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H I G H L I G H T S

• European regulatory change triggered substantial change in balancing market design.

• Opportunities for strategic behavior are identified using ABM with learning agents.

• Procurement of balancing energy in a standalone market increases market efficiency.

• Marginal pricing further enhances the economic efficiency of the balancing market.
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A B S T R A C T

Market-based procurement of balancing services in Europe is prone to strategic bidding due to the relatively
small market size and a limited number of providers. In the European Union, balancing markets are undergoing
substantial regulatory changes driven the efforts to harmonize the market design and better align it with the
goals of the energy transition. It is proposed to decouple the balancing energy (real-time) market from the
(forward) balancing capacity market and the price of balancing energy will be based on the marginal bid. In this
paper, the potential effects of these changes on market participants’ strategies are analyzed using an agent-based
model. This model compares the effects of a standalone balancing energy market with different pricing rules on
economic efficiency with agents that apply naïve, rule-based and reinforcement-learning strategies. The results
indicate that the introduction of a standalone balancing energy market reduces the cost of balancing, even in a
concentrated market with strategic bidders. Marginal pricing consistently leads to lower weighted average prices
than pay-as-bid pricing, regardless of the level of competition. Nevertheless, in an oligopoly with actors bidding
strategically, prices can deviate from the competitive benchmark by a factor of 4–5. This implies that the in-
troduction of a standalone balancing energy market does not entirely solve the issue of strategic bidding, but
helps dampen the prices, as compared to the balancing market prior to the design change.

1. Introduction

To balance supply and demand, most European transmission system
operators procure balancing services in a market-based way through a
two-stage process, first reserving the necessary balancing capacity and
then activating balancing energy when system deviations occur.
However, market-based procurement is not necessarily efficient as the
strict technical requirements limit the number of eligible balancing
service providers (BSPs). Many European electricity balancing markets
have design features that, along with market concentration, make them

susceptible to gaming. With the help of an agent-based model (ABM)
with artificial intelligence, we study opportunities for strategic beha-
vior and assess whether expected balancing market design changes can
improve its efficiency. As the EU intends to integrate growing shares of
renewables into the European grids and markets, to harmonize balan-
cing markets and facilitate cross-border procurement of balancing re-
sources (cf. [1]), it is important to identify balancing market design
features that facilitate market entry and increase robustness to strategic
bidding. The first aspect has been addressed in detail in [2], while the
second aspect requires quantification of the effects of bidding strategies
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under different market designs and is addressed in this paper using
ABM.

To stabilize the system frequency, most European transmission
system operators (TSOs) procure balancing services in a competitive,
two-stage process. First the necessary balancing capacity is reserved;
balancing energy is activated in real time, when actual system devia-
tions occur. However, market-based procurement is not necessarily
synonymous with efficient procurement [3,4]. Due to strict technical
requirements, the current number of eligible balancing service provi-
ders (BSPs, parties who sell balancing services to the TSO) is limited. As
a result, balancing markets are highly concentrated, which opens up
room for opportunistic behavior and market inefficiencies.

The need for greater market integration [5] and the wish to re-
mediate market inefficiencies led to the recent adoption of several
European regulations and network codes [6,7]. Among them, the EU
guideline on electricity balancing (EBGL, adopted in November 2017)
defined the main features of harmonized European balancing markets
[8]. Specifically, the balancing energy (BE) market is required to be
decoupled from the balancing capacity (BC) market so that balancing
energy bids are submitted in a separate auction close to real time. A
review of balancing market design variables and their combinations is
presented in [2]. The authors structured the design variables according
to priority and showed that, in order to improve market access and
performance, the splitting of the balancing capacity and energy markets
is the necessary first step before addressing other design aspects as most
other variables depend on it [2].

In order to analyze and study the expected behavior of market
players under this new design, in this work we simulate a standalone BE
market (hereafter “split BC-BE market”) with the help of an ABM. To this
end, we implement naive and learning agents and compare their per-
formance. The naïve agents bid their true short-term variable costs. The
learning agents that are designed to represent different levels of market
power take decisions either according to a pre-determined rule or by
using a fitted Q-iteration algorithm (a class of reinforcement learning
algorithms) to identify their bidding strategies. We investigate the po-
tential efficiency gains from introducing a separate balancing energy
market, as compared to a market where balancing capacity and energy
are procured jointly (hereafter “joint BC-BE market”) used today. For
this, we analyze the bidding behavior, profits of BSPs, and the cost of
balancing in the face of this regulatory transformation.

This work provides an analysis of regulatory changes spurred by the
EBGL with a new approach to modelling the balancing market, namely
ABM with agents that apply learning strategies. Unlike other ABM-
based studies of the balancing market, we focus on the market for
balancing energy that is mandated by the EBGL. Our approach allows to
represent individual elements of market design and their combinations
in great detail, including different types of actors and technologies.
Reinforcement learning allows agents to adapt their market strategies,
which we compare with predefined strategies and with empirical ob-
servations. The combination of a detailed agent-based market model
with artificial intelligence in the agents provides a powerful tool for
analyzing the impact of market design on strategic behavior.

To the authors’ knowledge, this is the first model-based study of the
upcoming introduction of a standalone balancing energy market and
marginal pricing and their effects on the bidding strategies of market
actors. The model provides a deeper insight into the implications of
these changes, helps to make market design more robust against gaming
and to estimate the extent to which the actions of a single or few bid-
ders can affect market outcome. This analysis is particularly relevant for
the EU’s harmonization efforts and energy policy goals. This paper
provides useful conclusions for regulators, TSOs and policymakers and
provides them with specific recommendations for improving balancing
market design and efficiency.

We structure the paper as follows: Section 2 reviews the state of the
art of the balancing market analysis and the use of ABM for electricity
market modelling. Section 3 describes the functioning of the balancing

market and the bidding process along with the main building blocks of
its design. Section 4 presents the agent-based model, Elba ABM, its
main features, key assumptions, design choices and agent strategies.
Section 5 describes the simulation setup and scenarios. Section 6 pro-
vides and analyses model results and Section 7 concludes the paper.

2. Literature review

2.1. Balancing market analysis

Balancing markets in Europe have generally been a rather lucrative
commercialization option for flexible generation. As a result, most of
the current body of research has been focused on issues related to the
portfolio optimization for participation in balancing markets (e.g. [9]).
As the European countries have been gradually easing market access
rules to new flexibility sources, recent research has extensively ad-
dressed the potential of distributed energy technologies, such as battery
storage [10], heat pumps [11] household photovoltaic and storage
systems[12], as well as demand response [13] for frequency support.

The relevance of the balancing market as performing a key function
in the European electricity market design has been widely acknowl-
edged in the literature. Research has addressed market design im-
provements [2,14], harmonization of market rules [15,16] and strategic
bidding behavior [17,18], among others. The authors in [15] analyze
possible future market design and argue for the use of asymmetric
bidding in the balancing market and shortening the product length to
enable the procurement of balancing reserves from renewables and
other distributed energy resources. Positive effects of market integra-
tion and the possible cost savings that can be achieved with its help
were addressed in [19]. Balancing market harmonization is however
complicated by large national differences [20,21], which makes it im-
portant to identify the elements of an efficient market design. Currently,
balancing markets are characterized by high entry requirements and
therefore low competition levels [22,23]. Consequently, the conven-
tional assumption that all participants behave competitively and bid
their full available capacity at true costs seems rather unrealistic.

2.2. The use of agent-based modelling for the analysis of bidding strategies
and electricity market design

Researchers widely use ABM to analyze the effects of policy and
market design changes. As shown in [24] and [25], ABM is a suitable
method for capturing balancing market complexity, including non-
competitive behavior. For instance, authors in [24] used ABM to model
the imbalance settlement and studied the effects of imbalance pricing
on market actors. Researchers in [26] investigated the effect of different
options for market clearing of interconnected day-ahead and balancing
markets using ABM. In [27], ABM was applied primarily to analyze the
effect of increasing shares of RES on electricity markets. Their model,
MATREM, simulates the day-ahead and intraday markets as well as
forward and bilateral markets and use complex agents able to interact
with the user [27]. Researchers in [28] successfully combined agent-
based modelling and optimization techniques to investigate the effect of
demand response and storage systems in the electricity market as al-
ternative to the capacity market. German electricity market design was
analyzed in [25]; the authors found that the introduction of a capacity
market can help solve the generation adequacy issue and is a viable
alternative to the energy-only market in the long term. Bidding stra-
tegies were the main focus of [29] where the authors compared bid
pricing rules in the DA market and the effects of price volatility. In [30],
ABM was used to optimize bidding strategies of generating companies
in the DA market and showed the suitability of this approach for
modeling complex systems and interactions within them.

In an ABM, it is possible to equip the agents with learning capability
[31,32]. For instance, Researchers in [33] and [34] developed Pow-
erACE, an ABM that includes a spot and German balancing market. The
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authors in [34] provided a thorough assessment of several learning
algorithms that can be integrated into ABM to represent agent behavior
and showed that Q-learning produced better results than Erev-Roth-
type reinforcement learning. Since market participants do not have
access to complete information, they are bound to behave strategically
in the face of uncertainty (e.g. [35]), optimizing their decisions by
factoring in the risk associated with imperfect information. In [36], a
short-term electricity market is modeled to teste agents’ learning stra-
tegies and attitudes to risk. The authors showed that agent bidding
strategies can be improved through more risk-averse strategies. Re-
searchers in [23] developed an agent-based model of the German bal-
ancing market to study the bidding behavior of market actors and the
effect of attitude towards risk on their bidding strategies and showed
that ABM is an appropriate tool to analyze the balancing market [23].1

The way the same market design can provoke different outcomes due to
different agents participating in it incorporating agents’ expectations
and uncertainty was demonstrated with the help of ABM in [38].

2.3. Agent-based modelling and learning for the analysis of regulatory
changes in the balancing market

ABM has proven to be a useful tool to capture market dynamics and
complexity and account for the behavior of multiple actors and their
reactions to market opportunities and incentives [39]. It further allows
to analyze the effects of policy and market design changes considering
adaptive behavior of participants [31,32]. The authors in [40] use
empirical market data from Central Western Europe to emphasize that
balancing market design has a direct effect on the strategies of flex-
ibility providers. However, top-down optimization models cannot re-
present different bidding strategies and potential opportunistic beha-
vior due to their intrinsic assumptions of perfect competition and
foresight. Similarly, game theoretical approaches, while useful for
identifying optimal strategies of market actors, lack flexibility in in-
tegrating multiple agents with different characteristics and strategies
and do not scale up to include multiple players with a large number of
decision variables (such as plants to dispatch). ABM allows for het-
erogeneity and a larger number of agents (e.g. [41]) and can help to
understand and quantitatively assess the bidding behavior of the agents
in repeated auctions. The relevance of the repeated nature of the bal-
ancing auction has been demonstrated e.g. in [42,43]. ABM makes it
possible to evaluate the effects of actors’ decisions (e.g. [27]), in par-
ticular types of bidding behavior, on the price levels and behavior of
others by providing the agents with learning capabilities [44]. It is
particularly suitable for exploration based on incomplete information
(actual strategies of market participants are not disclosed) and multiple
observations (market outcomes) [45].

3. European balancing markets

European balancing markets are rooted in the physical grid re-
quirements and the TSOs’ obligation to maintain the energy balance
within their control system in order to maintain the network frequency
in the interconnected system. System imbalances are caused by sto-
chastic processes, uncertainty associated with generation and load
forecasts, plant or line outages and the behavior of market participants.
Balancing markets consists of several institutional arrangements, as is
shown in Fig. 1.

Fig. 1 illustrates that the balancing market for electricity is a key
link between the physical power system and the markets. The process in
the balancing market starts with the procurement auction for the re-
servation of balancing capacity (BC), the goal of which is to ensure
sufficient balancing capacity available for potential activation. It is

followed by the activation of balancing energy (BE) in real time to re-
solve system imbalances, using the pool of balancing resources that
were contracted during the previous stage. Finally, after real time, the
costs of imbalances are settled between the TSO and the BRPs under the
“polluter-pays” principle. Resulting imbalance prices are based on the
cost of provision of balancing energy (although the methodologies
differ among EU countries).

The bottom of this figure represents the Physical Layer of the
system. The imbalances between electricity generation and consump-
tion are controlled by the TSO in real time. The Actor Layer shows the
players: the TSO is in the middle between the balancing services pro-
viders (BSPs), who obtain their resources from suppliers on the left, and
the balancing responsible parties (BRPs), who are the cause the im-
balances, on the right. In contrast to day-ahead and intraday markets,
only market participants whose assets pass a stringent prequalification
process may act as BSPs.2 BRPs aggregate market actors (providers and
consumers of electricity) into portfolios to achieve scale economies (on
the right side in the Actor Layer, Fig. 1). BRPs submit planned load and
generation schedules to the TSO day-ahead.

The Institutional Layer shows how the TSO handles imbalances
through balancing services that it purchases from balancing service
providers (BSPs) before real time in the balancing capacity market.
System imbalances are corrected in real time by activating the reg-
ulating capacity that was purchased from the BSPs in the balancing
energy market. Deviations from the required network frequency value
can be both negative and positive. If the system imbalance is negative,
i.e. the system is short, generation output must be increased (or demand
reduced), activating positive balancing energy. Conversely, negative
balancing energy is activated in case the system is long, i.e. over-
supplied, and generation must be reduced (or demand increased). BRPs
need to compensate the TSO for deviations from their schedules, e.g.
caused by forecast errors of renewable generators.

Unlike spot markets, balancing markets are single-sided, with the
TSO acting as the single buyer. TSOs use separate auctions for procuring
the standardized balancing products. The EBGL defines four standard
balancing products: Frequency Containment Reserve (FCR), automatic
Frequency Restoration Reserve (aFRR), manual Frequency Restoration
Reserve (mFRR) (Fig. 1, top), and Replacement Reserve (RR), which
mainly differ according to their activation speed and duration of acti-
vation. The FCR is used to handle imbalances that are caused by so-
called “intra-dispatch interval variability” [46], meaning that while de-
mand changes continuously, schedules are submitted in discrete steps,
most commonly of 15 min, and as a result there are continuous, small
differences between supply and demand. We ignore this issue and focus
on deviations between the actual and scheduled electricity generation
or consumption per time interval, which are largely handled with aFRR
(with mFRR and RR as backups). aFRR is used in all countries of the
ENTSO-E area and has the highest trading volumes among the standard
products (cf. [47]). In a series of interrelated electricity markets [48],
the BC market is cleared before the day-ahead (DA) market (see also
Fig. 2, top.) This may occur from one year to one day ahead of delivery
time, depending on the country and the balancing product. The re-
quired BC for each product is determined by the TSO, whereas the
demand for BE depends on actual imbalances.

The bid structure of aFRR (automatic frequency response reserve)
includes the BC volume in MW and the respective BC price in €/MW.
Commonly, the price for activation of BE in €/MWh must be provided
at the time of the BC auction and only BSPs whose capacity bids have
been accepted are considered for providing balancing energy (Fig. 1). A
merit order based on the price of balancing capacity is created for
clearing the BC auction, whereas another merit order is constructed

1 In contrast, for highly competitive day-ahead markets fundamental opti-
mization models have proven to yield better results [37].

2 More information on the limits of access to the balancing market can be
found in [2] and the detailed requirements can be found in the EBGL [8] as well
as national prequalification documents.
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Fig. 1. Overview of the organization of European electricity balancing markets and their relation to short-term electricity markets. The focus of the Elba-ABM model
in this paper is marked in red.

Fig. 2. Top: Current temporal sequence of the balancing and spot markets. Bottom: the change in the balancing market sequence proposed by the EBGL.
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afterwards for the BE market by ranking the energy bids (from the
accepted balancing capacity providers). In the market for positive
regulation, the bids are ranked from the lowest to the highest, while in
the market for negative regulation, a descending merit order is built: if
a BSP submits a positive bid, he/she is willing to pay the TSO for re-
ducing his/her output whereas the TSO must remunerate the BSP that
submitted a negative bid and was awarded.

Under the European electricity market unbundling provisions, bal-
ancing services must be procured in a market-based way [1]. Yet, large
differences in national balancing market designs exist among the EU
countries [20]. In some balancing markets, BSPs are still required to
submit symmetric bids, i.e. the same volumes of positive and negative
regulation must be supplied, while in others asymmetric bids are al-
lowed. The service provision can be remunerated according to a pay-as-
bid rule or to a marginal price rule. The former implies that each
generator receives the price they bid while in the latter case each
awarded bid receives the same market clearing price. Balancing pro-
ducts are distinguished by the period during which they should be
available for activation ranging from a day to an hour [20].

4. Elba ABM: Model overview

This section is divided into three parts. The first subsection in-
troduces Elba-ABM (Agent-Based Model of ELectricity BAlancing
market) and its main functionalities. The second subsection describes
the modelled market design and the third subsection describes the three
types of bidding behavior that are modeled.

4.1. Model introduction

Elba-ABM is a bottom-up agent-based model that simulates balan-
cing market mechanisms and bidding decisions of individual BSPs. The
main intention of the model is to represent key design features of
European balancing capacity and balancing energy markets. The model
makes it possible to adjust these design features in order to evaluate
their impact on the strategies of BSPs and, consequently, on the market
outcome. We focus on the effects of different combinations of market
design variables on market efficiency in the presence of competitive
and strategic bidding strategies.

Two versions of the model were developed that represent joint and
split BC-BE markets, as will be described in Section 4.2. The models
represent the process of bid submission, the market clearing processes
and the financial settlement process (using either marginal or pay-as-
bid pricing). The model can simulate bids per generator as well as
portfolio bidding with generators of different technologies. In the
model, the BSPs determine their bids individually based on their mar-
ginal costs3 and/or prior experience (modeled through rule-based or
reinforcement-learning (RL) agents). These strategies will be described
in detail in Section 4.3. We use representative balancing market data
that is based on data from the Austrian aFRR market [49].

The authors are aware of the strong connection between the bal-
ancing market and other short-term markets. Although the day-ahead
market is not modeled explicitly, it is taken into account through day-
ahead prices that are given to the BSP agents as an opportunity value.
Secondly, the capacity that BSPs can bid in the balancing market is
limited because it typically needs to consist of spinning reserve or fast-
start units. The model uses a scenario generation technique proposed in
[50] for developing realistic and correlated data for simulating the
market. This technique generates realistic system imbalance scenarios
that correlate with day-ahead market prices. For every yearly simula-
tion, the Elba-ABM framework generates a new scenario of imbalances
and prices.

4.2. Joint versus split BC-BE markets

The model consists of a two-stage simulation, with the BC market
setting the stage for the BE market. The bidding frequency for BC can be
varied from once per year to daily. In the model version with a joint BC-
BE market, the BE prices are set as part of the BC auction. In the split
BC-BE market model, the BE market has either the same or a higher
frequency. We implemented a frequency of once per hour. The time
step for market clearing the BE market is set to 15 min, i.e. equal to the
imbalance settlement period, so every hour, the BSPs offer their BE
prices for the four 15-minute blocks of the delivery hour. Upward
regulation and downward regulation are procured in two separate
auctions (positive and negative markets, respectively). Each of the
auctions can be cleared using a pay-as-bid (PaB) or marginal pricing
(MP) rule.

The market clearing mechanism for the balancing market is the
central element of the simulation model. The model procedures are
summarized below and illustrated in Figs. 3 and 6. In the BC market,
the TSO first announces the demand for balancing capacity; then, bid-
ders submit BC bid volumes and prices based on their strategies; finally,
the TSO awards bidders according to merit order results. In real time,
when the awarded bidders participate in the BE market, the TSO de-
termines imbalance volumes and clears the market per 15 min based on
separate merit orders for + aFRR and –aFRR and then calculates and
stores the results. Bidders obtain the market results ex-post and calcu-
late their profits.

4.2.1. Joint BC-BE market
In the joint BC-BE market, the agents’ bids do not change

throughout a model run: each time step with a positive imbalance,
agents submit the same positive bid, the same goes for steps with a
negative imbalance. For instance, if we assume a product resolution of
one day, the same BE price ladder (supply function) is used for all 96
time intervals of 15 min. The marginal clearing price (MCP) for each
15-minute interval varies only because of differences in the demand for
balancing energy. Thus, the BC market determines the frequency of
change of BE prices. The model flow of the joint market is illustrated in
Fig. 3.

In the joint BC-BE market, the bid information must contain the BE
prices for a given hour of the day. So if, for instance, hourly products for
BE are assumed, then a BSP may submit, once a day, up to 24 BE bids,
one for each hour, with optionally different BE prices. In the example
below, a bidder offers its balancing resources by 23:00 for each hour of
the next day (Fig. 4).

4.2.2. Split BC-BE market
In the split BC-BE market, a new merit order for BE is built every

15 min. The BE bids submitted on an hourly basis, i.e. the gate closure
time (GCT) is assumed to be one hour ahead of delivery. The MCP is
again determined by the actual imbalance volume, but in this case,
BSPs have more room to adjust their bid strategies to generate a higher
reward, as information is updated with a high frequency. The model
runs the BE market for the 96 intervals per day (15 min interval). The
simulation flow is illustrated in Fig. 5.

By way of example, assume that the gate for BE bids opens at 22:00
(GOT) and closes an hour later at 23:00 (GCT). Within this period, bids
are submitted for potential activation between 00:00 and 01:00 of the
next day. This means that the bidding period is from 22:00 to 23:00
whereas the delivery period is from 00:00 to 02:00. This is illustrated in
Fig. 6.

4.3. Agent definition

To simulate the bidding behavior of BSPs, we consider three types of
agents: naïve ones, rule-based and reinforcement learning (RL) agents.
Their strategies are briefly summarized in Table 1.

3 For the purpose of this analysis, we do not distinguish between variable
costs and marginal costs and use the two terms interchangeably.
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Fig. 3. General model structure diagram for a joint auction for balancing capacity and energy. The differences between the joint and split auction are marked in blue.

Fig. 4. Bidding procedure and market clearing in the joint BC-BE auction.
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We use strategies 1 and 3 to compare the effects of market design
changes under perfect competition and under strategic behavior
whereas strategy 2 was introduced to calibrate RL agents’ performance.

The analysis is based on the following hypotheses.

• f BSPs bid their true variable costs, as would be expected in a
competitive market according to neo-classical economic theory, it
would not matter if BC and BE markets are joint or not.
• In the market for downward regulation, if BSPs bid their true costs,
they will offer to pay approximately their variable costs to the TSO
in order to reduce generation output4.

• As the number of market actors increases, the profits are expected to
go down.

The performance of the agents is measured by their profits. Whereas
in the BE market for + aFRR, the profit is calculated as revenue in a
given delivery period minus the cost of producing additional energy,
the calculation in the market for downward regulation (-aFRR) is less

Fig. 5. General model structure diagram for a split balancing capacity and balancing energy auctions. The differences between the joint and split auction are marked
in blue.

4 The cost structures of the bidders in the +aFRR and -aFRR market are

(footnote continued)
different due to the fact that in the former agents increase output when the
system is short, incurring generation costs, and in the latter decrease output,
potentially saving costs. Thus, their bidding strategies in the two markets will
also be different [48].
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straightforward. We assume that the BE bidder participates in the DA
market and receives a uniform market price for the volume sold in the
DA market. In the -aFRR market, BSPs are theoretically willing to pay
the TSO a price up to their variable costs5 since these costs are avoided
by not having to generate the energy that they sold in the DA market
[51]. Therefore, in a true-cost bidding strategy, the bid price for re-
ducing output is equal to a generator’s variable cost. As a consequence,
a BSP still generates a net profit, because he/she saves his/her variable
costs for the volume he/she was downward regulated, even if a he/she
submits a positive bid in the BE market, i.e. pays to the TSO to reduce
his/her output. Even if the profit in the BE market is zero, the BSP still
generates an overall profit from the DA market. If a bidder places a bid
below his/her marginal costs and the bid is accepted, he/she increases
his/her profit in the BE market for -aFRR. Finally, if a BSP submits a
negative price, i.e. demands to be remunerated for reducing his/her
output, he/she receives an additional payment from the TSO for the
balancing service. Due to minimum-load requirements, however, the
volume that he/she can regulate downward is smaller than the total
volume that he/she sold in the DA market.

4.3.1. True-cost bidding agents
True-cost (i.e. variable cost) bidding is expected according to neo-

classical economic theory in case of perfect competition, when each
actor is a price-taker. This provides a benchmark for the analysis but
does not necessarily represent realistic behavior in a balancing market.

Observed prices in Austria regularly reach several thousands of euro per
MWh, which clearly points to strategies that significantly deviate from
marginal-cost bidding [49]. To simulate strategic behavior in the bal-
ancing market, two other approaches are implemented, as described
below.

4.3.2. Rule-based bidding agents
Rule-based agents bid according to a predefined rule: their variable

costs are marked up or down by a coefficient that is adjusted as the
model proceeds, separately for the positive and negative BE market. An
agent considers whether the bidding period corresponds to a peak (from
8 am to 4 pm) or to an off-peak period (the remaining hours and
weekends). By default, the value of the coefficient is equal to 1.0; for
true-cost bidding agents, this is how it stays throughout the model run.

In the split BC-BE market, the results of two previous hours are
stored. The coefficient is increased in the positive market and decreased
in the negative market by 5% in an off-peak period and by 10% in a
peak period if the generator was awarded at least 25% of those times,
i.e. at least once in an hour (see Appendix B for details). Conversely,
generators for which the condition is not fulfilled gradually revert to
true-cost bidding. In the joint BC-BE market, the rule-based agents
follow the same strategy but due to a lower bidding granularity, con-
sider the results of the previous day for the same hour.

The strategy of true-cost and rule-based agents includes an addi-
tional consideration of situations when the marginal costs of a BSP
participating in the –aFRR market happen to be higher than the DA
market price. If awarded in the BC market, such a generator needs to be
scheduled in the DA market to be available for downward regulation.
He/She then places a negative bid for balancing energy equal to his/her
marginal costs, which means that in case of activation, the TSO must
pay an amount of the bid.

Fig. 6. Bidding procedure and market clearing in the joint BC-BE auction.

Table 1
Brief overview of the differences between the three agent types regarding their bidding strategies, use of learning and memory.

1. Naïve agents 2. Rule-based agents 3. RL agents

Bid True costs, i.e. bid is equal
to generator marginal costs

A markup or markdown is added to marginal costs, depending on
whether (a) the agent’s bid was awarded at least once (a) in the
last 2 h (split BC-BE market); (b) in the same hour on the previous
day (joint BC-BE market). The size of markup is higher in peak
periods.

Optimal policy for each generator in portfolio is determined based
on the agent’s own state, the system state, and memory dataset;
actions are taken to maximize reward (see Annex B)

Learning no no yes
Memory no short-term long-term

5 According to game theory, optimal strategy for a BSP in the negative market
would be to bid strictly negative. Yet in reality, the bidders’ prices tend to be
negative only in the first merit-order ranks and become positive and volatile
very quickly [4].
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4.3.3. Reinforcement learning agents
The learning agents use a reinforcement learning (RL) algorithm

called fitted Q-iteration with which they adjust their bidding behavior
to maximize their profit. The Q-iteration algorithm that has already
been tested in many energy applications (e.g. [50,52]) was chosen for
its relative simplicity and good performance. For instance, [53] uses
fitted Q-iteration to control seasonal storage systems in the context of
electricity markets. It is important to note that more advanced ap-
proaches were tested, e.g. approaches based on deep learning [54],
such as double Q-learning [55], however, they were not as successful as
fitted Q-iteration.

As in all RL algorithms, the method considers that the agent and the
BE market can be modelled via a Markov decision process: the agent
modelled by a state-action pair where each state is controlled with a
discrete set of actions and transitions from one state to another are
based on a probability distribution (see Appendix B). In addition, when
transitioning states, the agent receives a reward representing how good
the action taken was. The reward is not deterministic but generated
from a probability distribution. During the training, the RL agent con-
tinuously updates and improves its policy that outputs, for each state,
the optimal action that maximizes the expected value of the cumulative
sum of rewards. After each round, the agent’s information about its
respective profits is updated. As the decision in the positive and nega-
tive balancing markets are independent from each other, separate po-
licies are determined.

State space
To define the state space of the positive (negative) RL agent, we

consider the following variables:

● The four most recently activated volumes for both the positive and
negative BE market. The definition of most recent naturally depends
on the specific gate closure times and on the market structure under
study.

● The four most recent prices in the positive (negative) market
● The day-ahead market price and the corresponding hour.

It is important to note that selecting the number of recent values for
the variables of interest is a design choice. We opted for four as a trade-
off between computational complexity and method accuracy.

Action space
For the action space, we consider that, for each generator in its

portfolio, each RL agent (BSP) bids its maximum available capacity at a
variable price. Therefore, the action space is defined as a selection
between a discrete set of prices for each of the agent generators.

● For the RL agent in the positive market, the action space for each
generator is modeled as fifty prices log-uniformly distributed be-
tween 1 and 10 times the variable cost of the generator, i.e. the RL
agent has 50 actions per generator. Then, for the total action space,
the RL agent considers the set of all possible combinations (with
replacement) of the fifty individual actions (see Appendix B).

● For the RL agent in the negative market, the action is space is si-
milar. However, instead of the prices being discretized between 1
and 10 times the variable cost of each generator, they are discretize
between 1 and −10 times the variable cost. The size of the action
space scales similarly to the positive market.

The choices to select fifty values per generator and prices up to 10
times the variable cost are trade-offs between accuracy and computa-
tional cost.

Reward
The reward is the accumulated economic profit in the bidding

period, e.g. for a balancing market with a four-hour product and market
clearing of 15 min, the reward of a given state-action pair is the ac-
cumulated profit during the 16 market clearing steps.

Agent evaluation

After the initial training year (the exploration phase), the market
performance is evaluated using a second simulated year (the exploita-
tion phase). The agents’ profit-maximizing bidding strategy is observed
(see Appendix B for details).

4.4. Validation and sensitivity analysis

The market and the RL agent algorithms have been validated with
multiple simplified scenarios to demonstrate that the agent’s behavior is
in line with what is expected from game theory (Bertrand competition).
Bertrand competition implies competition on price and not on volume:
as in this analysis, only those agents participate in the balancing energy
market whose capacity was reserved in the previous market stage. Their
capacity is therefore committed and cannot be changed in the balancing
energy market. Validation tests replicated the main assumptions of
Bertrand competition [56], two actors offering an identical product, in
our case electrical energy, at the same location, balancing energy
market, and a constant demand, in our case system imbalances.

Other factors in Bertrand competition that influence bidder strate-
gies and whether they can reach a Nash equilibrium are whether the
two actors have the same marginal costs and whether the demand can
be covered by either actor entirely. Results of validation tests with a
constant imbalance, i.e. demand for BE, show that when both agents
have the same marginal costs and the demand can be covered by either
of them, both agents bid their true costs, as expected from theory [56].
If their marginal costs are different, the agent with lower costs is in-
centivized to bid just below the (estimated) costs of the more expensive
agent. The simulation results correspond in this case as well: the RL
agent with marginal costs of 40€/MWh converges on a bid of 48,3€/
MWh, slightly lower than the 50€/MWh bid of his/her true-cost bidding
competitor, regardless of the pricing rule that is applied.

The situation is different if both agents are needed to cover the
demand, ergo both of them have market power. In this case, the si-
mulation results again correspond with theory and both agents bid
high. Aside from total demand, other factors, such dynamic bidding, i.e.
bidding in multiple consecutive runs, may cause agents to bid above
their marginal costs due to learning effects from multiple rounds [57].
For instance, both reinforcement learning agents with the same mar-
ginal costs of 50€/MWh exploit multiple bidding rounds to develop
very high bids and yet be awarded. As a result, they end up placing an
average bid of 240 €/MWh despite limited demand. Our results are
conservative with respect to price spikes because we consider a uniform
imbalance within a 15-minute period. This excludes high but brief
imbalances that may occur within the 15-minute periods.

In order to determine the best-performing RL strategy with respect
to profit maximization, several configurations of the RL algorithm were
tested, with regard to the number of choices when setting the bid price
and the training time. Rule-based agents were used for the calibration
of the RL agent. The results of sensitivity analyses showed that if RL
agents could set the same maximum price in the positive/negative
market of 500€/MWh/−500€/MWh, this produced poor results for the
agents with cheap generation units due to the fact that the number of all
available decisions is too broad for an agent to sufficiently test the
performance of options closer to marginal costs. As a result, the RL
agent is rarely awarded and has too little data about successful bids to
take optimal decisions after training. Instead, the RL agent was set to be
able to bid up to 10 times his/her marginal costs. Concerning training
time, the RL agent is set up in such a way that it trains in the first year,
whereas the following year it behaves optimally. Runs with two to five
years were conducted and, since the performance of the RL agent didn’t
improve considerably with a greater number of training years, we used
two-year simulations with one training year and one year when the RL
agent behaves optimally.

K. Poplavskaya, et al. Applied Energy 270 (2020) 115130

9



5. Experiment design

In the model, reference data from the Austrian balancing market for
aFRR was used [49]. Yet, the main goal of the study is not to imitate or
make conclusions for this specific market. Rather, Elba-ABM is meant as
a tool for testing different market results. The model is run for the split
and joint BC-BE markets and market prices based on marginal bids (MP)
or pay-as-bid (PaB). In each of these market designs, the following
scenarios with regard to the agents were compared:

As a baseline, the 3TC scenario generates the prices and balancing
costs that would be expected under the assumption of perfect compe-
tition. To estimate the impact of strategic bidding in an oligopoly on the
market outcome, 3RL scenario is used. These results are compared with
the scenarios with a higher number of market actors to observe whether
the presence of a single strategic bidder can significantly affect market
efficiency (1RL_5TC scenario) and whether a higher number of compe-
titors in a market with learning actors alone (6RL scenario) can improve
market efficiency.

In order to compare market designs, similar generation portfolios
were used in all scenarios in order to exclude the influence of portfolio
differences on simulation results. Each agent has a portfolio of four
generators with variable costs between 10 and 15, 30 and 35, 50 and
55, 70 and 75€/MWh6. This ensures that the results are not affected by
large cost differences among agents while at the same time a stepwise
merit order function can be built. In reality, one of the main pre-
qualification requirements is a high speed of activation, which can be
fulfilled only by few technologies such as hydropower, hard-coal and
lignite, biomass, gas-fired power plants and CCGTs [23,47]. The vari-
able costs of generation are approximated and assumed not to change
for the period of simulation, so the different bid prices can occur only if
an agent deviates from the true-cost bidding strategy. It is assumed that
agents cannot split bid volumes, but can bid differently for each gen-
erator in their portfolio. The exact configuration of agent portfolios is
detailed in Appendix C.

For our study, a series of assumptions related to the balancing
market are made:

● The frequency at which the BE market is cleared is once per 15 min.
● Within a quarter of an hour, normally both positive and negative

imbalances occur. For simplicity, only the net imbalance over
15 min (i.e. either positive or negative) is used.

● International cooperation (e.g. imbalance netting) is not considered,
i.e. all imbalances are assumed to be handled within the control
area.

● The BC market is assumed not to influence agents’ bidding strategies
because the profit in the BC market is considered negligible7. This
assumption is based on the fact that that BE bid is independent of
the BC bid [4] as well as on empirical evidence that balancing ca-
pacity prices tend to be low. BSPs bid low to secure their partici-
pation in the balancing energy market; the high balancing energy
prices that are observed in practice make up for that [4]. The focus

is therefore on the BE market.
● As BSPs are able to bid only a share of their total capacity for up-

ward or downward regulation, a BSP is assumed to bid 10% of its
total capacity in the balancing market [23] whereas the remainder is
assumed to be bid in the DA market. The volume in the BE market is
equal to the entire volume that is accepted in the BC market. BSPs
are obliged to bid the entire committed volume throughout the
delivery period.

● Agents are assumed to submit the same bid volume for both positive

and negative generation8.
● In order to specifically address the price levels and balancing costs

under different market designs in the presence of learning agents,
we use a single decision variable for the agents, their balancing
energy price9.

Many European markets are still characterized by a fairly low bid-
ding frequency for aFRR [20]. However, the EBGL requires balancing
energy to be procured as close as possible to real time. Consequently,
balancing capacity auctions are expected to take place on a daily basis
[8]. To account for these expected adjustments and to ensure that the
design of the joint BC-BE market is comparable to the split BC-BE
market, we apply a daily bidding frequency for balancing capacity.

6. Simulation results and discussion: The effect of balancing
market design on the bidding behavior

The results of the 16 simulations are presented in this section; the
agents and their portfolios are shown in Appendix B. Since the rule-
based agents were mainly used to calibrate the RL agent, the results
with rule-based agents are not included in this section. A scenario with
all true-cost bidding agents is used as a baseline. The resulting market
efficiency is of each market design in different scenarios is assessed
based on the total cost of balancing and the weighted average prices.

In 3TC scenario, the weighted average of the price-setting bids
for + aFRR is 39 €/MWh and 48€/MWh for –FRR in both the split and
joint markets and under both pricing rules10. The total cost of balancing
for upward and downward regulation are lower under the pay-as-bid
rule because there are no infra-marginal rents (see Fig. 7).

6.1. Oligopolistic scenario

In 3RL scenario with strategic bidders (with all RL agents), the

baseline 3TC scenario 3RL scenario 1RL_5TC scenario 6RL scenario
Description Baseline scenario with 3 true-cost

bidding agents
An oligopolistic scenario with 3 rein-
forcement learning (RL) agents

Higher level of compete-tion with six agents*: 1
RL agent and 5 true-cost bidding agents

A higher level of competition with six
agents: 6 RL agents

BC-BE market Split Joint Split Joint Split Joint Split Joint
Pricing rule PaB MP PaB MP PaB MP PaB MP PaB MP PaB MP PaB MP PaB MP

*This is a fair assumption for the number of participants as, according to the data of the Austrian TSO, the number of participants in a bidding round for aFRR varies
between 5 and 10 BSPs [49].

6 Assumptions about the costs of the generation technologies are based on the
information provided in [58], [59].

7 Interdependencies between BC and BE bids are disregarded in the current
discussion and can be incorporates as a future step.

8 Bids for +aFRR and –aFRR are submitted separately, so asymmetric bidding
can be implemented easily in the model. For now, symmetric bidding is con-
sidered for simplification purposes. In practice, requirements for symmetric
bidding are now considered unnecessarily restrictive with regard to the parti-
cipation of new technologies, especially renewables and is expected to be
substituted with asymmetric bidding, pursuant to the EBGL.

9 It is important to note that the single decision variable and the exogenous
day-ahead market prices, is not a limitation of the Elba-ABM framework.
Instead, it is a design choice of the current study. The framework could in
theory be used for more complex modeling, including multiple decision vari-
ables and interactions with other markets.

10 A positive price for –FRR indicates the willingness of a BSP to pay to the
TSO for reducing their output.
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agents deviate considerably from the competitive strategy, notwith-
standing the fact that none of them can cover the demand on their own.
In the joint market with PaB pricing, the weighted average price
of + aFRR is more than 7,5 times higher, at 294€/MWh, than the
baseline, leading to a 3,5-increase in balancing costs. The weighted
average price in the joint BC-BE market with marginal pricing also
exceeds the weighted average price in the baseline, but less than the
price in the scenario with the PaB rule, at 269€/MWh. For –aFRR, in
turn, the weighted average marginal price falls to −73€/MW if PaB
rule is applied and to −45€/MWh in case of MP, i.e. the agents make
net profits from not producing and the TSO faces costs for downward
regulation (Figs. 8 and 9).

In the joint market, BSPs that bid opportunistically cannot affect the
market outcome within the delivery period. However, this also means
that if high BE bids are accepted, they apply for the entire product
duration. The maximum marginal price for + aFRR regularly exceeded
700€/MWh, whereas the maximum –FRR price reached −700€/MWh
10 times in a year, largely corresponding to the times of high demand
for –aFRR. In the split market, 3RL scenario also produced average
prices that were higher than the competitive benchmark, but less so
than in the joint market. If the PaB rule is applied, the weighted average
prices are 269€/MWh for + aFRR and −64€/MWh for –aFRR. If
marginal pricing is applied, the prices decrease further: 178€/MWh
for + aFRR and at –23€/MWh for –aFRR. This reduces overall balan-
cing costs compared to the joint BC-BE market, but it still exceeds the
cost of balancing in the baseline scenario by a factor of 2 to 3 for up-
ward regulation. The total costs of balancing per scenario and market
design option are shown in Fig. 10.

6.2. Scenarios with a higher degree of competitiveness

The results of the 6RL scenario show that a more competitive
market with six actors does not inoculate the market from fairly high
prices if all six agents follow a RL strategy, i.e. learn from their ex-
perience and adjust their strategies in repeated auctions. The de-
viation from the baseline is particularly large if the PaB rule is ap-
plied: the weighted average price for + aFRR reaches 268€/MWh in
the joint BC-BE market and 225€/MWh in the split BE market while
–aFRR prices are −40€/MWh and −27€/MWh, respectively.
Notably, the impact of a greater number of learning agents is greater
for –aFRR, as is illustrated in Fig. 9. The observed cost of balancing,
as compared to the oligopolistic 3RL scenario, is more modest, yet it
is still ca. 2–4 times higher than the baseline for + aFRR whereas
savings in the –aFRR market go down by 76−92%, depending on the
pricing rule applied (Fig. 10).

A scenario with all true-cost bidding agents and one RL agent,
1RL_5TC scenario, was used to estimate the impact of a single learning
agent on the market outcome. In this case, the RL agent is not able to
deviate substantially from its marginal costs to increase its profit and
does not affect the balancing costs significantly (Fig. 10). Yet, the
weighted average price for + aFRR and –aFRR deviates from the
competitive outcome, 92-108€/MWh for + aFRR and 23-32€/MWh for
–aFRR (Figs. 8 and 9), in particular in the times of scarcity when all
bidders are necessary to restore system balance. Balancing cost devia-
tions from the competitive benchmark are the lowest in this scenario, as
expected. The observed increase in total balancing costs is substantially
lower, compared to the other scenarios, between 17% and 73%, where
the split BC-BE market with marginal pricing produces the most cost-
efficient result, as shown in Fig. 10.

The simulation results demonstrate that the balancing energy prices
produced by Elba-ABM correspond to the prices observed in European
balancing markets with the design modelled in the joint BC-BE market

Fig. 7. Yearly balancing costs for positive balancing energy and savings from
negative balancing energy under PaB and MP rules in the baseline scenarios
with three true-cost bidding agents.

Fig. 8. Weighted average prices for + aFRR in 5 scenarios in joint and split BC-
BE markets under PaB and MP rules.

Fig. 9. Weighted average prices for −aFRR in 5 scenarios in joint and split BC-
BE markets under PaB and MP rules.

Fig. 10. Net balancing costs for upward and downward regulation for each
scenario and market design option (negative values indicate net savings).
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(e.g. in Germany and in Austria).11 Previous research has demonstrated
that the magnitude test is a useful approach to validate the results of
agent-based models (cf. [61]). The real observed prices for balancing
energy and the prices produced by the model both often deviate from
marginal costs of the most expensive generation technologies, as is
shown in Fig. 8. These simulation results confirm the argument that in
concentrated balancing markets, players are able to coordinate their
bids [57] and “orientate their bids towards previous market results” [62].
They also show how a single strategic bidder in a fairly competitive
market can still at times affect the market result (1RL_5TC scenario).
This implies that:

● Although a higher number of actors bidding competitively can dis-
suade their counterparts from bidding strategically by exposing
them to a higher risk of not being awarded, the market is not im-
mune to it, in particular in scarcity conditions However, a standa-
lone BE market with marginal prices improves the incentive to place
bids closer to marginal costs.

● Given these results as well as the fact that the need for larger bal-
ancing volumes is likely to grow to offset rapid integration of in-
termittent renewable generation, increasing the availability of bal-
ancing resources is essential. This can be achieved by easing
prequalification conditions and facilitating cross-border procure-
ment of balancing resources. The latter will in fact be enabled
through EU platforms for cross-border exchange of balancing energy
that are planned to be implemented by mid-2023 [63].

As the costs of balancing are at least partially recovered through net-
work tariffs paid by consumers, the presence of strategic bidding will af-
fect social welfare to a greater or lesser extent depending on the cost re-
covery scheme applicable in a given state. For instance, while the costs of
reserving aFRR capacity are distributed among all grid users in most EU
countries, the costs from activation of aFRR balancing energy are mostly
recovered from the BRPs whose actions led to system imbalances [20].

Overall, the simulations of the split BE market consistently de-
monstrate more efficient market results; in the presence of true-cost
bidding agents they approximate the competitive results in the baseline.
At the same time, the differences in weighted average prices under the
two pricing rules were observed in all scenarios and points to a tangible
positive effect of marginal pricing (see Figs. 8 and 9).

In case of portfolio bidding, we find that RL agents apply a different
strategy to generators with low to medium variable costs than to more
expensive generators in their portfolio. Cheaper generators tend to be
offered close to the variable costs while generators with higher variable
costs are bid in at high prices. Consequently, they are rarely activated
(2–10% of times in a year), but still allow RL agents obtain high profits
during times of scarcity. Occasionally, they create price spikes of up to
nine times the marginal cost of the most expensive generator.

A standalone BE market is likely to produce lower bid prices in the
BE market for upward regulation and higher bid prices in the BE market
for downward regulation. However, our experiments with learning
agents show that also in the most efficient market design there is room
for strategic behavior when the demand for balancing services is high.
The effect of strategic bidding is significantly dampened if not all agents
behave strategically, in particular if the uniform pricing rule is applied.
The results consistently demonstrate a positive effect of the MP rule on
the weighted average marginal prices in both positive and negative BE
markets, especially if a standalone BE market is introduced pointing to
the positive expected effect of the upcoming regulatory change.
However, while the effects of these market design changes are sig-
nificant, further measures to improve market access and competition
are needed to make the balancing market robust against gaming.

7. Conclusions

We presented an agent-based model, Elba-ABM, to provide an in-
sight into the effects of proposed changes to European balancing market
design, in particular the introduction of a standalone balancing energy
market and marginal-price settlement of energy bids, on strategic bid-
ding in the balancing market. The agents are modelled with realistic
generation portfolios and learning agents are equipped with re-
inforcement learning (using a neural network) to identify opportunities
for strategic behavior. Using Elba-ABM, we assessed the results with
respect to the profits of agents, the weighted average prices of positive
and negative balancing energy and the total cost of balancing.

Testing the robustness of the new market design with a standalone
balancing energy market, we came to the following conclusions:

(1) A split (standalone) balancing energy market reduces balancing
costs and weighted average prices, compared to a joint BC-BE
market. It is particularly helpful in case of an oligopoly, even
though it does not solve the issue of market power in case of high
market concentration entirely. Concerns that were raised about the
negative effects of more frequent opportunities for learning leading
to gaming [64] in case of highly granular markets were not sup-
ported by the simulation results.

(2) Marginal pricing performs better than pay-as-bid, regardless of
whether the BE market is standalone or not.

(3) The fact that in more competitive scenarios the results of the joint
and split balancing capacity and energy markets do not sub-
stantially differ from each other confirms the expectation that in a
more competitive market, its exact design is less relevant and the
results of different market designs are more likely to converge. But
as long as balancing markets remain concentrated, a standalone
balancing energy market is preferred since (a) in a closed setting of
an oligopoly, a standalone BE market reduces agents’ ability to af-
fect market outcome; (b) it can be combined with voluntary bids,
which can help dampen balancing energy prices.

(4) The new market design choices are likely to improve market per-
formance but more new entrants are needed to obtain competitive
prices. Therefore, particular attention should be given to market
access conditions, such as reduction of minimum bid size, ag-
gregated and asymmetric bidding (as pointed out in [2]), along
with market design adaptations, in view of many new types of
flexibility providers that are emerging.

Our methodological contribution consists of a novel combination of
agent-based modelling with reinforcement learning techniques. Elba-
ABM represents both a detailed model of the market and of the market
actors. Their different characteristics, constraints and objectives, the
absence of perfect foresight and other conditions of perfect competition
are reflected in the model. Reinforcement learning techniques make it
possible to emulate strategic behavior in a market in which actors ex-
plore opportunities for increasing their profits through different bidding
strategies. We will build on this approach in future work to test other
market design variables, integrate intertemporal constraints and to
apply agent-based modelling to more complex cases with interrelated
markets. A second tier of research should address approaches to the
recovery of balancing costs and their effect on social welfare together
with an investigation of links between balancing costs, distribution of
imbalance costs and network tariffs.
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Appendix

Appendix A. List of abbreviations

ABM – agent based modeling
aFRR – automatic frequency restoration reserve
BC – balancing capacity
BE – balancing energy
BRP – balance responsible party
BSP – balancing service provider
DER – distributed energy resources
DSO – distribution system operator
EBGL – EU Regulation establishing a guideline on electricity balancing
FCR – frequency containment reserve
GOT – gate opening time
GCT – gate closure time
MCP – marginal clearing price
MP – marginal pricing
PaB – pay-as-bid
mFRR – manual frequency restoration reserve
TSO – transmission system operator
RES – renewable energy sources

Appendix B. Algorithms used to represent reinforcement learning strategies and rule-based

Primer on reinforcement learning (RL)

In general terms, the RL algorithm is formulated in line with the main principles of Markov decision processes, as per [65]. In particular, at each
time step k the agent is defined by a state sk, takes an action a ,k and transitions from skto +sk 1 following some probabilistic dynamics p s a( , )k k . In the
transition, it receives a reward rk following a distribution q s a( , )k k that represents the profit of taking action ak at state sk. The goal of the agent is to
first learn the optimal policy =a s( )k during an exploration phase, i.e. training, and then use that policy during an exploitation phase, i.e. regular
operation.

During the exploration phase, the policy is improved based on the agent’s memory M that contains tuples of state, transitioned state, action
taken, and reward collected during each transition:

= + =M s a s r{ , , , }k k k k k
T

1 1
e

During this exploration phase, the actions are chosen both at random and by using the current best available policy; by doing so, the agent
explores new combinations s a( , )k k of state and action pairs and ensures that the ones that seem optimal so far are indeed the best. After the training
is completed, the agent’s optimal policy, s( )k attempts to maximize the expected cumulative sum of rewards, R, over the entire episode, Te:

=
=

R E r{ }
k

T T k
q s a k1 ( , )

e e
k k

where is the discount factor and E is expected value.

Reinforcement learning for the balancing market

The RL algorithm used in this study is based on [65,66] and adapted to the balancing market model, Elba-ABM. Agents are embedded in the
market environment, as is shown in the flow diagrams in Figs. 3 and 5.

The actions represent bid prices that can be submitted by the RL agent, for each delivery period, k. Agent’s step k, corresponds to the bidding
period and is equal to one hour. Note that the system state, i.e. information the agent receives from the balancing market, is included in the agent
state. As upward and downward regulation are procured in separate auctions, the agent’s policies in these two markets are determined separately, i.e.
we effectively consider a RL agent for the positive balancing market and another one for the negative balancing market.

For the sake of keeping a reasonable level of discretization and computation time, the maximum bid price is set to 10 times a generator’s marginal
costs (or 10 times less than a generator’s costs in the negative market) whereas the action space is set to contain 50 actions per generator in the
agent’s portfolio: =A a a g G{ , }g

1 50 . For an agent with n generators, the action space has a size of:
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n

(50, ) (50 1)!
!(50 1)!

R

For instance, for a portfolio consisting of 3 generators, 19,600 possible combinations are considered.
At every step k and for each market clearing i, the agent receives some reward rk i, where bids are submitted on an hourly basis and the market is

cleared every 15 min, =i 1, 2, 3, 4 (see also Fig. 4). In particular, if the imbalance is negative, the agent receives a reward rk i, equal to the market
price, +

k i,
aFRR times the volume of awarded balancing energy +qk i,

aFRR. If the imbalance is positive, the agent receives a reward =r q .k i k i k i, ,
aFRR

,
aFRR

Then, to define the reward at time step k, the agent of the positive market considers the average income during the periods where the positive
market was cleared:

=+
+

+ +r
n

q1
k

i
k i k i

aFRR
aFRR ,

aFRR
,
aFRR

pN

where = = <i i I{ | 1, ...,4, 0}p k i,N and Ik i, is the system imbalance for the market clearing i of time step k. This means that the reward in the
positive market agent at times k is the average profit during the times when the system was short, so upward regulation was needed. The expression
for the reward of the negative agents is the same. It is important to note that data in the memoryM is only added if the specific (positive or negative)
market is cleared. That is, if during transition from k to +k 1 only the -aFRR market is cleared, the equation above would indicate that the profit of
the positive market was zero and vice verse for the + aFRR market.

In order to train the agents, we consider a balancing market simulation period of a year, during which the memory is updated. The RL agents are
trained in the presence of other, non-RL agents, in the market, if they are part of the scenario. The agents are trained with the fitted Q-iteration
[50,52]. For the sake of simplicity and because the algorithm used is very standard, its mathematic details are not provided in this paper. However,
the interested reader can consult [52] for further information.

During the exploitation phase in the second year, the agent uses the collected information to bid optimally. Using the optimal policy, the RL agent
takes an optimal action ak for each state, defining the agent’s bidding strategy:

= + + + +a q q q q( , , , , , , , , )k k k k k k k k i k k1,4
aFRR

1,1
aFRR

1,4
aFRR

1,1
aFRR DA

1,4
aFRR

, 1
aFRR

1,4
aFRR

1,1
aFRR

where k
DA is the DA market price in the current hour.

Rule-based agent

The rule-based agent has a pre-defined strategy and is primarily used in the model for the calibration of the reinforcement learning agent.
The agent has a short-term memory of the previous success separately for each generator in his portfolio, expressed through binary variables,

+d {0, 1}k i,
aFRR , d {0, 1}k i,

aFRR , denoting whether the agent’s generator was awarded in the positive or negative market per market clearing iin hour
k. The strategy further differentiates between peak delivery hours, kpeak, and off-peak hours, koffpeak: =K k{8, 9, 16} .peak offpeak

Then, based on the information saved in memory (see below), each generator uses and updates four coefficients, +
k 1

aFRR,peak, +
k 1

aFRR,offpeak,

k 1
aFRR,peak, ,k 1

aFRR,offpeak to build new bids. The bid for each market and each period is built by multiplying the coefficient by the marginal cost of the
generators, cg. The former is equal to 1.0 by default. Each of the four coefficients can vary between [0.5, 1.5] and they are updated following the
following rule: if during the last eight positive market periods, i, the generator was awarded at least once per hour on average, i.e. the success ratio,

+ 0.25aFRR,peak , the coefficients increase the bid markup by 5% or 10% in the off-peak or peak bidding period, respectively . To sum up, the bid
price in the positive market is determined as follows:

=

+
++

+

+

+ +
+

b

c if k K
c if k K

c if

0, 1,
0, 05,

, 0.25
g k

g k

g k

g

,
aFRR

1
aFRR,peak peak

1
aFRR,offpeak offpeak

1
2

aFRR,peakk 1
aFRR,peak

Using the same 5% or 10% markups, the agent gradually reverts to true-cost bidding for those generator bids that were not awarded. Following a
similar strategy in the –aFRR market, the coefficient is reduced by 5% or 10% if the condition is fulfilled.

For the rule-based agent in the split BC-BE market, the results of the previous two hours are memorized. For instance, for the peak periods in the
positive market, the memory for each generator in the agent’s portfolio contains:

= + + +M d d{ , , }k i i1
aFRR,peak

8
aFRR,peak

1
aFRR,peak

where +
h 1

aFRR,peakis the last coefficient used in the positive market in the peak period.
In the joint BC-BE market, the strategy is slightly adapted to account for the lower bidding frequency. The algorithm remains the same but, due to

daily bidding, the results of the same hour but of the previous day are considered for the rule-based agent. The results of previous Friday are
considered if the bidding takes place on a Monday. All hours of Saturday and Sunday are considered off-peak.

Appendix C. Agents and portfolios used in the simulation scenarios

Total demand for aFRR capacity:± 200 MW.
It is assumed that each generator can provide 10% of its capacity for balancing. The available balancing capacity of all generators is slightly

exceeds the set total BC demand to ensure a specific number of participants in the subsequent BE market. Generator variable costs are approximated;
the cost differences are kept low and each agent receives a generator in each cost category in order to eliminate portfolio effects on the market
outcome.
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Scenario with an oligopoly Scenario with a higher competition level

Agent ID GeneratorID Variable costs, €/MWh Installed capacity MW Agent ID Generator ID Variable costs, €/MWh Installed capacity, MW

1 a 10 170 1 a 10 85
e 32 170 h 31 85
i 55 170 o 52 85
j 70 170 v 73 85

2 b 12 170 2 b 11 85
f 35 170 i 32 85
g 50 170 p 53 85
k 72 170 w 74 85

3 c 15 170 3 c 12 85
d 30 170 j 33 85
h 52 170 q 54 85
l 75 170 x 75 85

4 d 13 85
k 34 85
r 55 85
s 70 85

5 e 14 85
l 35 85
m 50 85
t 71 85

6 f 15 85
g 30 85
n 51 85
u 72 85
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