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Abstract
This study investigates the performance of two ob-
jective speech quality metrics, Perceptual Evalua-
tion of Speech Quality (PESQ) and Virtual Speech
Quality Objective Listener (ViSQOL), in predicting
human-rated speech quality scores, which are es-
sential for telecommunication systems’ Quality of
Experience (QoE). These metrics have been vali-
dated using a limited number of languages due to
the insufficiency of labeled data with human-rated
scores. This research focuses on the applicability
of PESQ and ViSQOL in Turkish and Korean, two
languages that were not part of the validation data
for calibrating these metrics.
The experiment used English as the baseline lan-
guage for comparison, and the results showed
that Turkish samples had higher average ViSQOL
scores, with the difference being statistically sig-
nificant compared to the English samples. Further-
more, Turkish male speakers had the highest cor-
relation between PESQ and ViSQOL scores, and
ViSQOL rated speech higher than PESQ, especially
under babble noise degradations. Future research
should focus on extending this study by explor-
ing biases across additional metrics and languages,
while also constructing a dataset with labeled sub-
jective scores for more languages to improve the
calibration of these metrics.

1 Introduction
Measuring speech quality in telecommunication systems is
essential to ensure optimal user experiences, and has been
a topic of extensive research driven by the need to adapt to
evolving technologies. Perceptual audio quality refers to the
way sound is perceived by human listeners. To evaluate this
quality, the International Telecommunication Union (ITU-T)
has established a range of standardized metrics over time, in-
corporating both subjective and objective methods for assess-
ing speech quality in telecommunication systems [1] [2] [3].

Subjective methods involve human participants rating the
perceived quality of speech signals on a predefined scale. The
most commonly used approach is the Mean Opinion Score
(MOS), standardized in ITU-T Recommendation P.800 [4],
in which, participants assign scores ranging from 1 (”bad”)
to 5 (”excellent”). The MOS is calculated as the mean of
these individual ratings.

While accurate, these methods are time-consuming and
costly. In contrast, objective metrics provide an automated
approach to predicting speech quality that aims to emulate
human ratings, offering a faster, scalable, and more efficient
alternative [3].

For this reason, objective speech quality metrics have been
a significant research focus, leading to the standardization
of PESQ by ITU-T in 2000 [5], and its successor, Percep-
tual Objective Listening Quality Analysis (POLQA) [6], in
2011. Over time, additional metrics such as ViSQOL [7],
Non-Intrusive Speech Quality Assessment (NISQA) [8], and

3-fold Quality Evaluation of Speech in Telecommunications
(3QUEST) [9] have been developed.

These objective metrics analyze audio signals to simulate
the human auditory system, producing scores that are then
mapped to subjective MOS values. The performance of these
metrics is then measured by the correlation between objective
quality scores and their corresponding subjective MOS scores
[10]. Due to the limited availability of human-rated speech
quality data, these mappings have been developed and vali-
dated using data from a restricted set of languages. Specifi-
cally, PESQ’s mapping is based on only nine languages [11],
while POLQA’s mapping is based on ten languages [6]. This
approach assumes that the linguistic features present in the
training data are sufficient to generalize across different lan-
guages, dialects, and accents.

As a result, speech quality assessments for languages out-
side their original validation data may be affected. Given
the rapid expansion of multilingual speech processing ap-
plications and telecommunication systems used across the
globe, growing concerns have been raised about the appli-
cability of these metrics to languages outside their valida-
tion set [2]. Therefore, understanding the robustness of these
metrics across diverse languages is critical to ensure accurate
quality assessments.

To address these concerns, this study investigates the per-
formance of two popular objective metrics. Specifically, it
focuses on PESQ and ViSQOL. A more in-depth explanation
of these metrics can be found in section 2. This study evalu-
ates their performance in two languages, Turkish and Korean,
and compares the results to those of English, which is used as
the reference for comparison. Turkish is spoken by approx-
imately 75 million people and accounts for 1.8% of content
on relevant websites across the Internet, with an internet pen-
etration rate of 86.5% as of early 2024 [12] [13] [14]. Korean,
spoken by around 80 million people, makes up 0.8% of such
content, with an internet penetration rate in South Korea of
97.2% [15] [13] [16]. Due to these factors, both languages
have been considered relevant for research purposes.

The main research question is the following:

• How does the performance of PESQ and ViSQOL vary
in predicting speech quality for Turkish and Korean, two
languages outside their mapping function validation set,
considering the effects of gender and different degrada-
tion types?

Limited research has been conducted in this area. Ko-
nane et al. [17] examined the performance of the PESQ and
POLQA metrics for speech quality in two local languages of
Burkina Faso (Moore and Dioula), comparing them to En-
glish and French. They concluded that, while Moore and
Dioula influence PESQ, they do not appear to affect POLQA.

Additional research, such as that by Ben Ali et al. [2], in-
vestigated the performance of PESQ for Arabic speech. Their
study showed that Arabic speech contains more stationary re-
gions than English, which may lead to PESQ scores being
more accurate for Arabic speech under similar network con-
ditions.

This study aims to extend previous research by examining
the generalizability of PESQ and ViSQOL when applied to



languages outside their mapping function validation set.
The rest of the paper proceeds as follows: in section 2,

a brief introduction about objective speech quality metrics
is given. Section 3 covers the methodology used to gather,
process the data, and perform the experiment. Section 4 dis-
cusses the results extracted from the experiment. Section 5
covers the responsible research practices and reproducibility
of the work. Lastly, section 6 summarizes the research con-
clusions and discusses recommendations for future work.

2 Overview of Objective Speech Quality
Metrics

Objective speech quality metrics can be categorized into two
types:

• Intrusive Metrics: Compare a degraded speech signal
to a clean reference signal to estimate quality. Some
examples include PESQ, POLQA, and ViSQOL. These
models calculate a perceptual distance between the ref-
erence and degraded signal to approximate how a hu-
man listener might rate the quality [18]. They are also
referred to as full-reference metrics [19].

• Non-Intrusive Metrics: Evaluate the quality of speech
without the need for a reference signal. They analyze
characteristics of the degraded signal alone by compar-
ing it to an estimation of the reference signal, or check-
ing the degraded signal to find unnatural patterns [3].
They are also known as single-reference metrics. Exam-
ples include ITU-T P.563 [20] and more modern deep
learning-based approaches.

2.1 Perceptual Evaluation of Speech Quality
(PESQ)

PESQ is an intrusive objective speech quality metric that was
standardized by the ITU-T as Recommendation P.862 in 2001
[5] [21]. It was developed to predict the subjective quality of
narrowband telephony systems and speech codecs designed
for narrowband communication (300-3,400 Hz) [5].

PESQ operates as an intrusive metric, requiring both the
reference and degraded signals for analysis. The algorithm
consists of several steps. First, it aligns the reference and de-
graded signals to the same power level as the one used for
subjective tests. It then compensates for filtering effects from
the network, adjusts for any timing discrepancies (such as
variable delays), and simulates the signal through the human
auditory system. Finally, it calculates disturbance parameters,
including symmetric and asymmetric disturbances, to quan-
tify the perceived audio quality [22]. An overview of these
processing steps is shown in Figure 1.

PESQ produces raw scores in the range of -0.5 to 4.5,
which are not directly comparable to subjective MOS scores.
To address this, ITU-T Recommendation P.862.1 introduced
a third-order polynomial mapping function that transforms
the raw scores into MOS Listening Quality Objective (MOS-
LQO) values, allowing for consistent comparisons with other
quality metrics. The resulting MOS-LQO scores for speech
are in the range of 1 to 5 and were optimized using subjec-
tive data across various applications and languages. Specifi-
cally, the following nine languages were considered: British

Figure 1: Diagram illustrating key steps in the PESQ algorithm [21].

English, American English, Swedish, French, Italian, Ger-
man, Finnish, Dutch, and Japanese [11]. This mapping has a
strong accuracy in predicting MOS-LQO scores, with results
indicating that 93.5% of its predictions fall within 0.5 MOS
of the correct subjective scores. However, these tests were
conducted only in the languages previously mentioned.

2.2 Virtual Speech Quality Objective Listener
(ViSQOL)

ViSQOL is another intrusive objective speech quality metric
that was developed by a team of researchers at Trinity College
Dublin with the support of Google in 2015 to address limi-
tations in existing metrics like PESQ, particularly for mod-
ern communication systems such as Voice over IP (VoIP) [7].
ViSQOL uses a model inspired by human auditory percep-
tion, making it suitable for both speech and general audio in
narrowband and wideband signals.

It works by converting both the reference and degraded sig-
nals into spectrograms, which represent the signals across
time and frequency. These spectrograms are divided into
small patches, and a similarity score is computed for
each patch using the Neurogram Similarity Index Measure
(NSIM). To handle timing issues like clock drift or jitter,
ViSQOL aligns the patches and compares warped versions of
the reference patches [7]. The similarity scores are averaged
and mapped to a MOS-LQO scale ranging from 1 to 5.

This mapping function relies on subjective datasets that
were not publicly released [7]. Despite this limitation,
ViSQOL has shown strong performance in predicting speech
quality across various degradation types [23].

3 Methodology
This section details the methodology used to assess the qual-
ity of speech signals exposed to various degradation condi-
tions across different languages. In the experiment, reference
speech samples in multiple languages were subjected to vari-
ous types of noise and progressively higher levels of degrada-
tion to compare the performance of objective speech quality
metrics. This section is structured around the following parts:
dataset pre-processing, degraded signal generation, degrada-
tion types, and used libraries and implementations.

3.1 Dataset Pre-Processing
The experiments were conducted using the ALLSSTAR Cor-
pus Multilingual Dataset [24], which includes recordings of
male and female speakers reading text samples in multiple



languages. This dataset was selected because it contains sam-
ples in Turkish and Korean, two languages that were not
previously used to evaluate the mapping functions to MOS-
LQO scores [11]. Furthermore, it is open-source, promoting
open science and making the experiment easy to reproduce,
while adhering to ethical guidelines, which are further de-
tailed in 5. The samples were recorded under the same con-
ditions, ensuring data reliability and consistency for the re-
search. The dataset also includes American English samples,
which served as a baseline for comparison, given that English
was used during the metric validation phase.

The dataset contains samples of speakers reading various
pieces of text, such as the Declaration of Human Rights or
individual sentences. For each language, 16 samples were
extracted using the open-source Python library pydub [25],
applying the split on silence method. The samples used have
the following characteristics:

• The dataset consists of an equal male-female ratio (8
male, 8 female), with participants aged 18 to 29 years,
and an average age of 22 years. All participants are na-
tive speakers of their respective languages. This bal-
anced representation ensures that potential gender or
age-related biases are minimized. However, some limi-
tations were acknowledged and are discussed in 5.4.

• Each sample has a duration of 5-10 seconds, containing
1-2 sentences of recorded speech without any pauses in
between, and an average speech activity rate of 97.8%.
This ensures that the samples are long enough to cap-
ture meaningful speech characteristics with minimal in-
terruptions, allowing for an analysis of the speech qual-
ity without irrelevant noise or silence.

• The audio samples are recorded in PCM signed 16-bit
little-endian format with a bit rate of 353 kbps and a
sampling rate of 22050 Hz. This high-quality audio
format ensures that any observed degradation in speech
quality can be accurately attributed to the added degra-
dations rather than distortions from the recording itself.

3.2 Degradation Conditions
Various degradations were applied to simulate different real-
world conditions for speech signals. These types of noise
are commonly used in audio testing to replicate environments
where speech quality may be affected by background interfer-
ence [26]. The following list contains the degradation types
used in the study:

• Pink Noise: A type of noise where the power density is
inversely proportional to the signal frequency, resulting
in a balanced sound across octaves [27]. Pink noise was
used as it is commonly observed in nature, resembling
sounds such as waterfalls, wind, and rain.

• Blue Noise: The opposite of pink noise, with power
density increasing with frequency [27]. Blue noise was
used to simulate distortion in systems that are sensitive
to higher frequencies.

• Babble Noise: A type of noise that replicates the sound
of human speech in a crowded environment, consisting

of multiple overlapping voices. This is commonly en-
countered in settings such as busy restaurants, where
conversations occur simultaneously, making it challeng-
ing to distinguish individual speech signals [28].

The noise samples used for speech degradation can be
found on the project’s GitHub repository [29] .

3.3 Degraded Signal Generation
To construct the degraded signal for evaluation by the full-
reference metrics, a specific degradation process was applied
to all original speech samples. The complete process is out-
lined in Figure 2.

Figure 2: Diagram of the degradation process applied to the original
speech samples for intrusive metric evaluation.

1. Down-sampling and IRS filtering: This step replicates
the bandwidth limitations commonly found in legacy
telecommunication systems. Initially, the speech and
noise samples were converted to mono signals using the
pydub function split to mono. They were then down-
sampled to 8 kHz to achieve a wideband signal. Next,
an Intermediate Reference System (IRS) filter [30] was
applied, incorporating both low-pass and high-pass fil-
tering. The IRS filter replicates the frequency response
characteristics of older telecommunication systems by
restricting the bandwidth to the range of 300 Hz to 3.4
kHz, resulting in a narrowband signal.

2. Normalization: Speech and noise signals were normal-
ized to -26 dBFS (decibels relative to full scale) prior to
mixing. This ensures consistent levels across all samples
prior to the mixing stage and provides sufficient head-
room to prevent clipping. The speech signal obtained
during this step is used as the reference signal in the ex-
periment.

3. Mixing: In the following stage, speech samples were
mixed with the noise signals to introduce degradation ef-
fects. Noise samples were trimmed to match the length
of the speech signals, and the noise intensity was varied
using signal-to-noise ratio (SNR) levels ranging from -
25 dB to 40 dB in increments of 5 dB. SNR measures
the relative strength of the desired signal (speech) com-
pared to the background noise, with higher SNR values
indicating clearer speech and lower noise, while lower
values reflect higher noise levels relative to the speech
signal. The formula for calculating the required gain



to achieve the correct SNR for the noise signal is pre-
sented in equations 1 and 2, where RMS is the Root
Mean Square, which is a measure of a signal’s effective
power or amplitude [31].

RMSnoise desired =
RMSsignal

10
SNRtarget

20

(1)

Gainrequired = 20 log10

(
RMSnoise desired

RMSnoise current

)
(2)

4. Re-normalization: The combined signal (speech +
noise) was re-normalized to -26 dBFS to ensure consis-
tent loudness levels across all samples after the mixing
stage.

5. Encoding/Decoding: Samples were encoded and de-
coded using the ITU-T standard G.711 codec [32],
specifically employing the A-law algorithm [33], which
is generally used in telecommunication systems in Eu-
rope to reduce the dynamic range of the signal. This step
simulates the effects of compression and decompression
on speech quality, and results in the final degraded sam-
ple used for evaluation.

The final dataset consisted of 2016 degraded signals,
derived from the following calculation: 14 SNR levels ·
3 degradation types · 16 samples per language · 3 languages.
These degraded signals were compared against a total of 48
reference signals (16 samples per language · 3 languages).

3.4 Used Libraries and Implementations
For the implementation, various open-source resources were
used to assess and process speech signal quality. These re-
sources were selected to support open science and ensure that
the experiment can be freely reproduced by others. This is
further detailed in 5.1.

• For PESQ, an open-source Python implementation from
Wang et al. was used to evaluate narrowband speech at
8 kHz [34].

• The ViSQOL implementation provided by the Audio
Toolbox in MATLAB 2024b was used in speech mode
[35]. Due to the default input constraints of this specific
implementation, it was required to resample the refer-
ence and degraded signals to 16 kHz prior to running
the algorithm in the MATLAB engine for Python.

• Pydub [25] is a Python library designed for audio manip-
ulation, which provides an interface to work with various
audio formats. It was used during the degraded audio
generation process.

• Numpy [36], skicit-learn [37], Scipy [38] and Pandas
[39] are open-source Python libraries that were used to
manipulate the results to perform statistical analyses and
extract conclusions.

• Matplotlib [40] is a popular open-source Python library
that was used to generate visualizations of the results.

4 Results
This section presents and discusses the results obtained from
conducting the previously described experiment of evaluat-
ing PESQ and ViSQOL against Turkish, Korean and English
degraded samples.

Figure 3 shows the evolution of the average PESQ and
ViSQOL MOS-mapped scores per SNR value, segmented by
language. These are the final scores generated by the algo-
rithms after the final mapping function is applied, based on
their original validation data. Note that only the final MOS-
mapped score was returned from the algorithm, as the original
scores were not available with the metric implementations.
The data presented in this figure indicates that, while no sig-
nificant difference is observed between the scores for PESQ,
there is a notable trend in the ViSQOL results. Specifically,
on average, ViSQOL mean scores for Turkish are 4.95%
higher than those for English, corresponding to a difference
of 0.19 points. However, when focusing on the SNR range
from 0 dB to 25 dB, this difference increases to an average of
10.18%, equivalent to 0.34 points.

Figure 3: Evolution of average PESQ and ViSQOL MOS-mapped
scores (1 = ’bad’, 5 = ’excellent’) across all degradation types, seg-
mented by language, with SNR values from -25 dB to 40 dB.

This phenomenon is further illustrated in Figure 4, which
presents a boxplot highlighting the key statistical features of
the score distributions (median, mean, quartiles, minimum,
maximum) for both PESQ and ViSQOL scores across lan-
guages. Notably, the median ViSQOL score for Turkish is
observed to be 9% higher than those for English and Korean.

However, this information alone is insufficient to deter-
mine whether the differences in Turkish scores are statisti-
cally significant when compared to the rest. To further sub-
stantiate the findings and evaluate the influence of language
on objective speech quality ratings, we use the Kolmogorov-
Smirnov (KS) test [41], a non-parametric statistical method
designed to assess whether two independent samples (PESQ
and ViSQOL scores for different languages) are drawn from
the same underlying distribution. This non-parametric test
was chosen due to the bimodal nature of the distributions,
as seen in Figure 5. Traditional parametric tests such as the
t-test, Pearson correlation coefficient, or ANOVA are not ap-
propriate, since they assume normality and unimodal distri-



Figure 4: Boxplots of PESQ and ViSQOL scores (1 = ’bad’, 5 =
’excellent’) by language, showing the distribution of speech quality
metrics.

butions [42]. In contrast, the KS test is suitable in this case
because it is non-parametric, meaning it does not assume a
specific data distribution and can be applied to any type.

The KS test compares the cumulative distribution functions
(CDF) of two groups and calculates the maximum difference
between them, resulting in a KS-statistic value. The corre-
sponding p-value indicates the probability of obtaining a KS-
statistic as large as the one observed, assuming that the null
hypothesis is true. The null hypothesis for the KS test states
that the two samples being compared come from the same
distribution. If the p-value falls below a predefined signifi-
cance threshold (α), we reject the null hypothesis and con-
clude that the distributions of scores differ significantly. A
lower p-value means there is stronger evidence that the null
hypothesis is incorrect.

For this study, a significance threshold of 0.05 was chosen,
as it is commonly used to balance the risk of Type I errors
(false positives), where a true null hypothesis is incorrectly
rejected, while still ensuring practical significance [43] [44].
In contrast, for studies where the potential impact of false
positives is larger, such as causing harm, a lower threshold is
often applied to reduce this risk [45].

Table 1 presents the results of the KS tests for PESQ and
ViSQOL scores. For the PESQ scores, the p-values for all
pairwise comparisons are greater than 0.05. This means that
we fail to reject the null hypothesis in all cases, indicating
language does not appear to have a significant effect on the
PESQ scores. In contrast, for the ViSQOL scores, a signif-
icant difference is observed in the comparison between En-
glish and Turkish, with a p-value of 0.02, which is below
the 0.05 significance threshold. This suggests that the dis-
tributions of ViSQOL scores for English and Turkish differ
significantly. However, the other pairwise comparisons both
have p-values greater than 0.05. Therefore, based on the data
analyzed, while there is a significant difference between the
English and Turkish distributions of ViSQOL scores, no sig-
nificant differences can be found in the other pairwise com-
parisons. It is important to note that failing to reject the null
hypothesis does not prove that no differences exist, it only
suggests that any observed differences could be due to ran-
dom variation, and further investigations may be necessary.

Referring back to Figure 4, in the PESQ boxplot, the me-
dian lies below the mean for all languages, indicating that

Table 1: Kolmogorov-Smirnov (KS) test results for PESQ and
ViSQOL scores segmented by language.

Metric Comparison KS-statistic p-value

PESQ
English vs Korean 0.17 0.61
English vs Turkish 0.20 0.44
Korean vs Turkish 0.21 0.29

ViSQOL
English vs Korean 0.14 0.79
English vs Turkish 0.33 0.02
Korean vs Turkish 0.23 0.18

the values are clustered towards the lower end of the scale. In
contrast, the ViSQOL boxplot shows the opposite case, where
the median is positioned above the mean, suggesting that the
values are clustered towards the higher end of the scale. Over-
all, the PESQ scores show a concentration of lower values,
while the ViSQOL scores indicate a concentration of higher
values.

++This is further illustrated by Figure 5, which displays a
violin plot with the density distribution of PESQ and ViSQOL
scores by language. For PESQ scores, the highest density is,
on average, observed to have a score of 1.44, whereas, for
ViSQOL scores, the peak density occurs on average at 4.19.
As noted earlier, PESQ scores are more concentrated towards
the lower end of the scale, resulting in a longer tail on the
right. On the other hand, ViSQOL scores are more densely
distributed at the higher end, leading to a longer tail on the
left.

Figure 5: Density distributions of PESQ and ViSQOL scores (1 =
’bad’, 5 = ’excellent’) by language, illustrating the variation in score
distributions across languages.

Figure 6 presents a comparison of the average PESQ and
ViSQOL scores across different degradation types. Build-
ing on the previous discussion regarding the density distribu-
tions, this visualization further confirms that ViSQOL scores
are generally higher than PESQ scores. This discrepancy be-
tween PESQ and ViSQOL scores is most noticeable in sam-
ples affected by babble noise. Specifically, the average dif-
ference in scores for babble noise is 72% greater than the av-
erage differences observed in pink and blue noise conditions.
This suggests that background crowd noises have a smaller
impact on ViSQOL scores for the considered languages.

To confirm this, Table 2 presents the KS test results for
PESQ and ViSQOL scores across different degradation types.
It can be observed that babble noise comparisons in ViSQOL



Figure 6: Evolution of PESQ and ViSQOL scores (1 = ’bad’, 5 =
’excellent’) segmented by degradation type with SNR values from
-25 dB to 40 dB.

produce the lowest p-values, with a significant difference be-
tween babble and blue noise scores (p-value = 0.04), assum-
ing the same significance threshold as before of 0.05. Al-
though the p-value for the pink and babble noise comparison
is 0.06, which is close to significance, further investigation
with additional speech samples and varied noise types is rec-
ommended for future work.

Table 2: Kolmogorov-Smirnov (KS) test results for PESQ and
ViSQOL scores segmented by degradation type.

Metric Comparison KS-statistic p-value

PESQ
Blue vs Pink Noise 0.12 0.93

Blue vs Babble Noise 0.17 0.61
Pink vs Babble Noise 0.19 0.44

ViSQOL
Blue vs Pink Noise 0.10 0.99

Blue vs Babble Noise 0.31 0.04
Pink vs Babble Noise 0.29 0.06

To analyze the impact of gender, Figure 7 illustrates the
correlation between PESQ and ViSQOL scores, segmented
by language and gender. The curves in the figure were gener-
ated by fitting a cubic polynomial function to the respective
scores. As observed, all language groups exhibit a similar
trend, with the exception of Turkish male speakers. The gap
between PESQ and ViSQOL scores appears to be smaller for
this group, indicating a distinct pattern.

To provide a more detailed analysis, Table 3 presents a sta-
tistical comparison of PESQ and ViSQOL scores across dif-
ferent languages and genders. The table includes key met-
rics such as the mean absolute deviation (MAD), root mean
squared deviation (RMSD), and mean difference between
PESQ and ViSQOL scores. Results are reported for three
groups: the overall dataset, all subsets except Turkish male
speakers (Non-TM), and Turkish male speakers (TM) specif-
ically. Additionally, the last column shows the difference
between the results of Turkish male speakers and the non-
Turkish male speaker group, which is useful to highlight any
variations specific to Turkish male speakers.

As seen, Turkish male speakers have lower MAD and
RMSD values compared to both the overall dataset and the
non-Turkish male group. Specifically, the MAD for Turk-

Figure 7: PESQ and ViSQOL scores (1 = ’bad’, 5 = ’excellent’) cor-
relation segmented by gender, with data fitted using a cubic polyno-
mial function.

Table 3: Statistical metrics: mean average deviation (MAD), root
mean squared deviation (RMSD), and mean difference, compar-
ing the correlation of PESQ and ViSQOL scores for the overall
dataset, average scores excluding non-turkish male speakers (Non-
TM), turkish male speakers (TM), and the difference between the
last two groups (Diff).

Metric Overall Non-TM TM Diff
MAD 0.71 0.73 0.62 -0.11

RMSD 0.89 0.91 0.77 -0.13
Mean difference -0.62 -0.65 -0.47 0.18

ish male speakers is 0.62, which is 17.25% lower than the
non-Turkish male group. Similarly, the RMSD for Turkish
males is 0.77, 17.38% lower compared to the non-Turkish
male group. Lastly, the mean difference between PESQ and
ViSQOL scores is 0.18 lower for Turkish male speakers, rep-
resenting a 37.9% increase in alignment compared to non-
Turkish males.

Since the mean difference is negative for both groups,
PESQ scores are consistently lower than ViSQOL scores, but
the gap is notably smaller for Turkish male speakers. This
suggests that, on average, the PESQ and ViSQOL scores for
Turkish male speakers are more closely aligned, whereas the
non-Turkish male group experiences a larger discrepancy be-
tween the two metrics.

5 Responsible Research
This section outlines the key principles of responsible re-
search that have guided this study. It emphasizes the im-
portance of reproducibility, ethical conduct, and limitations
throughout the research process.

5.1 Reproducibility of Research
This study follows the FAIR (Findable, Accessible, Interop-
erable, and Reusable) principles [46] to ensure reproducibil-
ity and transparency. In alignment with these principles,
all project code and data have been made publicly available
on GitHub [29] under an MIT license [47]. Additionally,



this paper provides a comprehensive explanation of the re-
search methodology, including the degraded dataset genera-
tion steps, and detailed experimental results and figures.

All libraries and datasets used, such as PESQ, Pydub, Mat-
plotlib, skicit-learn, Scipy, Pandas, and the ALLSSTAR Cor-
pus dataset, are open-source, freely available to the public,
and clearly referenced to facilitate reuse. Open-source re-
sources were prioritized wherever possible. The only excep-
tion was the ViSQOL implementation used, which is accessi-
ble in Python only via the MATLAB engine. Although MAT-
LAB is a paid platform, it is widely used in academia and
is often accessible through educational institutions. For this
reason, its use was considered appropriate for this research.
By providing detailed documentation and openly sharing re-
sources, this research enables independent validation and en-
courages scientific collaboration.

5.2 Ethical Considerations
The use of publicly available datasets like the ALLSSTAR
Corpus ensures transparency and anonymity. All participants
in the dataset were informed and gave consent for their con-
tributions, with the dataset providing only demographic in-
formation like age, gender, and native language without any
personal identifiers such as name. The dataset is licensed
under a Creative Commons Attribution 4.0 International Li-
cense [48], making it suitable for research purposes.

Efforts were made to avoid bias by ensuring an equal ra-
tio of male to female participants and conducting a fair eval-
uation of speech quality across multiple languages. Further-
more, there were no financial or personal interests influencing
this work, ensuring objectivity throughout the research.

5.3 Usage of Large Language Models (LLMs)
LLMs were used to simplify the research process by extract-
ing information from text files, organizing it into tables in La-
TeX format, and converting the data into JSON format. This
made it easier to create visualizations, such as plots, which
helped explain the results. The detailed prompts can be found
in Appendix A.

5.4 Research Limitations
While the methodology was designed to provide robust and
reliable results, it is important to acknowledge some limita-
tions that may influence the generalizability of this study:

• The ALLSSTAR Corpus dataset includes a limited num-
ber of speakers per language, with most languages hav-
ing fewer than eight female speakers. As a result,
achieving a 50-50 male-to-female ratio was not feasi-
ble in all cases. To address this, additional samples from
the same female speakers were used when necessary to
maintain the desired gender balance.

• The dataset included both male and female voices, but
its limited linguistic diversity (only two languages) and
age range (18-29 years) may introduce gender-related
and age-related biases, limiting generalizability to other
groups.

• The study assumes uniform quality across all languages.
Though Figure 3 shows that all languages converge at

similar values, labeled subjective scores would be more
optimal to confirm this assumption.

• While the degradation types and processes used were
representative, they do not cover all possible real-world
scenarios.

• An open-source version of PESQ was used, as it was the
only available form for testing in Python in this study
[34].

• Due to the lack of available datasets with subjective
MOS quality ratings for the analyzed languages, includ-
ing English, and recorded under the same conditions,
only statistical analysis was possible to test the research
question. However, the most reliable way to test the
research hypothesis is to have such a dataset available.
This is further detailed in Section 6.

6 Conclusions and Future Recommendations
To conclude, this study assessed the performance of PESQ
and ViSQOL for predicting speech quality in Turkish and Ko-
rean, two languages outside their mapping function validation
sets. While the results for both languages largely aligned with
those for English, certain differences were observed. Specifi-
cally, Turkish exhibited larger ViSQOL scores, with an aver-
age 5% higher than English and Korean scores, and this dif-
ference increased to 10% in mid-range SNR values. Perform-
ing statistical tests, such as Kolmogorov-Smirnov, resulted
in all the p-values exceeding the 0.05 significance threshold
that was set for the experiment, except the one comparing
ViSQOL scores for English and Turkish samples (0.02), in-
dicating that there is a significant difference between the En-
glish and Turkish ViSQOL results.

Furthermore, it was found that ViSQOL scores tend to be
higher and more concentrated at the upper end of the scale,
while PESQ scores are more skewed towards the lower end.
The impact of background noise varies, with babble noise
showing the largest discrepancy between the two metrics for
all languages, suggesting that ViSQOL is less sensitive to
degradations involving background human speech. This was
further confirmed by performing KS tests on the distributions,
which revealed a significant difference between the ViSQOL
scores for blue and babble noise, and a value of 0.06 for
pink and babble noise, which is very close to the significance
threshold and would be worth investigating in the future.

Finally, when analyzing gender-related effects, it was
found that the Turkish-male speakers showcased the smallest
gap between PESQ and ViSQOL scores, indicating a more
consistent evaluation of speech quality within this subset,
37.9% more aligned compared to the other speaker groups.

Future research should aim to address the limitations dis-
cussed in subsection 5.4, as well as explore additional metrics
such as POLQA. Expanding the study to include a wider va-
riety of languages, age groups, and degradation types, as well
as wideband audio would improve the relevance of the find-
ings to real-world applications. It would be valuable to repeat
the experiment using another language from the PESQ and
ViSQOL validation set as a baseline for comparison, in order
to strengthen the results.



The generalizability of objective speech quality metrics
across languages relies heavily on having enough labeled data
with subjective quality scores. This would help confirm bi-
ases toward certain languages and allow for adjustments and
validation of the mapping functions based on each language’s
needs. Building such a dataset would be a step in the right di-
rection for advancing future research in this area.
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A Use of Large Language Models (LLMs):
This section contains a list of the prompts that were used to create tables in this document:

Question: Convert the following information in this txt file [pairwise statistical test results.txt] to a clear table in Latex.
The PESQ and ViSQOL labels should span the three rows they have in common.

Answer: Here is the LaTeX code for the table based on your provided information:
\begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|}
\hline
\multirow{3}{*}{PESQ} & Statistic & p-value \\ \cline{2-3}

& English vs Turkish & 0.19 & 0.44 \\ \cline{2-3}
& English vs Korean & 0.17 & 0.61 \\ \cline{2-3}
& Turkish vs Korean & 0.21 & 0.29 \\ \hline

\multirow{3}{*}{ViSQOL} & English vs Turkish & 0.33 & 0.02 \\ \cline{2-3}
& English vs Korean & 0.14 & 0.79 \\ \cline{2-3}
& Turkish vs Korean & 0.24 & 0.19 \\ \hline

\end{tabular}
\end{table}

Question: From the following txt files [deviation metrics.txt, turkish male vs others comparison results.txt], extract the
following information to a clear table in Latex: 3 columns (overall, non turkish male, turkish male). For each column, extract
the following: Mean average deviation, root mean squared deviation, bias (mean difference PESQ, ViSQOL).

Answer: Here is the LaTeX code to create a table based on the data you provided. The table will include three columns
(Overall, Non-Turkish Male, Turkish Male) and display the requested metrics.

\begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Metric} & \textbf{Overall} & \textbf{Non-Turkish Male} & \textbf{Turkish Male} \\ \hline
Mean Average Deviation (MAE) & 0.7109 & 0.7288 & 0.6214 \\ \hline
Root Mean Squared Deviation (RMSE) & 0.8866 & 0.9063 & 0.7721 \\ \hline
Bias (Mean Difference PESQ - ViSQOL) & -0.6232 & -0.6531 & -0.4736 \\ \hline
\end{tabular}
\end{table}

Question: I have txt files with experiment results that should be JSON but have np.int64(number) and single quotes instead
of double. Write a Python script to fix this and save the corrected JSON files in a json fixed folder.

Answer: Here’s a Python script that will fix the JSON formatting in .txt files and save the corrected JSON files:
def fix_experiment_results(file_path: str):

with open(file_path, "r", encoding="utf-8") as f:
content = f.read()

# Replace np.int64(NUMBER) with just NUMBER
content = re.sub(r"np\.int64\((\d+)\)", r"\1", content)

# Replace single quotes with double quotes for valid JSON
content = content.replace("’", ’"’)

# Parse to ensure valid JSON
try:

data = json.loads(content)
except json.JSONDecodeError as e:

print("Error fixing JSON:", e)
return

fixed_file_path = file_path.replace(".txt", "_fixed.json")
with open(fixed_file_path, "w", encoding="utf-8") as f:

json.dump(data, f, indent=4)
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