TUDelft

MSc thesis in Building Technology

Towards Solar Irradiation Prediction on 3D
Urban Geometry using Deep Neural
Networks

Job de Vogel

September 2024

A thesis submitted to the Delft University of Technology in partial
fulfillment of the requirements for the degree of Master of Science
in Building Technology

Job de Vogel: Towards Solar Irradiation Prediction on 3D Urban Geometry using Deep Neural
Networks (2024)

©@@® This work is licensed under a Creative Commons Attribution 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in:

Building Technology
Delft University of Technology

Supervisors: Dr.ir. Michela Turrin
Dr.ir Seyran Khademi
External Advisor: Dr.ir. Eleonora Brembilla

Representative Board of Examiners: Prof.dr.ir. M.G. Elsinga

http://creativecommons.org/licenses/by/4.0/

What has been will be again,
what has been done will be done again;

there is nothing new under the sun.

the Teacher

Abstract

This research is an early exploration into the potential of deep neural networks predicting
physically-based building performance metrics on 3D urban geometry. Specifically, this work
aims to predict annual solar irradiation using networks trained on point clouds. It is expected
that the proposed method will allow designers to optimize their designs based on solar per-
formance, due to the significantly lower inference time, in comparison to traditional simulation
models. Furthermore, this research paves the way for generative models, which include the eval-
uation of performance such as solar irradiation, wind and acoustics.

Prior research has suggested several methods to predict solar irradiation on 2D building data
and low resolution 3D buildings. These researches have in common that there is a lack of real
observed irradiation data on buildings. Therefore, this research proposes several methods to
efficiently synthesize an irradiation dataset based on 3D building geometry, which samples are
larger in scale and resolution in comparison to earlier work.

Based on the synthesized datasets, several models have been trained to predict the irradiation
values. Experiments have shown that a finetuned version of the model is able to predict irradiation
with an average RMSE of 21 kWh/m? with an average inference time of 0.7 seconds, on a patch
of 100x100 meters. Furthermore, this thesis provides an analysis on how patch size and point
sampling technique affect the prediction error of the model.

Finally, this research provides an implementation of the network in a user-friendly client-server
ecosystem, that can assist architects and engineers to fine-tune their building designs in urban
environments.

Keywords: irradiation, synthesized dataset, deep neural networks, urban geometry

vil

Acknowledgements

First and foremost, | would like to express my gratitude to my main mentors, Michela Turrin and
Seyran Khademi, for their guidance throughout this research. Even after several extensions, they
continued to provide the support | needed to complete this thesis. | am also sincerely appreciative
of all the assistance Eleonora Brembilla offered, which greatly enhanced my understanding of
daylight and simulations. Additionally, | would like to thank the representative from the Board
of Examiners, Marja Elsinga, for her involvement.

This thesis would not have been possible without the many people who took the time to have a
coffee with me, delve into my code, and share their expertise to assist me during this research. In
particular, | would like to thank Shenglan Du, Berk Ekici, Nima Frouzandeh, Mark Bekooy, Peter
Nelemans, and Lisa van Barneveld for their insights and suggestions. | am especially grateful to
Aytacg Balci for his generous help, both during and outside working hours, in using and managing
the BK Renderfarm.

Lastly, | am deeply thankful for all the support from my family, friends, and housemates throughout
the highs and lows of this thesis. Without their encouragement, | could not have completed this
work.

ix

Contents

1.

Introduction
1.1. Problem Statement
1.2. Research Question
1.3. Disciplinary Approach
T4 Scope. . . L
15. Software and Hardware
1.6. Thesis Structure
Related Literature
2.1. Solar Irradiation Simulations
2170, Raytracing
2.1.2. Daylight Simulations
2.1.3. Mathematical Background oo
2.1.4. 2-Phase Method and Neural Networks
2.1.5. Software and Simulation Techniques
2.1.6. Limitations of Daylight Simulations.
22. Deep Neural Networks
2.21. Artificial Neural Networks
2.2.2. Convolutional Neural Networks
2.2.3. Generalization and Normalization.
224, UNET . . e
2.25. Generative Adversarial Networks
2.2.6. Diffusion Models
2.2.7. Transformers
2.2.8. Conclusion
2.3. Related Research Solar Irradiation Prediction
2.3.1. Related Research Limitations
2.4. Neural Network Architectures with 3D inputs
241, VoxNet . . . e
242. OCNN and OctNet
243. MeshCNN
244, Multiview CNN
245. PointNet
2.4.6. Model Discussion
2.4.7. Conclusion
Methods
31, Framework o
3.2, Generation L
321, Geometry SoUrce
322, Partitioning

3.2.3. Augmentation

Xi

Contents

324, Point Sampling 32
325. Final Format 33

33, Simulation 34
3.3.1. Parameter Convergence Test 35
332. Final Format 39

34. Parallelization 40
35. Prediction L 42
351, PointNet 42
3520 PointNet++ . . o 43
353, PointNeXt 44
354, Model Sizes 48
3.5.5. Training, Validation and Testing 48
35.6. PointNext 50

3.6. Interaction 53
3.6.1. Preprocessing 53
3.6.2. Live Prediction 53
3.6.3. Visualization 55
3.6.4. Optimization 55
3.65. Conclusion L 55

4. Analysis 57
4.1. Dataset Generation, Simulation, and Parallelization 57
41.1. Dataset Sizesand Types L 57
41.2. Generatlon 58
413, Simulation 61
41.4. Parallelization 62

42. Prediction 63
421. Baseline Evaluation 63
4.2.2. Hyperparameter Tuning L 65
42.3. Average Performance Improvements L L 73
4.24. Visual Evaluation 74
4.25. Imbalanced Dataset Correction 77
42.6. Network Inference Optimization 81
42.7. Experiment 1: Random Dataset 82
42.8. Experiment 2: Sample Size L 87
429. Conclusion 90

43, Interaction 91
431, Optimization 97
4.3.2. Overall Grasshopper Script L 97
43.3. Future Design Framework 99

5. Discussion 101
5.1. Research Questions 101
52. Generation L 102
5.2.1. Regular Mesh Preprocessing Limitations 102
5.2.2. Poisson Disk Sampling Optimization 103
523. Augmentation. 103
5.2.4. Framework Limitations L o 103
525. Further Research 104

Xii

53.

54.

5.5.

5.6.

57.
5.8.

Contents

Simulation e
5.3.1. Accelerad vs Radiance
5.3.2. Direct vs Indirect lrradiation
533. Materials
5.3.4. Further Research
Parallelization
5.41. Further Research
Prediction
5.5.1. Practical Implications of "21 KWh/m2 RMSE”
5.5.2. Time and Location Invariance
55.3. Improving Mode Coverage
55.4. Geometric Level of Detail
5.5.5. Further Research
Interaction
5.6.1. External Harware
5.6.2. CPU Inference
5.6.3. Implementation Other Design Software
56.4. Optimization
Hardware
Future Research Questions

6. Conclusion

7. Reflection

7.1.
7.2.
7.3.
74.

Academic Relevance
Societal Impact
Ethics
Personal Reflection

A. Regular Point Sampling Method

Al
A2.
A3
A4.
Ab.
A.b.
A7.
AS8.
A9.
A10.
A1,

3D BAG Mesh Format o
Mesh Discretization L
Sample Outline
Building Component Extraction Lo oo
Ground Levelling
Mesh Face Quadrangulation L L
Roof Levelling oo
Facade Mesh Generation
Combining Mesh Elements oo
Regular Point Sampling L
Dividing Wall Sensor Point Removal

B. Point Sampling Techniques

Bibliography

111

113
113
113
113
114

115
115
115
116
117
117
118
119
119
120
120
120

123

125

xiit

List

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.
2.8.
2.9.
210.
211,
212.
213.
2.14.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.
3.23.
3.24.

4.1.
4.2.

of Figures

Raytracing principle 8
Typical Honeybee irradiation simulation 9
Skydome discretization 9
Skydome and daylight coefficientso L 12
Ladybug daylight simulation recipes. L o oL 13
Convolutional Neural Networko o 16
Image generator architectures L L 17
ANN by Alammar et al. (2021) L 19
c¢GAN by Huang et al. (2022) 20
Model by Han et al. (2022) 21
Model by Nakhaee and Paydar (2023) 21
VoxNet by Maturana and Scherer (2015) oL 24
Quadtree explained L 24
OCNN by Wang et al. (2017) 25
Workflow methodology 29
Used software for methodology 30
3DBAG LoD's . . . o 31
Tiling system 3D BAG 31
Dataset array format without irradiance L L. 33
Accelerad simulator 34
Parameter Convergence Test 36
AcceleRad parameters visualization 1 (low settings) 37
AcceleRad parameters visualization 2 (medium settings) 37
AcceleRad parameters visualization 3 (high settings) 38
Radiance parameters visualization 4 (low settings) 38
Dataset array format with irradiation Lo oL 39
Parallelization code for dataset generation and simulation. 40
Parallelization workflowo 4
PointNet 42
PointNet++ 43
PointNeXt o 44
PointNeXt: subsampling 45
PointNeXt: grouping L 45
PointNeXt: MLP and reduction 46
PointNeXt: InvResMLP 47
PointNeXt: interpolation oL 48
Dataset imbalance 51
Client-server interaction system 54
Dataset geometry samples (reqular) Lo Lo 59
Dataset geometry errors (reqular) L 60

XV

List of Figures

Xvi

43.

4.4.

45.

4.6.

47.

4.8.

4.9.

4.10.
411.
412.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.
4.20.
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.
4.27.
4.28.
4.29.
4.30.
4.31.
4.32.
4.33.
4.34.
4.35.
4.36.
4.37.
4.38.
4.39.
4.40.
441
4.42.
4.43.
4.44.
4.45.
4.46.
4.47.
4.48.
4.49.
4.50.

Al

Dataset pointclouds (reqular) L 60
Irradiation distribution 61
Log timings simulation 62
Basemark training loss 63
Basemark validation loss 64
Basemark test loss 64
Basemark test loss domaino 65
Basemark micro/macro avg. Fl-scores.o L. 65
Validation loss for normalization oL oL 68
Validation loss for lower radius and higher nsample 69
Validation loss for global residual connections 69
Validation loss for lower strides oL L. 70
Validation loss for more epochs L Lo 71
Validation loss for more epochs Lo 71
Validation loss for model scaling o 72
Validation loss for other hyperparameters. 73
Highest avg. errors reqular samples L . 74
Median avg. errors reqular samples Lo o 75
Lowest avg. errors reqular samples L Lo 76
Validation loss for different loss functions00 77
Accuracy over irradiation bins L Lo oo 78
RMSE frequency samples L 79
RMSE frequency points 79
Optimized models’ confusion matrix 79
Validation loss for adjusted Weighted Mean Squared Error (WMSE) 80
Macro/micro avg. F1-score for adjusted WMSE oL 80
Recall voor (adjusted Weighted)MSE L. 81
Visualization highest errors Poisson Disk dataset 83
Visualization median errors Poisson Disk dataset 84
Visualization lowest errors Poisson Disk dataset 85
Accuracy of bins in Poisson Disk dataset 86
Errors in Poisson Disk dataset samples 86
Errors in Poisson Disk dataset points L. 86
Analysis of Poisson Disk prediction performance 87
Visualization highest irradiation 300x300m dataset 88
Visualization highest irradiation 300x300m Poisson Disk dataset. 89
Interaction environment irradiation prediction 0oL 91
Grasshopper 3D BAG downloader node 92
. Preprocessing context and design seperately 92
Server waiting in the interaction environment L0 93
Server executing clientcall Lo 94
Irradiation visualization onmesh oL Lo oo 95
Vertical irradiation extraction L Lo Lo 96
Horizontal irradiation extraction L . 96
Optimizing urban context for irradiation. 97
Grasshopper script combined L 98
Future design framework o 99
Future design framework multiple domains L. 100
3D BAG mesh . . o 115

List of Figures

A2. 3D BAG sensor grid 116
A3. Sample outline 116
A4. Extracted roofs and facadeso o 117
A5. Extracted building/courtyard outlineso o oL oL 117
Ab. Ground mesh 118
A7. Triangle mesh facesonground L oL oL 118
A8. Building roofs 119
A9. Buildingwalls 119
A.10.Merged non-manfold mesh L 120
A1 Vertical raytracing 121
A12.Horizontal raytracing L 121

Xvil

List of Tables

2.1.
3.1.

4.1.
4.2.
4.3.
44.
4.5.
4.6.

Related research papers solar irradiation prediction. 22
Selected and benchmark parameters for Radiance and AcceleRad settings. 35
Dataset sizes 57
Efficiency of generation and simulation methods. 62
Hyperparameter tuning part A 66
Hyperparameter tuning part B L o 67
Performance improvements after tuning Lo 73

Optimized inference timings

Xix

Acronyms

AHN Algemeen Hoogtebestand Nederland 31
Al Artificial Intelligence L 1
ANN Artificial Neural Network oo oo oo 15
aWMSE Adjusted Weighted Mean Squared Error. Lo oo 80
BAG Register of Buildings and Addresses

cGAN Conditional Generative Adversarial Network 17
CNN Convolutional Neural Network o oo 15

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FPS Farthest Point Sampling 43
GAN Generative Adversarial Network o 17
GPT Generative Pre-trained Transformer

GPU CGraphics Processing Unit

GIS Geographic Information System Lo 20
GSI Ground Space Index 62
GUI Graphical User Interface 108
10 Input Output

InvResMLP Inverted Residual Multi-Layer Perceptron 44
LBT Ladybug Tools 8
LiDAR Light Detection and Ranging

LoD Level of Detail o 31
LSTM Long Short-Term Memory 18
MLP Multi-Layer Perceptron 15
MSE Mean Squared Error 19
MVCNN Multiview Convolutional Neural Network

OCNN Octree Convolutional Neural Network 23
RAM Random Access Memory

ReLU Rectified Linear Unit L o e 15
RMSE Root Mean Squared Error 35
RNN Recurrent Neural Network oo oo o 18
VAE Variational Autoencoder Lo 21
VRAM Video Random Access Memory

WMSE Weighted Mean Squared Error Lo xvi

XXt

1. Introduction

The recent rise of Artificial Intelligence (Al) models has demonstrated that computers are capable
of replacing complex human tasks. Large language models such as GPT (OpenAl et al,, 2023)
and image generators based on Stable Diffusion (Rombach et al., 2021), significantly influenced
tasks such as writing, designing and the creation of art. Similarly to other fields, architecture in
the built environment has also been influenced by the uprising of large Al models. Yet, no holistic
model exists that is able to design buildings in the integral manner as an architect.

Over the past few years however, there has been growing interest in the development of Al
models for architecture in the conceptual design phase (Castro Pena et al., 2021). These new
technologies typically focus on the evaluation of certain specific objective and subjective subtasks
within the design process (M.Matter & G.Gado, 2024). It is now possible to generate alternative
visualizations of a building within seconds using Al (Ploennigs & Berger, 2023), predict pedestrian
wind factors in urban environments (Mokhtar et al.,, 2021) and generate floorplans using neural
networks (Wu et al., 2019). Given these developments, it is plausible that models will be combined
in the future, to assist architects overcome entire phases of the design cycle.

Architecture is a profession mainly based on experience and creativity. For some design decisions,
architects use computer-aided simulations to understand how a building will perform in the future.
Examples are the prediction of building physics such as irradiation, wind, acoustics and energy
consumption, human behavior or construction evaluations. Although these simulations can be
accurate estimations of real building behavior, they are usually time consuming, and require
expert knowledge to interpret the results.

Future Al models will only be able to help designers with complex decisions, if they are able
to get a deeper understanding in the relationship between design and building performance
outcomes. They need to be able to interpret how a certain design change will affect building
physics, construction, financial costs and human experience. In contradiction to simulators, Al
models are able to gain experience by learning from buildings that architects have developed in
the past, together with their building performance. The intrinsic knowledge of Al models is based
on significantly larger datasets than an architect or designer can have based on experience. It
is therefore expected that Al models could aid architects in the future, by providing suggestions
based on millions of buildings.

This thesis is an early exploration into the capability of Al models to predict building performance
metrics by using simulated training examples. Specifically, the focus lies on the prediction of
solar irradiation on 3D urban geometry using surrogate deep learning models. In this context,
‘surrogate models’ refer to statistical approximations of the relationship between data inputs and
outputs. They are useful to mimic simulation models while being less time consuming. In the
short term, this research can result in faster evaluation and optimization of buildings based on
solar performance. In the long term, it is expected that the suggested methods can contribute to
the development of more holistic generative building design models.

1. Introduction
1.1. Problem Statement

Simulations of annual solar irradiation are computationally intensive. Using neural networks to
predict solar irradiation, rather than simulating it, is expected to significantly reduce computation
time. This reduction can assist architects in evaluating their designs more effectively and facili-
tates the use of traditional brute-force optimization approaches due to the decreased evaluation
time.

Meanwhile, one might argue that advances in computer hardware will eventually mitigate the
issue of slow simulations. However, it is important to recognize that predicting solar irradiation
using surrogate Al models is fundamentally distinct from simulations, owing to the intrinsic un-
derstanding of the relationship between design and solar performance. Thus, this approach is
expected to contribute significantly to the development of generative design models.

Additionally, the practical implementation of these models must be considered. It is anticipated
that future users, such as architects, may lack a computer science background. Given that most Al
models are implemented with advanced coding, it is essential to simplify the process of utilizing
these algorithms.

1.2. Research Question

For this research, the following research question has been identified: ‘How can one predict
annual solar irradiation on 3D urban geometry using deep neural networks?’. Furthermore, the
following sub questions will be discussed, to answer the main research question:

Literature research
e How do simulation models compute solar irradiation on 3D geometry?

e What type of input dataset is required to predict solar irradiation using deep neural net-
works?

Implementation
e How can one compute a dataset with 3D urban geometry with solar irradiation values

efficiently?

e Can deep neural networks predict solar irradiation values accurately, faster than a simula-
tion model?

e How can architects interact with the deep learning model in a user-friendly ecosystem?

1.3. Disciplinary Approach

1.3. Disciplinary Approach

This thesis consists of two types of research: literature review and project development through
(visual) programming.

For the literature review on the theoretical background of solar irradiation simulations and neural
networks, the information is mainly derived from publicly available research papers and academic
books. In some specific cases, technical documentation from software was used to explain the
inner workings of certain tools.

This research is an early exploration, but not the first to strive for the prediction of solar irradiation
using Al. Therefore, an overview of earlier work is provided. The limitations of the tools developed
in these studies are described based on the authors’ personal experience and discussions with
other academics in the field. It is important to note that not all results from earlier research can be
verified, as not all code was available open-source. Consequently, the outcomes of these studies
are verified using published conference papers, books, and the websites of the corresponding
academic groups.

This research heavily relies on the development of neural network architectures by other re-
searchers. Specifically, most of the work is based on the research by Qian et al. (2022). The
modifications made to the architecture are explicitly described in this thesis. To facilitate the
reuse of the code developed for this thesis, a GitHub repository is provided.

The author acknowledges that architects and designers typically do not use the coding lanquages
employed for the implementation of the proposed model. Therefore, significant effort was invested
in developing a workflow that is accessible and easy to use in practice.

1.4. Scope

Within the scope of this thesis, several challenges have been identified in solving the problem of
solar irradiation prediction using deep neural networks. However, due to the complexity of the
task and limited time, several simplifications have been implemented to make the research more
feasible.

This research focuses exclusively on the prediction of annual solar irradiation. While there are
many other intriguing solar performance metrics, such as glare, illuminance, or hourly irradiation,
annual irradiation simulations are typically the most time-consuming (excluding cumulative hourly
irradiation simulations). Moreover, most other research in the field of Al-based solar metric
prediction also concentrates on this metric.

Another significant limitation is that the deep neural network will be trained on simulated data,
not on real observed data. This is necessary due to the limited availability of observed data. In
future research, it will be possible to fine-tune the proposed model with real observed data to
overcome potential errors.

The purpose of this project is to predict solar irradiation, not to provide users with design advice,
as generative models might do. Based on earlier developments in the Al field, it is expected that
the proposed model can serve as a foundation for the further development of generative models
related to solar performance. Finally, there are several simplifications concerning the dataset,
particularly regarding the detail of the buildings and the generalization capacity of the model:

1. Introduction

e The Al model will not be location invariant. It is trained only on sun positions from the city
of Amsterdam. The discussion will provide suggestions on how to make the model location
tnvariant.

e The dataset consists of heavily simplified building geometry and leveled surrounding ground
due to the complexity of accurately preprocessing the data. Within the scope of this thesis,
one method is analyzed to address more complex geometry.

e No material types were included in the dataset, as this data was not available. Average
values for absorption and reflection coefficients were selected. Suggestions on how to
include materials in the prediction of irradiation will be provided in the discussion of this
thesis.

1.5. Software and Hardware

The primary codebase for this project was developed in Python 3, chosen for its compatibility with
CPython libraries. McNeel Rhino and Grasshopper were utilized for visualization and interaction
purposes. To facilitate access to Python 3 Al models, a server-client system was established, with
Python 3 functioning as the server and IronPython 2.7 as the client. Pytorch was selected as the
main framework for developing the Al model.

For dataset development, a high-performance desktop equipped with two Intel Xeon E5-2640 v4
CPUs and two NVIDIA Quadro M6000 24GB GPUs was employed. Generating the dataset on
a renderfarm or high-performance cloud computer was not feasible due to the dependency on
Rhino.Inside, which is incompatible with the Linux operating system and requires pay-per-core-
hour on the Windows Server operating system.

The Al model was trained using a renderfarm with a dual 28-core AMD EPYC 7453 CPU and two
NVIDIA A40 48 GB GPU's on a Windows Server operating system. While most of the training was
conducted on a single GPU, two GPUs were utilized for computational intensive hyperparameter
settings.

The images included in this report were primarily created using draw.io and Matplotlib. This
thesis was written using Overleaf BTEX.

1.6. Thesis Structure

The structure of this thesis is outlined as follows:

Chapter two, titled "Related Literature,” addresses the literature research sub-questions posed in
this thesis. Initially, it provides a mathematical overview of solar irradiation simulations, followed
by a discussion of the software tools that implement these mathematical principles (2.1). The
second section of chapter two delves into the fundamentals, history, and mechanisms of neural
networks (2.2). Subsequently, it reviews previous research on the prediction of solar irradiation
using neural networks (2.3). The fourth section explores the potential of using neural networks
with 3D data, thereby addressing the second sub-question (2.4). Finally, an overview is provided
on efficient computation methods for the generation of 3D urban irradiation datasets, focusing on
various programming and software techniques (2.5). The chapter concludes with recommendations
regarding the optimal models and methods to employ (2.6).

1.6. Thesis Structure

Chapter three, "Methods”, details the implementation of this research through five key steps: the
generation of building geometry (3.2), the simulation of irradiation (3.3), the parallelization of
the aforementioned processes (3.4), the prediction and training using deep neural networks (3.5),
and the interaction with the model from a user perspective (3.6).

Chapter four, "Analysis”, presents an analysis of the implementation results. It begins by dis-
cussing the limitations encountered during dataset generation, simulation an parallelization (4.1).
The subsequent section illustrates the results, accuracy, and performance of the neural network
during training, evaluation, and testing phases (4.2). The final subsection of this chapter analyses
the implementation of the model in an interaction framework (4.3).

Chapter five, "Discussion”, offers a discussion that critically reviews the methodology and results.
Chapter six, "Reflection”, reflects on the research process, considering both the academic and
societal impacts of this work.

2. Related Literature

2.1. Solar Irradiation Simulations

Solar studies on conceptual designs have become increasingly vital in the fields of architecture
and engineering. By simulating sunlight on 3D building geometry, it is possible to address
critical issues such as energy efficiency, visual comfort, and energy production through solar
panels. Since the 1980s, advancements in computer processing power have enabled the accurate
prediction of irradiation and illumination values on buildings (Tregenza & Waters, 1983). This
chapter will explore the most significant advancements and methodologies in daylight simulations
to better understand their potential and limitations. Building on this foundation, the following
sections will examine the potential of Al models to replace or enhance these traditional methods.

2.1.1. Raytracing

The prediction of daylight values on 3D geometry has always been closely linked to the concept
of ray tracing. Ray tracing refers to the process of calculating the path a light ray travels from
its source to an object and ultimately to the camera or human eye. In the natural world, light
travels from the light source to the object; however, in computer simulations, light is typically
traced from the object back to the light source, a method known as "backward ray tracing”. This
approach is generally less computationally expensive than "forward ray tracing”, as it allows for
more efficient computation of reflections and refractions by tracing the light path in reverse (Arvo,
1986).

Daylight simulations employ two types of backward ray tracing: deterministic and stochastic.
Deterministic algorithms produce consistent results each time they are run, regardless of the
number of computations. In contrast, stochastic algorithms incorporate a random element, more
closely mirroring the natural behavior of light, where photons travel in random directions. Both
types of algorithms have their respective drawbacks in the context of ray tracing. Deterministic
algorithms, while accurate, may fail to capture all the intricate details of light interactions.
Stochastic algorithms, on the other hand, often introduce noise into the final render. Ideally,
the strengths of both approaches are combined to achieve a balance between accuracy and
computational efficiency, providing a fast yet precise estimation of light behavior (G. Ward &
Shakespeare, 2011).

Another important concept in computer graphics is radiosity, also referred to as diffuse inter-
reflection (Heckbert, 1993). Unlike ray tracing, which relies on the Monte Carlo principle and
incorporates a statistical component, the radiosity algorithm simplifies calculations by assuming
that scenes consist only of diffuse surfaces. This simplification makes radiosity more compu-
tationally efficient than Monte Carlo ray tracing. Additionally, radiosity offers the significant
advantage of being view-independent, meaning the simulation is not tied to a specific viewpoint.
In architectural applications, both Monte Carlo ray tracing and radiosity-based simulations are
commonly employed (Tsangrassoulis & Bourdakis, 2003).

2. Related Literature

"
L

N

Figure 2.1.: Raytracing from the sun origin to an urban building block. (Image by author)

However, both Monte Carlo ray tracing and radiosity have inherent limitations, as neither can
capture all possible lighting effects. To address these limitations, researchers have developed a
technique known as photon mapping, which is based on a specific type of forward ray tracing.
Photon mapping also benefits from being view-independent. While more advanced simulation
software packages have integrated photon mapping techniques, these are not available in the
simulation tools (Ladybug Tools (LBT)) used in this research (G. J. Ward et al., 2022).

2.1.2. Daylight Simulations

A daylight simulation involves predicting illuminance or irradiance values on 2D or 3D geom-
etry (Figure: 2.2). Among the various daylight metrics relevant to design, two are particularly
significant for this research: illuminance, which is the luminous flux per unit area expressed in
lux, and irradiance, which measures the radiant flux per unit area expressed in watts per square
meter (W/m?). Illuminance is the preferred metric when information about the quantity of light
is needed, while irradiance is more appropriate when assessing the solar energy received by an
object, such as in the context of solar panels. If irradiance is measured over a specified time
period, the term irradiation is used, expressed in Watt-hours per square meter (Wh/m?)'. One
Watt-hour indicates one Watt expended over one hour. When speaking about daylight coming
from a source, given a direction, it is referred to as luminance, expressed in candela per square
meter (cd/m?), and radiance, expressed in watt per steradian per square meter (W-sr—t.m~—2).

Daylight simulations are generally conducted over a specified time period. For instance, an
annual direct sun study involves simulating light rays from the sun’s position at each hour of the
year. When these rays intersect with a model's geometry, it indicates that direct sunlight reaches
the surface at that particular moment. While physical models were traditionally used for this
purpose, contemporary architects typically create these models using computer software.

Tn this thesis, solar irradiation is usually expressed in kilowatt-hours per square meter (kWh/m?2)

2.1. Solar Irradiation Simulations

Daylight is composed of multiple components, each of which requires individual consideration.
Primarily, daylight can be divided into reqular sunlight and skylight, the latter being sunlight
refracted within the atmosphere. Reqular sunlight can be further classified into direct sunlight
and indirect sunlight, the latter being light reflected between buildings. The impact of indirect
sunlight can be significant, depending on the reflecting material. Similarly, skylight can be
broken down into direct skylight and indirect skylight. The term "diffuse light” is often used in
literature to refer to all components of daylight that are not direct sunlight. In contrast, when
light is measured by a weather station, the terms "direct normal radiation” and "diffuse horizontal
radiation” are typically used to describe these components (Mardaljevic et al., 2009).

As described, sunlight is not only reflected by physical objects but also by the sky. Even under
cloudy conditions, objects still receive light, as indirect light from the sky is included in most
daylight simulations. Daylight values can be mathematically represented by discretizing a sky-
dome into multiple patches. This method, originally developed by Tregenza and Waters in 1983,
standardizes the discretization into 145 patches, each corresponding to an average luminance
or radiance value. Later advancements by Reinhart led to further refinement, dividing the sky-
dome into 577 patches (Bourgeois et al., 2008) (figure: 2.3). This skydome approach enables the
computation of illuminance and irradiance values for various models and sky conditions.

Figure 2.2.: An example of a typical daylight simulation using the Honeybee Cumulative Irradiance
recipe. The colored heatmap indicates the irradiation received by the urban patch, distributed
over a year. (Image by author)

Figure 2.3.: A skydome discretized in 577 patches, as suggested by Reinhart (Image by author)

2. Related Literature

2.1.3. Mathematical Background

Daylight can be expressed as luminance or radiance using the following equation (G. Ward &
Shakespeare, 2011):

Lo(6yy) = Lo + / / Li(62, 6:) (63, 65, 01, &) cos 0, sin 0,d0;do (2.1)

Note that the equation is recursive and is formulated as function in terms of itself. L, describes
the reflected light from a point in the direction (6., ¢,.). L. describes the emitted light from the
point at which illuminance or irradiance are computed. L; is the complex part of this equation,
which describes the summation of incoming light from other direct and indirect directions. This
value is multiplied by the reflectance-transmittance function f,, which describes the ratio between
reflected and transmitted light at this point.

Direct irradiance Eg4;, can be computed through specifically optimized algorithms such as selective
shadow testing, adaptive source subdivision and virtual light calculation. Direct irradiance from
a specific part of the sky can be described using:

Egir = /Ldir(ei,d)i)cos 0; sin 0;dw; (2.2)

Where Eg;,- describes the incoming irradiance, Lg;, the direct radiance from the direction (6,., ¢..).
w; describes the area of the given sky segment ¢ which is visible from the origin. Thus, the total
direct light from n direct directions (e.g. sun positions over time) in the sky can be computed
using:

Edir;tot = ZEdir;i (23)

=0

For the indirect component of incoming light, it is almost impossible to compute the quantity
exactly. Overall, indirect irradiance can be described with (G. Ward & Shakespeare, 2011):

Eind = // Lmd(ei, ¢2) COS 01 Sil’l 92d61d¢1 (24)

In which E;,q describes the incoming irradiance, L;,q the indirect radiance from a source from
direction (6;, ¢;) on a projected hemisphere.

This equation is not computable due to the practically infinite number of directions light comes
from. Therefore, it is approximated using the Monte Carlo inversion technique, with the following
equation (G. Ward & Shakespeare, 2011):

Ju

N-1

™ N
E = (M-N) S Lk (2.5)

i=0 k=0

10

2.1. Solar Irradiation Simulations

E is the incoming irradiance, X; and Y}, are uniformly distributed random variables in the range
[0, 1] and M N are the number of rays in which N = 7M.

L;, k is the indirect radiance in the direction (0;, ¢r) = (arcsin Lﬂf, 27rk+NY’°)) on a projected

hemisphere (G. Ward & Shakespeare, 2011).

2-Phase Method

When dealing with continuous light directions, such as those from the sky, a large number of
potential light sources must be considered. To address this, the Daylight Coefficient method
was developed (Tregenza & Waters, 1983). In academic literature, this method is sometimes
interchangeably used with the "2-phase” method (Subramaniam, 2017).

As the name suggests, the 2-phase method computes illuminance or irradiation values in two
distinct steps. The first step involves calculating the flux-transfer relationships between the
segments of a skydome and a sensor point. In simple terms, the method does not directly predict
specific irradiation values; rather, it computes coefficients that describe the percentage of light
from each sky patch that contributes to the incoming light at a sensor point. Thus, if a skydome
is divided into 145 patches, each sensor point will have 145 corresponding daylight coefficients.

The second step of the 2-phase method involves the creation of a sky matrix, which represents a
skydome with sunlight values for one or more hours of the year. When assessing the cumulative
amount of sunlight that a sensor point receives over a year, the values from all sky patches are
summed.

Finally, the daylight coefficient matrix is multiplied by the sky matrix to compute the illumination
or irradiation values for a given sensor point. Mathematically, the 2-phase method can be
described by the following equations (Subramaniam, 2017).

AE9¢ = D9¢ . L9¢ . AS(.)¢ (26)

Where Ejy, is the illuminance at a sensor point, Dgy is the Daylight Coefficient that depends on
the reflectance and transmittance of surrounding surfaces, Ly, is the luminance of a sky patch,
and Sy is the angular size of the sky patch, considering the altitude 6 and azimuth ¢. It should be
noted, however, that illumination can be replaced by irradiation if Ly, is replaced by radiance.

When converted to matrices, the equation can also describe the results for a grid of sensor points
(Subramaniam, 2017):

E=Cy-S (2.7)

Where Cy. describes a matrix of Daylight coefficients and S describes the sky vector. When
luminance or radiance values are used for each hour of the year, sky vector S can be replaced
by a sky matrix in which each row contains the luminance/radiance values for all patches at a
certain hour.

The following example, derived from Subramaniam (2017), illustrates how the 2-phase method
works. Assume an urban design with 1000 sensor points and a discretized sky with 145 patches.
The dimensions of the Daylight Coefficient matrix Cy. would be [1000 x 145] and sky matrix S
would be [145 x 8760] for 8760 hours of the year. The final result E with the irradiation values
for all grid points for all hours of the year would be [1000 x 8760]. To make the simulation run
faster, all radiance values per sky patch can be summed or averaged, as described by (Robinson

1"

2. Related Literature

& Stone, 2004). In that case, the resulting matrix E would only be of size [1000 x 1]*. Figure
2.4 shows a visual representation of this example.

Figure 2.4.: On the left: urban geometry divided in 1000 sensor points. A sensor point has a
daylight coefficient in relation to each sky patch. On the right: a skydome with 145 patches
visualizing the sky matrix, generated with a Radiance function called gendaymtx. Each sky patch
has a color indicating the radiance over a year. (Image by author)

In summary, daylight simulators use deterministic and stochastic raytracing equations to compute
daylight coefficients which describe how much daylight is received from different sky patches.
When multiplied with the skymatrix, the approximate irradiation or illumination values can be
computed.

2.1.4. 2-Phase Method and Neural Networks

A thorough understanding of the equations for the 2-phase method is deemed essential for this
thesis. When a neural network is used to replace a simulation, either one or both of the terms Cy.
and S have to be fitted by the model, to be able to compute accurate results. When the location
of a set of geometric training samples is not changed, only Cy. would be changing based on the
setup of the design. On the other hand, if the geometry would be the same, but the location would
be changing, only S would influence the results. Using neural networks to predict irradiation is
a valid machine learning approach, due to the non-linear relation of the underlying equations
(2.1) in the 2-phase method.

2Advanced versions of the 2-phase method sometimes make a distinction between the computation of direct and diffuse
sunlight.

12

2.1. Solar Irradiation Simulations

2.1.5. Software and Simulation Techniques

This section provides an overview of simulation tools available for estimating daylight on urban
building blocks.

Ladybug Tools and Honeybee

Ladybug Tools is a plugin designed to simulate solar radiation, wind, and thermal performance in
conceptual design. It is among the most widely utilized software packages for climate simulation
in architecture. Within the Ladybug Tools suite, several methods (recipes) are available for
simulating solar irradiation with varying levels of accuracy (Figure 2.5).

Firstly, a basic simulation of direct sun hours can be approximated using the Ladybug Direct
Sun Hours component. This method casts rays from hourly sun positions to a grid of sensor
points, calculating the total number of hours each geometry patch receives direct sunlight, without
considering intensity or climate characteristics. It does not account for the diffuse components of
sunlight (Ladybug Tools, 2024b).

For larger geometric models requiring more accurate results, the Annual Irradiance recipe from
Honeybee is recommended. This model employs the 2-phase method to predict both direct
and indirect irradiation on the proposed design. Additionally, it utilizes the Radiance engine,
enabling the computation of ambient light bounces between buildings and the ground. Although
this simulation offers high accuracy, it is also more time-consuming (Ladybug Tools, 2024a).

In situations where speed is critical for obtaining design feedback, alternative methods that
compute both direct and indirect sunlight cumulatively over a year have been developed. These
methods, as described by Robinson and Stone (2004), replace the traditional sky matrix with a
summation of expected values from each sky patch. Ladybug Tools provides solutions for both
scenarios—with (Honeybee) and without (Ladybug) Radiance—allowing for the computation of
ambient light bounces as well (Ladybug Tools, 2024a).

Both Ladybug and Honeybee can be utilized through design software such as McNeel Rhino
Grasshopper, as well as via the Python API.

LB Direct Sun Hours HB Annual Irradiance LB Incident Radiation HB Cumulative Radiation

_vectors out _model out _sky_mtx out _model L
timestep . wea _geometry points _wea out
points It
_geometry _timestep_ sy context_ results _timestep_
results o I .
context_ » visible_ res_direct _grid_size e, total _sky_density_
_grid_size ;.{f_,. mesh north_ Yom _offset_dist_ mesh north_ R§D avg_irr D
. P avg_irr P
_offset_dist_ legend grid_filter_ legend_par_ legend grid_filter_
legend_par_ . radiance_par_ peak_irr _cpu_count_ title radiance_par_
_cpu_count_ run_settings_ _run int_mtx run_settings_ radiation
_run int_mtx _run radiation _run

Figure 2.5.: Four available daylight simulation recipes in Ladybug and Honeybee. On the left:
two recipes based on hourly simulations, of which the first indicates sun hours and the second
simulation irradiance from sun an skylight. On the right: two recipes computing cumulative yearly
results. Honeybee recipes are able to include ambient light bounces between buildings. (Image
by author)

13

2. Related Literature

Radiance

Radiance is a comprehensive software package designed for daylight analysis and visualization.
Developed by Greg Ward at the Lawrence Berkeley National Laboratory, Radiance provides a
range of tools for simulating and evaluating daylight in architectural contexts. Although there is
no singular approach to using Radiance, its tools are primarily accessed through a command line
interface. To facilitate usage for non-programmers, various software packages, such as Honeybee,
have developed wrappers around these commands (Subramaniam, 2017).

Radiance has been validated as an accurate simulation tool for predicting daylight values, as
demonstrated by several studies by Brembilla and Mardaljevic (2019), Kharvari (2020), and
Reinhart and Walkenhorst (2001). Consequently, Radiance will be employed in this thesis to
generate the required dataset.

AcceleRad

AcceleRad, developed by Jones and Reinhart (2017), is a tool designed to optimize specific
functions within Radiance for GPU acceleration. According to the documentation, AcceleRad can
enhance processing speeds by a factor of up to 6. It integrates with Radiance by replacing
particular system files, thereby improving computational efficiency (Jones & Reinhart, 2017).

Jones and Reinhart (2022) analyzed the error differences between Accelerad simulations, Radi-
ance, and observed daylight values. They found that the largest errors occurred in illuminance-
based simulations, which are similar to the simulation of irradiation on building surfaces (although
irradiation simulations were not analyzed by the original authors). Therefore, it is crucial to ex-
amine these differences before determining whether it is appropriate to use Accelerad instead of
Radiance.

2.1.6. Limitations of Daylight Simulations

Although daylight simulations are valuable tools for optimizing solar performance, they have
notable limitations. This thesis focuses on the limitations specific to Radiance, as this research
field predominantly emphasizes the validation of Radiance methods.

Firstly, many Radiance daylight simulations rely on sky descriptions based on the Perez weather
model. However, actual sky conditions may deviate from the model's estimations, leading to
discrepancies between simulated and real illuminance and irradiation values (Geisler-Moroder
et al,, 2017).

Secondly, variations in simulation results can arise due to inherent randomness in the method
used to compute the indirect components of daylight. These differences are particularly noticeable
in lower Radiance settings (Kharvari, 2020).

Lastly, the parameter settings in Radiance significantly influence the output results. Variations
in parameter configurations across different studies can result in outcomes that are not always
directly comparable (Kharvari, 2020).

14

2.2. Deep Neural Networks

2.2. Deep Neural Networks

Since the late 1980s, neural networks have gained prominence as powerful tools for addressing
complex problems. Neural networks, a subset of machine learning in computer science, involve
the development and use of models that simulate natural learning processes. They are inspired
by the human brain’s architecture, utilizing artificial neurons and connections to learn features
from a dataset (Anderson & Mcneill, 1992).

A specific subfield of machine learning, computer vision, focuses on learning from image-based
data. This includes tasks such as classification, segmentation, and detection of objects within
images (Stevens et al., 2020).

2.2.1. Artificial Neural Networks

Before exploring Convolutional Neural Networks, it is essential to understand the fundamentals
of Artificial Neural Networks (ANNs), also known as Multi-Layer Perceptrons (MLPs). ANNs are
a type of supervised machine learning model inspired by the human brain. An ANN typically
consists of three types of layers: the input layer, hidden layers, and the output layer. The input
layer provides the data to the model, while the hidden layers contain neurons with associated
weights and biases. These hidden layers are interconnected and usually decrease in size as they
progress. The output layer produces the final predictions.

The difference between the predicted and actual values is computed using a loss function, which
varies depending on the problem being solved. The loss is then backpropagated through the
network and optimized using the Gradient Descent algorithm. ANNs are distinguished by their
ability to learn features in non-linear problems, facilitated by non-linear activation functions
applied to the weights, inputs, and biases of each neuron (Stevens et al., 2020).

2.2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) extend the principles of ANNs, primarily for pattern recog-
nition tasks. Initially designed for image processing, CNNs are now applicable to various types of
data. A key advantage of CNNs is their ability to handle high-dimensional inputs more effectively
than traditional ANNs.

A typical CNN architecture (figure 2.6) comprises three main components: convolutions, pooling,
and fully connected (dense) layers. In image recognition, a convolution involves applying small
2D matrices of weights, known as filters or kernels, to regions of the input image to detect specific
patterns such as lines or shapes. These convolutions are followed by an activation function, often
the Rectified Linear Unit (ReLU). Filters are characterized by hyperparameters including kernel
size, stride, zero-padding, and dilation. One significant benefit of CNNs is the reuse of filters
across the entire image, which reduces the number of parameters that need to be learned.

Following the convolutional layers, pooling layers are used to reduce the dimensionality of the
data. For example, max-pooling divides the input into smaller segments and retains the maximum
value from each segment, effectively decreasing the image's size. For instance, an image with
dimensions of 784x784 pixels can be reduced to 392x392 pixels using a pooling operation with a
stride of 2.

15

2. Related Literature

Input image 3 Channels

3 filters, size 3x3

sum .
max pooling

filter 2x2, stride 1x1

i«—— zero-padding

Figure 2.6.: Principle of the Convolutional Neural Network architecture (Image by author)

After several convolution and pooling operations, the resulting data is flattened into a one-
dimensional array and fed into the fully connected layer. This layer functions similarly to the
hidden layers in an ANN, performing the final classification or regression tasks (Stevens et al.,
2020).

2.2.3. Generalization and Normalization

The primary goals in developing well-trained neural networks are to achieve generalization and
reduce training time. Generalization refers to the model's ability to make accurate predictions on
new, unseen data, avoiding both underfitting and overfitting. To facilitate this, various adjustments
have been made to CNN architectures. Two significant developments are dropout and batch
normalization.

Batch normalization normalizes the activation vectors within hidden layers. This process acceler-
ates training by reducing internal covariate shifts and stabilizes learning, thus leading to faster
convergence (loffe & Szegedy, 2015).

Dropout is a reqularization technique that involves randomly deactivating a subset of neurons
during each optimization step. This helps prevent overfitting by ensuring that the model does not
become overly reliant on specific neurons (Garbin et al., 2020).

2.2.4. UNET

Introduced in 2015, the UNET architecture represents a significant advancement in CNN design,
particularly for biomedical image segmentation. The UNET features an encoder-decoder struc-
ture that allows for precise segmentation of images. The encoder follows the conventional CNN
approach with convolutions and pooling layers, while the decoder includes deconvolution and
up-pooling layers to restore the input dimensions to their original resolution. This architecture
enables UNET to generate high-resolution outputs suitable for regression or classification tasks
(Ronneberger et al., 2015).

16

2.2. Deep Neural Networks

2.2.5. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are designed for generating new data samples that re-
semble examples from a given dataset. GANs are distinquished by their generator-discriminator
framework. The generator creates new data samples from random noise, while the discriminator
evaluates whether these samples are real (from the dataset) or fake (generated). The discrimi-
nator’s feedback is used to refine the generator, leading to progressively more realistic samples
(Goodfellow et al., 2014).

Conditional Generative Adversarial Networks (cGANs) extend this approach by incorporating class
labels into the generator and discriminator. For instance, given a black-and-white image, a cGAN
can generate a corresponding color image, with the discriminator assessing the authenticity of
the colored image. cGANs are considered semi-supervised due to their use of labeled data.

2.2.6. Diffusion Models

Diffusion models are a class of generative models that produce images by introducing noise to
the input data and then reversing this process to generate new samples. This process involves
gradually adding noise to the data and learning to denoise it step-by-step. The iterative nature of
diffusion models enables them to capture a broader range of the data distribution, often resulting in
more diverse and representative samples compared to GANs. Despite this advantage in diversity
and mode coverage, GANs generally excel in producing highly detailed and visually coherent
images (fiqure: 2.7).

High
Quality
Samples

Generative
Adversarial 7 |
Networks/: \

i"\ Denoising
"y Diffusion
“ Models

Fast

Sampling

]

Variational Autoencoders,
Normalizing Flows

Figure 2.7.: Qualities of distict image generator architectures (Vahdat & Kreis, 2022)

17

2. Related Literature

2.2.7. Transformers

Transformers utilize an attention mechanism to process input data, allowing the model to focus
on different parts of the input based on their relevance rather than their positional distance.
This mechanism effectively overcomes some of the limitations associated with Recurrent Neural
Networks (RNNs) and Long Short-Term Memory (LSTM) networks, such as difficulty in handling
long-range dependencies. Originally developed for natural language processing tasks, transform-
ers have recently been adapted for 3D data applications. Notable examples include the analysis
of point clouds (Zhao et al., 2021) and the semantic segmentation of 3D meshes (Vecchio et al,
2023).

2.2.8. Conclusion

This literature review describes how different network architectures can be combined for the
purpose of generating images. Based on the previous descriptions, the reader should be able to
understand the principles behind the networks for both 2D and 3D data, that will be described
in the following chapters.

18

2.3. Related Research Solar Irradiation Prediction

2.3. Related Research Solar Irradiation Prediction

In 2021, Alammar et al. introduced an ANN designed to assess solar irradiation on the facade of
a specific building, utilizing a parametrically developed envelope of surrounding structures (see
Figure 2.8). This ANN was evaluated against a Random Forest algorithm, a supervised machine
learning technique that does not involve deep learning. The comparison revealed that the Random
Forest model exhibited superior performance, primarily due to its use of categorical inputs. This
outcome prompts a critical evaluation of the ANNs practical applicability, given its limitations in
generalizability.

Similarly, Lila et al. (2021) proposed a more sophisticated approach for predicting solar irradia-
tion. This method featured a model with inputs that were significantly more complex and irreqular.
Although the input to this ANN remained categorical, it was of higher dimensionality compared
to previous models. The findings indicate that this advanced model is capable of predicting solar
irradiation on building rooftops with reasonable accuracy.

B0z 4
v . | 4 ’?D""Fe A
Input Input Neuron Type | Data Range P ¥,
[. Bo2
Hour Discrete 6to 18 in steps of 1 [|
Month Discrete 0123 il
B0 Discrete 0.12) AT
Bog 4 |
BO1 Discrete 012 . C LS
BO2 Discrete 012 | . '
BO3 Discrete 0,12 = | '
RN/ 4 s oy
Facade Floor Level | Discrete 0,12 4 y 7 1-2
Orientation Discrete 0,123 | y) S | . ’UJ G
' 4 [/ = - -50
Fagade Height Discrete 6to 66 & | A 4 A b U”-b
. v ' 4 S S5
X-coordinate Continuous [-11.08, 12.28] ys ;,70 01y 4 4 - 0.55
: - L e S sy '/ O.30
v-coordinate Continuous [-13.06, 10.26] P, OO0 2 O _— [0. -,
- g '501.;//;71 Sy = ' 0.0y
z-coardinate Continuous [6.40. 69 60] s 20 4000 - O!“
.04

Figure 2.8.: Model developed by Alammar et al, 2021. On the left: categorical inputs used for
training the Artificial Neural Network. On the right: an example of a facade patch, for which the
irradiation is predicted. (Images by Alammar et al., 2021)

Tehrani et al. (2024) developed a model to predict average annual solar irradiation based on
general urban properties such as coordinates, average building height, and azimuth angle. The
dataset for this research was created using a Grasshopper parametric script and OpenStreetMap
data (OpenStreetMap contributors, 2017). The geometric attributes were transformed into a one-
dimensional array of properties related to average solar radiation values. The model employed
was a manually crafted ANN, evaluated using the Mean Squared Error (MSE) metric. Although
this approach demonstrates the use of location-variant datasets for solar irradiation prediction,
it is limited in that it only predicts a single average value for a given urban topology.

Yue et al. (2024) developed similar work but added additional input features such as building
type, building volume, and orientation of surfaces (roof, south, north, west, and east). Instead of
predicting a single average irradiation value, their model distinguished between different surface
orientations and accounted for obstructions from the local context. The performance of 17 common
models was compared using a dataset of geometric data from the city of Zhengzhou, China.

19

2. Related Literature

Galanos et al. (2024) presented their approach for solar irradiation prediction on a larger scale
in As and Basu (2021), using open-source GIS data for the city of Vienna. They performed
solar radiation simulations using Ladybug tools and generated height maps from the imported
3D models. A GAN was then utilized to predict solar irradiation on these height maps. The
final output showed irradiation values on the 2D ground between buildings. Similarly, Huang
et al. (2022) used a GAN (see Figure 2.9) not only to predict solar irradiance on parametrically
generated models but also to approximate wind levels and thermal comfort. This was achieved
through a multi-objective genetic algorithm, requiring advanced GAN variants such as Pix2pix
(Isola et al., 2016) and CycleGAN (Zhu et al,, 2017). It is important to note that both studies
focus on 2D surfaces around buildings, excluding facades and roofs from their predictions, which
limits the feedback provided to designers.

[nput Ground Truth Prediction Relative error

A4 RMSE: 0.0777
47 |R:0823

s Ny T\

wWo

BY

s fPHo
J
.

o L
s)
- ‘2‘{ ,"--"});;’

200

iy,

%0

Figure 2.9.: Example result from the cGAN developed by Huang et al,, 2022. (Images by Huang
et al,, 2022)

In contrast to the previously discussed studies, Han et al. (2022) introduced a novel approach
for predicting solar irradiation on 3D geometry using advanced 3D CNNs (see Figure 2.10).
Their method employs a synthetic database created through a parametric script that generates
buildings with simple geometric shapes like cubes and cylinders on a flat envelope. This network,
named Coolvox, is built on a UNET-like architecture, incorporating both deconvolutional and
convolutional layers. Notably, Coolvox is capable of handling more complex building features,
such as balconies, making it a more comprehensive tool for assessing solar irradiance on both
the building envelope and facades.

While the 3D approach of Han et al. (2022) offers significant advantages for design applica-
tions—since it includes detailed facade geometry in addition to the surrounding envelope—it
also presents substantial limitations. The primary challenge is the scalability of Coolvox. The
use of 3D convolutional layers makes the model highly memory-intensive, which can be prob-
lematic during the training phase. As a solution, the authors suggest exploring Octree-based
or Transformer-based networks in future research to alleviate memory constraints and enhance
scalability.

Recent advancements in irradiation prediction research are focusing on addressing memory con-
sumption issues associated with 3D models by utilizing fish-eye camera perspectives for training
data.

Nakhaee and Paydar (2023) introduced a GAN-based network called DeepRadiation, built upon
the Pix2pix (Isola et al., 2016) architecture (see Figure 2.11). Their approach begins with a
dataset of New York buildings derived from Geographic Information System (GIS) data, which is
used to simulate solar irradiation. This simulated irradiation data is then projected into a fish-eye

20

2.3. Related Research Solar Irradiation Prediction

Radiation Intensity
with Boundaries 1400

Numerical representation

1200

1000

1400

| 1200

Figure 2.10.: Prediction of solar irradiance by Han et al,, 2022. On the left: numerical repre-

sentation of occupancy grid surrogate buildings. On the right: resulting irradiance values on
building by 3DCNN model. (Images by Han et al., 2022)

perspective from eye height. The original fish-eye images, devoid of irradiation information, are
semantically segmented and combined with a depth map. These processed images are used to
train the GAN, enabling it to generate new images annotated with irradiation values. A notable
limitation of this model is its restriction to predicting irradiation from an eye-level perspective,
which may not always be practical for all design scenarios.

Meanwhile, Zhang et al. (2023) developed SolarGAN, an advanced GAN-based model that im-
proves upon several limitations observed in previous models, including DeepRadiation. Unlike
DeepRadiation, SolarGAN employs a Variational Autoencoder (VAE) architecture instead of a
Pix2pix (Isola et al., 2016) architecture. This VAE-based approach allows the network to incor-
porate additional parameters into the latent space, facilitating training across diverse locations
and making the model more versatile for designers. Instead of generating images with irradiation
values, SolarGAN predicts an ensemble of annual hourly solar irradiation time series for building
facades. Additionally, the model includes semantic segmentation of facades into ground, opaque
surfaces, glazing, and sky, providing valuable insights for design decisions. The researchers also
suggest that SolarGAN has the potential to be applied to real-world fish-eye images of streets,
further enhancing its practical utility.

kWh/m?
388.40<
b 4 ‘r 349.56
310.72
271.88

233.04

input: panoramic depth image of the strectscape with the building blocks only

194.20
155.36
e ‘; 116.52
77.68
38.84

<0.00

output: panoramic image of the streetscape with the solar radiation analysis

Figure 2.11.: Irradiation prediction on the ground using a fish-eye perspective. (Images by
Nakhaee and Paydar, 2023)

21

2. Related Literature

2.3.1. Related Research Limitations

In summary, extensive research is ongoing to address the challenge of predicting solar irradiation
using Al (Table: 2.1). However, as noted, each proposed solution presents its own set of limitations
and challenges. Based on this literature review, the following key issues have been identified:

e To the best of the author’s knowledge, no comprehensive model currently exists that can
predict solar irradiation with results comparable to those of traditional solar irradiation
simulations. Specifically, no model is capable of providing irradiation values across a 3D
urban patch, including ground, facades, and roofs. The Coolvox model proposed by Han
et al. (2022) is an exception, but it was trained only on rough, synthesized data;

Most models are restricted to training on data from a single geographic location;

With the exception of SolarGan, existing models typically produce only cumulative irradi-
ation results for an entire year;

Most research is based on parametrically synthesized building geometry, not on 3D models
from real-world buildings, such as GIS data.

Author Year Name Dataset Input Model Prediction Type
Alammar A. et al. 2021 N/A Surrogate Categorical ANN & Single fagade patch
envelopes Random Forest
Lila A. et al. 2021 N/A Surrogate Categorical ANN Single roof
envelopes
Tehrant et al. 2024 N/A GIS data Categorical ANN Average Cumulative Ra-
diation
Yue et al. 2024 N/A GIS data Zhengzhou Categorical 17 common models Cumulative Radiation by
surface orientation
Galanos T. & 2022 N/A GIS data Vienna Heightmap GAN Envelope ground
Chronis A.
Huang C. et al. 2022 N/A Surrogate Categorical, CycleGAN, pix2pix, Envelope ground
envelopes heightmap ANN
Han J.M. et al. 2022 CoolVox Surrogate 3D occupancy 3DCNN Facade and roof
envelopes grid of single building
Nakhaee A. et al. 2023 Deep- GIS data New York Sem. segm. And GAN with pix2px Envelope ground
Radiation depth-map fish- generator
eye perspective
Zhang Y. et al. 2023 SolarGAN GIS data Zurich and Fish-eye GAN with VAE gen- Solar Irradiation

22

Singapore

perspective and
location

erator and more

Table 2.1.: Related research papers solar irradiation prediction.

time series

2.4. Neural Network Architectures with 3D inputs

2.4. Neural Network Architectures with 3D inputs

In the following paragraphs, several network architectures that are capable of processing 3D
models will be discussed, focusing on different approaches to address input dimension irreqular-
ities.

2.4.1. VoxNet

One intuitive method for processing 3D data is through a preprocessing step called voxelization.
Voxelization involves discretizing a 3D object into a 3D array of voxels. These voxels form a
regular grid, making them suitable as training data for neural networks. The features stored in
each voxel can include geometry occupancy, average normal direction, or color.

VoxNet, developed in 2015, was designed to classify 3D objects using voxel clouds as input
(Figure: 2.12). In VoxNet, the inputs are referred to as Volumetric Occupancy Grids, where
each voxel indicates whether geometry exists within the voxel's boundaries. The architecture
of VoxNet resembles that of a traditional CNN; however, instead of 2D convolutions with a third
dimension holding feature maps, VoxNet employs three-dimensional convolutions, adding a fourth
dimension to represent features. Pooling is achieved by replacing 2D pooling layers with 3D
non-overlapping blocks (Maturana & Scherer, 2015).

The scalability and generalization of VoxNet are constrained by the model's substantial memory
consumption. As the input resolution of the voxel grid increases, memory requirements grow
cubically. According to experiments conducted by Wang et al. (2017), VoxNet was only capable
of handling models with a maximum resolution of 643 voxels on an 8GB GPU. A potential solution
to this limitation, as suggested by Han et al. (2022), is to use an Octree Convolutional Neural
Network or Transformer network to reduce memory consumption.

Publication

VoxNet is available in TensorFlow and Pytorch.

2.4.2. OCNN and OctNet

To reduce the memory and computational costs associated with VoxNet, the Octree Convolutional
Neural Network (OCNN) was developed. There are several implementations of octree-based CNNs,
with the most notable being OCNN by Wang et al. (2017), OctNet by Riegler et al. (2016), and
the octree network by Wang et al. (2020). The key differences between these models lie in the
methods used to convert reqular voxel clouds into octrees and the specific implementation of
convolution and pooling layers.

For simplicity, this discussion will focus solely on the implementation of OctNet, as it is considered
the easiest to comprehend and has been thoroughly compared to the performance of VoxNet. As
mentioned, an octree-based CNN requires an octree data structure as input. The octree data
structure can be most easily understood by considering its two-dimensional counterpart: the
quadtree.

To illustrate, imagine a sparse two-dimensional grid containing data points with corresponding
features. A quadtree can be constructed by recursively dividing the grid into four subsections,

23

2. Related Literature

_ Occupancy Grid
71 32x32%32

Conv(32 5,2)
14*14*14

Conv(32, 3 1)+Pool(2)

§ Full(128) g

Pedestrian Full(K)IOutput Toilet

Figure 2.12.: VoxNet model encoder which downscales features through voxelization. (Image by
Maturana and Scherer (2015))

with pointers indicating the parent-child relationships between nodes. The method of storing
this data may vary depending on the implementation, but visually, it can be represented as a
hierarchical graph (see figure 2.13).

=0(lLo |!S (o] - iLo E
L |(] s | s [o[1]2]3] L HHEEDQ |
04 2| ! T E
1:2_3% §Sg|UJ1|z|3J4|5|6[7{8|9|10|11|§ iLz|1|2|3|4|5|6|0|7|8|{]|9|0|§
1'3\9|115 : ! :
olZ{sfo ! b]

Figure 2.13.: Quadtree explained. Left: image subdivided in quadrants. Center: corresponding
leaf node indices. Right: leaf nodes replaced by 0 when no occupancy. (Image by Wang et al.
(2017))

Similarly, a voxel grid can be divided into eight equal subparts to convert it into an octree. The
primary advantage of octrees is their ability to significantly reduce the memory size required for
storing sparse voxel clouds. However, it is important to note that not all octree-based CNNs use
the same type of input. In the case of OctNet, a hybrid octree with a specified maximum depth
was developed to address the challenge of efficiently accessing underlying data.

24

2.4. Neural Network Architectures with 3D inputs

OctNet and OCNN are not limited to using occupancy data as input; they can also utilize ad-
ditional features such as normal directions and colors. This flexibility allows for the use of
irregularly sized point clouds or meshes as input, provided they are first converted into an oc-
tree structure. In experiments, OctNet was tested on both classification and segmentation tasks,
demonstrating performance that was either comparable to or better than VoxNet. Moreover, Oct-
Net was capable of processing grids with sizes up to 2562, a feat that was not achievable with
VoxNet.

Publication
OCNN is publicly available to use in Pytorch. OctNet is currently only available in C++.

convolution pooling ~ ees e convolution pooling

normal field

-1 L wﬂq

+

octree input (d-depth)

Figure 2.14.: Visual representation of OCNN model. (Image by Wang et al. (2017))

2.4.3. MeshCNN

Hanocka et al. (2019) propose that 3D shape predictions can be made by directly feeding a
neural network with a mesh—an approximate representation of a shape using vertices and faces.
The primary advantage of using meshes as network input lies in their ability to better preserve
fine details and sharp edges of shapes. Moreover, using meshes requires minimal preprocessing,
making it a more efficient approach for certain tasks. MeshCNN addresses the challenge of irreg-
ular input data by employing specially designed convolutional and pooling layers that operate
directly on the edges of the mesh.

In practice, however, the use of MeshCNN is expected to be limited by several factors. Firstly,
the network can only process manifold meshes, which are meshes where every edge belongs to
exactly two faces. Although manifold mesh datasets are available for both classification and
segmentation tasks, it is common in practice to encounter geometry that is not fully manifold.
Secondly, MeshCNN is restricted to shape features as input, meaning that the mesh is represented
as a collection of edges along with some of their associated features.

The study by Hanocka et al. (2019) demonstrates that MeshCNN is suitable for both classification
and segmentation problems.

Publication

The implementation of MeshCNN is publicly available in PyTorch, making it accessible for further
research and application.

25

2. Related Literature

2.4.4. Multiview CNN

An intriguing approach to address the irreqularity of 3D geometry involves using 2D rendered
images of an object from multiple perspectives. Conceptually, this approach is straightforward:
2D images are rendered from various views of a model, and a traditional CNN is employed to
analyze each pixel.

MVCNN (Ma et al., 2017) utilizes this multiview representation as the model’s input. The camera
perspectives can be rendered either from consistent positions relative to the model or from more
random positions. When these images are fed into the model, they first pass through a convolu-
tional layer. The views are then aggregated and processed through a second convolutional layer
for classification purposes.

Publication

As of the time of writing, there is no implementation available for segmentation tasks.

2.4.5. PointNet

Another approach for handling 3D geometry involves using point clouds, which are sets of points
in three-dimensional space that outline the boundaries of an object. Research by Qi et al. (2016)
demonstrated that it is feasible to train neural networks directly on such 3D point clouds. In the
initial version of the PointNet model, the network is trained on batches of point clouds with a
consistent size. The input can also include additional dimensions, such as normal vectors or color
information. Once trained, the network can classify or segment 3D point clouds with the same
number of input points as used during training.

PointNet++ (Qi et al., 2017), an advanced version of the original PointNet model, is a hierarchical
neural network that subsamples points from the original point cloud using a neighborhood ball.
These subsamples, which are overlapping regions of points, collectively describe the original
geometry. The smaller version of the PointNet model is then used to make predictions on these
subsets of points, with weights that can be shared across the subsamples. PointNet++ employs
a recursive subsampling approach, where each step processes fewer points, thereby focusing on
a smaller region. Finally, PointNet++ includes a grouping layer that concatenates information
from all detail levels.

Qian et al. (2022) propose an advanced version of PointNet++ called PointNeXt, which intro-
duces optimized training strategies and several new layers, making the model more scalable.
Their research indicates that PointNeXt outperforms Transformer-based point cloud models in
several experiments.

Other researchers, such as Zhao et al. (2021), suggest that Transformer-based neural networks
can also be utilized to classify and segment point clouds. Due to their permutation invariance,
Transformer models are naturally suited for handling point clouds. However, Transformer-based
networks are generally known for their complexity in fine-tuning and their computational ex-
pense.

Publication

All versions of PointNet are available in both Pytorch and Tensorflow.

26

2.4. Neural Network Architectures with 3D inputs

2.4.6. Model Discussion

All the models discussed have potential for implementation in predicting solar irradiation on 3D
urban geometry, albeit with varying degrees of required modification. However, several factors
could limit their performance and practical usability.

Limitations

3DCNN networks (e.g., VoxNet): While 3DCNNs like VoxNet could theoretically be adapted
for irradiation prediction, they are hindered by poor scalability. The primary limitation
is memory consumption; the number of values needing prediction far exceeds what was
proposed in the original VoxNet paper, making these models less viable for large-scale
irradiation prediction tasks.

Octree-based networks: These networks present a promising alternative to traditional 3D
CNN due to their more efficient handling of sparse data. The main challenges include
converting a mesh to the octree data structure and accurately indicating where irradiation
predictions are required. Addressing these challenges is crucial for successful implemen-
tation.

Mesh-based Convolutional Neural Networks: Mesh-based CNNs pose several challenges
for irradiation prediction. Firstly, the input mesh must be manifold, which is not always
guaranteed, especially in datasets derived from scanned building data. Additionally, the
mesh would need to be restructured so that the positions of the faces correspond to the
expected irradiation values. Due to these preprocessing demands, MeshCNN may not be
the most practical choice for this application.

Multiview-based networks: These networks face significant challenges in both prepro-
cessing and postprocessing stages. Converting 3D meshes and irradiation values into 2D
perspective views could lead to a loss of important information, given the limited perspec-
tives. Moreover, the subsequent step of reconstructing a 3D model from the 2D images
could introduce substantial overhead in processing time, further complicating their use in
practical applications.

PointNet-based networks: PointNet models require the input dataset to be converted into
point clouds. This conversion could be rapid if points are sampled randomly, but it may
become slow and cumbersome if points need to be reqularly spaced in a grid. However,
a significant advantage is that the point cloud not only represents the geometry but also
indicates the positions where irradiation values are expected, making PointNet a more
tailored solution.

2.4.7. Conclusion

From the literature review, both Octree-based CNNs and PointNet-based networks appear to
be viable solutions for predicting solar irradiation. However, given the superior performance of
PointNeXt in point cloud segmentation tasks, this research will focus on implementing PointNet-
based models for irradiation prediction.

27

3. Methods

The methods of this project are divided into five distinct steps: generation, simulation, paral-
lelization, prediction, and interaction. This section outlines each step, detailing the geometric
data used, the simulation processes, the deep learning model development, and the framework for
user interaction. Additionally, it discusses the parallelization techniques implemented and the
software employed throughout the project.

S E I e e e
n
i

Generation Simulation Parallelization Prediction Interaction

e m e

Dataset Model Result

Figure 3.1.: Workflow steps for this project: generation, simulation, parallelization, prediction and
interaction (Image by author)

The generation step focuses on the geometric data utilized, its retrieval methods, and necessary
preprocessing. This phase involves defining the types of geometric data required and outlining
how this data is sourced and prepared for subsequent stages.

In the simulation step, an overview of the simulation techniques employed is provided. This
includes a description of the simulation type, the parameters chosen, and the rationale behind
these selections. This phase ensures that the simulation outputs are accurate and relevant to the
prediction models.

Parallelization techniques are discussed to address the computational demands of the project.
This includes strategies for optimizing performance and managing resources efficiently, ensuring
that the dataset generation and simulation processes are completed in a reasonable time frame.

Prediction encompasses the development and training of deep learning models. This section
details the models used, the training process, and the evaluation metrics employed. The goal is
to create robust prediction models capable of delivering accurate results based on the geometric
data and simulation outputs.

The interaction step involves designing a framework for user engagement with the prediction
model. This framework facilitates the user’s ability to interact with and utilize the prediction
results effectively. The design and functionality of this framework are crucial for making the
prediction models accessible and user-friendly.

29

3. Methods

3.1. Framework

Initially, the framework was initially sketched in McNeel Rhino Grasshopper, and a single dataset
sample was generated. However, Grasshopper presented several challenges, such as limited
integration with Python 3-based packages and difficulty in parallelizing code due to memory
overhead.

To overcome these limitations, the project was transitioned to external Python code development.
This approach allowed for better integration with state-of-the-art Al development packages and
more efficient parallelization. The main software and packages selected for the workflow in-
clude:

e Grasshopper for workflow experimentation and visualization;

e GHPython for data 10 need for visualization;

e Python 3.10.14 for LBT-tools Honeybee Radiance and Rhino.Inside for dataset generation;
e AcceleRad, a GPU version of Radiance for simulation;

e Python 3.10.14 with Pytorch for irradiation prediction;

e Weights and Biases for hyperparameter tuning;

e Matplotlib for visualization intermediate training steps;

e The code of this thesis will be available on Github.

- O

Grasshopper Python Radiance/ Pytorch Weights and Github
AcceleRad Biases

Figure 3.2.: Software used for this project (logo’s by respective developer)

3.2. Generation

Generally speaking, researchers strive to use real physically observed data to train their neural
models. Although there are no dataset available which contain irradiation data on buildings, the
number of accurate urban 3D datasets have increased over the last few years.

30

3.2. Generation

3.2.1. Geometry source

The project utilizes the 3D BAG dataset (Peters et al., 2022), which provides 3D representations
of cities across the Netherlands in various file formats. This dataset is primarily based on the
Algemeen Hoogtebestand Nederland (AHN), which was obtained through LiDAR technology.

The 3D BAG dataset includes three levels of detail (LoD), each representing different accuracies
and details in urban geometry. For this project, the lowest Level of Detail (LoD) was chosen. This
level features building representations with irreqular vertical facades and simplified roofs with
flat surfaces.

.

LoD 2.2 LoD 1.3 LoD 1.2

Figure 3.3.: Different 'level of details’ (LoD) of the city center in Delft (Image by author)

The 3D BAG dataset is available in two formats: City/SON and .obj. The .obj format was selected
for this project. A custom Python script was used to convert .obj files into triangular meshes, which
were then visualized using McNeel Rhino and Grasshopper. Manual downloading of data from
the 3D BAG can be time-consuming due to numerous download links corresponding to specific
city coordinates. To streamline this process, a web scraper was developed. The download links
for the 3D BAG are named according to the size of the city block, horizontal coordinate, and
vertical coordinate. By iterating over the possible names, the scraper efficiently downloaded all
urban geometry from coordinates 8-208-480 to 8-392-568 (based on BAG version v2024.04.20
beta).

Figure 3.4.: Overview of the tiling system for downloading 3D BAG regions (Image by author)

31

3. Methods

3.2.2. Partitioning

For training the neural network on building geometry, the dataset was partitioned into smaller
patches, similar to previous research on solar irradiation prediction. Two patch sizes were used:
100 x 100 meters and 300 x 300 meters. Prior studies have indicated that using 100 x 100 meter
samples is necessary due to the limited processing capacity of the model. Additionally, the pre-
processing time for the samples does not scale linearly with sample size. Therefore, maintaining
smaller patch sizes is crucial to manage preprocessing time and computational efficiency.

3.2.3. Augmentation

Data augmentation is a potentially useful step in the generation process of this methodology, as
it can reduce preprocessing time and enhance the diversity of the training data. For the training
of neural networks, various augmentation techniques can be applied. In this project, three primary
augmentation approaches were considered:

e Translation: This involves shifting the outlines of the samples along the x and y axes. By
doing so, more samples can be extracted from a single 3D BAG file, effectively increasing
the dataset size without additional data acquisition.

e Rotation: Rotating the sample changes the orientation of the geometry. This approach
ensures that the neural network learns to recognize buildings from different directional
perspectives, mimicking real-world variations in orientation.

e Scaling: Scaling involves enlarging or reducing the size of the buildings. This method
helps the model generalize to buildings of various sizes.

In the implementation of this project, the first two augmentation methods—translation and ro-
tation—were employed. The scaling method was excluded because altering the building sizes
would result in geometries that do not accurately represent real-world dimensions, potentially
leading to confusion for the model. Moreover, the other two augmentation techniques were not
used in the final dataset development. It was determined that allowing additional computation
time was acceptable in exchange for obtaining more unique and realistically oriented building
samples, as will be described in the discussion of this thesis.

3.2.4. Point Sampling

As described in the previous chapter, it is required to convert the mesh geometry to point clouds,
to be able to feed them to PointNet based networks. For this research, two approaches have
been implemented:

e Regular Point Sampling
In regular point sampling, the points are arranged in a reqular grid to the greatest extent
possible. This process necessitates extensive preprocessing, during which the meshes are
discretized into quad mesh faces with dimensions approximately 1x1 meter. It is anticipated
that neural networks will more accurately predict irradiance values on a reqular grid due
to the consistency in point positions between samples. However, a notable drawback is
the complexity involved in generating the grid. A detailed overview of this procedure is
provided in Appendix A.

32

3.2. Generation

e Random Point Sampling
Given that PointNet-based networks are invariant to input permutations, it is feasible to
randomize point positions in an arbitrary order. Utilizing the Poisson Disk Point sampling
method (Yuksel, 2015), as implemented with the Open3D Python library, allows for the
efficient generation of random points with approximately equal spacing between them.

Other sampling techniques which could potentially be used for the prediction of irradiation are
described in appendix B.

3.2.5. Final Format

The samples in the dataset are stored in numpy arrays using the .npy file format. Each row in the
array describes a point, with the corresponding normal vector of the geometry. For visualization,
the mesh corresponding to the points is stored using a JSON string, which can be read by McNeel
Rhino.

[0 Yo 20 uo vo Wo]

LZn Yn Zn Up Un Wn]

Figure 3.5.: n x 6 matrix with x, y, z, and normal u, v, w point cloud data.

33

3. Methods

3.3. Simulation

After generating the geometric samples and corresponding point clouds, the annual irradiation
values can be computed using simulation software. Specifically, the GPU version of Radiance,
AcceleRad, was employed for these calculations. To facilitate parallelization and enhance pro-
cessing speed, the simulation was conducted directly in a Python 3 wrapper, rather than through
Grasshopper.

The simulation requires four types of data inputs: a geometric mesh, material properties, sen-
sor point locations, and weather data (figure: 3.6). To optimize performance, the complexity of
the original mesh was minimized to the lowest number of faces feasible, which simplifies the
construction of an octree graph inside AcceleRad. Sensor points were defined using the previ-
ously generated point clouds, and the weather data was provided in the from of an .epw file for

Amsterdam’.

To simplify the project, only one material with the following properties was used: reflectance
of 0.2, specular of 0.0, and roughness of 0.0. As of the time of writing, there is no available
data on the materials used in the 3D BAG data. Additionally, incorporating multiple materials
would complicate the prediction process using neural networks. Future research may address the
integration of material data into the simulation.

EPW Weather File

!

AcceleRad GPU
Mesh and sensor grid % Annual Solar Irradiation Simulator

[/ Radiance Parémétefs’//

—————————P Irradiation [KWh/m2]

/)

Figure 3.6.: Simulation principle using Accelerad. Materials have not been included due to lack
of data. (Image by author)

TEpw files can be downloaded from: https://www.ladybug.tools/epwmap/

34

3.3. Simulation

3.3.1. Parameter Convergence Test

Before conducting the simulations, parameters for the annual solar irradiation simulation have
to be selected. To facilitate this process, an automated convergence test script was developed.
Initially, a set of high parameter values was chosen, under the assumption that these values would
best approximate real light behavior.

Subsequently, the parameters were substantially scaled down. In total, 128 simulations were ex-
ecuted, with parameters being incrementally adjusted. Both GPU (AcceleRad) and CPU (Radiance)
simulations were performed to compare their performance.

The results of all simulations are presented in the following plot (figure 3.7). The y-axis repre-
sents the runtime of the simulations, measured for both CPU and GPU configurations. The x-axis
displays the errors, which are calculated as the difference between a given set of parameters
and the baseline simulation benchmark. The Root Mean Squared Error (RMSE) was used as the
metric to quantify this difference. The plot also features interactive capabilities, allowing users
to view the specific parameters associated with each sample by hovering the mouse over the plot.

As can be seen in figure 3.7c, maximum errors for GPU based simulations are significantly higher
than CPU based simulations. However, the standard deviations suggest only small difference
between CPU and GPU. Visual representations of the errors as can be seen in figure 3.7, suggest
that the maximum errors in GPU based simulations are only outliers. Therefore, the GPU param-
eters at the lower end of the elbow (figure 3.7b were selected as best ratio between time and
error.

Parameter Synthesized Selected
ground truth
Ambient Bounces (-ab) 14 7
Ambient Divisions (-ad)? 16384 1024
Ambient Super Samples (-as) 8192 512
Sampling (-c) 1 1
Direct Certainty (-dc) 0.75 0.75
Direct Pretest Density (-dp) 512 512
Direct Relays (-dr) 3 3
Source Substructering (-ds) 0.05 0.05
Direct Tresholding (-dt) 0.15 0.15
Limit Reflection (-lr) 8 8
Limit Weight (-lw) 4e-07 4e-07
Specular Sampling (-ss) 1.0 1.0
Specular Treshold (-st) 0.15 0.15
Sky Density 145 145

Table 3.1.: Selected and benchmark parameters for Radiance and AcceleRad settings.

35

3. Methods

RMSE's for parameter convergence test

i
:
500 . ! .
o ". « *, L) . LL
¢ ® B RMSE [kWh/m2] * ° *
(a) AcceleRad parameters synthesized ground truth
H
i
:
500 . ' ° [RMSE: 7.52
: ® * RMSE [kwhim2] “ *
(b) Selected AcceleRad parameters
Max error's for parameter convergence test
s
i
. T
500 “
T AN) - o o me

0 a0
Maximum Absolute Eror (kwhimz]

(c) Maximum error in comparison to synthesized ground truth

Standard Deviation's for parameter convergence test

i
i
!
'y
. .. . L
° : B T e——— ” ” ”
36 (d) Standard deviation in comparison to synthesized ground truth

Figure 3.7.: Parameter Convergence Test for annual solar irradiation simulations. The blue dot
indicates the synthesized ground truth, red the CPU Radiance-based tests and green the GPU
AcceleRad-based simulations. In consecutive simulations, only the ambient bounces, ambient
divisions and ambient super samples have been changed.

Synthesized Ground Truth (CPU)
Irradiance [kWh/m2]

Parameter Convergence Test
Cumulative Annual Solar Irradiance [kWh/m2]

Sample 1 (GPU) Irradiance [kWh/m2]

Iradiance [kWh/m2

Error [kWh/m2]

3.3. Simulation

300

°
radiance Error (kWh/m2]

-100 £

-200

-300

Figure 3.8.: Parameter Convergence Test for sample 1 with parameters:

-ab 3 -ad 32 -as 16 -¢ 1 -dc 0.75 -dp 512 -dr 3 -ds 0.05 -dt 0.15 -lr 8 -lw 4e-07 -ss 1.0

Synthesized Ground Truth
Irradiance [kWh/m2

Figure 3.9.: Parameter Convergence Test for sample 34 with parameters:

(CPU)
1

0.15 -ag -1 -w

Parameter Convergence Test
Cumulative Annual Solar Irradiance [kWh/m2]

Sample 34 (GPU) Irradiance [kWh/m2]

600

Iradiance [kWh/m2

Error [kwh/m2]

st

300

200

100

°
Irradiance Error [kWh/m2]

L
8

-200

-300

-ab 7 -ad 1024 -as 512 -¢ 1 -dc 0.75 -dp 512 -dr 3 -ds 0.05 -dt 0.15 -lr 8 -lw 4e-07 -ss 1.0 -st

0.15 -ag -1 -w'

37

3. Methods

Parameter Convergence Test
Cumulative Annual Solar Irradiance [kWh/m2]

300

600

°

Iadiance [(kWh/m2
Iradiance Error [kWh/m?2]

-200

Synthesized Ground Truth (CPU)
Irradiance [kWh/m2] Sample 64 (GPU) Irradiance [kWh/m2]

Error [kWh/m2] e

Figure 3.10.: Parameter Convergence Test for 64 with parameters:
-ab 12 -ad 8192 -as 4096 -c 1 -dc 0.75 -dp 512 -dr 3 -ds 0.05 -dt 0.15 -lr 8 -lw 4e-07 -ss 1.0
-st 0.15 -ag -1 -w

Parameter Convergence Test
Cumulative Annual Solar Irradiance [kWh/m2]

300
800 200
100 o
o007 H
£ E
z T
3 o &
.
2008 g
£ 3
-100 £
200
-200
Synthesized Ground Truth (CPU) 0 _300
Irradiance [(kwh/m2] Sample 65 (CPU) Irradiance [kWh/m2] Error [kwh/m2]

Figure 3.11.: Parameter Convergence Test for sample 65 with parameters:
-ab 3 -ad 32 -as 16 -¢ 1 -dc 0.75 -dp 512 -dr 3 -ds 0.05 -dt 0.15 -lr 8 -lw 4e-07 -ss 1.0 -st
0.15 -w -g

38

3.3. Simulation

3.3.2. Final Format

After simulation, the irradiation values are added as column to the numpy data array. Together
with the x,y,z coordinates and the u,v,w normal directions of the mesh faces, it results in a ‘number
of points’ x 7 (32-bit float) shaped matrix (figure 3.12).

(o %o 20 uo wo wo FEyo]

LTn Yn 2Zn Un Un Wnp Ei;n_

Figure 3.12.: n x 7 matrix with x, y, z, and normal u, v, w point cloud data. The last column
indicates the irradiation values.

39

3. Methods
3.4. Parallelization

Given the CPU and GPU-intensive nature of the workflow described, parallelization of both the
dataset generation and simulation processes is crucial. Consequently, the project code was
implemented not only in Grasshopper but also in Python 3, utilizing the Rhino.inside library
along with the Honeybee Radiance package.

Dataset synthesis was parallelized using Python’s built-in ‘multiprocessing’ library®>. During
development, the optimal multiprocessing approach was not immediately evident. Ultimately,
it was determined that the pool.imap_unordered method was the most effective. This method
processes an iterable of samples across available CPU cores in an unordered fashion. It was
also found that limiting the number of tasks per CPU process (maztasksperchild) to a low value,
such as 1, is essential. Higher values lead to memory overflow issues after approximately 10,000
iterations due to inefficient memory garbage collection.

Generation and simulation process function
process = generate_and_simulate_samples()

Number of physical CPU cores
cpus = 18

Iterable of 3D BAG .obj files
args = list_of_obj_files

Initialize the pool

with multiprocessing.Pool (processes=cpus, maxtasksperchild=1l) as
pool.imap_unordered(process, enumerate (args))
pool.close()
pool.join ()

Figure 3.13.: Python code to run generation and simulation in parallel using the multiprocessing
library.

The desktop PC was able to generate about 10.000 100x100 reqular samples in 24 hours of
computing, including the simulation of the irradiation values. An overview of the entire multipro-
cessing system is shown in figure 3.14.

As described earlier, the execution of this code was only possible on desktop based on a Windows
non-server operating system. In this thesis, a high performance desktop was used with two Intel
Xeon E5-2640 v4 cPUs and two NVIDIA Quadro M6000 24GB GPUs.

3https://docs.python.org/3/library/multiprocessing.html

40

pool:

3.4. Parallelization

Preprocess Folder BAG
FileQ File 0
CPUOQ i
GPUO
[oPreproces [| Smulation f . Folder BAG
File 1 File 0
. :]
— Preprocess [| .. 7 ; ___________ Folder BAG
BAG files Simulation > Filen-1
CPUn-1 PUn
J o Preprocess f | . > Folder BAG
File n File n

CPUn

Figure 3.14.: Parallelization workflow for dataset generation and simulation (Image by author)

41

3. Methods

3.5. Prediction

As previously outlined, the synthesized datasets consist of samples structured as matrices with
dimensions num_points x 7, encompassing coordinates, normal directions, and irradiation values.
The primary objective of this research is to predict the final column of the sample data, which
contains the irradiation values, by utilizing the first six columns as input features for a deep neural
network model. To achieve this, several PointNet-based networks and configurations were trained
and evaluated to determine the extent to which a model can accurately predict irradiation.

In the following section, an overview of the methods and strategies employed for solar irradiation
prediction will be provided. This section begins with an exploration of the backbone models
used for prediction. Subsequently, challenges related to the dataset are addressed. The chapter
concludes with a detailed overview of the model's training, validation, and testing processes,
including hyperparameter optimization and metric selection.

3.5.1. PointNet

PointNet (Qi et al., 2016) is a deep neural network initially developed for the classification and
(part)segmentation of point clouds. An overview of the network architecture is presented in figure
3.15. PointNet utilizes two transformation networks as symmetric functions to ensure that the
input points are invariant to permutation and to extract global features. These transformation
networks are followed by several fully connected layers that predict the most likely class to
which an object belongs. For segmentation tasks, additional layers are included, where local
point features and global features are concatenated for each point. These concatenated features
are then passed through multiple multilayer perceptrons, which output the final result using a
one-hot encoding. Each entry in the one-hot encoding corresponds to a potential class label.
Since the segmentation version of PointNet predicts per-point values, this model was used as base

Classification Network

inpu.t m]p(6464) e feature e, m]p (641281024) [P max ISRTRRRRP mlp .

; g transform transform pool 1054 (512,256,k)
5 <
£ —%| shaed | E P [E | shaea | w0 (O
: é’_ i = = global feature X
: : : e output scores
' . i Lo point features m
33 g
=]
X g 2
n(x 1088 shared = shared g s
multiply = E'
; ; — z
mlp (512,256,128) mlp (128,m) .

Segmentation Network
Figure 3.15.: The PointNet architecture as proposed by Qi et al. (2016)
for irradiation prediction. Furthermore, the following changes were made to the base architecture,
to use it for this project:

e The softmax layer at the end of the model was removed. No activation function has been
applied to the final layer;

e The one-hot encoding vector was reduced to only one output value;

42

3.5. Prediction

As loss function, the MSE was used, which can be described by the following equation:
1N
P — Pppp— A, 2
MSE = N ;Zl(yl ¥:) (3.1)

In which N describes the total number of samples, y; the true value for the ith sample and §; the
predicted value for the ith sample.

Training PointNet in batches requires inputs to be fixed-sized arrays. Therefore, 10.000 points
were subsampled from the original points clouds, to make prediction. Inference after training also
allows feeding differently sized inputs.

3.5.2. PointNet++

The PointNet++ architecture (Qt et al., 2017) extends the original PointNet model with the
objective of capturing local context at varying scales. By employing a hierarchical feature learning
framework, PointNet++ can effectively process point clouds of different sizes. The architecture
is composed of three primary layers: sampling, grouping, and the PointNet layer.

In the sampling layer, points are not sampled in a random order. Instead, the Farthest Point
Sampling (FPS) algorithm is utilized. In this approach, an initial random point is selected, and
each subsequent point chosen is the one farthest from the previous point. This process continues
until all points have been selected, ensuring a more uniform coverage of the point cloud.

The grouping layer then selects subsets of points using a ball query algorithm, which identifies
all points within a specified radius from a selected point. The number of subsets generated may
vary depending on the size of the input point cloud.

Finally, the PointNet architecture is applied to predict values for each point within the subsets.
For segmentation tasks, the features of the subsampled points are propagated back to all original
points in the point cloud. Figure 3.16 illustrates the PointNet++ procedure for both classification
and segmentation. In this project, the segmentation procedure was employed, as previously
discussed in the PointNet section.

skip link concatenation

--

unit

1 interpolate ‘?nh
pointnet pointnet

interpolate

Classification

(1.C4)

—_— —

B
sampling &~ pointnet ~ sampling & ~ pointnet % g
grouping grouping = A
- @
N J\) =
Y Y B

set abstraction set abstraction —

pointnet fully connected layers

Figure 3.16.: The PointNet++ architecture as proposed by Qi et al. (2017)

43

3. Methods

3.5.3. PointNeXt

PointNeXt (Qian et al., 2022) builds upon and enhances the PointNet++ architecture, achieving
optimized model performance through several key improvements. Firstly, state-of-the-art tech-
niques for optimizers and learning rate schedulers were implemented, accompanied by further
fine-tuning of hyperparameters. Secondly, it was discovered that reducing the radii used in the
grouping layer led to a performance improvement of several percentage points. Lastly, various
model scaling techniques were explored, resulting in even greater performance gains.

Given that PointNet++ is a relatively compact network, adjustments were necessary to scale
the model effectively. To address this, an Inverted Residual Multi-Layer Perceptron (InvResMLP)
was introduced after the Set Abstraction layers. Figure 3.17 illustrates these modifications in
comparison to the original PointNet++ architecture.

T
ok o o
s) - g 2
z & |5 7] = g S ol
s g 5<U B @« @ s 2] =]
o] 2 |a > | = (S =y 2 3 =
212 = 2] 1] : o] S
gSlz1 2|2 > | 5 o = S —8 8
g |E gz gz =5 g % ® =
S|~ 2| e g Z|g B % z 3
B =] s |2 = % @Q = B
(321 - g~ (Elg|l & |3 N32]
[N/4,64] o' | B N/4,64
[N/16,128] E [N/4,64]
[N/64,256] N2S6ST) I[N/64,256]I I[N/l(,,.zgjl
) . i
T The differences
2 o £|7 alZ2lm 2|2 % E between the proposed
_Llgls (5| 3 S8 5|5]] PointNeXt and the
E|S 2|8 £ sl 2| 2 = classical PointNet++ are
= = S. 2|3 5 S A A
2R [&12g(8|8 3 | concat | & highlighted in red
~ borders.

Figure 3.17.: The PointNeXt architecture as proposed by Qian et al. (2022)

The PointNeXt research offers models at four different scales: S, B, L, and XL, with the latter
two being most relevant for this project. All four architectures were trained, validated, and tested

to compare their performance.

For this project, the hyperparameters of the PointNeXt segmentation model served as a baseline
for predicting solar irradiation. Subsequently, several hyperparameters were tuned specifically
for the dataset, loss functions, and model.

The following section will describe the various layers of PointNeXt within the context of solar
irradiation prediction based on point clouds, as required for this research. According to the

original implementation, PointNeXt requires two inputs: batches of point clouds with x, y, z
coordinates, and corresponding features derived from positional coordinates and normal values.

44

3.5. Prediction

Encoder

The encoder’s initial layer consists of a shared MLP (Conv1D block) that maps the input features
to a higher-dimensional space without reducing the size of the point cloud. Following this, a
SetAbstraction block, based on the PointNet++ architecture, is employed. The SetAbstraction
block is composed of four key components:

Subsampling

Points are subsampled from the input based on the stride®. For instance, a stride of four reduces
the number of points by a factor of four. As illustrated in figure 3.17, this subsampling process
occurs four times across four SetAbstraction blocks, reducing an original point cloud of 10,000
points to 39 points by the end of the encoder block.

Subsampling

Figure 3.18.: Subsampling layer in the PointNeXt network (Image by author).

Grouping

Two hyperparameters, radius and nsample, define the grouping process. Points within the spec-
ified radius around the subsampled points are selected, with the number of points determined by
nsample. The features of these grouped points are aggregated, optionally incorporating features
from local skip connections.

=1
2

Grouping r:
Grouping r:

Depth 1
Depth 2

Figure 3.19.: Grouping layer in the PointNeXt network (Image by author).

With each successive SetAbstraction block, the radius used for grouping is doubled. For example,
starting with an initial radius of 0.1 and progressing through four SetAbstraction blocks results
in a maximum radius of 0.8. If the dataset coordinates are normalized to the [0,1] domain, the
maximum receptive field for the SetAbstraction blocks is 80 meters in real units (given a sample
size of 100x100m). Conversely, if the coordinates are normalized within the [-1, 1] domain, the

*For clarity, first-mentioned hyperparameters are highlighted in bold.

45

3. Methods

receptive field extends to 40 meters. This relationship highlights the interdependence between
dataset normalization and radius scaling.

MLP

The aggregated features undergo convolution using a Conv2D block, followed by 2D batch nor-
malization and a RelLU activation layer. The number of output channels for these convolutions is
governed by the width hyperparameter. With each new SetAbstraction block, the output channel
size is doubled relative to the initial width.

Reduction
The features are reduced using a max-pooling layer, which condenses the grouping process into
a single value.

—> MLPandreducton —>

Figure 3.20.: MLP and reduction layer in the PointNeXt network (Image by author).

PointNeXt introduces the InvResMLP to enhance the scalability of the PointNet++ architecture.
The InvResMLP operates similarly to the SetAbstraction block, with several notable differences:

1. The subsampling layer is omitted, ensuring that the point cloud retains the same size as
the input.

2. A residual connection is introduced from the input to the output.
3. An additional MLP layer is appended before reduction, enabling pointwise feature extraction.

4. The block is repeated, with the output channel size multiplied each time, according to the
expansion hyperparameter.

5. The grouping radius is doubled after the preceding SetAbstraction block.

As a result of the radius doubling, the final receptive field from the encoder expands to 160 meters
in the [0,1] point coordinate domain and 80 meters in the [-1, 1] domain.

46

3.5. Prediction

Residual Layer

Residual Layer

Figure 3.21.:

. : ~ 2
L 2 o g
"
g _, L35 = LN
£ S a 23
5 =~ 3 + o
o + 2 9
o % o 2
InvResMLP l
(block 1)
InvResMLP
(block 2)

InvResMLP layer in the PointNeXt network (Image by author).

47

3. Methods

Decoder

The decoder architecture in PointNeXt mirrors that of PointNet++. Subsampled points are
interpolated to match the original sizes at each encoder depth, using an MLP composed of a
Conv1D layer, one-dimensional batch normalization, and a ReLU activation layer.

Three point interpolation

——> Feature Propagation —>»

Figure 3.22.: Interpolation layer in the PointNeXt network (Image by author).

Head

The final head of the model begins with an MLP similar to those in the decoder, followed by a
dropout layer. The feature channels are then reduced to an output size of 1, corresponding to a
single irradiation value for each point.

3.5.4. Model Sizes

Without changing the architectures as suggested by Qian et al. (2022), the models exhibit the
following number of hyperparameters: PointNet 3.6M, PointNet++ 1.0M, PointNeXt-S 0.8M,
PointNeXt-B 3.8M, PointNeXt-L 7.1M, and PointNeXt-XL 41.6M.

3.5.5. Training, Validation and Testing

For this project, the implementation of the PointNeXt (Qian et al,, 2022) source code was used
as reference, using PointNet, PointNet++ and PointNeXt S, B, L and XL as base mark. The
models were trained by feeding point clouds with x,y,z coordinates and normal directions for the
geometry as feature inputs. For each point, the model regresses to a single value indicating the
predicted annual solar irradiation.

Normalization and Centering

The dataset is randomly split into a training, validation and testing dataset, balanced to an 80%-
10%-10% ratio respectively. Before feeding samples to the network, normalization of both inputs
and ground truth output values is applied. Tests were performed with min-max normalization into
the range [0, 1] and [-1, 1] for the output values. Similarly, point x,y,z coordinates were also
normalized to the [0, 1] and [-1, 1] domain.

48

3.5. Prediction

As described by Qian et al. (2022), subsets of points are renormalized after the Set Abstrac-
tion layers in PointNeXt, using a method called relative position normalization based on the
neighborhood query radius.

Normal values u,v,w indicating the geometric orientation of the mesh faces were not normalized
since they are already described in the [-1, 1] domain.

Experiments were performed with and without the centering of point clouds. Avoiding centering
results in geometric context (non-buildings) always having a z-value of zero.

Training Hyperparameters

For training, a batch size of 8 was used containing 10.000 points per sample, considering the
fact that the dataset samples must have at least 10.000 points based on the 100m x 100m grid.
In validation and testing, no point subsampling was applied. Similar to PointNext, Adamw was
used as optimizer with a cosine learning rate scheduler.

The final model was trained for 100 epochs. Hyperparameter tuning runs were based on 25
epochs.

Training hyperparameters that have not been mentioned in this thesis, were derived from the
PointNeXt source code.

Model Hyperparameters

Within the finetuning process of the model, several model hyperparameters were considered:

e width: the width of the output multi-layer perceptrons (doubling the width, quadruples the
number of model parameters);

e nsample: the number of neighbors queried in each model block (since the point features of
the neighbors are aggregated, the number of model parameters does not change);

e radius: the initial radius for the model point sampling;
e expansion: the expansion ratio of the InvResMLP block, as described by Qian et al. (2022);

e voxel max: maximum number of points sampled per point cloud in training;

Performance Metrics

Training, validation and testing performance were evaluated using both regression and classifi-
cation metrics.

e In training, the loss is backpropagated using case specific loss functions: MSE, WMSE, Delta
Loss and Reduction Loss;

e For performance comparison between different loss functions, the MSE is always computed
for each training step;

e Finally the RMSE in KWh/m2 is used as more indicative value for real-life usage.

Furthermore, the predicted and ground truth irradiation values have been classified by converting
them to ten bins (0-100 kWh/m2, 100-200 kWh/m2, ..., 900-1000 kWh/m2). Based on these bins,
classification scores can be used to measure performance.

49

3. Methods

e Using the classification bins, it was possible to compute accuracy, precision, recall and

f1-scores;
Accuracy — TP+TN
Y = TP TN+ FP+ FN
Precision = 7TP
ecision = TP L FP
TP
R = ——
ecll = 7p PN
F1 Score — 2 - Precision - Recall

Precision + Recall

(32)

(33)

(3.4)

(35)

in which T'P (True Positives) is the number of correct positive predictions, TN (True Neg-
atives) the number of correct negative predictions, F'P (False Positives) the number of
incorrect positive predictions and F'N (False Negatives) the number of incorrect negative

predictions.

e The performance per irradiation bin was evaluated using multi-class confusion matrices for

each validation and test step.

e Micro/macro averaged F1-scores can be used for overall multi-class performance. In prob-
lems where each class (irradiation bin in this context) is equally important, the macro
averaged F1-score should be used. Micro averaged F1-score can be seen as an overall

accuracy considering all individual bins.

2. TP

Micro-averaged F1-Score =

1 n
Macro- d F1-Score = — > " F1-score;
acro-average core n score

i=1

2. TP+ FP +FN

(3.6)

(37)

Finally, the overall performance was visually evaluated using colored point clouds, indicating the

difference between predicted irradiation and ground truth.

3.5.6. Dataset Imbalance

As can be seen in figure 3.23, expected irradiation values are not equally distributed in the
dataset. Most of the values tend to be relatively high, due to full exposure of the geometry to
the sun. This dataset imbalance can result in the model seemingly performing well, but actually

predicting higher values preferably.

Figure 3.23 shows a histogram with binned irradiation values. For the XL dataset on 100x100m
samples with regular point clouds, 325 million points were sampled of which 46,7% (152 million)

50

3.5. Prediction

1e8 Solar irradiance distribution over points

Point frequency
o
b

[0 - 100) [100-200) [200-300) [300-400) [400-500) [500-600) [600-700) [700-800) [800-900) [900 - 1000}
Solar Irradiance [kWh/m2]

Figure 3.23.: Imbalance over the irradiation spectrum in the dataset

is part of the 900 kWh/m2 to 1000 KWh/m2 domain. This suggests a significant imbalance in
the expected irradiation values of the dataset. To overcome this issue, several strategies have
been explored. Firstly, one could consider to undersample the dataset. Simply said, samples are
manually picked which have an equal distribution of irradiance values. However, in case of this
research, this approach has two downsides:

e The limited size of the dataset is significantly reduced;

e The model is trained on a-typical samples which do not necessarily represent common
evaluation and test samples.

Alternatively, it is possible to use a weighted loss function, in which uncommon values get a
higher penalty than common irradiance values. For this research, three loss functions have been
designed which potentially overcome dataset imbalance:

1. Reduction loss is based on MSE. However, the expected irradiation values are first converted
to classes using bins. The bin with most points is then reduced to the size of the second-
largest bin. Only a selection of points in the largest bin contribute to the overall loss of
the prediction. This approach is deemed useful, since the irradiation dataset typically only
has one bin which is significantly higher than the others.

A bin C; can be mathematically be described as:
Cj =A{wilBj-1 <y < Bj} (3:8)
e (C;: A bin with irradiation values;
e y;: True value for the i-th sample;
e Bj: Bin treshold j;

where By, Bs, ..., B, — 1 denote the boundaries or tresholds of the bins. The bin with the
maximum size C),q, can be computed using:

Cmaz = argmaz;n; (3.9)

The size of bin Cy,4, is randomly reduced to the size of bin Ciecond—maz-

The new point cloud with the reduced largest bin is used to compute the MSE.

51

3.

52

Methods

2. Delta loss works similar to the well-known Huber loss. Just like Huber loss, some of the
errors are penalized using the MSE, other (mainly smaller) errors are penalized using 1
loss. However, in contradiction to Huber loss, delta loss makes a distinction between the
MSE and |1 based on the expected outcome, not on the error itself. Therefore, it is possible
to penalize irradiation values in larger bins with |1, and smaller bins with MSE.

Ly —)2 Folas — 6] <
Huber Loss — Z 3 (i = i)) Fly: = dil <0 (3.10)
N &~ (\yz gil — 50) i lyi —Gs| >0
N
1 D2 i |y <6
Delta Loss = Z y l lvil < (3.11)
N~ m gl iyl >0

with:
e N: Total number of samples;
e y;: True value for the i-th sample;
e y;: Predicted value for the i-th sample;
e §: Threshold that determines the cutoff between MSE and L1 loss.

3. In WMSE, each bin class gets a weight, which is used to multiply the MSE of a given
prediction. Thus, the weight is based on the expected value, not on the individual error of
a given value prediction. In this project, the largest bin of irradiation values gets a weight
of 0.25, and all others 1.0. This corresponds with the ratio of the size differences.

N
1

Weighted MSE = — 3" w; (i — §:)? 12

eighted MS Ni:1wl(y Ui) (3.12)

e N: Total number of samples;

y;: True value for the i-th sample;

9;: Predicted value for the i-th sample;

w;: Weight of value i based on the corresponding bin.

3.6. Interaction

3.6. Interaction

Architects and designers typically do not possess a programming background, making it crucial to
develop an intuitive approach for interacting with the Al model. Given that the dataset is derived
from Honeybee simulations, the decision was made to implement the project in a manner that
allows the code to be visually accessible through Grasshopper and McNeel Rhino. Addition-
ally, this chapter will propose potential future implementations, considering broader contexts as
outlined in the introduction of this thesis.

3.6.1. Preprocessing

Similar to the dataset development process, samples intended for evaluation by the prediction
model must undergo preprocessing to be formatted correctly. Since many of the functions used
for this preprocessing are based on Rhino Python packages, it was decided to implement these
within Grasshopper itself. The Python code can be transformed into a Grasshopper plugin, thereby
consolidating all the necessary preprocessing steps into a single tool.

To enhance the efficiency of preprocessing, several steps were delineated. First, the user must
be prompted to specify the location where the building will be designed. By providing the
coordinates of the specific location, the code should automatically download the corresponding
city patch from the 3D BAG website and convert it into the correct format.

Secondly, a distinction should be made between context and design geometry. Context geometry
refers to all objects in the scene that will not be modified by the designer. This distinction is
particularly beneficial in an optimization process, as it allows the preprocessing phase for most of
the geometry to be conducted only once. Conversely, the design geometry, which constitutes the
building being designed or developed by the designer or computer, requires the preprocessing
phase to be repeated for each design iteration.

Finally, both context and design geometry are combined into a preprocessing node that generates
a point cloud, which will be used for prediction.

3.6.2. Live Prediction

In contrast to the preprocessing phase, the evaluation using the neural network must be executed
through a specific Python 3 interpreter. Grasshopper, however, is limited to lronPython, which
makes direct execution within it impossible®. Moreover, it is crucial that the designer software
utilizing the code does not impose limitations on the network’s usage.

Several techniques were explored for executing the neural network. Initially, it was found possible
to call a command prompt through the os.system() and subprocess.Popen() functions to run
the code from a Miniconda environment. This approach is similar to how Honeybee invokes
Radiance/AcceleRad programs. However, it resulted in significant overhead. First, booting the
command window was relatively slow. Additionally, executing the code required loading all the
necessary Python packages, which introduced several seconds of delay. While this delay might be
acceptable for a single evaluation, it becomes a substantial bottleneck in large-scale optimization,
reducing overall efficiency.

5In this project, Rhino 7 was used. Rhino 8 has new tools available in Grasshopper to used CPython packages.

53

3. Methods

A more efficient solution can be developed in the form of a server-client system (Figure: 3.24.
In this setup, the server is initiated using the subprocess.Popen() method. The server preloads
all the required Python packages in a Python 3 environment for running the neural network. An
open connection is then established on the local machine using a socket system. Once the server
is running, the client, which resides within the Grasshopper environment, gathers the point cloud,
encodes it to bytes, and sends it to the server. After the server processes the point cloud using
the neural network, the irradiation values are sent back to the client. This approach offers several
advantages:

e Loading the Python packages only takes place once;
e The client can be easily implemented in different types of software;

e The client can send data to other machines, such as a Renderfarm of Supercomputer through
a given port. This allows large numbers of prediction to be computed in a short timeframe.

3D BAG context ':

~

900 ki
124 kW0

126 KWW

113k

ONLY USE THIS RESULT AS ESTIMATION
DOES NOT REPRESENT REAL RESULTS!

Figure 3.24.: The client-server system in Grasshopper, in which the server preloads all the pack-
ages. New data is sent from the client to the server. (Image by author)

54

3.6. Interaction

3.6.3. Visualization

Based on the type of point cloud—either reqular or random—the irradiation values can be visual-
ized in Rhino using a mesh or colored point cloud, respectively. While generating a colored mesh
was previously explored using the Ladybug package, it was found to be relatively slow. To ad-
dress this, a new approach was implemented in Python, significantly enhancing the performance
of visualization.

3.6.4. Optimization

By connecting the irradiation values from the client to a brute-force optimizer, such as Galapagos®,
it is possible to optimize a design efficiently. To show the potential of this procedure, the following
methodology was defined:

Design assignment: development of a tower in which the sun exposure on horizontal surfaces
(ground & roofs) is maximized and sun exposure on vertical elements (facades) is minimized.

Fitness function’:

. Z Ei'ho’r Z Ei:ver
Fit == 1- = 3.13
Hness = - 1000 | Ter - 1000 (313)

with:
® > E;por Annual irradiation on horizontal surfaces;
® n50-: Number of sensors points on horizontal surfaces;
® > Ei.er Annual irradiation on vertical surfaces;
® n,.-: Number of sensors points on vertical surfaces.

Execution: The optimization process can be conducted in two ways: sequential design evaluation
or batch design evaluation. In batch evaluation, point cloud sizes are padded to match the sample
with the highest number of sensor points within the batch. This approach is particularly beneficial
for devices with substantial VRAM, as it enables the simultaneous evaluation of multiple samples
during the optimization process.

3.6.5. Conclusion

This chapter has detailed how architects and designers can interact with the Al model in a
user-friendly environment, combined with an optimization procedure.

6https://ieatbugsforbreakfast.wordpress.com/ZO11/03/04/epatp501/
"This is a simplified fitness function. In reality, the area of mesh faces corresponding to the sensor points, should also
be taken into account.

55

4. Analysis

In this chapter, conclusions will be drawn from the outcomes of the methods described in previous
sections. The chapter is structured as follows: first, it presents the results related to dataset
generation, simulation, and parallelization. Next, it provides an overview of the performance of
PointNet, PointNet++, and various PointNeXt configurations. Finally, it addresses the findings
from the interaction experiment previously discussed.

4.1. Dataset Generation, Simulation, and Parallelization

This section discusses the results obtained from the dataset generation, simulation, and paral-
lelization methods. It includes a visual evaluation of the generated samples and an analysis of
any errors that occurred during the process. Additionally, the computation time associated with
the parallelization approach is summarized.

4.1.1. Dataset Sizes and Types

As part of this research, four distinct datasets were developed, each containing urban geometry,
a corresponding point cloud description, and irradiation values. The properties of these datasets
are detailed in Table 4.1. The first dataset comprises 18,380 samples with point clouds organized

Name Patch Size Point Sampling Strategy Number of Samples
dset100xl_regular 100m x 100m Reqular 18.380
dset100_xl_random 100m x 100m Poisson Disk 21.601
dset300_s_reqular 300m x 300m Reqular 2.206
dset300_s_random 300m x 300m Poisson Disk 2.602

Table 4.1.: Four datasets developed with distinct properties.

in a reqular grid. The second dataset contains slightly more samples, totaling 21,601, owing to
the use of the Poisson Disk point sampling technique. Specifically, the preprocessing phase for
regular point grids is more prone to errors, which necessitates the exclusion of some samples due
to incorrect geometry.

While the neural network proposed in this research is trained on relatively large patches of 100m x
100m, it is also valuable to assess its performance on larger-scale samples of 300m x 300m. These
larger samples are derived from the same volume of 3D BAG data as the previously mentioned
dataset. Due to the increased area (a factor of 9 times larger), the number of samples in this
dataset is approximately one-ninth of the smaller dataset. The prediction approach proposed in
this thesis is less sensitive to memory consumption compared to previous work on 3D irradiation
predictions by Han et al. (2022), allowing it to handle significantly larger patches.

57

4. Analysis

For both the 100m x 100m and 300m x 300m samples, point coordinates have been normalized
to the [0,1] or [-1,1] domain before being input into the neural network.

4.1.2. Generation

Despite extensive efforts to optimize the geometric preprocessing and simulation code, residual
errors in the dataset remain evident. A comprehensive visual evaluation of 1,000 reqular point
cloud samples (see Figures 4.1 and 4.3) has identified several specific issues:

Leveling Buildings: To simplify the prediction process, buildings were leveled by adjusting
all vertex coordinates to ensure the lowest vertices were at z = 0. This adjustment unin-
tentionally distorted roof height differences (Figure: 4.2c). A more precise approach would
involve only translating the lowest vertices while preserving relative roof heights.

Boolean Splitting Accuracy: The boolean splitting procedure employed during preprocess-
ing has proven insufficiently accurate. The reqular ground mesh is split, and the resulting
elements are repositioned to form roofs. Figure 4.2a highlights missing triangular faces in
the roofs. Future improvements could involve using more advanced splitting algorithms or
implementing stricter area difference checks between expected and actual geometry.

Intersecting Walls: Figure 4.2b indicates issues with the 3D BAG data, particularly con-
cerning intersecting walls between buildings. This results in roofs being placed at incorrect
heights. This issue could be mitigated by detecting and resolving building outline inter-
sections before performing the ground mesh split.

Cut Off Corners: Figure 4.2d shows that certain mesh split operations fail to accurately
follow building outlines, leading to incorrectly cut-off corners. This issue may be resolved
by employing more advanced splitting algorithms or using lower tolerance thresholds.

Point Cloud Reduction: In some cases, the point cloud reduction algorithm, designed to
remove dividing walls, failed to eliminate points at the ground level. This problem is likely
due to rays not intersecting with nearby wall mesh faces because they intersect only with
face edges. A potential solution could involve slightly moving these points upward before
applying the reduction algorithm.

Given that only 1,000 samples were visually evaluated, the exact proportion of erroneous samples
within the entire dataset cannot be precisely determined. However, empirical evidence suggests
that fewer than 5% of the reqular dataset samples contain errors, most of which are relatively
minor.

58

4.1. Dataset Generation, Simulation, and Parallelization

(a) Sample 57 (b) Sample 113

(c) Sample 139 (d) Sample 190

(e) Sample 294 (f) Sample 364

(g) Sample 779 (h) Sample 909

Figure 4.1.: A set of manually picked preprocessed dataset samples with distinct urban typologies.
Blue colors indicate the ground context mesh, orange colors facades and green colors roofs.

59

4. Analysis

(a) Missing trianqular faces. (b) Intersecting walls.

(c) Incorrect ground height. (d) Roofs incorrectly split.

Figure 4.2.: A set of dataset samples with errors in the preprocessing procedure. Blue colors
indicate the ground context mesh, orange colors facades and green colors roofs.

(a) Sample 69 (b) Sample 335

(c) Sample 364 (d) Sample 494

Figure 4.3.: A set of manually picked point clouds, based on the geometry in the dataset. Orange
colored points relate to vertical surfaces. Blue colors indicate horizontal surfaces.

60

4.1. Dataset Generation, Simulation, and Parallelization

4.1.3. Simulation

To gain a more detailed understanding of the irradiation values within the datasets, a histogram
was generated for the reqular 100m x 100m dataset. This histogram combines the data from the
training, validation, and testing sets, providing a comprehensive overview. The dataset encom-
passes a total of 324,913,022 sensor points, each representing a location where solar irradiation
predictions will be made.

As illustrated in Figure 4.4a, the irradiation values are binned into intervals of 100 kWh/mZ2.
The distribution reveals that values within the 900-1000 kWh/m? range are significantly more
prevalent compared to other ranges. This predominance is due to the full solar exposure received
by the geometry at these locations, which naturally results in higher irradiation values.

In total, 151,704,158 sensor points fall within this 900-1000 kWh/m?2 bin, which constitutes 47.7%
of the entire dataset. The skewed distribution towards higher irradiation values suggests that
much of the geometry in the dataset receives substantial solar exposure, which could influence
the performance of the prediction models and may require careful consideration in the training
process to avoid potential biases.

(a) Reqular dataset (b) Poisson Disk dataset

Figure 4.4.: Irrradiation distribution for the regular and Poisson Disk 100m x 100m dataset.

Similarly, the random dataset consists of 369,907,058 sensor points, with 141,899,798 of these
points falling within the 900-1000 kWh/m? range, accounting for 38% of the dataset (Figure 4.4b).
The most notable difference between the two dataset distributions is the substantially larger O-
100 kWh/m?2 bin in the randomly (Poisson Disk) sampled dataset. This increase is primarily
due to the presence of dividing walls in the geometric data, which have not been removed and
therefore receive no irradiation.

Based on the dataset distributions, it can be concluded that there is an imbalance in the expected
irradiation values. A solution to this problem will be described in section 4.2.5.

61

4. Analysis

4.1.4. Parallelization

As previously discussed, sequential synthesis of dataset samples was not a feasible option for this
project. The optimization achieved through parallelization led to significant speed improvements,
as shown in Table 4.2. The results indicate that Poisson Disc sampling slightly outperforms requ-
lar point sampling in terms of efficiency. However, it is important to note that reqularized meshes
were generated in both sampling methods. Further research could potentially reduce overall
computation time by applying the Poisson Disc sampling method to simpler, rough geometry.

Dataset Point Sampling Processes (cores Samples Computation
used) time (s)

100m x 100m reqular 1 100 3.965

100m x 100m reqular 18 100 608

100m x 100m Poisson Disc 18 100 591

300m x 300m Reqular 12 100 4.401

300m x 300m Poisson Disc 12 100 4.225

Table 4.2.: Efficiency of generation and simulation methods.

As shown in Figure 4.5, performance scores for each process are recorded in individual log files. If
a sample’s Ground Space Index (GSI) value is too low, the sample generation is skipped. However,
if the GSI value meets the threshold, the generation and simulation processes continue. These log
files provide a rough estimate of the timings associated with different preprocessing procedures.
Notice that the AcceleRad simulation accounts for the greatest computation time.

2024-06-22
2024-06-22
2024-06-22

2024-06-22
2024-06-22
2024-06-22
2024-06-22
2024-06-22
2024-06-22
2024-06-22
2024-06-22

20:
20:
20:

20:
20:
20:
20:
20:
20:
20:
20:

09:
09:
09:

09:
09:
09:
10:
10:
:52
:53
:53

10
10
10

47
47
47

47
47
56
01
02

INFO:
INFO:
INFO:

INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

Started computing patch[13].
GSI_score 0.0 of sample 13 not high enough to continue generating sample.
Finished computing patch([13] in 0.23s.

Started computing patch[14].

Started preprocessing mesh for patch[14] with GSI value of 0.43
Computing sensors for mesh patch[14]

Generating model for mesh patch[14] augmentation 0

Simulating irradiation model for mesh patch[14] augmentation 0
Saving mesh patch[14] and generating visualization

Finished preprocessing mesh for patch[14] in 65.57s

Finished computing patch[14] in 66.05s.

Figure 4.5.: Log with timings for the generation and simulation of a 100m x 100m Poisson Disc
sample in a specific parallelization child process.

62

4.2. Prediction

4.2. Prediction

In this section, the performance of irradiation prediction using PointNet-based neural networks
is evaluated. Initially, the networks provided by Qian et al. (2022) were tested on the irradiation
datasets described earlier, using the hyperparameters recommended by the original authors.
Subsequently, one of these models was selected for sequential hyperparameter tuning. Finally,
this section discusses performance in relation to dataset imbalance, inference, and alternative
dataset configurations.

4.2.1. Baseline Evaluation

The 100m x 100m reqgular dataset was evaluated using six models as recommended by Qian et al.
(2022): PointNet, PointNet++, PointNeXt-S, PointNeXt-B, PointNeXt-L, and PointNeXt-XL.
Figure 4.6 presents the results, with the number of training steps on the x-axis (corresponding
to 25 epochs) and the irradiation RMSE on the y-axis. Similarly, Figure 4.7 shows the validation
loss for the baseline models.

Train Loss RMSE [kWh/m2]

= base_PointNet = base_PointNet++ = base_PointNeXt_L = base_PointNeXt_S = base_PointNeXt_XL

200 |

100

60

WAL g
ANMA~ A
50 AR SMANNA A A A~
- AN A AAAIAANA

A
Step

20k 40k 60k 80k 100k 120k

Figure 4.6.: Irradiation training loss expressed in KWh/m? over 25 epochs.

As shown in the results, the PointNeXt-S model performs best on the validation dataset, achieving
a validation RMSE of 47.58 kWh/m2, followed by PointNeXt-L with a validation RMSE of 52.70
KWh/m2. The modifications introduced in the PointNeXt architecture, as evidenced by the low
training loss (train RMSE 44.91 kWh/m?2) and higher validation loss (val. RMSE 68.09 kWh/m?2),
demonstrate a performance improvement over the original PointNet++ architecture. The obser-
vation that validation loss is lower than training loss for all networks except PointNet++ may
be attributed to the dropout layer at the end of the network architecture, which is active only
during training.

After training, the models were validated using the 10% test dataset split to confirm the perfor-
mance suggested by the validation loss. Figure 4.8 presents results from the test phase, which
are consistent with the validation outcomes, with the PointNeXt-S architecture achieving the
lowest RMSE of 46.23 kWh/m2. To assess the general performance of the model, outlier RMSE-
per-sample values were plotted in Figure 4.9, showing the highest and lowest RMSE values from
the test dataset.

63

4. Analysis

Validation Loss RMSE [kWh/m2]

=— base_PointNet = base_PointNet++ base_PointNeXt_B = base_PointNeXt_L = base_PointNeXt_S = base_PointNeXt_XL v

50 /\—\/\,_\/\ Step

20k 40k 60k 80k 100k 120k

Figure 4.7.: Irradiation validation loss expressed in KWh/m? over 25 epochs.

Test Loss RMSE [kWh/m2]

PointNet

PointNet++

PointNeXt_B

PointNeXt_L

PointNeXt_S

PointNeXt_XL

0 10 20 30 40

Figure 4.8.: Test loss expressed in kWh/m? for 10% test split.

50 60 70 80

The overall performance distribution of the network was assessed using both macro-averaged and
micro-averaged F1-scores based on the test dataset (figure: 4.10). To compute these F1-scores,
the irradiation values were categorized into 100 kWh/m2 bins. The results suggest that the
PointNeXt-S model provides the best overall coverage across all irradiation values.

In summary, the baseline evaluation identified PointNeXt-S as the top performer, with the highest
scores and the lowest average test RMSE. However, initial experiments with alternative hyper-
parameter configurations indicated that PointNeXt-S struggles with scalability due to its limited
number of layers. As a result, PointNeXt-L was chosen as the benchmark for further hyper-
parameter optimization. PointNeXt-L achieved an average test RMSE of 52.46 kWh/m2, with a
minimum RMSE of 19.98 kWh/m2 and a maximum RMSE of 104.39 kWh/m?2.

64

4.2. Prediction

RMSE Domains

PointNet

PointNet++

PointNeXt_B

PointNeXt_L

PointNeXt_S

PointNeXt_XL

Figure 4.9.: Test loss domain from minimum to maximum expressed in KWh/m? for 10% test split.

Macro/Micro Avg. F1-scores

PointNet macro-avg. F1-score

PointNet++ macro-avg. F1-score

PointNeXt_B macro-avg. F1-score

PointNeXt_L macro-avg. F1-score

PointNeXt_S macro-avg. F1-score

PointNeXt_XL macro-avg. F1-score

PointNet micro-avg. F1-score

PointNet++ micro-avg. F1-score

PointNeXt_B micro-avg. F1-score

PointNeXt_L micro-avg. F1-score

PointNeXt_S micro-avg. F1-score

PointNeXt_XL micro-avg. F1-score

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4.10.: Macro and micro averaged F1-scores based on the test dataset.

4.2.2. Hyperparameter Tuning

In contrast to traditional hyperparameter tuning methods such as grid search and random search,
the optimization of PointNeXt for irradiation prediction was conducted through manual adjust-
ment of hyperparameters. This decision was driven by the limitations of available hardware,
which made training networks using automated hyperparameter tuning methods impractical. As a
result, the network configuration and dataset hyperparameters were adjusted based on empirical
observations and intuition.

The overall results of this optimization process are summarized in table 4.3 and 4.4. Each row in
the table represents a different model architecture configuration. Modifications included changes
to the loss function, dataset characteristics, model-specific hyperparameters, normalization tech-
niques, and the number of training epochs. The final section of the table presents the results
from training sessions where the most effective hyperparameters were combined, offering insights
into the performance improvements achieved through this manual tuning process.

65

Hyperparameter Tuning

Type Model Epochs Hyper- Dataset Normalization Loss Test Train Highest Lowest Macro avg. | Micro avg.
parameters® norm_min, irr Function RMSE® RMSEbie RMSE® RMSE® F1 score F1 score

base PointNet 25 None 100 regular [-1.1], [-1.1] MSE 86.87 93.49 134.19 2294 0.41 0.67
base PointNet++ 25 None 100 reqular =117, [-1.1] MSE 62.99 45.42 106.18 17.32 0.58 0.76
base PointNeXt-S 25 None 100 regular [-1.1], [-1.1] MSE 46.23 7133 73.69 19.58 0.61 0.78
base PointNeXt-B 25 None 100 reqular [-1,1], [-1.1] MSE 58.92 80.90 107.68 23.64 0.47 0.73
base PointNeXt-L 25 None 100 regular [-1,1], [-1.1] MSE 52.46 80.50 104.39 19.98 0.52 0.76
base PointNeXt-XL 25 None 100 reqular [-1,1], [-1.1] MSE 61.89 62.62 140.19 17.29 0.45 0.73
loss PointNeXt-L 25 None 100 reqular 1,1, [-1.1] Delta 58.77 100.48 11411 18.57 0.44 0.73
loss PointNeXt-L 25 None 100 reqular [-1,1], [-1.1] Reduction 54.28 82.10 110.34 22.05 0.49 0.75
loss PointNeXt-L 25 None 100 regular -1.1] -1 WMSE 53.87 86.90 90.86 28.46 0.53 0.73
dset PointNeXt-L 25 None 100 random? -1.1] -1 MSE 55.03 85.67 17517 16.43 0.60 0.75
dset PointNeXt-L 25 None 300 regular [-1.1], [-1.1] MSE 76.70 89.18 177.04 23.06 0.36 0.69
dset PointNeXt-L 25 None 300 random? =11 -1 MSE 83.22 90.62 176.17 29.18 0.38 0.67
hyperparam PointNeXt-L 25 expansion - 8 100 regular 115 -1 MSE 56.49 78.12 141.46 11.95 0.5 0.74
hyperparam PointNeXt-L 25 vox_max - 24000 100 reqular [-1,1], [-1.1] MSE 54.67 79.29 127.92 9.75 0.5 0.76
hyperparam PointNeXt-L 25 act - leakyRelLU 100 regular [-1.1], [-1.1] MSE 55.86 82.11 112.88 21.42 0.48 0.75
hyperparam PointNeXt-L 25 nsample - 128 100 reqular [-1,1], [-1.1] MSE 37.4 81.32 83.58 17.04 0.58 0.81
hyperparam PointNeXt-L 25 nsample - 256 100 reqular [-1.1], [-1.1] MSE 35.85 81.12 123.66 10.22 0.62 0.82
hyperparam PointNeXt-L 25 nsample - 128 100 reqular 1,1, [-1.1] WMSE 32.14 87.53 94.46 11.56 0.74 0.85
hyperparam PointNeXt-L 25 radius - 0.05 100 reqular [-1.1], [-1.1] MSE 41.70 77.08 163.73 13.62 0.66 0.83
hyperparam PointNeXt-L 25 radius - 0.025 100 regular [01], [-1,1] MSE 3251 78.41 77.2 15.36 0.63 0.83
hyperparam PointNeXt-L 25 radius - 0.025 100 reqular [-1,1], [-1.1] MSE 33.77 78.33 120.85 15.64 0.64 0.83
hyperparam PointNeXt-L 25 resdiual - True 100 regular [-1.1], [-1.1] MSE 46.34 75.07 72.25 19.09 0.58 0.78
hyperparam PointNeXt-L 25 stride - [1,2,2,2,2] 100 reqular [-1,1], [-1.1] MSE 50.23 83.36 90.96 22.02 0.51 0.77
hyperparam PointNeXt-L 25 stride - [1,3,3,3,3] 100 regular [-1.1], [-1.1] MSE 7139 81.93 133.05 21.19 0.39 0.7
hyperparam PointNeXt-XL 25 nsample - 128 100 reqular [-1,1], [-1.1] MSE 30.07 59.57 145.11 77.33 0.73 0.86
normalization PointNeXt-L 25 None 100 reqular [0,1], [-1,1] MSE 104.46 92.32 156.28 35.52 0.36 0.66
normalization PointNeXt-L 25 None 100 reqular [0,1], [0,1] MSE 93.05 101.57 138.34 33.72 0.39 0.68
normalization PointNeXt-L 25 None 100 reqular [-1,1],[0,1] MSE 57.7 80.93 106.39 19.27 0.46 0.75

@ None hyperparameters are expansion 4 vox_max 10000 act ReLU nsample 32 radius 0.1 residual False stride [1,4,4,4,4], ® Unit: kWh/m2, ¢ Averaged through time weighted EMA (smoothing factor

0.99),% Poisson Disc point sampling

Table 4.3.: Hyperparameter tuning part A

Hyperparameter Tuning

Type

Model

Epochs

Hyper-
parameters®

Dataset

Normalization
norm_min, irr

Loss
Function

Test
RMSE?

Train
RMSEbic

Highest
RMSE?

Lowest
RMSE?

Macro avg.
F1 score

Micro avg.
F1 score

epochs
epochs

PointNeXt-S
PointNeXt-L

100
100

None
None

100 reqular
100 regular

1.1 [-11]
[-1.1] [-1.1]

MSE
MSE

42.65
56.9

7212
77.91

90.22
107.51

19.57
21.22

0.63
0.47

0.8
0.74

super

super

super

super

super

super

PointNeXt-S

PointNeXt-L

PointNeXt-XL

PointNeXt-L

PointNeXt-XL

PointNeXt-L

25

25

25

25

25

25

nsample - 128
radius 0.025
stride [1,2,2,2,2]
residual T'rue
nsample - 128
radius 0.025
residual True
nsample - 128
radius 0.025
residual True
nsample - 128
radius 0.025
residual True
nsample - 256
radius 0.05¢
residual True
nsample - 128
radius 0.025
residual True

100 regular

100 regular

100 regular

100 random®

100 regular

100 reqular

(0.1], [-1.1]

(1.1 [-11]

11 1]

(1.1 [-11]

11 1]

1.1 [-11]

MSE

MSE

MSE

MSE

MSE

aWMSE

39.44

3242

24.04

37.27

24.85

37.42

73.95

7254

56.52

64.52

58.18

59.57

155.61

8212

76.82

78.21

136.48

137.06

18.8

15.8

10.36

11.51

8.8

22.44

0.61

0.69

0.79

0.71

0.79

0.75

0.79

0.84

0.88

0.84

0.88

0.83

hyper

hyper

hyper

hyper

PointNeXt-XL

PointNeXt-XL

PointNeXt-XL

PointNeXt-XL

100

100

100

100

nsample - 128
radius 0.025
residual T'rue
nsample - 128
radius 0.025
residual True
nsample - 128
radius 0.025
residual True
sample - 128
radius 0.025
residual True

100 regular

100 random®

300 regular

300 random?

ERASK)

1L 1]

1.1 [-11]

11 1]

MSE

MSE

MSE

MSE

29.42

21.10

36.71

48.53

56.43

58.65

62.52

66.68

158.38

15219

127.19

127.60

9.81

9.63

14.22

22.28

0.77

0.83

0.62

0.58

0.87

0.90

0.81

0.76

Table 4.4.: Hyperparameter tuning part B

@ None hyperparameters are expansion 4 vox-max 10000 act RelL.U nsample 32 radius 0.1 residual False stride [1,4,4,4,4] ® Unit: kWh/m?, ¢ Averaged through time weighted EMA (smoothing factor
0.99),% Poisson Disc point sampling, ¢ Increased due to higher nsample

4. Analysis

Normalization

The results presented in table 4.3 and 4.4 indicate that normalization plays a crucial role in
the overall performance of the model. Initially, it was hypothesized that normalizing both point
coordinates and irradiation output values to the [0,1] domain would yield the best network
performance. However, the findings reveal that normalizing these values to the [—1,1] domain
actually resulted in superior performance, as demonstrated in the baseline models (figure 4.11).
This adjustment in the normalization approach proved to be a key factor in optimizing the network’s
effectiveness.

Validation Loss RMSE [kWh/m2]

— PointNeXt_L coordinates [-1,1] irradiance [-1,1] = PointNeXt_L coordinates [-1,1] irradiance [0,1] = PointNeXt_L coordinates [0,1] irradiance [-1,1]
PointNeXt_L coordinates [0,1] irradiance [0,1] v
100
90
80 -
70
60

/\/\ﬁm

20k 40k 60k 80k 100k 120k

Figure 4.11.: Validation loss over 25 training epochs in KWh/m?, considering the normalization of
input point coordinates and the output irradiation values.

Radius and Nsample

The adjustments to the radius and nsample hyperparameters have proven to be the most impactful
in the optimization process (figure 4.12). Increasing the nsample from 32 to 128 resulted in a
reduction in average test RMSE from 52.46 kWh/m?2 to 37.40 kWh/m2, with only minor changes
observed in the lowest and highest test RMSE values. Additionally, reducing the radius from 0.1
to 0.05 achieved an average test RMSE of 33.77 kWh/m?2.

Further decreases in the radius did not lead to significant performance improvements. This is
likely due to the reduced global receptive field of the network. Similarly, increasing the ‘nsample’
from 128 to 256 did not enhance performance, possibly because the local context within the given
radius contained a limited number of points.

While modifying the nsample and radius hyperparameters affects performance, these changes

do not alter the network’s size or depth. However, increasing the nsample significantly extends
training time due to the larger local aggregation required in the grouping layer.

68

4.2. Prediction

Validation Loss RMSE [kWh/m2]
— PointNeXt_L — PointNeXt_L nsample 128 — PointNeXt_L nsample 256 = PointNeXt_L radius 0.025 PointNeXt_L radius 0.05 v
80 -

70

60

50

40

\V

20k 40k 60k 80k 100k 120k

Figure 4.12.: Validation loss over 25 training epochs in kWh/m?, considering radius and nsample
hyperparameters.

Global Residual Layers

The addition of residual layers between encoder and decoder (which were not recommended by
the original author) improved the performance to an average test RMSE of 46.24 kWh/m?. Figure
4.13 shows the validation loss during training.

Validation Loss RMSE [kWh/m2]
=— PointNeXt_L PointNeXt_L + Residual v
80 -

70

o V

50
Step

20k 40k 60k 80k 100k 120k

Figure 4.13.: Validation loss over 25 training epochs in kWh/m?, considering residual layers
between encoder and decoder blocks.

69

4. Analysis

Stride
Given that the number of points in the dataset is significantly smaller than those used to tune
PointNeXt, it was considered beneficial to lower the strides to increase the number of features

in the latent space between the encoder and decoder. Reducing the strides from [1,4,4,4,4] to
[1,2,2,2,2] improved the average RMSE to 46.34 kWh/m?2.

Validation Loss RMSE [kWh/m2]
= PointNeXt_L stride [1,4,4,4,4] = PointNeXt_L stride [1,2,2,2,2] = PointNeXt_L stride [1, 3, 3, 3, 3] S

A

20k 40k 60k 80k 100k 120k

Figure 4.14.: Validation loss over 25 training epochs in kWh/m?, considering the strides. Each
successive stride in the list, corresponds to a deeper encoder block.

Epochs

Qian et al. (2022) recommend training PointNeXt for 100 epochs. However, training all con-
figurations for 100 epochs would be inefficient for hyperparameter optimization. Therefore, the
model configurations in this research were all trained for 25 epochs. Figure 4.15 illustrates the
differences between training a network for 25 epochs versus 100 epochs. The default PointNeXt-
L configuration appears to perform optimally with only 25 epochs. Nonetheless, when higher
nsample values are used, extending the training period to 100 epochs positively impacts both
validation and test loss.

Training for more epochs does not always result in better performance, as is illustrated in table
4.3 and 4.4. The PointNeXt-XL network trained on reqular samples for 100 epochs shows a
higher RMSE than the network trained on 25 epochs. However, this may also be caused by the
fact that the testing loop was performed after the training loop finished, instead of using the
epoch with the lowest validation RMSE. Figure 4.16 shows that the validation loss of epoch 84
is lower (22.12 kWh/m?2) versus the validation loss after 25 epochs.

70

4.2. Prediction

Validation Loss RMSE [kWh/m2]

— PointNeXt_L 25 epochs — PointNeXt_L 100 epochs — PointNeXt_L 100 epochs (nsample 128) — PointNeXt_L 25 epochs (nsample 128) v
80 \
70
60
50
40
S
100k 200k 300k 400k 500k

Figure 4.15.: Validation loss over 25 and 100 training epochs in kWh/m2. Bottom two graphs
have an nsample value of 128 and the top two graphs an nsample of 32.

Validation Loss RMSE [kWh/m2]
= PointNeXt_XL (25 epochs) Nsample 128 Radius 0.025 with residual = PointNeXt_XL (25 epochs) Nsample 128 Radius 0.025 with residual s

40

Figure 4.16.: Validation loss over 25 and 100 training epochs in kWh/m? for configuration with
optimal hyperparameters.

Step

20 40 60 80 100

71

4. Analysis

Model Scaling

The influence of using a deeper network, PointNeXt-XL with 41.6M parameters compared to
PointNeXt-L with 7.1M parameters, is shown in figure X. Employing the deeper PointNeXt-
XL model appears to significantly enhance performance, especially when combined with higher
hyperparameter settings such as ‘nsample’ and ‘radius’.

Validation Loss RMSE [kWh/m2]

— PointNeXt_L Nsample 128 PointNeXt_L Nsample 128 Radius 0.025 Stride [1,2,2,2,2] with residual
PointNeXt_XL Nsample 128 Radius 0.025 Stride [1,2,2,2,2] with residual = PointNeXt_XL Nsample 128

Step

20k 40k 60k 80k 100k 120k

Figure 4.17.: Validation loss over 25 training epochs in kWh/m? for the deeper PointNeXt-XL vs
default PointNeXt-L

72

4.2. Prediction

Other Hyperparameters

Other hyperparameters, as detailed in table 4.3 and 4.4, did not have a significant effect on the
performance of the larger PointNeXt model for irradiation prediction (figure: 4.18).

Validation Loss RMSE [kWh/m2]
— PointNeXt_L = PointNeXt_XL = PointNeXt_XL nsample 128 = PointNeXt_L nsample 128 v
80 ~

70

60

50

40

30 e

20k 40k 60k 80k 100k 120k

Figure 4.18.: Validation loss over 25 training epochs in kWh/m? for hyperparameters expansion,
LeakyRelLU (activation function) and maxvox (number of points sampled as input for the forward
pass).

4.2.3. Average Performance Improvements

Table 4.5 outlines the enhancements achieved through tuning the most influential hyperparame-
ters. It is evident that increasing the depth of the network does not result in a linear reduction
in test loss, and is influenced by the settings of other hyperparameters.

Configuration Delta | Avg. Test Loss
PointNeXt L default 100% | 52.46 KWh/m?
Nsample 32 — 128 +29% | 37.40 kWh/m?
Radius 0.1 — 0.025 +36% | 33.37 kWh/m?
Stride [[1,4,4,4,4] — [1,2222] | +4% | 50.23 kWh/m?
Residuals False — True +12% | 46.34 KWh/m?
PointNeXt XL -18% | 61.89 kWh/m?
PointNeXt L + all above +42% | 30.42 kWh/m?
PointNeXt XL + all above +54% | 24.04 KWh/m?

Table 4.5.: Table with influence of different model configurations on average test loss.

73

4. Analysis

4.2.4. Visual Evaluation

The following figures present a visual evaluation of the performance of the tuned PointNeXt-L
model on the regular 100m x 100m dataset. Figures 4.19, 4.20, and 4.21 display five samples
with the highest, median, and lowest average RMSE, respectively.'

Ground truth (kWhim2] Prediction (KWh/m2] Ground truth [kWhim2] Prediction (kWh/m2]

H
£ .
: i
§ 4
400 3 400
4 : ‘
0 e

High outlier RMSE idx 8 loss 84 kWh per m2 o High outlier RMSE idx 363 loss 84 kWh per m2

(a) Sample 8 (b) Sample 363

Ground truth (kWhim2] Prediction (KWh/m2] Ground truth [kWhim2] Prediction (kWh/m2]

r, r.B.
“_

he ! | 4 (" Oy |-
V- 4 E’V .

rnadionce [kWhinz)

I -

=
High outlier RMSE idx 592 loss 90 kWh per m2 o High outlier RMSE idx 1359 loss 124 kWh per m2
(c) Sample 592 (d) Sample 1359
Ground truth [kWh/m2] Prediction [kWh/m2]
1000
800
Le00 E
=
B
&
o
e
o
La00 B
‘“ [200
High outlier RMSE idx 1436 loss 155 kWh per m2 0

(e) Sample 1436

Figure 4.19.: Highest irradiation RMSEs for test dataset prediction, based on the large PointNeXt
model with tuned hyperparameters Nsample 128, radius 0.025, stride [1,2,2,2,2], encoder-decoder
residual True.

"Note that due to a different seed, the errors shown may vary slightly from those in table 4.3 and 4.4.

74

4.2. Prediction

Ground truth [kWh/m?2] Prediction [KWh/m2] Ground truth [kWh/m2] Prediction [kWh/m2]
1000 1000

G P Gy s

H
dince (KWnim2)

Medium outlier RMSE idx 253 loss 30 kWh per m2 o Medium outlier RMSE idx 302 loss 30 kWh per m2 o
(a) Sample 253 (b) Sample 302
Ground truth [kWh/m2] Prediction [kWh/m2] Ground truth [kWh/m2] Prediction [kWh/m2]
§ w00 §
Medium outlier RMSE idx 891 loss 30 kWh per m2 o Medium outlier RMSE idx 1455 loss 30 kWh per m2 o
(c) Sample 891 (d) Sample 1455
Ground truth [kWh/m2] Prediction [kWh/m2]
1000
800
Leoo E
<
=
=
[
2
8
La00 B
200
Medium outlier RMSE idx 1622 loss 30 kWh per m2 0

(e) Sample 1622

Figure 4.20.: Medium irradiation RMSE'’s for test dataset prediction, based on the large Point-
NeXt model with tuned hyperparameters Nsample 128, radius 0.025, stride [1,2,2,2,2], encoder-
decoder residual True.

Based on visual evaluations, the following conclusions about RMSE scores can be drawn:

e High RMSEs: These typically occur in building geometries that are significantly higher
than average. It is anticipated that these samples are relatively rare in the training dataset,
leading to increased errors for such unique geometries.

o Medium RMSEs: These correspond to typical building geometries present in the datasets.

75

4. Analysis

Ground truth (kWhm2] Prediction (KWh/m2]

4
1

Low outlier RMSE idx 346 loss 13 kWh per m2

(a) Sample 346

Ground truth (kWhm2]

-

Low outlier RMSE idx 588 loss 14 kWh per m2

(c) Sample 588

Prediction (KWh/m2)

Ground truth [kWh/m2]

|
-

Ground truth [kWhim2] Prediction (kWh/m2]

Low outlier RMSE idx 486 loss 14 kWh per m2

(b) Sample 486

Prediction [kWh/m2]

¥

Low outlier RMSE idx 755 loss 13 kWh per m2

(d) Sample 755

Ground truth [kWh/m2]

Prediction [kWh/m2]

Low outlier RMSE idx 1364 loss 13 kWh per m2

(e) Sample 1364

Figure 4.21.: Lowest irradiation RMSEs for test dataset prediction, based on the large PointNeXt
model with tuned hyperparameters Nsample 128, radius 0.025, stride [1,2,2,2,2], encoder-decoder

residual True.

Visually, these samples exhibit minimal apparent errors.

e Lowest RMSEs: These are usually associated with very simple geometric shapes. Most of
these samples have irradiation values within the 900-1000 kWh/m? range and generally

feature one or two straight facades.

76

1000

00

00

e (kihinz)

a0

a0

z
0

E
o

1000
800
600
400

200

Irradiance [kWh/m2]

Imadiance kWhim2]

4.2. Prediction

4.2.5. Imbalanced Dataset Correction

The dataset exhibits significant imbalance, primarily because most irradiation values are con-
centrated at the higher end of the spectrum (900 — 1000 kWh/m?). This section discusses the
performance distribution across different irradiation bins and explores approaches to address this
imbalance.

Loss Functions

Figure 4.22 illustrates the validation RMSE for four different loss functions used during the back-
ward pass: MSE (base PointNeXt-L), Deltaloss, ReductionlLoss, and WMSE. For Deltaloss, a
delta value of 0.8 was applied. ReductionLoss was distributed over 10 bins, with the last bin
being reduced. For Weighted MSE, a weight was assigned to the last irradiation bin of 0.25.

The loss function comparison indicates that alternative loss functions did not yield improvements
over MSE, particularly when using 25 epochs and the default PointNeXt-L configuration. Addi-
tionally, using a larger nsample value (128) with MSE and WMSE did not result in significant
performance enhancements in average RMSE.

Validation Loss RMSE [kWh/m2]
= PointNeXt_L MSE = PointNeXt_L DeltalLoss PointNeXt_L ReductionLoss v

90

80

" AN
VAL

20k 40k 60k 80k 100k 120k

Figure 4.22.: Validation loss over 25 training epochs in kWh/m?, considering four loss functions:
Mean Squared Error, Delta Loss, Reduction Loss and Weighted Mean Squared Error.

77

4. Analysis

Distributed Performance

However, improvements in average test RMSE do not necessarily translate to better accuracy
across the entire irradiation spectrum. Figure 4.23 illustrates the accuracy distribution across
ten bins, evaluated using the optimized large PointNeXt network.

In figure 4.23:
e Green bars represent correct predictions, implying a maximum error of 100 kWh/m?2,

e Yellow bars indicate predictions that are off by one bin, reflecting a maximum error of 200
KWh/m?.

e Red bars show predictions that are completely incorrect.

The bars are normalized according to the number of points in each bin (denoted as N), providing
a clear view of the model's accuracy distribution across different irradiation values.

N=363937 N=767587 N=1739703 N=2583501 N=2022414 N=1920492 N=2363672 N=2920869 N=3068870 N=14777843

100 4 ol 00 3 3 O 0:03 0.0 D

0.11
018 0.13

0.26
80 1

60 1 . \Wrong

One off
mmm Correct
40 4

Percentage (%)

20

0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 900-1000
Irradiation bin (kWh/m?)

Figure 4.23.: Accuracy over the irradiation spectrum, binned in 100 kWh/m2 domains.

Based on the bar plot, accuracy tends to decrease towards the lower end of the irradiation
spectrum, which aligns with the dataset’s irradiation distribution (see figure 4.4a).

Figures 4.24 and 4.25 illustrate the average RMSE over the test dataset for samples and points,
respectively. Note that the point frequency in figure 4.25 is shown on a logarithmic scale.
From this plot, it is evident that 92.8% of all points are predicted within the correct bin, with a
maximum error of 50 KkWh/m2. Errors at the high end of the error spectrum are rare and occur
only in exceptional cases.

The distributed performance has been visualized in the figure 4.26, through a confusion matrix.
Figure 4.26a shows the ground truth confusion matrix with the corresponding colors and point
frequencies.

78

4.2. Prediction

RMSE Error Distribution over Test Samples

600

500
g

§ 400
:
g

2 300
E
4l

200

100

0

0-10 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110 110-120 120-130 130-140 140-150 150-160
RMSE [kWh/m2]
Figure 4.24.: Frequency of RMSEs over samples
Absolute Error Distribution over Test Points
N=30191780
107

N=1872117

Point Frequency

N=6377 \ .06 23
- N=2215
N=1564

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400 400-450 450-500 500-550 550-600 600-650 650-700 700-750 750-800 800-850 850-900 900-950
Absolute Error [KWh/m2]

Figure 4.25.: Frequency of RMSEs over points

(@) Ground Truth (b) Predicted

Figure 4.26.: Ground truth and predicted confusion matrix test dataset. Numerical values indicate
point frequency.

79

4. Analysis

Adjusted Weighted MSE

Based on the performance distribution for point irradiation shown in figure 4.23, the weights in
the WMSE loss function can be adjusted. Specifically, the weight for each expected irradiation
value is derived from the error likelthood observed without weights. This adjustment results in a

weight vector of [0.5670.57,0.570.2770.24,_6.22,0.19,0.1470.11,0.04] for the ten irradiation bins.

Validation Loss RMSE [kWh/m2]

PointNeXt_L_MSE_nsample_128_radius_0.025_residua :

60

50

40

Step.

20k 40k 60k 80k 100k 120k

Figure 4.27.: Validation loss over 25 training epochs in kWh/m?, for the MSE and adjusted WMSE
loss functions

Macro/Micro Avg. F1-scores

Micro-averaged F1-score: PointNeXt_L_aWMSE_nsample_128_radius_0.025_residual
Macro-averaged F1-score: PointNeXt_L_MSE_nsample_128_radius_0.025_residual
Micro-averaged F1-score: PointNeXt_L_aWMSE_nsample_128_radius_0.025_residual
Macro-averaged F1-score: PointNeXt_L_MSE_nsample_128_radius_0.025_residual
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 4.28.: Macro and micro avg. F1 scores for MSE and adjusted Weighted MSE loss function.

Based on the validation scores shown in figure 4.27, significant improvements are not observed.
The most notable change is the increase in the macro-averaged F1 score, as illustrated in figure
4.28. However, the recall for each individual bin in the test dataset did not show substantial
changes when transitioning from MSE to the adjusted WMSE loss function.

The recall scores for the lower end of the irradiation spectrum showed improvement with the
Adjusted Weighted Mean Squared Error (aWMSE) loss function. However, the recall for the

80

4.2. Prediction

highest bin decreased. This decrease can be attributed to the low weight (0.04) assigned to this
bin and the fact that it contains fewer point samples compared to other bins.

Recall per Irradiation bin

07
0.6
05
04
03
02

0

100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 900-1000
MSE 0.36 033 041 071 073 0.68 079 0.88 087 097
HaWMSE 054 053 0.65 0.82 076 08 083 083 08 0.89

Recall

Irradiation bin [kWh/m?

MSE ®aWMSE

Figure 4.29.: Recall for MSE and aWMSE loss function.

4.2.6. Network Inference Optimization

Table 4.6 presents the average inference times for various network configurations, evaluated on
the entire test dataset. Inference was performed on a GPU, leveraging CUDA-optimized grouping
layers within the network architecture. The evaluation was conducted on a Windows laptop
equipped with an Intel i7-9750H cPU, 24 GB of DDR4 memory, and an NVIDIA Quadro P2000
GPU with 4 GB of VRAM.

Configuration Avg. Test Inference (s)
PointNeXt-L Base 0.184
PointNeXt-XL Base 0.291
PointNeXt-L Super 0.721
PointNeXt-XL Super 13.38

Table 4.6.: Inference on test dataset for several PointNeXt architectures on a laptop with dedicated
GPU.

It is evident that base model architectures (nsample 32, radius 0.1, stride [1,4,4,4,4], no residuals)
exhibit relatively faster inference times compared to more advanced configurations (nsample 128,
radius 0.025, stride [1,4,4,4,4] with residuals). The choice of stride [1,4,4,4,4] over [1,2,2,2,2] was
influenced by the limited VRAM available and its substantial effect on both inference and training
times. Additionally, the extended inference time observed with the PointNeXt-XL Super model
can be attributed to the constrained VRAM of the used GPU.

81

4. Analysis

4.2.7. Experiment 1: Random Dataset

Two types of datasets were created: regular point samples and Poisson Disc point samples. For
this experiment, a network with hyperparameters set to nsample 128, radius 0.025, 100 epochs,
and residual connections trained on Poisson Disc point samples. This model achieved an average
test RMSE of 21.10 kWh/m?, which is notably lower than the model trained on reqular samples
(avg. test RMSE 24.04 kWh/m?).

Comparing the performance of networks based solely on average test and validation RMSE is
not feasible in this case due to the inherent differences between the datasets. The Poisson Disc
point sampling approach does not remove dividing walls between buildings, which reduces pre-
processing time. However, this results in the model predicting a larger number of zero irradiation
values for these walls, as they do not receive solar exposure from outside. Consequently, direct
comparison between test datasets is not valid.

A more accurate evaluation method involves visual inspection of the plotted point clouds and
corresponding irradiation values. Figure 4.30, 4.31 and 4.32 provide an overview of samples with
the highest, median and lowest irradiation errors in the Poisson Disc dataset.

82

4.2. Prediction

Ground truth [kWh/m?2] Prediction [kWh/m2] Ground truth [kWh/m2] Prediction [kWh/m2]
1000 1000

o0

rradiance (KWh/m2]
iradiance (kWh/m2]

-
High outlier RMSE idx 97 loss 154 kWh per m2 0 High outlier RMSE idx 328 loss 137 kWh per m2 9
(a) Sample 97 (b) Sample 328
Ground truth [kWh/m2] Prediction [kWh/m2] Ground truth [kWh/m2] Prediction (kWh/m2]
w § w
H H
w3 w i
High outlier RMSE idx 136 loss 122 kWh per m2 ° High outlier RMSE idx 1337 loss 152 kWh per m2 °
(c) Sample 136 (d) Sample 1337
Ground truth [kWh/m2] Prediction [kWh/m2]
1000
800
600 E
s
B
=]
o
e
8
400 B
200
High outlier RMSE idx 129 loss 139 kWh per m2 0

(e) Sample 129

Figure 4.30.: Highest irradiation RMSEs for test dataset (Poisson Disk) prediction, based on the
large PointNeXt model with tuned hyperparameters nsample 128, radius 0.025, encoder-decoder
residual True.

83

4. Analysis

Ground truth [kWh/m?2] Prediction [kWh/m2] Ground truth [kWh/m2] Prediction [kWh/m2]

1000 1000

w0 § 600 &
£ H
w3} w ¥
Medium outlier RMSE idx 710 loss 20 kWh per m2 o Medium outlier RMSE idx 895 loss 20 kWh per m2 o
(a) Sample 710 (b) Sample 895
‘Ground truth [kWh/m2] Prediction [kWh/m2] Ground truth [kWh/m2] Prediction [kWh/m2]
o § w00 §
Medium outlier RMSE idx 1506 loss 20 kWh per m2 0 Medium outlier RMSE idx 1644 loss 20 kWh per m2 o
(c) Sample 1506 (d) Sample 1644
Ground truth [kWh/m2] Prediction [kWh/m2]
1000
800
600 E
<
2
=
[
2
8
400 B
200
Medium outlier RMSE idx 1840 loss 20 kWh per m2 0

(e) Sample 1840

Figure 4.31.: Median irradiation RMSEs for test dataset (Poisson Disk) prediction, based on the
large PointNeXt model with tuned hyperparameters nsample 128, radius 0.025, encoder-decoder
residual True.

84

4.2. Prediction

‘Ground truth [kWh/m2] Prediction [kWh/m2] Ground truth [kWh/m2] Prediction [kWh/m2]
1000 1000
w00 w00
w]
: :
w § w ¥
20 20
Low outlier RMSE idx 728 loss 9 kWh per m2 o Low outlier RMSE idx 917 loss 9 kWh per m2 0
(a) Sample 728 (b) Sample 917
Ground truth (KWihm2) redicton (kWhm2] Ground tuth Khvm2) Preciction (owhim2]
1000 1000
w00 w00
w0 & oo T
H H
i w
20 200
Low outlier RMSE idx 1195 loss 9 kWh per m2 o Low outlier RMSE idx 1519 loss 9 kWh per m2 0
(c) Sample 1195 (d) Sample 1519
Ground truth [kWh/m2] Prediction [kWh/m2]
1000
800
600 E
<
=
4
[
g
&
400 3
200
Low outlier RMSE idx 1581 loss 9 kWh per m2 0

(e) Sample 1581

Figure 4.32.: Lowest irradiation RMSEs for test dataset (Poisson Disk) prediction, based on the
large PointNeXt model with tuned hyperparameters nsample 128, radius 0.025, encoder-decoder
residual True.

85

4. Analysis

Furthermore, the accuracy for individual irradiation bins, errors of irradiation and sample RMSEs
can be analyzed as can be seen in figure 4.31, 4.32 and 4.33 respectively.

N=2945906 N=776782 N=1584175 N=2946488 N=1985040 N=3167909 N=2448758 N=3177473 N=4238779 N=13734335

100 4 0% 00k e 003 004 0.0 0.0 0.0 0.0
0.1 0.11 0.08
015 E 0.16 017

80
2
3, 60 1 . \Wrong
8 One off
5 mmm Correct
9 40l
o]
a

20

o0l

0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 900-1000
Irradiation bin (kWh/m?)

Figure 4.33.: Test accuracy of individual irradiation bins for a network trained on a Poisson Disk
dataset. X-axis expressed in kWh/m?, Y-axis in %.

Absolute Error Distribution over Test Points

N=36011816

6
N=49681
N222798 \y_ 16210 N=16963

N=2688 _
RS0 N-1313 _gg0

Point Frequency

N=465
N=314 N_oso o

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400 400-450 450-500 500-550 550-600 600-650 650-700 700-750 750-800 800-850 850-900
Absolute Error [kWh/m2]

Figure 4.34.: Error of individual points for a network trained on a Poisson Disk dataset.

RMSE Error Distribution over Test Samples

1000

800

2
8
8

Sample Frequency

8
8

200

0-10 1020 20-30 3040 4050 50-60 60-70 70-80 80-90 90-100 100-110 110120 120-130 130-140 140-150 150-160
RMSE [kWh/m2]

Figure 4.35.: RMSE for individual test samples in the Poisson Disk test dataset.

86

4.2. Prediction

4.2.8. Experiment 2: Sample Size

While the initial training experiments focused on 100x100m samples, it is valuable to assess
performance on larger scale samples. To this end, a dataset of 300x300m was created, using both
regular and Poisson Disc point samplings. As with the previous approach, point coordinates were
normalized to the [-1, 1] domain. For both datasets, a network with the following hyperparameters
was used: nsample 128, radius 0.025, 100 epochs, and residual connections set to True.

Figures 4.37 and 4.38 illustrate the highest errors observed for the reqular and Poisson Disk
300m x 300m datasets, respectively. Similarly to experiment 1, avg. RMSE values can not be
used for comparison with 100x100m samples, due to the significantly greater number of points
per sample.

While it is clear that the network is able to understand general patterns in the 300x300m dataset,
high outliers show different issues. For example, figure 4.37e shows how the model struggles with
long distance influence of buildings casting shadows. This is most likely caused by the limited
receptive field of the network.

An overview of bin accuracies, individual sample and point errors are given in figure 4.36.

wnim) - awhme)

(a) Bin accuracy regular 300x300m test dataset (b) Bin accuracy Poisson Disk 300x300m test dataset

(c) Point errors regular 300x300m test dataset (d) Point errors Poisson Disk 300x300m test dataset

(f) Sample RMSE'’s Poisson Disk 300x300m test
e) Sample RMSE's reqular 300x300m test dataset dataset

Figure 4.36.: Bin accuracy, point RMSEs and sample RMSEs for reqgular 300x300m dataset (left)
and 300x300m Poisson Disk dataset (right)

87

4. Analysis

Ground truth [kWh/m2] Prediction [kWh/m2] Ground truth [kWh/m2] Prediction [kWh/m2]
-
-
-
3 -ty 3
ot A ot
o
High outlier RMSE idx 75 loss 68 kWh per m2 0 High outlier RMSE idx 99 loss 80 kWh per m2 o
(a) Sample 75 (b) Sample 99
Ground truth [kWh/m2] Prediction [kWh/m2] Ground truth [kWh/m2) Prediction [kWh/m2]
-
I
o

Irradiance [kWh/m2)
Iradiance [kWh/m2)

w0 w i
-
High outlier RMSE idx 156 loss 87 kWh per m2 0 High outlier RMSE idx 174 loss 89 kWh per m2 °
(c) Sample 156 (d) Sample 174
Ground truth [kWh/m2] Prediction [kWh/m2]
1000
800
Le0o E
=
2
=
o
e
8
k400 B
200

High outlier RMSE idx 83 loss 103 kWh per m2 0
(e) Sample 83

Figure 4.37.: Highest irradiation RMSE’s for 300x300m test dataset prediction, based on the
large PointNeXt model with tuned hyperparameters Nsample 128, radius 0.025, encoder-decoder
residual True.

88

4.2. Prediction

Ground truth [kWh/m2] Prediction [kWh/m2] Ground truth [kWh/m2] Prediction [kWh/m2]
-
-
~ £ £
High outlier RMSE idx 54 loss 74 kWh per m2 0 High outlier RMSE idx 170 loss 80 kWh per m2 o
(a) Sample 54 (b) Sample 170
Ground truth [kWh/m2] Prediction [kWh/m2] Ground truth [kWh/m2] Prediction [kWh/m2]
-
w
4
-
High outlier RMSE idx 161 loss 82 kWh per m2 ° High outlier RMSE idx 239 loss 83 kWh per m2 o
(c) Sample 161 (error in geometry) (d) Sample 239
Ground truth [kWh/m2] Prediction [kWh/m2]
1000
800
Le00 E
=
H
=
[
e
8
k400 B
200
High outlier RMSE idx 254 loss 106 kWh per m2 0

(e) Sample 254

Figure 4.38.: Highest irradiation RMSE’s for 300x300m test dataset (Poisson Disk) prediction,
based on the large PointNeXt model with tuned hyperparameters Nsample 128, radius 0.025,
encoder-decoder residual True.

89

4. Analysis

4.2.9. Conclusion

In this section, the performance of various PointNet-based architectures for predicting irradiation
has been analyzed. The results indicate that a finely tuned PointNeXt-XL model achieves an
average RMSE of 24.04 kKWh/m?2 on the regular dataset and 21.10 kWh/m? on the Poisson Disc
dataset, without applying dataset imbalance corrections. Evaluation of larger scale samples
(300m x 300m) revealed new issues, most likely due to the limited receptive field of the network.
Additionally, the finetuned PointNeXt-XL model has a relatively high inference time of 13.38
seconds compared to 0.721 seconds for the finely tuned PointNeXt-L network, when run on a
laptop with a dedicated laptop GPU. While correcting for dataset imbalance can improve accuracy
in the lower end of the irradiation spectrum, it may negatively impact performance at the higher
end.

90

4.3. Interaction
4.3. Interaction

Through the proposed server-client system (see Figure 4.39), it is possible to boot a trained neural
network, waiting to receive a new sample from the client in Grasshopper. For this experiment, a
laptop with an Intel® Core i7-9750H cPU, 24GB of RAM, and an NVIDIA Quadro P2000 GPU
was utilized.?

Faste tockea) |-

Figure 4.39.: Interaction environment in McNeel Rhino. The Grasshopper script controls the data
flow from download to visualization. The CMD window in the top right is the server which will
predict the irradiation values.

Download Context

The first step in the interaction workflow (see Figure 4.40) involves downloading and extracting
a sample from the 3D BAG. For demonstration purposes, a sample from the city of Groningen
was chosen as an example. The download speed for this process varies depending on the sample
size, local network speed, and the complexity of the geometry.

Preprocessing

Within the Grasshopper dataflow (see Figure 4.41), a distinction is made between contextual
geometry and the design. This separation helps to optimize preprocessing speed. Preprocessing
involves all procedures related to mesh discretization, computation of sensor points, and calcula-
tion of normal vectors.

2It was essential to conduct the experiments on a typical design laptop rather than high-performance hardware, in order
to simulate real-world conditions where the workflow would be applied.

91

4. Analysis

ppppp

Download 3D BAG Data

~l 2

Figure 4.40.: A Python script in Grasshopper downloads 3D BAG data based on given coordinates.
The LoD input can be used to specify the type of geometry.

Figure 4.41.: Preprocessing the context and design separately. Pink dots indicate the positions
of the sensor points. The gray underlying geometry is a quad-triangle mesh with reqularized
faces.

92

4.3. Interaction

Server Activation

After preprocessing, the user can activate the server through a single Grasshopper node (see
Figure 4.42). Upon startup, all necessary Python packages are preloaded. The user has the
option to select a port for the server, decide whether the CMD window should be visible, and
specify optional settings for loading the model in PyTorch. Additionally, the server can be run
on an external device if the local machine lacks sufficient processing power.

Figure 4.42.: The server waiting for a call to predict irradiation on a given point cloud.

93

4. Analysis

Sending Data through Client

The client first receives information regarding the model type and the associated PyTorch settings.
To optimize inference, multiple point clouds are padded to similar dimensions, allowing them to
be processed in batches. The initial run may take longer because the model needs to be loaded
and, depending on the settings, converted to machine code. After inference, the irradiation values
are transmitted back from the server to the client, where they can be visualized in Rhino (see
Figure 4.43).

Figure 4.43.: The server processing an input from the client in the Grasshopper environment.

94

4.3. Interaction

Irradiation Visualization

In addition to visualizing the irradiation as a colored point cloud, users can also apply color to
the mesh faces using the mesh visualizer (see Figure 4.44). However, this option is only available
for meshes that use the reqular point sampling method.

Figure 4.44.: The server waiting for a call to predict irradiation on a given point cloud.

Horizontal /Vertical Irradiation Extraction

Additionally, a Grasshopper script was implemented to extract irradiation values based on a
threshold for both vertical (see Figure 4.45) and horizontal (see Figure 4.46) surfaces. By incor-
porating an average annual solar panel efficiency, this script allows for the estimation of potential
power generation.

n

power_generation_potential = Z irradiation; - face_area; - panel_ef ficiency (4.1
i=0

in which i is the index of the available mesh faces above the threshold irradiation (KWh).

95

4. Analysis

96

Figure 4.45.: Vertical irradiation values higher than 175 kWh/m?

|
T e T— -
T T — -

Figure 4.46.: Horizontal irradiation values higher than 500 kWh/m?

4.3. Interaction

4.3.1. Optimization

By integrating a brute-force optimization algorithm with the proposed irradiation predictor, one
can fine-tune design parameters based on a fitness function as described in section 3.6.4. Figure
4.47 demonstrates how this procedure could be applied. The enhanced speed of irradiation pre-
diction, compared to simulation, facilitates testing numerous design alternatives more efficiently.
In this specific example, batch optimization was not yet implemented due to the limited GPU VRAM
on the local machine.

Figure 4.47.: Optimization procedure in which the irradiation on horizontal surfaces is maximized,
and the irradiation on vertical surfaces is minimized.

4.3.2. Overall Grasshopper Script

Figure 4.48 shows the integrated Grasshopper script used for the entire workflow. For clarity,
some wires are hidden. A substantial portion of the script’s functionality is implemented through
Python within the Grasshopper nodes.

97

86

Batch Client

sishipuy 4

Design Preproéessing

ad 3D BAG Data

Figure 4.48.: Grasshopper script used for the prediction and optimization of solar irradiation on urban designs. For clearity, the horizon-
tal/vertical surface irradiation extraction script is not included. This part of the script was fully developed in Grasshopper, and simply extracts
irradiation values based on the normal direction of the sensor point.

4.3. Interaction

4.3.3. Future Design Framework

Figure 4.49 illustrates how this research could contribute to future design frameworks. Whereas
simulations are currently used as evaluative tools to analyse buildings, generative models could
aid architect in giving concrete advise on how to change the building. The design framework
could consist of multiple 3D views in which one is used by the designer, multiple as prediction
visualizations and one by a generative Al model which provides suggestions how to change the
design.

This process is deemed possible due to the descriptive nature of encoder networks which compress
features from a building. The so called latent space of these encoders (which is the compressed
representation) can be combined to give an overall representation of the design, considering
multiple design factors. A decoder could then be used to reconstruct the design to alternative
options with better performance, based on experience from other building designs.

Other performance features such as financial costs and practical feasibility could also be included
as indicated in figure 4.50.

The design software of the future

Architectect Design [Al Solar Encoding and Evaluation]

Amazing, impressive,
‘ school, building,
artistic, colored, highly
detailed, moder,
traditional, classic etc.

Encoder \ Encoder and decoder

Requirements
[Al Wind Encoding and Evaluation] Al Design suggestions

Floor area

Solar panel power
Shadow

Function

etc.

Encoder and decoder Decoder Encoder

Figure 4.49.: Future research could investigate the potential of transforming the suggested pre-
dictive model to a generative neural network. Combining multiple performance features and
style/program suggestions by the designer, could lead to a new design framework, as is visible
in this figure. On the top left: the intial design. Top right: predictions on solar performance.
Bottom left: predictions on wind performance. Right: suggestions by the designer regarding tex-
tual description and requirements. Bottom right: alternative suggestions by a generative model
based on all inputs together.

99

4. Analysis

Amazing, impressive.
school, building,
artistc, colored. highiy
detailed, moder,
traditional, classic efc.

Encoder l Encoder and decoder

Requrements.
‘Al Wind Encoding and Evaluation ‘Al Design suggestions

Floor area

Solar panel power
dow
Function
L etc.

g _#

Decoder Encoder

Encoder and decoder

Figure 4.50.: A generative model could encapture many other relevant building domains as well,
such as financial costs and practical feasibility.

100

5. Discussion

In this chapter, the outcomes of the research on dataset generation, simulation, and parallelization,
as well as the prediction of solar irradiation and the interaction with the model, are thoroughly
discussed. The discussion is structured around the main research question and its associated
subquestions. Furthermore, the methods implemented in this thesis are critically analyzed, ad-
dressing their limitations, followed by recommendations for future research.

5.1. Research Questions

This thesis aimed to answer the central research question: "How can one predict annual solar
irradiation on 3D urban geometry using deep neural networks?” To address this, five subquestions
were formulated and will be answered based on the research results.

How do simulation models compute solar irradiation on 3D geometry?

Chapter 2.1 details how simulation models, particularly the 2-phase method, calculate solar
irradiation on 3D geometry. The 2-phase method utilizes a non-linear and partially stochastic
equation based on ray tracing principles to approximate the solar energy or light received by
geometric surfaces. By generating a daylight coefficient matrix, this method efficiently estimates
solar irradiation across many points in parallel, making it a robust tool for large-scale urban
geometry simulations.

What type of input dataset is required to predict solar irradiation using deep neural networks?
The input dataset required for predicting solar irradiation with deep neural networks is closely
tied to the type of network employed. As discussed in Chapters 2.3 and 2.4, various approaches
exist for transforming 3D data into formats compatible with specific network architectures. This
research opted for PointNet-based architectures, which necessitate a point cloud dataset includ-
ing geometric normal directions and expected irradiation values. These networks offer several
advantages:

e The inputs effectively describe both the shape of the geometry and the locations requiring
irradiation predictions.

e The relatively low-dimensional inputs, compared to other network types, enhance scalabil-
ity.

e PointNet-based architectures have demonstrated near state-of-the-art (SOTA) performance
on similar tasks, such as S3DIS segmentation.

e The selected architecture (PointNeXt) is relatively straightforward to tune compared to
typically used Transformer models.

101

5. Discussion

How can one compute a dataset with 3D urban geometry with solar irradiation values efficiently?
The thesis proposed a parallelized solution, integrated with the AccelerRad GPU-based simulator,
to efficiently generate four datasets with a substantial number of samples. This approach allowed
for the efficient computation of 3D urban geometry datasets with corresponding solar irradiation
values, significantly reducing the time and computational resources required.

Can deep neural networks predict solar irradiation values accurately, faster than a simulation
model?

The research demonstrated that deep neural networks could predict solar irradiation values more
quickly than traditional simulation models. The implemented model exhibited faster prediction
times while maintaining accuracy comparable to low-parameter simulation models. However, the
model faced limitations, including reduced geometric detail, long distance geometric relationships
and challenges with location and time invariance. Future research could focus on enhancing the
model accuracy and addressing dataset imbalances across the irradiation spectrum.

How can architects interact with the deep learning model in a user-friendly ecosystem?

A client-server system was developed to facilitate user interaction with the deep learning model.
Geometry preprocessing occurs on the client side, while irradiation prediction is handled on the
server side. This system was integrated into McNeel Grasshopper, a parametric design software,
making it accessible to designers without programming expertise. However, the client-server
principle is also applicable in other design software. The research demonstrated how designers
could efficiently interact with the model to optimize their designs, and the system’s flexibility
allows for easy integration into other design frameworks.

Main research question: "How can one predict annual solar irradiation on 3D urban geometry
using deep neural networks?”

The research concluded that it is feasible to predict solar irradiation on 3D urban geometry
by training PointNet-based deep neural networks on simulated irradiation values. While the
model exhibits variability in accuracy across the irradiation spectrum and faces limitations in
handling complex geometric details, they offer a promising approach to efficiently predicting
solar irradiation, providing a valuable tool for architects and urban planners.

5.2. Generation

In this research, multiple irradiation datasets were developed using the 3D BAG dataset, with
preprocessing methods that generated either reqular or random (Poisson Disk) patterns of sensor
points on 3D urban geometry. These point clouds, paired with normal directions, served as ab-
stract descriptions of the geometric shapes and indicators for the positions where solar irradiation
was to be simulated and predicted.

5.2.1. Regular Mesh Preprocessing Limitations

The findings of this thesis highlight several limitations of the reqular sampling technique. Pri-
marily, errors often arise from Boolean splitting operations. Moreover, handling more detailed
geometry requires customized algorithms to manage various geometric shapes, which complicates
the process. As a result, the Poisson Disc point sampling method is recognized as a more effective
solution for geometric preprocessing. While predictions on randomly sampled points may lead
to higher irradiation errors, the robustness and generality of the Poisson Disk method outweigh

102

5.2. Generation

these concerns. Unlike during dataset development, where invalid samples can be removed, such
flexibility is unavailable during actual model usage. Therefore, the Poisson Disc sampling method
is considered the best choice.

Proper visualization of irradiation values on a design is crucial. With the Poisson Disk method,
the random distribution of points means that they do not align with the faces of the underlying
mesh. Typically, corresponding mesh faces are colored based on irradiation values, as seen
in tools like Ladybug. For practical implementation, it is recommended to explore alternative
methods for coloring the mesh. A potential approach could involve generating an excess of sensor
points and then mapping the closest irradiation values to each mesh face centroid.

5.2.2. Poisson Disk Sampling Optimization

In the current proposed preprocessing methods, points are sampled for each individual 100m x
100m sample (or 300m x 300m). For Poisson Disk sampling however, it is possible to accomplish
similar results by taking the entire 3D BAG file, due to linear scaling of the algorithm time
complexity. This will most likely result in a significant speed-up of the preprocessing procedure.

In the preprocessing phase of Poisson Disk point sampling, an alternative approach to mesh
discretization should be considered to enhance efficiency. Currently, the meshes are discretized
into a reqular grid of quad meshes, which is an unnecessary step that adds to the computation
time without contributing significantly to the overall process.

5.2.3. Augmentation

Several augmentation techniques were proposed to enhance the dataset generation process’s
efficiency. These included translational, rotational, and scaling augmentations to increase the
number of samples derived from a single 3D BAG file. While useful for evaluative purposes, these
methods may introduce misleading data for future generative deep learning models, as they train
the network on geometry that doesn’t exist in reality. Thus, the author advises against using
augmentation in building physics prediction applications.

5.2.4. Framework Limitations

In this research, most geometric operations were performed using the Rhino.Inside API, due to
the ease of use and the integration with the Ladybug/Honeybee package. However, potentially
problematic for the code implementation in other software packages, is the required accessibility
to a McNeel Rhino license to make use of the code. To this aim, one could think of the following
solutions:

e Alter the Honeybee code package to deal with non-Rhino mesh and point formats, thus
allowing use of CPython/C++ based geometric operations;

e Directly transform the geometric data to Radiance/AcceleRad readable formats using CPython/C++
based geometric operations.

103

5. Discussion

This change to the proposed method could lead to better integration into other design software
(such as Autodesk Revit, ArchiCAD or Vectorworks), allow computation on other operating systems
(such as Linux and Windows Server), better optimization of the preprocessing phase and more
accurate boolean intersection algorithms for mesh discretization.

5.2.5. Further Research

For generation, the following research steps are suggested to reach production level accuracy
and usability of solar irradiation prediction:

1. Optimize Poisson Disc point sampling for entire 3D BAG files;
2. Add points at specific parts of the geometry, e.g. edges and corners;

3. Explore alternative colored mesh visualization methods, considering that faces do not cor-
respond with sensor point locations;

4. Rewrite the code so it does not depend on Rhino based Python packages.

5.3. Simulation

The ground truth irradiation values predicted in this thesis are based on simulated data generated
by the AcceleRad simulation engine. Ideally, real observed data would be used, but this was not
available in the context of this research. The use of synthetic irradiation data and the methods
employed in this thesis come with several limitations.

5.3.1. Accelerad vs Radiance

As the original authors of Accelerad have validated, discrepancies exist between the simulated
values by Accelerad and Radiance. Largest errors are found in illuminance predictions, which are
based on the same mathematics as irradiation prediction. Therefore, it was important to define
the best settings through a parameter convergence test.

To limit the scope of this research, exceptional large differences between Accelerad and Radiance
were accepted for the purpose of this thesis. The reduced computation time of Accelerad out-
weighs the importance of most accurate predictions, also considering that neural network based
predictions make small errors as well.

5.3.2. Direct vs Indirect Irradiation

Based on empirical evidence, it was concluded that indirect irradiation only has a small contri-
bution to the total irradiation, but costs the most time to compute. Therefore, future researchers
may consider to only predict the indirect component using deep neural networks, and compute
the direct part using traditional methods with optimized matrix operations on GPU.

104

5.4. Parallelization
5.3.3. Materials

In the current stage of this research, materials have not been accounted for in the simulation and
prediction of irradiation, due to lack of open source data. However, it is important to note that
materials have a great influence on the transmittance-reflectance term of the solar irradiation
computation. Therefore, it is advised to append material features to the dataset with reflectance,
specular and roughness values for each sensor point.

5.3.4. Further Research

For simulation, the following research steps are suggested to reach production level accuracy
and usability of solar irradiation prediction:

1. Add material features to the dataset;

2. Consider subtracting the direct irradiation component and predict the indirect component
only.

3. Finetune Accelerad specific simulation parameters to match the Radiance simulation values.

5.4. Parallelization

The parallization procedure in this thesis has lead to a computation time reduction from 3.965s
to 608s for 100 regular 100m x 100m samples on a high-end desktop.! Without parallelization,
generating the entire dataset would have taken more than a week of computation.

5.4.1. Further Research

Further improvements could be achieved by optimizing the AcceleRad/Radiance simulation speed.
Currently, samples are sent sequentially to AcceleRad in each process. This could potentially
be optimized by calling AcceleRad only once per process and sending batches of models for
simulation.

5.5. Prediction

The results of this thesis have demonstrated that the loss for irradiation prediction generally
decreases during the training of PointNet-based networks. Comparing the accuracy of this im-
plementation with earlier research is challenging due to differences in dataset types and specific
limitations inherent to each study. However, it is evident that the proposed solution is signif-
icantly more scalable than previous efforts and offers promising accuracy that can be further
optimized in future work.

TAssuming linear time scaling, it is expected that a 300m x 300m regular dataset would take a similar amount of time
to be computed sequentially.

105

5. Discussion

5.5.1. Practical Implications of 21 kWh/m? RMSE"

This thesis has developed a deep learning model capable of predicting irradiation values with an
average test RMSE of 21 kWh/m2. When this error is compared to the parameter convergence test
for AcceleRad, it is roughly equivalent to a simulation conducted with relatively low parameter
settings. However, the practical implications of an error of this magnitude are not immediately
clear. The following example provides more insight into these implications:

Consider a scenario in which urban geometry in Rotterdam receives a maximum irradiation of
960 kWh/m2. The goal is to install solar panels at locations where this maximum irradiation can
be captured. Assuming the solar panels have an average efficiency of 20% at optimal orientation
and angle, and given that the power consumption of the household is 3,500 kWh annually, 19 m2
of solar panels is required to meet the energy needs:

required_solar_panel_area = 552035 ~ 19m?

Each square meter of solar panel area produces:
production_per_m2 = 0.2 - 960 = 192kWh
With an associated prediction error of:
error_per_.m2 = 0.2-21 =4.2kWh
The expected loss due to inaccurate predictions is:
total_error =19-4.2 =79.8kWh

This amount is roughly equivalent to the power consumption of the household over approximately
8 days’.

5.5.2. Time and Location Invariance

The proposed solution faces two significant challenges: it lacks invariance to both time and
location. The time invariance issue could potentially be addressed by employing transfer learning,
where two additional temporal features (start date and end date) are introduced in the final layers
of the network, just after the decoder. The location invariance problem could be tackled using
two possible approaches:

e Transfer learning: This approach would involve adding two input features representing
normalized longitude and latitude to the final layer. The network should then be retrained
on new samples that include simulations based on multiple locations.

e Predict daylight coefficients: Instead of predicting the final irradiation outcome directly,
the model could predict 145 daylight coefficients for each sensor point. These coefficients
could then be multiplied by a sky matrix specific to a given location to compute the final
irradiation values.

2In this example, an average prediction error is assumed. As described, prediction errors can sometimes be higher. For
reference: the results of this thesis have shown that in 2.7% of the cases, the sensor point specific irradiation RMSE
is higher than 50 KWh/m?2.

106

5.5. Prediction

5.5.3. Improving Mode Coverage

As demonstrated, some predictions by the proposed network result in significant irradiation errors,
indicating poor mode coverage—where the network is only able to make accurate predictions for
specific types of samples. Improving the network’s ability to predict all cases accurately could be
approached from two perspectives: enhancing the network and improving the dataset.

o Attention based networks: The analysis in this thesis indicates that further deepening the
proposed network does not yield significant performance gains. However, exploring Trans-
former networks, which leverage attention mechanisms, could potentially improve predic-
tions on the dataset, as has been demonstrated with point cloud segmentation. Specifically,
attention-based models might better recognize long-distance relational patterns between
geometry, such as a tall tower casting a shadow on a distant building.

e Urban typology clustering: This approach assumes that specific geometric features lead to
higher irradiation errors, often due to the absence of similar examples in the training dataset.
In the network proposed in this thesis, sample features are compressed into vectors of shape
(1,39, 3) for the point coordinates and (1,512, 39) for other features within the latent space.
By applying unsupervised clustering algorithms and dimensionality reduction techniques,
samples can be categorized into groups with overlapping properties. A relationship between
irradiation error and these groups might then be identified. The dataset could be improved
by synthesizing more geometric samples within groups associated with high irradiation
errors (oversampling) or reducing the size of common groups (undersampling), leading to
better irradiation predictions for uncommon geometric types.

Urban typology clustering could prove beneficial not only for irradiation prediction but also for
other building physics prediction models. Understanding how urban typology impacts prediction
accuracy can help determine when a simulation is necessary, particularly in cases where the
probability of incorrect predictions is high.

5.5.4. Geometric Level of Detail

The model developed in this thesis demonstrates the ability to predict irradiation on low-detail
buildings. However, this capability does not necessarily extend to more detailed geometry, such
as LoD 2.2 in the 3D BAG dataset. Further research is required to determine whether the model
can effectively learn and predict irradiation on more complex datasets with higher geometric
detail.

5.5.5. Further Research
For model optimization, the following research steps are suggested to achieve production-level
accuracy and usability in solar irradiation prediction:

1. Investigate the accuracy on higher LoDs geometry, specifically using the Poisson Disk point
sampling method.

2. Experiment with Transformer networks for irradiation prediction.

3. Explore the relationship between urban typology and prediction accuracy through unsu-
pervised clustering and dimensionality reduction techniques.

107

5. Discussion

4. Apply transfer learning to adjust the final layers of the network, addressing issues related
to location and time invariance.

5.6. Interaction

The client-server process proposed for the interaction model offers an efficient solution with min-
imal overhead. Empirical evidence indicates that this approach significantly reduces processing
time compared to other subprocess methods.

5.6.1. External Harware

One key advantage is that the server code does not need to run on the same device as the client.
Although in this thesis, the server was operated on the same local machine as the client, it can
also be run on external hardware, such as a supercomputer. This flexibility is beneficial not only
for this specific project but for all deep learning projects in the architectural field. However,
running the server externally is particularly relevant only when the model’s inference time is
substantial.

5.6.2. CPU Inference

Currently, the prediction model operates on a GPU. Future adjustments to the code, particularly
focusing on the C++ implementations of the FPS and ball query algorithms, could enable the
model to run on a CPU. This shift has the potential to lower inference time, making the system
more versatile and accessible.

5.6.3. Implementation Other Design Software

Since the socket package utilizes a standard network communication protocol, developing the
client in other programming languages is straightforward. The model’s design features are trans-
mitted as byte packages to the server, a process that can be easily implemented in other languages
like C# or C++. Consequently, this approach is applicable to other design software, as long as
the preprocessing algorithm can be executed within the respective program.

The current implementation of the interaction model in Grasshopper requires users to have a basic
understanding of parametric design. In the future, a separate, web-based Graphical User Interface
(GUI) could make the implementation even more user-friendly, broadening its accessibility and
ease of use.

108

5.7. Hardware
5.6.4. Optimization

This research has demonstrated that optimizing buildings for solar irradiation using brute-force
algorithms is more feasible due to the reduced prediction time. However, while effective, this
approach is not particularly sophisticated and could benefit from further enhancement through
generative models. The primary challenge in this area lies in defining what constitutes "good”
versus "bad” design in the context of solar irradiation.

Alternatively, the prediction model could be leveraged to assess more practical aspects of a design.
As illustrated, this could pertain to evaluating the power potential of solar installations, assessing
heat loads on windows, or reducing urban heat island effects. Generative models could then be
employed to modify the design for specific objectives. For instance, adjusting the orientation of
a building to minimize vertical heat loads could be an application of this approach. This would
allow for more intelligent and purpose-driven optimization, moving beyond simple brute-force
methods.

5.7. Hardware Improvements vs Al

Given that the performance of CPUs and GPUs have massively improved over the last decades, it
could be argued that simulations will be able to reach the same speeds as the proposed deep
learning model, without the risk of biased errors. Therefore, it could be stated that developing
neural networks as replacement for simulation models is not a feasible approach for future building
optimization.

However, it is important to understand the fundamental difference between simulation and Al
prediction approaches. Whereas simulation models are able to compute certain output values,
they do not have a deep understanding between the relationship between input and output.
Al model on the other hand, are able to parameterize the problem and intrinsically learn how
input changes affect the output. This deeper understanding could potentially be used in future
generative models, which are not only able to predict, but also advice on changes based on earlier
experience.

5.8. Future Research Questions

In general, the following future research questions are proposed to build upon the work of this
thesis:

e How do urban typologies relate to errors in the prediction of solar irradiation?
e To what extend can deep neural networks predict solar irradiation on detailed urban models?

e How can solar irradiation be predicted and simulated on urban models that include dynamic
objects such as trees?

e How can a dataset of observed irradiation values on urban geometry be developed?

Can deep neural networks predict solar irradiation while accounting for time and location?

109

5. Discussion

For long-term research aimed at creating a more holistic model that integrates multiple aspects
such as building physics, finance, construction, and user experience, the following steps are
recommended:

e Further refine the work presented in this thesis to achieve production-ready accuracy?;

e Develop a model that clusters urban typologies, regardless of the building physics compo-
nent being predicted;

e Use similar methodologies to explore predictions in other areas, such as wind patterns,
acoustics, comfort, and financial implications;

e Transition from predictive models to generative models to optimize building geometry;

e Combine encoders used in prediction to create a holistic generative model for building
design.

3The author recommends that the model should be able to predict annual irradiation with maximum errors smaller than
the average power usage of a household over one day.

110

6. Conclusion

This research aimed to explore the feasibility of using deep neural networks to predict annual solar
irradiation on 3D urban geometry. By developing a synthesized dataset derived from the 3D BAG
and solar irradiation simulations, a PointNet-inspired neural network was successfully trained.
The findings suggest that it is indeed possible to predict solar irradiation with an average RMSE
of 21 kWh/m?2 on low-resolution buildings, offering a significantly faster alternative to traditional
simulation models. The method proposed in this thesis has been integrated into a user-friendly
ecosystem, enabling non-programmers to easily incorporate the tool into their design processes.

While previous research in solar irradiation prediction primarily focused on 2D projections, aver-
aged irradiation values, and surrogate building geometry, this thesis advances the field by training
the model on 3D geometry based on real buildings, targeting predictions at specific sensor points.
Moreover, the research introduces methods for preprocessing geometric data for neural network
training, optimizes computational efficiency, and presents an innovative server-client system for
easier interaction with the model.

At its current stage, the proposed method can be applied for city-scale annual solar irradiation
estimation and can be integrated into conceptual optimization processes that focus on solar heat
performance metrics. However, it is crucial to continue evaluating the results with traditional
simulation models, as the proposed solution may still have errors and biases.

Despite the promising results, several limitations need to be addressed before the method can be
routinely applied in practice. Questions remain about the model’s accuracy when applied to more
detailed geometry, its handling of material properties, and the potential for making the model
time- and location-invariant. Future research should explore whether Transformer-based networks
and techniques such as dimensionality reduction and urban morphology clustering could help
resolve these issues. Additionally, researchers could investigate whether the method proposed in
this thesis could be extended to other building performance metrics.

The conversion of predictive models into generative models also presents an exciting avenue for
research, potentially transforming how computers assist architects and designers in their work.

This research demonstrates that neural networks offer a valid and promising alternative to tradi-
tional building physics simulations. This direction merits further exploration to empower architects
and designers in creating a more sustainable built environment.

111

7. Reflection

This chapter is a reflection on both the development and implications of this research. There will
be a focus on academic relevance, societal impact, ethics and personal growth. Furthermore, Al
tools which have been used for the development of this thesis, will be mentioned in section 7.3.

7.1. Academic Relevance

Al is a relatively new field of study within the architecture domain. Rapid advances are be-
ing made to implement deep neural networks in solving architecture and engineering-related
problems. However, the lack of observed data is a widely known issue in the field. This re-
search contributes to addressing this problem by proposing a method to train neural networks on
synthesized irradiation based on real urban geometry.

Furthermore, this research prompts a reevaluation of the roles of designers and architects in the
future. To what extent is it possible to replace certain tasks performed by architects, and how will
the interaction with Al change their work in the future? This research suggests that Al models can,
at the very least, make predictions about physics-related properties of urban designs. Further
research in this field may determine whether it is possible for Al models to provide holistic advice
on making buildings more sustainable or financially attractive.

7.2. Societal Impact

The publication of this research may directly impact the optimization strategies that architects
and engineers use in daily practice. With the decreased computation time for solar performance,
it becomes feasible to computationally optimize designs with significantly more iterations. This
could result in a stronger focus on sustainability within the design field.

As advanced Al models become more prevalent in architecture, there may be a shift in focus to
the social aspects of the profession. Since Al models can overtake repetitive tasks and provide
advice on integral designs, architects may have more time to discuss options with their clients.

7.3. Ethics

Training deep neural networks requires significant amounts of energy. At the current stage of this
research, a network would need to be developed for individual locations. Therefore, it is deemed
essential that the networks become location-invariant to reduce the overall computation time.

113

7. Reflection

However, energy usage during the design phase is small compared to the energy consumed during
construction, maintenance, and usage. Thus, the increased power usage due to model training is
justified by the expected decrease in eventual energy consumption.

Although Al models are fast, they can also be incorrect. The recent rise of Al models introduces
the risk of excessive human trust in these models. It is essential that building practitioners always
verify the results and advice provided by Al models. As developer, transparency about potential
errors and inaccuracies in the models’ predictions can help improve trust and reliability.

For the development of this thesis, several Al frameworks have been used. ChatGPT 3, 3.5 Turbo
and 4o have been used (OpenAl et al., 2023), advising and altering Python code, and used for
the thesis grammar and sentence structure. By no means, Al has been used for the generation
of text with new content and information. All text which was corrected by ChatGPT has been
extensively checked by the author. For the presentation and cover of this thesis, Midjourney
(Midjourney (V5), 2023) has been used for the generation of inspiring artwork.

7.4. From the Author: A Personal Reflection

Working on this thesis for so long has been quite a journey. Many years ago, this thesis began to
take shape out of a frustration with having to use poorly optimized simulation models during my
Bachelor’s studies. Since it has taken so long to reach the final stage of this project, there was
ample time to reflect on the role of Al in the field of architecture and design. The experience gained
from this thesis has provided me with a stronger opinion in this debate and expert knowledge in
the optimization domain, which | can apply to other fields.

The results of the project exceeded my expectations. Initially, | hoped for a model that would
roughly suggest irradiation values on buildings, but | believe the model’s performance is far more
promising. It was gratifying to see positive results, especially since other academics were initially
critical of the thesis’s concept.

The scale of this thesis sometimes felt overwhelming, as many research fields were involved to
achieve the final outcome. Although | knew it would be challenging to work in the Computer
Vision domain as an architecture student, | may have underestimated the complexity of the code
| was trying to manage. In retrospect, | would recommend future students focus only on dataset
generation or neural network prediction instead of attempting both.

Due to the involvement and combination of various research fields, it was sometimes challenging
to communicate my ideas and vision to my mentors. Each mentor had their own expertise, but
lacked knowledge of the other domains, making it difficult to see the whole picture. Additionally,
| would have appreciated more guidance in developing the code itself. Fortunately, many kind
PhD students and students from other faculties were willing to have coffee and sit together to
give me practical suggestions while reading through my code.

On the other hand, | am grateful to my mentors for pushing me to develop a stronger narrative
around my thesis—why | am striving for this goal, how it would impact the field, and what more
we could do in the future. | also appreciate that my mentors continued to guide me throughout
this project, even when the final result was delayed due to external factors.

114

A. Regular Point Sampling Method

Neural networks generally perform better on reqular data compared to irregular data due to
the consistency and similarity in input structures that the network can recognize. This principle
is relevant to the two data preprocessing techniques implemented in this thesis: irregular point
clouds based on Poisson Disc sampling and regular sampling. This appendix details the procedure
for generating a regular point grid on 3D BAG data samples.

A.1. 3D BAG Mesh Format

In the 3D BAG dataset, meshes are typically defined by faces per surface, where each rectangular
surface is discretized into two triangular mesh faces, maintaining planarity. A straightforward
approach to point sampling might involve using the centroids or vertices of these triangular faces.
However, this method would result in an irregular point cloud with varying corresponding surface
areas, as illustrated in figure A.2. ldeally, a procedure should be in place that generates a
reqgular point grid with quad mesh faces that are square and have an area approximately equal
to a user-defined parameter value (e.g., 1.0 m? in this context). Additionally, it is preferred that
each mesh face corresponds to a sensor point, enabling the visualization of irradiation per face.

Figure A.1.: A 3D BAG mesh with trianqular faces for each building surface. (Image by author)

A.2. Mesh Discretization

The Rhino.geometry package offers several techniques to discretize existing meshes into different
configurations while maintaining the original shape. However, none of the provided solutions were
suitable for this thesis. The main issues were either excessively long processing times or the

115

A. Regular Point Sampling Method

Figure A.2.: A sensor grid based on the centroids of the trianqular faces. (Image by author)

generation of meshes that were incompatible with the requirements of this study. Consequently,
this thesis proposes an alternative procedure described in this appendix. While all figures are
visualized using McNeel Rhino, the steps outlined are fully implemented in Python to minimize
visualization overhead and improve efficiency.

A.3. Sample Outline

An outline is created given a sample size (in this case 100m x 100m). All geometry within this
outline will be considered for the simulation and prediction. The sample outline is a flat plane
in the x,y direction. The z-direction indicates the height of the buildings.

Figure A.3.: A sample outline of 100m x 100 m in which the building geometry will be extracted
for a sample. (Image by author)

116

A.4. Building Component Extraction
A.4. Building Component Extraction

The buildings are split in facades and roofs based on the normal directions. If the normal is
equal to the vector {0,0,1}, it is assumed that the face belongs to a roof. Otherwise it is part of
a facade.

Figure A.4.: The extracted roofs (orange) and facades (green) from the mesh based on the normal
directions. (Image by author)

A.5. Ground Levelling

All facades are leveled to the ground plane. The vertices with a z-value of 0, are used to extract
outlines from the buildings. Next, all building outlines outside the sample outline are removed.
If the building outline intersects with the sample outline, it is split and reconstructed to a closed
polyline, within the sample boundary. In some special cases, buildings also have courtyards. A
specifically designed algorithm makes a distinction between outer walls and inner courtyards.

Figure A.5.: Based on the lowest z-values of the building facades, outlines are extracted. Outlines
that cross the sample outline are reconstructed. (Image by author)

117

A. Regular Point Sampling Method
A.6. Mesh Face Quadrangulation

A quad mesh is generated from the sample outline, based on a given grid size (1.0m x 1.0m). Next,
the building outlines are used to sequentially split the geometry. Courtyard outlines are used
to re-split the extracted elements. These mesh faces are joined with the general ground mesh.
Figure A.7 shows that triangular faces occur when the quad mesh is split. The density of the
faces is higher and the area is lower than the preferred 1.0 square meter. Within the scope of this
thesis, it was not deemed possible to implement an algorithm that would avoid the occurrence of
triangle mesh faces at the splitting regions.

Figure A.6.: A ground regular ground mesh with mainly quad faces. (Image by author)

Figure A.7.: Triangular faces near the outlines of the buildings. (Image by author)

118

A.7. Roof Levelling

A.7. Roof Levelling

The extracted elements are moved to the height the building, based on the maximum z-value of
the original building mesh vertices.

Figure A.8.: Splitted mesh elements are moved to the height of the building as roof. The height
is found by taking the maximum z-value. (Image by author)

A.8. Facade Mesh Generation

For each building outline, including the corresponding courtyards, the line segments are split
into points based on the grid size. Next, the points are moved upwards in the z-direction multiple
levels, to reach the final height of the building, with intermediate steps approximately equal to
the grid size. The points are used as vertices for a quad mesh, with faces of approximately one
square meter.

Figure A.9.: Building walls based on the outlines of the buildings (Image by author)

119

A. Regular Point Sampling Method

A.9. Combining Mesh Elements

Finally, the building elements and ground are merged into one non-manifold mesh. This mesh can
be used for sensor point extraction and visualization purposes. By using the built-in functions in

Figure A.10.: Roofs, walls and ground are merged into one non-manifold mesh. (Image by author)

the Rhino.geometry package, the constructed reqular mesh is reshaped to a reduced rough mesh
with less faces and vertices, which is used for the simulation procedure.

A.10. Regular Point Sampling

In the second part of the reqular point sampling procedure, sensor points are extracted based on
the face centroids of the mesh. These sensor points are offset based on the normal directions of
the geometry (0.1m in this context). Some points however, belong to dividing walls which are
not visible after simulation or prediction of irradiance. Therefore, a ray-tracing algorithm was
implemented, to delete points that are deemed irrelevant for the prediction.

A.11. Dividing Wall Sensor Point Removal

For each sensor point, a ray is shot upwards in the z-direction. If the ray hits a roof from another
building roof within half the grid-size, the mesh face is partially covered by the roof of another
building. Otherwise, if the ray hits within a longer distance, the mesh face is fully covered
vertically by another building.

The cross product is taken between the normal direction of the geometry and positive/negative
z-direction. If the ray hits a wall from another building within half the grid-size, it is assumed
that the mesh face is partially covered by another building. If it hits at a longer distance, it is
fully covered by another building.

120

A.11. Dividing Wall Sensor Point Removal

Figure A11.: Given a sensor point (blue) a ray is shot upwards in the z-direction. Since it is
hitting the blue face of another roof, it is covered by another building. (Image by author)

If none of the rays hit other geometry, the corresponding sensor point is kept. If one of the rays
hits within half the grid size, it is also kept, but moved in the direction of the ray, plus the sensor
offset distance. Finally, if all rays hit both another roof and wall, within a longer distance than
half the grid size, it is fully covered by another building, thus the corresponding sensor point is
removed.

Figure A12.: Rays are shot horizontally to conclude if the corresponding point’s face is partially
or fully covered by anoter facade. (Image by author)

This procedure is useful to limit the number of sensor points that have to be simulated/predicted.
However, the time complexity of the algorithm is O(n?) considering the number of sensor points
and buildings. Therefore, it is time consuming to remove dividing wall sensor points within the
preprocessing phase. Future research could reduce the time complexity to make the algorithm
more efficient.

For each generated samples, multiple checks are validated before keeping or deleting a sample.
First of all, the GSI has to be higher than 0.1, which is based on the area of the building outlines.
Secondly, the total area of the roofs and ground combined should be equal to the expected total
area of the sample (100 x 100 = 10.000 m2 in this context), plus a given tolerance. If this is not
the case, it is assumed that the generation of the sample was incorrect. This usually happens due
to incorrect assumptions regarding outlines being outer building polylines or courtyard outlines.
Furthermore, errors reqularly occur within the boolean splitting procedure of the ground mesh.

121

A. Regular Point Sampling Method

Further research is required to consider slanted roofs, overhangs and other more irreqular geom-
etry from higher levels of detail in the 3D BAG. However, similar approaches as described earlier
can be used.

122

B. Point Sampling Techniques

Alternative solutions to sensor points sampling exist, and may be combined with the generation
of corresponding visualization meshes. The author suggests the following methods that may be
considered for the purpose of this project.

1. Reqular point sampling as discussed in appendix A.

e Advantages: point clouds are an accurate representation of the geometric shape. Fur-
thermore, point clouds generally have a reqular grid. The procedure results in corre-
sponding mesh faces that can be used for visualization purposes.

e Disadvantages: small triangular mesh faces occur next to building outlines. The
procedure is not very efficient and errors occur relatively often. In the current stage
of the research, the method is only applicable for low detail geometry

e Solutions: more accurate and efficient boolean intersection algorithms should be used.
The ray tracing algorithm for sensor point cloud reduction (in relation to all buildings)
may be optimized by using a binary tree approach. For more detailed geometry,
handcrafted algorithms may handle slanted roofs and other building elements.

2. Rough surface reqular point sampling. Instead of discretizing the meshes first, the original
mesh from the 3D BAG is used. By generating a flat reqular grid, points may be projected
in the z-direction on horizontal surfaces. For the vertical elements, a similar approach can
be used a described for option 1.

e Advantages: significantly more efficient and easier to implement.

e Disadvantages: results in courser point clouds which are less descriptive for the ge-
ometric shape. It does not result in a mesh which can be used for visualization.

3. Poisson Disc Sampling. An approach which randomly samples points on the surface, with
approximately equal distances, as described in the main report. This approach does not
generate a usable mesh for visualization and will result in more irreqular inputs to predict
irradiation for.

e Advantages: efficient procedure. It can also be used for more irregular geometry;
e Disadvantages: there is no mesh which can be used for visualization directly.

4. Poisson Disc Sampling with mesh reconstruction. The point cloud is generated using the
Poisson Disc Sampling method. The point cloud is then used to reconstruct a mesh for
visualization in which each point corresponds to a mesh face.

e Advantages: includes an efficient point sampling strateqy and mesh for visualization.

e Disadvantages: reconstructed mesh may not be the same as the original dataset.

123

B. Point Sampling Techniques

In this thesis, reqular point sampling and Poisson Disc sampling have been proposed as
potential solutions. Future research could show whether other methods such as described
may perform similarly, better, or worse, also considering the irradiation prediction error.

124

Bibliography

Alammar, A, Jabi, W,, & Lannon, S. (2021). Predicting Incident Solar Radiation on Building’s En-
velope Using Machine Learning. SimAUD 2021 Symposium on simulation for architecture
+ urban design.

Anderson, D., & Mcneill, G. (1992, August). ARTIFICIAL NEURAL NETWORKS TECHNOLOGY
A DACS State-of-the-Art Report (tech. rep.). Rome Laboratory. New York.

Arvo, J. (1986). Backward Ray Tracing. Developments in Ray Tracing, SIGGRAPH ‘86 Course
Notes, Volume 12.

As, I, & Basu, P. (2021). The Routledge Companion to Artificial Intelligence in Architecture
(2021st ed., Vol. 1). Routledge.

Bourgeois, D., Reinhart, C. F., & Ward, G. (2008). Standard daylight coefficient model for dynamic
daylighting simulations. Building Research and Information, 36(1), 68-82. https://doi.
org/10.1080/09613210701446325

Brembilla, E., & Mardaljevic, J. (2019). Climate-Based Daylight Modelling for compliance verifi-
cation: Benchmarking multiple state-of-the-art methods. Building and Environment, 158,
151-164. https://doi.org/10.1016/j.buildenv.2019.04.051

Castro Pena, M. L., Carballal, A., Rodriguez-Fernandez, N., Santos, |., & Romero, J. (2021). Ar-
tificial intelligence applied to conceptual design. A review of its use in architecture.
Automation in Construction, 124, 103550. https://doi.org/10.1016/j.autcon.2021.103550

Galanos, T., Chronis, A., & Vesely, O. (2024). City Intelligence Lab.

Garbin, C., Zhu, X., & Marques, O. (2020). Dropout vs. batch normalization: an empirical study
of their impact to deep learning. Multimedia Tools and Applications, 79(19-20), 12777
12815. https://doi.org/10.1007/s11042-019-08453-9

Geisler-Moroder, D., Lee, E. S., & Ward, G. J. (2017). Validation of the Five-Phase Method for
Simulating Complex Fenestration Systems with Radiance against Field Measurements.
15th International Conference of the International Building Performance Simulation As-
sociation. https://doi.org/10.26868/25222708.2017.401

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A, &
Bengio, Y. (2014). Generative Adversarial Networks. Communications of the ACM, 63(11),
139-144. https://doi.org/https://doi.org/10.1145/3422622

Han, J. M., Choi, E. S., & Malkawi, A. (2022). CoolVox: Advanced 3D convolutional neural network
models for predicting solar radiation on building facades. Building Simulation, 15(5),
755-768. https://doi.org/10.1007/s12273-021-0837-0

Hanocka, R., Hertz, A, Fish, N., Giryes, R, Fleishman, S., & Cohen-Or, D. (2019). MeshCNN:
A Network with an Edge. ACM Trans. Graph, 1(1). https://doi.org/10.1145/3306346.
3322959

Heckbert, P. (1993). Finite Element Methods for Radiosity. Proceedings of 20th Annual Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH ’93).

Huang, C., Zhang, G., Yao, J.,, Wang, X,, Calautit, J. K., Zhao, C,, An, N., & Peng, X. (2022).
Accelerated environmental performance-driven urban design with generative adversarial
network. Building and Environment, 224, 109575. https://doi.org/10.1016/j.buildenv.
2022.109575

125

https://doi.org/10.1080/09613210701446325
https://doi.org/10.1080/09613210701446325
https://doi.org/10.1016/j.buildenv.2019.04.051
https://doi.org/10.1016/j.autcon.2021.103550
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.26868/25222708.2017.401
https://doi.org/https://doi.org/10.1145/3422622
https://doi.org/10.1007/s12273-021-0837-0
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1016/j.buildenv.2022.109575
https://doi.org/10.1016/j.buildenv.2022.109575

Bibliography

loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. ICML’15: Proceedings of the 32nd International Con-
ference on International Conference on Machine Learning, 448-456.

Isola, P, Zhu, J.-Y., Zhou, T., & Efros, A. A. (2016). Image-to-Image Translation with Conditional
Adversarial Networks.

Jones, N. L, & Reinhart, C. F. (2017). Speedup Potential of Climate-Based Daylight Modelling on
GPUs. Proceedings of Building Simulation 2017: 25th Conference of IBPSA, 975-984.
https://doi.org/10.26868/25222708.2017.259

Jones, N. L., & Reinhart, C. F. (2022). Validation of Gpu Lighting Simulation in Naturally And
Artificially Lit Spaces. Proceedings of Building Simulation 2015: 14th Conference of
IBPSA, 14. https://doi.org/10.26868/25222708.2015.2461

Kharvari, F. (2020). An empirical validation of daylighting tools: Assessing radiance parameters
and simulation settings in Ladybug and Honeybee against field measurements. Solar
Energy, 207, 1021-1036. https://doi.org/10.1016/.solener.2020.07.054

Ladybug Tools. (2024a). Honeybee Primer. https://docs.ladybug.tools/honeybee-primer

Ladybug Tools. (2024b). Ladybug Primer. https://docs.ladybug.tools/ladybug-primer

Lila, A., Jabi, W,, & Lannon, S. (2021). Predicting solar radiation with Artificial Neural Network
based on urban geometrical classification. Proceedings of Building Simulation 2021:
17th Conference of IBPSA, 902-909. https://doi.org/10.26868/25222708.2021.30796

Ma, L., Stiickler, J., Kerl, C., & Cremers, D. (2017). Multi-View Deep Learning for Consistent
Semantic Mapping with RGB-D Cameras. 2017 IEEE|RS/ International Conference on
Intelligent Robots and Systems (IROS).

Mardaljevic, J., Heschong, L., & Lee, E. (2009). Daylight metrics and energy savings. Lighting
Research & Technology, 41(3), 261-283. https://doi.org/10.1177/1477153509339703

Maturana, D., & Scherer, S. (2015). VoxNet: A 3D Convolutional Neural Network for real-time
object recognition. 2015 IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS), 922-928. https://doi.org/10.1109/IR0S.2015.7353481

Midjourney (V5). (2023). Midjourney. https://www.midjourney.com/

M.Matter, N., & G.Gado, N. (2024). Artificial Intelligence in Architecture: Integration into Archi-
tectural Design Process. Engineering Research Journal, 181(0), 1-16. https://doi.org/10.
21608/erj.2024.344313

Mokhtar, S., Beveridge, M., Cao, Y., Drori, |., Balasubramanian, V. N., & Tsang, I. (2021). Pedestrian
Wind Factor Estimation in Complex Urban Environments. Proceedings of The 13th Asian
Conference on Machine Learning, PMLR 157, 157, 486-501. https://doi.org/https:
//doi.org/10.48550/arXiv.2110.02443

Nakhaee, A., & Paydar, A. (2023). DeepRadiation: An intelligent augmented reality platform for
predicting urban energy performance just through 360 panoramic streetscape images
utilizing various deep learning models. Building Simulation, 16(3), 499-510. https://dol.
org/10.1007/s12273-022-0953-5

OpenAl, Achiam, |., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I, Aleman, F. L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., Avila, R,, Babuschkin, 1., Balaji, S., Balcom, V.,
Baltescu, P, Bao, H., Bavarian, M., Belgum, J., ... Zoph, B. (2023). GPT-4 Technical
Report.

OpenStreetMap contributors. (2017). Planet dump retrieved from https://planet.osm.org.

Peters, R, Dukai, B., Vitalis, S., van Liempt, J., & Stoter, J. (2022). Automated 3D Reconstruction of
LoD2 and LoD1 Models for All 10 Million Buildings of the Netherlands. Photogrammetric
Engineering & Remote Sensing, 88(3), 165-170. https://doi.org/10.14358/PERS.21-
00032R2

Ploennigs, J., & Berger, M. (2023). Al art in architecture. Al in Civil Engineering, 2(1), 8. https:
//doi.org/10.1007/s43503-023-00018-y

126

https://doi.org/10.26868/25222708.2017.259
https://doi.org/10.26868/25222708.2015.2461
https://doi.org/10.1016/j.solener.2020.07.054
https://docs.ladybug.tools/honeybee-primer
https://docs.ladybug.tools/ladybug-primer
https://doi.org/10.26868/25222708.2021.30796
https://doi.org/10.1177/1477153509339703
https://doi.org/10.1109/IROS.2015.7353481
https://www.midjourney.com/
https://doi.org/10.21608/erj.2024.344313
https://doi.org/10.21608/erj.2024.344313
https://doi.org/https://doi.org/10.48550/arXiv.2110.02443
https://doi.org/https://doi.org/10.48550/arXiv.2110.02443
https://doi.org/10.1007/s12273-022-0953-5
https://doi.org/10.1007/s12273-022-0953-5
https://doi.org/10.14358/PERS.21-00032R2
https://doi.org/10.14358/PERS.21-00032R2
https://doi.org/10.1007/s43503-023-00018-y
https://doi.org/10.1007/s43503-023-00018-y

Qi, C. R, Su, H,, Mo, K., & Guibas, L. J. (2016). PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 652-660.

Qi, C.R, Yy, L, Su, H., & Guibas, L. J. (2017). PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space. NIPS’17: Proceedings of the 31st International Conference
on Neural Information Processing Systems, 5105-5114.

Qian, G, Li, Y, Peng, H., Mai, J.,, Hammoud, H. A. A. K., Elhoseiny, M., & Ghanem, B. (2022).
PointNeXt: Revisiting PointNet++ with Improved Training and Scaling Strategies. 36th
Conference on Neural Information Processing Systems (NeurlPS 2022). https://doi.org/
https://doi.org/10.48550/arXiv.2206.04670

Reinhart, C. F., & Walkenhorst, O. (2001). Validation of dynamic RADIANCE-based daylight
simulations for a test office with external blinds. Energy and Buildings, 33(7), 683-697.
https://doi.org/10.1016/S0378-7788(01)00058-5

Riegler, G., Ulusoy, A. O., & Geiger, A. (2016). OctNet: Learning Deep 3D Representations at
High Resolutions. 20717 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 6620-6629.

Robinson, D., & Stone, A. (2004). Irradiation modelling made simple: the cumulative sky approach
and its applications. Plea2004 - The 21st Conference on Passive and Low Energy Ar-
chitecture, 19-22.

Rombach, R, Blattmann, A., Lorenz, D., Esser, P, & Ommer, B. (2021). High-Resolution Image
Synthesis with Latent Diffusion Models. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 10674-10685. https://doi.org/10.1109/CVPR52688.
2022.01042

Ronneberger, O., Fischer, P, & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical
Image Segmentation. Medical Image Computing and Computer-Assisted Intervention -
MICCAI 2015, 234-241. https://doi.org/https://doi.org/10.48550/arXiv.1505.04597

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep Learning with PyTorch. Manning Publications
Co.

Subramaniam, S. (2017, October). Daylighting Simulations with Radiance using Matrix-based
Methods (tech. rep.). https://unmethours.com

Tehrani, A. A, Veisi, O., Fakhr, B. V., & Du, D. (2024). Predicting solar radiation in the urban area:
A data-driven analysis for sustainable city planning using artificial neural networking.
Sustainable Cities and Society, 100, 105042. https://doi.org/10.1016/j.scs.2023.105042

Tregenza, P. R, & Waters, I. M. (1983). Daylight coefficients. Lighting Research & Technology,
15(2), 65-71. https://doi.org/10.1177/096032718301500201

Tsangrassoulis, A., & Bourdakis, V. (2003). Comparison of radiosity and ray-tracing techniques
with a practical design procedure for the prediction of daylight levels in atria. Renewable
Energy, 28(13), 2157-2162. https://doi.org/10.1016/S0960-1481(03)00078-8

Vahdat, A., & Kreis, K. (2022, April). Improving Diffusion Models as an Alternative To GANs, Part
1. https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-
gans-part-1/

Vecchio, G., Prezzavento, L., Pino, C, Rundo, F., Palazzo, S., & Spampinato, C. (2023). MeT: A
graph transformer for semantic segmentation of 3D meshes. Computer Vision and Image
Understanding, 235, 103773. https://doi.org/10.1016/j.cviu.2023.103773

Wang, P. S, Liy, Y., Guo, Y. X, Sun, C. Y,, & Tong, X. (2017). O-CNN: Octree-based convolutional
neural networks for 3D shape analysis. ACM Transactions on Graphics, 36(4). https:
//doi.org/10.1145/3072959.3073608

Wang, P. S, Liu, Y., & Tong, X. (2020). Deep Octree-based CNNs with Output-Guided Skip Con-
nections for 3D Shape and Scene Completion. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 266-267.

127

https://doi.org/https://doi.org/10.48550/arXiv.2206.04670
https://doi.org/https://doi.org/10.48550/arXiv.2206.04670
https://doi.org/10.1016/S0378-7788(01)00058-5
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/https://doi.org/10.48550/arXiv.1505.04597
https://unmethours.com
https://doi.org/10.1016/j.scs.2023.105042
https://doi.org/10.1177/096032718301500201
https://doi.org/10.1016/S0960-1481(03)00078-8
https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/
https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/
https://doi.org/10.1016/j.cviu.2023.103773
https://doi.org/10.1145/3072959.3073608
https://doi.org/10.1145/3072959.3073608

Bibliography

Ward, G., & Shakespeare, R. (2011). Rendering with Radiance, The Art and Science of Lighting
Visualizations. Randolph M. Fritz.

Ward, G.], Bueno, B., Geisler-Moroder, D., Grobe, L. O., Jonsson, J. C., Lee, E. S., Wang, T., & Rose
Wilson, H. (2022). Daylight simulation workflows incorporating measured bidirectional
scattering distribution functions. Energy and Buildings, 259, 111890. https://doi.org/10.
1016/j.enbuild.2022.111890

Wu, W,, Fu, X.-M,, Tang, R, Wang, Y., Qi, Y.-H., & Liu, L. (2019). Data-driven interior plan
generation for residential buildings. ACM Transactions on Graphics, 38(6), 1-12. https:
//doi.org/10.1145/3355089.3356556

Yue, Y, Yan, Z, Ni, P, Lei, F,, & Qin, G. (2024). Promoting solar energy utilization: Prediction,
analysis and evaluation of solar radiation on building surfaces at city scale. Energy and
Buildings, 319, 114561. https://doi.org/10.1016/j.enbuild.2024.114561

Yuksel, C. (2015). Sample Elimination for Generating Poisson Disk Sample Sets. Computer Graph-
ics Forum, 34(2), 25-32. https://doi.org/10.1111/cgf.12538

Zhang, Y., Schlueter, A., & Waibel, C. (2023). SolarGAN: Synthetic annual solar irradiance time
series on urban building facades via Deep Generative Networks. Energy and Al, 12,
100223. https://doi.org/10.1016/j.eqyai.2022.100223

Zhao, H., Jiang, L., Jia, J., Torr, P, & Koltun, V. (2021). Point Transformer. [EEE Access, 9, 134826-
134840. https://doi.org/doi:10.1109/ACCESS.2021.3116304

Zhu, J.-Y., Park, T, Isola, P, & Efros, A. A. (2017). Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks. 2077 IEEE International Conference on Com-
puter Vision (ICCV), 2242-2251. https://doi.org/10.1109/ICCV.2017.244

128

https://doi.org/10.1016/j.enbuild.2022.111890
https://doi.org/10.1016/j.enbuild.2022.111890
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1016/j.enbuild.2024.114561
https://doi.org/10.1111/cgf.12538
https://doi.org/10.1016/j.egyai.2022.100223
https://doi.org/doi:10.1109/ACCESS.2021.3116304
https://doi.org/10.1109/ICCV.2017.244

Colophon

This document was typeset using BIEX, using the KOMA-Script class scrbook. The main font
is lwona.

	Introduction
	Problem Statement
	Research Question
	Disciplinary Approach
	Scope
	Software and Hardware
	Thesis Structure

	Related Literature
	Solar Irradiation Simulations
	Raytracing
	Daylight Simulations
	Mathematical Background
	2-Phase Method and Neural Networks
	Software and Simulation Techniques
	Limitations of Daylight Simulations

	Deep Neural Networks
	Artificial Neural Networks
	Convolutional Neural Networks
	Generalization and Normalization
	UNET
	Generative Adversarial Networks
	Diffusion Models
	Transformers
	Conclusion

	Related Research Solar Irradiation Prediction
	Related Research Limitations

	Neural Network Architectures with 3D inputs
	VoxNet
	OCNN and OctNet
	MeshCNN
	Multiview CNN
	PointNet
	Model Discussion
	Conclusion

	Methods
	Framework
	Generation
	Geometry source
	Partitioning
	Augmentation
	Point Sampling
	Final Format

	Simulation
	Parameter Convergence Test
	Final Format

	Parallelization
	Prediction
	PointNet
	PointNet++
	PointNeXt
	Model Sizes
	Training, Validation and Testing
	PointNext

	Interaction
	Preprocessing
	Live Prediction
	Visualization
	Optimization
	Conclusion

	Analysis
	Dataset Generation, Simulation, and Parallelization
	Dataset Sizes and Types
	Generation
	Simulation
	Parallelization

	Prediction
	Baseline Evaluation
	Hyperparameter Tuning
	Average Performance Improvements
	Visual Evaluation
	Imbalanced Dataset Correction
	Network Inference Optimization
	Experiment 1: Random Dataset
	Experiment 2: Sample Size
	Conclusion

	Interaction
	Optimization
	Overall Grasshopper Script
	Future Design Framework

	Discussion
	Research Questions
	Generation
	Regular Mesh Preprocessing Limitations
	Poisson Disk Sampling Optimization
	Augmentation
	Framework Limitations
	Further Research

	Simulation
	Accelerad vs Radiance
	Direct vs Indirect Irradiation
	Materials
	Further Research

	Parallelization
	Further Research

	Prediction
	Practical Implications of "21 kWh/m2 RMSE"
	Time and Location Invariance
	Improving Mode Coverage
	Geometric Level of Detail
	Further Research

	Interaction
	External Harware
	CPU Inference
	Implementation Other Design Software
	Optimization

	Hardware
	Future Research Questions

	Conclusion
	Reflection
	Academic Relevance
	Societal Impact
	Ethics
	Personal Reflection

	Regular Point Sampling Method
	3D BAG Mesh Format
	Mesh Discretization
	Sample Outline
	Building Component Extraction
	Ground Levelling
	Mesh Face Quadrangulation
	Roof Levelling
	Facade Mesh Generation
	Combining Mesh Elements
	Regular Point Sampling
	Dividing Wall Sensor Point Removal

	Point Sampling Techniques
	Bibliography

