

UNSPEAKABLE

Hidden curriculum of transdisciplinary skills

Groot Kormelink, J.B.J.; Hooimeijer, F.L.; Kalmar, E.; Klaassen, R.G.; Postema, S.P.S.; Rutten, M.M.; Schasfoort, J.; Schneider, K.; Snel, F.A.M.; Wehrmann, C.

Publication date

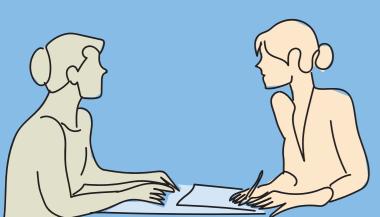
2024

Document Version

Final published version

Citation (APA)

Groot Kormelink, J. B. J., Hooimeijer, F. L., Kalmar, E., Klaassen, R. G., Postema, S. P. S., Rutten, M. M., Schasfoort, J., Schneider, K., Snel, F. A. M., Wehrmann, C., Zandbergen, B. T. C., & Zijlstra, S. (2024). UNSPEAKABLE: Hidden curriculum of transdisciplinary skills. Poster session presented at International Transdisciplinarity Conference, Utrecht, Netherlands.

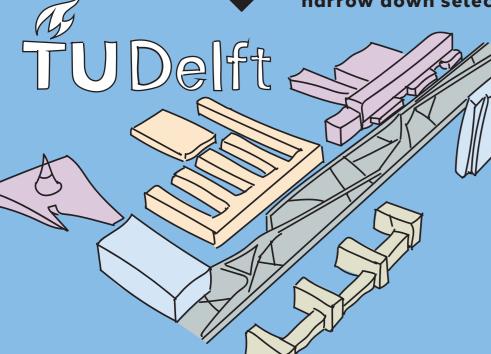

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

METHODS



4. interviews 1-on-1 conversation with course coordinators

3. identify relevant courses from all TU faculties,

responding to the challenged identified below narrow down selection based on defined criteria

1. literature

review

delta

2. identify challenges

UNSPEAKABLE

+

X

Skills

Values

Prof.

Skills

■ Traditional

disciplinary

+

 \times

 \times

+

IDE/CB

X

+

 \times

+

N Inter/trans skills

○ Traditional softskills

 \times

+

Values

Personal

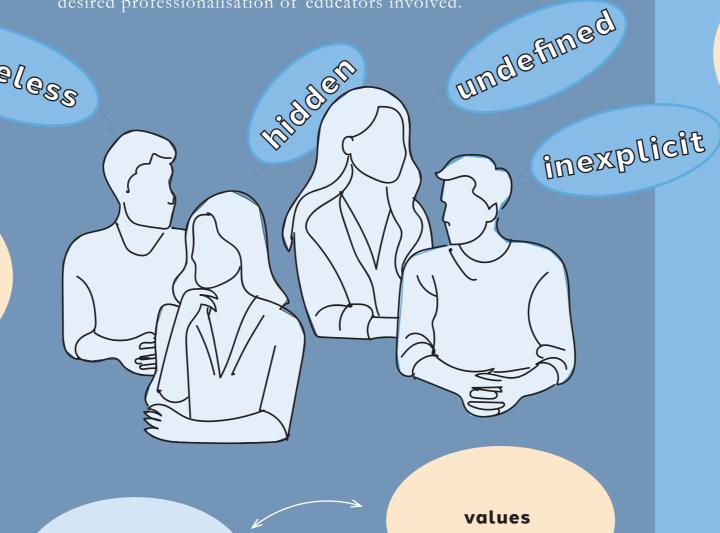
+

A

 \boxtimes

+

never made explicit or maybe even are considered a taboo. The between us (initiators from AE, A+BE, TPM and Teaching Academy), and remain implicit in several courses. This 4TU


What transversal skills do students need to acquire to benefit from challenge-based education, particularly synthesis and integration skills for problem-solving?

What kind professional development do educators need to build strong CBE curricula that facilitate student learning in environments with multiple stakeholders?

B) How can educators evaluate and guide student learning (of transversal skills) in these varied and complex setting?

What are the epistemological criteria of different knowledge systems in the quintuple helix, and how do we train students to acquire these epistemological criteria to be able to work across different contexts?

We asked...

professionalisation

skills

RESULTS

What we heard within themes...

Prof.

Challenges

+ Teaching Methods

DISCUSSION

Energy

Professional

∣ External

Resilience,

+

 \times

 \times

+

A

+

Delta

 \times

+

inter- and transdisciplinary

courses are field specific and involve narrow interdisciplinarity (eg just Delft MSc's) or limited actors (a company, rather than a nested community), or mono-discipline with a company project.

challenge-based

educational assignments are defined and limit students in self-determination of the challenge.

> little agreement on definition of terms

lack of clarity blurs application of challenge, skill or value based education and applications of transdisciplinary approaches.

professional

desires

tutors require both access to practical educational methodologie and challenges in e.g. allowing students autonomy in determining the challenge.

To contribute to contemporary issues such as climate change, energy transition, food shortage, inequalities, war and pandemics, engineers will need to adapt and go beyond classical engineering and problem-solving skills. The problems' complexity requires the involvement of multiple disciplines, external stakeholders and society; and a flexibilisation of problem-solving processes. Synthesis, however, presents heightened cognitive demands and requires deliberate guidance. It implies integrating epistemic knowledge and modes of thinking in two or more disciplines and non-specialist knowledge in a search for better understanding. Therefore, we need a better comprehension of how individuals learn to integrate different forms of knowledge and expertise, thus enabling them to explain a multifaceted phenomenon, fashion a new technology or propose a sustainable environmental solution.

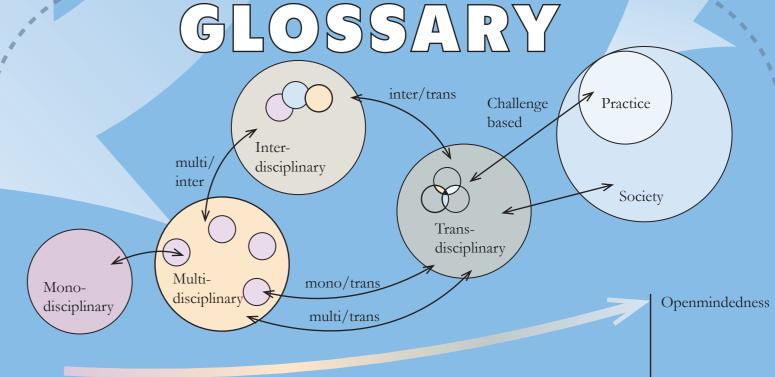
WHAT'S NEXT?

further research into value systems Additional interviews to understand

what value systems are guiding

interviewees

Focus on the application and development of education methods that help teach the skills necessary for CBE and IE. To go beyond the focus that currently still lies on traditional skills.


Project-based Learning Project defined by teachers or single project owner

Challenge-based Learning Problem determined by students

perspectives

Learning problem defined and/or informed by • In collaboration real-world challenge with real world and one or more actors from real world actors different

Problem-based

Wicked Abstract Contextual Traditional soft skills Professional skills Inter/transdisciplinary skills

Monodisciplinarity: Student learn specific professional and disciplinary skills. Problems are tame and/or abstract.

Multidisciplinary: Different disciplines work together but they do not integrate knowledge.

Interdisciplinary: Knowledge is truly integrated, leaving behind disciplinary biases. An increased openness is required of people to make this possible.

Transdisciplinary: Practice is involved.

Challenge-based: These challenges are increasingly wicked and lack single solutions. To work with such open-ended wicked challenges in transdisciplinary configurations, tradidtional soft skills (e.g. communication and collaboration) are not longer sufficient, and specific inter- and transdisciplinary skills are needed.

It is in a collaborative learning setting, and is based on real-world problems.

It distinguises itself from problem-based learning which revolves around fictional cases, and project-based learning where the problem is pre-defined by teachers.

CONTACT

Contributors:

Joost Groot Kormelink, Fransje Hooimeijer, Eva Kalmar, Renate Klaassen, Saskia Postema, Martine Rutten, Julia Schasfoort, Kim Sake Zijlstra.

Contact:

Saskia Postema Sake Zijlstra

f.l.hooimeijer@tudelft.nl

