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Abstract

In modern society cars are one of the most important means of transportation. Unfortunately,
many people die in car accidents around the world. Research shows that the number of fatal
casualties in car accidents has been increasing for the past decade and that the largest cause
of these accidents is the human driver. For this reason, research on fully autonomous vehicles
has gained a lot of attention. However, currently autonomous driving is only implemented to
reduce the errors of human drivers. More research is necessary in order for fully autonomous
vehicles to be implemented and to remove the human driver completely.

A robust navigation algorithm which is able to run in real time is one of the challenges in
development of fully autonomous vehicles. Important topics in navigation of autonomous
vehicles include the path planner and the motion controller. The path planner finds a path
for the vehicle from its current location to the target location. At the same time the path
planner avoids obstacles and fulfills the non-holonomic constraints of the autonomous vehicle.
The motion controller tries to follow the path the path planner made as close as possible by
controlling the vehicle. These two topics influence each other and are therefore dependent.
In literature little research is done on integrated algorithms that combine path planning and
motion control. Therefore, this thesis will research navigation of autonomous vehicles by
using an integrated algorithm that includes both path planning and motion control.

The objective of this thesis is to develop a Lyapunov stable control algorithm that is capable
of planning a path for all possible vehicle maneuvers. Besides path planning the proposed
algorithm must be capable of controlling the vehicle along this path. Furthermore, the algo-
rithm needs to include obstacles and the non-holonomic dynamics of an autonomous vehicle.
The main contribution of this thesis is an integrated path planner and motion controller for
navigation of autonomous vehicles. The stability of the proposed algorithm is proven by using
the Lyapunov method. Simulation results prove that the algorithm is capable of planning the
path and the motion of the autonomous vehicle with non-holonomic constraints and with the
presence of obstacles.
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Chapter 1

Introduction

In modern society cars are one of the most important means of transportation. Unfortunately,
1.35 million people died last year due to car accidents [1]. This number of fatal casualties in
car accidents has been increasing for the past decade. The leading cause of accidents in the
United States is the human driver by 94% [2]. Due to this high number of accidents caused
by human driver and the large number of accidents itself, research on autonomous driving in
the past decade has grown exponentially.

Many companies have started developing either autonomous vehicles or products that can be
used in autonomous vehicles. Tesla uses adaptive cruise control, lane detection and automatic
lane changing to drive their vehicle in "autopilot" on highways. Waymo, tries to launch a fully
autonomous car. This car needs to be able to drive in every road situation possible. One of the
important topics in autonomous vehicles is the ability to map a viable path. This path, which
extends from the location of the vehicle to the goal location, must be reached without colliding
with obstacles or other vehicles and should be able to handle the non-holonomic constraints
of the vehicle. Another important topic in navigation is motion control. A motion controller
should control the vehicle to follow the generated path of the path planner. In this research
an integrated path planner and motion controller will be investigated. First, an overview of
Lyapunov based path planning and motion control in literature will be given. Following, the
vehicle model that is used in this research will be introduced. Finally, the research objective
will be defined and an outline of the research will be given.

1-1 Lyapunov Stable Path Planning

In literature, navigation of autonomous vehicles consists of two main parts:

• Path Planning

• Motion control

Master of Science Thesis K.J. Haak



2 Introduction

Lyapunov stable path planning and motion control is a technique where the path and the
control inputs to the vehicle are derived using Lyapunov stability. In literature the navigation
problem has been approached from several angles. First of all, local algorithms have been
researched which handle a single aspect of navigation. These aspects, e.g., parking [3] [4],
motion control [5] [6], obstacle avoidance [7] [8] and path planning [9] [10], are limited to
their respective task. Local algorithms behave well in their respective field, but since they are
dependant they interfere with each other. This means that the vehicle will not converge to
the target location, or collide with obstacles. Take for example an algorithm derived with a
path planner that doesn’t account for non-holonomic constraints of the vehicle. The motion
controller for an autonomous vehicle that tries to follow this path can not do this. The
non-holonomic constraints interfere with the path following and the vehicle will therefore not
reach the target location.

Global algorithms [11] [12] [13] combine local algorithms. The integrated algorithms are
capable of path planning and motion control. For full control of the autonomous vehicle
the path planning part of the global algorithm must include non-holonomic dynamics and
obstacle avoidance. The main advantage of these algorithms is that stability can be tested
for the full algorithm instead of just the local parts.

The main focus of this thesis follows the research of Tanner, Loizou and Kyriakopoulos [14].
The focus of this research lies on controlling mobile robots using Lyapunov stable control
while avoiding obstacles. This research is chosen since it provides an integrated method for
path planning and motion control. The research uses a discontinuous feedback algorithm to
achieve the best possible convergence. However, the method is applied for a holonomic robot
and in this thesis the work of Tanner et. al. is extended to a car-like vehicle and stability of
the proposed algorithm is proven with Lyapunov theory. The next section will explain the
vehicle model that is used.

1-2 Vehicle Model

Different vehicle models can be used for control of autonomous vehicles. For instance, carte-
sian coordinate models [15] [16], polar coordinate models [11] [12] [17] [18] and models that
calculate the steering angle using the velocity of the vehicle [3] [6] [19]. The vehicle model
that is used in this thesis, is based on the kinematic bicycle model with a steering angle
that depends on the velocity. The kinematic bicycle model represents a vehicle where two
wheels in each axle are lumped into one wheel (Figure 1-1). The inputs to the bicycle model
are the velocity u and the steering angle δ. The kinematic bicycle model provides a simple
model which models the non-holonomic constraints of a car-like vehicle. The kinematic bicy-
cle model is based on Ackermann geometry and constrained to low velocity and steady state
cornering. Furthermore, the vehicle is front wheel steered.

The equations of motion describing this model are given in Equation 1-1.

K.J. Haak Master of Science Thesis



1-2 Vehicle Model 3

x

y

δ

u
θ

L

Figure 1-1: Schematic drawing of the kinematic bicycle model

ẋ = u cos θ (1-1)
ẏ = u sin θ

θ̇ = δu

u2Kus
g + L

Where θ is the heading of the vehicle, Kus is the understeer coefficient, g is the gravitational
constant and L is the wheel base of the vehicle.

1-2-1 Assumptions

In this research the following assumptions are considered for the vehicle model:

• Low speed

• Steady state cornering

• No slip

• Steering angles of front wheels are equal

• There is a linear relationship between the lateral forces and the slip angles

• The mass of the model is represented as a point mass in the center of gravity of the
vehicle
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4 Introduction

1-3 Research objectives

The aim of this research is to develop an integrated path planner and motion controller for
an autonomous vehicle based on Lyapunov stability. The proposed algorithm should be able
to determine a viable path and control the vehicle towards the target location. Furthermore,
the proposed algorithm should be able to avoid obstacles. The objectives of this thesis are
formulated as follows:

• Develop an integrated Lyapunov stable algorithm that:
- Converges the vehicle to the target location from any initial point.
- Can avoid obstacles.
- Can be tuned for different velocity and steering.

• Proof the stability of the algorithm.

• Evaluate the proposed approach by simulation.

1-4 Outline of the thesis

The thesis is structured as follows: Chapter 2, describes the theoretical framework for path
planning and motion control. Next, the proposed algorithm and its stability proof will be
discussed in chapter 3. The evaluation of the proposed method in a simulation environment
will be discussed in chapter 4. Finally, conclusions and recommendations for future work will
be drawn in chapter 5.
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Chapter 2

Theoretical Framework

In this chapter, the theoretical framework of the proposed algorithm will be explained. The
first section contains information about the Lyapunov stability and how it is used in this
research. The second section, explains how the theory is extended to include obstacles. In
the third section, an explanation is given about the quantification of the distance between the
vehicle and the different obstacles and how this quantification can be applied to the proposed
algorithm.

2-1 Lyapunov stability

The objective of the proposed algorithm is to derive the inputs to the model described in
chapter 1 using a Lyapunov stable method. In theory this means finding a valid Lyapunov
function that accounts for the dynamics of the model and with that function finding a velocity
and steering angle for the vehicle. This velocity and steering angle need to be constrained to
the limits of the vehicle. Furthermore, the Lyapunov stability must be maintained while using
the control inputs. Lyapunov stability begins with the definition of a Lyapunov function V (x).
Lyapunov theory says that if three conditions are met, the Lyapunov function will guarantee
global convergence for the proposed control inputs. The three conditions that need to be met
are defined in Equation 2-1.

V (x) = 0 if and only if x = 0 (2-1)
V (x) > 0 if and only if x 6= 0

d

dt
V (x) ≤ 0 for all values of x 6= 0

Mind you that for asymptotic stability (and thus global convergence), the third condition
must be d

dtV (x) < 0 for all values of x 6= 0. In this thesis a variant of the Lyapunov function

Master of Science Thesis K.J. Haak



6 Theoretical Framework

will be used that is the inverse of the Lyapunov function and it is called W (x). This function
can be described by Equation 2-2.

W (x) = 1
V (x) (2-2)

The stability of this inverse Lyapunov function is derived using the requirements of the Lya-
punov function. The first requirement of V (x), states that whenever x goes to zero V (x) will
also go to zero. For the inverse this means that whenever x goes to zero W (x) will go to
infinity. The second requirement of V (x) is the same for W (x): whenever x is not zero V (x)
and thus the inverse should be positive. Mind you that if x goes to zero W (x) is also positive
and the requirement is slightly different from the original requirement. For the third require-
ment, the derivative of the Lyapunov function can be taken to investigate what is happening
to the derivative of the inverse. The derivative of V (x) is given in Equation 2-3.

V (x) = 1
W (x)

V̇ (x) = − 1
W (x)2 Ẇ (x) (2-3)

Adding the third requirement of Equation 2-1 leads to Equation 2-4.

V̇ (x) ≤ 0

V̇ (x) = − 1
W (x)2 Ẇ (x) ≤ 0

−V̇ (x) = 1
W (x)2 Ẇ (x) ≥ 0 (2-4)

Where 1
W (x)2 stays positive due to the squared function. Mind you that division by a negative

parameter has changed the direction of the requirement. The three new requirements for
inverse Lyapunov stability are defined in Equation 2-5.

lim
x→0

W (x) = +∞

W (x) ≥ 0 for all x (2-5)
d

dt
W (x) ≥ 0 for all values of x 6= 0

Since the conditions of inverse Lyapunov stability are derived from Lyapunov stability, it can
be stated that there is Lyapunov stability if there is inverse Lyapunov stability. Mind you
that for asymptotic stability the last condition needs to be d

dtW (x) > 0 for all values of x 6= 0.
In order to better comprehend the inverse Lyapunov function, an example Lyapunov function
is defined in Equation 2-6.
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Figure 2-1: Lyapunov and inverse Lyapunov function height map. Left: Lyapunov function going
to zero at the origin. Right: Inverse Lyapunov function going to infinity at the origin.

V (x) = 1
2x

2 + 1
2y

2 (2-6)

The inverse Lyapunov function that can be derived from this function is depicted in Equa-
tion 2-7.

W (x) = 1
V (x) = 2

x2 + y2 (2-7)

To depict how these functions behave, they are plotted for a grid of x and y coordinates
(Figure 2-1).

It can be examined that the inverse Lyapunov function creates an infinite peak at the origin
and that the Lyapunov function goes to zero at the origin. Meaning that the Lyapunov and
inverse Lyapunov conditions from Equation 2-1 and Equation 2-5 are met. As previously
mentioned, the basis for a Lyapunov stable algorithm is the Lyapunov function V (x). Using
the change in the Lyapunov function the algorithm can determine a velocity and steering
angle that minimizes the Lyapunov function. The real question in controlling an autonomous
vehicle using Lyapunov stability is: How can one find a Lyapunov function that can be used
to determine u and δ and that decreases to zero, while keeping in mind the obstacles and
non-holonomic dynamics of the autonomous vehicle. This question will be answered in the
next chapter. However, in this chapter obstacles will be added to the Lyapunov theory.

2-2 Lyapunov theory extended with obstacles

Before finding the Lyapunov function, first the obstacles that the autonomous vehicle must
avoid need to be discussed. The difficulty in using Lyapunov stability for autonomous vehicles
is that the algorithm will always choose the path to the lowest value. This lowest value will
not always lie in a clear path from a certain starting location. Think of a parking spot where
an autonomous vehicle must park. Other vehicles can be parked close to the parking spot that
the autonomous vehicle must reach. Using a regular Lyapunov function the vehicle will just
take the path and not account for the other vehicles. But since there can’t be any collisions,
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8 Theoretical Framework

there is need for a constraint Lyapunov function that uses only certain regions of the total
grid. In order to keep the path planning simple the grid is first mapped to a grid where the
vehicle and the obstacles are represented as points. This topology where vehicle and obstacles
are reduced to points will be called a "point world". This topology makes stability analysis
and thus control easier to derive. The section begins with explaining the point world and how
the vehicle and a single obstacle are mapped to it. The mapping will be extended to multiple
obstacles in the second subsection. The section ends with an explanation on how to use this
mapping concerning control of the autonomous vehicle.

2-2-1 Mapping vehicle & obstacle to a point world

The point world mapping is based on the fact that globally converging potential functions can
be constructed on sphere worlds [20]. It works by introducing a series of transformations that
transform the vehicle and obstacles to single points, creating a point world. The method can
be extended to mobile robots [14] in order to create a point world for autonomous vehicles.
The method begins with representing the vehicle and obstacle as ellipsoids. In this research a
single ellipsoid is used to represent the vehicle and the obstacle. However, multiple ellipsoids
that fill the volume of the vehicle and obstacle can also be used in order to better represent
the geometry. In this research one ellipsoid is chosen, since it reduces computational time.
The boundary of the vehicle can be represented by Equation 2-8.

br(x, y) = (x− xrc)2

a2
r

+ (y − yrc)2

b2
r

− 1 (2-8)

Where xrc and yrc are the center coordinates of the vehicle and ar and br describe the length
and width of the ellipsoid covering the vehicle. The same technique can be used for the
obstacles, describing the obstacle by an ellipsoid covering it. The obstacle equation is given
in Equation 2-9.

bo(x, y) = (x− xoc)2

a2
o

+ (y − yoc)2

b2
o

− 1 (2-9)

Where xoc and yoc are the center coordinates of the obstacle and ao and bo describe the
length and width of the ellipsoid covering the obstacle. Now using these representations the
ellipsoids of the vehicle and the obstacle are mapped to a mapping h1, where the vehicle
is represented as a point and the obstacle boundary is deformed under this mapping. The
equation describing the mapping for the vehicle is depicted in Equation 2-10.

h1r =
√

br(xrc, yrc)
br(xrc, yrc) + 1

[
xrc
yrc

]
(2-10)

Mind you that h1r becomes zero, making the vehicle a point at the origin. The same mapping
is used on the boundary of the obstacle ellipse. This creates a deformed boundary for the
obstacle. The equation for this deformed boundary is given in Equation 2-11.
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Figure 2-2: h1 mapping of the vehicle represented as a circle to a point. Left: Vehicle (blue) and
obstacle (black) represented as circles (Mind you that a circle is a special case of an ellipsoid).
Right: Vehicle (blue) mapped to a point, obstacle (black) boundary is deformed by the h1
mapping.

h1oi =
√

br(xob, yob)
br(xob, yob) + 1

[
xob
yob

]
(2-11)

Where xob and yob are the coordinates of the obstacle boundary. The i parameter denotes the
ith obstacle, multiple obstacles will be discussed in the next subsection. The h1 mapping is
visualized in Figure 2-2 for a single obstacle and the vehicle.

The second mapping from h1 to h2 maps the deformed obstacle boundary to a point. The
location of the vehicle in the h1 mapping is translated due to the second mapping. The
mapping of the deformed obstacle boundary is done according to Equation 2-12.

h2oi =
(

boi(xoc, yoc)
boi(xoc, yoc) + 1

)(
h1oi − hcoi

)
+ hcoi (2-12)

Where hcoi is a reference point in the deformed obstacle interior, now representing the obstacle
point. In this research the reference point is the deformed center of the obstacle since that
will always lie in the deformed obstacle interior. The translation of the vehicle point due to
the second mapping can be expressed by Equation 2-13.

h2ri =
(

boi(xrc, yrc)
boi(xrc, yrc) + 1

)(
h1r − hcoi

)
+ hcoi (2-13)

The h2 mapping is visualized in Figure 2-3.

It can be observed that both vehicle and obstacle are reduced to points. In the next section
the theory is extended to multiple obstacles.

2-2-2 Extension of multiple obstacles to a point world

Now let’s switch from one obstacle to multiple obstacles. The h1 mapping is done in the same
way as with a single obstacle. The deformation of the vehicle to a point creates a number
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Figure 2-3: h2 mapping from vehicle point and deformed obstacle to two points in a grid. Left:
Vehicle (blue) represented as point at the origin, obstacle (black) deformed under h1 mapping.
Right: Vehicle (blue) and obstacle (black) represented as points, vehicle is translated by the h2
mapping.
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obstacles (red and black) are represented as circles. Right: The vehicle (blue) is mapped to a
point and the obstacles (red and black) are deformed by the h1 mapping.
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Figure 2-5: h2 mapping of the first obstacle. The vehicle (blue) and obstacle 1 (black) are
represented as points. Obstacle 2 (red) is represented as a deformed boundary. D1 is the distance
between the vehicle and the first obstacle.
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Figure 2-6: h2 mapping of the second obstacle. The vehicle (blue) and obstacle 2 (red) are
represented as points. Obstacle 1 (black) is represented as a deformed boundary. D2 is the
distance between the vehicle and the second obstacle.

of deformed obstacle boundaries equal to the number of obstacles. The deformation for two
obstacles is visualized in Figure 2-4.

These two boundary deformations create two translations for the vehicle point in the h2
mapping. But instead of using two transformations in series, the transformations are done in
parallel. This creates two different vehicle representations in h2, one for each obstacle. This
behavior is sketched in Figure 2-5 for obstacle one and Figure 2-6 for obstacle 2.

It can be observed that there are two distances D1 and D2. D1 represents the distance
between the vehicle point and obstacle 1. Mind you that the vehicle point is translated due
to the h2 transformation of obstacle 1. D2 represents the distance between the vehicle point
and the second obstacle transformation. The second h2 transformation done by obstacle 2
translates the vehicle point to a different location than the first h2 transformation. The next
section describes how these distances are used in the proposed algorithm.
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12 Theoretical Framework

2-3 Obstacle distance function

In order to use the mapping described in the previous section a quantification is needed
that links the distances from the vehicle point representations to the obstacle points. This
quantification is best described by the distance from the vehicle to a certain obstacle but
weighed on how far an obstacle is. This makes that the measure takes into account multiple
obstacles while weighing closer obstacles more than obstacles far away. This means that the
car will divert its path more when obstacles are closer, in opposite of diverting the path
less when obstacles are far away. The measure used for this quantification is the normalized
euclidean distance. The normalized euclidean distance is calculated by Equation 2-14.

d̂ =

√√√√ v∑
i=1

((P1i − P2i)2

v

)
(2-14)

Where P1i and P2i are two different items to be compared. Furthermore v is the total number
of items present. First, the euclidean distance is used to obtain a final location of the obstacles
for the different vehicle representations in the h2 point world. The equation representing this
calculation is given in Equation 2-15.

zoj =
∏
i∈R

d̂i(h2ri, h2oj)(zr − h2oj) + zr (2-15)

Where zr is the representation of the whole vehicle, thus the location of the vehicle in the h2
mapping. d̂i(h2r, h2o) is the normalized euclidean distance of the ith vehicle representation.
Mind you that this normalized euclidean distance can be calculated using the distances D1
and D2. The equation can then be expressed as Equation 2-16

d̂i(h2ri, h2oj) =

√√√√ v∑
i=1

(
D2
i

v

)
(2-16)

With the final location of each obstacle a final measure can be calculated that can be used in
the inverse Lyapunov function. The equation is given in Equation 2-17.

β =
∏
j∈O

d̂j(zoj , zr) (2-17)

One other question arises when using the mapping from a grid with ellipsoids to a grid with
points, why is this done? The answer lies within the different mapping equations. The
mappings make each coordinate on the boundary of the obstacle zero, while the coordinates
within the obstacle are infinity. This means that if used in an inverse Lyapunov function,
the obstacle location will also be zero at that location. If using the Lyapunov function for
control these points will become infinity. Due to this phenomenon the value of the Lyapunov
function will become bigger when going to these points. If the Lyapunov function is used
for control this means that the control inputs will steer the vehicle away from this point.
Thus the vehicle will always divert from these points meaning that in theory the autonomous
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2-3 Obstacle distance function 13

vehicle will avoid the obstacles due to the point world mapping. It can be concluded that the
final measure β minimizes the inverse Lyapunov function and thus maximizes the Lyapunov
function in the vicinity of the obstacle.

In this chapter, the Lyapunov theory that can be used for path planning is discussed. Sec-
ondly, a mapping is determined to map the autonomous vehicle and obstacles to a point
world. Furthermore, a measure for quantifying obstacle distances in this mapping has been
determined. The next chapter will explain how the mapping and especially β will be used to
control the vehicle towards the target location.
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Chapter 3

Control Strategy

In this chapter the control strategy for the autonomous vehicle will be explained. The mapping
in chapter 2 will be used to model the obstacles in the variable β. With this parameter the
inputs to the model described in chapter 1 will be calculated. The goal of the algorithm
is to use the vehicle location x, y and heading θ and the parameter for the location of the
obstacles β to determine the control inputs for the autonomous vehicle. The two control
inputs that need to be calculated are the vehicles longitudinal velocity u and the steering
wheel input δ. The autonomous vehicle will converge to the target location whenever the
inverse Lyapunov stability conditions from the previous chapter are met. The first section of
this chapter introduces a candidate inverse Lyapunov function and rewrites the input model
from the introduction. The second section defines the controller structure. The third section
will define the proposed algorithm and show how it is derived. The last section will handle
the proof of the algorithm and show that the candidate inverse Lyapunov function meets the
stability requirements.

3-1 Lyapunov candidate function

As mentioned in the previous chapter there are three requirements for the control of the
autonomous vehicle.

• An inverse Lyapunov function is needed that goes to infinity whenever the car reaches
the origin.

• The inverse Lyapunov function should go to zero whenever an obstacle is present at
that location.

• The derivative of the inverse Lyapunov function should decrease whenever the car moves
towards an obstacle.
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16 Control Strategy

The proposed candidate inverse Lyapunov function that meets these requirements is given in
Equation 3-1.

W (z) = |x|β
1
k

||z||2
(3-1)

Where k is an optimization parameter determining the weight of β. Furthermore z is the
model parameter describing the configuration of the vehicle (z = x, y, θ). The 2 norm of z is
given in Equation 3-2.

||z||2 = x2 + y2 + λθ2 (3-2)

Where λ is a positive weighting parameter. λ makes sure that the location is more important
than the heading. This makes sure that the vehicle can move freely and only goes to z = 0
in the origin. The kinematic bicycle model from chapter 1 can be rewritten as Equation 3-3
using z.

ż = f(z)u+ g(z)δ (3-3)

ż =
[
cos θ sin θ 0

]T
u+

[
0 0 u

u2 Kus
g

+L

]T
δ

Mind you that the inputs are not independent because the third state is influenced by both
the velocity and the steering angle. This means that the calculation of the steer angle will
have to account for the influence of the velocity. This is the non-holonomic constraint problem
that is present in autonomous vehicles and needs to be accounted for by the algorithm.

3-2 Controller structure

This section will explain the control structure of the autonomous vehicle. The full model
consists of two parts. The first is the controller and the second is the vehicle. The controller
consists of a mapping part and a motion control part. The vehicle consists of actuators, the
vehicle itself and the sensors. The vehicle will be simulated with the model from chapter 1 thus
the actuators and sensors are not taken into account. The controller structure is graphically
depicted in Figure 3-1.
The inputs to the controller are the configuration vectors zc and zo of the vehicle and the ob-
stacle. These inputs are led to the mapping. In the mapping the point world transformations
are done and the distance measure β is calculated. The distance measure and the configu-
ration vector of the vehicle are then send to the motion controller. The motion controller
determines the inputs u and δ and sends them to the actuators of the vehicle. The actuators
move and determine delayed inputs δd and ud. These are the real inputs that the vehicle
is moved with. The inputs are send to the wheels and the vehicle moves. After moving,
sensors will return the new position of the vehicle and the obstacles and send them to the
controller. An external disturbance can be modelled as an environment block. This block can
for instance model the influences of the road or the weather. The previous chapter defined
the mapping part of the controller. The next section describes the motion control part.
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Figure 3-1: Controller structure of the Lyapunov algorithm and the autonomous vehicle. Red
dotted line: Controller part. Blue dotted line: Vehicle part.

3-3 Proposed algorithm for vehicle control

To control the vehicle the technique mentioned in chapter 2 will be used. The candidate
inverse Lyapunov function will be divided into two sections. The first will be x is greater or
equal to zero, the second will be x is smaller than zero. This is depicted in Equation 3-4.
This division makes sure that the inverse Lyapunov function is always positive for all values
of x.

W (z) =


xβ

1
k

||z||2 if x ≥ 0
−xβ

1
k

||z||2 if x < 0
(3-4)

The control inputs that can be determined with this candidate inverse Lyapunov function,
are given in Equation 3-5.

u = k1sign
(
fx cos θ + fy sin θ

)(
f2
x + f2

y + f2
θ

)
(3-5)

δ =


k2
(
θd − θ

)(L+Kus
g
u2

u

)
if p ≥ 0

−u 1
fθ

(
fx cos(θ) + fy sin(θ)

)(
L+Kus

g
u2

u

)
if p < 0

(3-6)

The first unknown parameter θd is defined in Equation 3-7.

θd = arctan2(−sign(x)fy,−sign(x)fx) (3-7)

Where arctan2 is the second argument arc tangent. This function is used to account for the
change in heading between positive and negative values. The sign function is positive one if
the input is greater or equal to zero and negative one for negative inputs. This is depicted in
Equation 3-8.

sign(h) =
{

1 if h ≥ 0
−1 if h < 0

(3-8)
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Furthermore, the switching parameter p is defined in Equation 3-9.

p = u
(
fx cos(θ) + fy sin(θ)

)
+ k2(θd − θ)fθ (3-9)

Mind you that k1 and k2 are optimization parameters used for limiting the velocity and the
steering input respectively. The remaining parameters will be described in the following two
subsections. In the first subsection the parameters fx, fy and fθ which are called potential
fields will be described. In the second subsection the derivative of β which are used in the
potential fields will be discussed.

3-3-1 Potential fields

The potential fields that are used in the control inputs can be defined as Equation 3-10.

fx = ∂W (z)
∂x

||z||4 (3-10)

fy = ∂W (z)
∂y

||z||4

fθ = ∂W (z)
∂θ

||z||4

First, the derivatives of W (z)||z||4 will be calculated. This is done since it cancels out the
denominator, but keeps the dynamics of the inverse Lyapunov stability intact. The equations
describing the potential fields are expressed in Equation 3-11.
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fx = ||z||4∂W (z)
∂x

=



||z||4
||z||2

(
β

1
k +x 1

k
∂β
∂x

( 1
k

−1)
)
−2x2β

1
k

||z||4 =

||z||2
(
β

1
k + x 1

k
∂β
∂x

( 1
k
−1)
)
− 2x2β

1
k if x ≥ 0

||z||4
||z||2

(
−β

1
k−x 1

k
∂β
∂x

( 1
k

−1)
)

+2x2β
1
k

||z||4 =

||z||2
(
− β

1
k − x 1

k
∂β
∂x

( 1
k
−1)
)

+ 2x2β
1
k if x < 0

(3-11)

fy = ||z||4∂W (z)
∂y

=



||z||4
||z||2

(
x 1
k
∂β
∂y

( 1
k

−1)
)
−2xyβ

1
k

||z||4 =

||z||2
(
x 1
k
∂β
∂y

( 1
k
−1)
)
− 2xyβ

1
k if x ≥ 0

||z||4
||z||2

(
−x 1

k
∂β
∂y

1
k

−1
)

+2xyβ
1
k

||z||4 =

||z||2
(
− x 1

k
∂β
∂y

1
k
−1
)

+ 2xyβ
1
k if x < 0

fθ = ||z||4∂W (z)
∂θ

=

||z||
4−2λθβ

1
k

||z||4 = −2λθβ
1
k if x ≥ 0

2xλθβ
1
k

||z||4 = 2xλθβ
1
k if x < 0

The term ||z||4 drops out providing an easier method for control. The next subsection will
handle the calculation of the derivative of β.

3-3-2 Derivative of β

The potential fields of W (z) contain the partial derivative of β to x, y and θ. However, in the
last chapter β was defined to be in the h2 mapping. In order to get the partial derivatives
of β it needs to be expressed in the z mapping. To do this β is rewritten with the inverse
mapping from the last chapter. Remember that β expressed in the h2 mapping is given as
Equation 3-12.

βh2 =

√√√√∑
j

(zoj − zr)2

noj
(3-12)

And that zo(j) is defined as in Equation 3-13.

zoj =

√√√√∑
i

(h2ri − h2oj)2

nri

(
zrj − h2oj

)
+ zrj (3-13)

If Equation 3-13 is substituted in Equation 3-12 it can be derive to Equation 3-14.
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βh2 =

√√√√√√√∑
j

(√∑
i

(h2ri−h2oj)2

nri
(zrj − h2oj) + zrj − zrj)

)2

noj

=

√√√√√√√∑
j

(√∑
i

(h2ri−h2oj)2

nri
(zrj − h2oj)

)2

noj
(3-14)

h2o and h2r from the previous chapter can be substituted in the previous equation. The two
equations are repeated in Equation 3-15 and Equation 3-16.

h2o = bo(xoc, yoc)
bo(xoc, yoc) + 1(h1o − hco) + hco (3-15)

h2r = bo(xrc, yrc)
bo(xrc, yrc) + 1(h1r − hco) + hco (3-16)

With these equations βh2 can be rewritten into βh1 which is given in Equation 3-17.

βh1 =

√√√√∑
j

(F1F2)2

noj
(3-17)

F1 =

√√√√√√∑
i

(
boi(xrc,yrc)
boi(xrc,yrc)+1

(
h1ri − hcoj

)
− boj(xoc,yoc)

boj(xoc,yoc)+1
(
hcoj − h1oj

))2

nri

F2 =
(
zrj −

(
boj(xoc, yoc)

boj(xoc, yoc) + 1
(
h1oj − hcoj

)
+ hcoj

))

h1ri and h1oj can be substituted for their respective formula’s defined in Equation 3-18 and
Equation 3-19. This results in the respective formula for βh1 in the z coordinate system. βz
is defined in Equation 3-20.

h1r =
√

br(xrc, yrc)
br(xrc, yrc) + 1zr (3-18)

h1o =
√

br(xob, yob)
br(xob, yob) + 1zo (3-19)

βz =

√√√√∑
j

(F1F2)2

noj
(3-20)
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Where F1 and F2 are given in Equation 3-21 and Equation 3-22.

F1 =√√√√√√∑
i

(
boi(xrc,yrc)
boi(xrc,yrc)+1

(√
bri(xrc,yrc)
bri(xrc,yrc)+1zri − hcoj

)
− boj(xoc,yoc)

boj(xoc,yoc)+1

(
hcoj −

√
brj(xob,yob)
brj(xob,yob)+1zoj

))2

nri

(3-21)

F2 =
(
zrj −

(
boj(xob, yob)

boj(xob, yob) + 1

(√
brj(xob, yob)

brj(xob, yob) + 1zo − hcoj
)

+ hcoj

))
(3-22)

With the formula’s for bo and br from the previous chapter, βz is fully known. The derivative
can now be calculated and used in Equation 3-10. The worked out version of β with the
equations from the previous chapter and the partial derivatives of β to the respective function
input for one obstacle, can be found in the appendix in subsection A-1-1. Now that the control
inputs to the vehicle that are derived using the inverse Lyapunov function are known, the
vehicle can be controlled. The next section will prove that the proposed algorithm is stable
according to Lyapunov theory.

3-4 Proof of Lyapunov stability

In order to proof that the proposed algorithm in the previous section is stable the candidate
inverse Lyapunov function is tested against the conditions proposed in chapter 2. In order to
test this the inverse Lyapunov function and the derivative of the inverse Lyapunov function
need to be known. Since the function itself is already known only the derivative needs to
be calculated. Recall the rewritten model in Equation 3-3 from the first section of this
chapter. Taking the Lie derivatives with respect to the vector fields f(z) and g(z) results
in the derivative of the inverse candidate Lyapunov function. The derivation is depicted in
Equation 3-23.

Ẇ = uLf(x)Wj(z) + δLg(x)Wj(z) (3-23)

= u

(
f(x)T dW

dz

)
+ δ

(
g(x)T dW

dz

)
Mind you that there will be multiple derivatives due to the two control parts for the sign of
x. Recall that the derivatives of W (z) are the potential fields divided by ||z||4. Using this the
terms in Equation 3-23 can be substituted to Equation 3-24.

Ẇ = u

( [
cos θ sin θ 0

] 
fx
||z||4
fy
||z||4
fθ
||z||4

)+ δ

( [
0 0 u

u2 Kus
g

+L

] 
fx
||z||4
fy
||z||4
fθ
||z||4

) (3-24)

= u

(
fx cos θ + fy sin θ

||z||4
)

+ δ

(
ufθ

(u2 kus
g + L)||z||4

)
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Using the control inputs from the last section the derivatives can be rewritten to Equation 3-
25.

Ẇ =



k1sign(fx cos θ + fy sin θ)(f2
x + f2

y + f2
θ )fx cos θ+fy sin θ

||z||4

+k2
(
θd − θ

)(L+Kus
g
u2

u

)
ufθ

(u2 kus
g

+L)||z||4
if p ≥ 0

k1sign(fx cos θ + fy sin θ)(f2
x + f2

y + f2
θ )fx cos θ+fy sin θ

||z||4

−u
( 1
fθ

)(
fx cos(θ) + fy sin(θ)

)(L+Kus
g
u2

u

)
ufθ

(u2 kus
g

+L)||z||4
if p < 0

(3-25)

These equations can be rewritten minding that a sign function multiplied with the same
function makes it the absolute representation. Furthermore, due to the form of the proposed
control input δ the non-holonomic dynamics u

u2 Kus
g

+L
drop out of the equation. The rewritten

equation is depicted in Equation 3-26.

Ẇ =

k1(f2
x + f2

y + f2
θ ) |fx cos θ+fy sin θ|

||z||4 + k2
(
θd − θ

) fθ
||z||4 if p ≥ 0

k1(f2
x + f2

y + f2
θ ) |fx cos θ+fy sin θ|

||z||4 − u
(
fx cos(θ) + fy sin(θ)

)
) 1
||z||4 if p < 0

(3-26)

Since the proposed control input δ is dependant on u, Ẇ can be rewritten again. This
substitution is depicted in Equation 3-27.

Ẇ =


k1(f2

x + f2
y + f2

θ ) |fx cos θ+fy sin θ|
||z||4 + k2

(
θd − θ

) fθ
||z||4 if p ≥ 0

k1(f2
x + f2

y + f2
θ ) |fx cos θ+fy sin θ|

||z||4

−k1sign
(
fx cos θ + fy sin θ

)(
f2
x + f2

y + f2
θ

)(
fx cos(θ) + fy sin(θ)

) 1
||z||4 if p < 0

(3-27)

Mind you that the sign function multiplied with the same function is again the absolute
representation of this term. This makes the second part of the function equal to it’s first part
but with opposite sign, thus eliminating both terms and resulting in zero. This is depicted in
Equation 3-28.

Ẇ =

k1(f2
x + f2

y + f2
θ ) |fx cos θ+fy sin θ|

||z||4 + k2
(
θd − θ

) fθ
||z||4 if p ≥ 0

0 if p < 0
(3-28)

The first equation of Ẇ can be rewritten using that the top part is the same as the switching
parameter p. This is depicted in Equation 3-29.

Ẇ =


p
||z||4 if p ≥ 0
0 if p < 0

(3-29)

With the derivatives known the Lyapunov stability can be tested according to the require-
ments in Equation 2-5 in the last chapter. The first requirement is fulfilled by the fact that
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whenever z goes to zero the norm of ||z||4 will also go to zero. This means division by this
parameter makes the candidate inverse Lyapunov function infinite. Again by using the first
part of W (z) if x is positive or zero and the second part of W (z) if x is negative, the top part
will remain positive and thus W (z) will go to positive infinity for z going to zero.

The second requirement is satisfied, because when x is positive the first part of W (z) will be
used and when x is negative the second part of W (z) will be used. The other term β is a
quantification of the distance between the vehicle and the obstacle. Distance will always be a
positive measure and therefore doesn’t influence the stability. Furthermore, the 4-norm, ||z||4
will always be positive, due to the fact that even norms are always positive.

The derivatives can be used to check the third requirement. The derivative should remain
positive for all values of z 6= 0 in order to have asymptotic stability which in term is needed
for full convergence. First of all mind you that the first part of Ẇ (z) is used whenever p is
greater or equal to zero. This means that the first part of Ẇ (z) will also be positive or zero.
Also mind you that the norm ||z||4 will remain positive. Furthermore, whenever p is negative,
the second part of Ẇ (z) will be used and the derivative will be zero. Thus the derivative of
W (z) will be greater or equal to zero. Recall from chapter 2 that this means that there is
Lyapunov stability but not asymptotic stability. However, mind you that due to the division
of W (z) and also the division of δ that this will not happen unless u = δ = 0. This will
only happen whenever the vehicle reaches the target location. This means that the control
algorithm is asymptotically stable for every point but the target location. In practice this
means that the vehicle will converge infinitely close to the target location but will never fully
reach it.

This chapter has provided the proposed algorithm that can be used to control an autonomous
vehicle to its target location from any initial location. This target location can be reached
while avoiding obstacles in the vicinity of the vehicle. Furthermore, this chapter proved that
the algorithm is Lyapunov stable and asymptotically stable for all locations except the target
location. In the next chapter the algorithm will be evaluated in simulation.
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Chapter 4

Simulation

In this chapter the implementation of the algorithm for the autonomous vehicle in simulation
will be described. First the vehicle will be simulated without obstacles to depict the con-
vergence of the algorithm. In the second section different initial conditions will be used to
proof that the convergence is valid for each location. Following, in the third section obstacles
will be added and again convergence will be tested. The fourth chapter contains information
about the tuning parameters of the algorithm. This chapter closes with a section on switching
dynamics that are present in the simulation.

4-1 Vehicle convergence

Full convergence of the vehicle will be validated if the target location is reached from any initial
condition. This also means that the proposed algorithm is asymptotically stable in simulation.
The Lyapunov and inverse Lyapunov functions and its derivatives can be investigated to
make sure the conditions set in chapter 2 are validated throughout the simulation. This
subsection will handle a single example and show its result. This convergence plot, that is
used throughout the chapter, can be found in Figure 4-1. Mind you that the heading of the
car is zero for a configuration to the east.

From the figure it can be observed that the vehicle starts heading forward to the right. In
order to reach the correct heading in the target location, the vehicle switches from forward
driving to backward driving. In reverse the vehicle will approach the target location. The
target location, in this case the origin, is never fully reached. This is due to the dynamics
of the discontinuous Lyapunov function described in chapter 3. The closer the autonomous
vehicle will be to the origin, the lower the velocity will be. Thus reaching the target location
takes more time. In order to check the Lyapunov stability the Lyapunov and inverse Lyapunov
functions can be examined in Figure 4-2.

From the figure it can be derived that the Lyapunov function (blue) starts high and goes to
zero as time goes to infinity. This means that the two first requirements of Lyapunov stability
from chapter 2 are met. From the inverse Lyapunov function it can be concluded that it is
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Figure 4-1: Convergence of the autonomous vehicle in simulation with starting location x = 0,
y = 5, θ = 0. Blue solid line: path taken by the autonomous vehicle. Green cross: target location.
Yellow car: initial location Green car: end location
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Figure 4-2: Lyapunov and inverse Lyapunov functions of the simulation with starting location
x = 0, y = 5, θ = 0. Blue solid line: Lyapunov function. Red solid line: Inverse Lyapunov
function
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Figure 4-3: Derivative of Lyapunov and inverse Lyapunov function of the simulation with starting
location x = 0, y = 5, θ = 0. Blue solid line: derivative of Lyapunov function. Red solid line:
derivative of inverse Lyapunov function.

indeed positive. This means that the first requirement of the inverse Lyapunov stability is
met. However the second requirement is not met. This is explained by the fact that the
target location isn’t reached yet and the fastest increase to infinity will happen very close to
the origin. However, since the velocity will decrease closer to the origin it will take some time
for this to happen. For the third requirement, the derivatives of the Lyapunov and inverse
Lyapunov functions can be checked. The derivatives are depicted in Figure 4-3.

From the derivative of the Lyapunov function it can be concluded that it stays negative and
goes to zero when it is closer to the target location. This means that the third requirement
for Lyapunov stability is met. Of course, this should also mean that the third requirement
for the inverse Lyapunov stability is met. Indeed this can be concluded from the figure. The
derivative stays positive and goes to zero for the final target location. The next section will
describe convergence from different initial locations.

4-2 Vehicle convergence from different initial locations

In order to further validate the convergence of the Lyapunov algorithm another convergence
plot is made. This convergence plot contains several initial locations. This is done to show
that each initial location converges to the target location. The convergence plot is depicted
in Figure 4-4.

From the figure it can be concluded, that each initial location converges to the final target
location. Mind you that the simulation time for this plot is higher than the simulation time of
Figure 4-1. This is why the end configuration of the vehicle is closer to the target location. It
also shows that the convergence towards the target location is valid. The Lyapunov functions,
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Figure 4-4: Different paths from several initial locations reaching the target location. Green
cross: target location. Yellow cars: Initial locations. Other colours: Different paths from several
initial locations to the target location.

inverse Lyapunov functions and the derivatives that proof the convergence of these paths can
be found in the appendix in Figure B-1 to Figure B-8. The next section will discuss the
addition of obstacles to the Lyapunov algorithm.

4-3 Vehicle convergence with obstacles

In this section an obstacle will be added. The path in the convergence plot from the first
section in Figure 4-1 is used to illustrate what happens when an obstacle is added. The
obstacle is added at a location where the vehicle should have passed through when there was
no obstacle present. The convergence of the vehicle with obstacle is depicted in Figure 4-5.
The initial path without obstacles is also depicted as a black dotted line in the figure.

From the figure it can be concluded that the vehicle steers away from the obstacle and
returns to the same location as the original path with a detour. It can also be observed
that the original path collided with the obstacle. From the path taken it can be concluded
that the obstacle avoidance of the algorithm is working as it should. It also means that
inverse Lyapunov and Lyapunov stability are met. The Lyapunov function, inverse Lyapunov
function and the derivatives that proof the convergence of this path can be found in the
appendix in Figure B-9. The next section will handle the tuning of the Lyapunov algorithm.
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Figure 4-5: Convergence of the autonomous vehicle with one obstacle present. Solid blue line:
path taken with obstacle avoidance. Dotted black line: path taken without obstacle avoidance.
Red circle: obstacle. Green cross: target location. Yellow car: initial location. Green car: end
configuration of the vehicle.
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Figure 4-6: Convergence of the autonomous vehicle in simulation. Left: initial conditions, x = 0,
y = 5, θ = 0, k1 = 1e − 5. Right: initial conditions, x = 0, y = 5, θ = 0, k1 = 1e − 4. Blue
solid line: path taken. Green cross: target location. Yellow car: initial location. Green car: end
configuration of the vehicle.

4-4 Tuning of the algorithm

The algorithm contains three tuning parameters that can be used to determine the desired
path. The tuning parameters k, k1 and k2 can be used to set the desired safe obstacle distance,
velocity and steering respectively. Tuning for velocity and steering is quite straightforward. If
a higher velocity input is required, k1 can be set higher. If a higher steering input is required,
k2 can be set higher. These higher velocity or steering inputs do not alter the convergence
properties. This means that the vehicle will still converge to the target location. However,
the path taken will most likely be different from the original path. The model is assumed
to be under low velocity and steady state cornering. For the tuning this means that k1 and
k2 need to stay within bounds in order to keep the desired model dynamics. The tuning
parameter for the safe obstacle distance is somewhat harder to imagine. The tuning section
will be divided into three subsections, one for each tuning parameter. The first subsection,
will describe the influence of k1 on the velocity and the path taken. The second subsection,
will explain the influence of k2 on the steering angle and the path taken. The last subsection,
will discuss the influence of k on the distance between the vehicle and the obstacle and the
influence on the path.

4-4-1 Tuning parameter for velocity

In this subsection the influence of the tuning parameter k1 is investigated. The initial location
from the first section depicted in Figure 4-1 is again used. The value of k1 for this path was
set to be 1e − 5. k1 will be increased by a factor ten in order to depict the influence of the
velocity tuning parameter. The convergence for both situations is sketched in Figure 4-6.
The velocity of the two situations is sketched in Figure 4-7.

From the first figure it can be concluded that the path taken for the second case is more
steep. This can also be concluded from the second figure. It can be observed that the velocity
of the vehicle is higher in the second case. A higher velocity with the same steering tuning
results in a steeper path to the origin. This behaviour has no influence on the convergence as
long as k1 keeps the velocity within the low speed assumption range of the model. In theory
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Figure 4-7: Velocity of the autonomous vehicle in simulation. Left: initial conditions, x = 0,
y = 5, θ = 0, k1 = 1e− 5. Right: initial conditions, x = 0, y = 5, θ = 0, k1 = 1e− 4.

this means that the convergence to the target location will not deteriorate. However, due to
the higher velocity this does mean that the vehicle will take a different path to the target
location. Mind you that the velocity goes to zero the closer the vehicle gets to the target
location. This is why it takes some time for the vehicle to converge to the target location.
The Lyapunov function, inverse Lyapunov function and their derivatives can be found in the
appendix in Figure B-10. The next subsection will discuss the influence of k2 on the steering
angle and the path.

4-4-2 Tuning parameter for steering

The tuning parameter k2 will be compared using the same technique of the previous subsec-
tion. The tuning parameter for steering will make sure that the vehicle can make the correct
steering maneuver and reach the target location. If the parameter is too low the car does
not have enough steering capacity to reach the desired configuration. If the parameter is set
too high the steering reacts too fast for the actuators to follow. Mind you that in simulation
without constraints the steering can be as high as desired. However, in real life situations the
vehicles actuator constrains the tuning parameter. In order to simulate a limit for the steering
in simulation, the maximum steering angle is set to 30 degrees. The tuning parameter in the
original path of Figure 4-1 was set to be k2 = 0.1. In the second case the tuning parameter is
reduced by a factor of ten. The convergence of the two cases is depicted in Figure 4-8. The
steering angle for the two cases is sketched in Figure 4-9.

The value for k2 in the initial convergence is quite high. This causes the sharp turn at the
point where the velocity changes signs for the first case in the path figure. Mind you that
the steering angle for the first case in the steering angle figure is at the limit of 30 degrees.
The steering angle in the second case doesn’t fully reach the maximum steering angle of 30
degrees. This can also be observed in the path for the second case in the path figure. The
path is steeper meaning that the car uses less steering capacity. In conclusion the convergence
doesn’t change, the car still goes to the target location. However, again the path taken is
different from the original path. In conclusion to the tuning of k1 and k2, the parameters
can be used to set the input to the model and determine the path to the target location.
However, the tuning parameters must be used with care. If set too high or too low they may
cause unwanted behaviour. The figures depicting the stability of this example can be found
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Figure 4-8: Convergence of the autonomous vehicle in simulation. Left: initial conditions, x = 0,
y = 5, θ = 0, k2 = 0.1. Right: initial conditions, x = 0, y = 5, θ = 0, k2 = 0.01. Blue solid
line: path taken. Green cross: target location. Yellow car: initial location. Green car: end
configuration of the vehicle.
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Figure 4-9: Steering angle of the autonomous vehicle in simulation. Left: initial conditions,
x = 0, y = 5, θ = 0, k2 = 0.1. Right: initial conditions, x = 0, y = 5, θ = 0, k2 = 0.01.

K.J. Haak Master of Science Thesis



4-4 Tuning of the algorithm 33

-1 0 1 2 3 4 5 6

X position [m]

-1

0

1

2

3

4

5

6

Y
 p

o
s
it
io

n
 [

m
]

Convergence of the vehicle

Target location

-1 0 1 2 3 4 5 6

X position [m]

-1

0

1

2

3

4

5

6

Y
 p

o
s
it
io

n
 [

m
]

Convergence of the vehicle

Target location

Figure 4-10: Convergence of the autonomous vehicle in simulation with obstacle. Left: initial
conditions, x = 0, y = 5, θ = 0, k = 10. Right: initial conditions, x = 0, y = 5, θ = 0, k = 1.
Black dotted line: original path, without obstacle avoidance. Solid blue line: path with obstacle
avoidance. Green cross: target location. Yellow car: initial location. Green car: end configuration
of the vehicle

in the appendix in Figure B-11. The next section will explain the influence of k on the safe
obstacle distance and the path.

4-4-3 Tuning parameter for obstacle avoidance

In the two previous subsections the two tuning parameters for the input of the model have
been discussed. In this subsection an obstacle will be added and the tuning parameter k that
influences the safe distance to an obstacle will be discussed. The same obstacle will be used
as in the third section of this chapter. The tuning parameter of this case was set to be k = 10.
This case is compared with a second case where k is set to be 1. The convergence of the two
cases is depicted in Figure 4-10.

In the first case of the figure the value for k is higher than in the second case. Therefore, the
safety distance in the first case will be lower. This means that the influence of the obstacle will
only start acting when the vehicle is close to the obstacle. This creates a situation where the
vehicle will react late to the influence of the obstacle. This explains the behaviour that when
the vehicle gets close to the obstacle, it turns around and takes another path. In the second
case k is set lower. Therefore, the safety distance will be higher and the vehicle will react
earlier on the presence of an obstacle. From the first figure it can be observed that the path
taken in the second case is completely different from the path in the first case. The influence
of the obstacle is higher in the second case. The result is that the vehicle takes another path
in order to avoid the obstacle. Depending on the safety situation k can be tuned to avoid
obstacles in the way desired. Lastly, from the figure it can be concluded that the velocity
is higher in the second case. The end configuration lies closer to the target location. This
means that k and k1 are not independent. The stability of this case can be tested by looking
at Figure B-12 in the appendix.

Since k appears in the inverse Lyapunov function it means that the value of k will also alter
the convergence properties of the algorithm. If k is decreased, 1

k is increased. This in turn
makes that B

1
k increases. Due to B

1
k increasing, the inverse Lyapunov function will increase.

This results in a smaller Lyapunov function. Since the vehicle is controlled to the lowest value
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of the Lyapunov function it means that decreasing the Lyapunov function with k can create
a problem for the convergence. In order to keep the desired convergence of the algorithm k
needs a lower limit. Mind you that the smaller k is the smaller also the Lyapunov function
will be. This means that if k is made smaller the vehicle will react to the obstacle earlier.
But it also means that the vehicle is allowed to come closer to the obstacle. Eventually, if k
is made too small the convergence will be depreciated. This means that the vehicle will not
converge to the target location but it will converge to the obstacle and collide with it. This
provides both advantages as disadvantages. Picture for instance a case with one obstacle. If
k is made large enough the autonomous vehicle will get close to an obstacle but will never
collide with it. However, if the vehicle maneuvers a narrow corridor and k is made too large
the autonomous vehicle will be avoiding both walls. This can create a non feasible path
through the corridor. This situation requires k to be smaller while keeping in mind the lower
limit of k. There is a trade-off between obstacle avoidance and convergence and care should
be taken in tuning k.

Finalizing this subsection, the tuning parameter k can be used to set the desired path for
obstacle avoidance. There is a trade-off between obstacle avoidance and convergence and care
should be taken with tuning k. The next section will handle switching dynamics that occur
in the algorithm due to the influence of the discontinuous Lyapunov function.

4-5 Switching dynamics

The previous section described the influence of the tuning parameters on the dynamics and
the convergence. The last section will focus on the influence of the discontinuous Lyapunov
function. Switching behaviour is happening whenever the steering angle and velocity are both
almost zero. This behaviour is for instance happening in the path depicted in Figure 4-5 close
to the obstacle. In order to sketch this behaviour the velocity and steering of this path are
sketched in Figure 4-11 and Figure 4-12.

From the figure it can be concluded that the switching behaviour (the region where the
plot is almost solid) influences the steering and the velocity. The behaviour is happening
whenever the velocity and the steering angle are almost zero. This is undesired behaviour
since the control input can’t be followed by the actuators. Either the actuators stop and the
car isn’t moving or the actuator switches from one state to the other. This false trigger of the
discontinuous Lyapunov function makes the algorithm believe that the vehicle is at its target
location while in fact it is not. The behaviour can be prevented by taking a lower value of k.
The upper limit of k is beyond the topic of this thesis. However, the behaviour needs to be
expressed while discussing the algorithm.

In conclusion this chapter discussed the simulation of the autonomous vehicle and the algo-
rithm. The tuning parameters of the algorithm can be altered to get the desired dynamics.
However, the tuning parameters must be used with caution especially at lower values for k1
and k2 and higher values of k. The next chapter will conclude the thesis and give recommen-
dations for future research.
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Figure 4-11: Velocity of the autonomous vehicle in simulation with initial conditions, x = 0,
y = 5, θ = 0, k = 10 and switching behaviour.
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Figure 4-12: Steering angle of the autonomous vehicle in simulation with initial conditions,
x = 0, y = 5, θ = 0, k = 10 and switching behaviour.
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Chapter 5

Conclusion and Recommendations

This chapter will conclude the thesis and recapitulate on the research objectives defined in the
introduction. Furthermore, recommendations for future work will be given and discussed. The
first section, handles the conclusion. The second section, elaborates on the recommendations.

5-1 Conclusion

Current algorithms for autonomous vehicles are divided into separate local algorithms. Al-
gorithms like path planning and motion control are used to control the autonomous vehicle.
However, these controllers are not integrated and therefore path following is not achieved.
The main objective of this research is to develop an integrated Lyapunov stable algorithm
that includes the two topics of navigation: path planning and motion control. The conclusion
will be discussed according to the different sections of the research objectives.

5-1-1 Develop an integrated Lyapunov stable algorithm

As basis for the integrated Lyapunov stable algorithm an existing controller is used that drives
holonomic robots to their target location. The algorithm is extended with non-holonomic dy-
namics of a car-like vehicle. A measure for the distance between the vehicle and the obstacles
is used to determine how close the vehicle is to a certain object. The main contribution of
this thesis is an integrated Lyapunov stable algorithm which can be used to drive autonomous
vehicles.

Convergence of the vehicle to the target location from any initial point

The proposed algorithm can be used to drive the car to the target location from any initial
location. The discontinuous properties of the algorithm make sure that Lyapunov stability is
guaranteed for all vehicle locations.
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Obstacle avoidance

The algorithm includes obstacle avoidance. Obstacles can be added to the algorithm and
are then avoided by the vehicle. The derivative of the obstacle distance function is used to
determine the type of action needed for collision avoidance. Furthermore, the path taken to
avoid obstacles can be tuned by the parameters of the algorithm.

Tuning for different velocity and steering

Tuning for different velocity and steering is done by the parameters k1 and k2. The tuning
is simple and can be used to make the desired inputs to the autonomous vehicle. These
parameters depend to the vehicle parameters and the limitation of the actuators.

5-1-2 Proof the stability of the algorithm

The stability of the proposed algorithm is proved using Lyapunov theory. The Lyapunov
theory is also used to derive the control inputs to the vehicle, keeping the algorithm stable at
all times.

5-1-3 Evaluate the proposed approach by simulation

The algorithm is evaluated in a simulation environment. The convergence of the algorithm is
validated and also the obstacle avoidance is tested in different scenarios. Besides the validation
of the algorithm, the simulation also brings forth a problem where switching dynamics occur.
The discontinuous Lyapunov function falsely triggers whenever u and δ lie close to zero. This
behaviour can be avoided by using a smaller gain in the algorithm.

5-2 Recommendations

The algorithm proposed in this thesis is a simple and effective way of navigating autonomous
vehicles. However, in order to apply the algorithm in practice more research is required.
The recommendations are listed in different subsections in order to give structure to future
research.

5-2-1 Model

The kinematic bicycle model is a simple but effective model to use. This means that it
works for the assumptions given. In practice these assumptions are not always present.
A more extensive model can be used to provide a smaller difference between the control
for experimental implementation and simulation. The addition of a model that can handle
higher velocities is one that is vital in autonomous vehicle research. Furthermore, a model
that includes slip and lateral forces is an extension that will provide more accurate results.

K.J. Haak Master of Science Thesis



5-2 Recommendations 39

5-2-2 Switching behaviour

The switching behaviour occurring in the algorithm is undesired. This behaviour makes con-
trol harder and actuators might not be able to handle these dynamics. In order to avoid these
dynamics the limits of the tuning parameter k can be investigated. Furthermore, switching
logic can be added to avoid false triggering of the discontinuous Lyapunov function.

5-2-3 Tuning limits and optimization

Tuning of the algorithm determines the path the vehicle takes towards the target location. Due
to these parameters the optimal path to the target location is not always chosen. Furthermore,
the limits of the tuning parameters interfere with desired behaviour of the vehicle. Take as
an example the velocity that goes to zero the closer the vehicle is to the target location.
The tuning parameter can be altered to neglect this behaviour and thus optimize the motion
control of the autonomous vehicle. Furthermore, the limits of the tuning parameters k1 and
k2 can be researched. This helps in gaining more insight in the efficiency of the algorithm.

5-2-4 Obstacle avoidance

The scalability of the obstacle avoidance is another topic that can be researched. Due to the
nature of the obstacle distance measure, the derivative of the measure will grow with increasing
obstacles. This means that β and the partial derivatives of β need to be determined for each
appended obstacle. By selecting the appropriate measure for the obstacle distance, β and
the partial derivatives of β can be reduced. This will not only improve the scalability of the
algorithm, but will also reduce the computational time.

5-2-5 Experimental testing

Lastly, experimental testing can be considered as a next step to evaluate the algorithm in
real time applications. Experimental testing introduces new challenges that simulation does
not include. Therefore, testing the algorithm on a scaled car or on a real car is vital before
the algorithm can be implemented on autonomous vehicles.
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Appendix A

Control Strategy

A-1 The control algorithm

A-1-1 Derivative of β calculation

The partial derivative of β to x can be written as in Equation A-1

∂β

∂x
= ax√

bx
cx
dx

(A-1)

Then the different terms in the equation can be expressed as in Equation A-2 to Equation A-5.

ax = 2ar2br4
((

2bo4xo2 − 2xo(yr − yo)2(xo+ yo)bo2 + (xo2 + yo2)(yr − yo)4)ao4 (A-2)

+ 2
(
− xo(xo+ yo)bo2 + (xo2 + yo2)(yr − yo)2)bo2(xr − xo)2ao2

+ bo4(xo2 + yo2)(xr − xo)4
)

(xr − xo)
(

(yo − br − yr)(br − yr + yo)ar2 + br2(xr − xo)2
)

bx =
((

2bo4xo2 − 2xo(yr − yo)2(xo+ yo)bo2 + (xo2 + yo2)(yr − yo)4)ao4 (A-3)

+ 2
(
− xo(xo− yo)bo2 + (xo2 + yo2)(yr − yo)2)bo2(xr − xo)2ao2

+ bo4(xo2 + yo2)(xr − xo)4
)(

(yo − br − yr)(br − yr + yo)ar2 + br2(xr − xo)2
)2

cx =
(

(xr − xo)2bo2 + (yr − yo)2ao2
)2(

(yo − yr)2ar2 + br2(xr − xo)2
)2

(A-4)
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dx =
(

(xr − xo)2bo2 + (yr − yo)2ao2
)2(

(yo − yr)2ar2 + br2(xr − xo)2
)3

(A-5)

The same thing can be done for the partial derivative of β to y. The simplification is written
in Equation A-6.

∂β

∂y
= ay√

by
cy
dy

(A-6)

The different terms are expressed in Equation A-7 to Equation A-10.

ax = −2ar4br2
((

2bo4xo2 − 2xo(yr − yo)2(xo+ yo)bo.2 + (xo2 + yo2)(yr − yo)4)ao4 (A-7)

+ 2
(
− xo(xo+ yo)bo2 + (xo2 + yo2)(yr − yo)2)bo2(xr − xo)2ao2

+ bo.4(xo2 + yo2)(xr − xo)4
)

(yo − yr)
(

(yo − br − yr)(br − yr + yo)ar2 + br2(xr − xo)2
)

bx =
((

2bo4xo2 − 2xo(yr − yo)2(xo+ yo)bo2 + (xo2 + yo2)(yr − yo)4)ao4 (A-8)

+ 2
(
− xo(xo+ yo)bo2 + (xo2 + yo2)(yr − yo)2)bo2(xr − xo)2ao2

+ bo4(xo2 + yo2)(xr − xo)4
)(

(yo − br − yr)(br − yr + yo)ar2 + br2(xr − xo)2
)2

cy =
(
(xr − xo)2bo2 + (yr − yo)2ao2)2((yo − yr)2ar2 + br2(xr − xo)2)2 (A-9)

dy =
(

(xr − xo)2bo2 + (yr − yo)2ao2
)2(

(yo − yr)2ar2 + br2(xr − xo)2
)3

(A-10)

The different terms in Equation A-2, Equation A-3, Equation A-4 and Equation A-5 and
the terms in Equation A-7, Equation A-8, Equation A-9 and Equation A-10 are listed in
Table A-1.
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Parameter Definition Unit
ar Ellipse x-axis definition of the vehicle [-]
br Ellipse y-axis definition of the vehicle [-]
ao Ellipse x-axis definition of the object [-]
bo Ellipse y-axis definition of the object [-]
xr X-axis location of the vehicle [m]
yr Y-axis location of the vehicle [m]
xr Boundary x-axis coordinates of the vehicle [m]
yr Boundary y-axis coordinates of the vehicle [m]
xo X-axis location of the object [m]
yo Y-axis location of the object [m]
xo Boundary x-axis coordinates of the object [m]
yo Boundary y-axis coordinates of the object [m]

Table A-1: Parameters appearing in the partial derivatives of β.
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Appendix B

Simulation

B-1 Vehicle convergence from different initial positions
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Figure B-1: Stability proof of the multiple initial conditions plot. Initial condition: x = 0, y = 5,
θ = 0 Left: Lyapunov and inverse Lyapunov functions Right: derivative of Lyapunov and inverse
Lyapunov functions
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Figure B-2: Stability proof of the multiple initial conditions plot. Initial condition: x = −5,
y = 0, θ = 0 Left: Lyapunov and inverse Lyapunov functions Right: derivative of Lyapunov and
inverse Lyapunov functions
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Figure B-3: Stability proof of the multiple initial conditions plot. Initial condition: x = 5, y = 0,
θ = 0 Left: Lyapunov and inverse Lyapunov functions Right: derivative of Lyapunov and inverse
Lyapunov functions
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Figure B-4: Stability proof of the multiple initial conditions plot. Initial condition: x = 0,
y = −5, θ = 0 Left: Lyapunov and inverse Lyapunov functions Right: derivative of Lyapunov
and inverse Lyapunov functions
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Figure B-5: Stability proof of the multiple initial conditions plot. Initial condition: x = −5,
y = −5, θ = 0 Left: Lyapunov and inverse Lyapunov functions Right: derivative of Lyapunov
and inverse Lyapunov functions
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Figure B-6: Stability proof of the multiple initial conditions plot. Initial condition: x = −5,
y = 5, θ = 0 Left: Lyapunov and inverse Lyapunov functions Right: derivative of Lyapunov and
inverse Lyapunov functions
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Figure B-7: Stability proof of the multiple initial conditions plot. Initial condition: x = 5, y = 5,
θ = 0 Left: Lyapunov and inverse Lyapunov functions Right: derivative of Lyapunov and inverse
Lyapunov functions
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Figure B-8: Stability proof of the multiple initial conditions plot. Initial condition: x = 5,
y = −5, θ = 0 Left: Lyapunov and inverse Lyapunov functions Right: derivative of Lyapunov
and inverse Lyapunov functions
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B-2 Vehicle convergence with obstacles
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Figure B-9: Stability proof of the example with obstacle avoidance. Initial conditions: x = 0,
y = 5, θ = 0, k = 10 Left: Lyapunov and inverse Lyapunov functions Right: derivative of
Lyapunov and inverse Lyapunov functions

B-3 Tuning of the controller

B-3-1 Tuning parameter for velocity
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Figure B-10: Stability proof of the example with increased velocity tuning. Initial conditions:
x = 0, y = 5, θ = 0, k1 = 1e − 4 Left: Lyapunov and inverse Lyapunov functions Right:
derivative of Lyapunov and inverse Lyapunov functions
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B-3-2 Tuning parameter for steering
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Figure B-11: Stability proof of the example with decreased steering angle tuning. Initial condi-
tions: x = 0, y = 5, θ = 0, k2 = 0.01 Left: Lyapunov and inverse Lyapunov functions Right:
derivative of Lyapunov and inverse Lyapunov functions

B-3-3 Tuning parameter for obstacle avoidance
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Figure B-12: Stability proof of the example with increased obstacle avoidance. Initial conditions:
x = 0, y = 5, θ = 0, k = 1 Left: Lyapunov and inverse Lyapunov functions Right: derivative of
Lyapunov and inverse Lyapunov functions
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