Geonovum

Wilko Quak
TU-DELFT

Linked data provide an alternative route for disgsation of spatial information as
compared to the traditional SOA-based SDI appro&¢here the latter is built on
predefined structuring of semantics within domalimked data is open to linking
information to any data over the Web. In this resfmmth are complementary. The
traditional approach providing a mechanism for aslsaof standardized and
structured data within domains, and linked datayigong an open mechanism for
sharing and combining. GML as the ISO standardsfarhange of service based
spatial data and RDF as the linked data format tarerefore related. GML provides
the format in which many spatial datasets are aldé and exchanged. This
standardization process and effort has been redl@ea large scale. Why not let the
web of linked data take advantage of this effofi &rticle will focus on the use of
GML structured data as a source for deriving RDfestured data.

The first part of the paper focusses on derivingdid data from GML data. The first
version of GML, v1.0, was based on RDF. From vergi® onwards GML was based
on XML and XML Schema, but the object-propertycstme was retained. We
describe a transformation for translating any cantig structured GML to
RDFS/OWL automatically, using XSLT. Because GMhjsat-property structure
translates very well to triples, the transformatigrstraightforward. Well-known

GML content elements such as names and descrigenmapped to their RDF
equivalent. However, any semantics specific tarthet GML data (a.k.a. the
application schema) are ignored in this translation

In the second part, we study how more meaningfii B be created from GML,
given the underlying information model, by transforg it from UML to RDFS/OWL.
There exists a straightforward mapping to convedML model into a RDFS/OWL
vocabulary. However, the re-use of existing coreé@pvocabularies takes a central
role in RDFS/OWL while in UML the use of vocabudaris not supported. We
describe how annotating the UML model could impribve translation.

Background

provides an alternative route for disseminatiospmtial information as compared to the already icened

traditional SOA-based SDI approach. Basically tlifeence is about flexibility and openness. Whigie

latter is built on predefined structuring of seniesvithin domains, linked data is open to linking
information to any data over the Web. In this resjitemuch more appeals to the web 3.0 philosophjque
information features that are there, floating achuand can be accessed and or extended any tieyloye for
any purpose. But what does that mean to what hexs thene and realized in the spatial information
infrastructure until now? We state that it is coempéntary. The traditional approach providing a raegm for
a basis of standardized and structured data withimains, and linked data providing an open mechafos
sharing and combining. The traditional approaatharacterized by a service based disseminationif G

Linked data is the new kid on the block in the $ett@andards relevant for geographic information. It

structured data. In that approach data specificatiwovide clear definitions of semantics in preatsf domains
and use cases. These are implemented in XML schaméding a well defined and verifiable means of
information exchange. The strong point of it isttthee proper purpose of standardization and harsadion,
being interoperability can be addressed througheagent and sharing of vocabulary. Once agreed the
requirements and rules for communication are sgttcan be implemented in a verifiable way. The igyaf
implementation can be measured and therefore mdnBgeé there is a downside: the vocabulary, serosustie
defined within information domains. Resulting iregefined information silos each related to différen
information domains. Within the silo interoperatyilis assured by shared and foreseen conceptbebueen
silos little harmonization takes place, and for yeit foreseen concepts and relations the struggtuo® rigid.
This is exactly the weak spot where linked datalmanf help.

In a spatial data infrastructure GML data are gateer and served from different feature based seurce
Generally transformation services will do the tfanmation from these local sources to the GML dticed
data. In many SDI projects and programmes a leffoft has been put into that activity. For linkeata,
including the related RDF format and GeoSPARQLindlar way can be followed. Transformation services
acting on local sources and generating GeoSPAR@pants. But why not reuse the already existing GML
sources? Since these are already structured andastdized and defined way, RDF transformationbean
standardized as well. Linked date can thereforkl lmri the structure already provided. One wouldeek@
simple rule of benefit: profiting twice by reusimgrk that has been done once. The challengeftheris to
investigate this way of generating linked dataafuBML. In the process we will come to understanoren
about principal differences between linked data &dL and their complementary roles.

The following diagram depicts several ways of huaiddlinked data on top of an SDI.

Ctruirtuirad concnatial Tav

Senso Cover Featu Matad
| 1
Informatio
1. Data RDF- n
izers retrieval

2. Data
s Datasou OGC OoGC RDF

¥ ¥ ¥ ¥ ¥

IRN Qtandardizad (Cean | inlkad Nata

Figure 1: RDF as part of SDI

Principal ways of integrating linked data in a sgladata infrastructure [1].

Related to the diagram GML to RDF transformation ba considered in the RDF-izer part. The LinkethDa
Wrapper is also interesting but for this articleé ofiscope.

Deriving linked data from GML

Geography Markup Language is a standard for thagtoand transport of geographic information. Titst f
version of GML, v1.0 [2], was published in May bktyear 2000. Key concepts in the GML model ofvtioeld
are thefeature an abstraction of a real world phenomenonggegraphic featurea feature which is associated
with a location relative to the Earth, and fhature collectiona collection of features that can itself be rdgdr
as a feature and that gives a digital represemntaftiohe real world. Features have properties, gauigc features
have properties whose value may be a geometry.

GML 1.0 used a geometry model called “Simple Festyrwith definitions for point, line string, polgg, and
some other basic geometric shapes. In additioroitiped a coordinates element for encoding cootdiand a
Box element for defining extents. In its simplestfi, GML contains no more semantics than this: gealgc
features with associated geometric shapes. Thdat@nhowever, includes an extension mechanismhwhic
makes it possible to define application-specifiteasions with added semantics, for example distbjct
classes for River and Road, each with their spepifoperties.

GML 1.0 described three encoding profiles for gapdic features, two of which were based on XML
(Extensible Markup Language) and DTD (Document Tgéinition: similar to XML Schema which was not
used because it was not yet standardized at thaj,tivhile the third was based on RDF and RDF Sehédrhis
means that it was possible to write GML 1.0 as BirRle! OGC intentionally created the model of GMEk
consistent with RDF. Like RDF, the model of GML waesically a set of triples. GML features have ertips;
each property is a {name, type, value} triple. Rntigs can have either simple values or have a ggrobject
as value (“geometric value”). According to the naghconventions of GML, object properties always hathes
starting with a lowercase letter, while GML objetdsses had names starting with an uppercase leliter
objects had an optional ID which could be usedttogrewith the GML document URI as a fragment idfeant

In this manner, GML objects could be referenceteasurce — very much the linked data way of working

GML 1.0 example, in which "yourhouse" and "myhoukate the same location:

<Building ID = "yourhouse" .. >
<location>
<Point ID = "134">
<coordinates>
2455.12, 3443.78
</coordinates>
</Point>
</location>
</Building>
<Building ID = "myhouse" .. >
<location>
<Point resource = "#134" />
</location>
</Building>

From version 2.0 onwards GML was based on XML aMlL>Schema, and the RDF profile was no longer used.
But an interesting fact is that the object-propsttucture, in which objects have properties amgperties have
either simple values or objects as values - badgiaatiple structure — always stayed, up until ldtest version,

3.3 [3]. And because GML and RDF both have a trgptacture, it is easy to define a transformatiom f
translating any correctly structured (that is, confant to the object-property /triple structure) Gihta to
RDFS/OWL automatically. As an experiment, we impdaited such a transformation using XSLT 2.0 [4]. Wel
known GML content elements such as names and gésos are mapped to their RDF equivalent. Objents
properties are recognized based on their pladeeitriple structure and are transformed accordingly

The experimental implementation has 8 templatesntiog whitespace and comments it has 88 lines Thi
shows the simplicity of the transformation. Thd X6LT stylesheet is included as an appendix. Tiikesheet
was tested on a sample GML file containing landplaas, conforming to the Dutch standard IMRO

Workings of the transformation

<¥3l:template B -
<rdf:ROF>
<k3l:apply-templates "fi*[count{ancestorii*) mod 2 = 0]"/>
</rdf:BDF>
</x3l:template>

Figure 2: Sample XSLT fragment

The transformation starts at the top of the GMe &hd selects all features, even the ones thaieated as
property value of another feature. The featuresbearecognized because they always have an evebpenwh
ancestors (levels in the XML hierarchy). The GMle fstarts with a feature (usually a feature coitegt which

! (Information Model Ruimtelijke Ordening - spatidapning)

has properties, which in turn have features asegllA simple filter can take advantage of thig.fibose
elements that have an even number of ancestoedglevthe XML hierarchy) are transformed to rdfsbeption
elements. Thedf:about attribute is filled withgml:id if it's present; if not, an id is generated.

Well-known, standardized GMproperties are transformed to an appropriate ptppéfhen possible a
standard property from RDF or RDFS is used. Fomgta, gml:description is transformed to
rdfs:comment, gml:name to rdfs:label. Properties e not known (i.e. not standard GML, but from
some domain-specific extension) are not changddgleaive the same name in the RDF output.

Properties with nested content (they have a feasinalue, which is not referenced but included
directly) receive special treatment. The nestetlifeas already recognized, and transformed to an
rdf:Description, by the first templates. The prdapevith nested content is transformed to a property
thatreferenceshe feature that was nested, using an rdf:resaitabute containing the id of the
feature prefixed with a hash ‘#'. Usually an icdhi®t present in these cases, and one is generated
automatically.

Properties that link to a feature in the GML aensformed to their RDF equivaleaty RDF property
with anrdf:resource attribute containing the id of the referenced featu

Geometry
Geometry is encoded in GML as objects with prapsrtso it has the same triple structure. Thicttre is

translated directly to RDF, in the same way as rilesd above for the other features. But this isthetmost
useful way to represent geometry in RDF. Becausengtries like curves and polygons are heavily mkste
structures in GML, it takes a lot of resourcesdpresent them in RDF. A sample line geometry:

<gml:Curve>
<gml:segments>
<gml:LineStringSegment>
<gml:poslisc>187453.376 429000.792 187444.313 429004.534«</gml :poslisty>
</gml:LineStringSegment>
<gml:LineStringSegment:>
<gml:poslisc>187444.313 429004.534 187442.564 428999.999 187441.651 428997.63</gml:poslists>
</gml:LineStringSegment>
<gml:LineStringSegment>
<gml:poslist>187441.651 428997.63 187453.094 428994.092</gml:poslists
</gml:Line3tringSegments>
<gml:LineStringSegment:>
<gml:poslisc>187453.094 428994.092 187456.66]1 428992.989 187458.431 428992.407</gml:poslists
</gml:LineStringSegment>
<gml:LineStringSegment>
<gml:poslist>187458.431 428992.407 187459.987 428998.063</gml:poslists
</gml:Line3tringSegments>
<gml:LineStringSegqment>
<gml:poslisc»187459.987 428998.063 187453.376 429000.7%2</gml:poslist>
</gml:LineStringSegment>
</gml:segmenta>
</gml:Curve>

Figure 3: Line geometry in GML

<rdf:Description "dlegT458"™ "http://someuridlurve™>

<gml:segments "#dleaT74E0" >
<gml:3egments "#dleaT4e3" />
<gml:3egments "#dleaT4E06™ >
<gml:3egments "#dleaT4Ee9" />
<gml:segments "§dleaT4T2" />
<gml : segments "#d1e&T4TS" />
<frdf:Description>
<rdf:Deacripticon "dlegT4a0™ "http://someuridlineStringSegment™>

<gml:poslist>187453.376 429000.792 187444.313 429004.534</gmliposlists>
</rdf :Description>

Figure 4:The same Line geometry (fragment) in RDF

The example shows a curve with several nested sggrimeGML. In RDF these nested segments becorke lin
to these segments as separate Description resqordgghe first segment, with id ‘d1e67460’ is 8. This
becomes even more complex with polygons that hatehps, interior and exterior rings, which are toul

from curves, etc. This way of encoding geometry esdkbcation-based querying the RDF very hard. i th
short experiment there was no time to look at dfifé, easier ways of encoding the geometry in RiD,
several possibilities exist. These alternativegieainrom very simple solutions, such as Basic Géougable for
representing latitude and longitude using WGS8reesence datum; to more full-fledged solutiong lik
GeoSPARQL [6], which allows a WKT (Well Known Texgrialization and a GML serialization. Which of
these to use is a very relevant question we musst@mbefore starting to create geo-linked data langer scale.

More semantics
The XSLT stylesheet described above transforms @lsth to RDF in a generic way, based on GML's dbjec

property structure. But it ignores any domain-sfiesemantics the GML may have. The IMRO sample ffihs
a lot of domain-specific semantics, defined inlMM®O GML application schema:

<imro:featureMember:
<imro:Bouwaanduiding "NL.IMRO.0268.ID101733-00">
<imro:identificatie>NL.IMRO.0268.ID101733-00</imro:identificatie>
<imro:typePlanckijectrbouwaanduiding</imro:typePlanchject>
<imro:plangebied "$NL.IMRO.0268.BES000-VE01" />
<imro:naam>onderdoorgang</imro:naam>

Figure 5: Fragment IMRO GML

imro:Bouwaanduiding (building indication) is traat#d to an rdf:Description of rdf:type
http://someuri#Bouwaanduiding. Instead of ‘somethis should refer to some location where the IMRO
ontology is published. All properties of imro:Bouavaluiding are transformed to RDF properties ofstn@e
name (see Figure 6). These should all be defindteifMRO ontology (which we do not have, at leastin
RDF/OWL at this stage). Some of the propertiesdta mapped to Linked Data vocabularies. For exanipl
would be appropriate to translate imro:naam to:laégl, but this is not known to the transformatiasit is a
generic tool and is not aware of the meaning ofMiRO vocabulary.

<rdf:Description "NL.IMRC.0265.ID101733-00"
"http://someurif#Bouwaanduiding™>
<imro:identificatie>NL.IMRO.0268.ID101733-00</imro:identificatie>
<imro:typePlanchjectrbouwaanduiding</imro:typeFlanckjects>

<imro:plangebied "#NL.IMRO.0268.BF5000-VG01" />
<imro:naam>onderdoocrgang</imro:naam>

<imro:labelInfo "#dlel T />

<imro:gecmetrie "#dle33" />

<imro:aanduiding "#NL.IMRO.0268.1D44435-00"/>

</rdf:Description®>

Figure 6: Same fragment; IMRO RDF

This aspect must be addresbedause usually the GML is extended for a certamain. It contains rich
semantics, which would be lost in the translatmiRDF: in the context of the semantic web theseaseics are
of course crucial! These semantic extensions aserited in a standardized way in a so-called GMpliagtion
schema. For the Dutch IMRO standard such an apiglicachema is available. Therefore not only thelGhut
also the GML application schema should be trandlaid.inked Data standards. Also, domain-specific
knowledge about the application schema could imptbe mapping, taking into account established édhk
Data languages and vocabularies like RDF and RB&Slso for example Dublin Core or SKOS. In our
experiments we looked at this, and the next sedi@stribes some interesting aspects on the traorstat RDF
of specific semantics from an application-spedBidL structure like IMRO.

Creating meaningful RDF from Geo-information models

Meaning in the semantic web comes from vocabulamesthe method in the previous section does ravighe
or use a vocabulary. By using (or creating) a vataty for IMRO the mapping from GML to RDF would neo
useful. Such a vocabulary can be automaticallyddrfrom the IMRO information model. The IMRO
information model is available as UML diagram whistihen automatically converted into a GML appiiwa
schema. Now there are two options to generate ah @Wabulary. First to derive it from the UML model
directly, second to derive it from the GML applicat schema. The first option has the advantageliht is
more mainstream IT than GML application schemathatia well-defined mapping from UML to OWL is
defined by the OMG [7]. The second option (mapghogn the GML application schema) has the advantage
it is spatially aware (since a GML application stizehas well defined spatial semantics) which woegiilt in a
better mapping for spatial objects. A combinatiébath would be best and this can be achieved fipidg
specific mappings from UML for spatial modellingnstructs. Currently these mappings are partiadlilst for
spatial datatypes (OGC simple Features) a mappidgscribed in [6]. How to map UML stereotypesiise
spatial models (such as <<FeatureType>>) is stidlen development. Shapechange [8] implements an
experimental version of these mapping rules ahdstbeen successfully applied to the IMRO modeiltieg in
a IMRO vocabularyRigure 7). By slightly adapting the GML2RDF script it is gmble to generate IMRO RDF
that refers to the IMRO vocabulary.

<Class PhEtD:// i3 /2002/07/owl#" "http://www.geonovum.nl/imro2008#Bouwaanduiding">

df-sch

<subClassOf

h Aanduiding"/>
<subClassOf "ht '
<Restriction
<onProperty
<allvaluesFrom
</Restriction>
</subClassOf>
</Class>

Figure 7: IMRO Bouwaanduiding vocabulary entry as generated by ShapeChange

By using the automatically generated IMRO vocahutare harmonizing aspect of RDF is not used: nstigxj
RDF vocabularies are used. So imro:naam would genéry in the IMRO vocabulary where it would bermo
meaningful to map it to rdfs:label. However the Whedge that imro:naam is in fact an rdfs:labelds awvailable
in the UML model and cannot be automatically mappedrder to improve the UML model for better magpp
to RDF one could extend the UML model by annotatiregUML attributes that have a special meaning -
with a link to their RDF counterpart. If, for exatap the imro:naam attribute in the UML model woblkl get
the following annotation (via a tagged value): \fdtabulary=rdfs.label’ it would be possible to maiwe
optimal link between UML and RDF. We plan to makgraposal for the extension of UML modeling.

(1]

(2]

(3]

(4]
(5]
(6]
(7]
(8]

References:

Francisco .J. Lopez-Pellicer, Luis M. Vilches-Blaeg, F.Javier Zarazaga-Soria, Pedro R. Muro-
Medrano, O. Corcho, THE DELFT REPORT: LINKED DATAND THE CHALLENGES FOR
GEOGRAPHIC INFORMATION STANDARDIZATION — and alsorARM-ODP Enterprise View for
Spatial Data Infrastructures, Revista Catalana eeg@fia. 2012, vol. XVII, n°® 44. ISSN 1988-245
Lake, R. and Cuthbert, A. Geography Markup Langu&jidL) v1.0. OpenGIS® Consortium
(OCG), 12 May 2000http://portal.opengeospatial.org/files/?artifact1d97

Portele, C. OGC® Geography Markup Language (GMLExtended schemas and encoding
rules. Open Geospatial Consortium, 7 February 2012.
https://portal.opengeospatial.org/files/?artifadt 46568

Kay, M. XSL Transformations (XSLT) Version 2.0. WsbWide Web Consortium (W3C), 23 January
2007.http://www.w3.0rg/TR/xslt20/

Brickley, D. Basic Geo (WGS84 lat/long) VocabulaWy3C Semantic Web Interest Group.
http://www.w3.0rg/2003/01/geo/

Perry, M. and Herring, J. OGC GeoSPARQL - A GeogiaQuery Language for RDF Data. Open
Geospatial Consortium, 10 September 2@ih://www.opengeospatial.org/standards/geosparqg|l
Object Management Group, Ontology Definition Metal@lo(version 1.0)
http://www.omg.org/spec/ODM/1.0/

ShapeChange, Processing application schemas fgraggoc information.
http://www.shapechange.net/

Appendix- XSLT stylesheet GML > RDF

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:imro="http://www.geonovum.nl/imro/2008/1"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xmlns:gml="http://www.opengis.net/gml"
xmlns:math="http://www.w3.0rg/2005/xpath-functions/math"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
exclude-result-prefixes="xs"
version="2.0">

<xsl:output indent="yes"/>
<xsl:strip-space elements="*"/>

<!-- root template
This template matches the raot/’) of the GML file and includes an apply-templatedrinstions which
causes all elements present in the GML (il¢/*) that have an even number of ancestors (the filter
count(ancestor::*) mod 2 = @), to be processed. Those elements that have amewamer of ancestors
(levels in the XML hierarchy) are the Classes (thilows from the GML Object-property pattern)- >
<xsl:template match="/">
<rdf:RDF>
<xsl:apply-templates select="//*[count(ancestor::*) mod 2 = @]"/>
</rdf:RDF>
</xsl:template>

<!-- template for features / resources.
This template matches all elements that have am ewmber of ancestors: the Classes. These ardamanes! to
rdf:Description. Therdf:about attribute is filled withgml:id if it's present; if not, an id is generated.
@srsName and the properties are then processegdlly-templates). -->
<xsl:template match="*[count(ancestor::*) mod 2 = 0]">
<rdf:Description rdf:about="{if (@gml:id) then @gml:id else generate-id(.)}" rdf-
type="http://someuri#t{local-name()}">
<xsl:apply-templates select="@srsName"/>
<xsl:apply-templates/>
</rdf:Description>
</xsl:template>

<!-- template for srsName GML property
This template matches thesName attribute and transforms this to an RDF propertyed gml:srsName. The
URN that refers to the coordinate reference systetontained imrdf:resource. -->
<xsl:template match="@srsName">
<gml:srsName rdf:resource="{.}"/>
</xsl:template>

<!-- template for description GML property
This template matches tlgel:description element and transforms thistdfs: comment. -->
<xsl:template match="gml:description">
<rdfs:comment><xsl:value-of select="text()"/></rdfs:comment>
</xsl:template>

<!-- template for name GML property

Thistemplate matches thgl : name element and transforms thisdfs:label. -->
<xsl:template match="gml:name">
<rdfs:label><xsl:value-of select="text()"/></rdfs:label>
</xsl:template>

<!-- template for properties with simple values
This template matches all elemety that have an uneven number of hierarchy levels&ore
(ancestor::*) mod 2 != @) and no further hierarchy levels nested ingide (child: : *)). These are the
simple properties. They are transformed to RDF @rigs.- - >
<xsl:template match="*[count(ancestor::*) mod 2 != @ and not(child::*)]">
<xsl:element name="{name()}">
<xsl:value-of select="text()"/>
</xsl:element>
</xsl:template>

<!-- template for properties with nested object as atinte
This template matches all elemeqty that have an uneven number of hierarchy levels&tocs
(ancestor::*) mod 2 != @) but DO have further hierarchy levels nested in§iti¢1d: : *). These nested
children are GML Objects (as follows from the Olyjpoperty pattern) and are therefore transfornoe@lasses
as child ofrdf:RDF by the Class Template.
This template creates a property for each of theséed Objectéxsl:element name="{parent::*/name()}")
and anrdf:resource attribute(xs1:attribute name="rdf:resource") which points to the Class representing
the Object either using itgnl:id or a generated iftoncat('#', if (@gml:id) then @gml:id else
generate-id(.))). -->
<xsl:template match="*[count(ancestor::*) mod 2 != @ and child::*]">
<xsl:for-each select="*">
<xsl:element name="{parent::*/name()}">
<xsl:attribute name="rdf:resource" select="concat('#', if (@gml:id) then

@gml:id else generate-id(.))"></xsl:attribute>

</xsl:element>

</xsl:for-each>
</xsl:template>

<!-- template for properties with links to other objects
This template matches all elemeity that have an uneven number of hierarchy levels&iace
(ancestor::*) mod 2 != @) and contain an xlink reference to another elemeiité GML file(normalize-
space(@xlink:href)). These are transformed to an RDF property withdh resource attribute containing

the referencéxsl:attribute name="rdf:resource" select="@xlink:href"). -->
<xsl:template match="*[count(ancestor::*) mod 2 != @ and normalize-
space(@xlink:href)]">
<xsl:element name="{name()}">
<xsl:attribute name="rdf:resource" select="@xlink:href"/>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

