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Abstract

As an integral part of the reservoir modeling process, history matching technique

plays an important role in obtaining the reasonable estimations of the geological pa-

rameters. Despite the existence of many history matching methods, their application

in the highly nonlinear models with the limit of computational cost still remains a

challenge. The iterative adaptive Gaussian mixture filter (IAGM) is mainly designed

for this problem, by a combination of the scaled linear update and the iterative im-

portance sampling. Based on the idea of IAGM, there comes the iterative adaptive

Gaussian mixture smoother (IAGS). It is already proved that, compared to other it-

erative smoother methods, the IAGS method is asymptotically optimal for nonlinear

models.

However, an important aspect influencing the performance of IAGM and IAGS

is the choice of bandwidth parameter h. Although using small bandwidth h helps to

reduce the bias introduced in the iterations, that also leads to more iterations and

more computational cost. Studies show that the optimal bandwidth h is highly re-

lated to the model nonlinearity, so I investigate in this report about how to generate

the adaptive bandwidth h based on the measure of model nonlinearity.

By modifying the available way to measure model nonlinearity, I created a more

general measure. Applying this measure, I developed a way to calculate the optimal

bandwidth h adaptively. The test done with both the Toy Model and the reservoir

model suggests that the accelerated IAGS with the adaptive choice of h behaves

better than the original IAGS with fixed h. The former results in faster assimilation

speed and better final result than the latter.

Key Words: IAGS, bandwidth parameter, model nonlinearity.
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Introduction

Reservoir engineering is a branch of petroleum engineering that applies scientific

principles to the drainage problems arising during the development and production

of oil and gas reservoirs so as to obtain a high economic recovery. The working tools

of the reservoir engineer are subsurface geology, applied mathematics, and the basic

laws of physics and chemistry governing the behavior of liquid and vapor phases of

crude oil, natural gas, and water in reservoir rock.

One goal of reservoir engineering is to obtain an accurate prediction of the reser-

voir performance under different operation conditions. To this end, we need both a

well developed reservoir model and some history matching techniques, from which

we can generate good approximation of the reservoir properties.

Reservoir Model

In the oil and gas industry, reservoir modeling involves the construction of a com-

puter model of a petroleum reservoir, for the purposes of improving estimation of

reserves and making decisions regarding the development of the field. [29].

A reservoir model represents the physical space of the reservoir by an array of

discrete cells, delineated by a grid which may be regular or irregular. The array of

cells is usually three dimensional, see Figure 1a, although 1D and 2D models, see

Figure 1b, are sometimes used. Values for attributes such as porosity, permeability,

pressure and water saturation are associated with each cell. The value of each

attribute is implicitly deemed to apply uniformly throughout the volume of the

reservoir represented by the cell.

The Reservoir models typically fall into two categories:

• Geological models are created by geologists and geophysicists and aim to pro-

vide a static description of the reservoir, prior to production.

• Reservoir simulation models are created by reservoir engineers and used to

simulate the flow of fluids within the reservoir over its production lifetime by

some numerical methods, which include finite difference method, finite element

method and finite volume method.
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(a) 3D Model (b) 2D Model

Figure 1: Two kinds of reservoir model.

Sometimes a single ”shared earth model” is used for both purposes. More com-

monly, a geological model is constructed at a relatively high resolution. A coarser

grid for the reservoir simulation model is constructed, with perhaps two orders of

magnitude fewer cells. The prior effective values of attributes for the simulation

model are then derived from the geological model by a process of ”upscaling”. Al-

ternatively, if no geological model exists, the prior attribute values for a simulation

model may be determined by a process of sampling geological maps.

Uncertainty in the true values of the reservoir properties is sometimes investi-

gated by constructing several different realizations of the sets of attribute values.

The behaviour of the resulting simulation models can then indicate the associated

level of economic uncertainty.

Simple Simulator “SimSim”

By combining mass balance and Darcy’s theory and ignoring capillary pressures, the

dynamics of a two phase (water and oil) reservoir under iso-thermal conditions can

be described by the following system of PDE’s:[13].

−∇· [α · ρw · k0
rw

µw

K⃗(∇−ρw ·g ·∇d)]+α ·ρw ·ϕ[Sw ·(cw+cr)
∂p

∂t
+
∂Sw

∂t
]−α ·ρw ·qw = 0

−∇·[α · ρo · k0
ro

µo

K⃗(∇−ρo ·g ·∇d)]+α ·ρo ·ϕ[(1−Sw)·(co+cr)
∂p

∂t
− ∂Sw

∂t
]−α ·ρo ·qo = 0

2



where:
−∇· is the divergence operator −d is the depth

−∇ is the gradient operator −co, cw, cr are the compressibilities

−α is the geometry factor −ϕ is the porosity

−ρo, ρw are the fluids densities −p is the oil/water pressure

−µo, µw are the fluids viscosities −Sw is the water saturation

−k0
ro, k

0
rw are the relative permeabilities −qo, qw are the source terms

−K⃗ is the permeability tensor −t is the time

−g is the acceleration of gravity

The in-house simple forward simulator “SimSim” used in this report is developed

by Prof. J.D. Jansen at TU Delft. It solves the system of previous equations in the

reservoir with five-spot injection-production configuration, which is shown in Figure

2.[21]

Figure 2: Five-spot injection-production model.

With the ensemble of permeability fields associated with this model, the simu-

lator can be used as a black box to perform parameter and state estimation with

different filtering techniques.

History Matching Methods

History matching is the act of adjusting a reservoir model until its simulated pro-

duction response closely reproduces past behaviour. Once a reservoir model has

been history matched, it can be used to simulate future reservoir behaviour with

a higher degree of confidence, particularly if the adjustments are constrained by

known geological properties of the reservoir. Expected future behaviour provides a

basis for optimizing production scenarios.

3



The accuracy of the history matching process depends on the quality of the

(prior) reservoir model and the quality and quantity of data, typically fluid produc-

tion or pressures. Manually adjusting the reservoir parameters results in trial and

error solutions, which is unsuitable for complex reservoir models, especially since

quantification of uncertainty in the description of the reservoir is important. This

requires a proper understanding of the main uncertainty drivers. One solution for

this problem would be to apply methods that allow for multiple matched reservoir

realisations and to deal with the uncertainty optimally.

Of the many history matching methods, the Ensemble Kalman filter (EnKF) [15],

which supports multiple realisations, can deal rigorously with uncertainties and is

easy to implement. The EnKF algorithm is a sequential method that updates the

model with observations simultaneously, simulating reservoir behaviour for different

sets of reservoir parameters. However, in order to get the good result from the

EnKF, the state vectors are restricted to Gaussian distributions, which is usually

not realistic in applications. Moreover, recent studies show that, in case of nonlinear

model, the EnKF scheme is biased in the sense that the ensemble members will not

be a sample from the true posterior distribution even in the limit of an infinite

number of ensemble members. [5]

Another way to fulfil the history matching is by sequential importance sampling

(SIS) or sequential importance resampling (SIR) filter, which is the most common

particle filter method. Although there is no restriction of the model nonlinearity and

the distributions of the state vectors for SIR and SIS, the main problem associated

with them is the curse of the dimensionality in case of high dimension systems [2]. In

order to avoid the filter collapse, the number of particles should grow exponentially

with the system dimension [11, 30]. Therefore, within the affordable computational

cost, the accuracy of SIS and SIR is limited.

The adaptive Gaussian mixture filter [5] is an improvement of the original Gaus-

sian mixture filter by introducing a shrink parameter α. Besides, it can also be

viewed as a combination of the EnKF and the particle filter. The AGM filter per-

forms well in face of the nonlinear models and does not suffer from the degeneracy

problem.

However, an important aspect that influences the behavior of AGM is the choice

of the bandwidth parameter h. Previous research [26, 27] has shown that the optimal

bandwidth h depends on the dimension of the state space, the nonlinearity of the

model and the uncertainty in the prior distribution of state vector. For example,

when the model is linear, it is better to choose big h to achieve good approximation

in cost of little computation. In the contrast, if the model is quite nonlinear, then

the general idea would be choosing small h and doing iterations with AGM in order

to get reasonable result [6].

4



Based on the idea of IAGM, the iterative adaptive Gaussian smoother is intro-

duced in [7]. Although the smoother method has the disadvantage of linear updates

with large amount of data compared to the sequential techniques, it has the advan-

tage of not stopping and restarting the numerical model caused by the “confirmation

step”, which is used to avoid the unexpected behavior of the geologic parameters

and the model state vectors.

All history matching studies show that in the process of history matching there is

no cookbook to solve a certain problem; expertise is needed to determine a suitable

history matching strategy. In reality, we lack the knowledge of the true permeability

distribution, so the results should be validated by looking at the prediction capacity

of the history matched models and at the amount of geologically realistic information

in the models. Therefore, the objective function introduced in next section is usually

used to measure the result of the history matching process. The final goal of history

matching is to obtain a model that matches the past data within measurement and

model uncertainty, predicts the oil and water rates in the existing wells and in new

wells with increased confidence, and honours the relevant geology.

In this report, I will mainly research on how to select the optimal bandwidth h

for the IAGS. Based on an available method of measuring the model nonlinearity, I

make some modification to make it more general and adaptive in the iterations. With

this modified measure, the bandwidth h of IAGS can be updated at each iteration.

The test results show that this strategy works well for reservoir simulations in the

sense of decreasing the objective function value and the data mismatch, which are

introduced in the following section.

Two Measures of the History Matching Performance

There are usually two ways to measure the performance of history matching process.

The first one is called the Squared Normalized Data Mismatch, which mainly mea-

sures the distance between the assimilated models and the true state on the output

points.

After the data assimilation process, the final parameter estimates, {ξi}Ni=1, of each

ensemble member is acquired. Reruns of the reservoir model with these estimated

parameters produce simulated measurements Mt(ξ
i) at time t. Let yt be the true

observations at time t, R the covariance matrix of the observation error, Nd the

number of measurements and N the number of ensemble members. Then the data

mismatch measure D can be calculated by:

D =

√∑
t

∑N
i=1(yt −Mt(ξi))TR−1(yt −Mt(ξi))

Nd ×N
.

5



If the ensemble memebers are not uniformly weighted, the computation of data

mismatch D turns to be:

D =

√∑
t

∑N
i=1[(yt −Mt(ξi))TR−1(yt −Mt(ξi))× wi]

Nd

where wi denotes the weight of ensemble member i. When the model parameters

are well estimated by the ensemble members, we will get small data mismatch D.

The other way to measure the assimilation result is called the normalized objec-

tive function. Rather than simply checking the mismatch of measurements, it also

checks if the new ensemble parameter is consistent with the prior distribution, which

contains some information about the real geology. The objective function O(ξi) of

each ensemble member reads:

O(ξi) =
(ξi − µp)

TC−1
p (ξi − µp) + (yt −Mt(ξ

i))TR−1(yt −Mt(ξ
i))

Nd

i = 1, · · · , N

where µp denotes the prior mean and Cp the prior covariance matrix. The weighted

mean of the all objective function values {O(ξi)}Ni=1 is given by:

OB =
N∑
i=1

O(ξi)wi.

Ideally, via a good history matching technique, both the data mismatch D and

the mean OB of the objective function values should decrease fast without intro-

ducing additional bias.

6



Chapter 1

Data Assimilation Methods

In the data assimilation process, we are interested in estimating the posterior distri-

bution of the Markovian state vector Xk conditioned on some noisy measurements.

It is always possible to make the state vector Markovian with a linear measurement

operator Mk by extending the state vector to X̃k, which contains both the state

vector Xk and the measurement data Mk(Xk). The extended state vector reads:

X̃k = [Xk Mk(Xk)]. (1.1)

The linear transformation matrix Mk can be constructed as:

Mk =


1st · · · (ds)th (ds + 1)th · · · (ds + dm)th

0 · · · 0 1 0
. . . . . .

0 0 1

 (1.2)

where ds is the length of original state vectorXk and dm is the length of measurement

vector Yk.

For simplicity, we define X̃k by Xk in the following. The system can be described

by the equations:

X0 ∼ p(X0), (1.3)

Xk = f(Xk−1) + ηk, (1.4)

Yk = MkXk + ϵk, (1.5)

where p(X0) is the initial distribution of the state vector, f(·) is the forward

operator of the model state vector and Mk is the linear observation operator. The

measurement error, ϵk, is assumed to be Gaussian white noise with covariance R

and the model error, ηk, is Gaussian white noise with covariance Q, which is usually

set to be 0 in reservoir models. The optimal solution to the filtering problem is the

posterior density p(Xk|Y1:k = y1:k), where y1:k denotes all the observations up to

and including time step k.

7



Given the posterior density at time step k − 1, the prior density at time step k

can be calculated as

p(Xk|Y1:k−1 = y1:k−1) =

∫
p(Xk|Xk−1)p(Xk−1|Y1:k−1 = y1:k−1)dXk−1. (1.6)

When a new observation yk arrives, the posterior density is updated via Bayes’

rule:

p(Xk|Y1:k = y1:k) =
p(Yk|Xk)p(Xk|Y1:k−1 = y1:k−1)

p(Yk|Y1:k−1 = y1:k−1)
(1.7)

where p(Yk|Y1:k−1 = y1:k−1) is the normalizing constant given by:

p(Yk|Y1:k−1 = y1:k−1) =

∫
p(Yk|Xk)p(Xk|Y1:k−1 = y1:k−1)dXk (1.8)

For general models, the optimal solution p(Xk|Y1:k) cannot be obtained ana-

lytically. Therefore, only approximative solutions can be computed via simulation

techniques, where the prior and posterior densities are approximated by random

samples. Usually the ensemble members {ξik}Ni=1 are used to denote a sample from

the prior density at time step k, and {ξ̂ik}Ni=1 a sample from the posterior density.

1.1. Ensemble Kalman Filter (EnKF)

The EnKF method has been widely used in the data assimilation field since it was

first introduced in [15]. It is an extension of the Kalman Filter for large scale and

nonlinear systems. Contrary to the extended Kalman Filter [18], which was also

designed for the nonlinear cases, the ensemble Kalman Filter has no requirement

for the tangent linear property of the model and takes affordable computation and

memory cost.

The EnKF is a sequential Monte Carlo method for solving the nonlinear filtering

problem with additional Gaussian assumption. Its process [9] can be presented as

below:

• Initialization:

ξi0 ∼ N (X0,P0) (1.9)

For time step k

• Time update (forecast step):

ξik = fk(ξ̂
i
k−1) + ηik, i = 1, · · · , N, (1.10)

Xk =
1

N

N∑
i=1

ξik, (1.11)

Lk = [ξ1k −Xk, · · · , ξNk −Xk]
T , (1.12)

Pk =
1

N − 1
LkL

T
k . (1.13)

8



• Measurement update (analysis step):

Kk = PkM
T
k (MkPkM

T
k +R)−1, (1.14)

ξ̂ik = ξik +Kk(yk −Mkξ
i
k + ϵik), i = 1, · · · , N, (1.15)

X̂k =
1

N

N∑
i=1

ξ̂ik, (1.16)

L̂k = [ξ̂1k − X̂k, · · · , ξ̂Nk − X̂k]
T , (1.17)

P̂k =
1

N − 1
L̂kL̂

T
k . (1.18)

In order to get the optimal result from the EnKF algorithm, the following as-

sumptions of the problem have to be satisfied:

1. Model forward operator is linear, i.e. f(Xk) = FkXk.

2. The measurement operator is linear.

3. The model and observation errors are uncorrelated and white Gaussian.

4. The initial state follows a multivariate Gaussian distribution with mean X0

and covariance matrix P0.

In most cases, the model describing the multi-phase fluid flow in the reservoir

is not linear, which means that the first and second assumption are not satisfied,

so that the EnKF is biased in the sense that the ensemble members will not be a

sample from the true posterior distribution even in the limit of an infinite number of

ensemble members. However, its robustness means that it does not suffer from the

the dimensionality problem since every ensemble members carry the same weight.

[5]

1.2. Sequential Importance Sampling and Parti-

cle Filters

1.2.1. Sequential Importance Sampling (SIS)

Sequential importance sampling (SIS) and particle filters [4, 2] provide an approx-

imation of the optimal solution p(Xk|Y1:k = y1:k). Similar to the EnKF method,

SIS and particle filters aim at building up sequentially a sample from the posterior

density.[5]

Assume that, at given time step k, the sample {ξ̂i0:k}Ni=1 is from the joint posterior

density function p(X0:k|Y1:k = y1:k). In ordinary importance sampling, we construct

9



a sample from p(X0:k|Y1:k = y1:k) by drawing N vectors {ξi0:k}Ni=1 vectors from a

prescribed importance function g(X0:k|Y1:k = y1:k) and attach an associated weight,

wi
t, which is given by:

wi
k ∝

p(X0:k|Y1:k = y1:k)

g(X0:k|Y1:k = y1:k)
. (1.19)

The EnKF can be viewed as an SIS algorithm restricting the weights wi
k to be

uniform. The method is valid for any importance function g(X0:k|Y1:k = y1:k) as

long as its support contains the support of p(X0:k|Y1:k = y1:k), that is p(X0:k|Y1:k =

y1:k) > 0 implies g(X0:k|Y1:k = y1:k) > 0. Otherwise, some part of the posterior

distribution will never be taken into account in the sampling process and that will

certainly cause biased estimates. On the other hand, all the weights, {wi
k}Ni=1 will

be uniform, if the importance function g(X0:k|Y1:k = y1:k) is exactly same as the

posterior density function p(X0:k|Y1:k = y1:k).

Although, in most cases, it is impossible to make all the weights be uniform, that

is sampling from posterior density function p(X0:k|Y1:k = y1:k), we want to find an

importance function g(X0:k|Y1:k = y1:k) as similar as the posterior density function

p(X0:k|Y1:k = y1:k), which will make the weights closer to uniform. In dynamic

systems, due to the lack of information of the posterior density, we usually gener-

ate the initial importance function and update that sequentially with the coming

information. That is we choose the importance function in the form

g(X0:k|Y1:k = y1:k) = g(Xk|Xk−1 = ξk−1,Yk = yk)g(X0:k−1|Y1:k−1 = y1:k−1),

(1.20)

where ξk−1 stands for the weighted mean of ensemble members {ξik−1}Ni=1.

The sample {ξi0:k}Ni=1 is obtained by sampling {ξik}Ni=1 from g(Xk|Xk−1 = ξk−1,Yk =

yk) and setting

ξi0:k = [ξik ξi0:k−1)].

The associated weights are updated sequentially to a proportionality constant

via Bayes’ theorem:[5]

wi
k =

p(ξi0:k|Y1:k = y1:k)

g(ξi0:k|Y1:k = y1:k)

∝
p(Yk|Xk = ξik)p(ξ

i
k|Xk−1 = ξik−1)p(ξ

i
0:k−1|Y1:k−1 = y1:k−1)

g(ξik|Xk−1 = ξik−1,Yk = yk)g(ξi0:k−1|Y1:k−1 = y1:k−1)

∝
p(Yk|Xk = ξik)p(ξ

i
k|Xk−1 = ξik−1)

g(ξik|Xk−1 = ξik−1,Yk = yk)
wi

k−1 (1.21)

According to Eq 1.20 and 1.21, we see that, in contrast to the MCMC method [28],

the sample can be obtained sequentially in time, which is very important that we

do not have to restart the algorithm when new measurements arrive.
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1.2.2. Sequential Importance Resampling Filter(SIR)

The SIS algorithm shown in Ch 1.2.1 may result in a filter degeneracy, when most of

the weights become numerically zero after some time steps [23]. To avoid the filter

degeneracy, an additional resampling step is introduced in the sequential importance

sampling (SIR) filter, which is the most common particle filter. The only difference

between SIS and SIR is the resampling step. The standard SIR filter use

g(X0:k|Y1:k = y1:k) = p(X0:k) = p(Xk|X0:k−1 = ξ0:k−1)p(X0:k−1)

as the importance function, and the corresponding weights are updated as

w̄i
k = wi

k−1p(Yk|Xk = ξik).

The normalized weights can be calculated as:

wi
k =

w̄i
k∑N

j=1 w̄
j
k

.

Ameasurement of the degree of degeneracy is the effective ensemble size, Neff ,which

is estimated by [3] :

N̂eff =
1∑N

i=1(w
i
t)

2
. (1.22)

When all the particles have equal weight, N̂eff is equal to N , while if one of the

weights is one and the others zero, N̂eff is 1. If N̂eff is smaller than some prescribed

value Nc, resampling is then performed.

The resampling step is a selection process where the well fitted particles survive

and the ill fitted particles die out. There are several ways to perform the resampling.

The most used one is to generate N new particles under the multinomial distribution

with the parameters (N,w1
k, · · · , wN

k ). After the resampling step, all the weights are

set to be N−1.

Although resampling step is necessary in case of small N̂eff , it can be shown that it

leads to underestimation of the posterior variance of the state variables [11]. On the

other hand, since the resampling step is a stochastic procedure, it introduces more

variance to the particles. Given that the variance of SIS estimator µ̂SIS =
∑N

i=1 ξ
iwi

is Var(
∑N

i=1 ξ
iwi), then the variance of the SIR estimator µ̂SIR with multinomial

resampling is given by

Var(µ̂SIR) = Var(µ̂SIS) +
E
[∑N

i=1(ξ
i)2wi − (

∑N
i=1 ξ

iwi)2
]

N
.

However, the main problem of the SIR filter is the curse of dimensionality in

high dimension systems. In order to avoid the filter collapse, the number of particles

should grow exponentially with the system dimension [11, 30]. Therefore, in order to

obtain informative particles for data assimilation, a large number of original particles

is necessary. In practice this is not applicable for the high dimension system because

of the limit of computational capacity.
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1.3. Gaussian Mixture Filters

Gaussian mixture filters [10, 31, 24, 17] are based on the fact that any density

function g defined on RN (the state vector space) can be approximated in L1(RN)

with the sample {ξi}Ni=1 by the density of the form

ĝ(X) =
N∑
i=1

wiΦ(X− ξi,P).

In general Φ(·) can denote either Gaussian or non-Gaussian functions, but here

we only consider the Gaussian case. So Φ(X−µ,P) denotes Gaussian density func-

tion with mean µ and covariance matrix P. N is the number of particles (ensemble

members) and {wi
k}Ni=1 are scalar weights with

∑N
i=1wi = 1 [12]. Each particle ξi

represents the mean of a Gaussian kernel and the uncertainty associated with each

particle ξi is given by the covariance matrix of the Gaussian kernel.

In filtering theory, with known one-step Markov transitions for the state vector

and known likelihood function, the only unknown information needed to generate the

posterior distribution p(Xk|Y1:k = y1:k) at time step k is the prior density function

p(Xk|Y1:k−1 = y1:k−1). The idea behind the Gaussian mixture filters is that, at each

time step k, the prior density function is approximated by a Gaussian kernel density

estimator

p(Xk|Y1:k−1) ≈
N∑
i=1

wi
k−1Φ(Xk − ξik, h

2Pk), (1.23)

where {ξik}Ni=1 is the sample from the forecast step, i.e. {ξik}Ni=1 = {fk(ξ̂ik−1)}.
{wi

k−1}Ni=1 is the corresponding weight for each ensemble particles, Pk the weighted

covariance of ensemble members {ξik}Ni=1, and h the bandwidth parameter.

1.3.1. Bayesian Update Step

When a new measurement arrives, the posterior density function is approximated

by the Bayes’ theorem,

p(Xk|Y1:k = y1:k) ∝ p(Xk|Y1:k−1 = y1:k−1)Φ(yk −MkXk,Rk). (1.24)

By inserting Eq 1.23 into Eq 1.24, we can get:

p(Xk|Y1:k = y1:k) ∝
N∑
i=1

wi
k−1Φ(Xk − ξik,Pk)Φ(yk −MkXk,Rk). (1.25)

We can rewrite Eq 1.25 in a closed form:

p(Xk|Y1:k) ≈
N∑
i=1

w̃i
kΦ(X− ξ̃ik, P̃k), (1.26)
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where

ξ̃ik = ξik +Kk(yk −Mkξ
i
k), , i = 1, · · · , N,

Kk = h2PkM
T
kΣ

−1
k ,

Σk = h2MkPkM
T
k +Rk,

P̃k = h2(I−KkMk)Pk,

w̃i
k =

w̄i
k∑N

j=1 w̄
j
k

, , i = 1, · · · , N,

w̄i
k = wi

k−1Φ(yk −Mkξ
i
k,Σk).

1.3.2. Resampling Step

Similar to the SIS method shown in Ch 1.2.1, the Gaussian Mixture filter also suffers

from the filter degeneracy problem. As shown in Ch 1.2.2, one possible solution to

this problem is resampling. That is when the effective sample size Neff , as defined

in Eq 1.22, is smaller than some prescribed sample size Nc, then we perform the

resampling step. The multinomial resampling of the Gaussian Mixture filter is to

sample the new particles from the weighted kernel Gaussian density functions, i.e.:

ξ̂ik ∼
N∑
i=1

wi
kΦ(Xk − ξ̃ik, P̃k),

where {wi
k}Ni=1, {ξ̃ik}Ni=1 and P̃k are defined in Ch 1.3.1.

After resampling, the weights {wi
k}Ni=1 are reset to N

−1 and the covariance matrix

P̂k is based on the new particles {ξ̂ik}Ni=1. So the posterior distribution can be

approximated by the new Gaussian Mixture filter as:

p(Xk|Y1:k) ≈
1

N

N∑
i=1

Φ(Xk − ξ̂ik, P̂k).

The resampling step may yield biased particles {ξ̂ik}Ni=1, since the covariance of the

Gaussian mixture is larger than that before the resampling step. However, as men-

tioned in Ch 1.2.2, the resampling step generally leads to an underestimation of the

posterior variance, so we will not do any bias correction here.

In the case when the effective sample size Neff is bigger than Nc, the resampling

step is then not necessary. And we can simply choose:

ξ̂ik = ξ̃ik, i = 1, · · · , N

wi
k = w̃i

k, i = 1, · · · , N

P̂k = P̃k.

for the next step.
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1.3.3. Numerical Algorithm for Gaussian Mixture Filter

To sum up Ch 1.3.1 and 1.3.2, the numerical algorithm of Gaussian Mixture filter

can be described as below:

• Initialization:

Select h and Nc,

ξi0 ∼ N (X0,P0), i = 1, · · · , N,

X0 = [ξ10 , · · · , ξN0 ],

ξ̂i0 = ξi0, i = 1, · · · , N,

T =
[
IN−1 0

]T −
1N1

T
N−1

N
,

X̂0 = X0,

L̂0 = X̂0T,

wi
0 = N−1, i = 1, · · · , N,

w0 = (wi
0)

N
i=1,

W0 = diag(w0),

U0 = (TTW−1
0 T)−1,

P̂0 = h2L̂0U0L̂
T
0 .

For time step k

• Time update (forecast step):

ξik = fk(ξ̂
i
k−1),

Xk = [ξ1k, · · · , ξNk ],

Lk = XkT,

Pk = LkUk−1L
T
k ,

Σk = h2MkPkM
T
k +Rk,

Kk = h2PkM
T
kΣ

−1
k ,

14



• Measurement update (analysis step):

X̃k = Xk +Kk(yk −MkXk),

L̃k = X̃kT,

Bk = IN−1 + [Uk−1 + (MkLk)
TR−1

k MkLk]
−1(MkLk)

TR−1
k [yk −MkXk]T,

Uk = (BT
k [Uk−1 + (MkLk)

TR−1
k MkLk]

−1Bk)
−1,

P̃k = L̃kUkL̃
T
k ,

w̄i
k = wi

k−1Φ(yk −Mkξ
i
k,Σk), i = 1, · · · , N,

w̃i
k =

w̄i
k∑N

j=1 w̄
j
k

, i = 1, · · · , N,

N̂eff =
1∑N

i=1(w
i
k)

2
,

• Resampling

IF N̂eff < Nc

Index = randsample((1, · · · , N), (w̃1
k, · · · , w̃N

k ), replace = TRUE),

ξ̂ik ∼ Φ(x− ξ
Index(i)
k , h2P̃k), i = 1, · · · , N,

wi
k = N−1, i = 1, · · · , N,

X̂k =
N∑
i=1

wi
kξ̂

i
k,

Uk = U0,

L̂k = X̂kT,

P̂k = h2L̂kUkL̂
T
k .

ELSE

X̂k = X̃k,

P̂k = h2P̃k.

wi
k = w̃i

k, i = 1, · · · , N.

END

1.4. Adaptive Gaussian Mixture (AGM) Filter

In order to estimate the posterior density precisely in nonlinear model, we prefer to

choose small bandwidth parameter h. However, this may result in a degeneracy of
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the filter due to the collapse of the weights. To solve this problem, a bias-variance

tradeoff parameter α is introduced in [5]. The idea for that is to shrink the weights

to uniform weights with additional parameter instead of increasing the bandwidth

parameter h.

The update of the ensemble weights can be described as:

wi
α = αwi + (1− α)N−1 (1.27)

This process will reduce the variability of the weights, but introduces bias in the esti-

mates. Therefore, when α decreases, the filter solution with updated weights moves

further from the correct posterior distribution, and only takes some information

from the likelihood function.

To make a balance between the variance and the bias, [5] gives out an objective

function of α:

J(α) = N

N∑
i=1

(wi
α)

2 + (α− 1)2. (1.28)

Minimizing this function gives the solution:

αopt =
N

N̂eff

, (1.29)

With this α, the adaptively effective ensemble size N̂α
eff reads:

N̂α
eff =

1∑N
i=1(w

i
α)

2
(1.30)

=
N3

N̂eff(N − N̂eff) +N2
. (1.31)

where N̂eff is the effective ensemble size given in Eq 1.22. With this choice of α, the

new effective ensemble size is always above 80% of the ensemble size N , which will

not cause a filter degeneracy problem any more.

To sum up, the difference between the numerical algorithm of the Gaussian

Mixture filter and that of the AGM filter is that:

1. In AGM, the weights {w̃i
k}Ni=1 in the measurement update step are shrunk

towards the uniform weights by parameter α.

2. Much fewer resampling steps are needed for AGM than for original Gaussian

mixture.

1.5. Iterative Adaptive Gaussian Mixture (IAGM)

Filter

As an iterative version of AGM, the Iterative Adaptive Gaussian Mixture filter is

mainly developed for solving the assimilation problem with a limited sample size
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in a large dimensional state space[6]. For the large dimension problem, the prior

sample space is usually huge compared to the solution space, and therefore, almost

all the samples from the prior distribution give some statistical mismatch to the

data. In order to fix this problem, the sample size required is too large compared to

the computational capacity we have. That is why a MCMC or a standard particle

filter cannot be applied in this case.

The iterative adaptive Gaussian mixture filter is done by applying the AGM

filter, introduced in Ch 1.4, in each iteration and bridging the gaps between two

iterations by the resampling techniques. The process for the resampling between

iterations can be described as:

p(X) =
N∑
i=1

Φ(x− ξiend, h
2Pend)w

i
k, i = 1, · · · , N (1.32)

Sample ξ̂i0 ∼ p(X), i = 1, · · · , N (1.33)

ŵi
0 ∝

p(ξ̂i0)

g(ξ̂i0)
, i = 1, · · · , N. (1.34)

The {ξiend}Ni=1 means the final ensemble members of the previous iteration with the

weight {wi
k}Ni=1. The weighted covariance matrix of them is Pend. The {ξ̂i0}Ni=1

denotes the initial ensemble members for the upcoming iteration, and the {ŵi
0}Ni=1

shows the corresponding weight. g(·) is the prescribed importance function. As

mentioned in [7], in the resampling step, usually we approximate the covariance

matrix Pend of the updated state vectors by scaling the initial covariance matrix Cp,

which means that we can get out of the ensemble subspace in each resampling.

Similar to the Sequential Importance Sampling method shown in Ch 1.2.1, the

choice of the importance function g(·) will influence the initial weights {ŵi
0}Ni=1.

However, note that if the dimension of state space is large, computing these initial

weights {ŵi
0}Ni=1 will be time consuming. If the sample size N is not sufficiently

large, the initial weights are usually set to be N−1 since the information contained

in the weights is negligible in the AGM setting [6].

To sum up, if we modify the algorithm of original Gaussian Mixture shown in

Ch 1.3.3 by introducing the shrunk weight wi
α, which is calculated by Eq 1.27, and

connect two separated AGM by resampling via Eq 1.32,1.33 and 1.34, we will get

the numerical algorithm of IAGM. This algorithm is shown as a flowchart in Fig

1.1.
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yes
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Start new iteration

Figure 1.1: IAGM algorithm flowchart
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1.6. Iterative Adaptive Gaussian Mixture Smoother

(IAGS)

The methods introduced in the previous chapter are all sequential data assimilation

methods, in which the data update is done sequentially in time. When applying

sequential assimilation methods for the reservoir models, in order to avoid the unex-

pected behavior of the states, say fluid rates and pressures, it is always necessary to

do “confirmation” update. That means we need to restart the reservoir simulation

from the very beginning once we get some updated parameters. This will increase

the computational cost dramatically. For example, for a reservoir problem with

measurement arriving at time [1, 2, . . . , 10]× t, if we denote the computational load

of AGM without “confirmation” as 10 units, the load of AGM with “confirmation”

will be approximately 55 units. The difference between these two computational

loads will increase in quadratic speed as the increasing of the measurement arrivals.

Moreover, as for the iterative sequential method, the computation time would be

scaled by the number of iterations, which means that it will be quite time consuming

to get some reasonable results by IAGM.

The iterative adaptive Gaussian mixture smoother (IAGS) is defined as an ap-

proximation of adaptive importance sampling [16]. Although the smoother method

has the disadvantage of linear updates with large amount of data compared to the

sequential techniques, it has the advantage of not stopping and restarting the nu-

merical model. For reservoir models, it is usually much faster to run throughout

the whole test period than to stop and restart the simulator at each time when the

measurement arrives. Moreover, it is shown in [7] that, compared to the other iter-

ative smoother methods, the IAGS method is asymptotically optimal for nonlinear

models and it does not have a Gaussian prior implicitly assumed in the methodology.

The derivation of IAGS is the same as IAGM for a deterministic system with

one time step. Therefore the algorithm flowchart of IAGS shown in Fig 1.2 is quite

similar to that of IAGM in Fig 1.1. It is shown in [7] that the posterior mean

from IAGS converges to the correct posterior mean as the sample size and iterations

increase as long as the bandwidth parameter h is selected as a decreasing function

of the sample size. However, the optimal choice of bandwidth h for IAGS is still

related to the model nonlinearity since it is a derivative of IAGM.

In the following chapters, I will research on how to choose the bandwidth h wisely

to accelerate the IAGS based on some statistics of the model nonlinearity.
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.
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Figure 1.2: IAGS algorithm flowchart
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Chapter 2

Measure of Model Nonlinearity

According to the introduction done in previous chapters about AGM and IAGS, the

bandwidth parameter h could be a critical point that influences the linear update

step. Previous research [26, 27] has shown that the optimal bandwidth h depends on

the dimension of the state space, the nonlinearity of the problem and the uncertainty

in the prior distribution. In this chapter, I will review the influence of the model

nonlinearity on the optimal h through some tests. And then the method introduced

in the internship report of mine will be shown briefly for measuring the model

nonlinearity.

2.1. Influence of Model Nonlinearity on the Op-

timal Bandwidth h

In order to show that the optimal bandwidth h varies according to the model non-

linearity, I will use a toy model which can be described as below:

X ∼ N(2, 2),

Y = Xk + ϵ.

The ensemble members {ξi}Ni=1 are randomly sampled from the normal distribution

N(2, 2), where N denotes the sample size. The measurement error ϵ is white Gaus-

sian noise with mean 0 and variance 5% of the true measurement which can be

denoted by (Xtrue)
k. The transformation function f(x) = xk is used to introduce

the nonlinearity into the model. When k = 1, the model is exactly linear, and when

k is some bigger number, the model will be nonlinear. In the test shown below, I

make k vary within [1, 2, 3, 4, 5]. To create the scenarios with different innovations,

Inn, which can be defined by:

Inn = ||f(Xtrue)−
1

N

N∑
i=1

f(ξi)||1, (2.1)
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the true state Xtrue is chosen within 2 intervals [2.1 : 0.3 : 3.9] and [4.2 : 0.3 : 6]. The

former is close to the mean of the initial ensemble members and the latter further

away, which also means that the latter has bigger innovation. The sample size N is

chosen as 10000.

To quantify the update performance Pupdate of the different h, I used the updated

data mismatchDnew divided by the original data mismatchDold as the measurement,

which means:

Pupdate =
Dnew

Dold

.

Obviously, when Pupdate is close to 0, the update is quite good; when Pupdate goes

larger, the performance of update turns to be worse; when Pupdate > 1, the update

is wrong.

Consider the first scenario, where the true state Xtrue is chosen within [2.1 :

0.3 : 3.9], the corresponding update performance Pupdate is plotted in Figure 2.1. As

for the scenarios with big innovations, that is the true state Xtrue is chosen within

[4.2 : 0.3 : 6], the performance Pupdate is plotted in Figure 2.2.

It can be seen that: although the innovation may influence the performance of

h in different scenarios, the optimal parameter h is still negatively related to the

nonlinearity of the model. For both small and big innovations, the big bandwidth

h always performs better than the small ones in the exactly linear case, see Figure

2.1a and 2.2a.

When the model nonlinearity goes larger, the optimal bandwidth h becomes

smaller. For example, in the case of three order polynomial transformation Y = X3,

the optimal h is around 0.1 for small innovations and around 0.25 for big innovations.

When the model becomes more nonlinear, say the extreme case Y = X5. The

optimal h for small innovations becomes 0.05, and, for big innovations, it is around

0.15.

In all, the optimal bandwidth h is sensitive to the model nonlinearity, which

means that if we choose good parameter h in the AGM (or IAGM, IAGS), the

data mismatch D will decrease faster. Since it is mentioned in previous chapters

that the optimal h is related to the model nonlinearity, if we can quantify the model

nonlinearity and capture the quantitative relationship between that and the optimal

h, we will get parameter h in an adaptive way.

22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h

P
up

da
te

(a) Y = X

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

h

P
up

da
te

(b) Y = X2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

h

P
up

da
te

(c) Y = X3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

h

P
up

da
te

(d) Y = X4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

h

P
up

da
te

(e) Y = X5

Figure 2.1: Update Performance for different h on Toy Problem I with small

Innovation.
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Figure 2.2: Update Performance for different h on Toy Problem I with big Inno-

vation.
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2.2. Measure of Model Nonlinearity

2.2.1. Original Method to Measure Model Nonlinearity

As introduced in [22, 25], the model nonlinearity can be approximated by the differ-

ence between the extended Kalman filter and the truncated second-order filter. For

the linear model, this difference caused by the bias term in the truncated second-

order filter is zero. When the degree of the model nonlinearity becomes larger, the

difference will increase in the same way.

As for the ensemble case, the difference between the mean of the ensemble fore-

cast and the forecast of the ensemble mean can be viewed as an estimate of the

nonlinearity. Let Xi denote the state vector of ensemble member i, X̄ denote the

mean of the ensemble members, and F (·) denote the measurement operator. Then

by using a Taylor expansion, the mean of the ensemble forecast could be described

as:

1

N

∑
i

F (Xi) = F (X̄) +
∂F (X̄)

∂X
((

1

N

∑
i

Xi)− X̄) +

1

2

∂2F (X̄)

∂X2
(
1

N

∑
i

(Xi − X̄)T (Xi − X̄)) + · · · . (2.2)

With some background information known, the ensemble mean can be viewed as a

good estimation of the X̄, which means:

F (
1

N

∑
i

Xi) ≈ F (X̄),

1

N

∑
i

Xi ≈ X̄,

1

N

∑
i

(Xi − X̄)T (Xi − X̄) ≈ σ(X).

Then the model nonlinearity, NL, can be denoted by:

NL = | 1
N

∑
i F (Xi)− F (X̄)|

= |∂F (X̄)
∂X

(( 1
N

∑
iXi)− X̄) + 1

2
∂2F (X̄)
∂X2 ( 1

N

∑
i(Xi − X̄)T (Xi − X̄)) + · · · |

≈ |1
2
∂2F (X̄)
∂X2 σ(X) + · · · |.

As shown in the equation, the first order term disappears in the difference between

the “ensemble mean” and the “mean of ensembles”. Therefore, only the nonlinear

terms of Eq 2.2 are left in the measure NL.

2.2.2. Modified Method to Measure Model Nonlinearity

However, as mentioned in [14], the measure introduced in Ch 2.2.1 is not invariant

to the linear transformations on the measurement data, which would limit the use
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of that measure in general models. The possible solution is that: instead of simply

calculating the measure NL, we can calculate the ratio of NLj and NLj−1, which

separately denote the nonlinearity measure NL from iteration j and iteration j− 1.

So the new measure ∆NLj at the iteration j reads:

∆NLj =
NLj

NLj−1

.

The new measure ∆NLj is obviously built up on data from two iterations. How-

ever, it requires no rerun of the simulator when applied, so it is a quite cheap

outcome from the simulation. Since there are usually more than one update inside

one iteration of IAGM and every update may influence the nonlinearity NL, we

cannot simply apply this method into the IAGM. However, this method can be eas-

ily applied in one step IAGM, i.e. IAGS, where only one update is done inside the

iteration.

According to [14], the relationship between the model nonlinearity and the mea-

surement ∆NL can be influenced by the parameter h used in the update and the

innovation of the previous iteration, although it is not so sensitive to the latter.

When the parameter h is small, say h < 0.1, the correlation between the model

nonlinearity and the measure ∆NL is negative; when h becomes bigger, the corre-

lation turns to be positive gradually. Therefore, when I use this method to measure

the model nonlinearity in the following part, I consider two scenarios, h 6 0.1

and h > 0.1. In the former case, I measure the model nonlinearity as proportion

to ∆NL−1, and in the latter, the model nonlinearity is measured proportional to

∆NL.
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Chapter 3

Accelerated IAGS based on

Two-step Data

The convergence speed of IAGS highly depends on the choice of bandwidth pa-

rameter h. For the linear model, choosing big h will make the assimilation done

almost done in one step, see Figure 2.1a and Figure 2.2a. For the nonlinear model,

choosing big h may result in a “over update” as shown in Figure 2.1e and 2.2e, and

consequently, the assimilation result is worse than that done with small h.

For the usual IAGS method, we will do all the step with a certain h, say 0.01 or

0.05, since a small bandwidth h keeps the geological consistency while a large one

might destroy that even if it helps to reduce the data mismatchD quickly. Moreover,

choosing small h usually results in more iterations, which theoretically reduce the

bias of the method.

However, in order to take advantage of the small bandwidth h, we should do

more iterations than using some big bandwidth h, which means that the cost of

good assimilation result is the computational load. To make a balance between the

computational load and the accuracy of the method, I will introduce the accelerated

IAGS.

The basic idea of accelerated IAGS is that if we introduce the nonlinearity mea-

sure shown in Ch 2.2 into IAGS and choose some bigger h based on this measure,

then we can take advantage of the iteration strategy and also get the final result

faster.

It has to be mentioned that although, according to [26, 27], the optimal h is

related to the sample size, the dimension of state space, the model nonlinearity and

the uncertainty of prior state, I will mainly consider the influence of last two parts

in this report. There is also some research about selecting optimal bandwidth based

on the theory of density estimation [20], but in that conclusion the optimal h is just

a function of the prior uncertainty and the sample size. We can simply see it is not

optimal in data assimilation.
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3.1. Determine Optimal h based on Two-step Data

Since the new nonlinearity measure ∆NLj is based on two-step data, NLj and

NLj−1, we also take this idea into choosing the optimal h. Instead of finding the

relationship between the ∆NLj and hopt, I will try to figure out the relationship

between ∆NLj and
hopt

hpre
.

On the other hand, in order to take the update performance of the previous

parameter hpre into account, I will also introduce the innovation measurement ∆Inn

as:

∆Innj =
Innj

Innj−1

,

where Inn is calculated in Eq 2.1. Similar to ∆NL, ∆Inn is also a cheap outcome

from the simulation.

When the previous update is good, the new innovation Innj will be much smaller

than Innj−1, and the innovation measurement ∆Innj will be quite small, then we

have no reason to vary the parameter much away from hpre. However, if the innova-

tion measurement ∆Inn is close to 1, which shows that the previous update is not

good, then we should vary the bandwidth h.

To sum up, the ratio of the optimal h in the upcoming iteration and the hpre

used in the previous version should be some function of ∆Inn and ∆NL, that is:

hopt

hpre

= H(∆NL,∆Inn) (3.1)

Since there is no special reason to choose some complicated functions as the

function H(·), I will just consider linear functions. Meanwhile, since we know that

for h < 0.1, the model nonlinearity is negatively related to ∆NL and for h > 0.1,

the correlation is more like positive, the function H(·) can be described as:

hopt

hpre

=

{
a1 × (∆NL) + b1 × (∆Inn) if h 6 0.1

a2 × (∆NL)−1 + b2 × (∆Inn) if h > 0.1

If we do the previous iteration with small h and get a big measure ∆NL, then we

know that the model is close to linear, which suggests that we can use some bigger

h in the upcoming iteration. However, if the previous iteration is done with big h

and it yields a big measure ∆NL, then the model is quite nonlinear, which suggests

that some smaller h should be applied in the upcoming iteration.

The test result shown in the following chapter also suggests that doing the re-

gression analysis separately gives better approximation than other choices.
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3.2. Regression Analysis on Toy Model I

In order to get the reasonable analysis of the parameters a1, a2, b1 and b2 shown in

Eq 3.1, we need to find a model with controllable nonlinearity and innovation, which

is usually impossible in real geologic models. Therefore, I build up a Toy Model as

shown below to finish this test.

3.2.1. Introduction of the Toy Model I

Compared with a realistic model, say the reservoir model, the processing of the toy

model is less time consuming. Moreover, it is much easier to control the model

nonlinearity and innovation. For example, when we generate the measurement,

we could use almost linear transformation to get a linear model, Or we could use

exponential transformation to create a nonlinear model.

To make the Toy Model similar to the realistic model, I develop it as follows:

The input value (state value) is generated from the normal distribution. The

model output (measurement data) is generated from the input value via transfor-

mations with controllable nonlinearity. In all, the toy model can be described as

below:
Y = F (X) + ϵ

X ∼ N(µ, σ2)

ϵ ∼ N(µerr, σ
2
err)

In the simulation, I choose µ = 2, σ = 1 and µerr = 0. In order to make the vari-

ance of measurement error vary in different cases, I make σerr = Ytrue/20. However,

it is also possible to fix the error as some constant. As for the transformation func-

tion F (X), I used a polynomial transformation, whose nonlinearity can be clearly

shown by its parameter of highest order term. The transformation reads:

polynomial : F (X) = a ∗X3 + b ∗X2 + c ∗X

In order to vary the nonlinearity, I fix b = 0.5 and c = 1, since the exactly linear

model is hardly seen in real applications. Further I choose a within [0.01 : 0.1 : 3.01],

so that the model nonlinearity will be controlled by this parameter.

On the other hand, for varying the innovation, the true state value Xtrue is

chosen within [2.1 : 0.1 : 5]. By using the transformation function F (·), the true

measurement Ytrue can be generated by the true state value Xtrue.

3.2.2. Test Design

Since the toy problem is quite cheap in computation, I choose the sample size as

100000, which is big enough to make the Sequential Importance Sampling (SIS)
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result as a good approximation of the best update and to avoid the monte carlo

effects in the results.

With the Toy Model introduced in Ch 3.2.1, we can build up a test with con-

trollable model nonlinearity and innovation. In the test, we apply the IAGM (since

there is only one time step in the test, it is also IAGS) with prescribed bandwidth

parameter hpre in the initial iteration, after which we could get the nonlinearity

measure ∆NL and the innovation measure ∆Inn.

For the following iteration, different bandwidth h will be used to generate differ-

ent scenarios. Without considering weights, the bandwidth h, which gives out the

minimal Hellinger Distance [8] between the update result of AGS and that of SIS,

will be viewed as the optimal bandwidth hopt.

Then we have hopt

hpre
, ∆NL and ∆Inn. Estimates of the parameters in Eq 3.1 can

be obtained by Multivariate Linear Regression Analysis [19].

3.2.3. Test Results

The initial bandwidth hpre is chosen within [0.1, 0.3, 0.5, 1] and the test interval for

hopt is chosen within [0.05 : 0.05 : 1]. For the case where we start with hpre = 0.1,

the four kinds of possible multivariate linear regression analysis can be described as:

• For hpre = 0.1:

hopt

hpre

= 5.3579 ∗∆NL+ 1.5130 ∗∆Inn+ ϵ, ϵ ∼ N(0, 8.6109)

hopt

hpre

= 0.3937 ∗∆NL−1 + 2.7624 ∗∆Inn+ ϵ, ϵ ∼ N(0, 9.1916)

hopt

hpre

= 7.5320 ∗∆NL− (4.8065× 10−4) ∗∆Inn−1 + ϵ, ϵ ∼ N(0, 9.2414)

hopt

hpre

= 0.7201 ∗∆NL−1 − 0.0072 ∗∆Inn−1 + ϵ, ϵ ∼ N(0, 12.9135)

As discussed before, when hpre is small, the fraction hopt

hpre
should be positively

related to ∆NL and ∆Inn from the perspective of analysis. The first equation given

above also suggests that with smallest residual variance, since the other regressions

are less reliable with bigger variance.

When we consider the hpre to be 0.3, the four kinds of possible multivariate linear

regression analysis read:
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• For hpre = 0.3:

hopt

hpre

= 2.8649 ∗∆NL+ 0.2739 ∗∆Inn+ ϵ, ϵ ∼ N(0, 1.7116)

hopt

hpre

= 0.2075 ∗∆NL−1 + 0.7167 ∗∆Inn+ ϵ, ϵ ∼ N(0, 1.3587)

hopt

hpre

= 3.3948 ∗∆NL+ 0.0014 ∗∆Inn−1 + ϵ, ϵ ∼ N(0, 1.7276)

hopt

hpre

= 0.2758 ∗∆NL−1 − (3.1766× 10−4) ∗∆Inn−1 + ϵ, ϵ ∼ N(0, 1.7137)

The second equation also shows the best approximation result as that concluded

in Ch 3.1. The same situation happens in the case hpre = 0.5 and hpre = 1 as well.

• For hpre = 0.5:

hopt

hpre

= 1.6404 ∗∆NL+ 0.2220 ∗∆Inn+ ϵ, ϵ ∼ N(0, 0.7229)

hopt

hpre

= 0.1346 ∗∆NL−1 + 0.4272 ∗∆Inn+ ϵ, ϵ ∼ N(0, 0.4924)

hopt

hpre

= 2.1011 ∗∆NL+ (5.5139× 10−4) ∗∆Inn−1 + ϵ, ϵ ∼ N(0, 0.7339)

hopt

hpre

= 0.1743 ∗∆NL−1 − (3.2477× 10−4) ∗∆Inn−1 + ϵ, ϵ ∼ N(0, 0.6235)

• For hpre = 1:

hopt

hpre

= 0.7412 ∗∆NL+ 0.1300 ∗∆Inn+ ϵ, ϵ ∼ N(0, 0.1896)

hopt

hpre

= 0.0683 ∗∆NL−1 + 0.2072 ∗∆Inn+ ϵ, ϵ ∼ N(0, 0.1184)

hopt

hpre

= 1.0109 ∗∆NL+ (8.2141× 10−4) ∗∆Inn−1 + ϵ, ϵ ∼ N(0, 0.1922)

hopt

hpre

= 0.0869 ∗∆NL−1 − (2.5001× 10−4) ∗∆Inn−1 + ϵ, ϵ ∼ N(0, 0.1502)

Generally, for small hpre, the fraction hopt

hpre
turns to be bigger. If we have ini-

tial bandwidth hpre = 0.05 and use the transformation function generated from

hpre = 0.1, then we will get the optimal bandwidth hopt underestimated. If we ap-

ply the transformation equation generated from hpre = 0.1 on the initial bandwidth

hpre = 0.2, then hopt will be overestimated. In the IAGS algorithm, its iteration

strategy suggests that we should do the update with small bandwidth h for couple

of times instead of using the big bandwidth h in one run. Therefore, we accept the

possible underestimation of the optimal bandwidth hopt and make the transforma-

tion function for any hpre can be described by:
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• when hpre ∈ (0, 0.1],

hopt = min((5.3579 ∗∆NL+ 1.5130 ∗∆Inn)× hpre, 1)

• when hpre ∈ (0.1, 0.3],

hopt = min((0.2075 ∗∆NL−1 + 0.7167 ∗∆Inn)× hpre, 1)

• when hpre ∈ (0.3, 0.5],

hopt = min((0.1346 ∗∆NL−1 + 0.4272 ∗∆Inn)× hpre, 1)

• when hpre ∈ (0.5, 1],

hopt = min((0.0683 ∗∆NL−1 + 0.2072 ∗∆Inn)× hpre, 1)

In Ch 4, I will apply the above strategy for generating the optimal h separately

on a Toy Model and a Reservoir Model. The test result suggests that the IAGS done

with adaptive choice of h behaves better than fixed h and gives out good assimilation

result.
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Chapter 4

Simulation Studies

4.1. Simulation wtih Toy Model II

4.1.1. Introduction of Toy Model II

First, the results from Ch 3.2 will be tested with a different Toy Model II. The basic

idea of Toy Model II is almost similar to that used in Ch 3.2. The difference are in

the transformation function F (·) and the choice of some parameters. In Ch 3.2, in

order to build up couples of models with different nonlinearity, the transformation

function is chosen as:

F (X) = aX3 + 0.5X2 +X

where parameter a varies from 0.1 to 3.1 to change the model nonlinearity in small

step. The model parameters are chosen as:

µ = 2

σ = 1

µerr = 0

σerr = Ytrue/20

Xtrue ∈ [2.1 : 0.1 : 5]

In the Toy Model II, instead of considering so many transformations as used

in Toy Model I, I will simply vary the order of the transformation, which can be

denoted by:

F (X) = Xk

where k varies in [2, 3, 4].
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The parameters of Toy Model II are :

µ = 2

σ = 2

µerr = 0

σerr = Ytrue/20

Xtrue ∈ [3, 4, 5]

Since I will mainly focus on the performance of IAGS with updating h and IAGS

without updating h, I choose the sample size as 10000 instead of 100000 to save

some computation time.

4.1.2. Test Design

The test is about applying the two kinds of IAGS algorithm on the Toy Model II,

which is developed in Ch 4.1.1. The first kind of IAGS is done with the bandwidth

parameter h updated after every iteration, and the other one is done in the original

way with fixed bandwidth h.

With the determined Xtrue and the model nonlinearity order k, the test is done

in three scenarios with bandwidth h = [0.01, 0.05, 0.1, 0.2, 0.3]. In each scenario, the

minimal data mismatch from all the iterations are chosen to indicate the performance

of its corresponding IAGS. Besides, I also take the result from EnKS as the control

group. For each IAGS algorithm, the total number of iterations is 15.

4.1.3. Test Results

The three scenarios for different true states Xtrue are shown in Table 4.1, 4.2 and 4.3.

It can be seen that, in most cases, the IAGS with updating h performs better than

that without updating. Even if the algorithm starts with quite small bandwidth

h = 0.01, finally it gives out good result which is also better than that got from

EnKS, or one step EnKF.
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Table 4.1: Xtrue = 3. Minimal Data mismatch within 15 iterations.

h update k=2 k=3 k=4

0.01 yes 0.3621 0.2687 0.3761

0.01 no 0.6731 0.4170 1.9017

0.05 yes 0.3226 0.2838 0.3242

0.05 no 0.5216 0.3080 0.8008

0.1 yes 0.2739 0.2713 0.3927

0.1 no 0.3806 0.2830 0.5259

0.2 yes 0.3669 0.2623 0.3206

0.2 no 0.2993 0.2653 0.4668

0.3 yes 0.2753 0.2643 0.4978

0.3 no 0.3343 0.2655 0.2931

EnKS NA 0.9909 0.9923 1.0062

Table 4.2: Xtrue = 4. Minimal Data mismatch within 15 iterations.

h update k=2 k=3 k=4

0.01 yes 0.3591 0.2749 0.2700

0.01 no 0.6395 0.4404 0.8461

0.05 yes 0.2620 0.2607 0.2824

0.05 no 0.4136 0.3108 0.3279

0.1 yes 0.2619 0.2554 0.2945

0.1 no 0.2856 0.2844 0.2923

0.2 yes 0.2693 0.2607 0.2792

0.2 no 0.3054 0.2745 0.2931

0.3 yes 0.2616 0.2637 0.2819

0.3 no 0.2508 0.2521 0.2629

EnKS NA 0.9861 0.9970 1.0078
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Table 4.3: Xtrue = 5. Minimal Data mismatch within 15 iterations.

h update k=2 k=3 k=4

0.01 yes 0.3230 0.2511 0.2836

0.01 no 0.5129 0.4542 0.9777

0.05 yes 0.3188 0.2645 0.2740

0.05 no 0.5856 0.3281 0.4091

0.1 yes 0.2711 0.2649 0.2885

0.1 no 0.2876 0.2753 0.2868

0.2 yes 0.2870 0.2475 0.2772

0.2 no 0.2598 0.2552 0.2694

0.3 yes 0.2925 0.2650 0.2740

0.3 no 0.2723 0.2476 0.2764

EnKS NA 1.0147 1.0032 1.0035
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In order to look into one specified case about how the data mismatch changes

after each iteration and how the updated h is, I will take the case with k = 3 and

Xtrue = 4 as an example. See Table 4.4 and 4.5 and Figure 4.1.
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Figure 4.1: Toy Model II Data Mismatch of IAGS with different strategies.
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According to Table 4.4 and Figure 4.1, we can see that the IAGS with updating h

is a way to accelerate the original IAGS. For example, when we start with h = 0.01,

the result of IAGS with updating h is better than that got from original IAGS

only after 7 iterations. The similar situation happens when h = 0.05. For the case

h = 0.1, 0.2 or 0.3, although the acceleration is not significant, the result from IAGS

with updating h is still slightly better than that without updating.

Moreover, if we look into the Table 4.1, 4.2 and 4.3 for some general review of

all the scenarios, we can see that starting the IAGS with h = 0.01 and doing update

on h after each iteration will yield a good assimilation result. In general, starting

IAGS with h = 0.01 will cause no bias problem for any models, so we can view

that starting with small h and updating h according to ∆NL and ∆Inn as a stable

strategy for any cases.
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4.2. Simulation with a Reservoir Model

To test the performance of IAGS with updating bandwidth h in a more realistic

model, I use the “simsim inp het five spot” model from the “SimSim” simulator,

which is introduced in the introduction chapter. The simulation period is chosen as

240 (days), with the measurement data taken on tob = [30 : 30 : 240](day).

4.2.1. Sample Size Nsample = 30

The IAGS method is performed with different sample sizes Nsample. When choosing

the Nsample = 30, the objective function values of IAGS with different strategies are

shown in Table 4.6. After the iterations where the objective function value begins

Table 4.6: Objective Function Value, Nsample = 30

0.01 0.01 0.05 0.05 0.1 0.1 EnKS

update Yes No Yes No Yes No NA

Initial 1422.22 1422.22 1422.22 1422.22 1422.22 1422.22 1422.22

Iter=1 1172.90 1172.90 215.22 215.22 79.65 79.65 134.45

2 84.83 1103.52 87.76 157.51 (87.71) 74.53

3 (100.31) 493.29 (90.12) 118.49 (83.25)

4 309.02 119.36

5 246.76 104.90

6 (271.11) (110.81)

to increase, the assimilation result is not shown in Table 4.6. It can be seen that,

similar to the Toy Model II, when applying the IAGS with updating h, the objective

function value decreases to its minimal value within 3 iterations. However, if we use

simply the original IAGS method, the decreasing of the objective function value is

quite slow.

For the IAGS with updating bandwidth parameter h,the h is shown in Table 4.7.

Table 4.7: Nsample = 30, bandwidth h in the updated IAGS

Iteration 1 2 3

h=0.01 0.0100 0.1038 0.0484

h=0.05 0.0500 0.2425 0.2158

h=0.1 0.1000
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The plot of the corresponding updated permeability is shown in Figure 4.2 and

4.3. For the case where hinitial = 0.1, the result from updated IAGS and the original

IAGS is same, so I did not display the permeability plot of it.

4.2.2. Sample Size Nsample = 100

Since there is no confirmation step, the computation of smoother methods is rela-

tively cheaper compared to other Bayesian methods. I also test the performance of

IAGS with some large sample size. When choosing the Nsample = 100, the objective

function values of IAGS with different strategies are shown in Table 4.8.

Table 4.8: Objective Function Value, Nsample = 100

0.01 0.01 0.05 0.05 0.1 0.1 EnKS

update Yes No Yes No Yes No NA

Initial 1608.84 1608.84 1608.84 1608.84 1608.84 1608.84 1608.84

Iter=1 1462.33 1462.33 405.56 405.56 78.08 78.08 77.05

2 346.83 1553.96 55.87 219.63 58.88 53.88

3 76.86 1464.40 (57.76) 146.99 48.68 51.13

4 76.55 1221.90 114.27 (53.55) (59.47)

5 (76.92) 928.43 99.46

6 660.57 93.02

7 424.1156 86.1092

8 378.6593 (103.089)

9 358.3235

10 (359.4592)

For the IAGS with updating bandwidth parameter h,the h is shown in Table 4.9.

Table 4.9: Nsample = 100, bandwidth h in the updated IAGS

Iteration 1 2 3 4 5

h=0.01 0.0100 0.0572 0.4341 0.1648 0.1385

h=0.05 0.0500 0.3113

h=0.1 0.1000 0.0623 0.3958

The permeability plots for different hinitial are shown in Figure 4.4, 4.5 and 4.6.

To sum up, the updated IAGS still works better than the original IAGS, and

also better than the EnKS method.
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Figure 4.2: Nsample = 30, hinitial = 0.01, Permeability Plot of Reservoir Model
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Figure 4.3: Nsample = 30, hinitial = 0.05, Permeability Plot of Reservoir Model
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Figure 4.4: Nsample = 100, hinitial = 0.01, Permeability Plot of Reservoir Model
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Figure 4.5: Nsample = 100, hinitial = 0.05, Permeability Plot of Reservoir Model
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Figure 4.6: Nsample = 100, hinitial = 0.1, Permeability Plot of Reservoir Model

48



Conclusion

In this report, we research on how to accelerate the IAGS method by choosing the

bandwidth parameter hopt adaptively. The research starts with how to measure

the model nonlinearity in a uniform way, so that the studies associated with this

measure can be applied in other cases.

Since this new measure is based on the statistics from both the previous itera-

tion and the upcoming iteration, we generate the adaptive bandwidth hopt for the

upcoming iteration by updating the hpre for the previous one. Moreover, in order

to take the assimilation performance of the previous iteration into account, we also

consider the ratio of the innovations from the two iterations as an aspect influencing

the updating of bandwidth h. To sum up, the adaptive bandwidth hopt is computed

based on three data: the newly developed nonlinearity measure, the ratio of the

innovations and the previous bandwidth hpre.

The multivariate regression analysis is done by splitting the domain of the pre-

vious bandwidth hpre and then considering the relationship between the ratio hopt

hpre

and the other two statistics within each domain.

The accelerated IAGS is promising from a theoretical point of view. It starts with

small bandwidth h, so that little bias will be introduced in the initial step. Besides,

in the following iterations, the update of bandwidth h is highly related to the model

nonlinearity and, in order to avoid introducing bias, we prefer to underestimate

the adaptive bandwidth h rather than calculating that accurately with the risk of

overestimation.

The result from the accelerated IAGS is satisfactory in both the Toy Model and

the reservoir model experiment. The data mismatch and the objective function value

decrease faster to smaller values with the accelerated IAGS than with the original

one. And Both of them behave better than the EnKS.

The accelerated IAGS method requires more investigation and especially com-

parison with some other reasonable methods than EnKS, for example the MCMC

method. This adaptive way of selecting h can also be tested on other iterative meth-

ods which are available with a dampened Kalman Update, such as ES-MDA[1] and

LM-EnRML[32]. Moreover, it is possible to investigate the multivariate regression

function of hopt with not only splitting the domain of the previous bandwidth hpre
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but also splitting that of the nonlinearity measure and the ratio of the innovations.

And more types of the regression functions may be considered, say a higher order

polynomial function or some functions with crossterms.
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Appendix A

List of Symbols and Abbreviations

Table A.1: List of Abbreviations

Abbreviation Description

EnKF Ensemble Kalman Filter

EnKS Ensemble Kalman Smoother

SIS Sequential Importance Sampling

SIR Sequential Importance Reampling

AGM Adaptive Gaussian Mixture

IAGM Iterative Adaptive Gaussian Mixture

IAGS Iterative Adaptive Gaussian Smoother
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Table A.2: List of Symbols I

Sympol Description

ξi ensemble member i

ξik prior ensemble member i at time step k

ξ̂ik posterior ensemble member i at time step k

Mk(ξi) measurement from ensemble member i at time step k

R covariance matrix of measurement error

yk true measurement at time step k

N ensemble size

Nd number of measurements

D data mismatch

O(ξi) objective function of ensemble member i

OB mean objective function value of all the ensemble members

wi
k weight of ensemble member i at time step k

Xk prior state vector at time step k

X̂k posterior state vector at time step k

X̃k extended state vector at time step k

Yk measurement vector at time step k

Mk transformation matrix from extended state vector

X̃k to measurement vector Yk

f(·) forward operator of the state vector

ηk model error

ϵk measurement error

Q covariance matrix of model error

µp prior mean of state vector

Cp prior covariance matrix of state vector

Pk approximated covariance matrix of ensemble members

ds length of state vector

dm length of measurement vector

Fk linear approximation of forward operatior f(·)
p(X0:k|Y1:k = y1:k) posterior density function of state vectors {Xj}kj=0

based on the measurement {yj}kj=1

g(X0:k|Y1:k = y1:k) prescribed importance function of state vectors {Xj}kj=0

based on the measurement {yj}kj=1

N̂eff effective ensemble size

Φ(X− µ,P) Gaussian density function with mean µ and convariance matrix P

Nc prescribed ensemble size
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Table A.3: List of Symbols II

Sympol Description

h bandwidth parameter of AGM

α adaptive shrink parameter of AGM

αopt optimal adaptive shrink parameter of AGM

Xtrue true parameter in Toy Problem

Dnew updated data mismatch in Toy Problem

Dold original data mismatch in Toy Problem

Pupdate update performance of the AGM in theToy Problem

NLj original nonlinearity measurement at iteration j

∆NLj modified nonlinearity measurement at iteration j

∆Innj innovation measurement at iteration j

hopt optimal bandwidth parameter

hpre bandwidth used in the previous iteration

σerr standard variance of measurment error in Toy Problem

µerr mean of measurment error in Toy Problem

σ standard variance of state parameter in Toy Problem

µ mean of state parameter in Toy Problem

hinitial initial bandwidth parameter used in IAGS or IAGM

Nsample ensemble size used in the Reservoir model
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