

MSc thesis in Building Technology

Towards Solar Irradiation Prediction on 3D
Urban Geometry using Deep Neural

Networks

Job de Vogel
September 2024

A thesis submitted to the Delft University of Technology in partialfulfillment of the requirements for the degree of Master of Sciencein Building Technology

Job de Vogel: Towards Solar Irradiation Prediction on 3D Urban Geometry using Deep Neural
Networks (2024)
cb This work is licensed under a Creative Commons Attribution 4.0 International License. Toview a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in:
Building TechnologyDelft University of Technology

Supervisors: Dr.ir. Michela TurrinDr.ir Seyran KhademiExternal Advisor: Dr.ir. Eleonora BrembillaRepresentative Board of Examiners: Prof.dr.ir. M.G. Elsinga

http://creativecommons.org/licenses/by/4.0/

v

Abstract

This research is an early exploration into the potential of deep neural networks predictingphysically-based building performance metrics on 3D urban geometry. Specifically, this workaims to predict annual solar irradiation using networks trained on point clouds. It is expectedthat the proposed method will allow designers to optimize their designs based on solar per-formance, due to the significantly lower inference time, in comparison to traditional simulationmodels. Furthermore, this research paves the way for generative models, which include the eval-uation of performance such as solar irradiation, wind and acoustics.Prior research has suggested several methods to predict solar irradiation on 2D building dataand low resolution 3D buildings. These researches have in common that there is a lack of realobserved irradiation data on buildings. Therefore, this research proposes several methods toefficiently synthesize an irradiation dataset based on 3D building geometry, which samples arelarger in scale and resolution in comparison to earlier work.Based on the synthesized datasets, several models have been trained to predict the irradiationvalues. Experiments have shown that a finetuned version of the model is able to predict irradiationwith an average RMSE of 21 kWh/m2 with an average inference time of 0.7 seconds, on a patchof 100x100 meters. Furthermore, this thesis provides an analysis on how patch size and pointsampling technique affect the prediction error of the model.Finally, this research provides an implementation of the network in a user-friendly client-serverecosystem, that can assist architects and engineers to fine-tune their building designs in urbanenvironments.
Keywords: irradiation, synthesized dataset, deep neural networks, urban geometry

vii

Acknowledgements

First and foremost, I would like to express my gratitude to my main mentors, Michela Turrin andSeyran Khademi, for their guidance throughout this research. Even after several extensions, theycontinued to provide the support I needed to complete this thesis. I am also sincerely appreciativeof all the assistance Eleonora Brembilla offered, which greatly enhanced my understanding ofdaylight and simulations. Additionally, I would like to thank the representative from the Boardof Examiners, Marja Elsinga, for her involvement.This thesis would not have been possible without the many people who took the time to have acoffee with me, delve into my code, and share their expertise to assist me during this research. Inparticular, I would like to thank Shenglan Du, Berk Ekici, Nima Frouzandeh, Mark Bekooy, PeterNelemans, and Lisa van Barneveld for their insights and suggestions. I am especially grateful toAytaç Balci for his generous help, both during and outside working hours, in using and managingthe BK Renderfarm.Lastly, I am deeply thankful for all the support from my family, friends, and housemates throughoutthe highs and lows of this thesis. Without their encouragement, I could not have completed thiswork.

ix

Contents

1. Introduction 11.1. Problem Statement . 21.2. Research Question . 21.3. Disciplinary Approach . 31.4. Scope . 31.5. Software and Hardware . 41.6. Thesis Structure . 4
2. Related Literature 72.1. Solar Irradiation Simulations . 72.1.1. Raytracing . 72.1.2. Daylight Simulations . 82.1.3. Mathematical Background . 102.1.4. 2-Phase Method and Neural Networks . 122.1.5. Software and Simulation Techniques . 132.1.6. Limitations of Daylight Simulations . 142.2. Deep Neural Networks . 152.2.1. Artificial Neural Networks . 152.2.2. Convolutional Neural Networks . 152.2.3. Generalization and Normalization . 162.2.4. UNET . 162.2.5. Generative Adversarial Networks . 172.2.6. Diffusion Models . 172.2.7. Transformers . 182.2.8. Conclusion . 182.3. Related Research Solar Irradiation Prediction . 192.3.1. Related Research Limitations . 222.4. Neural Network Architectures with 3D inputs . 232.4.1. VoxNet . 232.4.2. OCNN and OctNet . 232.4.3. MeshCNN . 252.4.4. Multiview CNN . 262.4.5. PointNet . 262.4.6. Model Discussion . 272.4.7. Conclusion . 27
3. Methods 293.1. Framework . 303.2. Generation . 303.2.1. Geometry source . 313.2.2. Partitioning . 323.2.3. Augmentation . 32

xi

Contents

3.2.4. Point Sampling . 323.2.5. Final Format . 333.3. Simulation . 343.3.1. Parameter Convergence Test . 353.3.2. Final Format . 393.4. Parallelization . 403.5. Prediction . 423.5.1. PointNet . 423.5.2. PointNet++ . 433.5.3. PointNeXt . 443.5.4. Model Sizes . 483.5.5. Training, Validation and Testing . 483.5.6. PointNext . 503.6. Interaction . 533.6.1. Preprocessing . 533.6.2. Live Prediction . 533.6.3. Visualization . 553.6.4. Optimization . 553.6.5. Conclusion . 55
4. Analysis 574.1. Dataset Generation, Simulation, and Parallelization 574.1.1. Dataset Sizes and Types . 574.1.2. Generation . 584.1.3. Simulation . 614.1.4. Parallelization . 624.2. Prediction . 634.2.1. Baseline Evaluation . 634.2.2. Hyperparameter Tuning . 654.2.3. Average Performance Improvements . 734.2.4. Visual Evaluation . 744.2.5. Imbalanced Dataset Correction . 774.2.6. Network Inference Optimization . 814.2.7. Experiment 1: Random Dataset . 824.2.8. Experiment 2: Sample Size . 874.2.9. Conclusion . 904.3. Interaction . 914.3.1. Optimization . 974.3.2. Overall Grasshopper Script . 974.3.3. Future Design Framework . 99
5. Discussion 1015.1. Research Questions . 1015.2. Generation . 1025.2.1. Regular Mesh Preprocessing Limitations . 1025.2.2. Poisson Disk Sampling Optimization . 1035.2.3. Augmentation . 1035.2.4. Framework Limitations . 1035.2.5. Further Research . 104
xii

Contents

5.3. Simulation . 1045.3.1. Accelerad vs Radiance . 1045.3.2. Direct vs Indirect Irradiation . 1045.3.3. Materials . 1055.3.4. Further Research . 1055.4. Parallelization . 1055.4.1. Further Research . 1055.5. Prediction . 1055.5.1. Practical Implications of ”21 kWh/m2 RMSE” 1065.5.2. Time and Location Invariance . 1065.5.3. Improving Mode Coverage . 1075.5.4. Geometric Level of Detail . 1075.5.5. Further Research . 1075.6. Interaction . 1085.6.1. External Harware . 1085.6.2. CPU Inference . 1085.6.3. Implementation Other Design Software . 1085.6.4. Optimization . 1095.7. Hardware . 1095.8. Future Research Questions . 109
6. Conclusion 111

7. Reflection 1137.1. Academic Relevance . 1137.2. Societal Impact . 1137.3. Ethics . 1137.4. Personal Reflection . 114
A. Regular Point Sampling Method 115A.1. 3D BAG Mesh Format . 115A.2. Mesh Discretization . 115A.3. Sample Outline . 116A.4. Building Component Extraction . 117A.5. Ground Levelling . 117A.6. Mesh Face Quadrangulation . 118A.7. Roof Levelling . 119A.8. Facade Mesh Generation . 119A.9. Combining Mesh Elements . 120A.10. Regular Point Sampling . 120A.11. Dividing Wall Sensor Point Removal . 120
B. Point Sampling Techniques 123

Bibliography 125

xiii

List of Figures

2.1. Raytracing principle . 82.2. Typical Honeybee irradiation simulation . 92.3. Skydome discretization . 92.4. Skydome and daylight coefficients . 122.5. Ladybug daylight simulation recipes . 132.6. Convolutional Neural Network . 162.7. Image generator architectures . 172.8. ANN by Alammar et al. (2021) . 192.9. cGAN by Huang et al. (2022) . 202.10. Model by Han et al. (2022) . 212.11. Model by Nakhaee and Paydar (2023) . 212.12. VoxNet by Maturana and Scherer (2015) . 242.13. Quadtree explained . 242.14. OCNN by Wang et al. (2017) . 25
3.1. Workflow methodology . 293.2. Used software for methodology . 303.3. 3D BAG LoD’s . 313.4. Tiling system 3D BAG . 313.5. Dataset array format without irradiance . 333.6. Accelerad simulator . 343.7. Parameter Convergence Test . 363.8. AcceleRad parameters visualization 1 (low settings) 373.9. AcceleRad parameters visualization 2 (medium settings) 373.10. AcceleRad parameters visualization 3 (high settings) 383.11. Radiance parameters visualization 4 (low settings) 383.12. Dataset array format with irradiation . 393.13. Parallelization code for dataset generation and simulation. 403.14. Parallelization workflow . 413.15. PointNet . 423.16. PointNet++ . 433.17. PointNeXt . 443.18. PointNeXt: subsampling . 453.19. PointNeXt: grouping . 453.20. PointNeXt: MLP and reduction . 463.21. PointNeXt: InvResMLP . 473.22. PointNeXt: interpolation . 483.23. Dataset imbalance . 513.24. Client-server interaction system . 54
4.1. Dataset geometry samples (regular) . 594.2. Dataset geometry errors (regular) . 60

xv

List of Figures

4.3. Dataset pointclouds (regular) . 604.4. Irradiation distribution . 614.5. Log timings simulation . 624.6. Basemark training loss . 634.7. Basemark validation loss . 644.8. Basemark test loss . 644.9. Basemark test loss domain . 654.10. Basemark micro/macro avg. F1-scores . 654.11. Validation loss for normalization . 684.12. Validation loss for lower radius and higher nsample 694.13. Validation loss for global residual connections . 694.14. Validation loss for lower strides . 704.15. Validation loss for more epochs . 714.16. Validation loss for more epochs . 714.17. Validation loss for model scaling . 724.18. Validation loss for other hyperparameters . 734.19. Highest avg. errors regular samples . 744.20. Median avg. errors regular samples . 754.21. Lowest avg. errors regular samples . 764.22. Validation loss for different loss functions . 774.23. Accuracy over irradiation bins . 784.24. RMSE frequency samples . 794.25. RMSE frequency points . 794.26. Optimized models’ confusion matrix . 794.27. Validation loss for adjusted Weighted Mean Squared Error (WMSE) 804.28. Macro/micro avg. F1-score for adjusted WMSE . 804.29. Recall voor (adjusted Weighted)MSE . 814.30. Visualization highest errors Poisson Disk dataset . 834.31. Visualization median errors Poisson Disk dataset . 844.32. Visualization lowest errors Poisson Disk dataset . 854.33. Accuracy of bins in Poisson Disk dataset . 864.34. Errors in Poisson Disk dataset samples . 864.35. Errors in Poisson Disk dataset points . 864.36. Analysis of Poisson Disk prediction performance . 874.37. Visualization highest irradiation 300x300m dataset 884.38. Visualization highest irradiation 300x300m Poisson Disk dataset 894.39. Interaction environment irradiation prediction . 914.40. Grasshopper 3D BAG downloader node . 924.41. Preprocessing context and design seperately . 924.42. Server waiting in the interaction environment . 934.43. Server executing client call . 944.44. Irradiation visualization on mesh . 954.45. Vertical irradiation extraction . 964.46. Horizontal irradiation extraction . 964.47. Optimizing urban context for irradiation . 974.48. Grasshopper script combined . 984.49. Future design framework . 994.50. Future design framework multiple domains . 100
A.1. 3D BAG mesh . 115

xvi

List of Figures

A.2. 3D BAG sensor grid . 116A.3. Sample outline . 116A.4. Extracted roofs and facades . 117A.5. Extracted building/courtyard outlines . 117A.6. Ground mesh . 118A.7. Triangle mesh faces on ground . 118A.8. Building roofs . 119A.9. Building walls . 119A.10. Merged non-manfold mesh . 120A.11. Vertical raytracing . 121A.12. Horizontal raytracing . 121

xvii

List of Tables

2.1. Related research papers solar irradiation prediction. 22
3.1. Selected and benchmark parameters for Radiance and AcceleRad settings. 35
4.1. Dataset sizes . 574.2. Efficiency of generation and simulation methods. 624.3. Hyperparameter tuning part A . 664.4. Hyperparameter tuning part B . 674.5. Performance improvements after tuning . 734.6. Optimized inference timings . 81

xix

Acronyms

AHN Algemeen Hoogtebestand Nederland . 31
AI Artificial Intelligence . 1
ANN Artificial Neural Network . 15
aWMSE Adjusted Weighted Mean Squared Error . 80
BAG Register of Buildings and Addresses
cGAN Conditional Generative Adversarial Network . 17
CNN Convolutional Neural Network . 15
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
FPS Farthest Point Sampling . 43
GAN Generative Adversarial Network . 17
GPT Generative Pre-trained Transformer
GPU Graphics Processing Unit
GIS Geographic Information System . 20
GSI Ground Space Index . 62
GUI Graphical User Interface . 108
IO Input Output
InvResMLP Inverted Residual Multi-Layer Perceptron . 44
LBT Ladybug Tools . 8
LiDAR Light Detection and Ranging
LoD Level of Detail . 31
LSTM Long Short-Term Memory . 18
MLP Multi-Layer Perceptron . 15
MSE Mean Squared Error . 19
MVCNN Multiview Convolutional Neural Network
OCNN Octree Convolutional Neural Network . 23
RAM Random Access Memory
ReLU Rectified Linear Unit . 15
RMSE Root Mean Squared Error . 35
RNN Recurrent Neural Network . 18
VAE Variational Autoencoder . 21
VRAM Video Random Access Memory
WMSE Weighted Mean Squared Error . xvi

xxi

1. Introduction

The recent rise of Artificial Intelligence (AI) models has demonstrated that computers are capableof replacing complex human tasks. Large language models such as GPT (OpenAI et al., 2023)and image generators based on Stable Diffusion (Rombach et al., 2021), significantly influencedtasks such as writing, designing and the creation of art. Similarly to other fields, architecture inthe built environment has also been influenced by the uprising of large AI models. Yet, no holisticmodel exists that is able to design buildings in the integral manner as an architect.
Over the past few years however, there has been growing interest in the development of AImodels for architecture in the conceptual design phase (Castro Pena et al., 2021). These newtechnologies typically focus on the evaluation of certain specific objective and subjective subtaskswithin the design process (M.Matter & G.Gado, 2024). It is now possible to generate alternativevisualizations of a building within seconds using AI (Ploennigs & Berger, 2023), predict pedestrianwind factors in urban environments (Mokhtar et al., 2021) and generate floorplans using neuralnetworks (Wu et al., 2019). Given these developments, it is plausible that models will be combinedin the future, to assist architects overcome entire phases of the design cycle.
Architecture is a profession mainly based on experience and creativity. For some design decisions,architects use computer-aided simulations to understand how a building will perform in the future.Examples are the prediction of building physics such as irradiation, wind, acoustics and energyconsumption, human behavior or construction evaluations. Although these simulations can beaccurate estimations of real building behavior, they are usually time consuming, and requireexpert knowledge to interpret the results.
Future AI models will only be able to help designers with complex decisions, if they are ableto get a deeper understanding in the relationship between design and building performanceoutcomes. They need to be able to interpret how a certain design change will affect buildingphysics, construction, financial costs and human experience. In contradiction to simulators, AImodels are able to gain experience by learning from buildings that architects have developed inthe past, together with their building performance. The intrinsic knowledge of AI models is basedon significantly larger datasets than an architect or designer can have based on experience. Itis therefore expected that AI models could aid architects in the future, by providing suggestionsbased on millions of buildings.
This thesis is an early exploration into the capability of AI models to predict building performancemetrics by using simulated training examples. Specifically, the focus lies on the prediction ofsolar irradiation on 3D urban geometry using surrogate deep learning models. In this context,‘surrogate models’ refer to statistical approximations of the relationship between data inputs andoutputs. They are useful to mimic simulation models while being less time consuming. In theshort term, this research can result in faster evaluation and optimization of buildings based onsolar performance. In the long term, it is expected that the suggested methods can contribute tothe development of more holistic generative building design models.

1

1. Introduction

1.1. Problem Statement

Simulations of annual solar irradiation are computationally intensive. Using neural networks topredict solar irradiation, rather than simulating it, is expected to significantly reduce computationtime. This reduction can assist architects in evaluating their designs more effectively and facili-tates the use of traditional brute-force optimization approaches due to the decreased evaluationtime.Meanwhile, one might argue that advances in computer hardware will eventually mitigate theissue of slow simulations. However, it is important to recognize that predicting solar irradiationusing surrogate AI models is fundamentally distinct from simulations, owing to the intrinsic un-derstanding of the relationship between design and solar performance. Thus, this approach isexpected to contribute significantly to the development of generative design models.Additionally, the practical implementation of these models must be considered. It is anticipatedthat future users, such as architects, may lack a computer science background. Given that most AImodels are implemented with advanced coding, it is essential to simplify the process of utilizingthese algorithms.
1.2. Research Question

For this research, the following research question has been identified: ‘How can one predictannual solar irradiation on 3D urban geometry using deep neural networks?’. Furthermore, thefollowing sub questions will be discussed, to answer the main research question:
Literature research• How do simulation models compute solar irradiation on 3D geometry?• What type of input dataset is required to predict solar irradiation using deep neural net-works?
Implementation• How can one compute a dataset with 3D urban geometry with solar irradiation valuesefficiently?• Can deep neural networks predict solar irradiation values accurately, faster than a simula-tion model?• How can architects interact with the deep learning model in a user-friendly ecosystem?

2

1.3. Disciplinary Approach

1.3. Disciplinary Approach

This thesis consists of two types of research: literature review and project development through(visual) programming.For the literature review on the theoretical background of solar irradiation simulations and neuralnetworks, the information is mainly derived from publicly available research papers and academicbooks. In some specific cases, technical documentation from software was used to explain theinner workings of certain tools.This research is an early exploration, but not the first to strive for the prediction of solar irradiationusing AI. Therefore, an overview of earlier work is provided. The limitations of the tools developedin these studies are described based on the authors’ personal experience and discussions withother academics in the field. It is important to note that not all results from earlier research can beverified, as not all code was available open-source. Consequently, the outcomes of these studiesare verified using published conference papers, books, and the websites of the correspondingacademic groups.This research heavily relies on the development of neural network architectures by other re-searchers. Specifically, most of the work is based on the research by Qian et al. (2022). Themodifications made to the architecture are explicitly described in this thesis. To facilitate thereuse of the code developed for this thesis, a GitHub repository is provided.The author acknowledges that architects and designers typically do not use the coding languagesemployed for the implementation of the proposed model. Therefore, significant effort was investedin developing a workflow that is accessible and easy to use in practice.
1.4. Scope

Within the scope of this thesis, several challenges have been identified in solving the problem ofsolar irradiation prediction using deep neural networks. However, due to the complexity of thetask and limited time, several simplifications have been implemented to make the research morefeasible.This research focuses exclusively on the prediction of annual solar irradiation. While there aremany other intriguing solar performance metrics, such as glare, illuminance, or hourly irradiation,annual irradiation simulations are typically the most time-consuming (excluding cumulative hourlyirradiation simulations). Moreover, most other research in the field of AI-based solar metricprediction also concentrates on this metric.Another significant limitation is that the deep neural network will be trained on simulated data,not on real observed data. This is necessary due to the limited availability of observed data. Infuture research, it will be possible to fine-tune the proposed model with real observed data toovercome potential errors.The purpose of this project is to predict solar irradiation, not to provide users with design advice,as generative models might do. Based on earlier developments in the AI field, it is expected thatthe proposed model can serve as a foundation for the further development of generative modelsrelated to solar performance. Finally, there are several simplifications concerning the dataset,particularly regarding the detail of the buildings and the generalization capacity of the model:
3

1. Introduction

• The AI model will not be location invariant. It is trained only on sun positions from the cityof Amsterdam. The discussion will provide suggestions on how to make the model locationinvariant.• The dataset consists of heavily simplified building geometry and leveled surrounding grounddue to the complexity of accurately preprocessing the data. Within the scope of this thesis,one method is analyzed to address more complex geometry.• No material types were included in the dataset, as this data was not available. Averagevalues for absorption and reflection coefficients were selected. Suggestions on how toinclude materials in the prediction of irradiation will be provided in the discussion of thisthesis.
1.5. Software and Hardware

The primary codebase for this project was developed in Python 3, chosen for its compatibility withCPython libraries. McNeel Rhino and Grasshopper were utilized for visualization and interactionpurposes. To facilitate access to Python 3 AI models, a server-client system was established, withPython 3 functioning as the server and IronPython 2.7 as the client. Pytorch was selected as themain framework for developing the AI model.For dataset development, a high-performance desktop equipped with two Intel Xeon E5-2640 v4CPUs and two NVIDIA Quadro M6000 24GB GPUs was employed. Generating the dataset ona renderfarm or high-performance cloud computer was not feasible due to the dependency onRhino.Inside, which is incompatible with the Linux operating system and requires pay-per-core-hour on the Windows Server operating system.The AI model was trained using a renderfarm with a dual 28-core AMD EPYC 7453 CPU and twoNVIDIA A40 48 GB GPU’s on a Windows Server operating system. While most of the training wasconducted on a single GPU, two GPUs were utilized for computational intensive hyperparametersettings.The images included in this report were primarily created using draw.io and Matplotlib. Thisthesis was written using Overleaf LATEX.
1.6. Thesis Structure

The structure of this thesis is outlined as follows:Chapter two, titled ”Related Literature,” addresses the literature research sub-questions posed inthis thesis. Initially, it provides a mathematical overview of solar irradiation simulations, followedby a discussion of the software tools that implement these mathematical principles (2.1). Thesecond section of chapter two delves into the fundamentals, history, and mechanisms of neuralnetworks (2.2). Subsequently, it reviews previous research on the prediction of solar irradiationusing neural networks (2.3). The fourth section explores the potential of using neural networkswith 3D data, thereby addressing the second sub-question (2.4). Finally, an overview is providedon efficient computation methods for the generation of 3D urban irradiation datasets, focusing onvarious programming and software techniques (2.5). The chapter concludes with recommendationsregarding the optimal models and methods to employ (2.6).
4

1.6. Thesis Structure

Chapter three, ”Methods”, details the implementation of this research through five key steps: thegeneration of building geometry (3.2), the simulation of irradiation (3.3), the parallelization ofthe aforementioned processes (3.4), the prediction and training using deep neural networks (3.5),and the interaction with the model from a user perspective (3.6).Chapter four, ”Analysis”, presents an analysis of the implementation results. It begins by dis-cussing the limitations encountered during dataset generation, simulation an parallelization (4.1).The subsequent section illustrates the results, accuracy, and performance of the neural networkduring training, evaluation, and testing phases (4.2). The final subsection of this chapter analysesthe implementation of the model in an interaction framework (4.3).Chapter five, ”Discussion”, offers a discussion that critically reviews the methodology and results.Chapter six, ”Reflection”, reflects on the research process, considering both the academic andsocietal impacts of this work.

5

2. Related Literature

2.1. Solar Irradiation Simulations

Solar studies on conceptual designs have become increasingly vital in the fields of architectureand engineering. By simulating sunlight on 3D building geometry, it is possible to addresscritical issues such as energy efficiency, visual comfort, and energy production through solarpanels. Since the 1980s, advancements in computer processing power have enabled the accurateprediction of irradiation and illumination values on buildings (Tregenza & Waters, 1983). Thischapter will explore the most significant advancements and methodologies in daylight simulationsto better understand their potential and limitations. Building on this foundation, the followingsections will examine the potential of AI models to replace or enhance these traditional methods.
2.1.1. Raytracing

The prediction of daylight values on 3D geometry has always been closely linked to the conceptof ray tracing. Ray tracing refers to the process of calculating the path a light ray travels fromits source to an object and ultimately to the camera or human eye. In the natural world, lighttravels from the light source to the object; however, in computer simulations, light is typicallytraced from the object back to the light source, a method known as ”backward ray tracing”. Thisapproach is generally less computationally expensive than ”forward ray tracing”, as it allows formore efficient computation of reflections and refractions by tracing the light path in reverse (Arvo,1986).Daylight simulations employ two types of backward ray tracing: deterministic and stochastic.Deterministic algorithms produce consistent results each time they are run, regardless of thenumber of computations. In contrast, stochastic algorithms incorporate a random element, moreclosely mirroring the natural behavior of light, where photons travel in random directions. Bothtypes of algorithms have their respective drawbacks in the context of ray tracing. Deterministicalgorithms, while accurate, may fail to capture all the intricate details of light interactions.Stochastic algorithms, on the other hand, often introduce noise into the final render. Ideally,the strengths of both approaches are combined to achieve a balance between accuracy andcomputational efficiency, providing a fast yet precise estimation of light behavior (G. Ward &Shakespeare, 2011).Another important concept in computer graphics is radiosity, also referred to as diffuse inter-reflection (Heckbert, 1993). Unlike ray tracing, which relies on the Monte Carlo principle andincorporates a statistical component, the radiosity algorithm simplifies calculations by assumingthat scenes consist only of diffuse surfaces. This simplification makes radiosity more compu-tationally efficient than Monte Carlo ray tracing. Additionally, radiosity offers the significantadvantage of being view-independent, meaning the simulation is not tied to a specific viewpoint.In architectural applications, both Monte Carlo ray tracing and radiosity-based simulations arecommonly employed (Tsangrassoulis & Bourdakis, 2003).
7

2. Related Literature

Figure 2.1.: Raytracing from the sun origin to an urban building block. (Image by author)
However, both Monte Carlo ray tracing and radiosity have inherent limitations, as neither cancapture all possible lighting effects. To address these limitations, researchers have developed atechnique known as photon mapping, which is based on a specific type of forward ray tracing.Photon mapping also benefits from being view-independent. While more advanced simulationsoftware packages have integrated photon mapping techniques, these are not available in thesimulation tools (Ladybug Tools (LBT)) used in this research (G. J. Ward et al., 2022).
2.1.2. Daylight Simulations

A daylight simulation involves predicting illuminance or irradiance values on 2D or 3D geom-etry (Figure: 2.2). Among the various daylight metrics relevant to design, two are particularlysignificant for this research: illuminance, which is the luminous flux per unit area expressed inlux, and irradiance, which measures the radiant flux per unit area expressed in watts per squaremeter (W/m2). Illuminance is the preferred metric when information about the quantity of lightis needed, while irradiance is more appropriate when assessing the solar energy received by anobject, such as in the context of solar panels. If irradiance is measured over a specified timeperiod, the term irradiation is used, expressed in Watt-hours per square meter (Wh/m2)1. OneWatt-hour indicates one Watt expended over one hour. When speaking about daylight comingfrom a source, given a direction, it is referred to as luminance, expressed in candela per squaremeter (cd/m2), and radiance, expressed in watt per steradian per square meter (W·sr−1·m−2).
Daylight simulations are generally conducted over a specified time period. For instance, anannual direct sun study involves simulating light rays from the sun’s position at each hour of theyear. When these rays intersect with a model’s geometry, it indicates that direct sunlight reachesthe surface at that particular moment. While physical models were traditionally used for thispurpose, contemporary architects typically create these models using computer software.

1In this thesis, solar irradiation is usually expressed in kilowatt-hours per square meter (kWh/m2)

8

2.1. Solar Irradiation Simulations

Daylight is composed of multiple components, each of which requires individual consideration.Primarily, daylight can be divided into regular sunlight and skylight, the latter being sunlightrefracted within the atmosphere. Regular sunlight can be further classified into direct sunlightand indirect sunlight, the latter being light reflected between buildings. The impact of indirectsunlight can be significant, depending on the reflecting material. Similarly, skylight can bebroken down into direct skylight and indirect skylight. The term ”diffuse light” is often used inliterature to refer to all components of daylight that are not direct sunlight. In contrast, whenlight is measured by a weather station, the terms ”direct normal radiation” and ”diffuse horizontalradiation” are typically used to describe these components (Mardaljevic et al., 2009).As described, sunlight is not only reflected by physical objects but also by the sky. Even undercloudy conditions, objects still receive light, as indirect light from the sky is included in mostdaylight simulations. Daylight values can be mathematically represented by discretizing a sky-dome into multiple patches. This method, originally developed by Tregenza and Waters in 1983,standardizes the discretization into 145 patches, each corresponding to an average luminanceor radiance value. Later advancements by Reinhart led to further refinement, dividing the sky-dome into 577 patches (Bourgeois et al., 2008) (figure: 2.3). This skydome approach enables thecomputation of illuminance and irradiance values for various models and sky conditions.

Figure 2.2.: An example of a typical daylight simulation using the Honeybee Cumulative Irradiancerecipe. The colored heatmap indicates the irradiation received by the urban patch, distributedover a year. (Image by author)

Figure 2.3.: A skydome discretized in 577 patches, as suggested by Reinhart (Image by author)

9

2. Related Literature

2.1.3. Mathematical Background

Daylight can be expressed as luminance or radiance using the following equation (G. Ward &Shakespeare, 2011):
Lr(θr, ϕr) = Le +

∫∫
Li(θi, ϕi)fr(θi, ϕi, θr, ϕr)| cos θi| sin θidθidϕ (2.1)

Note that the equation is recursive and is formulated as function in terms of itself. Lr describesthe reflected light from a point in the direction (θr, ϕr). Le describes the emitted light from thepoint at which illuminance or irradiance are computed. Li is the complex part of this equation,which describes the summation of incoming light from other direct and indirect directions. Thisvalue is multiplied by the reflectance-transmittance function fr , which describes the ratio betweenreflected and transmitted light at this point.Direct irradiance Edir can be computed through specifically optimized algorithms such as selectiveshadow testing, adaptive source subdivision and virtual light calculation. Direct irradiance froma specific part of the sky can be described using:
Edir =

∫
Ldir(θi, ϕi) cos θi sin θidωi (2.2)

Where Edir describes the incoming irradiance, Ldir the direct radiance from the direction (θr, ϕr).
ωi describes the area of the given sky segment i which is visible from the origin. Thus, the totaldirect light from n direct directions (e.g. sun positions over time) in the sky can be computedusing:

Edir;tot =

n∑
i=0

Edir;i (2.3)
For the indirect component of incoming light, it is almost impossible to compute the quantityexactly. Overall, indirect irradiance can be described with (G. Ward & Shakespeare, 2011):

Eind =

∫∫
Lind(θi, ϕi) cos θi sin θidθidϕi (2.4)

In which Eind describes the incoming irradiance, Lind the indirect radiance from a source fromdirection (θi, ϕi) on a projected hemisphere.This equation is not computable due to the practically infinite number of directions light comesfrom. Therefore, it is approximated using the Monte Carlo inversion technique, with the followingequation (G. Ward & Shakespeare, 2011):
E =

(
π

Ṁ ·N

)M−1∑
j=0

N−1∑
k=0

Lj,k (2.5)

10

2.1. Solar Irradiation Simulations

E is the incoming irradiance, Xj and Yk are uniformly distributed random variables in the range[0, 1] and ṀN are the number of rays in which N ≈ πM .
Lj , k is the indirect radiance in the direction (θj , ϕk) =

(
arcsin

√
j+Xj

M , 2π k+Yk)
N

) on a projectedhemisphere (G. Ward & Shakespeare, 2011).
2-Phase MethodWhen dealing with continuous light directions, such as those from the sky, a large number ofpotential light sources must be considered. To address this, the Daylight Coefficient methodwas developed (Tregenza & Waters, 1983). In academic literature, this method is sometimesinterchangeably used with the ”2-phase” method (Subramaniam, 2017).As the name suggests, the 2-phase method computes illuminance or irradiation values in twodistinct steps. The first step involves calculating the flux-transfer relationships between thesegments of a skydome and a sensor point. In simple terms, the method does not directly predictspecific irradiation values; rather, it computes coefficients that describe the percentage of light
from each sky patch that contributes to the incoming light at a sensor point. Thus, if a skydomeis divided into 145 patches, each sensor point will have 145 corresponding daylight coefficients.The second step of the 2-phase method involves the creation of a sky matrix, which represents askydome with sunlight values for one or more hours of the year. When assessing the cumulativeamount of sunlight that a sensor point receives over a year, the values from all sky patches aresummed.Finally, the daylight coefficient matrix is multiplied by the sky matrix to compute the illuminationor irradiation values for a given sensor point. Mathematically, the 2-phase method can bedescribed by the following equations (Subramaniam, 2017).

∆Eθϕ = Dθϕ · Lθϕ ·∆Sθϕ (2.6)
Where Eθϕ is the illuminance at a sensor point, Dθϕ is the Daylight Coefficient that depends onthe reflectance and transmittance of surrounding surfaces, Lθϕ is the luminance of a sky patch,and Sθϕ is the angular size of the sky patch, considering the altitude θ and azimuth ϕ. It should benoted, however, that illumination can be replaced by irradiation if Lθϕ is replaced by radiance.When converted to matrices, the equation can also describe the results for a grid of sensor points(Subramaniam, 2017):

E = Cdc · S (2.7)
Where Cdc describes a matrix of Daylight coefficients and S describes the sky vector. Whenluminance or radiance values are used for each hour of the year, sky vector S can be replacedby a sky matrix in which each row contains the luminance/radiance values for all patches at acertain hour.The following example, derived from Subramaniam (2017), illustrates how the 2-phase methodworks. Assume an urban design with 1000 sensor points and a discretized sky with 145 patches.The dimensions of the Daylight Coefficient matrix Cdc would be [1000 x 145] and sky matrix Swould be [145 x 8760] for 8760 hours of the year. The final result E with the irradiation valuesfor all grid points for all hours of the year would be [1000 x 8760]. To make the simulation runfaster, all radiance values per sky patch can be summed or averaged, as described by (Robinson

11

2. Related Literature

& Stone, 2004). In that case, the resulting matrix E would only be of size [1000 x 1]2. Figure2.4 shows a visual representation of this example.

Figure 2.4.: On the left: urban geometry divided in 1000 sensor points. A sensor point has adaylight coefficient in relation to each sky patch. On the right: a skydome with 145 patchesvisualizing the sky matrix, generated with a Radiance function called gendaymtx. Each sky patchhas a color indicating the radiance over a year. (Image by author)
In summary, daylight simulators use deterministic and stochastic raytracing equations to computedaylight coefficients which describe how much daylight is received from different sky patches.When multiplied with the skymatrix, the approximate irradiation or illumination values can becomputed.
2.1.4. 2-Phase Method and Neural Networks

A thorough understanding of the equations for the 2-phase method is deemed essential for thisthesis. When a neural network is used to replace a simulation, either one or both of the terms Cdcand S have to be fitted by the model, to be able to compute accurate results. When the locationof a set of geometric training samples is not changed, only Cdc would be changing based on thesetup of the design. On the other hand, if the geometry would be the same, but the location wouldbe changing, only S would influence the results. Using neural networks to predict irradiation isa valid machine learning approach, due to the non-linear relation of the underlying equations(2.1) in the 2-phase method.

2Advanced versions of the 2-phase method sometimes make a distinction between the computation of direct and diffusesunlight.

12

2.1. Solar Irradiation Simulations

2.1.5. Software and Simulation Techniques

This section provides an overview of simulation tools available for estimating daylight on urbanbuilding blocks.
Ladybug Tools and HoneybeeLadybug Tools is a plugin designed to simulate solar radiation, wind, and thermal performance inconceptual design. It is among the most widely utilized software packages for climate simulationin architecture. Within the Ladybug Tools suite, several methods (recipes) are available forsimulating solar irradiation with varying levels of accuracy (Figure 2.5).Firstly, a basic simulation of direct sun hours can be approximated using the Ladybug DirectSun Hours component. This method casts rays from hourly sun positions to a grid of sensorpoints, calculating the total number of hours each geometry patch receives direct sunlight, withoutconsidering intensity or climate characteristics. It does not account for the diffuse components ofsunlight (Ladybug Tools, 2024b).For larger geometric models requiring more accurate results, the Annual Irradiance recipe fromHoneybee is recommended. This model employs the 2-phase method to predict both directand indirect irradiation on the proposed design. Additionally, it utilizes the Radiance engine,enabling the computation of ambient light bounces between buildings and the ground. Althoughthis simulation offers high accuracy, it is also more time-consuming (Ladybug Tools, 2024a).In situations where speed is critical for obtaining design feedback, alternative methods thatcompute both direct and indirect sunlight cumulatively over a year have been developed. Thesemethods, as described by Robinson and Stone (2004), replace the traditional sky matrix with asummation of expected values from each sky patch. Ladybug Tools provides solutions for bothscenarios—with (Honeybee) and without (Ladybug) Radiance—allowing for the computation ofambient light bounces as well (Ladybug Tools, 2024a).Both Ladybug and Honeybee can be utilized through design software such as McNeel RhinoGrasshopper, as well as via the Python API.

Figure 2.5.: Four available daylight simulation recipes in Ladybug and Honeybee. On the left:two recipes based on hourly simulations, of which the first indicates sun hours and the secondsimulation irradiance from sun an skylight. On the right: two recipes computing cumulative yearlyresults. Honeybee recipes are able to include ambient light bounces between buildings. (Imageby author)

13

2. Related Literature

RadianceRadiance is a comprehensive software package designed for daylight analysis and visualization.Developed by Greg Ward at the Lawrence Berkeley National Laboratory, Radiance provides arange of tools for simulating and evaluating daylight in architectural contexts. Although there isno singular approach to using Radiance, its tools are primarily accessed through a command lineinterface. To facilitate usage for non-programmers, various software packages, such as Honeybee,have developed wrappers around these commands (Subramaniam, 2017).Radiance has been validated as an accurate simulation tool for predicting daylight values, asdemonstrated by several studies by Brembilla and Mardaljevic (2019), Kharvari (2020), andReinhart and Walkenhorst (2001). Consequently, Radiance will be employed in this thesis togenerate the required dataset.
AcceleRadAcceleRad, developed by Jones and Reinhart (2017), is a tool designed to optimize specificfunctions within Radiance for GPU acceleration. According to the documentation, AcceleRad canenhance processing speeds by a factor of up to 6. It integrates with Radiance by replacingparticular system files, thereby improving computational efficiency (Jones & Reinhart, 2017).Jones and Reinhart (2022) analyzed the error differences between Accelerad simulations, Radi-ance, and observed daylight values. They found that the largest errors occurred in illuminance-based simulations, which are similar to the simulation of irradiation on building surfaces (althoughirradiation simulations were not analyzed by the original authors). Therefore, it is crucial to ex-amine these differences before determining whether it is appropriate to use Accelerad instead ofRadiance.
2.1.6. Limitations of Daylight Simulations

Although daylight simulations are valuable tools for optimizing solar performance, they havenotable limitations. This thesis focuses on the limitations specific to Radiance, as this researchfield predominantly emphasizes the validation of Radiance methods.Firstly, many Radiance daylight simulations rely on sky descriptions based on the Perez weathermodel. However, actual sky conditions may deviate from the model’s estimations, leading todiscrepancies between simulated and real illuminance and irradiation values (Geisler-Moroderet al., 2017).Secondly, variations in simulation results can arise due to inherent randomness in the methodused to compute the indirect components of daylight. These differences are particularly noticeablein lower Radiance settings (Kharvari, 2020).Lastly, the parameter settings in Radiance significantly influence the output results. Variationsin parameter configurations across different studies can result in outcomes that are not alwaysdirectly comparable (Kharvari, 2020).

14

2.2. Deep Neural Networks

2.2. Deep Neural Networks

Since the late 1980s, neural networks have gained prominence as powerful tools for addressingcomplex problems. Neural networks, a subset of machine learning in computer science, involvethe development and use of models that simulate natural learning processes. They are inspiredby the human brain’s architecture, utilizing artificial neurons and connections to learn featuresfrom a dataset (Anderson & Mcneill, 1992).A specific subfield of machine learning, computer vision, focuses on learning from image-baseddata. This includes tasks such as classification, segmentation, and detection of objects withinimages (Stevens et al., 2020).
2.2.1. Artificial Neural Networks

Before exploring Convolutional Neural Networks, it is essential to understand the fundamentalsof Artificial Neural Networks (ANNs), also known as Multi-Layer Perceptrons (MLPs). ANNs area type of supervised machine learning model inspired by the human brain. An ANN typicallyconsists of three types of layers: the input layer, hidden layers, and the output layer. The inputlayer provides the data to the model, while the hidden layers contain neurons with associatedweights and biases. These hidden layers are interconnected and usually decrease in size as theyprogress. The output layer produces the final predictions.The difference between the predicted and actual values is computed using a loss function, whichvaries depending on the problem being solved. The loss is then backpropagated through thenetwork and optimized using the Gradient Descent algorithm. ANNs are distinguished by theirability to learn features in non-linear problems, facilitated by non-linear activation functionsapplied to the weights, inputs, and biases of each neuron (Stevens et al., 2020).
2.2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) extend the principles of ANNs, primarily for pattern recog-nition tasks. Initially designed for image processing, CNNs are now applicable to various types ofdata. A key advantage of CNNs is their ability to handle high-dimensional inputs more effectivelythan traditional ANNs.A typical CNN architecture (figure 2.6) comprises three main components: convolutions, pooling,and fully connected (dense) layers. In image recognition, a convolution involves applying small2D matrices of weights, known as filters or kernels, to regions of the input image to detect specificpatterns such as lines or shapes. These convolutions are followed by an activation function, oftenthe Rectified Linear Unit (ReLU). Filters are characterized by hyperparameters including kernelsize, stride, zero-padding, and dilation. One significant benefit of CNNs is the reuse of filtersacross the entire image, which reduces the number of parameters that need to be learned.Following the convolutional layers, pooling layers are used to reduce the dimensionality of thedata. For example, max-pooling divides the input into smaller segments and retains the maximumvalue from each segment, effectively decreasing the image’s size. For instance, an image withdimensions of 784x784 pixels can be reduced to 392x392 pixels using a pooling operation with astride of 2.
15

2. Related Literature

Figure 2.6.: Principle of the Convolutional Neural Network architecture (Image by author)
After several convolution and pooling operations, the resulting data is flattened into a one-dimensional array and fed into the fully connected layer. This layer functions similarly to thehidden layers in an ANN, performing the final classification or regression tasks (Stevens et al.,2020).
2.2.3. Generalization and Normalization

The primary goals in developing well-trained neural networks are to achieve generalization andreduce training time. Generalization refers to the model’s ability to make accurate predictions onnew, unseen data, avoiding both underfitting and overfitting. To facilitate this, various adjustmentshave been made to CNN architectures. Two significant developments are dropout and batchnormalization.Batch normalization normalizes the activation vectors within hidden layers. This process acceler-ates training by reducing internal covariate shifts and stabilizes learning, thus leading to fasterconvergence (Ioffe & Szegedy, 2015).Dropout is a regularization technique that involves randomly deactivating a subset of neuronsduring each optimization step. This helps prevent overfitting by ensuring that the model does notbecome overly reliant on specific neurons (Garbin et al., 2020).
2.2.4. UNET

Introduced in 2015, the UNET architecture represents a significant advancement in CNN design,particularly for biomedical image segmentation. The UNET features an encoder-decoder struc-ture that allows for precise segmentation of images. The encoder follows the conventional CNNapproach with convolutions and pooling layers, while the decoder includes deconvolution andup-pooling layers to restore the input dimensions to their original resolution. This architectureenables UNET to generate high-resolution outputs suitable for regression or classification tasks(Ronneberger et al., 2015).

16

2.2. Deep Neural Networks

2.2.5. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are designed for generating new data samples that re-semble examples from a given dataset. GANs are distinguished by their generator-discriminatorframework. The generator creates new data samples from random noise, while the discriminatorevaluates whether these samples are real (from the dataset) or fake (generated). The discrimi-nator’s feedback is used to refine the generator, leading to progressively more realistic samples(Goodfellow et al., 2014).Conditional Generative Adversarial Networks (cGANs) extend this approach by incorporating classlabels into the generator and discriminator. For instance, given a black-and-white image, a cGANcan generate a corresponding color image, with the discriminator assessing the authenticity ofthe colored image. cGANs are considered semi-supervised due to their use of labeled data.
2.2.6. Diffusion Models

Diffusion models are a class of generative models that produce images by introducing noise tothe input data and then reversing this process to generate new samples. This process involvesgradually adding noise to the data and learning to denoise it step-by-step. The iterative nature ofdiffusion models enables them to capture a broader range of the data distribution, often resulting inmore diverse and representative samples compared to GANs. Despite this advantage in diversityand mode coverage, GANs generally excel in producing highly detailed and visually coherentimages (figure: 2.7).

Figure 2.7.: Qualities of distict image generator architectures (Vahdat & Kreis, 2022)

17

2. Related Literature

2.2.7. Transformers

Transformers utilize an attention mechanism to process input data, allowing the model to focuson different parts of the input based on their relevance rather than their positional distance.This mechanism effectively overcomes some of the limitations associated with Recurrent NeuralNetworks (RNNs) and Long Short-Term Memory (LSTM) networks, such as difficulty in handlinglong-range dependencies. Originally developed for natural language processing tasks, transform-ers have recently been adapted for 3D data applications. Notable examples include the analysisof point clouds (Zhao et al., 2021) and the semantic segmentation of 3D meshes (Vecchio et al.,2023).
2.2.8. Conclusion

This literature review describes how different network architectures can be combined for thepurpose of generating images. Based on the previous descriptions, the reader should be able tounderstand the principles behind the networks for both 2D and 3D data, that will be describedin the following chapters.

18

2.3. Related Research Solar Irradiation Prediction

2.3. Related Research Solar Irradiation Prediction

In 2021, Alammar et al. introduced an ANN designed to assess solar irradiation on the facade ofa specific building, utilizing a parametrically developed envelope of surrounding structures (seeFigure 2.8). This ANN was evaluated against a Random Forest algorithm, a supervised machinelearning technique that does not involve deep learning. The comparison revealed that the RandomForest model exhibited superior performance, primarily due to its use of categorical inputs. Thisoutcome prompts a critical evaluation of the ANNs practical applicability, given its limitations ingeneralizability.
Similarly, Lila et al. (2021) proposed a more sophisticated approach for predicting solar irradia-tion. This method featured a model with inputs that were significantly more complex and irregular.Although the input to this ANN remained categorical, it was of higher dimensionality comparedto previous models. The findings indicate that this advanced model is capable of predicting solarirradiation on building rooftops with reasonable accuracy.

Figure 2.8.: Model developed by Alammar et al., 2021. On the left: categorical inputs used fortraining the Artificial Neural Network. On the right: an example of a facade patch, for which theirradiation is predicted. (Images by Alammar et al., 2021)
Tehrani et al. (2024) developed a model to predict average annual solar irradiation based ongeneral urban properties such as coordinates, average building height, and azimuth angle. Thedataset for this research was created using a Grasshopper parametric script and OpenStreetMapdata (OpenStreetMap contributors, 2017). The geometric attributes were transformed into a one-dimensional array of properties related to average solar radiation values. The model employedwas a manually crafted ANN, evaluated using the Mean Squared Error (MSE) metric. Althoughthis approach demonstrates the use of location-variant datasets for solar irradiation prediction,it is limited in that it only predicts a single average value for a given urban topology.
Yue et al. (2024) developed similar work but added additional input features such as buildingtype, building volume, and orientation of surfaces (roof, south, north, west, and east). Instead ofpredicting a single average irradiation value, their model distinguished between different surfaceorientations and accounted for obstructions from the local context. The performance of 17 commonmodels was compared using a dataset of geometric data from the city of Zhengzhou, China.

19

2. Related Literature

Galanos et al. (2024) presented their approach for solar irradiation prediction on a larger scalein As and Basu (2021), using open-source GIS data for the city of Vienna. They performedsolar radiation simulations using Ladybug tools and generated height maps from the imported3D models. A GAN was then utilized to predict solar irradiation on these height maps. Thefinal output showed irradiation values on the 2D ground between buildings. Similarly, Huanget al. (2022) used a GAN (see Figure 2.9) not only to predict solar irradiance on parametricallygenerated models but also to approximate wind levels and thermal comfort. This was achievedthrough a multi-objective genetic algorithm, requiring advanced GAN variants such as Pix2pix(Isola et al., 2016) and CycleGAN (Zhu et al., 2017). It is important to note that both studiesfocus on 2D surfaces around buildings, excluding facades and roofs from their predictions, whichlimits the feedback provided to designers.

Figure 2.9.: Example result from the cGAN developed by Huang et al., 2022. (Images by Huanget al., 2022)
In contrast to the previously discussed studies, Han et al. (2022) introduced a novel approachfor predicting solar irradiation on 3D geometry using advanced 3D CNNs (see Figure 2.10).Their method employs a synthetic database created through a parametric script that generatesbuildings with simple geometric shapes like cubes and cylinders on a flat envelope. This network,named Coolvox, is built on a UNET-like architecture, incorporating both deconvolutional andconvolutional layers. Notably, Coolvox is capable of handling more complex building features,such as balconies, making it a more comprehensive tool for assessing solar irradiance on boththe building envelope and facades.While the 3D approach of Han et al. (2022) offers significant advantages for design applica-tions—since it includes detailed facade geometry in addition to the surrounding envelope—italso presents substantial limitations. The primary challenge is the scalability of Coolvox. Theuse of 3D convolutional layers makes the model highly memory-intensive, which can be prob-lematic during the training phase. As a solution, the authors suggest exploring Octree-basedor Transformer-based networks in future research to alleviate memory constraints and enhancescalability.Recent advancements in irradiation prediction research are focusing on addressing memory con-sumption issues associated with 3D models by utilizing fish-eye camera perspectives for trainingdata.Nakhaee and Paydar (2023) introduced a GAN-based network called DeepRadiation, built uponthe Pix2pix (Isola et al., 2016) architecture (see Figure 2.11). Their approach begins with adataset of New York buildings derived from Geographic Information System (GIS) data, which isused to simulate solar irradiation. This simulated irradiation data is then projected into a fish-eye
20

2.3. Related Research Solar Irradiation Prediction

Figure 2.10.: Prediction of solar irradiance by Han et al., 2022. On the left: numerical repre-sentation of occupancy grid surrogate buildings. On the right: resulting irradiance values onbuilding by 3DCNN model. (Images by Han et al., 2022)
perspective from eye height. The original fish-eye images, devoid of irradiation information, aresemantically segmented and combined with a depth map. These processed images are used totrain the GAN, enabling it to generate new images annotated with irradiation values. A notablelimitation of this model is its restriction to predicting irradiation from an eye-level perspective,which may not always be practical for all design scenarios.
Meanwhile, Zhang et al. (2023) developed SolarGAN, an advanced GAN-based model that im-proves upon several limitations observed in previous models, including DeepRadiation. UnlikeDeepRadiation, SolarGAN employs a Variational Autoencoder (VAE) architecture instead of aPix2pix (Isola et al., 2016) architecture. This VAE-based approach allows the network to incor-porate additional parameters into the latent space, facilitating training across diverse locationsand making the model more versatile for designers. Instead of generating images with irradiationvalues, SolarGAN predicts an ensemble of annual hourly solar irradiation time series for buildingfacades. Additionally, the model includes semantic segmentation of facades into ground, opaquesurfaces, glazing, and sky, providing valuable insights for design decisions. The researchers alsosuggest that SolarGAN has the potential to be applied to real-world fish-eye images of streets,further enhancing its practical utility.

Figure 2.11.: Irradiation prediction on the ground using a fish-eye perspective. (Images byNakhaee and Paydar, 2023)
21

2. Related Literature

2.3.1. Related Research Limitations

In summary, extensive research is ongoing to address the challenge of predicting solar irradiationusing AI (Table: 2.1). However, as noted, each proposed solution presents its own set of limitationsand challenges. Based on this literature review, the following key issues have been identified:• To the best of the author’s knowledge, no comprehensive model currently exists that canpredict solar irradiation with results comparable to those of traditional solar irradiationsimulations. Specifically, no model is capable of providing irradiation values across a 3Durban patch, including ground, facades, and roofs. The Coolvox model proposed by Hanet al. (2022) is an exception, but it was trained only on rough, synthesized data;• Most models are restricted to training on data from a single geographic location;• With the exception of SolarGan, existing models typically produce only cumulative irradi-ation results for an entire year;• Most research is based on parametrically synthesized building geometry, not on 3D modelsfrom real-world buildings, such as GIS data.
Author Year Name Dataset Input Model Prediction TypeAlammar A. et al. 2021 N/A Surrogateenvelopes Categorical ANN &Random Forest Single façade patch
Lila A. et al. 2021 N/A Surrogateenvelopes Categorical ANN Single roof
Tehrani et al. 2024 N/A GIS data Categorical ANN Average Cumulative Ra-diationYue et al. 2024 N/A GIS data Zhengzhou Categorical 17 common models Cumulative Radiation bysurface orientationGalanos T. &Chronis A. 2022 N/A GIS data Vienna Heightmap GAN Envelope ground
Huang C. et al. 2022 N/A Surrogateenvelopes Categorical,heightmap CycleGAN, pix2pix,ANN Envelope ground
Han J.M. et al. 2022 CoolVox Surrogateenvelopes 3D occupancygrid 3DCNN Facade and roofof single buildingNakhaee A. et al. 2023 Deep-Radiation GIS data New York Sem. segm. Anddepth-map fish-eye perspective

GAN with pix2pxgenerator Envelope ground
Zhang Y. et al. 2023 SolarGAN GIS data Zurich andSingapore Fish-eyeperspective andlocation

GAN with VAE gen-erator and more Solar Irradiationtime series
Table 2.1.: Related research papers solar irradiation prediction.

22

2.4. Neural Network Architectures with 3D inputs

2.4. Neural Network Architectures with 3D inputs

In the following paragraphs, several network architectures that are capable of processing 3Dmodels will be discussed, focusing on different approaches to address input dimension irregular-ities.
2.4.1. VoxNet

One intuitive method for processing 3D data is through a preprocessing step called voxelization.Voxelization involves discretizing a 3D object into a 3D array of voxels. These voxels form aregular grid, making them suitable as training data for neural networks. The features stored ineach voxel can include geometry occupancy, average normal direction, or color.VoxNet, developed in 2015, was designed to classify 3D objects using voxel clouds as input(Figure: 2.12). In VoxNet, the inputs are referred to as Volumetric Occupancy Grids, whereeach voxel indicates whether geometry exists within the voxel’s boundaries. The architectureof VoxNet resembles that of a traditional CNN; however, instead of 2D convolutions with a thirddimension holding feature maps, VoxNet employs three-dimensional convolutions, adding a fourthdimension to represent features. Pooling is achieved by replacing 2D pooling layers with 3Dnon-overlapping blocks (Maturana & Scherer, 2015).The scalability and generalization of VoxNet are constrained by the model’s substantial memoryconsumption. As the input resolution of the voxel grid increases, memory requirements growcubically. According to experiments conducted by Wang et al. (2017), VoxNet was only capableof handling models with a maximum resolution of 643 voxels on an 8GB GPU. A potential solutionto this limitation, as suggested by Han et al. (2022), is to use an Octree Convolutional NeuralNetwork or Transformer network to reduce memory consumption.
PublicationVoxNet is available in TensorFlow and Pytorch.
2.4.2. OCNN and OctNet

To reduce the memory and computational costs associated with VoxNet, the Octree ConvolutionalNeural Network (OCNN) was developed. There are several implementations of octree-based CNNs,with the most notable being OCNN by Wang et al. (2017), OctNet by Riegler et al. (2016), andthe octree network by Wang et al. (2020). The key differences between these models lie in themethods used to convert regular voxel clouds into octrees and the specific implementation ofconvolution and pooling layers.For simplicity, this discussion will focus solely on the implementation of OctNet, as it is consideredthe easiest to comprehend and has been thoroughly compared to the performance of VoxNet. Asmentioned, an octree-based CNN requires an octree data structure as input. The octree datastructure can be most easily understood by considering its two-dimensional counterpart: thequadtree.To illustrate, imagine a sparse two-dimensional grid containing data points with correspondingfeatures. A quadtree can be constructed by recursively dividing the grid into four subsections,
23

2. Related Literature

Figure 2.12.: VoxNet model encoder which downscales features through voxelization. (Image byMaturana and Scherer (2015))
with pointers indicating the parent-child relationships between nodes. The method of storingthis data may vary depending on the implementation, but visually, it can be represented as ahierarchical graph (see figure 2.13).

Figure 2.13.: Quadtree explained. Left: image subdivided in quadrants. Center: correspondingleaf node indices. Right: leaf nodes replaced by 0 when no occupancy. (Image by Wang et al.(2017))
Similarly, a voxel grid can be divided into eight equal subparts to convert it into an octree. Theprimary advantage of octrees is their ability to significantly reduce the memory size required forstoring sparse voxel clouds. However, it is important to note that not all octree-based CNNs usethe same type of input. In the case of OctNet, a hybrid octree with a specified maximum depthwas developed to address the challenge of efficiently accessing underlying data.
24

2.4. Neural Network Architectures with 3D inputs

OctNet and OCNN are not limited to using occupancy data as input; they can also utilize ad-ditional features such as normal directions and colors. This flexibility allows for the use ofirregularly sized point clouds or meshes as input, provided they are first converted into an oc-tree structure. In experiments, OctNet was tested on both classification and segmentation tasks,demonstrating performance that was either comparable to or better than VoxNet. Moreover, Oct-Net was capable of processing grids with sizes up to 2563, a feat that was not achievable withVoxNet.
PublicationOCNN is publicly available to use in Pytorch. OctNet is currently only available in C++.

Figure 2.14.: Visual representation of OCNN model. (Image by Wang et al. (2017))
2.4.3. MeshCNN

Hanocka et al. (2019) propose that 3D shape predictions can be made by directly feeding aneural network with a mesh—an approximate representation of a shape using vertices and faces.The primary advantage of using meshes as network input lies in their ability to better preservefine details and sharp edges of shapes. Moreover, using meshes requires minimal preprocessing,making it a more efficient approach for certain tasks. MeshCNN addresses the challenge of irreg-ular input data by employing specially designed convolutional and pooling layers that operatedirectly on the edges of the mesh.In practice, however, the use of MeshCNN is expected to be limited by several factors. Firstly,the network can only process manifold meshes, which are meshes where every edge belongs toexactly two faces. Although manifold mesh datasets are available for both classification andsegmentation tasks, it is common in practice to encounter geometry that is not fully manifold.Secondly, MeshCNN is restricted to shape features as input, meaning that the mesh is representedas a collection of edges along with some of their associated features.The study by Hanocka et al. (2019) demonstrates that MeshCNN is suitable for both classificationand segmentation problems.
PublicationThe implementation of MeshCNN is publicly available in PyTorch, making it accessible for furtherresearch and application.

25

2. Related Literature

2.4.4. Multiview CNN

An intriguing approach to address the irregularity of 3D geometry involves using 2D renderedimages of an object from multiple perspectives. Conceptually, this approach is straightforward:2D images are rendered from various views of a model, and a traditional CNN is employed toanalyze each pixel.
MVCNN (Ma et al., 2017) utilizes this multiview representation as the model’s input. The cameraperspectives can be rendered either from consistent positions relative to the model or from morerandom positions. When these images are fed into the model, they first pass through a convolu-tional layer. The views are then aggregated and processed through a second convolutional layerfor classification purposes.
PublicationAs of the time of writing, there is no implementation available for segmentation tasks.
2.4.5. PointNet

Another approach for handling 3D geometry involves using point clouds, which are sets of pointsin three-dimensional space that outline the boundaries of an object. Research by Qi et al. (2016)demonstrated that it is feasible to train neural networks directly on such 3D point clouds. In theinitial version of the PointNet model, the network is trained on batches of point clouds with aconsistent size. The input can also include additional dimensions, such as normal vectors or colorinformation. Once trained, the network can classify or segment 3D point clouds with the samenumber of input points as used during training.PointNet++ (Qi et al., 2017), an advanced version of the original PointNet model, is a hierarchicalneural network that subsamples points from the original point cloud using a neighborhood ball.These subsamples, which are overlapping regions of points, collectively describe the originalgeometry. The smaller version of the PointNet model is then used to make predictions on thesesubsets of points, with weights that can be shared across the subsamples. PointNet++ employsa recursive subsampling approach, where each step processes fewer points, thereby focusing ona smaller region. Finally, PointNet++ includes a grouping layer that concatenates informationfrom all detail levels.Qian et al. (2022) propose an advanced version of PointNet++ called PointNeXt, which intro-duces optimized training strategies and several new layers, making the model more scalable.Their research indicates that PointNeXt outperforms Transformer-based point cloud models inseveral experiments.Other researchers, such as Zhao et al. (2021), suggest that Transformer-based neural networkscan also be utilized to classify and segment point clouds. Due to their permutation invariance,Transformer models are naturally suited for handling point clouds. However, Transformer-basednetworks are generally known for their complexity in fine-tuning and their computational ex-pense.
PublicationAll versions of PointNet are available in both Pytorch and Tensorflow.
26

2.4. Neural Network Architectures with 3D inputs

2.4.6. Model Discussion

All the models discussed have potential for implementation in predicting solar irradiation on 3Durban geometry, albeit with varying degrees of required modification. However, several factorscould limit their performance and practical usability.Limitations• 3DCNN networks (e.g., VoxNet): While 3DCNNs like VoxNet could theoretically be adaptedfor irradiation prediction, they are hindered by poor scalability. The primary limitationis memory consumption; the number of values needing prediction far exceeds what wasproposed in the original VoxNet paper, making these models less viable for large-scaleirradiation prediction tasks.• Octree-based networks: These networks present a promising alternative to traditional 3DCNN due to their more efficient handling of sparse data. The main challenges includeconverting a mesh to the octree data structure and accurately indicating where irradiationpredictions are required. Addressing these challenges is crucial for successful implemen-tation.• Mesh-based Convolutional Neural Networks: Mesh-based CNNs pose several challengesfor irradiation prediction. Firstly, the input mesh must be manifold, which is not alwaysguaranteed, especially in datasets derived from scanned building data. Additionally, themesh would need to be restructured so that the positions of the faces correspond to theexpected irradiation values. Due to these preprocessing demands, MeshCNN may not bethe most practical choice for this application.• Multiview-based networks: These networks face significant challenges in both prepro-cessing and postprocessing stages. Converting 3D meshes and irradiation values into 2Dperspective views could lead to a loss of important information, given the limited perspec-tives. Moreover, the subsequent step of reconstructing a 3D model from the 2D imagescould introduce substantial overhead in processing time, further complicating their use inpractical applications.• PointNet-based networks: PointNet models require the input dataset to be converted intopoint clouds. This conversion could be rapid if points are sampled randomly, but it maybecome slow and cumbersome if points need to be regularly spaced in a grid. However,a significant advantage is that the point cloud not only represents the geometry but alsoindicates the positions where irradiation values are expected, making PointNet a moretailored solution.
2.4.7. Conclusion

From the literature review, both Octree-based CNNs and PointNet-based networks appear tobe viable solutions for predicting solar irradiation. However, given the superior performance ofPointNeXt in point cloud segmentation tasks, this research will focus on implementing PointNet-based models for irradiation prediction.

27

3. Methods

The methods of this project are divided into five distinct steps: generation, simulation, paral-lelization, prediction, and interaction. This section outlines each step, detailing the geometricdata used, the simulation processes, the deep learning model development, and the framework foruser interaction. Additionally, it discusses the parallelization techniques implemented and thesoftware employed throughout the project.

Figure 3.1.: Workflow steps for this project: generation, simulation, parallelization, prediction andinteraction (Image by author)
The generation step focuses on the geometric data utilized, its retrieval methods, and necessarypreprocessing. This phase involves defining the types of geometric data required and outlininghow this data is sourced and prepared for subsequent stages.
In the simulation step, an overview of the simulation techniques employed is provided. Thisincludes a description of the simulation type, the parameters chosen, and the rationale behindthese selections. This phase ensures that the simulation outputs are accurate and relevant to theprediction models.
Parallelization techniques are discussed to address the computational demands of the project.This includes strategies for optimizing performance and managing resources efficiently, ensuringthat the dataset generation and simulation processes are completed in a reasonable time frame.
Prediction encompasses the development and training of deep learning models. This sectiondetails the models used, the training process, and the evaluation metrics employed. The goal isto create robust prediction models capable of delivering accurate results based on the geometricdata and simulation outputs.
The interaction step involves designing a framework for user engagement with the predictionmodel. This framework facilitates the user’s ability to interact with and utilize the predictionresults effectively. The design and functionality of this framework are crucial for making theprediction models accessible and user-friendly.

29

3. Methods

3.1. Framework

Initially, the framework was initially sketched in McNeel Rhino Grasshopper, and a single datasetsample was generated. However, Grasshopper presented several challenges, such as limitedintegration with Python 3-based packages and difficulty in parallelizing code due to memoryoverhead.
To overcome these limitations, the project was transitioned to external Python code development.This approach allowed for better integration with state-of-the-art AI development packages andmore efficient parallelization. The main software and packages selected for the workflow in-clude:

• Grasshopper for workflow experimentation and visualization;
• GHPython for data IO need for visualization;
• Python 3.10.14 for LBT-tools Honeybee Radiance and Rhino.Inside for dataset generation;
• AcceleRad, a GPU version of Radiance for simulation;
• Python 3.10.14 with Pytorch for irradiation prediction;
• Weights and Biases for hyperparameter tuning;
• Matplotlib for visualization intermediate training steps;
• The code of this thesis will be available on Github.

Figure 3.2.: Software used for this project (logo’s by respective developer)

3.2. Generation

Generally speaking, researchers strive to use real physically observed data to train their neuralmodels. Although there are no dataset available which contain irradiation data on buildings, thenumber of accurate urban 3D datasets have increased over the last few years.
30

3.2. Generation

3.2.1. Geometry source

The project utilizes the 3D BAG dataset (Peters et al., 2022), which provides 3D representationsof cities across the Netherlands in various file formats. This dataset is primarily based on theAlgemeen Hoogtebestand Nederland (AHN), which was obtained through LiDAR technology.
The 3D BAG dataset includes three levels of detail (LoD), each representing different accuraciesand details in urban geometry. For this project, the lowest Level of Detail (LoD) was chosen. Thislevel features building representations with irregular vertical facades and simplified roofs withflat surfaces.

Figure 3.3.: Different ’level of details’ (LoD) of the city center in Delft (Image by author)
The 3D BAG dataset is available in two formats: CityJSON and .obj. The .obj format was selectedfor this project. A custom Python script was used to convert .obj files into triangular meshes, whichwere then visualized using McNeel Rhino and Grasshopper. Manual downloading of data fromthe 3D BAG can be time-consuming due to numerous download links corresponding to specificcity coordinates. To streamline this process, a web scraper was developed. The download linksfor the 3D BAG are named according to the size of the city block, horizontal coordinate, andvertical coordinate. By iterating over the possible names, the scraper efficiently downloaded allurban geometry from coordinates 8-208-480 to 8-392-568 (based on BAG version v2024.04.20beta).

Figure 3.4.: Overview of the tiling system for downloading 3D BAG regions (Image by author)
31

3. Methods

3.2.2. Partitioning

For training the neural network on building geometry, the dataset was partitioned into smallerpatches, similar to previous research on solar irradiation prediction. Two patch sizes were used:100 x 100 meters and 300 x 300 meters. Prior studies have indicated that using 100 x 100 metersamples is necessary due to the limited processing capacity of the model. Additionally, the pre-processing time for the samples does not scale linearly with sample size. Therefore, maintainingsmaller patch sizes is crucial to manage preprocessing time and computational efficiency.
3.2.3. Augmentation

Data augmentation is a potentially useful step in the generation process of this methodology, asit can reduce preprocessing time and enhance the diversity of the training data. For the trainingof neural networks, various augmentation techniques can be applied. In this project, three primaryaugmentation approaches were considered:• Translation: This involves shifting the outlines of the samples along the x and y axes. Bydoing so, more samples can be extracted from a single 3D BAG file, effectively increasingthe dataset size without additional data acquisition.• Rotation: Rotating the sample changes the orientation of the geometry. This approachensures that the neural network learns to recognize buildings from different directionalperspectives, mimicking real-world variations in orientation.• Scaling: Scaling involves enlarging or reducing the size of the buildings. This methodhelps the model generalize to buildings of various sizes.In the implementation of this project, the first two augmentation methods—translation and ro-tation—were employed. The scaling method was excluded because altering the building sizeswould result in geometries that do not accurately represent real-world dimensions, potentiallyleading to confusion for the model. Moreover, the other two augmentation techniques were notused in the final dataset development. It was determined that allowing additional computationtime was acceptable in exchange for obtaining more unique and realistically oriented buildingsamples, as will be described in the discussion of this thesis.
3.2.4. Point Sampling

As described in the previous chapter, it is required to convert the mesh geometry to point clouds,to be able to feed them to PointNet based networks. For this research, two approaches havebeen implemented:• Regular Point SamplingIn regular point sampling, the points are arranged in a regular grid to the greatest extentpossible. This process necessitates extensive preprocessing, during which the meshes arediscretized into quad mesh faces with dimensions approximately 1x1 meter. It is anticipatedthat neural networks will more accurately predict irradiance values on a regular grid dueto the consistency in point positions between samples. However, a notable drawback isthe complexity involved in generating the grid. A detailed overview of this procedure isprovided in Appendix A.
32

3.2. Generation

• Random Point SamplingGiven that PointNet-based networks are invariant to input permutations, it is feasible torandomize point positions in an arbitrary order. Utilizing the Poisson Disk Point samplingmethod (Yuksel, 2015), as implemented with the Open3D Python library, allows for theefficient generation of random points with approximately equal spacing between them.Other sampling techniques which could potentially be used for the prediction of irradiation aredescribed in appendix B.
3.2.5. Final Format

The samples in the dataset are stored in numpy arrays using the .npy file format. Each row in thearray describes a point, with the corresponding normal vector of the geometry. For visualization,the mesh corresponding to the points is stored using a JSON string, which can be read by McNeelRhino. 

x0 y0 z0 u0 v0 w0...
xn yn zn un vn wn


Figure 3.5.: n× 6 matrix with x, y, z, and normal u, v, w point cloud data.

33

3. Methods

3.3. Simulation

After generating the geometric samples and corresponding point clouds, the annual irradiationvalues can be computed using simulation software. Specifically, the GPU version of Radiance,AcceleRad, was employed for these calculations. To facilitate parallelization and enhance pro-cessing speed, the simulation was conducted directly in a Python 3 wrapper, rather than throughGrasshopper.The simulation requires four types of data inputs: a geometric mesh, material properties, sen-sor point locations, and weather data (figure: 3.6). To optimize performance, the complexity ofthe original mesh was minimized to the lowest number of faces feasible, which simplifies theconstruction of an octree graph inside AcceleRad. Sensor points were defined using the previ-ously generated point clouds, and the weather data was provided in the from of an .epw file forAmsterdam1.To simplify the project, only one material with the following properties was used: reflectanceof 0.2, specular of 0.0, and roughness of 0.0. As of the time of writing, there is no availabledata on the materials used in the 3D BAG data. Additionally, incorporating multiple materialswould complicate the prediction process using neural networks. Future research may address theintegration of material data into the simulation.

Figure 3.6.: Simulation principle using Accelerad. Materials have not been included due to lackof data. (Image by author)

1Epw files can be downloaded from: https://www.ladybug.tools/epwmap/

34

3.3. Simulation

3.3.1. Parameter Convergence Test

Before conducting the simulations, parameters for the annual solar irradiation simulation haveto be selected. To facilitate this process, an automated convergence test script was developed.Initially, a set of high parameter values was chosen, under the assumption that these values wouldbest approximate real light behavior.Subsequently, the parameters were substantially scaled down. In total, 128 simulations were ex-ecuted, with parameters being incrementally adjusted. Both GPU (AcceleRad) and CPU (Radiance)simulations were performed to compare their performance.The results of all simulations are presented in the following plot (figure 3.7). The y-axis repre-sents the runtime of the simulations, measured for both CPU and GPU configurations. The x-axisdisplays the errors, which are calculated as the difference between a given set of parametersand the baseline simulation benchmark. The Root Mean Squared Error (RMSE) was used as themetric to quantify this difference. The plot also features interactive capabilities, allowing usersto view the specific parameters associated with each sample by hovering the mouse over the plot.
As can be seen in figure 3.7c, maximum errors for GPU based simulations are significantly higherthan CPU based simulations. However, the standard deviations suggest only small differencebetween CPU and GPU. Visual representations of the errors as can be seen in figure 3.7, suggestthat the maximum errors in GPU based simulations are only outliers. Therefore, the GPU param-eters at the lower end of the elbow (figure 3.7b were selected as best ratio between time anderror.

Parameter Synthesized
ground truth

Selected

Ambient Bounces (-ab) 14 7Ambient Divisions (-ad)2 16384 1024Ambient Super Samples (-as) 8192 512Sampling (-c) 1 1Direct Certainty (-dc) 0.75 0.75Direct Pretest Density (-dp) 512 512Direct Relays (-dr) 3 3Source Substructering (-ds) 0.05 0.05Direct Tresholding (-dt) 0.15 0.15Limit Reflection (-lr) 8 8Limit Weight (-lw) 4e-07 4e-07Specular Sampling (-ss) 1.0 1.0Specular Treshold (-st) 0.15 0.15Sky Density 145 145
Table 3.1.: Selected and benchmark parameters for Radiance and AcceleRad settings.

35

3. Methods

(a) AcceleRad parameters synthesized ground truth

(b) Selected AcceleRad parameters

(c) Maximum error in comparison to synthesized ground truth

(d) Standard deviation in comparison to synthesized ground truth
Figure 3.7.: Parameter Convergence Test for annual solar irradiation simulations. The blue dotindicates the synthesized ground truth, red the CPU Radiance-based tests and green the GPUAcceleRad-based simulations. In consecutive simulations, only the ambient bounces, ambientdivisions and ambient super samples have been changed.

36

3.3. Simulation

Figure 3.8.: Parameter Convergence Test for sample 1 with parameters:-ab 3 -ad 32 -as 16 -c 1 -dc 0.75 -dp 512 -dr 3 -ds 0.05 -dt 0.15 -lr 8 -lw 4e-07 -ss 1.0 -st0.15 -ag -1 -w

Figure 3.9.: Parameter Convergence Test for sample 34 with parameters:-ab 7 -ad 1024 -as 512 -c 1 -dc 0.75 -dp 512 -dr 3 -ds 0.05 -dt 0.15 -lr 8 -lw 4e-07 -ss 1.0 -st0.15 -ag -1 -w’

37

3. Methods

Figure 3.10.: Parameter Convergence Test for 64 with parameters:-ab 12 -ad 8192 -as 4096 -c 1 -dc 0.75 -dp 512 -dr 3 -ds 0.05 -dt 0.15 -lr 8 -lw 4e-07 -ss 1.0-st 0.15 -ag -1 -w

Figure 3.11.: Parameter Convergence Test for sample 65 with parameters:-ab 3 -ad 32 -as 16 -c 1 -dc 0.75 -dp 512 -dr 3 -ds 0.05 -dt 0.15 -lr 8 -lw 4e-07 -ss 1.0 -st0.15 -w -g

38

3.3. Simulation

3.3.2. Final Format

After simulation, the irradiation values are added as column to the numpy data array. Togetherwith the x,y,z coordinates and the u,v,w normal directions of the mesh faces, it results in a ‘numberof points’ x 7 (32-bit float) shaped matrix (figure 3.12).

x0 y0 z0 u0 v0 w0 Ei;0...
xn yn zn un vn wn Ei;n


Figure 3.12.: n × 7 matrix with x, y, z, and normal u, v, w point cloud data. The last columnindicates the irradiation values.

39

3. Methods

3.4. Parallelization

Given the CPU and GPU-intensive nature of the workflow described, parallelization of both thedataset generation and simulation processes is crucial. Consequently, the project code wasimplemented not only in Grasshopper but also in Python 3, utilizing the Rhino.inside libraryalong with the Honeybee Radiance package.Dataset synthesis was parallelized using Python’s built-in ‘multiprocessing‘ library3. Duringdevelopment, the optimal multiprocessing approach was not immediately evident. Ultimately,it was determined that the pool.imap unordered method was the most effective. This methodprocesses an iterable of samples across available CPU cores in an unordered fashion. It wasalso found that limiting the number of tasks per CPU process (maxtasksperchild) to a low value,such as 1, is essential. Higher values lead to memory overflow issues after approximately 10,000iterations due to inefficient memory garbage collection.
Generation and simulation process function
process = generate_and_simulate_samples()

Number of physical CPU cores
cpus = 18

Iterable of 3D BAG .obj files
args = list_of_obj_files

Initialize the pool
with multiprocessing.Pool(processes=cpus, maxtasksperchild=1) as pool:

pool.imap_unordered(process, enumerate(args))
pool.close()
pool.join()

Figure 3.13.: Python code to run generation and simulation in parallel using the multiprocessinglibrary.
The desktop PC was able to generate about 10.000 100x100 regular samples in 24 hours ofcomputing, including the simulation of the irradiation values. An overview of the entire multipro-cessing system is shown in figure 3.14.As described earlier, the execution of this code was only possible on desktop based on a Windowsnon-server operating system. In this thesis, a high performance desktop was used with two IntelXeon E5-2640 v4 CPUs and two NVIDIA Quadro M6000 24GB GPUs.

3https://docs.python.org/3/library/multiprocessing.html

40

3.4. Parallelization

Figure 3.14.: Parallelization workflow for dataset generation and simulation (Image by author)

41

3. Methods

3.5. Prediction

As previously outlined, the synthesized datasets consist of samples structured as matrices withdimensions num points x 7, encompassing coordinates, normal directions, and irradiation values.The primary objective of this research is to predict the final column of the sample data, whichcontains the irradiation values, by utilizing the first six columns as input features for a deep neuralnetwork model. To achieve this, several PointNet-based networks and configurations were trainedand evaluated to determine the extent to which a model can accurately predict irradiation.In the following section, an overview of the methods and strategies employed for solar irradiationprediction will be provided. This section begins with an exploration of the backbone modelsused for prediction. Subsequently, challenges related to the dataset are addressed. The chapterconcludes with a detailed overview of the model’s training, validation, and testing processes,including hyperparameter optimization and metric selection.
3.5.1. PointNet

PointNet (Qi et al., 2016) is a deep neural network initially developed for the classification and(part)segmentation of point clouds. An overview of the network architecture is presented in figure3.15. PointNet utilizes two transformation networks as symmetric functions to ensure that theinput points are invariant to permutation and to extract global features. These transformationnetworks are followed by several fully connected layers that predict the most likely class towhich an object belongs. For segmentation tasks, additional layers are included, where localpoint features and global features are concatenated for each point. These concatenated featuresare then passed through multiple multilayer perceptrons, which output the final result using aone-hot encoding. Each entry in the one-hot encoding corresponds to a potential class label.Since the segmentation version of PointNet predicts per-point values, this model was used as base

Figure 3.15.: The PointNet architecture as proposed by Qi et al. (2016)
for irradiation prediction. Furthermore, the following changes were made to the base architecture,to use it for this project:• The softmax layer at the end of the model was removed. No activation function has beenapplied to the final layer;• The one-hot encoding vector was reduced to only one output value;
42

3.5. Prediction

As loss function, the MSE was used, which can be described by the following equation:
MSE =

1

N

N∑
i=1

(yi − ŷi)
2 (3.1)

In which N describes the total number of samples, yi the true value for the ith sample and ŷi thepredicted value for the ith sample.Training PointNet in batches requires inputs to be fixed-sized arrays. Therefore, 10.000 pointswere subsampled from the original points clouds, to make prediction. Inference after training alsoallows feeding differently sized inputs.
3.5.2. PointNet++

The PointNet++ architecture (Qi et al., 2017) extends the original PointNet model with theobjective of capturing local context at varying scales. By employing a hierarchical feature learningframework, PointNet++ can effectively process point clouds of different sizes. The architectureis composed of three primary layers: sampling, grouping, and the PointNet layer.In the sampling layer, points are not sampled in a random order. Instead, the Farthest PointSampling (FPS) algorithm is utilized. In this approach, an initial random point is selected, andeach subsequent point chosen is the one farthest from the previous point. This process continuesuntil all points have been selected, ensuring a more uniform coverage of the point cloud.The grouping layer then selects subsets of points using a ball query algorithm, which identifiesall points within a specified radius from a selected point. The number of subsets generated mayvary depending on the size of the input point cloud.Finally, the PointNet architecture is applied to predict values for each point within the subsets.For segmentation tasks, the features of the subsampled points are propagated back to all originalpoints in the point cloud. Figure 3.16 illustrates the PointNet++ procedure for both classificationand segmentation. In this project, the segmentation procedure was employed, as previouslydiscussed in the PointNet section.

Figure 3.16.: The PointNet++ architecture as proposed by Qi et al. (2017)

43

3. Methods

3.5.3. PointNeXt

PointNeXt (Qian et al., 2022) builds upon and enhances the PointNet++ architecture, achievingoptimized model performance through several key improvements. Firstly, state-of-the-art tech-niques for optimizers and learning rate schedulers were implemented, accompanied by furtherfine-tuning of hyperparameters. Secondly, it was discovered that reducing the radii used in thegrouping layer led to a performance improvement of several percentage points. Lastly, variousmodel scaling techniques were explored, resulting in even greater performance gains.Given that PointNet++ is a relatively compact network, adjustments were necessary to scalethe model effectively. To address this, an Inverted Residual Multi-Layer Perceptron (InvResMLP)was introduced after the Set Abstraction layers. Figure 3.17 illustrates these modifications incomparison to the original PointNet++ architecture.

Figure 3.17.: The PointNeXt architecture as proposed by Qian et al. (2022)
The PointNeXt research offers models at four different scales: S, B, L, and XL, with the lattertwo being most relevant for this project. All four architectures were trained, validated, and testedto compare their performance.For this project, the hyperparameters of the PointNeXt segmentation model served as a baselinefor predicting solar irradiation. Subsequently, several hyperparameters were tuned specificallyfor the dataset, loss functions, and model.The following section will describe the various layers of PointNeXt within the context of solarirradiation prediction based on point clouds, as required for this research. According to theoriginal implementation, PointNeXt requires two inputs: batches of point clouds with x, y, zcoordinates, and corresponding features derived from positional coordinates and normal values.

44

3.5. Prediction

EncoderThe encoder’s initial layer consists of a shared MLP (Conv1D block) that maps the input featuresto a higher-dimensional space without reducing the size of the point cloud. Following this, aSetAbstraction block, based on the PointNet++ architecture, is employed. The SetAbstractionblock is composed of four key components:
SubsamplingPoints are subsampled from the input based on the stride4. For instance, a stride of four reducesthe number of points by a factor of four. As illustrated in figure 3.17, this subsampling processoccurs four times across four SetAbstraction blocks, reducing an original point cloud of 10,000points to 39 points by the end of the encoder block.

Figure 3.18.: Subsampling layer in the PointNeXt network (Image by author).
GroupingTwo hyperparameters, radius and nsample, define the grouping process. Points within the spec-ified radius around the subsampled points are selected, with the number of points determined bynsample. The features of these grouped points are aggregated, optionally incorporating featuresfrom local skip connections.

Figure 3.19.: Grouping layer in the PointNeXt network (Image by author).
With each successive SetAbstraction block, the radius used for grouping is doubled. For example,starting with an initial radius of 0.1 and progressing through four SetAbstraction blocks resultsin a maximum radius of 0.8. If the dataset coordinates are normalized to the [0,1] domain, themaximum receptive field for the SetAbstraction blocks is 80 meters in real units (given a samplesize of 100x100m). Conversely, if the coordinates are normalized within the [-1, 1] domain, the

4For clarity, first-mentioned hyperparameters are highlighted in bold.

45

3. Methods

receptive field extends to 40 meters. This relationship highlights the interdependence betweendataset normalization and radius scaling.
MLPThe aggregated features undergo convolution using a Conv2D block, followed by 2D batch nor-malization and a ReLU activation layer. The number of output channels for these convolutions isgoverned by the width hyperparameter. With each new SetAbstraction block, the output channelsize is doubled relative to the initial width.
ReductionThe features are reduced using a max-pooling layer, which condenses the grouping process intoa single value.

Figure 3.20.: MLP and reduction layer in the PointNeXt network (Image by author).
PointNeXt introduces the InvResMLP to enhance the scalability of the PointNet++ architecture.The InvResMLP operates similarly to the SetAbstraction block, with several notable differences:1. The subsampling layer is omitted, ensuring that the point cloud retains the same size asthe input.2. A residual connection is introduced from the input to the output.3. An additional MLP layer is appended before reduction, enabling pointwise feature extraction.4. The block is repeated, with the output channel size multiplied each time, according to the

expansion hyperparameter.5. The grouping radius is doubled after the preceding SetAbstraction block.As a result of the radius doubling, the final receptive field from the encoder expands to 160 metersin the [0,1] point coordinate domain and 80 meters in the [-1, 1] domain.

46

3.5. Prediction

Figure 3.21.: InvResMLP layer in the PointNeXt network (Image by author).

47

3. Methods

DecoderThe decoder architecture in PointNeXt mirrors that of PointNet++. Subsampled points areinterpolated to match the original sizes at each encoder depth, using an MLP composed of aConv1D layer, one-dimensional batch normalization, and a ReLU activation layer.

Figure 3.22.: Interpolation layer in the PointNeXt network (Image by author).
HeadThe final head of the model begins with an MLP similar to those in the decoder, followed by adropout layer. The feature channels are then reduced to an output size of 1, corresponding to asingle irradiation value for each point.
3.5.4. Model Sizes

Without changing the architectures as suggested by Qian et al. (2022), the models exhibit thefollowing number of hyperparameters: PointNet 3.6M, PointNet++ 1.0M, PointNeXt-S 0.8M,PointNeXt-B 3.8M, PointNeXt-L 7.1M, and PointNeXt-XL 41.6M.
3.5.5. Training, Validation and Testing

For this project, the implementation of the PointNeXt (Qian et al., 2022) source code was usedas reference, using PointNet, PointNet++ and PointNeXt S, B, L and XL as base mark. Themodels were trained by feeding point clouds with x,y,z coordinates and normal directions for thegeometry as feature inputs. For each point, the model regresses to a single value indicating thepredicted annual solar irradiation.
Normalization and CenteringThe dataset is randomly split into a training, validation and testing dataset, balanced to an 80%-10%-10% ratio respectively. Before feeding samples to the network, normalization of both inputsand ground truth output values is applied. Tests were performed with min-max normalization intothe range [0, 1] and [-1, 1] for the output values. Similarly, point x,y,z coordinates were alsonormalized to the [0, 1] and [-1, 1] domain.
48

3.5. Prediction

As described by Qian et al. (2022), subsets of points are renormalized after the Set Abstrac-tion layers in PointNeXt, using a method called relative position normalization based on theneighborhood query radius.Normal values u,v,w indicating the geometric orientation of the mesh faces were not normalizedsince they are already described in the [-1, 1] domain.Experiments were performed with and without the centering of point clouds. Avoiding centeringresults in geometric context (non-buildings) always having a z-value of zero.
Training HyperparametersFor training, a batch size of 8 was used containing 10.000 points per sample, considering thefact that the dataset samples must have at least 10.000 points based on the 100m x 100m grid.In validation and testing, no point subsampling was applied. Similar to PointNext, Adamw wasused as optimizer with a cosine learning rate scheduler.The final model was trained for 100 epochs. Hyperparameter tuning runs were based on 25epochs.Training hyperparameters that have not been mentioned in this thesis, were derived from thePointNeXt source code.
Model HyperparametersWithin the finetuning process of the model, several model hyperparameters were considered:• width: the width of the output multi-layer perceptrons (doubling the width, quadruples thenumber of model parameters);• nsample: the number of neighbors queried in each model block (since the point features ofthe neighbors are aggregated, the number of model parameters does not change);• radius: the initial radius for the model point sampling;• expansion: the expansion ratio of the InvResMLP block, as described by Qian et al. (2022);• voxel max: maximum number of points sampled per point cloud in training;
Performance MetricsTraining, validation and testing performance were evaluated using both regression and classifi-cation metrics.• In training, the loss is backpropagated using case specific loss functions: MSE, WMSE, DeltaLoss and Reduction Loss;• For performance comparison between different loss functions, the MSE is always computedfor each training step;• Finally the RMSE in kWh/m2 is used as more indicative value for real-life usage.Furthermore, the predicted and ground truth irradiation values have been classified by convertingthem to ten bins (0-100 kWh/m2, 100-200 kWh/m2, . . . , 900-1000 kWh/m2). Based on these bins,classification scores can be used to measure performance.

49

3. Methods

• Using the classification bins, it was possible to compute accuracy, precision, recall andf1-scores;
Accuracy =

TP + TN

TP + TN + FP + FN
(3.2)

Precision =
TP

TP + FP
(3.3)

Recall = TP

TP + FN
(3.4)

F1 Score =
2 · Precision · RecallPrecision + Recall (3.5)

in which TP (True Positives) is the number of correct positive predictions, TN (True Neg-atives) the number of correct negative predictions, FP (False Positives) the number ofincorrect positive predictions and FN (False Negatives) the number of incorrect negativepredictions.• The performance per irradiation bin was evaluated using multi-class confusion matrices foreach validation and test step.• Micro/macro averaged F1-scores can be used for overall multi-class performance. In prob-lems where each class (irradiation bin in this context) is equally important, the macroaveraged F1-score should be used. Micro averaged F1-score can be seen as an overallaccuracy considering all individual bins.
Micro-averaged F1-Score =

2 · TP
2 · TP + FP + FN (3.6)

Macro-averaged F1-Score =
1

n

n∑
i=1

F1-scorei (3.7)
Finally, the overall performance was visually evaluated using colored point clouds, indicating thedifference between predicted irradiation and ground truth.
3.5.6. Dataset Imbalance

As can be seen in figure 3.23, expected irradiation values are not equally distributed in thedataset. Most of the values tend to be relatively high, due to full exposure of the geometry tothe sun. This dataset imbalance can result in the model seemingly performing well, but actuallypredicting higher values preferably.Figure 3.23 shows a histogram with binned irradiation values. For the XL dataset on 100x100msamples with regular point clouds, 325 million points were sampled of which 46,7% (152 million)
50

3.5. Prediction

Figure 3.23.: Imbalance over the irradiation spectrum in the dataset
is part of the 900 kWh/m2 to 1000 kWh/m2 domain. This suggests a significant imbalance inthe expected irradiation values of the dataset. To overcome this issue, several strategies havebeen explored. Firstly, one could consider to undersample the dataset. Simply said, samples aremanually picked which have an equal distribution of irradiance values. However, in case of thisresearch, this approach has two downsides:• The limited size of the dataset is significantly reduced;• The model is trained on a-typical samples which do not necessarily represent commonevaluation and test samples.Alternatively, it is possible to use a weighted loss function, in which uncommon values get ahigher penalty than common irradiance values. For this research, three loss functions have beendesigned which potentially overcome dataset imbalance:1. Reduction loss is based on MSE. However, the expected irradiation values are first convertedto classes using bins. The bin with most points is then reduced to the size of the second-largest bin. Only a selection of points in the largest bin contribute to the overall loss ofthe prediction. This approach is deemed useful, since the irradiation dataset typically onlyhas one bin which is significantly higher than the others.A bin Cj can be mathematically be described as:

Cj = {yi|Bj−1 ≤ y < Bj} (3.8)
• Cj : A bin with irradiation values;• yi: True value for the i-th sample;• Bj : Bin treshold j;where B1, B2, ..., Bn − 1 denote the boundaries or tresholds of the bins. The bin with themaximum size Cmax can be computed using:

Cmax = argmaxjnj (3.9)
The size of bin Cmax is randomly reduced to the size of bin Csecond−max.The new point cloud with the reduced largest bin is used to compute the MSE.

51

3. Methods

2. Delta loss works similar to the well-known Huber loss. Just like Huber loss, some of theerrors are penalized using the MSE, other (mainly smaller) errors are penalized using l1loss. However, in contradiction to Huber loss, delta loss makes a distinction between theMSE and l1 based on the expected outcome, not on the error itself. Therefore, it is possibleto penalize irradiation values in larger bins with l1, and smaller bins with MSE.
Huber Loss = 1

N

N∑
i=1

{
1
2 (yi − ŷi)

2 if |yi − ŷi| ≤ δ

δ
(
|yi − ŷi| − 1

2δ
) if |yi − ŷi| > δ

(3.10)

Delta Loss = 1

N

N∑
i=1

{
(yi − ŷi)

2 if |yi| ≤ δ

|yi − ŷi| if |yi| > δ
(3.11)

with:• N : Total number of samples;• yi: True value for the i-th sample;• ŷi: Predicted value for the i-th sample;• δ: Threshold that determines the cutoff between MSE and L1 loss.3. In WMSE, each bin class gets a weight, which is used to multiply the MSE of a givenprediction. Thus, the weight is based on the expected value, not on the individual error ofa given value prediction. In this project, the largest bin of irradiation values gets a weightof 0.25, and all others 1.0. This corresponds with the ratio of the size differences.
Weighted MSE =

1

N

N∑
i=1

wi(yi − ŷi)
2 (3.12)

• N : Total number of samples;• yi: True value for the i-th sample;• ŷi: Predicted value for the i-th sample;• wi: Weight of value i based on the corresponding bin.

52

3.6. Interaction

3.6. Interaction

Architects and designers typically do not possess a programming background, making it crucial todevelop an intuitive approach for interacting with the AI model. Given that the dataset is derivedfrom Honeybee simulations, the decision was made to implement the project in a manner thatallows the code to be visually accessible through Grasshopper and McNeel Rhino. Addition-ally, this chapter will propose potential future implementations, considering broader contexts asoutlined in the introduction of this thesis.
3.6.1. Preprocessing

Similar to the dataset development process, samples intended for evaluation by the predictionmodel must undergo preprocessing to be formatted correctly. Since many of the functions usedfor this preprocessing are based on Rhino Python packages, it was decided to implement thesewithin Grasshopper itself. The Python code can be transformed into a Grasshopper plugin, therebyconsolidating all the necessary preprocessing steps into a single tool.To enhance the efficiency of preprocessing, several steps were delineated. First, the user mustbe prompted to specify the location where the building will be designed. By providing thecoordinates of the specific location, the code should automatically download the correspondingcity patch from the 3D BAG website and convert it into the correct format.Secondly, a distinction should be made between context and design geometry. Context geometryrefers to all objects in the scene that will not be modified by the designer. This distinction isparticularly beneficial in an optimization process, as it allows the preprocessing phase for most ofthe geometry to be conducted only once. Conversely, the design geometry, which constitutes thebuilding being designed or developed by the designer or computer, requires the preprocessingphase to be repeated for each design iteration.Finally, both context and design geometry are combined into a preprocessing node that generatesa point cloud, which will be used for prediction.
3.6.2. Live Prediction

In contrast to the preprocessing phase, the evaluation using the neural network must be executedthrough a specific Python 3 interpreter. Grasshopper, however, is limited to IronPython, whichmakes direct execution within it impossible5. Moreover, it is crucial that the designer softwareutilizing the code does not impose limitations on the network’s usage.Several techniques were explored for executing the neural network. Initially, it was found possibleto call a command prompt through the os.system() and subprocess.Popen() functions to runthe code from a Miniconda environment. This approach is similar to how Honeybee invokesRadiance/AcceleRad programs. However, it resulted in significant overhead. First, booting thecommand window was relatively slow. Additionally, executing the code required loading all thenecessary Python packages, which introduced several seconds of delay. While this delay might beacceptable for a single evaluation, it becomes a substantial bottleneck in large-scale optimization,reducing overall efficiency.
5In this project, Rhino 7 was used. Rhino 8 has new tools available in Grasshopper to used CPython packages.

53

3. Methods

A more efficient solution can be developed in the form of a server-client system (Figure: 3.24.In this setup, the server is initiated using the subprocess.Popen() method. The server preloadsall the required Python packages in a Python 3 environment for running the neural network. Anopen connection is then established on the local machine using a socket system. Once the serveris running, the client, which resides within the Grasshopper environment, gathers the point cloud,encodes it to bytes, and sends it to the server. After the server processes the point cloud usingthe neural network, the irradiation values are sent back to the client. This approach offers severaladvantages:• Loading the Python packages only takes place once;• The client can be easily implemented in different types of software;• The client can send data to other machines, such as a Renderfarm of Supercomputer througha given port. This allows large numbers of prediction to be computed in a short timeframe.

Figure 3.24.: The client-server system in Grasshopper, in which the server preloads all the pack-ages. New data is sent from the client to the server. (Image by author)

54

3.6. Interaction

3.6.3. Visualization

Based on the type of point cloud—either regular or random—the irradiation values can be visual-ized in Rhino using a mesh or colored point cloud, respectively. While generating a colored meshwas previously explored using the Ladybug package, it was found to be relatively slow. To ad-dress this, a new approach was implemented in Python, significantly enhancing the performanceof visualization.
3.6.4. Optimization

By connecting the irradiation values from the client to a brute-force optimizer, such as Galapagos6,it is possible to optimize a design efficiently. To show the potential of this procedure, the followingmethodology was defined:
Design assignment: development of a tower in which the sun exposure on horizontal surfaces(ground & roofs) is maximized and sun exposure on vertical elements (facades) is minimized.
Fitness function7:

Fitness = ∑
Ei;hor

nhor · 1000
+

(
1−

∑
Ei;ver

nver · 1000

) (3.13)
with:• ∑

Ei;hor Annual irradiation on horizontal surfaces;• nhor: Number of sensors points on horizontal surfaces;• ∑
Ei;ver Annual irradiation on vertical surfaces;• nver: Number of sensors points on vertical surfaces.

Execution: The optimization process can be conducted in two ways: sequential design evaluationor batch design evaluation. In batch evaluation, point cloud sizes are padded to match the samplewith the highest number of sensor points within the batch. This approach is particularly beneficialfor devices with substantial VRAM, as it enables the simultaneous evaluation of multiple samplesduring the optimization process.
3.6.5. Conclusion

This chapter has detailed how architects and designers can interact with the AI model in auser-friendly environment, combined with an optimization procedure.

6https://ieatbugsforbreakfast.wordpress.com/2011/03/04/epatps01/7This is a simplified fitness function. In reality, the area of mesh faces corresponding to the sensor points, should alsobe taken into account.

55

4. Analysis

In this chapter, conclusions will be drawn from the outcomes of the methods described in previoussections. The chapter is structured as follows: first, it presents the results related to datasetgeneration, simulation, and parallelization. Next, it provides an overview of the performance ofPointNet, PointNet++, and various PointNeXt configurations. Finally, it addresses the findingsfrom the interaction experiment previously discussed.
4.1. Dataset Generation, Simulation, and Parallelization

This section discusses the results obtained from the dataset generation, simulation, and paral-lelization methods. It includes a visual evaluation of the generated samples and an analysis ofany errors that occurred during the process. Additionally, the computation time associated withthe parallelization approach is summarized.
4.1.1. Dataset Sizes and Types

As part of this research, four distinct datasets were developed, each containing urban geometry,a corresponding point cloud description, and irradiation values. The properties of these datasetsare detailed in Table 4.1. The first dataset comprises 18,380 samples with point clouds organized
Name Patch Size Point Sampling Strategy Number of Samplesdset100 xl regular 100m x 100m Regular 18.380dset100 xl random 100m x 100m Poisson Disk 21.601dset300 s regular 300m x 300m Regular 2.206dset300 s random 300m x 300m Poisson Disk 2.602

Table 4.1.: Four datasets developed with distinct properties.
in a regular grid. The second dataset contains slightly more samples, totaling 21,601, owing tothe use of the Poisson Disk point sampling technique. Specifically, the preprocessing phase forregular point grids is more prone to errors, which necessitates the exclusion of some samples dueto incorrect geometry.While the neural network proposed in this research is trained on relatively large patches of 100m x100m, it is also valuable to assess its performance on larger-scale samples of 300m x 300m. Theselarger samples are derived from the same volume of 3D BAG data as the previously mentioneddataset. Due to the increased area (a factor of 9 times larger), the number of samples in thisdataset is approximately one-ninth of the smaller dataset. The prediction approach proposed inthis thesis is less sensitive to memory consumption compared to previous work on 3D irradiationpredictions by Han et al. (2022), allowing it to handle significantly larger patches.

57

4. Analysis

For both the 100m x 100m and 300m x 300m samples, point coordinates have been normalizedto the [0,1] or [-1,1] domain before being input into the neural network.
4.1.2. Generation

Despite extensive efforts to optimize the geometric preprocessing and simulation code, residualerrors in the dataset remain evident. A comprehensive visual evaluation of 1,000 regular pointcloud samples (see Figures 4.1 and 4.3) has identified several specific issues:• Leveling Buildings: To simplify the prediction process, buildings were leveled by adjustingall vertex coordinates to ensure the lowest vertices were at z = 0. This adjustment unin-tentionally distorted roof height differences (Figure: 4.2c). A more precise approach wouldinvolve only translating the lowest vertices while preserving relative roof heights.• Boolean Splitting Accuracy: The boolean splitting procedure employed during preprocess-ing has proven insufficiently accurate. The regular ground mesh is split, and the resultingelements are repositioned to form roofs. Figure 4.2a highlights missing triangular faces inthe roofs. Future improvements could involve using more advanced splitting algorithms orimplementing stricter area difference checks between expected and actual geometry.• Intersecting Walls: Figure 4.2b indicates issues with the 3D BAG data, particularly con-cerning intersecting walls between buildings. This results in roofs being placed at incorrectheights. This issue could be mitigated by detecting and resolving building outline inter-sections before performing the ground mesh split.• Cut Off Corners: Figure 4.2d shows that certain mesh split operations fail to accuratelyfollow building outlines, leading to incorrectly cut-off corners. This issue may be resolvedby employing more advanced splitting algorithms or using lower tolerance thresholds.• Point Cloud Reduction: In some cases, the point cloud reduction algorithm, designed toremove dividing walls, failed to eliminate points at the ground level. This problem is likelydue to rays not intersecting with nearby wall mesh faces because they intersect only withface edges. A potential solution could involve slightly moving these points upward beforeapplying the reduction algorithm.Given that only 1,000 samples were visually evaluated, the exact proportion of erroneous sampleswithin the entire dataset cannot be precisely determined. However, empirical evidence suggeststhat fewer than 5% of the regular dataset samples contain errors, most of which are relativelyminor.

58

4.1. Dataset Generation, Simulation, and Parallelization

(a) Sample 57 (b) Sample 113

(c) Sample 139 (d) Sample 190

(e) Sample 294 (f) Sample 364

(g) Sample 779 (h) Sample 909
Figure 4.1.: A set of manually picked preprocessed dataset samples with distinct urban typologies.Blue colors indicate the ground context mesh, orange colors facades and green colors roofs.

59

4. Analysis

(a) Missing triangular faces. (b) Intersecting walls.

(c) Incorrect ground height. (d) Roofs incorrectly split.
Figure 4.2.: A set of dataset samples with errors in the preprocessing procedure. Blue colorsindicate the ground context mesh, orange colors facades and green colors roofs.

(a) Sample 69 (b) Sample 335

(c) Sample 364 (d) Sample 494
Figure 4.3.: A set of manually picked point clouds, based on the geometry in the dataset. Orangecolored points relate to vertical surfaces. Blue colors indicate horizontal surfaces.

60

4.1. Dataset Generation, Simulation, and Parallelization

4.1.3. Simulation

To gain a more detailed understanding of the irradiation values within the datasets, a histogramwas generated for the regular 100m x 100m dataset. This histogram combines the data from thetraining, validation, and testing sets, providing a comprehensive overview. The dataset encom-passes a total of 324,913,022 sensor points, each representing a location where solar irradiationpredictions will be made.As illustrated in Figure 4.4a, the irradiation values are binned into intervals of 100 kWh/m².The distribution reveals that values within the 900-1000 kWh/m² range are significantly moreprevalent compared to other ranges. This predominance is due to the full solar exposure receivedby the geometry at these locations, which naturally results in higher irradiation values.In total, 151,704,158 sensor points fall within this 900-1000 kWh/m² bin, which constitutes 47.7%of the entire dataset. The skewed distribution towards higher irradiation values suggests thatmuch of the geometry in the dataset receives substantial solar exposure, which could influencethe performance of the prediction models and may require careful consideration in the trainingprocess to avoid potential biases.

(a) Regular dataset (b) Poisson Disk dataset
Figure 4.4.: Irrradiation distribution for the regular and Poisson Disk 100m x 100m dataset.

Similarly, the random dataset consists of 369,907,058 sensor points, with 141,899,798 of thesepoints falling within the 900-1000 kWh/m² range, accounting for 38% of the dataset (Figure 4.4b).The most notable difference between the two dataset distributions is the substantially larger 0-100 kWh/m² bin in the randomly (Poisson Disk) sampled dataset. This increase is primarilydue to the presence of dividing walls in the geometric data, which have not been removed andtherefore receive no irradiation.Based on the dataset distributions, it can be concluded that there is an imbalance in the expectedirradiation values. A solution to this problem will be described in section 4.2.5.

61

4. Analysis

4.1.4. Parallelization

As previously discussed, sequential synthesis of dataset samples was not a feasible option for thisproject. The optimization achieved through parallelization led to significant speed improvements,as shown in Table 4.2. The results indicate that Poisson Disc sampling slightly outperforms regu-lar point sampling in terms of efficiency. However, it is important to note that regularized mesheswere generated in both sampling methods. Further research could potentially reduce overallcomputation time by applying the Poisson Disc sampling method to simpler, rough geometry.
Dataset Point Sampling Processes (cores

used)
Samples Computation

time (s)100m x 100m regular 1 100 3.965100m x 100m regular 18 100 608100m x 100m Poisson Disc 18 100 591300m x 300m Regular 12 100 4.401300m x 300m Poisson Disc 12 100 4.225
Table 4.2.: Efficiency of generation and simulation methods.

As shown in Figure 4.5, performance scores for each process are recorded in individual log files. Ifa sample’s Ground Space Index (GSI) value is too low, the sample generation is skipped. However,if the GSI value meets the threshold, the generation and simulation processes continue. These logfiles provide a rough estimate of the timings associated with different preprocessing procedures.Notice that the AcceleRad simulation accounts for the greatest computation time.
2024-06-22 20:09:47 INFO: Started computing patch[13].
2024-06-22 20:09:47 INFO: GSI_score 0.0 of sample 13 not high enough to continue generating sample.
2024-06-22 20:09:47 INFO: Finished computing patch[13] in 0.23s.

2024-06-22 20:09:47 INFO: Started computing patch[14].
2024-06-22 20:09:47 INFO: Started preprocessing mesh for patch[14] with GSI value of 0.43
2024-06-22 20:09:56 INFO: Computing sensors for mesh patch[14]
2024-06-22 20:10:01 INFO: Generating model for mesh patch[14] augmentation 0
2024-06-22 20:10:02 INFO: Simulating irradiation model for mesh patch[14] augmentation 0
2024-06-22 20:10:52 INFO: Saving mesh patch[14] and generating visualization
2024-06-22 20:10:53 INFO: Finished preprocessing mesh for patch[14] in 65.57s
2024-06-22 20:10:53 INFO: Finished computing patch[14] in 66.05s.

Figure 4.5.: Log with timings for the generation and simulation of a 100m x 100m Poisson Discsample in a specific parallelization child process.

62

4.2. Prediction

4.2. Prediction

In this section, the performance of irradiation prediction using PointNet-based neural networksis evaluated. Initially, the networks provided by Qian et al. (2022) were tested on the irradiationdatasets described earlier, using the hyperparameters recommended by the original authors.Subsequently, one of these models was selected for sequential hyperparameter tuning. Finally,this section discusses performance in relation to dataset imbalance, inference, and alternativedataset configurations.
4.2.1. Baseline Evaluation

The 100m x 100m regular dataset was evaluated using six models as recommended by Qian et al.(2022): PointNet, PointNet++, PointNeXt-S, PointNeXt-B, PointNeXt-L, and PointNeXt-XL.Figure 4.6 presents the results, with the number of training steps on the x-axis (correspondingto 25 epochs) and the irradiation RMSE on the y-axis. Similarly, Figure 4.7 shows the validationloss for the baseline models.

Figure 4.6.: Irradiation training loss expressed in kWh/m2 over 25 epochs.
As shown in the results, the PointNeXt-S model performs best on the validation dataset, achievinga validation RMSE of 47.58 kWh/m², followed by PointNeXt-L with a validation RMSE of 52.70kWh/m². The modifications introduced in the PointNeXt architecture, as evidenced by the lowtraining loss (train RMSE 44.91 kWh/m²) and higher validation loss (val. RMSE 68.09 kWh/m²),demonstrate a performance improvement over the original PointNet++ architecture. The obser-vation that validation loss is lower than training loss for all networks except PointNet++ maybe attributed to the dropout layer at the end of the network architecture, which is active onlyduring training.After training, the models were validated using the 10% test dataset split to confirm the perfor-mance suggested by the validation loss. Figure 4.8 presents results from the test phase, whichare consistent with the validation outcomes, with the PointNeXt-S architecture achieving thelowest RMSE of 46.23 kWh/m². To assess the general performance of the model, outlier RMSE-per-sample values were plotted in Figure 4.9, showing the highest and lowest RMSE values fromthe test dataset.

63

4. Analysis

Figure 4.7.: Irradiation validation loss expressed in kWh/m2 over 25 epochs.

Figure 4.8.: Test loss expressed in kWh/m2 for 10% test split.
The overall performance distribution of the network was assessed using both macro-averaged andmicro-averaged F1-scores based on the test dataset (figure: 4.10). To compute these F1-scores,the irradiation values were categorized into 100 kWh/m² bins. The results suggest that thePointNeXt-S model provides the best overall coverage across all irradiation values.In summary, the baseline evaluation identified PointNeXt-S as the top performer, with the highestscores and the lowest average test RMSE. However, initial experiments with alternative hyper-parameter configurations indicated that PointNeXt-S struggles with scalability due to its limitednumber of layers. As a result, PointNeXt-L was chosen as the benchmark for further hyper-
parameter optimization. PointNeXt-L achieved an average test RMSE of 52.46 kWh/m², with aminimum RMSE of 19.98 kWh/m² and a maximum RMSE of 104.39 kWh/m².

64

4.2. Prediction

Figure 4.9.: Test loss domain from minimum to maximum expressed in kWh/m2 for 10% test split.

Figure 4.10.: Macro and micro averaged F1-scores based on the test dataset.
4.2.2. Hyperparameter Tuning

In contrast to traditional hyperparameter tuning methods such as grid search and random search,the optimization of PointNeXt for irradiation prediction was conducted through manual adjust-ment of hyperparameters. This decision was driven by the limitations of available hardware,which made training networks using automated hyperparameter tuning methods impractical. As aresult, the network configuration and dataset hyperparameters were adjusted based on empiricalobservations and intuition.The overall results of this optimization process are summarized in table 4.3 and 4.4. Each row inthe table represents a different model architecture configuration. Modifications included changesto the loss function, dataset characteristics, model-specific hyperparameters, normalization tech-niques, and the number of training epochs. The final section of the table presents the resultsfrom training sessions where the most effective hyperparameters were combined, offering insightsinto the performance improvements achieved through this manual tuning process.
65

Hyperparameter TuningType Model Epochs Hyper-parametersa Dataset Normalizationnorm min, irr LossFunction TestRMSEb
TrainRMSEb;c

HighestRMSEb
LowestRMSEb

Macro avg.F1 score Micro avg.F1 scorebase PointNet 25 None 100 regular [-1,1], [-1,1] MSE 86.87 93.49 134.19 22.94 0.41 0.67base PointNet++ 25 None 100 regular [-1,1], [-1,1] MSE 62.99 45.42 106.18 17.32 0.58 0.76base PointNeXt-S 25 None 100 regular [-1,1], [-1,1] MSE 46.23 71.33 73.69 19.58 0.61 0.78base PointNeXt-B 25 None 100 regular [-1,1], [-1,1] MSE 58.92 80.90 107.68 23.64 0.47 0.73base PointNeXt-L 25 None 100 regular [-1,1], [-1,1] MSE 52.46 80.50 104.39 19.98 0.52 0.76base PointNeXt-XL 25 None 100 regular [-1,1], [-1,1] MSE 61.89 62.62 140.19 17.29 0.45 0.73loss PointNeXt-L 25 None 100 regular [-1,1], [-1,1] Delta 58.77 100.48 114.11 18.57 0.44 0.73loss PointNeXt-L 25 None 100 regular [-1,1], [-1,1] Reduction 54.28 82.10 110.34 22.05 0.49 0.75loss PointNeXt-L 25 None 100 regular [-1,1], [-1,1] WMSE 53.87 86.90 90.86 28.46 0.53 0.73dset PointNeXt-L 25 None 100 randomd [-1,1], [-1,1] MSE 55.03 85.67 175.17 16.43 0.60 0.75dset PointNeXt-L 25 None 300 regular [-1,1], [-1,1] MSE 76.70 89.18 177.04 23.06 0.36 0.69dset PointNeXt-L 25 None 300 randomd [-1,1], [-1,1] MSE 83.22 90.62 176.17 29.18 0.38 0.67hyperparam PointNeXt-L 25 expansion - 8 100 regular [-1,1], [-1,1] MSE 56.49 78.12 141.46 11.95 0.5 0.74hyperparam PointNeXt-L 25 vox max - 24000 100 regular [-1,1], [-1,1] MSE 54.67 79.29 127.92 9.75 0.5 0.76hyperparam PointNeXt-L 25 act - leakyReLU 100 regular [-1,1], [-1,1] MSE 55.86 82.11 112.88 21.42 0.48 0.75hyperparam PointNeXt-L 25 nsample - 128 100 regular [-1,1], [-1,1] MSE 37.4 81.32 83.58 17.04 0.58 0.81hyperparam PointNeXt-L 25 nsample - 256 100 regular [-1,1], [-1,1] MSE 35.85 81.12 123.66 10.22 0.62 0.82hyperparam PointNeXt-L 25 nsample - 128 100 regular [-1,1], [-1,1] WMSE 32.14 87.53 94.46 11.56 0.74 0.85hyperparam PointNeXt-L 25 radius - 0.05 100 regular [-1,1], [-1,1] MSE 41.70 77.08 163.73 13.62 0.66 0.83hyperparam PointNeXt-L 25 radius - 0.025 100 regular [0,1], [-1,1] MSE 32.51 78.41 77.2 15.36 0.63 0.83hyperparam PointNeXt-L 25 radius - 0.025 100 regular [-1,1], [-1,1] MSE 33.77 78.33 120.85 15.64 0.64 0.83hyperparam PointNeXt-L 25 resdiual - True 100 regular [-1,1], [-1,1] MSE 46.34 75.07 72.25 19.09 0.58 0.78hyperparam PointNeXt-L 25 stride - [1,2,2,2,2] 100 regular [-1,1], [-1,1] MSE 50.23 83.36 90.96 22.02 0.51 0.77hyperparam PointNeXt-L 25 stride - [1,3,3,3,3] 100 regular [-1,1], [-1,1] MSE 71.39 81.93 133.05 21.19 0.39 0.7hyperparam PointNeXt-XL 25 nsample - 128 100 regular [-1,1], [-1,1] MSE 30.07 59.57 145.11 77.33 0.73 0.86normalization PointNeXt-L 25 None 100 regular [0,1], [-1,1] MSE 104.46 92.32 156.28 35.52 0.36 0.66normalization PointNeXt-L 25 None 100 regular [0,1], [0,1] MSE 93.05 101.57 138.34 33.72 0.39 0.68normalization PointNeXt-L 25 None 100 regular [-1,1], [0,1] MSE 57.7 80.93 106.39 19.27 0.46 0.75
a None hyperparameters are expansion 4 vox max 10000 act ReLU nsample 32 radius 0.1 residual False stride [1,4,4,4,4], b Unit: kWh/m2, c Averaged through time weighted EMA (smoothing factor0.99),d Poisson Disc point samplingTable 4.3.: Hyperparameter tuning part A

Hyperparameter TuningType Model Epochs Hyper-parametersa Dataset Normalizationnorm min, irr LossFunction TestRMSEb
TrainRMSEb;c

HighestRMSEb
LowestRMSEb

Macro avg.F1 score Micro avg.F1 scoreepochs PointNeXt-S 100 None 100 regular [-1,1], [-1,1] MSE 42.65 72.12 90.22 19.57 0.63 0.8epochs PointNeXt-L 100 None 100 regular [-1,1], [-1,1] MSE 56.9 77.91 107.51 21.22 0.47 0.74super PointNeXt-S 25 nsample - 128radius 0.025stride [1,2,2,2,2]residual True

100 regular [0,1], [-1,1] MSE 39.44 73.95 155.61 18.8 0.61 0.79
super PointNeXt-L 25 nsample - 128radius 0.025residual True

100 regular [-1,1], [-1,1] MSE 32.42 72.54 82.12 15.8 0.69 0.84
super PointNeXt-XL 25 nsample - 128radius 0.025residual True

100 regular [-1,1], [-1,1] MSE 24.04 56.52 76.82 10.36 0.79 0.88
super PointNeXt-L 25 nsample - 128radius 0.025residual True

100 randomd [-1,1], [-1,1] MSE 37.27 64.52 78.21 11.51 0.71 0.84
super PointNeXt-XL 25 nsample - 256radius 0.05eresidual True

100 regular [-1,1], [-1,1] MSE 24.85 58.18 136.48 8.8 0.79 0.88
super PointNeXt-L 25 nsample - 128radius 0.025residual True

100 regular [-1,1], [-1,1] aWMSE 37.42 59.57 137.06 22.44 0.75 0.83
hyper PointNeXt-XL 100 nsample - 128radius 0.025residual True

100 regular [-1,1], [-1,1] MSE 29.42 56.43 158.38 9.81 0.77 0.87
hyper PointNeXt-XL 100 nsample - 128radius 0.025residual True

100 randomd [-1,1], [-1,1] MSE 21.10 58.65 152.19 9.63 0.83 0.90
hyper PointNeXt-XL 100 nsample - 128radius 0.025residual True

300 regular [-1,1], [-1,1] MSE 36.71 62.52 127.19 14.22 0.62 0.81
hyper PointNeXt-XL 100 sample - 128radius 0.025residual True

300 randomd [-1,1], [-1,1] MSE 48.53 66.68 127.60 22.28 0.58 0.76
a None hyperparameters are expansion 4 vox max 10000 act ReLU nsample 32 radius 0.1 residual False stride [1,4,4,4,4] b Unit: kWh/m2, c Averaged through time weighted EMA (smoothing factor0.99),d Poisson Disc point sampling, e Increased due to higher nsampleTable 4.4.: Hyperparameter tuning part B

4. Analysis

Normalization

The results presented in table 4.3 and 4.4 indicate that normalization plays a crucial role inthe overall performance of the model. Initially, it was hypothesized that normalizing both pointcoordinates and irradiation output values to the [0, 1] domain would yield the best networkperformance. However, the findings reveal that normalizing these values to the [−1, 1] domainactually resulted in superior performance, as demonstrated in the baseline models (figure 4.11).This adjustment in the normalization approach proved to be a key factor in optimizing the network’seffectiveness.

Figure 4.11.: Validation loss over 25 training epochs in kWh/m2, considering the normalization ofinput point coordinates and the output irradiation values.

Radius and Nsample

The adjustments to the radius and nsample hyperparameters have proven to be the most impactfulin the optimization process (figure 4.12). Increasing the nsample from 32 to 128 resulted in areduction in average test RMSE from 52.46 kWh/m² to 37.40 kWh/m², with only minor changesobserved in the lowest and highest test RMSE values. Additionally, reducing the radius from 0.1to 0.05 achieved an average test RMSE of 33.77 kWh/m².
Further decreases in the radius did not lead to significant performance improvements. This islikely due to the reduced global receptive field of the network. Similarly, increasing the ‘nsample‘from 128 to 256 did not enhance performance, possibly because the local context within the givenradius contained a limited number of points.
While modifying the nsample and radius hyperparameters affects performance, these changesdo not alter the network’s size or depth. However, increasing the nsample significantly extendstraining time due to the larger local aggregation required in the grouping layer.
68

4.2. Prediction

Figure 4.12.: Validation loss over 25 training epochs in kWh/m2, considering radius and nsamplehyperparameters.
Global Residual LayersThe addition of residual layers between encoder and decoder (which were not recommended bythe original author) improved the performance to an average test RMSE of 46.24 kWh/m2. Figure4.13 shows the validation loss during training.

Figure 4.13.: Validation loss over 25 training epochs in kWh/m2, considering residual layersbetween encoder and decoder blocks.

69

4. Analysis

StrideGiven that the number of points in the dataset is significantly smaller than those used to tunePointNeXt, it was considered beneficial to lower the strides to increase the number of featuresin the latent space between the encoder and decoder. Reducing the strides from [1, 4, 4, 4, 4] to
[1, 2, 2, 2, 2] improved the average RMSE to 46.34 kWh/m².

Figure 4.14.: Validation loss over 25 training epochs in kWh/m2, considering the strides. Eachsuccessive stride in the list, corresponds to a deeper encoder block.
EpochsQian et al. (2022) recommend training PointNeXt for 100 epochs. However, training all con-figurations for 100 epochs would be inefficient for hyperparameter optimization. Therefore, themodel configurations in this research were all trained for 25 epochs. Figure 4.15 illustrates thedifferences between training a network for 25 epochs versus 100 epochs. The default PointNeXt-L configuration appears to perform optimally with only 25 epochs. Nonetheless, when highernsample values are used, extending the training period to 100 epochs positively impacts bothvalidation and test loss.Training for more epochs does not always result in better performance, as is illustrated in table4.3 and 4.4. The PointNeXt-XL network trained on regular samples for 100 epochs shows ahigher RMSE than the network trained on 25 epochs. However, this may also be caused by thefact that the testing loop was performed after the training loop finished, instead of using theepoch with the lowest validation RMSE. Figure 4.16 shows that the validation loss of epoch 84is lower (22.12 kWh/m2) versus the validation loss after 25 epochs.

70

4.2. Prediction

Figure 4.15.: Validation loss over 25 and 100 training epochs in kWh/m2. Bottom two graphshave an nsample value of 128 and the top two graphs an nsample of 32.

Figure 4.16.: Validation loss over 25 and 100 training epochs in kWh/m2 for configuration withoptimal hyperparameters.

71

4. Analysis

Model ScalingThe influence of using a deeper network, PointNeXt-XL with 41.6M parameters compared toPointNeXt-L with 7.1M parameters, is shown in figure X. Employing the deeper PointNeXt-XL model appears to significantly enhance performance, especially when combined with higherhyperparameter settings such as ‘nsample‘ and ‘radius‘.

Figure 4.17.: Validation loss over 25 training epochs in kWh/m2 for the deeper PointNeXt-XL vsdefault PointNeXt-L

72

4.2. Prediction

Other HyperparametersOther hyperparameters, as detailed in table 4.3 and 4.4, did not have a significant effect on theperformance of the larger PointNeXt model for irradiation prediction (figure: 4.18).

Figure 4.18.: Validation loss over 25 training epochs in kWh/m2 for hyperparameters expansion,LeakyReLU (activation function) and maxvox (number of points sampled as input for the forwardpass).
4.2.3. Average Performance Improvements

Table 4.5 outlines the enhancements achieved through tuning the most influential hyperparame-ters. It is evident that increasing the depth of the network does not result in a linear reductionin test loss, and is influenced by the settings of other hyperparameters.
Configuration Delta Avg. Test LossPointNeXt L default 100% 52.46 kWh/m2Nsample 32 → 128 +29% 37.40 kWh/m2Radius 0.1 → 0.025 +36% 33.37 kWh/m2Stride [[1,4,4,4,4] → [1,2,2,2,2] +4% 50.23 kWh/m2Residuals False → True +12% 46.34 kWh/m2PointNeXt XL -18% 61.89 kWh/m2PointNeXt L + all above +42% 30.42 kWh/m2PointNeXt XL + all above +54% 24.04 kWh/m2

Table 4.5.: Table with influence of different model configurations on average test loss.

73

4. Analysis

4.2.4. Visual Evaluation

The following figures present a visual evaluation of the performance of the tuned PointNeXt-Lmodel on the regular 100m x 100m dataset. Figures 4.19, 4.20, and 4.21 display five sampleswith the highest, median, and lowest average RMSE, respectively.1

(a) Sample 8 (b) Sample 363

(c) Sample 592 (d) Sample 1359

(e) Sample 1436
Figure 4.19.: Highest irradiation RMSEs for test dataset prediction, based on the large PointNeXtmodel with tuned hyperparameters Nsample 128, radius 0.025, stride [1,2,2,2,2], encoder-decoderresidual True.

1Note that due to a different seed, the errors shown may vary slightly from those in table 4.3 and 4.4.

74

4.2. Prediction

(a) Sample 253 (b) Sample 302

(c) Sample 891 (d) Sample 1455

(e) Sample 1622
Figure 4.20.: Medium irradiation RMSE’s for test dataset prediction, based on the large Point-NeXt model with tuned hyperparameters Nsample 128, radius 0.025, stride [1,2,2,2,2], encoder-decoder residual True.
Based on visual evaluations, the following conclusions about RMSE scores can be drawn:• High RMSEs: These typically occur in building geometries that are significantly higherthan average. It is anticipated that these samples are relatively rare in the training dataset,leading to increased errors for such unique geometries.• Medium RMSEs: These correspond to typical building geometries present in the datasets.

75

4. Analysis

(a) Sample 346 (b) Sample 486

(c) Sample 588 (d) Sample 755

(e) Sample 1364
Figure 4.21.: Lowest irradiation RMSEs for test dataset prediction, based on the large PointNeXtmodel with tuned hyperparameters Nsample 128, radius 0.025, stride [1,2,2,2,2], encoder-decoderresidual True.

Visually, these samples exhibit minimal apparent errors.• Lowest RMSEs: These are usually associated with very simple geometric shapes. Most ofthese samples have irradiation values within the 900-1000 kWh/m2 range and generallyfeature one or two straight facades.

76

4.2. Prediction

4.2.5. Imbalanced Dataset Correction

The dataset exhibits significant imbalance, primarily because most irradiation values are con-centrated at the higher end of the spectrum (900 – 1000 kWh/m2). This section discusses theperformance distribution across different irradiation bins and explores approaches to address thisimbalance.
Loss FunctionsFigure 4.22 illustrates the validation RMSE for four different loss functions used during the back-ward pass: MSE (base PointNeXt-L), DeltaLoss, ReductionLoss, and WMSE. For DeltaLoss, adelta value of 0.8 was applied. ReductionLoss was distributed over 10 bins, with the last binbeing reduced. For Weighted MSE, a weight was assigned to the last irradiation bin of 0.25.The loss function comparison indicates that alternative loss functions did not yield improvementsover MSE, particularly when using 25 epochs and the default PointNeXt-L configuration. Addi-tionally, using a larger nsample value (128) with MSE and WMSE did not result in significantperformance enhancements in average RMSE.

Figure 4.22.: Validation loss over 25 training epochs in kWh/m2, considering four loss functions:Mean Squared Error, Delta Loss, Reduction Loss and Weighted Mean Squared Error.

77

4. Analysis

Distributed PerformanceHowever, improvements in average test RMSE do not necessarily translate to better accuracyacross the entire irradiation spectrum. Figure 4.23 illustrates the accuracy distribution acrossten bins, evaluated using the optimized large PointNeXt network.In figure 4.23:• Green bars represent correct predictions, implying a maximum error of 100 kWh/m2.• Yellow bars indicate predictions that are off by one bin, reflecting a maximum error of 200kWh/m2.• Red bars show predictions that are completely incorrect.The bars are normalized according to the number of points in each bin (denoted as N), providinga clear view of the model’s accuracy distribution across different irradiation values.

Figure 4.23.: Accuracy over the irradiation spectrum, binned in 100 kWh/m2 domains.
Based on the bar plot, accuracy tends to decrease towards the lower end of the irradiationspectrum, which aligns with the dataset’s irradiation distribution (see figure 4.4a).Figures 4.24 and 4.25 illustrate the average RMSE over the test dataset for samples and points,respectively. Note that the point frequency in figure 4.25 is shown on a logarithmic scale.From this plot, it is evident that 92.8% of all points are predicted within the correct bin, with amaximum error of 50 kWh/m2. Errors at the high end of the error spectrum are rare and occuronly in exceptional cases.The distributed performance has been visualized in the figure 4.26, through a confusion matrix.Figure 4.26a shows the ground truth confusion matrix with the corresponding colors and pointfrequencies.

78

4.2. Prediction

Figure 4.24.: Frequency of RMSEs over samples

Figure 4.25.: Frequency of RMSEs over points

(a) Ground Truth (b) Predicted
Figure 4.26.: Ground truth and predicted confusion matrix test dataset. Numerical values indicatepoint frequency.

79

4. Analysis

Adjusted Weighted MSEBased on the performance distribution for point irradiation shown in figure 4.23, the weights inthe WMSE loss function can be adjusted. Specifically, the weight for each expected irradiationvalue is derived from the error likelihood observed without weights. This adjustment results in aweight vector of ⃗[0.56, 0.57, 0.5, 0.27, 0.24, 0.22, 0.19, 0.14, 0.11, 0.04] for the ten irradiation bins.

Figure 4.27.: Validation loss over 25 training epochs in kWh/m2, for the MSE and adjusted WMSEloss functions

Figure 4.28.: Macro and micro avg. F1 scores for MSE and adjusted Weighted MSE loss function.
Based on the validation scores shown in figure 4.27, significant improvements are not observed.The most notable change is the increase in the macro-averaged F1 score, as illustrated in figure4.28. However, the recall for each individual bin in the test dataset did not show substantialchanges when transitioning from MSE to the adjusted WMSE loss function.The recall scores for the lower end of the irradiation spectrum showed improvement with theAdjusted Weighted Mean Squared Error (aWMSE) loss function. However, the recall for the
80

4.2. Prediction

highest bin decreased. This decrease can be attributed to the low weight (0.04) assigned to thisbin and the fact that it contains fewer point samples compared to other bins.

Figure 4.29.: Recall for MSE and aWMSE loss function.
4.2.6. Network Inference Optimization

Table 4.6 presents the average inference times for various network configurations, evaluated onthe entire test dataset. Inference was performed on a GPU, leveraging CUDA-optimized groupinglayers within the network architecture. The evaluation was conducted on a Windows laptopequipped with an Intel i7-9750H CPU, 24 GB of DDR4 memory, and an NVIDIA Quadro P2000GPU with 4 GB of VRAM.
Configuration Avg. Test Inference (s)PointNeXt-L Base 0.184PointNeXt-XL Base 0.291PointNeXt-L Super 0.721PointNeXt-XL Super 13.38

Table 4.6.: Inference on test dataset for several PointNeXt architectures on a laptop with dedicatedGPU.
It is evident that base model architectures (nsample 32, radius 0.1, stride [1,4,4,4,4], no residuals)exhibit relatively faster inference times compared to more advanced configurations (nsample 128,radius 0.025, stride [1,4,4,4,4] with residuals). The choice of stride [1,4,4,4,4] over [1,2,2,2,2] wasinfluenced by the limited VRAM available and its substantial effect on both inference and trainingtimes. Additionally, the extended inference time observed with the PointNeXt-XL Super modelcan be attributed to the constrained VRAM of the used GPU.

81

4. Analysis

4.2.7. Experiment 1: Random Dataset

Two types of datasets were created: regular point samples and Poisson Disc point samples. Forthis experiment, a network with hyperparameters set to nsample 128, radius 0.025, 100 epochs,and residual connections trained on Poisson Disc point samples. This model achieved an averagetest RMSE of 21.10 kWh/m2, which is notably lower than the model trained on regular samples(avg. test RMSE 24.04 kWh/m2).Comparing the performance of networks based solely on average test and validation RMSE isnot feasible in this case due to the inherent differences between the datasets. The Poisson Discpoint sampling approach does not remove dividing walls between buildings, which reduces pre-processing time. However, this results in the model predicting a larger number of zero irradiationvalues for these walls, as they do not receive solar exposure from outside. Consequently, directcomparison between test datasets is not valid.A more accurate evaluation method involves visual inspection of the plotted point clouds andcorresponding irradiation values. Figure 4.30, 4.31 and 4.32 provide an overview of samples withthe highest, median and lowest irradiation errors in the Poisson Disc dataset.

82

4.2. Prediction

(a) Sample 97 (b) Sample 328

(c) Sample 136 (d) Sample 1337

(e) Sample 129
Figure 4.30.: Highest irradiation RMSEs for test dataset (Poisson Disk) prediction, based on thelarge PointNeXt model with tuned hyperparameters nsample 128, radius 0.025, encoder-decoderresidual True.

83

4. Analysis

(a) Sample 710 (b) Sample 895

(c) Sample 1506 (d) Sample 1644

(e) Sample 1840
Figure 4.31.: Median irradiation RMSEs for test dataset (Poisson Disk) prediction, based on thelarge PointNeXt model with tuned hyperparameters nsample 128, radius 0.025, encoder-decoderresidual True.

84

4.2. Prediction

(a) Sample 728 (b) Sample 917

(c) Sample 1195 (d) Sample 1519

(e) Sample 1581
Figure 4.32.: Lowest irradiation RMSEs for test dataset (Poisson Disk) prediction, based on thelarge PointNeXt model with tuned hyperparameters nsample 128, radius 0.025, encoder-decoderresidual True.

85

4. Analysis

Furthermore, the accuracy for individual irradiation bins, errors of irradiation and sample RMSEscan be analyzed as can be seen in figure 4.31, 4.32 and 4.33 respectively.

Figure 4.33.: Test accuracy of individual irradiation bins for a network trained on a Poisson Diskdataset. X-axis expressed in kWh/m2, Y-axis in %.

Figure 4.34.: Error of individual points for a network trained on a Poisson Disk dataset.

Figure 4.35.: RMSE for individual test samples in the Poisson Disk test dataset.

86

4.2. Prediction

4.2.8. Experiment 2: Sample Size

While the initial training experiments focused on 100x100m samples, it is valuable to assessperformance on larger scale samples. To this end, a dataset of 300x300m was created, using bothregular and Poisson Disc point samplings. As with the previous approach, point coordinates werenormalized to the [-1, 1] domain. For both datasets, a network with the following hyperparameterswas used: nsample 128, radius 0.025, 100 epochs, and residual connections set to True.Figures 4.37 and 4.38 illustrate the highest errors observed for the regular and Poisson Disk300m x 300m datasets, respectively. Similarly to experiment 1, avg. RMSE values can not beused for comparison with 100x100m samples, due to the significantly greater number of pointsper sample.While it is clear that the network is able to understand general patterns in the 300x300m dataset,high outliers show different issues. For example, figure 4.37e shows how the model struggles withlong distance influence of buildings casting shadows. This is most likely caused by the limitedreceptive field of the network.An overview of bin accuracies, individual sample and point errors are given in figure 4.36.

(a) Bin accuracy regular 300x300m test dataset (b) Bin accuracy Poisson Disk 300x300m test dataset

(c) Point errors regular 300x300m test dataset (d) Point errors Poisson Disk 300x300m test dataset

(e) Sample RMSE’s regular 300x300m test dataset (f) Sample RMSE’s Poisson Disk 300x300m testdataset
Figure 4.36.: Bin accuracy, point RMSEs and sample RMSEs for regular 300x300m dataset (left)and 300x300m Poisson Disk dataset (right)

87

4. Analysis

(a) Sample 75 (b) Sample 99

(c) Sample 156 (d) Sample 174

(e) Sample 83
Figure 4.37.: Highest irradiation RMSE’s for 300x300m test dataset prediction, based on thelarge PointNeXt model with tuned hyperparameters Nsample 128, radius 0.025, encoder-decoderresidual True.

88

4.2. Prediction

(a) Sample 54 (b) Sample 170

(c) Sample 161 (error in geometry) (d) Sample 239

(e) Sample 254
Figure 4.38.: Highest irradiation RMSE’s for 300x300m test dataset (Poisson Disk) prediction,based on the large PointNeXt model with tuned hyperparameters Nsample 128, radius 0.025,encoder-decoder residual True.

89

4. Analysis

4.2.9. Conclusion

In this section, the performance of various PointNet-based architectures for predicting irradiationhas been analyzed. The results indicate that a finely tuned PointNeXt-XL model achieves anaverage RMSE of 24.04 kWh/m2 on the regular dataset and 21.10 kWh/m² on the Poisson Discdataset, without applying dataset imbalance corrections. Evaluation of larger scale samples(300m x 300m) revealed new issues, most likely due to the limited receptive field of the network.Additionally, the finetuned PointNeXt-XL model has a relatively high inference time of 13.38seconds compared to 0.721 seconds for the finely tuned PointNeXt-L network, when run on alaptop with a dedicated laptop GPU. While correcting for dataset imbalance can improve accuracyin the lower end of the irradiation spectrum, it may negatively impact performance at the higherend.

90

4.3. Interaction

4.3. Interaction

Through the proposed server-client system (see Figure 4.39), it is possible to boot a trained neuralnetwork, waiting to receive a new sample from the client in Grasshopper. For this experiment, alaptop with an Intel® Core i7-9750H CPU, 24GB of RAM, and an NVIDIA Quadro P2000 GPUwas utilized.2

Figure 4.39.: Interaction environment in McNeel Rhino. The Grasshopper script controls the dataflow from download to visualization. The CMD window in the top right is the server which willpredict the irradiation values.
Download ContextThe first step in the interaction workflow (see Figure 4.40) involves downloading and extractinga sample from the 3D BAG. For demonstration purposes, a sample from the city of Groningenwas chosen as an example. The download speed for this process varies depending on the samplesize, local network speed, and the complexity of the geometry.
PreprocessingWithin the Grasshopper dataflow (see Figure 4.41), a distinction is made between contextualgeometry and the design. This separation helps to optimize preprocessing speed. Preprocessinginvolves all procedures related to mesh discretization, computation of sensor points, and calcula-tion of normal vectors.

2It was essential to conduct the experiments on a typical design laptop rather than high-performance hardware, in orderto simulate real-world conditions where the workflow would be applied.

91

4. Analysis

Figure 4.40.: A Python script in Grasshopper downloads 3D BAG data based on given coordinates.The LoD input can be used to specify the type of geometry.

Figure 4.41.: Preprocessing the context and design separately. Pink dots indicate the positionsof the sensor points. The gray underlying geometry is a quad-triangle mesh with regularizedfaces.

92

4.3. Interaction

Server ActivationAfter preprocessing, the user can activate the server through a single Grasshopper node (seeFigure 4.42). Upon startup, all necessary Python packages are preloaded. The user has theoption to select a port for the server, decide whether the CMD window should be visible, andspecify optional settings for loading the model in PyTorch. Additionally, the server can be runon an external device if the local machine lacks sufficient processing power.

Figure 4.42.: The server waiting for a call to predict irradiation on a given point cloud.

93

4. Analysis

Sending Data through ClientThe client first receives information regarding the model type and the associated PyTorch settings.To optimize inference, multiple point clouds are padded to similar dimensions, allowing them tobe processed in batches. The initial run may take longer because the model needs to be loadedand, depending on the settings, converted to machine code. After inference, the irradiation valuesare transmitted back from the server to the client, where they can be visualized in Rhino (seeFigure 4.43).

Figure 4.43.: The server processing an input from the client in the Grasshopper environment.

94

4.3. Interaction

Irradiation VisualizationIn addition to visualizing the irradiation as a colored point cloud, users can also apply color tothe mesh faces using the mesh visualizer (see Figure 4.44). However, this option is only availablefor meshes that use the regular point sampling method.

Figure 4.44.: The server waiting for a call to predict irradiation on a given point cloud.
Horizontal/Vertical Irradiation ExtractionAdditionally, a Grasshopper script was implemented to extract irradiation values based on athreshold for both vertical (see Figure 4.45) and horizontal (see Figure 4.46) surfaces. By incor-porating an average annual solar panel efficiency, this script allows for the estimation of potentialpower generation.

power generation potential =

n∑
i=0

irradiationi · face areai · panel efficiency (4.1)
in which i is the index of the available mesh faces above the threshold irradiation (kWh).

95

4. Analysis

Figure 4.45.: Vertical irradiation values higher than 175 kWh/m2

Figure 4.46.: Horizontal irradiation values higher than 500 kWh/m2

96

4.3. Interaction

4.3.1. Optimization

By integrating a brute-force optimization algorithm with the proposed irradiation predictor, onecan fine-tune design parameters based on a fitness function as described in section 3.6.4. Figure4.47 demonstrates how this procedure could be applied. The enhanced speed of irradiation pre-diction, compared to simulation, facilitates testing numerous design alternatives more efficiently.In this specific example, batch optimization was not yet implemented due to the limited GPU VRAMon the local machine.

Figure 4.47.: Optimization procedure in which the irradiation on horizontal surfaces is maximized,and the irradiation on vertical surfaces is minimized.
4.3.2. Overall Grasshopper Script

Figure 4.48 shows the integrated Grasshopper script used for the entire workflow. For clarity,some wires are hidden. A substantial portion of the script’s functionality is implemented throughPython within the Grasshopper nodes.

97

4.
Analysis

Figure 4.48.: Grasshopper script used for the prediction and optimization of solar irradiation on urban designs. For clearity, the horizon-tal/vertical surface irradiation extraction script is not included. This part of the script was fully developed in Grasshopper, and simply extractsirradiation values based on the normal direction of the sensor point.

98

4.3. Interaction

4.3.3. Future Design Framework

Figure 4.49 illustrates how this research could contribute to future design frameworks. Whereassimulations are currently used as evaluative tools to analyse buildings, generative models couldaid architect in giving concrete advise on how to change the building. The design frameworkcould consist of multiple 3D views in which one is used by the designer, multiple as predictionvisualizations and one by a generative AI model which provides suggestions how to change thedesign.This process is deemed possible due to the descriptive nature of encoder networks which compressfeatures from a building. The so called latent space of these encoders (which is the compressedrepresentation) can be combined to give an overall representation of the design, consideringmultiple design factors. A decoder could then be used to reconstruct the design to alternativeoptions with better performance, based on experience from other building designs.Other performance features such as financial costs and practical feasibility could also be includedas indicated in figure 4.50.

Figure 4.49.: Future research could investigate the potential of transforming the suggested pre-dictive model to a generative neural network. Combining multiple performance features andstyle/program suggestions by the designer, could lead to a new design framework, as is visiblein this figure. On the top left: the intial design. Top right: predictions on solar performance.Bottom left: predictions on wind performance. Right: suggestions by the designer regarding tex-tual description and requirements. Bottom right: alternative suggestions by a generative modelbased on all inputs together.

99

4. Analysis

Figure 4.50.: A generative model could encapture many other relevant building domains as well,such as financial costs and practical feasibility.

100

5. Discussion

In this chapter, the outcomes of the research on dataset generation, simulation, and parallelization,as well as the prediction of solar irradiation and the interaction with the model, are thoroughlydiscussed. The discussion is structured around the main research question and its associatedsubquestions. Furthermore, the methods implemented in this thesis are critically analyzed, ad-dressing their limitations, followed by recommendations for future research.
5.1. Research Questions

This thesis aimed to answer the central research question: ”How can one predict annual solarirradiation on 3D urban geometry using deep neural networks?” To address this, five subquestionswere formulated and will be answered based on the research results.
How do simulation models compute solar irradiation on 3D geometry?Chapter 2.1 details how simulation models, particularly the 2-phase method, calculate solarirradiation on 3D geometry. The 2-phase method utilizes a non-linear and partially stochasticequation based on ray tracing principles to approximate the solar energy or light received bygeometric surfaces. By generating a daylight coefficient matrix, this method efficiently estimatessolar irradiation across many points in parallel, making it a robust tool for large-scale urbangeometry simulations.
What type of input dataset is required to predict solar irradiation using deep neural networks?The input dataset required for predicting solar irradiation with deep neural networks is closelytied to the type of network employed. As discussed in Chapters 2.3 and 2.4, various approachesexist for transforming 3D data into formats compatible with specific network architectures. Thisresearch opted for PointNet-based architectures, which necessitate a point cloud dataset includ-ing geometric normal directions and expected irradiation values. These networks offer severaladvantages:

• The inputs effectively describe both the shape of the geometry and the locations requiringirradiation predictions.
• The relatively low-dimensional inputs, compared to other network types, enhance scalabil-ity.
• PointNet-based architectures have demonstrated near state-of-the-art (SOTA) performanceon similar tasks, such as S3DIS segmentation.
• The selected architecture (PointNeXt) is relatively straightforward to tune compared totypically used Transformer models.

101

5. Discussion

How can one compute a dataset with 3D urban geometry with solar irradiation values efficiently?The thesis proposed a parallelized solution, integrated with the AccelerRad GPU-based simulator,to efficiently generate four datasets with a substantial number of samples. This approach allowedfor the efficient computation of 3D urban geometry datasets with corresponding solar irradiationvalues, significantly reducing the time and computational resources required.
Can deep neural networks predict solar irradiation values accurately, faster than a simulation
model?The research demonstrated that deep neural networks could predict solar irradiation values morequickly than traditional simulation models. The implemented model exhibited faster predictiontimes while maintaining accuracy comparable to low-parameter simulation models. However, themodel faced limitations, including reduced geometric detail, long distance geometric relationshipsand challenges with location and time invariance. Future research could focus on enhancing themodel accuracy and addressing dataset imbalances across the irradiation spectrum.
How can architects interact with the deep learning model in a user-friendly ecosystem?A client-server system was developed to facilitate user interaction with the deep learning model.Geometry preprocessing occurs on the client side, while irradiation prediction is handled on theserver side. This system was integrated into McNeel Grasshopper, a parametric design software,making it accessible to designers without programming expertise. However, the client-serverprinciple is also applicable in other design software. The research demonstrated how designerscould efficiently interact with the model to optimize their designs, and the system’s flexibilityallows for easy integration into other design frameworks.
Main research question: ”How can one predict annual solar irradiation on 3D urban geometry
using deep neural networks?”The research concluded that it is feasible to predict solar irradiation on 3D urban geometryby training PointNet-based deep neural networks on simulated irradiation values. While themodel exhibits variability in accuracy across the irradiation spectrum and faces limitations inhandling complex geometric details, they offer a promising approach to efficiently predictingsolar irradiation, providing a valuable tool for architects and urban planners.
5.2. Generation

In this research, multiple irradiation datasets were developed using the 3D BAG dataset, withpreprocessing methods that generated either regular or random (Poisson Disk) patterns of sensorpoints on 3D urban geometry. These point clouds, paired with normal directions, served as ab-stract descriptions of the geometric shapes and indicators for the positions where solar irradiationwas to be simulated and predicted.
5.2.1. Regular Mesh Preprocessing Limitations

The findings of this thesis highlight several limitations of the regular sampling technique. Pri-marily, errors often arise from Boolean splitting operations. Moreover, handling more detailedgeometry requires customized algorithms to manage various geometric shapes, which complicatesthe process. As a result, the Poisson Disc point sampling method is recognized as a more effectivesolution for geometric preprocessing. While predictions on randomly sampled points may leadto higher irradiation errors, the robustness and generality of the Poisson Disk method outweigh
102

5.2. Generation

these concerns. Unlike during dataset development, where invalid samples can be removed, suchflexibility is unavailable during actual model usage. Therefore, the Poisson Disc sampling methodis considered the best choice.
Proper visualization of irradiation values on a design is crucial. With the Poisson Disk method,the random distribution of points means that they do not align with the faces of the underlyingmesh. Typically, corresponding mesh faces are colored based on irradiation values, as seenin tools like Ladybug. For practical implementation, it is recommended to explore alternativemethods for coloring the mesh. A potential approach could involve generating an excess of sensorpoints and then mapping the closest irradiation values to each mesh face centroid.
5.2.2. Poisson Disk Sampling Optimization

In the current proposed preprocessing methods, points are sampled for each individual 100m x100m sample (or 300m x 300m). For Poisson Disk sampling however, it is possible to accomplishsimilar results by taking the entire 3D BAG file, due to linear scaling of the algorithm timecomplexity. This will most likely result in a significant speed-up of the preprocessing procedure.
In the preprocessing phase of Poisson Disk point sampling, an alternative approach to meshdiscretization should be considered to enhance efficiency. Currently, the meshes are discretizedinto a regular grid of quad meshes, which is an unnecessary step that adds to the computationtime without contributing significantly to the overall process.
5.2.3. Augmentation

Several augmentation techniques were proposed to enhance the dataset generation process’sefficiency. These included translational, rotational, and scaling augmentations to increase thenumber of samples derived from a single 3D BAG file. While useful for evaluative purposes, thesemethods may introduce misleading data for future generative deep learning models, as they trainthe network on geometry that doesn’t exist in reality. Thus, the author advises against usingaugmentation in building physics prediction applications.
5.2.4. Framework Limitations

In this research, most geometric operations were performed using the Rhino.Inside API, due tothe ease of use and the integration with the Ladybug/Honeybee package. However, potentiallyproblematic for the code implementation in other software packages, is the required accessibilityto a McNeel Rhino license to make use of the code. To this aim, one could think of the followingsolutions:
• Alter the Honeybee code package to deal with non-Rhino mesh and point formats, thusallowing use of CPython/C++ based geometric operations;
• Directly transform the geometric data to Radiance/AcceleRad readable formats using CPython/C++based geometric operations.

103

5. Discussion

This change to the proposed method could lead to better integration into other design software(such as Autodesk Revit, ArchiCAD or Vectorworks), allow computation on other operating systems(such as Linux and Windows Server), better optimization of the preprocessing phase and moreaccurate boolean intersection algorithms for mesh discretization.
5.2.5. Further Research

For generation, the following research steps are suggested to reach production level accuracyand usability of solar irradiation prediction:
1. Optimize Poisson Disc point sampling for entire 3D BAG files;
2. Add points at specific parts of the geometry, e.g. edges and corners;
3. Explore alternative colored mesh visualization methods, considering that faces do not cor-respond with sensor point locations;
4. Rewrite the code so it does not depend on Rhino based Python packages.

5.3. Simulation

The ground truth irradiation values predicted in this thesis are based on simulated data generatedby the AcceleRad simulation engine. Ideally, real observed data would be used, but this was notavailable in the context of this research. The use of synthetic irradiation data and the methodsemployed in this thesis come with several limitations.
5.3.1. Accelerad vs Radiance

As the original authors of Accelerad have validated, discrepancies exist between the simulatedvalues by Accelerad and Radiance. Largest errors are found in illuminance predictions, which arebased on the same mathematics as irradiation prediction. Therefore, it was important to definethe best settings through a parameter convergence test.
To limit the scope of this research, exceptional large differences between Accelerad and Radiancewere accepted for the purpose of this thesis. The reduced computation time of Accelerad out-weighs the importance of most accurate predictions, also considering that neural network basedpredictions make small errors as well.
5.3.2. Direct vs Indirect Irradiation

Based on empirical evidence, it was concluded that indirect irradiation only has a small contri-bution to the total irradiation, but costs the most time to compute. Therefore, future researchersmay consider to only predict the indirect component using deep neural networks, and computethe direct part using traditional methods with optimized matrix operations on GPU.
104

5.4. Parallelization

5.3.3. Materials

In the current stage of this research, materials have not been accounted for in the simulation andprediction of irradiation, due to lack of open source data. However, it is important to note thatmaterials have a great influence on the transmittance-reflectance term of the solar irradiationcomputation. Therefore, it is advised to append material features to the dataset with reflectance,specular and roughness values for each sensor point.
5.3.4. Further Research

For simulation, the following research steps are suggested to reach production level accuracyand usability of solar irradiation prediction:1. Add material features to the dataset;2. Consider subtracting the direct irradiation component and predict the indirect componentonly.3. Finetune Accelerad specific simulation parameters to match the Radiance simulation values.
5.4. Parallelization

The parallization procedure in this thesis has lead to a computation time reduction from 3.965sto 608s for 100 regular 100m x 100m samples on a high-end desktop.1 Without parallelization,generating the entire dataset would have taken more than a week of computation.
5.4.1. Further Research

Further improvements could be achieved by optimizing the AcceleRad/Radiance simulation speed.Currently, samples are sent sequentially to AcceleRad in each process. This could potentiallybe optimized by calling AcceleRad only once per process and sending batches of models forsimulation.
5.5. Prediction

The results of this thesis have demonstrated that the loss for irradiation prediction generallydecreases during the training of PointNet-based networks. Comparing the accuracy of this im-plementation with earlier research is challenging due to differences in dataset types and specificlimitations inherent to each study. However, it is evident that the proposed solution is signif-icantly more scalable than previous efforts and offers promising accuracy that can be furtheroptimized in future work.
1Assuming linear time scaling, it is expected that a 300m x 300m regular dataset would take a similar amount of timeto be computed sequentially.

105

5. Discussion

5.5.1. Practical Implications of ”21 kWh/m2 RMSE”

This thesis has developed a deep learning model capable of predicting irradiation values with anaverage test RMSE of 21 kWh/m². When this error is compared to the parameter convergence testfor AcceleRad, it is roughly equivalent to a simulation conducted with relatively low parametersettings. However, the practical implications of an error of this magnitude are not immediatelyclear. The following example provides more insight into these implications:Consider a scenario in which urban geometry in Rotterdam receives a maximum irradiation of960 kWh/m². The goal is to install solar panels at locations where this maximum irradiation canbe captured. Assuming the solar panels have an average efficiency of 20% at optimal orientationand angle, and given that the power consumption of the household is 3,500 kWh annually, 19 m²of solar panels is required to meet the energy needs:
required solar panel area = 3500

0.2·960 ≈ 19m2

Each square meter of solar panel area produces:
production per m2 = 0.2 · 960 = 192kWh

With an associated prediction error of:
error per m2 = 0.2 · 21 = 4.2kWh

The expected loss due to inaccurate predictions is:
total error = 19 · 4.2 = 79.8kWh

This amount is roughly equivalent to the power consumption of the household over approximately8 days2.
5.5.2. Time and Location Invariance

The proposed solution faces two significant challenges: it lacks invariance to both time andlocation. The time invariance issue could potentially be addressed by employing transfer learning,where two additional temporal features (start date and end date) are introduced in the final layersof the network, just after the decoder. The location invariance problem could be tackled usingtwo possible approaches:• Transfer learning: This approach would involve adding two input features representingnormalized longitude and latitude to the final layer. The network should then be retrainedon new samples that include simulations based on multiple locations.• Predict daylight coefficients: Instead of predicting the final irradiation outcome directly,the model could predict 145 daylight coefficients for each sensor point. These coefficientscould then be multiplied by a sky matrix specific to a given location to compute the finalirradiation values.
2In this example, an average prediction error is assumed. As described, prediction errors can sometimes be higher. Forreference: the results of this thesis have shown that in 2.7% of the cases, the sensor point specific irradiation RMSEis higher than 50 kWh/m2.

106

5.5. Prediction

5.5.3. Improving Mode Coverage

As demonstrated, some predictions by the proposed network result in significant irradiation errors,indicating poor mode coverage—where the network is only able to make accurate predictions forspecific types of samples. Improving the network’s ability to predict all cases accurately could beapproached from two perspectives: enhancing the network and improving the dataset.• Attention based networks: The analysis in this thesis indicates that further deepening theproposed network does not yield significant performance gains. However, exploring Trans-former networks, which leverage attention mechanisms, could potentially improve predic-tions on the dataset, as has been demonstrated with point cloud segmentation. Specifically,attention-based models might better recognize long-distance relational patterns betweengeometry, such as a tall tower casting a shadow on a distant building.• Urban typology clustering: This approach assumes that specific geometric features lead tohigher irradiation errors, often due to the absence of similar examples in the training dataset.In the network proposed in this thesis, sample features are compressed into vectors of shape
(1, 39, 3) for the point coordinates and (1, 512, 39) for other features within the latent space.By applying unsupervised clustering algorithms and dimensionality reduction techniques,samples can be categorized into groups with overlapping properties. A relationship betweenirradiation error and these groups might then be identified. The dataset could be improvedby synthesizing more geometric samples within groups associated with high irradiationerrors (oversampling) or reducing the size of common groups (undersampling), leading tobetter irradiation predictions for uncommon geometric types.Urban typology clustering could prove beneficial not only for irradiation prediction but also forother building physics prediction models. Understanding how urban typology impacts predictionaccuracy can help determine when a simulation is necessary, particularly in cases where theprobability of incorrect predictions is high.

5.5.4. Geometric Level of Detail

The model developed in this thesis demonstrates the ability to predict irradiation on low-detailbuildings. However, this capability does not necessarily extend to more detailed geometry, suchas LoD 2.2 in the 3D BAG dataset. Further research is required to determine whether the modelcan effectively learn and predict irradiation on more complex datasets with higher geometricdetail.
5.5.5. Further Research

For model optimization, the following research steps are suggested to achieve production-levelaccuracy and usability in solar irradiation prediction:1. Investigate the accuracy on higher LoDs geometry, specifically using the Poisson Disk pointsampling method.2. Experiment with Transformer networks for irradiation prediction.3. Explore the relationship between urban typology and prediction accuracy through unsu-pervised clustering and dimensionality reduction techniques.
107

5. Discussion

4. Apply transfer learning to adjust the final layers of the network, addressing issues relatedto location and time invariance.
5.6. Interaction

The client-server process proposed for the interaction model offers an efficient solution with min-imal overhead. Empirical evidence indicates that this approach significantly reduces processingtime compared to other subprocess methods.
5.6.1. External Harware

One key advantage is that the server code does not need to run on the same device as the client.Although in this thesis, the server was operated on the same local machine as the client, it canalso be run on external hardware, such as a supercomputer. This flexibility is beneficial not onlyfor this specific project but for all deep learning projects in the architectural field. However,running the server externally is particularly relevant only when the model’s inference time issubstantial.
5.6.2. CPU Inference

Currently, the prediction model operates on a GPU. Future adjustments to the code, particularlyfocusing on the C++ implementations of the FPS and ball query algorithms, could enable themodel to run on a CPU. This shift has the potential to lower inference time, making the systemmore versatile and accessible.
5.6.3. Implementation Other Design Software

Since the socket package utilizes a standard network communication protocol, developing theclient in other programming languages is straightforward. The model’s design features are trans-mitted as byte packages to the server, a process that can be easily implemented in other languageslike C# or C++. Consequently, this approach is applicable to other design software, as long asthe preprocessing algorithm can be executed within the respective program.The current implementation of the interaction model in Grasshopper requires users to have a basicunderstanding of parametric design. In the future, a separate, web-based Graphical User Interface(GUI) could make the implementation even more user-friendly, broadening its accessibility andease of use.

108

5.7. Hardware

5.6.4. Optimization

This research has demonstrated that optimizing buildings for solar irradiation using brute-forcealgorithms is more feasible due to the reduced prediction time. However, while effective, thisapproach is not particularly sophisticated and could benefit from further enhancement throughgenerative models. The primary challenge in this area lies in defining what constitutes ”good”versus ”bad” design in the context of solar irradiation.
Alternatively, the prediction model could be leveraged to assess more practical aspects of a design.As illustrated, this could pertain to evaluating the power potential of solar installations, assessingheat loads on windows, or reducing urban heat island effects. Generative models could then beemployed to modify the design for specific objectives. For instance, adjusting the orientation ofa building to minimize vertical heat loads could be an application of this approach. This wouldallow for more intelligent and purpose-driven optimization, moving beyond simple brute-forcemethods.
5.7. Hardware Improvements vs AI

Given that the performance of CPUs and GPUs have massively improved over the last decades, itcould be argued that simulations will be able to reach the same speeds as the proposed deeplearning model, without the risk of biased errors. Therefore, it could be stated that developingneural networks as replacement for simulation models is not a feasible approach for future buildingoptimization.
However, it is important to understand the fundamental difference between simulation and AIprediction approaches. Whereas simulation models are able to compute certain output values,they do not have a deep understanding between the relationship between input and output.AI model on the other hand, are able to parameterize the problem and intrinsically learn howinput changes affect the output. This deeper understanding could potentially be used in futuregenerative models, which are not only able to predict, but also advice on changes based on earlierexperience.
5.8. Future Research Questions

In general, the following future research questions are proposed to build upon the work of thisthesis:
• How do urban typologies relate to errors in the prediction of solar irradiation?
• To what extend can deep neural networks predict solar irradiation on detailed urban models?
• How can solar irradiation be predicted and simulated on urban models that include dynamicobjects such as trees?
• How can a dataset of observed irradiation values on urban geometry be developed?
• Can deep neural networks predict solar irradiation while accounting for time and location?

109

5. Discussion

For long-term research aimed at creating a more holistic model that integrates multiple aspectssuch as building physics, finance, construction, and user experience, the following steps arerecommended:• Further refine the work presented in this thesis to achieve production-ready accuracy3;• Develop a model that clusters urban typologies, regardless of the building physics compo-nent being predicted;• Use similar methodologies to explore predictions in other areas, such as wind patterns,acoustics, comfort, and financial implications;• Transition from predictive models to generative models to optimize building geometry;• Combine encoders used in prediction to create a holistic generative model for buildingdesign.

3The author recommends that the model should be able to predict annual irradiation with maximum errors smaller thanthe average power usage of a household over one day.

110

6. Conclusion

This research aimed to explore the feasibility of using deep neural networks to predict annual solarirradiation on 3D urban geometry. By developing a synthesized dataset derived from the 3D BAGand solar irradiation simulations, a PointNet-inspired neural network was successfully trained.The findings suggest that it is indeed possible to predict solar irradiation with an average RMSEof 21 kWh/m² on low-resolution buildings, offering a significantly faster alternative to traditionalsimulation models. The method proposed in this thesis has been integrated into a user-friendlyecosystem, enabling non-programmers to easily incorporate the tool into their design processes.While previous research in solar irradiation prediction primarily focused on 2D projections, aver-aged irradiation values, and surrogate building geometry, this thesis advances the field by trainingthe model on 3D geometry based on real buildings, targeting predictions at specific sensor points.Moreover, the research introduces methods for preprocessing geometric data for neural networktraining, optimizes computational efficiency, and presents an innovative server-client system foreasier interaction with the model.At its current stage, the proposed method can be applied for city-scale annual solar irradiationestimation and can be integrated into conceptual optimization processes that focus on solar heatperformance metrics. However, it is crucial to continue evaluating the results with traditionalsimulation models, as the proposed solution may still have errors and biases.Despite the promising results, several limitations need to be addressed before the method can beroutinely applied in practice. Questions remain about the model’s accuracy when applied to moredetailed geometry, its handling of material properties, and the potential for making the modeltime- and location-invariant. Future research should explore whether Transformer-based networksand techniques such as dimensionality reduction and urban morphology clustering could helpresolve these issues. Additionally, researchers could investigate whether the method proposed inthis thesis could be extended to other building performance metrics.The conversion of predictive models into generative models also presents an exciting avenue forresearch, potentially transforming how computers assist architects and designers in their work.This research demonstrates that neural networks offer a valid and promising alternative to tradi-tional building physics simulations. This direction merits further exploration to empower architectsand designers in creating a more sustainable built environment.

111

7. Reflection

This chapter is a reflection on both the development and implications of this research. There willbe a focus on academic relevance, societal impact, ethics and personal growth. Furthermore, AItools which have been used for the development of this thesis, will be mentioned in section 7.3.
7.1. Academic Relevance

AI is a relatively new field of study within the architecture domain. Rapid advances are be-ing made to implement deep neural networks in solving architecture and engineering-relatedproblems. However, the lack of observed data is a widely known issue in the field. This re-search contributes to addressing this problem by proposing a method to train neural networks onsynthesized irradiation based on real urban geometry.
Furthermore, this research prompts a reevaluation of the roles of designers and architects in thefuture. To what extent is it possible to replace certain tasks performed by architects, and how willthe interaction with AI change their work in the future? This research suggests that AI models can,at the very least, make predictions about physics-related properties of urban designs. Furtherresearch in this field may determine whether it is possible for AI models to provide holistic adviceon making buildings more sustainable or financially attractive.
7.2. Societal Impact

The publication of this research may directly impact the optimization strategies that architectsand engineers use in daily practice. With the decreased computation time for solar performance,it becomes feasible to computationally optimize designs with significantly more iterations. Thiscould result in a stronger focus on sustainability within the design field.
As advanced AI models become more prevalent in architecture, there may be a shift in focus tothe social aspects of the profession. Since AI models can overtake repetitive tasks and provideadvice on integral designs, architects may have more time to discuss options with their clients.
7.3. Ethics

Training deep neural networks requires significant amounts of energy. At the current stage of thisresearch, a network would need to be developed for individual locations. Therefore, it is deemedessential that the networks become location-invariant to reduce the overall computation time.
113

7. Reflection

However, energy usage during the design phase is small compared to the energy consumed duringconstruction, maintenance, and usage. Thus, the increased power usage due to model training isjustified by the expected decrease in eventual energy consumption.Although AI models are fast, they can also be incorrect. The recent rise of AI models introducesthe risk of excessive human trust in these models. It is essential that building practitioners alwaysverify the results and advice provided by AI models. As developer, transparency about potentialerrors and inaccuracies in the models’ predictions can help improve trust and reliability.For the development of this thesis, several AI frameworks have been used. ChatGPT 3, 3.5 Turboand 4o have been used (OpenAI et al., 2023), advising and altering Python code, and used forthe thesis grammar and sentence structure. By no means, AI has been used for the generationof text with new content and information. All text which was corrected by ChatGPT has beenextensively checked by the author. For the presentation and cover of this thesis, Midjourney(Midjourney (V5), 2023) has been used for the generation of inspiring artwork.
7.4. From the Author: A Personal Reflection

Working on this thesis for so long has been quite a journey. Many years ago, this thesis began totake shape out of a frustration with having to use poorly optimized simulation models during myBachelor’s studies. Since it has taken so long to reach the final stage of this project, there wasample time to reflect on the role of AI in the field of architecture and design. The experience gainedfrom this thesis has provided me with a stronger opinion in this debate and expert knowledge inthe optimization domain, which I can apply to other fields.The results of the project exceeded my expectations. Initially, I hoped for a model that wouldroughly suggest irradiation values on buildings, but I believe the model’s performance is far morepromising. It was gratifying to see positive results, especially since other academics were initiallycritical of the thesis’s concept.The scale of this thesis sometimes felt overwhelming, as many research fields were involved toachieve the final outcome. Although I knew it would be challenging to work in the ComputerVision domain as an architecture student, I may have underestimated the complexity of the codeI was trying to manage. In retrospect, I would recommend future students focus only on datasetgeneration or neural network prediction instead of attempting both.Due to the involvement and combination of various research fields, it was sometimes challengingto communicate my ideas and vision to my mentors. Each mentor had their own expertise, butlacked knowledge of the other domains, making it difficult to see the whole picture. Additionally,I would have appreciated more guidance in developing the code itself. Fortunately, many kindPhD students and students from other faculties were willing to have coffee and sit together togive me practical suggestions while reading through my code.On the other hand, I am grateful to my mentors for pushing me to develop a stronger narrativearound my thesis—why I am striving for this goal, how it would impact the field, and what morewe could do in the future. I also appreciate that my mentors continued to guide me throughoutthis project, even when the final result was delayed due to external factors.

114

A. Regular Point Sampling Method

Neural networks generally perform better on regular data compared to irregular data due tothe consistency and similarity in input structures that the network can recognize. This principleis relevant to the two data preprocessing techniques implemented in this thesis: irregular pointclouds based on Poisson Disc sampling and regular sampling. This appendix details the procedurefor generating a regular point grid on 3D BAG data samples.
A.1. 3D BAG Mesh Format

In the 3D BAG dataset, meshes are typically defined by faces per surface, where each rectangularsurface is discretized into two triangular mesh faces, maintaining planarity. A straightforwardapproach to point sampling might involve using the centroids or vertices of these triangular faces.However, this method would result in an irregular point cloud with varying corresponding surfaceareas, as illustrated in figure A.2. Ideally, a procedure should be in place that generates aregular point grid with quad mesh faces that are square and have an area approximately equalto a user-defined parameter value (e.g., 1.0 m² in this context). Additionally, it is preferred thateach mesh face corresponds to a sensor point, enabling the visualization of irradiation per face.

Figure A.1.: A 3D BAG mesh with triangular faces for each building surface. (Image by author)

A.2. Mesh Discretization

The Rhino.geometry package offers several techniques to discretize existing meshes into differentconfigurations while maintaining the original shape. However, none of the provided solutions weresuitable for this thesis. The main issues were either excessively long processing times or the
115

A. Regular Point Sampling Method

Figure A.2.: A sensor grid based on the centroids of the triangular faces. (Image by author)
generation of meshes that were incompatible with the requirements of this study. Consequently,this thesis proposes an alternative procedure described in this appendix. While all figures arevisualized using McNeel Rhino, the steps outlined are fully implemented in Python to minimizevisualization overhead and improve efficiency.
A.3. Sample Outline

An outline is created given a sample size (in this case 100m x 100m). All geometry within thisoutline will be considered for the simulation and prediction. The sample outline is a flat planein the x,y direction. The z-direction indicates the height of the buildings.

Figure A.3.: A sample outline of 100m x 100 m in which the building geometry will be extractedfor a sample. (Image by author)

116

A.4. Building Component Extraction

A.4. Building Component Extraction

The buildings are split in facades and roofs based on the normal directions. If the normal isequal to the vector {0,0,1}, it is assumed that the face belongs to a roof. Otherwise it is part ofa façade.

Figure A.4.: The extracted roofs (orange) and facades (green) from the mesh based on the normaldirections. (Image by author)

A.5. Ground Levelling

All facades are leveled to the ground plane. The vertices with a z-value of 0, are used to extractoutlines from the buildings. Next, all building outlines outside the sample outline are removed.If the building outline intersects with the sample outline, it is split and reconstructed to a closedpolyline, within the sample boundary. In some special cases, buildings also have courtyards. Aspecifically designed algorithm makes a distinction between outer walls and inner courtyards.

Figure A.5.: Based on the lowest z-values of the building facades, outlines are extracted. Outlinesthat cross the sample outline are reconstructed. (Image by author)

117

A. Regular Point Sampling Method

A.6. Mesh Face Quadrangulation

A quad mesh is generated from the sample outline, based on a given grid size (1.0m x 1.0m). Next,the building outlines are used to sequentially split the geometry. Courtyard outlines are usedto re-split the extracted elements. These mesh faces are joined with the general ground mesh.Figure A.7 shows that triangular faces occur when the quad mesh is split. The density of thefaces is higher and the area is lower than the preferred 1.0 square meter. Within the scope of thisthesis, it was not deemed possible to implement an algorithm that would avoid the occurrence oftriangle mesh faces at the splitting regions.

Figure A.6.: A ground regular ground mesh with mainly quad faces. (Image by author)

Figure A.7.: Triangular faces near the outlines of the buildings. (Image by author)

118

A.7. Roof Levelling

A.7. Roof Levelling

The extracted elements are moved to the height the building, based on the maximum z-value ofthe original building mesh vertices.

Figure A.8.: Splitted mesh elements are moved to the height of the building as roof. The heightis found by taking the maximum z-value. (Image by author)

A.8. Facade Mesh Generation

For each building outline, including the corresponding courtyards, the line segments are splitinto points based on the grid size. Next, the points are moved upwards in the z-direction multiplelevels, to reach the final height of the building, with intermediate steps approximately equal tothe grid size. The points are used as vertices for a quad mesh, with faces of approximately onesquare meter.

Figure A.9.: Building walls based on the outlines of the buildings (Image by author)

119

A. Regular Point Sampling Method

A.9. Combining Mesh Elements

Finally, the building elements and ground are merged into one non-manifold mesh. This mesh canbe used for sensor point extraction and visualization purposes. By using the built-in functions in

Figure A.10.: Roofs, walls and ground are merged into one non-manifold mesh. (Image by author)
the Rhino.geometry package, the constructed regular mesh is reshaped to a reduced rough meshwith less faces and vertices, which is used for the simulation procedure.
A.10. Regular Point Sampling

In the second part of the regular point sampling procedure, sensor points are extracted based onthe face centroids of the mesh. These sensor points are offset based on the normal directions ofthe geometry (0.1m in this context). Some points however, belong to dividing walls which arenot visible after simulation or prediction of irradiance. Therefore, a ray-tracing algorithm wasimplemented, to delete points that are deemed irrelevant for the prediction.
A.11. Dividing Wall Sensor Point Removal

For each sensor point, a ray is shot upwards in the z-direction. If the ray hits a roof from anotherbuilding roof within half the grid-size, the mesh face is partially covered by the roof of anotherbuilding. Otherwise, if the ray hits within a longer distance, the mesh face is fully coveredvertically by another building.The cross product is taken between the normal direction of the geometry and positive/negativez-direction. If the ray hits a wall from another building within half the grid-size, it is assumedthat the mesh face is partially covered by another building. If it hits at a longer distance, it isfully covered by another building.
120

A.11. Dividing Wall Sensor Point Removal

Figure A.11.: Given a sensor point (blue) a ray is shot upwards in the z-direction. Since it ishitting the blue face of another roof, it is covered by another building. (Image by author)
If none of the rays hit other geometry, the corresponding sensor point is kept. If one of the rayshits within half the grid size, it is also kept, but moved in the direction of the ray, plus the sensoroffset distance. Finally, if all rays hit both another roof and wall, within a longer distance thanhalf the grid size, it is fully covered by another building, thus the corresponding sensor point isremoved.

Figure A.12.: Rays are shot horizontally to conclude if the corresponding point’s face is partiallyor fully covered by anoter facade. (Image by author)
This procedure is useful to limit the number of sensor points that have to be simulated/predicted.However, the time complexity of the algorithm is O(n2) considering the number of sensor pointsand buildings. Therefore, it is time consuming to remove dividing wall sensor points within thepreprocessing phase. Future research could reduce the time complexity to make the algorithmmore efficient.For each generated samples, multiple checks are validated before keeping or deleting a sample.First of all, the GSI has to be higher than 0.1, which is based on the area of the building outlines.Secondly, the total area of the roofs and ground combined should be equal to the expected totalarea of the sample (100 x 100 = 10.000 m2 in this context), plus a given tolerance. If this is notthe case, it is assumed that the generation of the sample was incorrect. This usually happens dueto incorrect assumptions regarding outlines being outer building polylines or courtyard outlines.Furthermore, errors regularly occur within the boolean splitting procedure of the ground mesh.

121

A. Regular Point Sampling Method

Further research is required to consider slanted roofs, overhangs and other more irregular geom-etry from higher levels of detail in the 3D BAG. However, similar approaches as described earliercan be used.

122

B. Point Sampling Techniques

Alternative solutions to sensor points sampling exist, and may be combined with the generationof corresponding visualization meshes. The author suggests the following methods that may beconsidered for the purpose of this project.
1. Regular point sampling as discussed in appendix A.

• Advantages: point clouds are an accurate representation of the geometric shape. Fur-thermore, point clouds generally have a regular grid. The procedure results in corre-sponding mesh faces that can be used for visualization purposes.
• Disadvantages: small triangular mesh faces occur next to building outlines. Theprocedure is not very efficient and errors occur relatively often. In the current stageof the research, the method is only applicable for low detail geometry
• Solutions: more accurate and efficient boolean intersection algorithms should be used.The ray tracing algorithm for sensor point cloud reduction (in relation to all buildings)may be optimized by using a binary tree approach. For more detailed geometry,handcrafted algorithms may handle slanted roofs and other building elements.

2. Rough surface regular point sampling. Instead of discretizing the meshes first, the originalmesh from the 3D BAG is used. By generating a flat regular grid, points may be projectedin the z-direction on horizontal surfaces. For the vertical elements, a similar approach canbe used a described for option 1.
• Advantages: significantly more efficient and easier to implement.
• Disadvantages: results in courser point clouds which are less descriptive for the ge-ometric shape. It does not result in a mesh which can be used for visualization.

3. Poisson Disc Sampling. An approach which randomly samples points on the surface, withapproximately equal distances, as described in the main report. This approach does notgenerate a usable mesh for visualization and will result in more irregular inputs to predictirradiation for.
• Advantages: efficient procedure. It can also be used for more irregular geometry;
• Disadvantages: there is no mesh which can be used for visualization directly.

4. Poisson Disc Sampling with mesh reconstruction. The point cloud is generated using thePoisson Disc Sampling method. The point cloud is then used to reconstruct a mesh forvisualization in which each point corresponds to a mesh face.
• Advantages: includes an efficient point sampling strategy and mesh for visualization.
• Disadvantages: reconstructed mesh may not be the same as the original dataset.

123

B. Point Sampling Techniques

In this thesis, regular point sampling and Poisson Disc sampling have been proposed aspotential solutions. Future research could show whether other methods such as describedmay perform similarly, better, or worse, also considering the irradiation prediction error.

124

Bibliography

Alammar, A., Jabi, W., & Lannon, S. (2021). Predicting Incident Solar Radiation on Building’s En-velope Using Machine Learning. SimAUD 2021 Symposium on simulation for architecture
+ urban design.Anderson, D., & Mcneill, G. (1992, August). ARTIFICIAL NEURAL NETWORKS TECHNOLOGY
A DACS State-of-the-Art Report (tech. rep.). Rome Laboratory. New York.Arvo, J. (1986). Backward Ray Tracing. Developments in Ray Tracing, SIGGRAPH ’86 Course
Notes, Volume 12.As, I., & Basu, P. (2021). The Routledge Companion to Artificial Intelligence in Architecture(2021st ed., Vol. 1). Routledge.Bourgeois, D., Reinhart, C. F., & Ward, G. (2008). Standard daylight coefficient model for dynamicdaylighting simulations. Building Research and Information, 36(1), 68–82. https://doi.org/10.1080/09613210701446325Brembilla, E., & Mardaljevic, J. (2019). Climate-Based Daylight Modelling for compliance verifi-cation: Benchmarking multiple state-of-the-art methods. Building and Environment, 158,151–164. https://doi.org/10.1016/j.buildenv.2019.04.051Castro Pena, M. L., Carballal, A., Rodŕıguez-Fernández, N., Santos, I., & Romero, J. (2021). Ar-tificial intelligence applied to conceptual design. A review of its use in architecture.
Automation in Construction, 124, 103550. https://doi.org/10.1016/j.autcon.2021.103550Galanos, T., Chronis, A., & Vesely, O. (2024). City Intelligence Lab.Garbin, C., Zhu, X., & Marques, O. (2020). Dropout vs. batch normalization: an empirical studyof their impact to deep learning. Multimedia Tools and Applications, 79(19-20), 12777–12815. https://doi.org/10.1007/s11042-019-08453-9Geisler-Moroder, D., Lee, E. S., & Ward, G. J. (2017). Validation of the Five-Phase Method forSimulating Complex Fenestration Systems with Radiance against Field Measurements.
15th International Conference of the International Building Performance Simulation As-
sociation. https://doi.org/10.26868/25222708.2017.401Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &Bengio, Y. (2014). Generative Adversarial Networks. Communications of the ACM, 63(11),139–144. https://doi.org/https://doi.org/10.1145/3422622Han, J. M., Choi, E. S., & Malkawi, A. (2022). CoolVox: Advanced 3D convolutional neural networkmodels for predicting solar radiation on building facades. Building Simulation, 15 (5),755–768. https://doi.org/10.1007/s12273-021-0837-0Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., & Cohen-Or, D. (2019). MeshCNN:A Network with an Edge. ACM Trans. Graph, 1(1). https://doi.org/10.1145/3306346.3322959Heckbert, P. (1993). Finite Element Methods for Radiosity. Proceedings of 20th Annual Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH ’93).Huang, C., Zhang, G., Yao, J., Wang, X., Calautit, J. K., Zhao, C., An, N., & Peng, X. (2022).Accelerated environmental performance-driven urban design with generative adversarialnetwork. Building and Environment, 224, 109575. https://doi.org/10.1016/j.buildenv.2022.109575

125

https://doi.org/10.1080/09613210701446325
https://doi.org/10.1080/09613210701446325
https://doi.org/10.1016/j.buildenv.2019.04.051
https://doi.org/10.1016/j.autcon.2021.103550
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.26868/25222708.2017.401
https://doi.org/https://doi.org/10.1145/3422622
https://doi.org/10.1007/s12273-021-0837-0
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1016/j.buildenv.2022.109575
https://doi.org/10.1016/j.buildenv.2022.109575

Bibliography

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training byReducing Internal Covariate Shift. ICML’15: Proceedings of the 32nd International Con-
ference on International Conference on Machine Learning, 448–456.Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2016). Image-to-Image Translation with ConditionalAdversarial Networks.Jones, N. L., & Reinhart, C. F. (2017). Speedup Potential of Climate-Based Daylight Modelling onGPUs. Proceedings of Building Simulation 2017: 25th Conference of IBPSA, 975–984.https://doi.org/10.26868/25222708.2017.259Jones, N. L., & Reinhart, C. F. (2022). Validation of Gpu Lighting Simulation in Naturally AndArtificially Lit Spaces. Proceedings of Building Simulation 2015: 14th Conference of
IBPSA, 14. https://doi.org/10.26868/25222708.2015.2461Kharvari, F. (2020). An empirical validation of daylighting tools: Assessing radiance parametersand simulation settings in Ladybug and Honeybee against field measurements. Solar
Energy, 207, 1021–1036. https://doi.org/10.1016/j.solener.2020.07.054Ladybug Tools. (2024a). Honeybee Primer. https://docs.ladybug.tools/honeybee-primerLadybug Tools. (2024b). Ladybug Primer. https://docs.ladybug.tools/ladybug-primerLila, A., Jabi, W., & Lannon, S. (2021). Predicting solar radiation with Artificial Neural Networkbased on urban geometrical classification. Proceedings of Building Simulation 2021:
17th Conference of IBPSA, 902–909. https://doi.org/10.26868/25222708.2021.30796Ma, L., Stückler, J., Kerl, C., & Cremers, D. (2017). Multi-View Deep Learning for ConsistentSemantic Mapping with RGB-D Cameras. 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).Mardaljevic, J., Heschong, L., & Lee, E. (2009). Daylight metrics and energy savings. Lighting
Research & Technology, 41(3), 261–283. https://doi.org/10.1177/1477153509339703Maturana, D., & Scherer, S. (2015). VoxNet: A 3D Convolutional Neural Network for real-timeobject recognition. 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 922–928. https://doi.org/10.1109/IROS.2015.7353481Midjourney (V5). (2023). Midjourney. https://www.midjourney.com/M.Matter, N., & G.Gado, N. (2024). Artificial Intelligence in Architecture: Integration into Archi-tectural Design Process. Engineering Research Journal, 181(0), 1–16. https://doi.org/10.21608/erj.2024.344313Mokhtar, S., Beveridge, M., Cao, Y., Drori, I., Balasubramanian, V. N., & Tsang, I. (2021). PedestrianWind Factor Estimation in Complex Urban Environments. Proceedings of The 13th Asian
Conference on Machine Learning, PMLR 157, 157, 486–501. https : / / doi . org / https ://doi.org/10.48550/arXiv.2110.02443Nakhaee, A., & Paydar, A. (2023). DeepRadiation: An intelligent augmented reality platform forpredicting urban energy performance just through 360 panoramic streetscape imagesutilizing various deep learning models. Building Simulation, 16(3), 499–510. https://doi.org/10.1007/s12273-022-0953-5OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D.,Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V.,Baltescu, P., Bao, H., Bavarian, M., Belgum, J., . . . Zoph, B. (2023). GPT-4 TechnicalReport.OpenStreetMap contributors. (2017). Planet dump retrieved from https://planet.osm.org.Peters, R., Dukai, B., Vitalis, S., van Liempt, J., & Stoter, J. (2022). Automated 3D Reconstruction ofLoD2 and LoD1 Models for All 10 Million Buildings of the Netherlands. Photogrammetric
Engineering & Remote Sensing, 88(3), 165–170. https://doi.org/10.14358/PERS.21-00032R2Ploennigs, J., & Berger, M. (2023). AI art in architecture. AI in Civil Engineering, 2(1), 8. https://doi.org/10.1007/s43503-023-00018-y

126

https://doi.org/10.26868/25222708.2017.259
https://doi.org/10.26868/25222708.2015.2461
https://doi.org/10.1016/j.solener.2020.07.054
https://docs.ladybug.tools/honeybee-primer
https://docs.ladybug.tools/ladybug-primer
https://doi.org/10.26868/25222708.2021.30796
https://doi.org/10.1177/1477153509339703
https://doi.org/10.1109/IROS.2015.7353481
https://www.midjourney.com/
https://doi.org/10.21608/erj.2024.344313
https://doi.org/10.21608/erj.2024.344313
https://doi.org/https://doi.org/10.48550/arXiv.2110.02443
https://doi.org/https://doi.org/10.48550/arXiv.2110.02443
https://doi.org/10.1007/s12273-022-0953-5
https://doi.org/10.1007/s12273-022-0953-5
https://doi.org/10.14358/PERS.21-00032R2
https://doi.org/10.14358/PERS.21-00032R2
https://doi.org/10.1007/s43503-023-00018-y
https://doi.org/10.1007/s43503-023-00018-y

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2016). PointNet: Deep Learning on Point Sets for 3DClassification and Segmentation. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 652–660.Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). PointNet++: Deep Hierarchical Feature Learning onPoint Sets in a Metric Space. NIPS’17: Proceedings of the 31st International Conference
on Neural Information Processing Systems, 5105–5114.Qian, G., Li, Y., Peng, H., Mai, J., Hammoud, H. A. A. K., Elhoseiny, M., & Ghanem, B. (2022).PointNeXt: Revisiting PointNet++ with Improved Training and Scaling Strategies. 36th
Conference on Neural Information Processing Systems (NeurIPS 2022). https://doi.org/https://doi.org/10.48550/arXiv.2206.04670Reinhart, C. F., & Walkenhorst, O. (2001). Validation of dynamic RADIANCE-based daylightsimulations for a test office with external blinds. Energy and Buildings, 33(7), 683–697.https://doi.org/10.1016/S0378-7788(01)00058-5Riegler, G., Ulusoy, A. O., & Geiger, A. (2016). OctNet: Learning Deep 3D Representations atHigh Resolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 6620–6629.Robinson, D., & Stone, A. (2004). Irradiation modelling made simple: the cumulative sky approachand its applications. Plea2004 - The 21st Conference on Passive and Low Energy Ar-
chitecture, 19–22.Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2021). High-Resolution ImageSynthesis with Latent Diffusion Models. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 10674–10685. https://doi.org/10.1109/CVPR52688.2022.01042Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for BiomedicalImage Segmentation. Medical Image Computing and Computer-Assisted Intervention -
MICCAI 2015, 234–241. https://doi.org/https://doi.org/10.48550/arXiv.1505.04597Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep Learning with PyTorch. Manning PublicationsCo.Subramaniam, S. (2017, October). Daylighting Simulations with Radiance using Matrix-based
Methods (tech. rep.). https://unmethours.comTehrani, A. A., Veisi, O., Fakhr, B. V., & Du, D. (2024). Predicting solar radiation in the urban area:A data-driven analysis for sustainable city planning using artificial neural networking.
Sustainable Cities and Society, 100, 105042. https://doi.org/10.1016/j.scs.2023.105042Tregenza, P. R., & Waters, I. M. (1983). Daylight coefficients. Lighting Research & Technology,
15 (2), 65–71. https://doi.org/10.1177/096032718301500201Tsangrassoulis, A., & Bourdakis, V. (2003). Comparison of radiosity and ray-tracing techniqueswith a practical design procedure for the prediction of daylight levels in atria. Renewable
Energy, 28(13), 2157–2162. https://doi.org/10.1016/S0960-1481(03)00078-8Vahdat, A., & Kreis, K. (2022, April). Improving Diffusion Models as an Alternative To GANs, Part1. https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/Vecchio, G., Prezzavento, L., Pino, C., Rundo, F., Palazzo, S., & Spampinato, C. (2023). MeT: Agraph transformer for semantic segmentation of 3D meshes. Computer Vision and Image
Understanding, 235, 103773. https://doi.org/10.1016/j.cviu.2023.103773Wang, P. S., Liu, Y., Guo, Y. X., Sun, C. Y., & Tong, X. (2017). O-CNN: Octree-based convolutionalneural networks for 3D shape analysis. ACM Transactions on Graphics, 36(4). https ://doi.org/10.1145/3072959.3073608Wang, P. S., Liu, Y., & Tong, X. (2020). Deep Octree-based CNNs with Output-Guided Skip Con-nections for 3D Shape and Scene Completion. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 266–267.

127

https://doi.org/https://doi.org/10.48550/arXiv.2206.04670
https://doi.org/https://doi.org/10.48550/arXiv.2206.04670
https://doi.org/10.1016/S0378-7788(01)00058-5
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/https://doi.org/10.48550/arXiv.1505.04597
https://unmethours.com
https://doi.org/10.1016/j.scs.2023.105042
https://doi.org/10.1177/096032718301500201
https://doi.org/10.1016/S0960-1481(03)00078-8
https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/
https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/
https://doi.org/10.1016/j.cviu.2023.103773
https://doi.org/10.1145/3072959.3073608
https://doi.org/10.1145/3072959.3073608

Bibliography

Ward, G., & Shakespeare, R. (2011). Rendering with Radiance, The Art and Science of Lighting
Visualizations. Randolph M. Fritz.Ward, G. J., Bueno, B., Geisler-Moroder, D., Grobe, L. O., Jonsson, J. C., Lee, E. S., Wang, T., & RoseWilson, H. (2022). Daylight simulation workflows incorporating measured bidirectionalscattering distribution functions. Energy and Buildings, 259, 111890. https://doi.org/10.1016/j.enbuild.2022.111890Wu, W., Fu, X.-M., Tang, R., Wang, Y., Qi, Y.-H., & Liu, L. (2019). Data-driven interior plangeneration for residential buildings. ACM Transactions on Graphics, 38(6), 1–12. https://doi.org/10.1145/3355089.3356556Yue, Y., Yan, Z., Ni, P., Lei, F., & Qin, G. (2024). Promoting solar energy utilization: Prediction,analysis and evaluation of solar radiation on building surfaces at city scale. Energy and
Buildings, 319, 114561. https://doi.org/10.1016/j.enbuild.2024.114561Yuksel, C. (2015). Sample Elimination for Generating Poisson Disk Sample Sets. Computer Graph-
ics Forum, 34(2), 25–32. https://doi.org/10.1111/cgf.12538Zhang, Y., Schlueter, A., & Waibel, C. (2023). SolarGAN: Synthetic annual solar irradiance timeseries on urban building facades via Deep Generative Networks. Energy and AI, 12,100223. https://doi.org/10.1016/j.egyai.2022.100223Zhao, H., Jiang, L., Jia, J., Torr, P., & Koltun, V. (2021). Point Transformer. IEEE Access, 9, 134826–134840. https://doi.org/doi:10.1109/ACCESS.2021.3116304Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation usingCycle-Consistent Adversarial Networks. 2017 IEEE International Conference on Com-
puter Vision (ICCV), 2242–2251. https://doi.org/10.1109/ICCV.2017.244

128

https://doi.org/10.1016/j.enbuild.2022.111890
https://doi.org/10.1016/j.enbuild.2022.111890
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1016/j.enbuild.2024.114561
https://doi.org/10.1111/cgf.12538
https://doi.org/10.1016/j.egyai.2022.100223
https://doi.org/doi:10.1109/ACCESS.2021.3116304
https://doi.org/10.1109/ICCV.2017.244

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main fontis Iwona.

	Introduction
	Problem Statement
	Research Question
	Disciplinary Approach
	Scope
	Software and Hardware
	Thesis Structure

	Related Literature
	Solar Irradiation Simulations
	Raytracing
	Daylight Simulations
	Mathematical Background
	2-Phase Method and Neural Networks
	Software and Simulation Techniques
	Limitations of Daylight Simulations

	Deep Neural Networks
	Artificial Neural Networks
	Convolutional Neural Networks
	Generalization and Normalization
	UNET
	Generative Adversarial Networks
	Diffusion Models
	Transformers
	Conclusion

	Related Research Solar Irradiation Prediction
	Related Research Limitations

	Neural Network Architectures with 3D inputs
	VoxNet
	OCNN and OctNet
	MeshCNN
	Multiview CNN
	PointNet
	Model Discussion
	Conclusion

	Methods
	Framework
	Generation
	Geometry source
	Partitioning
	Augmentation
	Point Sampling
	Final Format

	Simulation
	Parameter Convergence Test
	Final Format

	Parallelization
	Prediction
	PointNet
	PointNet++
	PointNeXt
	Model Sizes
	Training, Validation and Testing
	PointNext

	Interaction
	Preprocessing
	Live Prediction
	Visualization
	Optimization
	Conclusion

	Analysis
	Dataset Generation, Simulation, and Parallelization
	Dataset Sizes and Types
	Generation
	Simulation
	Parallelization

	Prediction
	Baseline Evaluation
	Hyperparameter Tuning
	Average Performance Improvements
	Visual Evaluation
	Imbalanced Dataset Correction
	Network Inference Optimization
	Experiment 1: Random Dataset
	Experiment 2: Sample Size
	Conclusion

	Interaction
	Optimization
	Overall Grasshopper Script
	Future Design Framework

	Discussion
	Research Questions
	Generation
	Regular Mesh Preprocessing Limitations
	Poisson Disk Sampling Optimization
	Augmentation
	Framework Limitations
	Further Research

	Simulation
	Accelerad vs Radiance
	Direct vs Indirect Irradiation
	Materials
	Further Research

	Parallelization
	Further Research

	Prediction
	Practical Implications of "21 kWh/m2 RMSE"
	Time and Location Invariance
	Improving Mode Coverage
	Geometric Level of Detail
	Further Research

	Interaction
	External Harware
	CPU Inference
	Implementation Other Design Software
	Optimization

	Hardware
	Future Research Questions

	Conclusion
	Reflection
	Academic Relevance
	Societal Impact
	Ethics
	Personal Reflection

	Regular Point Sampling Method
	3D BAG Mesh Format
	Mesh Discretization
	Sample Outline
	Building Component Extraction
	Ground Levelling
	Mesh Face Quadrangulation
	Roof Levelling
	Facade Mesh Generation
	Combining Mesh Elements
	Regular Point Sampling
	Dividing Wall Sensor Point Removal

	Point Sampling Techniques
	Bibliography

