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Standards for passenger comfort in automated vehicles: Acceleration 
and jerk 
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Delft University of Technology, Department of Cognitive Robotics, Mekelweg 2, Delft, 2628CD, the Netherlands   
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A B S T R A C T   

A prime concern for automated vehicles is motion comfort, as an uncomfortable ride may reduce acceptance of 
the technology amongst the general population. However, it is not clear how transient motions typical for 
travelling by car affect the experience of comfort. Here, we determine the relation between properties of vehicle 
motions (i.e., acceleration and jerk) and discomfort empirically, and we evaluate the ability of normative models 
to account for the data. 23 participants were placed in a moving-base driving simulator and presented sinusoidial 
and triangular motion pulses with various peak accelerations (Amax0.4 − 2 ms− 2) and jerks (Jmax0.5 − 15 ms− 3), 
designed to recreate typical vehicle accelerations. Participants provided discomfort judgments on absolute 
‘Verbal Qualifiers’ and relative ‘Magnitude Estimates’ associated with these motions. The data show that 
discomfort increases with acceleration amplitude, and that the strength of this effect depends on the direction of 
motion. We furthermore find that higher jerks (shorter duration pulses) are considered more comfortable, and 
that triangular pulses are more comfortable than sinusoidal pulses. ME responses decrease (i.e., reduced 
discomfort) with increasing pulse duration. Evaluations of normative models of vibration and shock (ISO 2631), 
and perceived motion intensity provide mixed results. The vibration model could not account for the data well. 
Reasonable agreement between predictions and observations were found for the shock model and perceived 
intensity model, which emphasize the role of acceleration. We present novel statistical models that describe 
motion comfort as a function of acceleration, jerk, and direction. The present findings are essential to develop 
motion planning algorithms aimed at maximizing comfort.   

1. Introduction 

Automation of vehicle functionalities is becoming ever more com-
mon, with optimistic accounts suggesting that SAE Level 5 vehicles may 
enter the consumer market over the next few decades (Kyriakidis et al., 
2015; Wadud et al., 2016). Automated vehicles (also referred to as 
autonomous vehicles/cars, driver-less cars, self-driving cars, or robotic 
cars) are often presented as the embodiment of freedom, allowing their 
occupants to work or engage in leisurely activities during otherwise 
unproductive travel time. In order to ensure broad adoption of the 
technology, vehicle motion planning and control algorithms must pro-
vide levels of motion comfort that are at least sufficiently high to allow 
such projected benefits to materialize. Implementation of comfortable 

algorithms requires a comprehensive understanding of how the experi-
ence of comfort relates to vehicle motion. 

Motion comfort has many facets (see e.g. (de Winkel et al., 2021; 
Edelmann et al., 2021; Will et al., 2021; Shyrokau et al., 2018; Mir-
akhorlo et al., 2022),). The presence of low frequency motions endured 
over a long period of time can lead to motion sickness (Irmak et al., 
2021a). In addition to the unpleasant symptoms of motion sickness 
(including nausea and vomiting), there may also be a drop in cognitive 
task performance (Matsangas et al., 2014) and increases in subjective 
workload (Irmak et al., 2021b), as well as increase in fatigue and leth-
argy (Lackner, 2014). Long duration exposures to high frequency whole 
body vibrations may also lead to discomfort, may interfere with the 
ability to perform tasks, and may have adverse health effects, such as 
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(chronic) lower back pain (Griffin and Erdreich, 1991; Burström et al., 
2015). There is a third class of motions, which leads to an acute sense of 
discomfort. These motions are typically transient and can be described 
as discrete pulses that may be characterized in terms of acceleration and 
jerk, related through motion frequency (Förstberg, 2000; de Winkel 
et al., 2020). Such discrete events include lane changing, accelerating, 
braking and curve taking, characteristic for transportation by car. 

Whereas some standards on accelerations and jerks may be found in 
official norms, it is uncertain to what extent these generalize to travel in 
an automated vehicle. For instance, ISO norm 22179 on Full Speed Range 
Adaptive cruise control systems notes acceleration limits of +4/− 5 ms− 2 

down to +2/− 3.5 ms− 2, and negative jerk limits of − 5/− 2.5 ms− 3; for 
vehicles travelling at 20 and 5 ms− 1, respectively, but the norm does not 
provide empirical grounds for the chosen values (ISO 22179:2009(E), 
2009); ISO norm 2631 provides methods to classify comfort of vibration 
and shock for lateral and longitudinal motion with frequencies of 
0.5–10 Hz, similar to what may be encountered in a car. However, it is 
noted that the experience of comfort may vary: “a particular vibration 
may be considered to cause unacceptable discomfort in one situation but 
may be classified as pleasant or exhilarating in another” (ISO 2631, 
2001). 

The scientific literature on how acceleration and jerk relate to (dis-) 
comfort is also inconclusive. A survey of comfort in public trans-
portation by Hoberock (1976) argues that steady non-emergency lon-
gitudinal accelerations of 1.08–1.47 ms− 2 most probably fall in the 
acceptable range, and that jerks higher than 2.94 ms− 3 are unlikely to be 
acceptable. More recent studies by Andersson and Nilstam (1984) in 
Swedish rail found that the magnitude of tolerable acceleration and jerk 
was lowest for walking passengers, followed by standing, and subse-
quently by sitting. Förstberg (2000) built on the study by Andersson and 
Nilstam (1984), investigating comfort for discrete lateral motions in 
Swedish rail transport. It was found that a 20% discomfort reporting 
threshold coincided with a maximum lateral acceleration of 0.84 ms− 2 

and a maximum jerk of 0.42 ms− 3. The 50% comfort threshold for lateral 
acceleration was 1.18 ms− 2, which is in agreement with Hoberock 
(1976), but the 50% comfort threshold for lateral jerk was smaller, at 
0.6 ms− 3. A limitation of the Andersson and Nilstam (1984) and 
Förstberg (2000) studies is that the acceleration and jerk were filtered. 
Andersson and Nilstam (1984) low pass filtered the jerk at 0.3 Hz, 
presumably to reduce the noise introduced by differentiating accelera-
tion. Förstberg (2000) evaluated two filtering combinations, one of 
which was a 0.6–1.5 Hz bandpass filter for the lateral acceleration with a 
0.3 Hz high-pass filter for the jerk. The other filtering combination was 
0.2–0.6 Hz bandpass filter for both lateral acceleration and jerk. The 
second filter combination gave slightly different comfort thresholds than 
the initial combination; with maximum lateral acceleration being at 
0.52 ms− 2 and a maximum jerk of 1.18 ms− 3. Results therefore imply 
there may be a frequency relationship, but this was not evaluated. 

In the present study we aim to provide clear and unambiguous pa-
rametrizations of expected discomfort given acceleration pulses 
following different characteristic profiles, with acceleration magnitudes 
and jerks (and, by extension, frequencies) typical for automotive 
domain. We hypothesize that: (1) subjective discomfort increases line-
arly with acceleration magnitude and jerk; (2) high jerks do not elicit 
discomfort if they occur over short periods of time (i.e., an interaction 
effect exists between frequency and acceleration, such that high fre-
quency accelerations do not elicit discomfort); and (3) lateral and 
backward motions are more uncomfortable than forward motion due to 
decreased seat support. 

To test these hypotheses, we designed an experiment where comfort 
responses were collected for motion pulses with various combinations of 
peak acceleration and jerk. Using the collected empirical data, we 
evaluate how well existing normative models of comfort for vibration 
and shock (ISO 2631, 2001), and a model of perceived motion intensity 
(Soyka et al., 2011; de Winkel et al., 2020), can account for comfort 
responses of transient motions typical of travelling by car. 

2. Methods 

2.1. Overview 

In the experiment, participants were seated in the driver seat of a 
moving base motion simulator and were passively subjected to a series 
of physical motion pulses that were similar to perturbations experienced 
in traffic. Hence, participants were, in effect, passengers. Participants 
were tasked to rate the discomfort they felt during each perturbation. 
These ratings were cross-matched to verbal qualifiers to allow an 
interpretation of the ratings as well as comparisons between individuals. 
Statistical models were fitted to the data to determine which charac-
teristics best predicted comfort. The findings of these analyses were then 
used to evaluate existing normative models. 

2.2. Ethics statement 

The experiment was performed in accordance with the Declaration of 
Helsinki. The study was approved by the Human Research Ethics 
Council of Delft University of Technology (Delft, The Netherlands; 
application number 1981). All participants gave their written informed 
consent prior to participation in the study. 

2.3. Participants 

23 participants (mean age = 28.8, SD = 4.7, 7 females, 16 males) 
were recruited from amongst university staff and students. All partici-
pants were informed of the experimental goals and procedures as per the 
requirements of informed consent. Participants were offered a 10 
voucher as a compensation for their time. 

2.4. Apparatus 

The study was performed using the Delft Advanced Vehicle Simu-
lator (DAVSi) (Khusro et al., 2020). The DAVSi consists of the front half 
of a vehicle (Toyota Yaris), mounted to a Stewart motion platform and 
surrounded by a cylindrical projection screen (Fig. 1). Participants were 
seated in the driver seat and wore a cervical collar and safety belt as 
safety measures. External noises were not blocked to ensure that the 
experimenter and participants could communicate at all times. 

2.5. Task & procedure 

The main experimental task was a Magnitude Estimation task (ME 
(Stevens, 1957),), in which participants attributed numbers 

Fig. 1. The DAVSi simulator.  
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representing their experience of discomfort to motion pulses. Motion 
pulses were presented in a series of experimental trials. There were three 
training trials followed by 136 experimental trials. In the three training 
trials, a motion pulse was applied that represented the average of the 
characteristics varied in the actual experiment (see: Stimuli). The order 
of motion pulses was randomized within and between participants to 
counteract effects of time. Participants were instructed to attribute this 
average motion the arbitrary value ‘100’, and to scale their responses in 
the actual experiment relative to this motion. To further clarify this, the 
following explanation was given: “a motion twice as uncomfortable 
would be attributed the value ‘200’; and a motion half as uncomfortable 
would be attributed the value ‘50’. It was also explicitly stated that any 
scaling was allowed, as long as participants felt that their responses 
accurately represented their subjective experiences. 

Participants were instructed to assume a comfortable position, keep 
their hands on their laps, and to keep their eyes closed for the duration of 
the experiment. Each experimental trial was started manually by the 
experimenter following the sound of a single beep. Participants were 
cued to respond by the sound of a double beep, presented upon 
completion of each pulse. Responses were given verbally and noted by 
the experimenter. After a response was noted, the simulator was moved 
back to the simulator centre position over 5 s, following a sinusoidal 
waveform acceleration profile. The peak acceleration for this homing 
motion was chosen proportionally to the distance travelled during the 
experimental trial. All stimuli were presented in random order in a 
single session. 

During debriefing, participants were also asked to provide a key that 
allowed us to interpret and compare their ratings between individuals. 
To this end, they were asked to associate numbers to seven ‘Verbal 

Qualifiers’ (VQ) using the same scaling they chose to use in the actual 
experiment. The VQ were: ‘Excellent’, ‘Very Good’, ‘Good’, ‘So-so’, 
‘Bad’, ‘Very Bad’, ‘Terrible’ (Venrooij et al., 2015; de Winkel et al., 
2022). The VQ were presented on a single sheet of paper, and partici-
pants were allowed to fill in the numbers themselves in any desired 
order. It was emphasized that the mapping of numbers to VQ does not 
have to be linear, and that it was not necessary to have experienced them 
all during the experiment, such that, for example, if a participant never 
experienced a motion that they found terribly uncomfortable, they could 
assign a number outside the range of numbers provided as responses 
during the experimental trials. 

Including instructions and debriefing, the experiment took approxi-
mately 1 h to complete. 

2.6. Stimuli 

Participants were presented with a range of different motion stimuli. 
The motions were either sinusoidal (subscript *s) or triangular (subscript 
*t) pulses, with acceleration profiles defined as: 

As(t) = Amaxsin(2πft), (1)  

and 

At(t) = Amax ( [t < T/4] (4t/T)
+[t >= T/4 & t < 3T/4] (− 4t/T + 2)

+ [t >= 3T/4] (4t/T − 4) ),
(2)  

respectively. Here Amax is peak acceleration, f is frequency, and t is time, 
which could take on values between [0, T]. T is the period of the pulse, 

Fig. 2. Characteristic acceleration (top row) and jerk (bottom row) profiles for sinusoidal (left column) and triangular (right column) pulses, using as a frequency of 
1 Hz and peak acceleration of 2 ms− 2 as an example. 
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defined as 1/f. Note that Equation (2) is a piecewise function, meaning 
that the expressions between square brackets are conditional statements 
that evaluate to true (1) or false (0) depending on the value of t. 

The acceleration and jerk profiles for sinusoidal and triangular pulses 
are shown in Fig. 2. 

A comprehensive naturalistic driving study by Feng et al. (2017) 
shows that the 99th percentile acceleration event was 2.85 ms− 2. 
Similarly, in data we collected during urban driving (in The Hague, The 
Netherlands), the 99th percentile was 2.2 ms− 2. Based on these obser-
vations, and also considering the limitations of the simulator motion 
envelope, we chose to use the following peak accelerations: Amax = {0.4, 
0.75, 1.1, 1.45, 1.7, 2} ms− 2. 

Data on the magnitude of jerks encountered during driving is less 
reliable. Feng et al. (2017) noted 2.6 ms− 3 as the 99th percentile jerk 
experienced during naturalistic driving. This maximal jerk is similar to 
the jerk thought to be at the comfort limit by Hoberock (1976). How-
ever, Feng et al. (2017) smoothed the vehicle acceleration using a 1 s 
window and then computed the jerk over an acceleration time window 
of 0.3 s; similar to the filtering operations used by Andersson and Nil-
stam (1984) and Förstberg (2000). It is possible that the filtering oper-
ations performed in these studies removed what would otherwise be 
uncomfortable jerks. Therefore, we chose to study jerks up to 15 ms− 3: 
Jmax = {0.5, 1, 2, 4, 8, 15} ms− 3. 

Consequently, we obtain a 6 × 6 grid of desired combinations of peak 
accelerations Amax and peak jerks Jmax. Due to limitations on the 
workspace (±0.51m relative to centre position) and velocity ±0.81 
ms− 1 of the platform, not all combinations could be reproduced. 
Particularly, due to excessive translations or velocities, none of the Jmax 
= 0.5 ms− 3 conditions and some combinations of low jerks and high 

accelerations could not be reproduced. Fig. 3 provides an overview of 
the motions that could be reproduced, and were used in the experiment. 
For sinusoidal pulses, 15/36 profiles could be reproduced; for triangular 
profiles 19/36. The associated frequency range for sinusoidal pulses is 
approximately 0.40–5.97 Hz; and 0.63–9.38 Hz for triangular pulses. 

All profiles were presented in forward, rightward, backward and 
leftward directions, resulting in a total of 4(direction) × (15(sinusoidal) 
+ 19(triangular)) = 136 stimuli. 

The subscripts *max referring to peak values for acceleration and jerk 
will be dropped in the description of the statistical analyses for 
convenience. 

2.7. Statistical analyses 

The statistical analyses were performed on the individual level. Thus 
we evaluate which motion characteristics best predict the responses 
without implicitly assuming that the nature of effects is equal between 
individuals (i.e, the ‘Ecological Fallacy’ (Freedman, 1999)). We then 
identify commonalities between individuals and attempt to explain 
qualitative interpersonal differences by available demographic cova-
riates (i.e., length, weight, age and/or gender). Training trials were 
omitted from the data analyses. 

2.7.1. Data preprocessing 
To assess commonalities between individuals and derive estimates of 

central tendency in the sample, we need to account for interpersonal 
variability in the scaling chosen for the ME responses. A common way of 
doing this is by applying a z-score transformation, also called ‘stan-
dardization’. This operation scales responses such that the mean equals 
0 and the standard deviation equals 1. It does not alter the shape of the 
distribution. In the present case, standardizing the responses allows 
comparison between individuals, but does not facilitate interpretation, 
as increments in terms of comfort response standard deviations are not 
immediately intuitive. Therefore, we chose to apply a transformation 
that scales responses in terms of the VQ. We do this by first fitting 
functions of the form ME = a × VQb

n (Stevens, 1957) to the scaling keys 
participants provided, with as VQn the numerical order of the VQ. The 
exponent b had a median value of 1.33 (25th − 75th percentile: 
0.97–1.48), which suggests that discomfort increases exponentially. The 
function accounted for the provided keys nearly perfectly (median 
R2

adj = 0.981, IQR = 0.026). We then normalized the actual ME re-
sponses using the inverse of this function. This procedure linearizes the 
responses and converts each individual’s responses to a common scale. 
This operation is comparable to standardization, but has the advantage 
that the results can be interpreted in terms of the VQ. Specifically, a 
score of 1 on this scale corresponds to the VQ ‘Excellent’, and a score of 7 
to ‘Terrible’. The statistical analyses and model fits were performed on 
the normalized ME. 

2.7.2. Stepwise linear regression 
For each participant, a stepwise linear regression analysis was per-

formed to identify which (interactions between) independent variables 
peak acceleration A, peak jerk J, ’motion direction’ d and ’motion 
profile’ p should be considered as predictors in a model of discomfort. 
The procedure includes/excludes possible predictors based on 
improvement of a chosen criterion. Here, we chose to use the Bayesian 
Information Criterion (BIC). The BIC is based on the model likelihood 
and includes a penalty for the number of predictors (Schwarz et al., 
1978). The procedure was performed using the stepwiselm function of 
the MATLAB Statistics and Machine Learning Toolbox (MATLAB. version 9, 
2017). We also ran the above procedure to evaluate how well responses 
could be predicted using RMS acceleration Arms and the pulse crest 
factors Acrest, instead of A. These latter analyses yielded lower model 
R2

adj: for A we found a median R2
adj = 0.75 (25st − 75th percentile 

0.66–0.80; for Arms R2
adj = 0.57 (0.09–0.72), and for Acrest R2

adj = 0.48 

Fig. 3. Stimulus peak accelerations (Amax) and peak jerks (Jmax). Each dot/ 
triangle represents a combination presented in the experiment. Blue dots 
represent sinusoidal profiles; orange triangles represent triangular profiles. A 
small offset in x and y was applied to the dot positions to visually separate 
them. The relation between acceleration, jerk and pulse frequency is visualized 
using contour lines that indicate frequencies of 0.5, 1, 2, 4, and 8 Hz. Frequency 
increases in counter-clockwise direction relative to the x-axis. Note how com-
binations of large accelerations and low jerks, or equivalently, low frequency, 
could not be produced by the platform. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 
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(0.24–0.59). For brevity, we will only present the analyses using A as 
predictor variable, along with the other predictors J, d and p. The role of 
frequency will be addressed in separate analyses. 

2.7.3. Ordinal regression 
An assumption made in the stepwise linear regressions is that the 

relation between responses and continuous predictors A, J is linear. 
Since the data preprocessing indicated that this assumption does not 
hold, we also performed an ordinal regression analysis (Scott Long, 
1997) as a control. In ordinal regression, responses are assumed to be 
ordered, but no assumption is made on the distance between response 
classes. Because participants did not classify responses in terms of the 
verbal qualifiers (VQ) directly, we performed this classification for 
them; using the mapping between ME and VQ that was obtained from 
each participant during the debriefing. We subsequently predicted the 
VQ classifications C as a function of peak acceleration A, peak jerk J, 
their interaction AJ, a categorical ’motion direction’ variable d with 
three levels (forward, lateral, and backward, where forward is the 
reference level), and a categorical ’motion profile’ variable p (where 
sinusoidal is the reference level). In the model, classification categories j 
receive their own intercept, or threshold, βj, which can account for 
spacing between levels. The model can be written as: 

log
(

Pr(C ≤ j)
Pr(C > j)

)

= βj + βAA + βJJ + βAJAJ + βdd + βpp. (3) 

The model was fitted using the mnrfit function from the MATLAB 

Statistics and Machine Learning Toolbox (MATLAB. version 9, 2017)). 

2.8. Linear time-invariant systems modeling 

Provided that perceived comfort depends on the frequency content of 
a signal, it is possible to predict the comfort response for any pulse based 
on its frequency content using an LTI model. We evaluate two LTI 
models proposed in the literature. 

The first is a model of (dis)comfort as a function of vibration (ISO 
2631, 2001; Rimell and Mansfield, 2007). The specific version of the 
model used is referred to as Wd in the norm, and applies to fore-aft and 
lateral seat vibrations. The model is a combination of a high-pass filter, a 
low-pass filter, and an acceleration-velocity transition filter. Predictions 
of comfort are based on the RMS of filtered acceleration time histories. 

The second model is a human perception model of translational ac-
celeration (Soyka et al., 2011; de Winkel et al., 2020), which may apply 
when we assume that discomfort increases linearly with perceived mo-
tion intensity. The model provides a description of the vestibular otolith 
organs, which act like accelerometers, and subsequent processing of 
their output performed by the brain. We filtered the pulse acceleration 
time histories using the model. The result of this operation can be 
interpreted as a perceived motion intensity. We then used the peak value 
of the rectified output signal as a predictor of (dis)comfort. We evaluate 
the tenability of the models by using the model outputs as the sole 
predictor (apart from an intercept) of ME responses in individually fitted 
linear models. Doing so, we account for interpersonal differences in the 
ME response scale. 

In addition to the above analysis, we compare the model frequency 
responses to the observed frequency response. To this end, we first need 
to deal with conflating effects of acceleration magnitude. Therefore. 

(1) we divided the normalized ME responses by the measured peak 
acceleration to correct for effects of motion amplitude. This simple di-
vision was adequate due to the linear relation between the normalized 
ME and acceleration. 

Next, (2) we binned the responses by taking together each two 
subsequent frequencies and then calculated a mean normalized response 
for each bin. This was done separately for the two pulse profiles to avoid 
assuming a common effect. Because there is an unequal number of fre-
quencies observed for sinusoidal and triangular profiles, 7 and 9 bins 

were created for the two profiles, respectively. To evaluate the corre-
spondence of the model behaviour and responses in the frequency 
domain, we then fitted the LTI models to the binned data by choosing 
gain parameters that minimized the sum of squared differences between 
the response predicted by the model and the observations. 

3. Shock model 

In addition to models on the effects of vibration, ISO 2631 also in-
cludes models of adverse health effects of shock (ISO 2631, 2001). There 
are two versions; one model to predict the lumbar spine accelerations for 
seated individuals in response to horizontal impulses, and a model for 
the spinal response to vertical motion. Here we use the model for hori-
zontal directions. The model uses a digital filter to describe the response 
of the spine. An acceleration dose Dk is then calculated by counting the 
number of peaks in the filtered signal, weighted by their magnitude, as 
follows 

Dk =

[
∑

i
A6

ik

]1/6

, (4)  

where i is the i-th peak and k is a subscript referring to motion direction 
(x, y or z). 

As an illustration of the filtering, Fig. 4 shows the predicted spinal 
response for an arbitrarily chosen sinusoidal and triangular pulse, with 
Amax = 1.1 ms− 2 and Jmax = 8 ms− 3. 

As was done in the evaluation of the LTI models, we use the accel-
eration dose as a single predictor in individually fitted linear models. In 
ISO 2631-5 (ISO 2631, 2001), the outcome of the equation given for the 
derivation of the first order term of the filter model denominator (i.e., 
parameter b(2)) differs from the value given in the example MATLAB 

script. We were unable to resolve the cause of this discrepancy. Using the 
value given in the script and resampling our signals accordingly, we 

Fig. 4. Examples of the spinal response predicted by the shock model of (ISO 
2631, 2001); for the sinusoidal (top panel, blue lines) and triangular (bottom 
panel, orange lines) pulse profiles. The thin lines show recorded accelerations 
for pulses with Amax = 1.1 ms− 2 and Jmax = 8.0 ms− 3, and the thick lines show 
the model prediction. Acceleration dose values are calculated by calculating the 
6th root of the sum over the acceleration peaks to power 6. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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obtain slightly worse fits than when using the equation to determine 
model parameters, with median R2

adj = 0.61 (25th − 75th percentiles: 
0.50–0.67) versus R2

adj = 0.62 (25th − 75th percentiles: 0.48–0.68). 
However, the model output is over an order of magnitude larger than the 
input when using the equation to calculate parameter b(2). We therefore 
report the results of the analysis using the value of b(2) presented in the 
norm example script. 

4. Results 

4.1. Statistical analyses 

As an illustration of the findings, data and regression model fits 
obtained for a typical participant1 are shown in Fig. 5. The figure shows 
that magnitude estimates (ME) increase for higher accelerations, and 
that ME decrease for higher jerks. In the following, we evaluate the ef-
fects of the experimental manipulations using statistical methods. 

4.1.1. Stepwise linear regression 
The individual regression models accounted for the data well, with a 

median R2
adj over participants of 0.75 (25th − 75th percentiles: 

0.66–0.80). The stepwise fitting procedure revealed several effects that 
were more or less consistent among participants: peak acceleration Amax 
had a positive effect for 22 participants, with a median coefficient of βA 
= 2.36 (Inter-Quartile Range, IQR = 1.08). The remaining participant 
had an atypical response to the motion stimuli, with the function 
relating ME to A and J resembling a saddle function. For this person we 
also obtained the lowest R2

adj = 0.43 overall (id 12, see the appendix). 
Backward motion comfort differed from forward motion for 18/23 
participants, being less comfortable for 12/23 but more comfortable for 
6/23 participants (median βd = backward = 0.11, IQR = 0.44), and lateral 
motion was generally more uncomfortable (18/23, median βd = lateral =

0.46, IQR = 0.74). There were positive interaction effects between ac-
celeration and direction, indicating that the effect of acceleration tended 
to be stronger for backward than for forward motion (9/23, median βA,d 

= backward = 0.47, IQR = 0.98), and even more so for lateral motion (9/ 
23, median βA,d = lateral = 1.30, IQR = 0.42). Furthermore, triangular 
profiles were more comfortable than sinusoidal profiles (20/23, median 
βp = triangular = − 0.54, IQR = 0.68), and there was also an interaction 
effect of profile with acceleration for 7/23 participants (median βA,p =

triangular = − 0.88, IQR = 0.64). An effect of jerk was also found for a 
majority of participants (18/23), but the effect was small and there was 
considerable interpersonal variability, with a positive effect for 6/23, 
but a negative effect for 12/23 (median βJ = − 0.05, IQR = 0.13). The 
variability in βJ could not be accounted for by participant height (ρ =
0.343, p = 0.109), weight (ρ = 0.015, p = 0.946), age (ρ = − 0.166, p =
0.450) or sex (t21) = 1.133, p = 0.270). This means that there is no 
evidence that responses are related to these body characteristics. 

The appendix, available as supplementary material, shows the esti-
mated coefficients for predictors included in the final model for each 
individual participant. 

To obtain a predictive model for the general population, we applied 
stepwise regression to the joint data of all participants. This yields the 
following model: 

MEnorm. = β0 + βAA + βJJ + βdd + βpp + βA,dAd + βA,pAp. (5) 

The model reflects the typical individual findings, and includes main 
effects for acceleration (βA = 2.297), jerk (βJ = − 0.052), direction 
(βd(backward) = − 0.005, βd(lateral) = 0.005), and profile 
(βp(triangular) = − 0.283); and interaction effects with A for direction 
(βA,d = backward = 0.247, βA,d = lateral = 0.690) and profile (βA,p = triangular 

= − 0.317)). 

4.1.2. Ordinal regression 
Ordinal regressions were performed on a classification of the ME 

responses according to the VQ provided by each participant. Qualita-
tively, the findings are similar to those of the linear regressions. Note 
that due to the model definition, the interpretation of the sign of effects 
is inverted. For 22/23 participants, a positive effect was found for ac-
celeration, with a median βA = − 5.73 (IQR = 3.07); backward motion 
was more uncomfortable than forward motion for 5/23 participants 
(median βd = backward = − 1.39, IQR = 0.98), and lateral motion was 
worse than forward motion for 21/23 participants (median βd = lateral =

− 1.66, IQR = 0.71). The triangular profiles were more comfortable than 
the sinusoidal profiles for 20/23 participants (median βp = triangular =

1.57, IQR = 0.82). The directional effects and the effect of pulse profile 
can be seen in Fig. 6, which shows the relative frequency of each clas-
sification in each direction; separately for the two profiles. An effect of 
jerk was found for 13/23 participants (median βJ = 0.24, IQR = 0.16), 
which was negative in all but two of the 13 cases. 

As an indication of the central tendency in the sample, we calculated 
acceleration thresholds for each subsequent classification by solving the 
ordinal regression model for A, and using the median value of the 
observed predictor coefficients. These calculations were made setting 
log-odds of 0.5, at the median peak jerk value J = 8 ms− 3, for forward 
sinusoidal pulses motion (p = 0, d = 0). The results of these calculations, 
along with offsets for variation of profile and direction are given in 
Table 1. 

4.2. Linear time-invariant systems models 

Fig. 7 shows the medians and IQR of the obtained acceleration 
normed ME responses for each of the frequency bins. From this figure, it 
appears that discomfort decreases with increasing frequency and 
thereby with shorter pulses. 

Because the frequency bins differed between the pulse profiles, 
separate one-way ANOVA tests were performed to evaluate whether the 
normed ME responses differed between bins. Effects were observed both 
for sinusoidal (F(6, 154) = 4.31, p < 0.001) and triangular pulses (F(8, 
198) = 9.42, p < 0.001). Post hoc tests revealed that responses in the 
first frequency bin (edges: 0–0.749 for sinusoidal pulses; 0–0.667 for 
triangular pulses) were higher than in the other bins (p < 0.01) for both 
pulse profiles. One exception was the comparison between the first and 
second bin for sinusoidal profiles, which could not be told apart (p =
0.220). 

For the ISO 2631 vibration model, the gain K that minimized the 
difference between the model and observed medians was 4.97; for the 
Soyka et al. (2011) model, the gain K was 0.13. Neither model appears 
able to capture the trend observed in the data. Whereas the models 
predict an increase of discomfort (ISO 2631, 2001) and increased 
perceived intensity (Soyka et al., 2011) over the range of frequencies 
covered in this study, the data show an opposite trend, with discomfort 
decreasing for higher frequencies. 

According to the vibration model, predictions on comfort can be 
made using the RMS of the filtered acceleration signal. Using these 
metrics as the sole predictor of the normalized ME in a linear model 
yielded, summarized over all participants, a median R2

adj of 0.24 (25th −
75th percentiles: 0.01-0.61). The RMS of the filtered acceleration had a 
correlation of r = 0.49 (p ≪ 0.001) with the peak acceleration. 

Using the perception model (Soyka et al., 2011), and taking the peak 
of the predicted perceived motion intensity as predictor of the normal-
ized ME responses in a linear model, we obtain a median R2

adj of 0.64 
(25th − 75th percentiles: 0.54–0.69). The peak perceived motion in-
tensity had a correlation of r = 0.98 (p ≪ 0.001) with peak acceleration. 

1 ’typical’ is defined as the smallest sum of squared deviations of model 
parameter estimates from their corresponding median values. 
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4.3. Shock model 

The shock model presented in ISO 2631-5 (ISO 2631, 2001) describes 
the acceleration response of the spine to external perturbations. Pre-
dictions on adverse health effects are made by using the model to predict 
the spinal response to an acceleration pulse; then identifying the peak 
accelerations of the filtered signal and exponentiating these values to the 
sixth power; summing the obtained values; and finally taking the sixth 
root of the outcome. When we use these values Dk as the sole predictor of 
normalized ME in individually fitted linear models, we obtain a median 
R2

adj of 0.61 (25th − 75th percentiles: 0.50–0.67). Dk had a correlation of 
r = 0.93 (p ≪ 0.001) with peak acceleration. 

5. Discussion 

The design of control algorithms governing Advanced Driver Assis-
tant Systems (ADAS) or automated-driving functionality requires reli-
able standards for vehicle accelerations and jerks that ensure passenger 
comfort (Zheng et al., 2021). The present study was designed to estab-
lish such standards. We identified acceleration and jerk values typical 
for car driving and determined the associated (dis)comfort by presenting 
a sample of participants with these motions and registering their comfort 
ratings. 

Vis-à-vis the hypotheses, the key observations are:  

(1) Discomfort increases in an approximately linear fashion with 
acceleration magnitude, and acceleration is the most important 
predictor of comfort. The central tendencies in the study sample 
are that sinusoidal longitudinal accelerations up to 0.28 ms− 2 feel 

Fig. 5. Normalized ME responses and model fits for a 
typical participant (id 11). The two panels of the 
figure separately represent the findings for the two 
different pulse profiles. Each triangle represents a 
response for an experimental trial. The x and y co-
ordinates represent the pulse peak acceleration and 
jerk values; the z-coordinate represents the response. 
The orientation of the triangles corresponds to the 
direction of the motion pulse (e.g., ’up’ means for-
ward). Individual responses are colored using the 
mapping of ME to VQ that the participant provided 
during debriefing. Colors vary from green via yellow 
to red, where green corresponds to feeling ‘Excellent’, 
and red to ‘Terrible’. The surface fitted through the 
responses is the final regression model obtained from 
the stepwise procedure. The lines represent pre-
dictions from the ordinal regression model. Note the 
positive effect for acceleration (βA = 3.03), and the 
negative effect for jerk (linear regression βJ = − 0.14). 
The ordinal regression model predictions match the 

linear model predictions well, supporting the linear model. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.)   

Fig. 6. Relative frequencies of each classification per 
direction. The two panels of the figure separately 
represent the findings for the two different pulse 
profiles. Eccentricity and color correspond to the 
verbal qualifiers; ranging between 1/green for 
’Excellent’, and 7/red for ’Terrible’. Note how more 
mass is concentrated at the higher (more uncomfort-
able) ratings for lateral motions compared to back-
ward and forward motions, and how more mass is 
concentrated at the higher ratings for sinusoidal 
profiles. As data for all accelerations and jerks was 
aggregated to create these figures, they do not show 
effects for these variables.   

Table 1 
Estimated acceleration thresholds Aτ for each Verbal Qualifier, calculated for the study median peak jerk value of J = 8 ms− 3. For triangular profiles, the thresholds are 
0.26 ms− 2 higher, indicating a higher acceleration tolerance. Thresholds for backward and lateral motion were a constant 0.10 ms− 2 and 0.25 ms− 2 lower, respectively. 
This indicates reduced tolerance compared to forward motions.   

Verbal Qualifier 

‘Excellent’ ‘Very good’ ‘Good’ ‘So-so’ ‘Bad’ ‘Very Bad’ ‘Terrible’ 

Aτ ≤ 0.28ms− 2 ≤ 0.56ms− 2 ≤ 0.89ms− 2 ≤ 1.23ms− 2 ≤ 1.89ms− 2 ≤ 2.12ms− 2 > 2.12ms− 2  
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‘Excellent’; and accelerations above 2.12 ms− 2 feel ‘Terrible’. The 
average ‘So-so’ point, which may be interpreted as a threshold for 
acceptable acceleration, was 1.23 ms− 2. These findings are in 
agreement with the expected upper limit of 1.47 ms− 2 for 
acceptable longitudinal accelerations in public transportation 
given by Hoberock (1976). For lateral motion, we find that 
thresholds were 0.25 ms− 2 lower, resulting in a limit of 0.98 
ms− 2. This value is close to a 20% discomfort threshold of 0.84 
ms− 2 reported for lateral accelerations in rail transport (Ander-
sson and Nilstam, 1984).  

(2) On average, the effect of jerk appears to be negative, meaning that 
higher jerks are associated with less discomfort. Triangular pul-
ses, which feature jerk plateaus, were also judged more 
comfortable than sinusoidal pulses (controlling for peak jerk). 
Likewise, the analyses performed to evaluate LTI models (dis-
cussed below) indicate that discomfort decreased with increasing 
frequency. This observation appears counterintuitive when we 
consider jerk analogous to the experience of a ‘kick’. However, 
higher jerks also meant shorter duration pulses, such that the 
highest jerks were experienced for the shortest pulses. During 
debriefing, some individuals remarked that the briefness of pulses 
with higher jerks made the discomfort of the pulse negligible, 
whereas others remarked that a stronger kick was more uncom-
fortable. We did not consider block shaped accelerations leading 
to extreme jerk peaks, which do occur in abrupt braking, and jerk 
was limited to 15 ms− 3. Taken together, we cannot exclude the 
possibility that higher jerk levels aggravate discomfort, and we 
believe that both effects of jerk and duration may need to be 
considered.  

(3) Discomfort depends on direction. Overall, forward motion is most 
comfortable, followed by backward motion, and lateral motion is 
most uncomfortable. Interaction effects were also observed be-
tween peak acceleration and direction, which indicated that the 
effect of acceleration on discomfort is stronger for backward 
motion than for forward motion, and even stronger for lateral 
motion. 

Because the experiments included only longitudinal accelerations 
under eyes-closed conditions, the findings should generalize to other 
seating locations (i.e., passenger side, back-seat), and other seating ar-
rangements (e.g., facing backwards), provided that the direction of ac-
celeration is interpreted as relative to the direction faced by the 
passenger. 

Whereas the choice to perform the experiments in eyes-closed con-
ditions allows for generalization of the findings to other seating posi-
tions and arrangements, the experience of comfort may differ when an 
out-the-window view is available. Although the visual system is not 
adept at perception of accelerations per se (Peter et al., 1992), it was 
apparent from debriefings that participants found the fact that the mo-
tions were unpredictable in itself uncomfortable. It is therefore likely 
that having an out-the-window view could reduce discomfort in situa-
tions where it allows anticipation of events. 

To account for the comfort responses, we evaluated the applicability 
of normative models provided in ISO 2631 for comfort of sustained vi-
brations and shock (ISO 2631, 2001), as well as a model designed to 
account for perceived motion intensity based on vestibular stimulation 
and subsequent cortical processing (Soyka et al., 2011). 

The vibration model provides a frequency weighting function and 
predicts discomfort from the RMS of a filtered acceleration input. A 
comparison of the frequency response for this model to the relation 
between pulse frequency and normalized ME responses revealed a 
discrepancy, in that the model predicts an increase of discomfort with 
frequency, whereas the observations suggested a decrease of discomfort 
with frequency. Out of the evaluated models, the predictive ability of 
this model was the poorest (median R2

adj = 0.24). Given that discomfort 
was found to correlate strongly with peak acceleration, a likely cause for 
the poor performance is that the frequency weightings distort this 
relation. This is evidenced by a relatively low correlation of the model 
output with acceleration (i.e., r = 0.49). We therefore conclude that the 
vibration model is not suitable for prediction of comfort for motion 
pulses typical for vehicle travel. 

Considerably better performance was observed for the shock model, 
which predicts comfort as a weighted sum of the number of peaks in the 
spinal response to perturbations (median R2

adj = 0.61). Predictions Dk 
show a strong correlation with acceleration (r = 0.93). This accounts for 
the improved predictive ability. 

The perception model had comparable performance to the shock 
model (median R2

adj = 0.64), with predictions also correlating strongly 
with peak acceleration (r = 0.92). 

The best performance overall was obtained for our statistical model 
(median R2

adj = 0.75). The statistical model differs from the other 
models in that it does not consider the time history of the pulses per se, 
but takes peak acceleration, peak jerk and pulse profile as inputs, and 
predicts comfort as a weighted sum of those inputs. Although the model 
performed best, the downside of statistical models like this is that the 
effect of any variation in the motion profile has to be determined and 
quantified empirically. In other words, the model does not generalize to 
arbitrary pulse profiles. 

Considering only predictions for the present data, the primary dif-
ference between the statistical model and the other models is the in-
clusion of a directional effect. Neither the shock model nor the 
perception model include explicit directional effects. Given that pre-
dictions were made taking as input recorded simulator accelerations, in 
our application these models do not account for the support provided by 

Fig. 7. The distribution of acceleration normed ME responses over participants 
per frequency bin; separately for sinusoidal (blue line/dots) and triangular 
(orange line/triangles) pulse profiles. The x-axis location represents the mean of 
each frequency bin. The dots/triangles represent the median normed ME re-
sponses; the error bars represent the IQR. The solid black line shows the fre-
quency weighting model for vibration comfort in ISO 2631 (ISO 2631, 2001); 
the dashed black line shows the prediction on perceived motion intensity from 
Soyka et al. (Soyka et al., 2011). For both models, the gain was set to match the 
observations as closely as possible. Note how the models predict an increase in 
discomfort or perceived intensity, whereas the data indicate a reduction of 
discomfort for higher frequencies. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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the seat and head rest when moving forwards, and to a lesser extent, 
laterally. Consequently, it should be noted that better performance may 
be obtained for these models when accounting for dampening provided 
by the seat; the effect of the presence of a seat on the spinal response for 
the shock model; or by using accelerations of the head as inputs to the 
perception model instead. 
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