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Abstract 

By extending static traffic assignment with explicit capacity constraints, quasi-dynamic traffic 

assignment yields more realistic results while avoiding many disadvantages of dynamic 

assignment. We analyse the computation of travel times in quasi-dynamic assignment models. 

We formulate requirements for the correctness of resulting travel times, addressing both the 

calculation of travel times for individual routes and links itself, as well as the differences 

between travel times of different travel choices. We derive a new link travel time formula 

from vertical queuing theory that meets all requirements, unlike existing approaches in 

literature. 

Keywords: quasi-dynamic traffic assignment, link travel time, vertical queuing theory, 

capacity constraint, link performance function. 

1 Introduction 

There is a long tradition of static traffic assignment (STA) in transportation research. Albeit 

dynamic traffic assignment (DTA) can yield more detailed and realistic results, it 

unfortunately also comes with greater model complexity, higher computational costs, higher 

data requirements, and poorer convergence. And hence, STA is still much used in practice and 

research. The most important limitation of traditional STA models is the lack of explicit 

capacity constraints, which results in errors in the modelled congestion patterns around 

bottlenecks, and consequently also errors in travel times and delays. To remedy this, Bakker 

et al. (1994), Bifulco and Crisalli (1998), Lam and Zhang (2000), Bundschuh et al. (2006), 

Gentile et al. (2014), and Brederode et al. (2018) formulated capacity-constrained STA 

models where excess traffic at bottlenecks can accumulate in residual queues. These queues 

are initially empty and absorb whatever traffic demand from the studied time period that 

exceeds capacity. Hence, while in traditional STA based on link performance functions 

(Bureau of Public Roads, 1964) traffic is omnipresent, instead in capacity-constrained STA 

traffic is instantaneously propagated over its entire route, but the fraction of a route’s demand 

ending up in a residual queue is not propagated over the remainder of that route. 

Bliemer et al. (2014) refer to this as quasi-dynamic traffic assignment (QDTA), and formulate 

the capacity-constrained traffic propagation and assignment as two fixed-point problems, 

including calculation of route travel times. Their formulation supports use of generic first-

order node models (Tampère et al., 2011), and correctly places vertical queues in front of 

bottleneck nodes. 
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Within the context of quasi-dynamic traffic assignment, this paper focuses specifically on the 

computation of travel times, while we discuss the propagation of traffic through the network 

to the extent relevant. To this end, we formulate a list of requirements shown in Table 1 that 

can be divided into two categories: 

 requirements for absolute correctness, that ensure a valid composition of the travel 

time calculation for individual routes and links (I-III); 

 requirements for relative correctness, that ensure a valid comparison between travel 

times of alternative routes or alternative demand patterns (IV-VI). 

The six requirements are listed here for reference and will be introduced and discussed 

throughout this paper. All requirements in Table 1 are realistic and satisfied by DTA, while 

QDTA formulations until now violate several requirements. This is solved in this paper where 

we present a new procedure to correctly compute travel times. 

 

Table 1. Satisfaction of requirements for travel time calculation by various traffic assignment 

methods. 

  STA QDTA DTA 

  BPR 

(1964) 

Bliemer 

et al. (2014) 

This paper  

A
b

so
lu

te
 

co
rr

ec
tn

es
s I. Corridor Compatibility (§2.2) ✗ ✓ ✓ ✓ 

II. Route is Sum of Links (§2.3) ✓ ✗ ✓ ✓ 

III. Steady State Consistency (§2.3) ✓ ✗ ✓ ✓ 

R
el

a
ti

v
e 

co
rr

ec
tn

es
s IV. Correct Derivatives (§3.1) ✗ ✗ ✓ ✓ 

V. First-In-First-Out (§3.2) ✓ ✗ ✓ ✓ 

VI. Stops are Not Faster (§3.2) ✓ ✗ ✓ ✓ 
 

Existing QDTA travel time computation procedures fail to meet requirements for both 

absolute and relative correctness. For brevity, this paper will only show this for Bliemer et al. 

(2014), but the other QDTA models mentioned earlier also fail to meet multiple requirements. 

Our main contribution is a new QDTA travel time formula derived from queuing theory that 

does satisfy all requirements and can readily replace the Bliemer et al. (2014) formula. We 

select the Bliemer et al. (2014) formulation for our comparison because it both clearly 

illustrates all our requirements and its derivation is similar to our proposed formulation. 

The structure of this paper is as follows. First, Section 2 revisits the derivation of quasi-

dynamic travel time formulas from queuing theory, resulting in our new QDTA travel time 

formula. Requirements for absolute correctness are formulated and investigated in the 

process. Then, Section 3 formulates and investigates requirements for relative correctness, by 

considering derivatives of the link travel time and analysing how route travel times affect 
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choice situations. Finally, Section 4 summarises our conclusions and discusses advantages of 

our approach. 

2 Theoretical derivation of quasi-dynamic travel times 

In this section, we will derive a formula for the travel time 
a  of link a . Like Bliemer et al. 

(2014, p. 371), we split the travel time into a free-flow travel time ff

a  and a queuing delay 

queue

a : 

 ff queue

a a a    . (1) 

Here, ff

a  is either a constant or an increasing function of link inflow aq . Nevertheless, our 

focus is on deriving a formula for queue

a , that indicates the extra travel time due to the link’s 

exit capacity being exceeded and the consequent queue being formed on the link. The formula 

for this queuing delay needs be consistent with the arrival and service rates of traffic, also in 

networks with more than one bottleneck. 

Note that as we are dealing with QDTA, the (link and route) travel times in our computations 

are static, and hence there is no time index. 

This section derives this link travel time formula for increasingly complex networks: a single 

link in Section 2.1, a diverges-only network in Section 2.2, and a general network in Section 

2.3. 

2.1 Single link 

We first consider a network consisting of a single link a , subject to a constant traffic demand 

rate af  departing during time period  0,T . Since there are no upstream queues, the link 

inflow aq  is equal to the demand rate af . A queue may however build up at the exit of the 

link, consisting of traffic waiting to traverse the next node, due to insufficient capacity as 

determined by the node model. Let  0,1a   be the link flow reduction factor, such that the 

link outflow is a aq . Initially at time 0 , there is no queue on the link. Because traffic 

propagation is instantaneous, a queue forms ‘immediately’. At the end of the study time 

period, the number of vehicles in the queue is (Bliemer et al., 2014, p. 371) 

  1a a a a a aQ q T q T q T     . (2) 

Assuming the link outflow remains a aq  after T  until all vehicles left, the last vehicle to enter 

the queue has to wait 

 
1 1

1a a

a a a a

Q
T T

q



  

 
   

 
 (3) 

time for the queue to dissolve before it can exit the link. Since the queue grew linearly from 0  

to aQ , the average delay for all a af T q T  vehicles equals half of this (Bliemer et al., 2014, p. 

371; Gentile et al., 2014, p. 319): 
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 queue 1
1

2
a

a

T




 
  
 

. (4) 

The build-up of the link’s queue over time is depicted in Fig. 1 using cumulative curves. 

Because of the first-in-first-out property, the horizontal distance between the entrance and exit 

curves represents the delay of the N th vehicle. This shows visually how the above formulas 

are derived. 

 

 
Fig. 1. Cumulative numbers of vehicles entering and exiting the queue over time, on a single 

link network. 

 

2.2 Diverges-only network 

Now consider a link a  that is part of a corridor network consisting of multiple links, where all 

nodes are either one-to-one nodes or diverges. The link inflow aq  during time period  0,T  

may now be constrained by queues in the set of links a  upstream of link a  (excluding itself, 

aa  ). More precisely (Bifulco and Crisalli, 1998, p. 88; Bliemer et al., 2014, p. 369): 

 
a

a a a

a

q f


 



  . (5) 

Thus traffic will keep flowing into the queue at the exit of link a  after time period  0,T  

ended. We again assume the link outflow remains a aq  until all vehicles left. This implies 

inflows into following links will also remain constant. Because both the inflow and outflow of 

link a  remain constant after  0,T  until the last vehicle enters/exits the link, therefore the last 

vehicle enters the queue on link a  at time 
aT  such that the full link demand is processed, i.e. 

 
a a aq T f T , (6) 
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so 

 
1

a

a

a

a a

a

f
T T T

q


 



 


. (7) 

At time 
aT , the number of vehicles in the queue equals 

  
1

1

a

a

a a a a a a a a a a

a

a

Q q T q T q T q T




 

 




    


. (8) 

The last vehicle thus experiences a delay of 

 
1 1 1

1

a a

a a

a a a a a a

a a

Q
T T

q
 



     

  

 
   

  
. (9) 

The average delay on the link for all af T  vehicles therefore equals half of this (Bliemer et al., 

2014, p. 372): 

 queue 1 1
1

2
a

a

a a

a

T




 



 
  

 
. (10) 

Fig. 2 depicts the queue build-up in terms of cumulative numbers of vehicles over time. 

 

 
Fig. 2. Cumulative numbers of vehicles entering and exiting a link’s queue over time, in a 

network with multiple links. 

 

The total average delay of link a  and all links before it equals (Bliemer et al., 2014, p. 372) 
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   

 
 

 

queue 1 1 1 1 1
1 1

2 2 2
a a a

a a a a

a

a a a a a aa a a a a

a a a a a a

T T T

  

   


    

  



           

         

   
     

          
     

   

  
   

. (11) 

As discovered by Bliemer et al. (2014, pp. 371-372), this is consistent with vertical queuing 

theory on a corridor: the queuing delay of a series of consecutive bottlenecks is equal to the 

queuing delay of a single bottleneck with severities multiplied. It thereby satisfies our first 

requirement in Table 1: 

Requirement I. (Corridor Compatibility): 

Travel times on a corridor network are compatible with queuing theory calculations with 

the corridor inflow as arrival rate and the final link outflow as service rate. Depending on 

the capabilities of the traffic propagation model, either vertical queuing or horizontal 

queuing may be used. 

2.3 General network 

We now proceed to calculating travel times in general networks. In a network with merging 

traffic, the traffic flow rate and the composition of traffic after a merge may vary. Hence the 

calculation of delays in general networks is a bit more involved. While Bliemer et al. (2014, 

p. 372) immediately infer the corridor result to also hold for general networks, we follow a 

more rigorous derivation. 

We can convert a general network into a diverge-only network by replacing links after merges 

with multiple parallel links, and assigning flows to the parallel links in such a way that traffic 

flows never merge. Let aP  be the set of parallel links that replace link a : 

 a

a

p a

p P

p a

p P

f f

q q












. (12) 

Each parallel link ap P  now has a well-defined set of predecessor links 
p . Using the same 

reasoning as for the diverge-only network, we can compute the average delay on any link 

ap P : 

 queue 1 1 1
: 1 1

2 2
p

p

a p

p p p p

p

fT T
p P

q



  



   
        

   
   

. (13) 

To preserve the composition of inflow into the node downstream of any original link a , 

including conservation of turning fractions (Daganzo, 1995, p. 88; Tampère et al., 2011, p. 

295), we require 

 :a p ap P    
   , (14) 

resulting in 
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 queue 1 1 1
: 1 1

2 2
p

p

a p

p a p a

p

fT T
p P

q



  



   
        

   
. (15) 

Eq. (15) matches the final result reported by Bliemer et al. (2014, p. 372). Even though the 

links 
ap P  now have equal outflow-to-inflow ratios 

a , they still have separate queues with 

potentially different delays. Original link a  does not yet have a unique travel time: instead, 

the travel time one experiences still varies depending on what predecessor links they came 

from, i.e. traffic following different routes experience different travel times on the same 

physical link. Because this difference cannot be attributed to differences in departure time or 

total prior travel time, the following requirement in Table 1 is not met: 

Requirement II. (Route is Sum of Links): 

The travel time of a route equals the sum of travel times of the links along the route. The 

travel time traffic experiences on a link may vary with the time the traffic enters the link, 

but not with where the traffic originates from. 

In order to satisfy Requirement II, we continue our derivation by merging the parallel links 

ap P  back into a single link a  with a single travel time a . Naïve summation of the time-

dependent inflows and outflows of links ap P  may lead to non-constant inflow and outflow 

for link a , because according to Eq. (7), the summed inflows 
pq  can have different durations 

pT  and the summed outflows 
a pq  can have different durations /p aT  . This is also 

problematic, because it violates the stationarity of the traffic composition implied by the 

instantaneous propagation of flows. Because the instantaneous flow propagation does not take 

travel times into account, it is impossible to conclude from the flow profiles that traffic from 

one origin arrives on average earlier at some point than the other traffic. Within quasi-

dynamic modelling, the only way to avoid implying such conclusions is to assume a constant 

inflow for link a  in which the separate contributions of different origins can no longer be 

identified.
1
 This leads to the next requirement: 

Requirement III. (Steady State Consistency): 

Link travel times are based on both instantaneous traffic propagation and homogeneous 

traffic composition, or on neither. Put differently, either traffic propagation and demand 

both are time-dependent, or both are in steady state. 

Below we continue by seeking to construct a homogenous constant inflow profile for link a  

that is consistent with the inflow profiles of links ap P . The inflow rate aq  is already given 

by Eq. (12). To preserve the total inflow, the duration 
aT  is then the average of durations 

pT  

weighted with inflow rates 
pq . Substituting Eq. (7), this weighted average simplifies to 

 
a a a

p p p p a

a p

p P p P p Pa a p a a

q q f f f
T T T T T

q q q q q  

      . (16) 

                                                 
1
 An alternative solution is to instead get rid of instantaneous flow propagation, but then the quasi-dynamic 

model turns into a traditional dynamic model (with rectangular demand profiles and without spillback). 
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Now that we made the link inflow constant, the link outflow is also constant. The number of 

vehicles in the combined queue on link a  at time 
aT  therefore equals 

      1 1 1a

a a a a a a a a a a a a a

a

f
Q q T q T q T q T f T

q
           . (17) 

The delay of the last vehicle is therefore 

 
 1 1

1
a aa a

a a a a a a

f TQ f
T

q q q



  

  
   

 
 (18) 

such that the average delay is 

 queue 1
1

2

a

a

a a

f T

q




 
  

 
. (19) 

This result is fully consistent with the previous result for a diverges-only network. The 

evolution of the cumulative numbers of vehicles entering and exiting the combined queue is 

the same as Fig. 2. 

3 Relative correctness of quasi-dynamic travel times 

Now that we have derived a travel time formula for links in a general network, we proceed to 

assess the relative correctness of travel times in QDTA, i.e. the ability to compare route travel 

times. This section is split into two parts. First, we look at the derivatives of the link travel 

time formula while keeping the link exit capacity fixed. Second, we check the behavioural 

incentives for travel choices. 

3.1 Link with fixed exit capacity 

We now study a link with a fixed exit capacity. Because of the invariance principle (Lebacque 

and Khoshyaran, 2005, pp. 370-371), this occurs when the turning fractions and competing 

flows at its downstream node remain constant, even in advanced first-order node models 

(Tampère et al., 2011, p. 295). Assuming link a  has fixed exit capacity aC , we have (Bifulco 

and Crisalli, 1998, p. 88) 

 min 1, a

a

a

C

q


 
  

 
. (20) 

Combining this with Eqs. (1) and (19) yields the following link travel time: 

 

ff

ff

if 

if 
2

a a a

a a a

a a a

a a

q C

f f T
q C

C q






 


  
   
 

. (21) 

This structure of this formulation is comparable to link travel time functions in static 

assignment, for example the well-known Bureau of Public Roads (1964, p. V20) function: 
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4

ff 1 0.15 a

a a

a

f

C
 

  
    
   

. (22) 

The comparison reveals the fundamental difference that in (non-capacitated) static assignment 

the travel time a  only depends on the total demand af  for the link, and not also on the actual 

flow 
aq  that is able to get into the link during the studied time period. (Static models don’t 

compute aq .) Both static models and our quasi-dynamic model satisfy 

 

 

 

0, : 0

, : 0

a

a a

a

a

a a a

a

q f
f

q C f
f






   


  
 

, (23) 

but our quasi-dynamic model additionally satisfies 

 

 

 

0, : 0

, : 0

a

a a

a

a

a a a

a

q f
q

q C f
q






   


  
 

, (24) 

whereas static models always have / 0a aq   . Note that this also holds if ff

a  in Eq. (21) is 

not constant but itself increases with aq , as suggested at the beginning of Section 2. In 

conclusion, we have the following requirement: 

Requirement IV. (Correct Derivatives): 

In case of a link with a fixed exit capacity, the partial derivatives of the link’s travel time 

with respect to both the link’s demand and the link’s flow have the correct sign, in 

accordance with Eqs. (23) and (24). 

If one were to derive a representative link travel time directly from Eq. (15) (Bliemer et al., 

2014, p. 372), it would be based on the total travel time of all traffic demand of all routes on 

the link, divided by the total traffic demand. This corresponds to the previously mentioned 

idea of summing the cumulative inflow and outflow curves. One can prove that this results in 

a possibility of / 0a af   , violating Eq. (23). For brevity, we omit this proof here. 

3.2 Behaviour in choice situations 

We will now study how differences between route travel times affect choice situations, which 

we use to formulate two more requirements for relative correctness. Note that satisfaction of 

Requirement II (Route is Sum of Links) automatically leads to satisfaction of the new 

requirements. 

In Eq. (15) (Bliemer et al., 2014, p. 372), the travel time one experiences on a link depends on 

the severity of congestion earlier in your route. However, the severity of congestion may not 

coincide with the time spent travelling earlier in your route. Consequently, you may be able to 

speed up your total trip by replacing part of your route with a slower detour. This results in 

Requirement V: 
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Requirement V. (First-In-First-Out): 

Route travel times respect the first-in-first-out property of links: it is not possible to leave a 

link earlier by entering it later. In non-dynamic contexts, the words ‘earlier’ and ‘later’ 

are to be interpreted in terms of the travel time spent since the beginning of the route. 

Because the travel time of a route is not the sum of travel times of links in the route, an 

additional problem arises when a route is split up in two. Since the combined travel time of 

the two new routes can be less than the travel time of the original route. This results in 

Requirement VI: 

Requirement VI. (Stops are Not Faster): 

Insertion of intermediate stops in a route cannot reduce the route’s travel time. In other 

words, when a route is split in two, the sum of the travel times of the route parts cannot be 

less than the travel time of the original route. 

4 Discussion 

In this paper, we derived a new formula for link travel times in quasi-dynamic assignment, 

theoretically underpinned with vertical queuing and instantaneous propagation of traffic 

flows. We showed that the existing travel time computation procedure of Bliemer et al. (2014) 

violate requirements for both the absolute correctness and relative correctness of the resulting 

travel times. We demonstrated that our own proposed definition of link travel times, Eq. (19), 

does satisfy all requirements and can be used to substitute the Bliemer et al. (2014) 

formulation. 

In addition to satisfying our requirements, our new link travel time definition has several 

practical advantages. The existence of link travel times simplifies pathfinding in traffic 

demand modelling. Because link travel times are directly related to the traffic situation on the 

link, extensions of the traffic flow theory are also easier to incorporate, for example 

accounting for multiple vehicle types (e.g. trucks, public transport, automated vehicles). 
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