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Abstract: Superconducting nanowire single-photon detectors (SNSPDs) 

are widely used in telecom wavelength optical quantum information science 

applications. Quantum detector tomography allows the positive-operator-

valued measure (POVM) of a single-photon detector to be determined. We 

use an all-fiber telecom wavelength detector tomography test bed to 

measure detector characteristics with respect to photon flux and 

polarization, and hence determine the POVM. We study the SNSPD both as 

a binary detector and in an 8-bin, fiber based, Time-Multiplexed (TM) 

configuration at repetition rates up to 4 MHz. The corresponding POVMs 

provide an accurate picture of the photon number resolving capability of the 

TM-SNSPD. 
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1. Introduction 

Experiments in quantum information science (QIS) typically encompass quantum state 

preparation, quantum operation (process) and quantum measurement. A carefully designed 

trial requires detailed information on each of these stages. Quantum tomography techniques 

have been developed to extract complete descriptions of these individual stages [1–3]. 

Quantum state tomography gives a detailed picture of the input states [1]; quantum process 

tomography is used to characterize operations, such as the function of quantum logic gates [2] 

and quantum detector tomography (QDT) allows reconstruction of the positive operator-

valued measure (POVM) elements [3–8] of a measurement apparatus. This article will focus 

on QDT for photodetection: using coherent input states, the statistics of the measurement 

outputs reveal complete information about the photon-counting detector. 

In optical QIS, photons are used as flying quantum bits (‘qubits’). Highly efficient, low 

noise single-photon detectors at the desired wavelength are essential. Recently, QDT of a 

silicon single-photon avalanche photodiode (SPAD) was demonstrated by reconstructing the 

POVM elements for a binary (click / no click) detector and also for a Time-Multiplexed (TM) 

detector with photon number resolving (PNR) capability [3]. Si-SPADs are only suitable for 

use at visible and near infrared wavelengths. For experiments at technologically-important 

telecom wavelengths the main contending technologies are InGaAs SPADs [9], 

superconducting Transition Edge Sensors (TESs) [10, 11] or Superconducting Nanowire 

Single-Photon Detectors (SNSPDs/SSPDs) [12]. InGaAs SPADs compared to Si SPADs have 

greatly elevated dark count rates, making gating essential. TESs offer near unity efficiency 

with PNR capability, but require sub-Kelvin operating temperatures. SNSPDs operate at a 

more accessible temperature (~4 K) offering free-running single-photon sensitivity from 

visible to mid infrared with low dark counts (1-100 Hz), excellent timing resolution (< 60 ps) 

and short dead time (~10 ns) [12–14]. These properties have enabled SNSPDs to be widely 

used in QIS applications such as quantum key distribution [15], characterization of quantum 

circuits [16], characterization of single photon sources [17] and development of quantum 

repeaters via spin-photon entanglement [18]. Typically SNSPDs are characterized semi-

classically: the detection efficiency and dark count rate are extracted from a measurement of 

counts as a function of photon flux; by altering the biasing conditions the relationship 

between detection efficiency and dark count rate can be determined [12]. The QDT technique 

allows a complete characterization of a quantum detector, therefore offers the opportunity to 

reveal nonclassical features of the detector [19, 20]. Recently QDT has been performed on a 

SNSPD in the non-linear regime, which requires the SNSPD to be biased much lower than 

their critical current (Ibias << Icritical), to characterize multi-photon sensitivity [21, 22]. In this 

regime the efficiency of the SNSPD is very low. We have taken an alternate route to report 

the PNR characteristics of SNSPDs in the linear regime by using the time-multiplexing 

technique [23]. We have constructed an all-fiber QDT setup to characterize the individual 

SNSPDs as well as a fiber based time-multiplexed (TM) photon number resolving SNSPD 

network. Two highly efficient fiber-coupled SNSPDs (system detection efficiency (SDE) > 

20% at 1310 nm; SDE > 10% at 1550 nm) were used to construct an 8-bin TM-SNSPD and 

operated at 1 - 4 MHz clock rate at telecom wavelengths. 

2. Quantum detector tomography 

A quantum non-projective measurement device in a quantum mechanical setup is 

mathematically described by positive operator-valued measure (POVM) formalism. The 
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POVM elements { }n  are extracted from the detection probability,
, ,np   for an input state 

  from equation , .[ ]n np tr   Reconstructing n  from 
,np   is the objective in quantum 

detector tomography, whilst maintaining 0,n   semi-definite such that nn
I   for a 

physical detector. A d-dimensional Hilbert space is used to reconstruct the POVM elements. 

The input or probe states are prepared to form a set { },j  which is tomographically complete, 

to extract n  [3, 24]. Coherent states   form an overcomplete basis for the Hilbert space 

upon which the photodetection operates. Further, they are simpler to prepare than pure 

number states. In our experiment the probe states are reliably and easily generated using a 

diode laser. A general quantum detector may have phase-sensitivity. The corresponding 

tomography procedure for the reconstruction of the full POVM matrices therefore requires 

both amplitude and phase modulation of the probe states as well as a special reconstruction 

algorithm [24, 25]. The situation discussed in this article has been simplified: due to the 

absence of a phase reference the SNSPDs are assumed to be phase-insensitive therefore only 

the diagonal elements of the POVM matrices have been reconstructed. The tomographically 

complete set of input states    is prepared by varying the amplitude by means of a 

pair of calibrated commercial variable optical attenuators. The amplitude of the coherent 

states have been chosen such that the detection probability is high enough to complete the 

measurements within a reasonable time interval. The entire experimental setup is based on 

single-mode fiber (from source to detector), which allows the assumption that the device 

detects the same single-mode coherent states as generated by the laser. An ideal detector 

output 
1

n  


contains the information of the POVM elements. The diagonal 

components of the representation of the POVM elements in the number basis (Eq. (1).) 

describes a simplified practical detector without phase sensitivity. 

 ( )

0

.n

n k

k

k k 




  (1) 

The equation can be modified to a finite matrix form P F   by truncating to M number 

states. D NP  contains the measured statistics of an N-outcome detector and D MF  contains the 

D probe states 0 1{ , ,..., },n    M N contains the POVM. The physical POVM is obtained by 

solving the optimization problem 
2

min{ ( )},P F g     where 
2

A is defined as 

 
1 22

,,
,i ji j

A  and  g   is a regularization condition to suppress any potential ill-

conditioning of the reconstruction [24]. 

3. Superconducting nanowire single-photon detectors (SNSPDs) 

3.1 SNSPD operating principle 

A niobium nitride (NbN) superconducting nanowire (200 nm wide, 5 nm thick) maintained 

well below its critical temperature and direct current (DC) biased just below the critical 

current was shown to be sensitive to single photons by Gol’tsman and associates in 2001 [26]. 

This device is known as the superconducting single-photon detector (SSPD) or 

superconducting nanowire single-photon detector (SNSPD) [12]. SNSPDs operate at a 

temperature ~4 K, and so can be cooled straightforwardly using liquid helium or closed-cycle 

refrigeration. When a photon is absorbed by the current-biased superconducting nanowire a 

small resistive hotspot is created. The supercurrent is diverted around the periphery of the 

hotspot. As the hotspot grows, the local current density around the hotspot increases, 

#175855 - $15.00 USD Received 10 Sep 2012; revised 18 Dec 2012; accepted 18 Dec 2012; published 9 Jan 2013
(C) 2013 OSA 14 January 2013 / Vol. 21,  No. 1 / OPTICS EXPRESS  896



exceeding the superconducting critical current density. This in turn leads to the formation of a 

resistive barrier across the width of the nanowire. The resistive hotspot further grows along 

the axis of the nanowire due to Joule heating. This generates a measurable voltage across the 

SNSPD. It was conjectured that by studying the hotspot resistances, it would be possible to 

reveal the number of photons absorbed by the nanowire [27]. Recently however, it was 

demonstrated that the Joule heating of the nanowire suppresses the initial variation in the 

hotspot resistances due to multiple photon events [28]. Nevertheless, photon number 

resolution can still be realized if the device is biased low enough that a multiphoton event is 

necessary to trigger a switch from the superconducting- to normal state [21, 22, 26]. It should 

be noted that the triggering probability is very low in this mode of operation. Alternately, 

photon number resolution can be achieved in SNSPDs by spatial multiplexing (using multiple 

pixels) [29–31] or by time multiplexing (this article, § 3.3). In summary, a SNSPD, biased 

close to its critical current, exhibits a binary behavior by outputting an electronic pulse (1-

click) or none (no-click) in the presence or absence of photon(s). In this basic scenario, the 

SNSPD cannot recognize the number of photons present at the input mode and does not 

possess PNR capability. 

3.2 Binary SNSPDs 

The SNSPDs used in this study are based on an NbTiN nanowire on a Si substrate with a 225 

nm SiO2 layer [32]. The SiO2/Si interface beneath the nanowire enhances the absorption of 

telecom wavelength photons, giving peak detection efficiency at 1310 nm wavelength. The 

100 nm wide nanowire meanders across an area covering 10 μm × 10 μm with a 50% fill 

factor. The devices were maintained at 2.8 K, well below the observed device 

superconducting transition temperature of 8 K, in a Gifford–McMahon closed cycle 

refrigerator [17, 33]. The detectors were aligned individually to a single-mode telecom optical 

fiber (9 μm mode field diameter at 1550 nm). The schematic of the experimental setup for the 

tomography experiment on a binary SNSPD is shown in Fig. 1. The single-mode coherent 

states are generated by a fiber coupled diode laser. In order to ensure that the detectors are 

memoryless, the laser diode was gain switched, using a pulse pattern generator, such that the 

wavepackets were preceded and followed by time intervals with no input light. The SNSPDs 

have a deadtime of roughly 10-20 ns, i.e. the time during which the SNSPD is insensitive to 

the incoming probe state. The laser output is split using a 1:99 fiber beamsplitter to monitor 

the optical power during the experiment. The 1% fraction of the laser output is further 

attenuated to reach the single-photon regime using two individually calibrated programmable 

fiber attenuators. The polarization of the photons reaching the detector is controlled by a 

fiber-polarizer. The output of the SNSPD is amplified using commercial room temperature 

amplifiers (RF Bay LNA 580 & 1000), converted to a logic pulse via a pulse generator 

(Agilent 81110A) and read out via a custom Field Programmable Gate Array (FPGA) unit. 
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Fig. 1. The experimental setup for the tomography experiment for a binary SNSPD. 

3.3 Time multiplexed SNSPDs 

Any conventional binary single photon detector (such as a Si APD) can be granted photon 

number resolution by constructing a time-multiplexing fiber network (as in Fig. 2(a)) [23, 34]. 

The time multiplexing scheme splits the input pulse, contained in a single temporal mode (or 

time-bin) into many time-bins using beamsplitters and temporal delays. This results in a 

reduced probability of having more than one photon per time bin. The outputs of the fiber 

network are monitored with twin SNSPDs. Summation of the number of clicks from both 

detectors for a particular input pulse will result in photon number resolution. In this study, a 

9-outcome (0 - 8 clicks) Time-Multiplexed SNSPD (TM-SNSPD) was implemented using 

fiber-network with 8 time bins (4 time bins in 2 arms) with two SNSPDs operating in their 

linear detection regime coupled to the outputs. The fibers and beamsplitters were chosen such 

that the TM-SNSPD can be operated in the telecom wavelength range (1310 nm and 1550 

nm). The TM-SNSPD splits the input wavepacket into time bins spread over 90 ns. The 

SNSPDs used in these experiments are assumed to be memory-less and therefore delays 

between subsequent measurements on the SNSPD have been incorporated to accommodate 

for the dead time of the detector (20 ns). A snapshot oscilloscope trace of one SNSPD with 

four successive clicks in each time bin is shown in Fig. 2(b). The inverse of the total time bin 

interval limits the maximum rate at which the TM-SNSPD can be run. The experimental 

results presented have been recorded at a maximum rate of 4 MHz (limited by the dead time 

of the FPGA readout electronics). 

 

Fig. 2. (a) Time-multiplexed (TM) fiber network for photon number resolving single photon 

detection [23]. A pair of SNSPDs is implemented at the outputs to create a TM-SNSPD. (b) An 

oscilloscope trace showing the output pulses from one of the SNSPDs in the TM detector, the 
optical pulse split is over 4 time bins in each path. 

#175855 - $15.00 USD Received 10 Sep 2012; revised 18 Dec 2012; accepted 18 Dec 2012; published 9 Jan 2013
(C) 2013 OSA 14 January 2013 / Vol. 21,  No. 1 / OPTICS EXPRESS  898



4. Results 

4.1 Bias current dependence 

The operating principle of the SNSPDs (§ 3.1) confirms that the sensitivity of the SNSPD 

depends on the bias current (Ib) of the device. The nonlinearity of the SNSPD has been 

demonstrated previously at low bias points [21]. In our current study, the device has been 

current biased at different bias points (
b cI v I  ) where Ic is the critical current of the device 

and values of v were chosen as 0.7 and 0.9. The polarization of the incoming optical pulse (λ 

= 1550 nm at a repetition rate of 1 MHz) was set to a constant angle with respect to the 

nanowire orientation such that the detected counts were maximized (polarization dependence 

of SNSPD is discussed in § 4.2). The measured statistics for the number of registered clicks 

(0 or 1) on the binary SNSPD is plotted in Fig. 3(a). The common observation that the 

sensitivity of the nanowire increases with Ib. The measured statistics of the TM-SNSPD for v 

= 0.9 is shown in Fig. 3(b). The POVM elements { }n  for n-clicks reconstructed from 

measured statistics are shown in Fig. 3(c) and Fig. 3(d). We assume the off-diagonal elements 

are zero for these detectors (TM and binary). The diagonal elements are plotted in Fig. 3(c) 

and Fig. 3(d) for v = 0.7 and v = 0.9. 

 

Fig. 3. (a) The measured statistics of click and no click from a SNSPD binary detector 

operating at 1550 nm wavelength at a repetition rate of 1 MHz. The data acquisition time was 
0.5 seconds/point. (b) The measured statistics from a TM-SNSPD detector for 0-8 clicks at λ = 

1550 nm operating at 1 MHz repetition rate. The data acquisition time was 0.5 seconds/point. 

(c) Diagonal elements of the reconstructed POVM elements for clicks 0, 1, 2 from a TM-
SNSPD at λ = 1550 nm. The shaded bar represents bias point 0.7 × IC and the unshaded bar 

represents 0.9 × IC . (d) diagonal elements of the reconstructed POVM elements for clicks 0 

and 1 for a binary-SNSPD is plotted at λ = 1550 nm. The shaded bars represent the bias point 
0.7 × IC and the unshaded bars represent 0.9 × IC. 
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4.2 Polarization dependence 

The SNSPD has been observed to possess noticeable polarization sensitivity due to the 

geometry of the device [35, 36]. The meander structure is essentially a subwavelength grating 

(as shown in Fig. 4(a)) It has been reported that the count rate from the detector displays a 

maximum and a minimum value depending on the orientation of the electric field being either 

parallel or perpendicular to the orientation of the nanowire. This is because of the variation in 

absorption exhibited by the meander structure depending on the polarization [35]. The 

polarization dependence is observed by varying the polarization of the incident photons using 

a fiber polarizer. The dimensionality of the Hilbert space has to be increased to include the 

polarization sensitivity of the device. However to make the experiment simpler the POVM 

elements are extracted for just two polarization states of incident photons with respect to the 

nanowire orientation. At telecom wavelengths the detection efficiency is maximized 

(minimized) when the electric field is polarized parallel (perpendicular) to the length of the 

nanowire segments. Fiber polarizers are adjusted to either high or low count rate and 

corresponding output statistics are measured. The variation in POVM elements (diagonal 

elements) observed is plotted in Fig. 4(b) (binary detector) and Fig. 4(c) (TM-SNSPD) for 

two polarization states at λ = 1550 nm measured at 1 MHz repetition rate. 

 

Fig. 4. (a) A schematic to represent the orientation of the electric field, E of the optical 

illumination with respect to the SNSPD meander geometry. The detection efficiency is 

maximized when the electric field is polarized along the length of the nanowire segments (x-
direction) (b) Diagonal elements of the reconstructed POVM elements for clicks 0 and 1 from 

a binary SNSPD (biased at 0.9 × IC) at λ = 1550 nm are plotted. The shaded graph represents 

low polarization counts and the unshaded graph represents high polarization counts. (c) 
Diagonal elements of the reconstructed POVM elements for clicks 0, 1, 2 and 3 from a TM-

SNSPD (biased at 0.9 × IC) at λ = 1550 nm. In each case the blue graph represents high 

polarization counts and the black graph represents low polarization counts. 
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4.3 Wavelength dependence 

One of the features of the SNSPD is its exceptionally broad spectral range: the sensitivity of 

the SNSPD is ultimately only limited by the BCS superconducting energy gap of the 

nanowire (~meV in a material such as NbTiN) [37]. In practice however, in ambient 

conditions, the wavelength of room temperature black body photons (~10 μm wavelength, 

corresponding to an energy of ~0.12 eV) is a realistic cut off. The spectral dependence of the 

SNSPD device efficiency is also influenced by the device architecture. As described in § 3.2, 

the SNSPDs used in this experiment each consist of an NbTiN nanowire on a Si substrate 

with a 225 nm SiO2 layer in between [32]. The SiO2/Si interface acts as a mirror due to the 

refractive index mismatch. This 225nm SiO2 layer matches the optical thickness of λ/4 at λ = 

1310 nm thus giving an electric field maximum at the NbTiN layer; correspondingly the best 

efficiency for these SNSPDs is found at this wavelength [38]. The extracted diagonal 

components of the POVM elements have been plotted in Fig. 5 for λ = 1310 nm at repetition 

rate of 4 MHz. 

 

Fig. 5. Diagonal elements of the reconstructed POVM elements for clicks 0, 1, 2 and 3 from a 
TM-SNSPD (biased at 0.9 × IC) at λ = 1310 nm at a repetition rate of 4 MHz. 

In the POVM reconstruction, we have neglected the effects of dark counts because in the 

worst-case scenario of TM-SNSPD operation, both the detectors were tuned to operate with a 

maximum ungated dark count rate of 1 kHz. The experiment’s maximum operating rate was 4 

MHz and the measurement was time resolved using a FPGA collecting data from 8 time bins 

of 10 ns each in each clock cycle. The probability of observing a dark count with in the 

measurement bin was 1.6 × 10
4

. Therefore, the effect of dark counts on the POVM is 

negligible. Similarly measurement uncertainties in our experiment have been evaluated, but 

do not have a significant bearing on our data analysis. In the experiment, a calibrated power 

meter (traceable to the US National Institute of Standards and Technology) was employed. 

This results in a fixed ± 5% systematic uncertainty in our measurements of the laser power P 

measured at the transmitted port of the BS. This is the dominant error in our experiment. 

Systematic error in P will simply add or subtract from efficiency of the detector extracted 

from the tomographic characterization [24]. Another potential source of error arises from the 

multinomial or Poissonian distribution of the measurement statistics, which is due to the finite 

measurement time. The effect of such noise on the tomography result can be estimated from 

either a Monte-Carlo simulation or by Bayesian inference [39, 40]. We performed a Monte-

Carlo simulation based on our measurement data. The simulation results show that the 

variation in the measurement statistics results in an uncertainty of about 1% in the 

tomography results. 
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5. Conclusion 

SNSPDs are ideal detectors for optical QIS experiments at telecom wavelengths, having both 

reasonable quantum efficiency and rapid response with low dark counts. We have presented 

quantum tomography of TM-SNSPDs with photon resolving capability with the help of a 

fiber network. The experiments were carried out at the main telecom wavelengths (1310 nm, 

1550 nm) at repetition rates of up to 4 MHz, taking into account two polarizations and a range 

of bias points (0.7-0.9 × Ic). Linear behavior of binary and TM detectors was observed in our 

experiments, which is confirmed by the reconstructed POVM. In the case of a binary detector, 

the coefficient of the reconstructed POVM element of the click-event was observed to be zero 

for the zero-photon component and increases to 1 for higher photon-number components. The 

detection efficiency calculated from the POVM elements of the best device (Fig. 4(b) and Fig. 

3(d)) in our setup had ~18% efficiency at 1550 nm at Ib = 0.9 × Ic. A time-multiplexed 

detector, as a photon-number-resolving detector, has more outcomes ranging from, for 

example, no-click to N-clicks. In some of the earlier PNR SNSPD demonstrations such as 

reference [21], the detectors were operated in the non-linear regime (i.e. biased very low) to 

study the multiphoton detection statistics. In our experiment, the detectors were biased at 0.9 

× Ic and the fiber time multiplexing network was employed to explore the PNR configuration. 

The POVM element of each outcome gives a distinct sensitive region, which confirms that 

the detector has a capability to (partially) resolve the input photon number. The POVM 

element of the N-click event has a similar behavior as that of the click event of a binary 

detector, showing the response of the detector when it is saturated. 

SNSPD device technology is improving rapidly [12]. It is reasonable to foresee 

construction of a fast, photon number resolving TM-SNSPD, using highly efficient (>50%) 

SNSPDs, with fast recovery times (~1 ns) integrated on to a waveguide circuit platform. 

There are also various future paths to be explored in pursuit of a rigorous assumption-free 

characterization of SNSPDs. Notably, the inclusion of complete wavelength-, polarization- 

and phase information in the Hilbert-space will give a comprehensive definition of the 

SNSPD. This method will thus provide a full description of the detection unit in QIS 

experiments relying on photons. 
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