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ABSTRACT

We develop a taxonomy that categorizes HRI failure types and their
impact on trust to structure the broad range of knowledge contribu-
tions. We further identify research gaps in order to support fellow
researchers in the development of trustworthy robots. Studying
trust repair in HRI has only recently been given more interest and
we propose a taxonomy of potential trust violations and suitable
repair strategies to support researchers during the development
of interaction scenarios. The taxonomy distinguishes four failure
types: Design, System, Expectation, and User failures and outlines
potential mitigation strategies. Based on these failures, strategies
for autonomous failure detection and repair are presented, em-
ploying explanation, verification and validation techniques. Finally,
a research agenda for HRI is outlined, discussing identified gaps
related to the relation of failures and HR-trust.

CCS CONCEPTS

+ Human-centered computing — User models; Interaction
design theory, concepts and paradigms; HCI theory, concepts
and models; Empirical studies in HCI; « Computer systems orga-
nization — Robotics.
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1 INTRODUCTION

Trust is an important component to ensure successful diffusion
and uptake of human-robotic systems interaction in society. Trust
in and trustworthiness of these systems have been considered im-
portant for long-term interaction, collaboration, and acceptance
[50]. However, how should we design and implement trustworthy
systems? Software engineering techniques such as verification and
validation can be used to ensure that the system conforms to its
requirements (verification) and the system meets the need of the
stakeholder (validation). This improves reliability, safety and trust-
worthiness of the systems (see for example [23, 77]) and will help
mitigate some of the failures leading to loss of trust.

Does the HRI community currently have sufficient knowledge
of what makes a system trustworthy to be able to design robots as
such? Human responses towards robotic systems are very complex
in their nature and depend on many factors, such as the morphology
and behavior of the system and the context in which they are
deployed. Therefore, in order to design trustworthy robots, we
have to base our design decision on detailed knowledge of (1) how
humans react towards robots and (2) how robot features might
foster or harm trust.

The challenge becomes more complex as trust has both static
and dynamic components in human-robot interaction. Static com-
ponents such as gender do not change, but dynamic components
related to the system can be influenced [39]. We need to system-
atically structure the knowledge on trust that has been gained so
far; it influences our design choices, also when an interaction is
unsuccessful and possible negative effects need to be mitigated. The
aspects of trust repair and trust violations have been understudied
in the field of HRI [4]. Trust repair can be understood as the activity
of rebuilding trust after one party breaks the trust of the other, i.e.
after a trust violation. But what causes these trust violations and
how can trust be repaired after they occur?

In this paper, we present a taxonomy of trust-relevant failures
and mitigation strategies, based on literature as well as empirical
data from known real-world use cases. Becoming aware of the
fundamental need to structure our knowledge on how to build
trustworthy systems, the discussion of this taxonomy started during
a seminar where the authors met. The authors of this paper, who all
have different disciplinary backgrounds ranging from philosophy
and Al to mathematics and logic, analyzed the state of the art on
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trust research with respect to their disciplinary background. We
propose a taxonomy that enables fellow researchers to incorporate
mitigation strategies into their systems to recover from failure
situations that potentially harm trust.

The inspiration for the taxonomy stems from so-called risk tables
[6]. By definition, a risk equals uncertainty plus damage, in our
case damage of trust [65]. In analyzing risks, one is attempting to
envision how a scenario will play out if a certain course of action
(or inaction) is undertaken. Therefore, a risk analysis always starts
from three basic questions: (i) What can happen? (i.e., What can
go wrong), (ii) How likely is it that that will happen?, and (iii) If it
does happen, what are the consequences? [78] Classical risk tables
visualize this information, e.g. the risk of getting a specific disease.
We present an overview for failure situations in HRI that can harm
trust in the robotic system, and offer robot designers mitigation
strategies to (1) avoid or (2) recover from failure and reestablish
trust.

We also outline explanation-based approaches, as well as valida-
tion and verification techniques that can be used to formalize our
taxonomy in order to build trustworthy human-robot interactions.

2 RELATED WORK

Trust is a valued feature of individual human relationships which
also enables social cohesion. Its dimensions have been studied by
several disciplines, yielding results that both guide and limit the
extent to which robot trust may be developed.

2.1 Approaches to Trust

The psychology of trust focuses on interpersonal relationships. The
development of trust between persons typically follows familiarity,
is concomitant with dependence, and in close personal relationships
is associated with both behavioral predictability and the attribution
of beneficent motives [62]. Risk regulation [58] allows the trusting
agent to temper the degree of vulnerability to the party being
trusted. Different kinds of trust attach to agents, depending on
expectations and expertise. While the neurochemistry of trust is
not well understood, it is assumed that trust can be understood
both as a brain process and an emotional process [72].

The ethics of trust has been analyzed as necessary to economic
exchange [2], friendships [73], and even the Hobbesian civil state
itself [38]. Rusbult et al. [66] identified accommodation processes
that allow close relationships to survive otherwise trust-breaking
failures of expectations, e.g., via charitable interpretations of mo-
tives. Actions (commissions) that fail expectations and thus damage
trust are, according to some [19], worse than failures to act (omis-
sions). However, psychologists Tversky and Kahneman [74] as well
as other ethicists find in this to be an omission bias, since the
consequences of (not) acting can be the same. Hence from a conse-
quentialist perspective, the damage to trust in the case of human
failures ought to be similar. However, Malle et al. have shown that
for robot failures, there is an asymmetry of blame-that humans
blame robots more for failures of inaction than of action [53, 54].

Turning to trust in robots, we see the potential for overlap and
contrast with the psychology, ethics, and pragmatics of trust be-
tween humans. Prior to the development of complex behaviors in
robots, many philosophers would have insisted that trusting robots
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is more like trusting a tool than another person.With some concep-
tual flexibility, we can see that trusting robots has elements of both
sorts. Studies on trust within robotics have mainly been motivated
by the literature on trust in automation [40, 46, 47], which operates
with a conceptualization of trust as mere reliance. According to this
stance, trust is a domain-specific relation between the human and
the robotic system involved. We follow this stance for our proposed
trust taxonomy and define trust in robotic systems, in accordance
to Lewis and colleagues [50], as a predictive belief or assumption
about what will occur given the performance, process, or purpose
of the robot. The definition of trust as appropriate reliance also
stresses the importance of trust in situations involving risk and
uncertainty. Humans who misplace trust, understood as both under-
and over- reliance, might be exposed to serious danger, which is
the reason safety concerns are of high consideration. In our un-
derstanding of trust as reliance, we consider the robotic system as
tools intended for accomplishing certain ends. Other dimensions of
trust, such as institutional trust are intentionally excluded, as our
taxonomy should serve as robot-centered knowledge base.

2.2 Modeling Trust

The aim of defining/modeling trust in HRI is nothing new. Billings
proposed a three-factor model of trust in robots, including human
characteristics such as ability and personality, environmental char-
acteristics such as task and team, and robot characteristics such
as performance and attributes [5]. These three factors have also
been identified in a meta-analysis on trust [29], where the authors
stressed that too few studies have yet been conducted on environ-
mental and human-related factors, although robot-related factors
have been shown to affect trust the most.

Similarly, modeling trust from the perspective of risk has been
considered before. Drawing on the model from organizational con-
texts by Mayer et al. [56] and the model on trust in automation by
Lee and See [47], Wagner et al. [75] propose a trust model based
on risk. They define trust as “a belief, held by the trustor, that the
trustee will act in a manner that mitigates the trustor’s risk in a sit-
uation in which the trustor has put its outcomes at risk” [75, p.26:4].
Trust is modeled in game-theoretic terms and, similar to what Han-
cock et al.[29] proposed, they highlight three important factors that
influence trust-based decisions, namely the trustee, the trustor, and
the situation. The model is also tested in an emergency experiment
by Robinette et al. [64], where people tended to overtrust the robot
despite half of them observing the same robot performing poorly
in a navigation guidance task minutes before.

Based on the three-factor model by Hancock et al. [29], Hoff and
Bashir [39] have also suggested a three-layered model in which
these factors contribute to dispositional, situational and learned trust.
They point out that age, gender, culture and personality are compo-
nents of dispositional trust. Situational trust is shaped by internal
and external variability, such as self-confidence and task difficulty.
Learned trust consists of initial learned trust (e.g. expectations of
the system) and dynamic learned trust. The latter is influenced by
design features and system performance and influences the user’s
reliance on the system.
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2.3 Trust, Failure, and Repair

The concepts of trust repair and trust violations have been under-
studied in the HRI literature so far. The need for research on trust in
artificial agents in cases of inevitable failure has been highlighted
as well [5]. Baker [4] surveys trust with a focus on trust violation
and repair of human-robot interaction. For a successful recovery
of trust, (perceived) shared intentions have shown to be important
(cf. [16]). Even though from a scientific and engineering perspective
we know that robots do not intend their behaviors in the same way
as humans do, taking robots as intentional agents may aid users
(psychologically) in attributing sufficient beneficence to their "mo-
tives" — at least insofar as this is necessary to engage with them.
Following errors of automation, information related to limitations
further aid in trust recovery. Hence, perceived benevolence may
promote acceptance of a robot’s changing behaviour [52], as with
human interpersonal relationships [62].

In ongoing studies, several actions of trust repair have been
proposed, including apologies, promises, internal or external attri-
bution, and the showing of consistent series of trustworthy actions
[4, 14]. In an emergency setting, where an apology right after vio-
lated trust has not recovered trust, an apology right before the next
trust decision point has repaired trust. Promises lead to a better
trust recovery than apologies, and in general, the message timing
and exact content was shown to be crucial [63].

Thus, studies show that trust harmed by untrustworthy be-
haviour of a robot can be restored when people encounter a con-
sistent series of trustworthy actions. However, trust harmed by
deception and the same untrustworthy actions never fully recovers,
even with actions of trust repair [68]. Additionally, a promise to
change behavior can significantly speed the trust recovery process,
but prior deception harms the effectiveness of a promise.

Studies on trust violation and repair take into account the evolv-
ing nature of trust, where trust is seen as something that changes
over time. For example, Desai et al. [17] and Sebo et al. [69] re-
searched robot failure and its influence on dynamic trust during one
interaction. However, it has been outlined that long-term studies
exploring the transient nature of trust are missing in the literature
[50]. For example, how does trust change with increasing familiar-
ity of the user with robots? Also due to their little employment in
society, long-term studies have not been conducted so far.

Nordgqvist and Lindblom [59] analyze trustworthiness of indus-
trial robots with an operators’ experience framework. The evalua-
tion framework consists of the factors ability, benevolence, integrity,
perceived safety, time on task and errors, where in total 12 user
experience (UX) goals were characterized, 2 for each component.
For each UX goal, data collection methods were selected and mixed,
including observations, video recordings interviews, and Likert
scales. Interestingly, major identified reasons for limited trust were
communication problems during collaboration resulting in partici-
pant’s uncertainty of their own ability to collaborate with the robot.
The communication problems were strongly linked to the interface
design. Further, the participants initially had confidence in the ro-
bot itself, but were insecure of their own ability to collaborate due
to their inability to predict the robot’s intentions and instructions.

In an online survey, Brooks et al. [7] explored people’s reac-
tions to failures in autonomous robots, namely a vacuum cleaner
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and a self-driving taxi, by manipulating four variables: context
risk, failure severity, task support and human support. Participants’
perceptions of an erroneous robot became less negative when it
deployed a mitigation strategy, either by prompting task support,
human support or both. However, the authors reported an interest-
ing but non-significant tendency showing a preference for both task
and human support in high severity situations, and a preference
for only task support in low severity situations.

3 PROPOSAL

We propose a taxonomy of failure types that can influence trust
during Human-Robot Interaction. For each failure type, different
mitigation strategies are suggested. While De Visser et al. [14] stress
the importance of trust repair and list possible mitigation strategies,
these strategies have not been linked to different failure types be-
fore. As mentioned by Baker et al. [4], models of human-automation
and human-human trust are a helpful starting point, but do not ac-
count for the complexities of building and maintaining trust in HRL
A taxonomy for trust repair in HRI does not exist, but a framework
for rebuilding trust in automation has been proposed by Marinaccio
et al. [55]. It follows a similar intention: providing recommended
trust repair strategies depending on the violation committed. How-
ever, they base their framework on the error taxonomy of Reason
[61] which does not account for the interactive nature of HRI. Fur-
thermore, human error taxonomies such as [70, 71] focus mostly
on human error, while our taxonomy takes a holistic approach by
including errors by other actors such as the system(’s designer).

3.1 The Taxonomy

As a starting point for our discussions, we defined trust as “a per-
son’s willingness to rely on a robot to carry out its duties”. As HRI
involves two different actors, namely the robotic system and the
human interacting with it, we base our taxonomy on a first funda-
mental distinction: who performed a type of action which caused a
break of trust, (1) the system or (2) the user. Next, we distinguished
the failure type (i.e. categorization of the actions into different types
of failure). We differentiate four different failure types with respect
to their impact on trust and the related mitigation strategies: (1)
Design, (2) System, (3) Expectation, and (4) User (see Table 1 for
condensed failure type descriptions).

Design. Imagine you have designed a robotic system in a specific
way (in terms of behaviour, appearance, dialogue and so on) to
the best of your knowledge. While in the real world the system
behaves exactly the way you intended it to, it turns out that you
made design choices that were not ideal for the HRI. For example,
a specific function that you added to the robot is not used as of-
ten because the command is not as intuitive for the user as you
thought, which influences the trust the user has in the system. A
user misinterpreting the system’s output because of its design; not
understanding the interaction or not knowing about certain func-
tionality when they should have are all considered Design failures.
These failures are limited to the target audience of the system, as
for Design failures the system’s behaviour should be different in
retrospect.
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Table 1: Types of actions which cause a loss of trust: we call these failures

Failure type: Actionby Meant to act In

retrospect, Description

this way should actor be-
have this way?

Design System Yes No System does what it’s been made to do, but in retrospect
the system should not actually behave this way

System System No No System doesn’t do what it’s been made to do

Expectation System Yes Yes System does what it’s been made to do, but user ex-
pected something different to happen. In retrospect sys-
tem should still behave this way

User User No If design fail: yes User behaves in a way they are not supposed to. (Only

If expectation fail: no

a problem if leading to other type of failure)

Table 2: Risk Analysis of Failure leading to loss of Trust (cf. Sec. 3.2)

Failure Probability Impact on trust Risk score Mitigation strategy
Design failure 3 2 6 ID,E, A
System failure
Hardware 1* 3 3 E, A, F Alt
Software 3* 3 9 E, A, F, Alt
Expectation failure
Commission failure 2 8 E, A ID, T
Omission failure 3 2 6 E, A ID, T
User failure
Intentional 2" 1 2 J, ID, Emo, Auth
Unintentional 2 3 6 T, ID

Probability scores: 1 = 1 occurrences in about 1000 interactions, 2 = 1in 100, 3 = 1in 10, 4 = likely in every interaction episode.
Impact scores: 1 = minor impact (negligible) to 4 = fatal impact (potential loss of trust and further use).

Mitigation strategies: ID = Interaction design; E = Explanation; A = Apology; F = Fix; J = Ask for justification; Emo = show
emotion; Auth = Involve authority figure; Alt = Propose alternative; T = Training

System. When a System failure occurs, the system does not act
as intended. For example, the robot stops in the middle of a room
during a navigation task without a reason, or stops a scanning task
because its scanner malfunctions. In other words, the system does
not do what it should, e.g. because of a system crash. The distinction
can be made between a hardware and software failure.

Expectations. Trust in technological systems is typically con-
cerned with the human’s expectations of the system. With an Ex-
pectation failure, the system acts as intended, but defies the user’s
expectation. For example, when the user expects a robot to turn
while observing a room, but the robot does not need to do so, the
systems performs as it should but confuses the user. This is an ex-
ample of an omission failure: the robot does not act when the user
expects that it will. The opposite of this is a commission failure: the
robot does something the user does not expect, e.g. start moving in
the middle of an interaction because it needs to charge its battery.
Expectation failures are different from Design failures in that for an
Expectation failure the system should in retrospect still behave the
same, while in case of a Design failure it should not. In case of the
robot turning, the turning is an Expectation failure. However, there
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is probably a related Design failure as the robot does not explain
its actions to the user properly. In this example, the Design failure
is what leads to the Expectation failure.

User. In this last category the user interacts with the system
in a way that he/she was not supposed to do, e.g. disturbing or
sabotaging the robot (intentional) or standing in the robot’s way so
it cannot move (unintentional). This type of failure can be caused
either by a Design failure or an Expectation failure which influences
its impact on trust and potential mitigation strategies. While an
Expectation failure deals with what the user expects the robot to
do, a User failure is about what the users themselves do. Of course,
Expectation failures could lead to unintentional User failures.

Combining all these failure types gives our foundation of the
taxonomy shown in Table 2, including mitigation strategies that po-
tentially repair the broken trust. This table is designed to resemble
risk tables [6], also aiming to quantify the Probability of a failure
occurring and the estimated Impact it will have on trust. In line with
risk assessment practice, a Risk score is computed by multiplying
the probability and impact scores, providing an indication of the
priority for suitable mitigation strategies. These scores are system-
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and scenario-specific. To show how such a risk table can be used in
a HRI context, the scores in Table 2 are from a real world use case.

3.2 Trust loss as a risk: A Case-Study

We present the following interactive system as a case-study in this
paper, to show how our proposed taxonomy can be used for a real-
world use case. In this example case [31, 32], an autonomous mobile
robot has been deployed in a care home for a total of just over a
year, in the context of the STRANDS project!. This experiment
was split over three individual deployments, following an iterative
design principle, spread over a duration of three years. Here, the
robot served as a mobile info-terminal and was also engaged in
occupational therapy sessions. It was left without any technician
or researcher on site, interaction with visitors and residents in the
care home was without explicit solicitation by any experimenter.

Rich data sets, comprising task and error logs [32], user demo-
graphics [36], and navigation failures [15] have been obtained from
these deployments, and analysed for the case study for this paper.

Tab. 2 presents the results of this case study analysis, in terms of
Probability and Impact scores derived from the retrospective analy-
sis of the data sets from the deployments. It shall be noted that this
constitutes merely a case study, based on available data, allowing
only some scores to be robustly computed from logs, while others
have to be informed guesses, based on the authors’ experience.
For transparency, we have marked scores that are estimated from
available data sets with an asterisk (*).

Probability and Detection. In the specific instance, a variety of
problems were detected automatically, such as navigation issues [15],
forceful pushes to the robot, and hardware failures. Consequently,
many failure types can be detected from system logs and from
dedicated anomaly or failure detection modules that allow to es-
timate the probability of them occurring. In our case study of the
STRANDS system, we analysed logs covering a cumulative deploy-
ment of over a year and employ some “Back-of-the-envelope” (BoE)
calculations to derive the probability score. Given that the proba-
bility score is only intended to give an indication of the magnitude
of a specific failure class, a BoE is most adequate for this assess-
ment. The system data in [36] indicated that there were about 3.5
interactions per operational hour (i.e. time the robot is not resting
or charging) with users that are actively using the robot. We shall
take this estimate as the baseline for our BoE approximation.

An analysis of software failures, in particular navigation failures
(which account for more than 99% of all software-related issues in
this particular use case) in [15] reveals that in 1605 instances the
robot had to ask for help as it could not recover from a navigation
problem, making its failure obvious to the interacting humans, and
hence potentially having an impact on trust. Thus, we observed
such failure about every 2 hours of autonomous operation, leading
to a ratio of 7 : 1 for Software failures to interactions, leading
to a Probability score of “3” in Tab. 2. Most scores in Tab. 2 were
calculated in a similar fashion: hardware failures were counted
(e.g. snapper drive belt, failed encoder) as well as intentional User
failures. In the case of the latter, by counting the number of forceful

http://strands-project.eu/
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robot pushes and deliberate tampering, "intentional User failure"
was observed in about 1 out of 200 interactions, scoring "2".

The other probability scores are much harder to obtain in a
post-mortem analysis of long-term deployment, and require more
focused studies, e.g. [33], involving the users directly. For instance,
[33] revealed some of the Design failures that lead to the iterative
improvements between annual deployments.

Impact. To assess the impact of individual failures, we base our
assessment of a qualitative analysis in the context of the care de-
ployment within the STRANDS project [24, 33, 34]. The assessment
is not an exact science; within this case study we do not aim for
a comprehensive analysis of this STRANDS system, but rather
present the concepts of considering trust loss as a risk open to a
systematic analysis. For instance, feedback from on-site interviews
showed that commission failures have a very high impact on trust.
As an example, we quote a participant, who complained that the
robot appears “stupid”, because it would “start talking to a wall”, a
consequence of misclassification leading to a commission failure.
However, establishing a robust scoring system for impact of trust
that has wider applicability is one of the areas of future research.

3.3 Mitigation Strategies

Depending on the type of failure that has taken place, there are
different possible mitigation strategies that can help regain the trust
of the user. Given the interaction between different failure types,
mitigation strategies for the initial failure type should be applied
first. For example, if an Expectation failure was caused by a Design
failure, the Design failure should be considered first. For Design,
System and Expectation failures the following mitigation strategies
can be used:

Fix. When a System failure occurs, be it hardware or software,
the problem needs to be fixed. This is a very practical mitigation
strategy to ensure the issue does not occur again and only applies
to System failures.

Interaction Design. While it is intuitive that Interaction Design is
important to foster trust, it can also be a tool in reestablishing trust.
However, we can assume that once trust is broken due to a Design
failure, the redesign of the system becomes even more challeng-
ing. As Lewicki and Wiethoff [49] explain restoring trust after a
violation is a three-step process: (1) exchanging information about
the perceived trust violation, (2) willingness to forgive the violator,
and (3) reaffirm their commitment. Implicitly communicating all of
these aspects to the same user with a change in interaction design
will be hardly possible. However, improving trust through the inter-
action design for other prospective users will still be a viable way
to go. Proper design allows for smooth interactions and substantial
research is available in HRI on understanding robot-related factors
affecting trust in the interaction design, such as social skills [35],
robot role [27], and communication style [60]. Hancock et al. [29]
provide a detailed overview on HRI studies on the impact of robot
design features on trust in HRL

Explanations. Explanations for the end user can be a suitable
mean to repair trust. Methods, such as plan-based explanations
related to previous decisions can be used. However, the correct level
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of detail of abstractions and human-comprehensible explanations
are challenging. Explanations to end users do not necessarily need
to be in natural language, but can use cues such as closed eyes,
blinking lights, nodding head etc. Overall, the aim of explanations
should be to increase transparency and understandability in order
to repair trust in a failure situation.

Apology. Once a trust failure occurs, it is essential to recognize
that trust has been broken and acknowledge that the failure that
occurred was unpleasant for the user. Apologies are effective for
trust violations related to the violator’s competences (e.g. an error
in planning or judgement) [45]. In human-human interaction, they
are more effective than shifting the blame elsewhere. Once the
human understands the effect was not intended and is not intended
to happen in the future, the trust repair can start. Lee et al. showed
that the apology strategy was most effective to mitigate perceptions
of competence, closeness and likeability of a service robot [48].

Propose Alternative. In case of a system breakdown, the trust lost
in the system can be minimized when alternatives are available. If
possible, the system can propose a workaround the user can employ
to still get the intended task done despite a System failure.

Our discussions on User Failures revealed that there is little to
no research on how to mitigate this type of failure. We consider
the following strategies as promising:

Ask the Human for Justification. When a user misbehaves, the
response the system gives will influence future behavior of the
user towards the system. If the user was not aware of any misbe-
havior, asking the user for justification of their actions can create
awareness of their mistakes. We assume that unintentional negative
behavior will not be repeated once the user becomes aware of it.
Intentional misbehavior is harder to address, since the user acted
purposefully. Asking a justification is intended to help the user
realize the negative consequences of their actions.

Show Emotion. It is in our nature to anthropomorphize robots,
for example by projecting a personality onto the robot or reading
emotions into its output. When a user misbehaves, emotion can be
a powerful tool to persuade the user to behave better. However, the
impact of negative emotions displayed by a robot is understudied
[42]. The only study we are aware of, in which a robot shows
negative emotions - namely an aggressive movement pattern - could
show that this was enough to reduce robot abuse [67].

Involve Authority Figure. Using authority is a persuasion mecha-
nism [12] that can be useful to make sure users behave properly
towards the robot. An example can be to alert the owner of the
robot or authorities. Research on children’s abusive behaviour to-
wards robots in shopping malls revealed, that children typically
did not stop such misbehavior until their parents (their authority
figure) stopped them or they got bored [8].

Training. For unintentional User failures, training can be a poten-
tial mitigation strategy to avoid repeated future failure situations.
So far, little research has been done on how users can be trained in
HRI (since research mostly focuses on how users can train robots
[1]), but existing work shows that “training is essential” [9].
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4 AUTONOMOUS TRUST REPAIR

What we want to achieve in HRI at some point is autonomous trust
repair, which implies both failure detection and failure mitigation is
managed without human assistance. The first step towards this goal
is failure detection: is something wrong with the system? Related
to this is failure classification: once it is established something is
wrong, the system needs to assess what is wrong. Finally, using this
classification and the detected deviation from the plan the system
had, an explanation can be presented in an attempt to repair the
lost trust. In our opinion, this is a fundamental prerequisite: a robot
needs to detect that a failure happened and an explanation to the
end user should be the starting point for any mitigation strategy.

4.1 Failure Detection

Robots that interact with humans in the wild will at some point face
failure situations, which can either be inflicted by the robot, the
human, or by unexpected environmental events. However, dealing
properly with failure situations from a robot-centered perspective
is a challenging endeavour. Firstly, the robot has to detect that an
error situation has occurred; secondly, it needs to analyze what
kind of error situation occurred; thirdly, it needs to apply an error
recovery strategy to get back into a safe interaction state.

What can be detected? Looking at our taxonomy in Table 1, the
question arises which of those failure types can be detected by a
robot itself (self-awareness) without further involvement of the
user. The common definition of failure usually requires the exact
knowledge and definition of a failure case, i.e., a formal definition
of what constitutes a failure. In other words, the failure detection
problem is considered a classification problem, where a model of
the failure itself can either be defined or learned.

One way to do this is by using verification and validation tech-
niques. Formal verification is a mathematical analysis of all be-
haviours of the robot or system using logics, and tools such as
theorem provers or model checkers (see for example [13, 21]). Us-
ing model checking, a desirable property encoded in some logic
is checked over a model, often a finite state transition system, to
ensure that it holds on all paths through the system from an initial
state. Theorem proving involves a mathematical proof to show that
the property expressed in some logic is a logical consequence of
the system also expressed in logic. Simulation based testing utilises
simulations of the robots and the environment, possibly including
hardware in the loop, to facilitate large numbers of tests that may
not be possible in the real world. Tools are used to automate the
testing and analyse the coverage of the tests. End user experiments
can be used to test aspects such as trustworthiness. Formal verifi-
cation, simulation based testing and end user experiments can help
improve the safety, reliability and trust in robotic systems [23, 77],
as well as help mitigate as system failure (all), design failure and
expectation failure (end user experiments).

However, this approach limits the ability to detect failures to
properties that have been identified in the specification. A com-
plementary approach relates to anomaly detection (e.g. recently
surveyed in [28]). It aims to detect any deviation from a normal
behaviour of a system, without necessarily classifying a problem.
The identification of a potentially known problem can then be de-
ferred to approaches to generation explanations, utilising domain
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knowledge as formally defined in the following section and also
explored in [30].

4.2 Offering Explanations

Once a failure is detected and possibly classified, we consider expla-
nations as one possibility for failure mitigation (see Tab. 2). There-
fore, it is desirable to investigate how a robot can automatically
generate explanations based on its perception and deliberation mod-
ules. According to Miller [57], explanations should be contrastive,
selective, and social. Contrastive explanations (implicitly or explic-
itly) refer to situations different to the one to be explained. For
instance, Why does the robot do X? should be understood as Why
does the robot do X rather than Y? One way to generate contrastive
explanations is by counterfactual analysis: the occurrence of some
phenomenon X in situation S can be explained by a sufficiently
altered situation S” where X does not occur (but Y does). Coun-
terfactual explanations have recently been applied to generating
explanations for plan failures [25], for explaining why an action
plan contains a specific action [22], and to explain why an action
plan does (not) adhere to moral principles [51]. These approaches
only partially fulfill Miller’s criteria of selectivity, though: although
minimality criteria are considered, there are generally many pos-
sible explanations and it is not necessarily clear how to pick the
most appropriate ones. Wang and colleagues [76] circumvent this
challenge by generating explanations from Partially Observable
Markov Decision Processes using a template-based approach. The
downside of this approach is its being less generic and its requiring
hand-crafted template modeling. Finally, Miller requires explana-
tions to be social, that is, explanations should take the user’s mental
state (beliefs, desires etc.) into account. This requirement is a big
challenge to the current state of the art of explanation generation.

4.3 Formalism for representing plans

A procedure for explaining failures can be based on the STRIPS
formalism for planning [20]. STRIPS and its derivatives are widely
used to describe a robot’s deliberate actions and external events.
A STRIPS model is a tuple (P, so, 3¢, O, pre, del, add) with a set of
propositions P, an initial state sy C P, a partial state s; C P called
goal description, a set of operators O (actions and events), a function
pre: O — 2P mapping each operator to a set of preconditions that
must hold for the operator to be executable, a function del: O +— 2P
mapping each operator to a set of propositions to be deleted from
the current world state as an effect of the operator’s execution,
and a function add: O — 2P mapping each operator to a set of
propositions to be added to the current world state. The execution
of operators thus triggers transitions from current world states to
successor world states, where world states are sets of propositions.
An operator o is applicable in a state s iff pre(o) C s. The successor
state s’ = (s \ del(0)) U add(o) results from applying o in s. A state
s is a goal state if s, C s. We assume the existence of the empty
action € € O, which has an empty precondition, an empty delete
list, and an empty add list.

As an example, consider a robot currently situated in the kitchen.
It wants to move to the dining room. The applicable action op-
erator move(kitchen, diningroom) has precondition {in(kitchen)}.
The action’s effect is given by the delete list {in(kitchen)} and
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the add list {in(diningroom)}. Hence, by performing the action
move(kitchen, diningroom) in state so = {in(kitchen)}, the world
state transitions from state sy to state s; = (so \ {in(kitchen)}) U
{in(diningroom)} = {in(diningroom)}.

4.4 Explaining failures from plans

Let 7 = S0 =0, S1 =0, --- —0,_; Sn be a course of actions and
events 0;—also called a plan—originating from the initial state s
and terminating in some state s,, which may (or may not) qualify
as a failure state in the sense of the conceptualization outlined in
Subsect. 3.1 and Tab. 2. In case of failure, we want to understand
why the failure occurs by answering Why-questions about facts
and actions:

(1) Why does fact p (not) hold at time point ¢?
(2) Why does the robot (not) perform action a at time point ¢?

As an example, consider the following case which involves an
expectation failure of type commission and requires generating an
answer to a question of type (2): After the robot receives a navigation
goal from the user, the robot suddenly starts turning to get a precise
estimate of its current location via its front-mounted laser rangefinder.
The user expects the robot to immediately start moving towards
the specified destination and thus wants to understand Why does
the robot start turning? To see how an answer can be generated,
first consider the robot’s plan 7 = sy —;; s1 —p4 S2, i.e., the robot
plans to first make a turn to improve its localization (action tI) and
then to navigate to the destination (action nd). Initially, the robot’s
pose estimate is poor (fact pe) and the robot is not at the destination,
ie., so = {pe}. The goal s4 = {d} is to be at the destination. The
precondition of the navigation action nd is that the robot has a good
pose estimate (fact ge). Performing nd adds d to the state. The turn
action t] has delete list del(t]) = {pe} and add list add(t]) = {ge}.
To explain why the robot is turning, counterfactual analysis is used:
an inclusion-wise minimal subset x C add(tl) of the add list of
action t! is identified, such that if the facts in x were removed from
add(tl), then the final state of plan 7 would be no goal state. This is
to say that x is a necessary means to the goal d. Clearly, removing
fact ge from add(tl) would make action nd inapplicable and thus
fact d would be missing from the final state. Accordingly, the robot
can explain Turning around results in knowing where I am, and this
is necessary for finally reaching the destination.

4.5 Logics for Trust Loss Detection

One way to recognize whether trust was lost because of a failure,
is by using logics to model and reason about trust loss. Logics for
trust have been developed. In [37] the authors formalise the work
of [11, 18]. In [11, 18], i (truster) trusts j (trustee) to do « (an action)
with respect to ¢ (a goal) if and only if (1) i has the goal ¢; (2) i
believes that (a) j is capable to do «; (b) j, by doing «, will ensure ¢;
and (c) j intends to do a.

In [37] the notion of trust is reduced to more primitive concepts
of belief, goal, capability and opportunity which is formalised in
a logic of time, action, beliefs and chosen goal. Two kinds of trust
are considered. Firstly, the truster believes that the trustee is going
to act here and now (termed occurrent trust). Secondly, the truster
believes that the trustee is going to act whenever some conditions
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are satisfied (dispositional trust). Only occurrent trust and qualita-
tive aspects of trust are considered in [11, 18]. Two dynamic logic
operators Afteri.q and Does;., are proposed. The former gives the
result of agent i’s performing action « (its capabilites) and the latter
about what holds after agent i does action a (what an agent does
and intends to do). The modal operators Bel; (agent i believes) and
Choice; (agent i has chosen the goal) and the temporal operators G
(always in the future) and F (at some future moment) are also used.
Occurrent trust OccTrust(i, j, @, @) is defined as follows:
OccTrust(i, j, a, ¢) = Choice;Fo A Belj(Doesj.o T A Afterj.q¢).
That is i trusts j to do a with respect to ¢ if and only if, i wants
@ to be true at some point in the future and believes that j will
ensure ¢ by doing action . The authors argue that this may be too
strong as j is going to do @ immediately. This leads to the defini-
tion and formalisation of dispositional trust which is weaker than
this. A complete axiomatisation is provided but complexity and
decidability are not considered.

In [43, 44] the authors consider automated quantitative reasoning
about trust via stochastic multi-agent systems. They formulate
probabilistic rational temporal logic (PRTL*) as a combination of the
probabilistic computation tree logic (PCTL*) with cognitive attitude
operators (belief, goal, intention) and trust operators (competence,
disposition and dependence). The resulting logic is, in general,
undecidable but decidable fragments are identified. The work has
again been inspired by [18] and, as with our work, the focus is on
trust between humans and robots/autonomous systems.

These logics could be used to model robotic trust scenarios to
identify when and how the system is not trusted or trust is lost. The
belief aspects from [11, 18] and modelled in the logics mentioned
above seem to match the expectation failure type discussed above.
However, they do not match the more complex models of trust as
introduced in Section 2.2.

5 FUTURE WORK

Reflecting on existing HRI research on trust repair and the intro-
duced taxonomy, as well as autonomous failure handling through
explanation generation, verification and validation techniques lead
us to identify research gaps we consider crucial to be further ex-
plored for successful trust failure classification and mitigation.

Mitigation of User Failures. Our discussions identified the cate-
gory of intentional and unintentional User Failures as up-to-now
understudied with respect to mitigation strategies [41]. Mainly
how robots could react if people intentionally cause errors, e.g.
by covering sensors, giving wrong information or other ways of
intentionally bullying the robot. We gave potential examples of
mitigation strategies, namely calling an authority, showing emo-
tions, and ask the person for justification. However, effects of robots
showing negative emotions are in general understudied [42], and
no systematic studies of the other strategies exist so far.

Impact of Failure Repetition. Similarly, the impact of failure repe-
tition is understudied, above all with respect to how it affects trust.
Some studies on people’s willingness to help robots after repeated
failure indicate that repeatedly helping robots in need when the
suggested repair strategy is successful does not reduce likability [3].
However, this does not give insights into how much overall trust is
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harmed. It will need long-term studies outside of laboratory experi-
ments to get an ecologically valid grasp on how failure repetition
affects trust. Subsequently, long-term in-the-wild studies, lasting
several weeks to out-rule novelty effects [26], will be needed to
assess the impact of familiarity with the robot. Studies on gracefully
failing robots will substantially inform trustworthy HRI design.

Severity Rankings. Failure classifications often come with sever-
ity rankings, such as the failure classification by Carlson and Mur-
phy [10]. They classified physical failures according to severity
(terminal failure: terminates the system’s current mission; non-
terminal failures: degrades its ability to perform its mission) and
repairability (field repairable: repairable with tools that accompany
the system in the field; nonfield repairable: cannot be repaired with
tools that accompany the system in the field). For our approach we
would like to extend our taxonomy with a severity ranking with re-
spect to the loss of trust. Similarly, to the impact of repetition, data
from long-term field trials will be needed in order to add empirical
evidence to our taxonomy.

Automated recognition of Trust Loss. As mentioned before, the
current logics that allow trust (loss) modeling are fairly simplistic.
Furthermore, different cues in user behavior need to be distinguish-
able to detect trust loss of the user in the system. While automated
detection of a failure is the first necessary step in failure mitigation,
the next goal should be automated trust loss detection to be able
to respond appropriately. As the STRANDS use case has shown,
proper recognition and standardized scoring of trust loss could
greatly benefit trust research in HRL

6 CONCLUSION

In this paper, we aimed at consolidating the knowledge we have
on trust and trust repair in HRI in a taxonomy with the aim to
help fellow researchers developing trustworthy robots according to
the state of the art. We aimed at specifically structuring potential
failure situations from the robot as well as from the user perspec-
tive. Our efforts revealed that empirical research in HRI tries to
more and more identify suitable mitigation strategies, but hardly
considers the type of failure that caused the trust violation. We
argue that a framing of failure situations will have an impact on
trust repair and needs to be considered in future studies, but above
all in future interaction designs. Moreover, we tried to outline how
failure detection could be improved for future HRI, as well as the
logics of verification of failure states. Future work in these areas
will be essential to actual enable autonomous trust repair in HRI
including autonomously generated suitable explanation strategies.

ACKNOWLEDGMENTS

We thank Schloss Dagstuhl — Leibniz Center for Informatics as well
as the organizers of Dagstuhl Seminar 19171 on “Ethics and Trust:
Principles, Verification and Validation” for bringing us together to
produce this work. C. Dixon was partially supported by UKRI Hubs
for Robotics and Al in Hazardous Environments EP/R026092 (FAIR-
SPACE), EP/R026084 (RAIN), and M. Hanheide by EP/R02572X
(NCNR). We thank the Center for Science, Ethics & Public Policy at
the University of Delaware for their Open Access funding support.



Day 1 Session 1: Trust

REFERENCES

(1]

[2

[

[3

(4]

w
=

=

=
X0,

[10]

[11

[12

[14]

(15

[16]

[17]

(18]

[19]

[20

[21]

[22

[23]

RIGHTS

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A
survey of robot learning from demonstration. Robotics and autonomous systems
57,5 (2009), 469-483.

Kenneth J Arrow. 1972. Gifts and exchanges. Philosophy & Public Affairs 1, 4
(1972), 343-362.

Markus Bajones, Astrid Weiss, and Markus Vincze. 2016. Help, anyone? a user
study for modeling robotic behavior to mitigate malfunctions with the help of
the user. arXiv preprint arXiv:1606.02547 (2016).

Anthony L. Baker, Elizabeth K. Phillips, Daniel Ullman, and Joseph R. Keebler.
2018. Toward an Understanding of Trust Repair in Human-Robot Interaction: Cur-
rent Research and Future Directions. ACM Transactions on Interactive Intelligent
Systems 8, 4 (Nov. 2018), 1-30. https://doi.org/10.1145/3181671

Deborah R. Billings, Kristin E. Schaefer, Jessie Y.C. Chen, and Peter A. Hancock.
2012. Human-robot interaction: developing trust in robots. In Proceedings of the
seventh annual ACM/IEEE international conference on Human-Robot Interaction -
HRI ’12. ACM Press, Boston, Massachusetts, USA, 109. https://doi.org/10.1145/
2157689.2157709

Barry W. Boehm. 1991. Software risk management: principles and practices. IEEE
software 8, 1 (1991), 32-41.

Daniel J Brooks, Momotaz Begum, and Holly A Yanco. 2016. Analysis of reactions
towards failures and recovery strategies for autonomous robots. In 2016 25th
IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN). IEEE, New York, NY,USA, 487-492.

Drazen Brsci¢, Hiroyuki Kidokoro, Yoshitaka Suehiro, and Takayuki Kanda. 2015.
Escaping from Children’s Abuse of Social Robots. In Proceedings of the Tenth
Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI ’15).
ACM, New York, NY, USA, 59-66. https://doi.org/10.1145/2696454.2696468
Maya Cakmak and Leila Takayama. 2014. Teaching people how to teach robots:
The effect of instructional materials and dialog design. In Proceedings of the 2014
ACM/IEEE international conference on Human-robot interaction. ACM, Toronto,
Canada, 431-438.

Jennifer Carlson and Robin R Murphy. 2005. How UGVs physically fail in the
field. IEEE Transactions on robotics 21, 3 (2005), 423-437.

Cristiano Castelfranchi and Rino Falcone. 1998. Principles of Trust for MAS:
Cognitive Anatomy, Social Importance, and Quantification. In Proceedings of
the Third International Conference on Multiagent Systems, ICMAS 1998, Paris,
France, July 3-7, 1998, Yves Demazeau (Ed.). IEEE, New York, NY,USA, 72-79.
http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?punumber=5659

Robert B Cialdini. 1993. Influence: The psychology of persuasion. Morrow New
York, New York, NY, USA.

E. Clarke, O. Grumberg, and D. A. Peled. 2000. Model Checking. MIT Press,
Cambridge,MA,USA.

Ewart J de Visser, Richard Pak, and Tyler H Shaw. 2018. From ’automation’
to ’autonomy’: the importance of trust repair in human-machine interaction.
Ergonomics 61, 10 (2018), 1409-1427.

Francesco Del Duchetto, Ayse Kucukyilmaz, Luca Iocchi, Marc Hanheide,
Francesco Del Duchetto, Ayse Kucukyilmaz, Luca Iocchi, and Marc Hanheide.
2018. Do Not Make the Same Mistakes Again and Again: Learning Local Recovery
Policies for Navigation From Human Demonstrations. IEEE Robotics and Automa-
tion Letters 3, 4 (oct 2018), 4084-4091. https://doi.org/10.1109/LRA.2018.2861080
Daniel Clement Dennett. 1989. The intentional stance. MIT press, Cam-
bridge, MA,USA.

Munjal Desai, Poornima Kaniarasu, Mikhail Medvedev, Aaron Steinfeld, and
Holly Yanco. 2013. Impact of robot failures and feedback on real-time trust.
In Proceedings of the 8th ACM/IEEE international conference on Human-robot
interaction. IEEE Press, Tokyo, Japan, 251-258.

Rino Falcone and Cristiano Castelfranchi. 2001. Social Trust: A Cognitive Ap-
proach. In Trust and Deception in Virtual Societies, Cristiano Castelfranchi
and Yao-Hua Tan (Eds.). Springer, Dordrecht, 55-90. https://doi.org/10.1007/
978-94-017-3614-5_3

Joel Feinberg. 1987. The moral limits of the criminal law. 1, Harm to others. Oxford
University Press, New York, NY,USA.

Richard E. Fikes and Nils J. Nilsson. 1971. STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving. Artificial Intelligence 2
(1971), 189-208. Issue 3-4.

M. Fisher. 2011. An Introduction to Practical Formal Methods Using Temporal Logic.
Wiley, New York, USA.

Maria Fox, Derek Long, and Daniele Magazzeni. 2017. Explainable Planning. In
IJCAI-17 Workshop on Explainable AL JJCAI, Melbourne, Australia.

Paul Gainer, Clare Dixon, Kerstin Dautenhahn, Michael Fisher, Ullrich Hustadt,
Joe Saunders, and Matt Webster. 2017. CRutoN: Automatic Verification of a
Robotic Assistant’s Behaviours. In Critical Systems: Formal Methods and Auto-
mated Verification - Joint 22nd International Workshop on Formal Methods for
Industrial Critical Systems - and - 17th International Workshop on Automated
Verification of Critical Systems, FMICS-AVoCS 2017, Turin, Italy, September 18-20,
2017, Proceedings (Lecture Notes in Computer Science), Laure Petrucci, Cristina

1

[24

[25

Iy
&

[27

[28

[29

[30

[31

(32]

[33

[34

[35

HRI 20, March 23-26, 2020, Cambridge, United Kingdom

Seceleanu, and Ana Cavalcanti (Eds.), Vol. 10471. Springer, Turin, Italy, 119-133.
https://doi.org/10.1007/978-3-319-67113-0_8

Kathrin Gerling, Denise Hebesberger, Christian Dondrup, Tobias Kortner, and
Marc Hanheide. 2016. Robot deployment in long-term care. Zeitschrift fiir
Gerontologie und Geriatrie 49, 4 (jun 2016), 288-297. https://doi.org/10.1007/
500391-016-1065-6

Moritz Gébelbecker, Thomas Keller, Patrick Eyerich, Michael Brenner, and Bern-
hard Nebel. 2010. Coming Up with Good Excuses: What To Do When No Plan
Can be Found. In Proceedings of the 20th International Conference on Automated
Planning and Scheduling (ICAPS 2010). AAAI Press, Toronto, Canada, 81-88.
Rachel Gockley, Allison Bruce, Jodi Forlizzi, Marek Michalowski, Anne Mundell,
Stephanie Rosenthal, Brennan Sellner, Reid Simmons, Kevin Snipes, Alan C
Schultz, et al. 2005. Designing robots for long-term social interaction. In 2005
IEEE/RS] International Conference on Intelligent Robots and Systems. IEEE, New
York, NY,USA, 1338-1343.

Victoria Groom, Vasant Srinivasan, Cindy L Bethel, Robin Murphy, Lorin Dole,
and Clifford Nass. 2011. Responses to robot social roles and social role framing.
In 2011 International Conference on Collaboration Technologies and Systems (CTS).
IEEE, New York, NY,USA, 194-203.

Ritwik Gupta, Zachary T Kurtz, Sebastian Scherer, and Jonathon M Smereka.
2018. Open Problems in Robotic Anomaly Detection. CoRR abs/1809.0 (sep 2018).
arXiv:1809.03565 http://arxiv.org/abs/1809.03565

Peter A. Hancock, Deborah R. Billings, Kristin E. Schaefer, Jessie Y. C. Chen,
Ewart J. de Visser, and Raja Parasuraman. 2011. A Meta-Analysis of Factors
Affecting Trust in Human-Robot Interaction. Human Factors: The Journal of
the Human Factors and Ergonomics Society 53, 5 (Oct. 2011), 517-527. https:
//doi.org/10.1177/0018720811417254

Marc Hanheide, Moritz Gobelbecker, Graham S. Horn, Andrzej Pronobis, Kristof-
fer Sjoo, Alper Aydemir, Patric Jensfelt, Charles Gretton, Richard Dearden,
Miroslav Janicek, Hendrik Zender, Geert-Jan Kruijff, Nick Hawes, and Jeremy L.
Wyatt. 2017. Robot task planning and explanation in open and uncertain worlds.
Artificial Intelligence 247 (jun 2017), 119-150. https://doi.org/10.1016/j.artint.
2015.08.008

Marc Hanheide, Denise Hebesberger, Tomas Krajnik, Tomas Krajnik, and Others.
2017. The When, Where, and How: An Adaptive Robotic Info-Terminal for Care
Home Residents. In Proceedings of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction - HRI '17. ACM/IEEE, ACM Press, New York, New
York, USA, 341-349. https://doi.org/10.1145/2909824.3020228

Nick Hawes, Chris Burbridge, Ferdian Jovan, Lars Kunze, Bruno Lacerda, Lenka
Mudrova, Jay Young, Jeremy Wyatt, Denise Hebesberger, Tobias Kortner, others,
Rares Ambrus, Nils Bore, John Folkesson, Patric Jensfelt, Lucas Beyer, Alexander
Hermans, Bastian Leibe, Aitor Aldoma, Thomas Faulhammer, Michael Zillich,
Markus Vincze, Muhannad Al-Omari, Eris Chinellato, Paul Duckworth, Yiannis
Gatsoulis, David C. Hogg, Anthony G. Cohn, Christian Dondrup, Jaime Pulido
Fentanes, Tomas Krajnik, ]oAéo M. Santos, Tom Duckett, and Marc Hanheide.
2017. The STRANDS Project: Long-Term Autonomy in Everyday Environments.
Robotics and Automation Magazine (4 2017). http://arxiv.org/abs/1604.04384
Denise Hebesberger, Tobias Koertner, Christoph Gisinger, Juergen Pripfl, and
Christian Dondrup. 2016. Lessons learned from the deployment of a long-term
autonomous robot as companion in physical therapy for older adults with de-
mentia a mixed methods study. In 2016 11th ACM/IEEE International Conference
on Human-Robot Interaction (HRI). IEEE, Christchurch, New Zealand, 27-34.
https://doi.org/10.1109/HRI1.2016.7451730

Denise Viktoria Hebesberger, Christian Dondrup, Christoph Gisinger, and Marc
Hanheide. 2017. Patterns of Use: How Older Adults with Progressed Dementia
Interact with a Robot. In Proceedings of the Companion of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction - HRI '17. ACM, ACM Press,
New York, New York, USA, 131-132. https://doi.org/10.1145/3029798.3038388
Marcel Heerink, Ben Krose, Vanessa Evers, and Bob Wielinga. 2006. The in-
fluence of a robot’s social abilities on acceptance by elderly users. In ROMAN
2006-The 15th IEEE International Symposium on Robot and Human Interactive
Communication. IEEE, New York, NY,USA, 521-526.

Roberto Pinillos Herrero, Jaime Pulido Fentanes, and Marc Hanheide. 2018. Get-
ting to Know Your Robot Customers: Automated Analysis of User Identity and
Demographics for Robots in the Wild. IEEE Robotics and Automation Letters 3, 4
(oct 2018), 3733-3740. https://doi.org/10.1109/LRA.2018.2856264

Andreas Herzig, Emiliano Lorini, Jomi Fred Hiibner, and Laurent Vercouter. 2010.
A logic of trust and reputation. Logic Journal of the IGPL 18, 1 (2010), 214-244.
https://doi.org/10.1093/jigpal/jzp077

Thomas Hobbes. 1980. Leviathan (1651). Glasgow 1974 (1980).

Kevin Anthony Hoff and Masooda Bashir. 2015. Trust in Automation: Integrating
Empirical Evidence on Factors That Influence Trust. Human Factors 57, 3 (2015),
407-434. https://doi.org/10.1177/0018720814547570 PMID: 25875432.

Robert R Hoffman, Matthew Johnson, Jeffrey M Bradshaw, and Al Underbrink.
2013. Trust in automation. IEEE Intelligent Systems 28, 1 (2013), 84-88.

Shanee Honig and Tal Oron-Gilad. 2018. Understanding and resolving failures in
human-robot interaction: Literature review and model development. Frontiers in
psychology 9 (2018), 861.


https://doi.org/10.1145/3181671
https://doi.org/10.1145/2157689.2157709
https://doi.org/10.1145/2157689.2157709
https://doi.org/10.1145/2696454.2696468
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5659
https://doi.org/10.1109/LRA.2018.2861080
https://doi.org/10.1007/978-94-017-3614-5_3
https://doi.org/10.1007/978-94-017-3614-5_3
https://doi.org/10.1007/978-3-319-67113-0_8
https://doi.org/10.1007/s00391-016-1065-6
https://doi.org/10.1007/s00391-016-1065-6
http://arxiv.org/abs/1809.03565
http://arxiv.org/abs/1809.03565
https://doi.org/10.1177/0018720811417254
https://doi.org/10.1177/0018720811417254
https://doi.org/10.1016/j.artint.2015.08.008
https://doi.org/10.1016/j.artint.2015.08.008
https://doi.org/10.1145/2909824.3020228
http://arxiv.org/abs/1604.04384
https://doi.org/10.1109/HRI.2016.7451730
https://doi.org/10.1145/3029798.3038388
https://doi.org/10.1109/LRA.2018.2856264
https://doi.org/10.1093/jigpal/jzp077
https://doi.org/10.1177/0018720814547570

Day 1 Session 1: Trust

[42

[43

[44]

[45]

[46]

[47]

[48]

[49

[50]

[51]

[52

5
&

[54

[55

[56

[57]

[58

RIGHTS

Ruud Hortensius, Felix Hekele, and Emily S Cross. 2018. The perception of
emotion in artificial agents. IEEE Transactions on Cognitive and Developmental
Systems 10, 4 (2018), 852-864.

Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik. 2019. Reasoning About
Cognitive Trust in Stochastic Multiagent Systems. ACM Trans. Comput. Logic 20,
4, Article 21 (July 2019), 64 pages. https://doi.org/10.1145/3329123

Xiaowei Huang and Marta Zofia Kwiatkowska. 2017. Reasoning about Cognitive
Trust in Stochastic Multiagent Systems. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA., Satinder P. Singh and Shaul Markovitch (Eds.). AAAI Press, 3768-3774.
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14566

Peter H Kim, Donald L Ferrin, Cecily D Cooper, and Kurt T Dirks. 2004. Remov-
ing the shadow of suspicion: the effects of apology versus denial for repairing
competence-versus integrity-based trust violations. Journal of applied psychology
89, 1 (2004), 104.

Morteza Lahijanian and Marta Kwiatkowska. 2016. Social trust: a major challenge
for the future of autonomous systems. In 2016 AAAI Fall Symposium Series. AAAI
Press.

John D. Lee and Katrina A. See. 2004. Trust in Automation: Designing for
Appropriate Reliance. Human Factors 46, 1 (2004), 50-80.

Min Kyung Lee, Sara Kiesler, Jodi Forlizzi, Siddhartha Srinivasa, and Paul Rybski.
2010. Gracefully mitigating breakdowns in robotic services. In 2010 5th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). IEEE, New York,
NY,USA, 203-210.

Roy J Lewicki and Carolyn Wiethoff. 2000. Trust, trust development, and trust
repair. The handbook of conflict resolution: Theory and practice 1, 1 (2000), 86—107.
Michael Lewis, Katia Sycara, and Phillip Walker. 2018. The Role of Trust in
Human-Robot Interaction. In Foundations of Trusted Autonomy, Hussein A.
Abbass, Jason Scholz, and Darryn J. Reid (Eds.). Springer International Publishing,
Cham, 135-159. https://doi.org/10.1007/978-3-319-64816-3_8

Felix Lindner, Robert Mattmiiller, and Bernhard Nebel. 2019. Moral Permissibility
of Action Plans. In Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence (AAAI-19). AAAI Press, 7635-7642.

Joseph B. Lyons and Paul R. Havig. 2014. Transparency in a Human-Machine Con-
text: Approaches for Fostering Shared Awareness/Intent. In Virtual, Augmented
and Mixed Reality. Designing and Developing Virtual and Augmented Environ-
ments, Randall Shumaker and Stephanie Lackey (Eds.). Springer International
Publishing, Cham, 181-190.

Bertram F Malle, Matthias Scheutz, Thomas Arnold, John Voiklis, and Corey
Cusimano. 2015. Sacrifice one for the good of many?: People apply different
moral norms to human and robot agents. In Proceedings of the tenth annual
ACM/IEEE international conference on human-robot interaction. ACM, 117-124.
Bertram F Malle, Matthias Scheutz, Jodi Forlizzi, and John Voiklis. 2016. Which
robot am i thinking about?: The impact of action and appearance on people’s
evaluations of a moral robot. In The Eleventh ACM/IEEE International Conference
on Human Robot Interaction. IEEE Press, 125-132.

Kaitlyn Marinaccio, Spencer Kohn, Raja Parasuraman, and Ewart J De Visser.
2015. A framework for rebuilding trust in social automation across health-care
domains. In Proceedings of the International Symposium on Human Factors and
Ergonomics in Health Care, Vol. 4. SAGE Publications Sage India, New Delhi, India,
201-205.

Roger C. Mayer, James H. Davis, and F. David Schoorman. 1995. An Integrative
Model of Organizational Trust. The Academy of Management Review 20, 3 (July
1995), 709. https://doi.org/10.2307/258792

Tim Miller. 2019. Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence 267 (2019), 1-38.

Sandra L Murray, John G Holmes, and Nancy L Collins. 2006. Optimizing assur-
ance: The risk regulation system in relationships. Psychological bulletin 132, 5

12

[59

o
)

66

[67

(68

=
0,

<
=

3
=

[76

(7]

[78

HRI 20, March 23-26, 2020, Cambridge, United Kingdom

(2006), 641.

Malin Nordqvist and Jessica Lindblom. 2018. Operators’ Experience of Trust in
Manual Assembly with a Collaborative Robot. In Proceedings of the 6th Interna-
tional Conference on Human-Agent Interaction. ACM, ACM, New York, NY, USA,
341-343.

PL Patrick Rau, Ye Li, and Dingjun Li. 2009. Effects of communication style and
culture on ability to accept recommendations from robots. Computers in Human
Behavior 25, 2 (2009), 587-595.

James Reason. 1990. Human error. Cambridge university press.

John K Rempel, John G Holmes, and Mark P Zanna. 1985. Trust in close relation-
ships. Journal of personality and social psychology 49, 1 (1985), 95.

Paul Robinette, Ayanna M Howard, and Alan R Wagner. 2015. Timing is key
for robot trust repair. In International Conference on Social Robotics. Springer,
574-583.

Paul Robinette, Wenchen Li, Robert Allen, Ayanna M. Howard, and Alan R.
Wagner. 2016. Overtrust of Robots in Emergency Evacuation Scenarios. In The
Eleventh ACM/IEEE International Conference on Human Robot Interaction (HRI
’16). IEEE Press, Piscataway, NJ, USA, 101-108. http://dl.acm.org/citation.cfm?
1d=2906831.2906851

William D Rowe. 1975. An" Anatomy" of risk. Environmental Protection Agency.
Caryl E Rusbult, Julie Verette, Gregory A Whitney, Linda F Slovik, and Isaac

Lipkus. 1991. Accommodation processes in close relationships: Theory and
preliminary empirical evidence. Journal of Personality and social Psychology 60, 1
(1991), 53.

Mark Scheeff, John Pinto, Kris Rahardja, Scott Snibbe, and Robert Tow. 2002.
Experiences with Sparky, a social robot. In Socially intelligent agents. Springer,
173-180.

Maurice E. Schweitzer, John C. Hershey, and Eric T. Bradlow. 2006. Promises
and lies: Restoring violated trust. Organizational Behavior and Human Decision
Processes 101, 1 (Sept. 2006), 1-19. https://doi.org/10.1016/j.0bhdp.2006.05.005
Sarah Strohkorb Sebo, Priyanka Krishnamurthi, and Brian Scassellati. 2019. "I
Don’t Believe You': Investigating the Effects of Robot Trust Violation and Repair.
In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
IEEE, 57-65.

Scott A Shappell and Douglas A Wiegmann. 2000. The human factors analysis
and classification system—-HFACS. (2000).

Neville A Stanton and Paul M Salmon. 2009. Human error taxonomies applied
to driving: A generic driver error taxonomy and its implications for intelligent
transport systems. Safety Science 47, 2 (2009), 227-237.

Paul Thagard. 2019. Mind-Society: From Brains to Social Sciences and Professions
(Treatise on Mind and Society). Oxford University Press.

Laurence Thomas. 1987. Friendship. Synthese 72, 2 (1987), 217-236.

Amos Tversky and Daniel Kahneman. 1974. Judgment under uncertainty: Heuris-
tics and biases. science 185, 4157 (1974), 1124-1131.

Alan R. Wagner, Paul Robinette, and Ayanna Howard. 2018. Modeling the
Human-Robot Trust Phenomenon: A Conceptual Framework Based on Risk.
ACM Trans. Interact. Intell. Syst. 8, 4, Article 26 (Nov. 2018), 24 pages. https:
//doi.org/10.1145/3152890

Ning Wang, David V. Pynadath, and Susan G. Hill. 2016. Trust Calibration within
a Human-Robot Team: Comparing Automatically Generated Explanations. In
11th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE,
New York, NY,USA, 109-116.

M. Webster, D. Western, D. Araiza-Illan, C. Dixon, K. Eder, M. Fisher, and A. Pipe.
2020. A Corroborative Approach to Verification and Validation of Human-Robot
Teams. International Journal of Robotics Research 39 (2020), 73-99.

Charles Yoe. 2019. Principles of risk analysis: decision making under uncertainty.
CRC press, Abingdon, UK.


https://doi.org/10.1145/3329123
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14566
https://doi.org/10.1007/978-3-319-64816-3_8
https://doi.org/10.2307/258792
http://dl.acm.org/citation.cfm?id=2906831.2906851
http://dl.acm.org/citation.cfm?id=2906831.2906851
https://doi.org/10.1016/j.obhdp.2006.05.005
https://doi.org/10.1145/3152890
https://doi.org/10.1145/3152890

	Abstract
	1 Introduction
	2 Related work
	2.1 Approaches to Trust
	2.2 Modeling Trust
	2.3 Trust, Failure, and Repair

	3 Proposal
	3.1 The Taxonomy
	3.2 Trust loss as a risk: A Case-Study 
	3.3 Mitigation Strategies

	4 Autonomous Trust Repair
	4.1 Failure Detection
	4.2 Offering Explanations
	4.3 Formalism for representing plans
	4.4 Explaining failures from plans
	4.5 Logics for Trust Loss Detection

	5 Future Work
	6 Conclusion
	Acknowledgments
	References



