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INTRODUCTION

The first chapter of this thesis is a contribution to the systematic
investigation of Banach spaces the elements of which are functions.
These spaces include as special cases such well-known examples
as the Ly and /p spaces (1 << p << oo) and the Orlicz spaces. Although
in the older literature on Banach spaces, one may find some theorems
on this subject (cf. e.g. S. Banach [1], p. 86 *)), the first serious
attempts in this direction date from 1953, and were made by H.
W. Ellis — 1. Halperin [1] and G. G. Lorentz [3; 4]. The work of
these mathematicians has had a great influence on the form and
contents of Chapter 1. We consider a normed linear space X of
complex functions f(x) having an abstract set 4 as their domain,
and we assume that these functions are measurable with respect
to a totally o-finite measure g which is defined on a o-ring of
subsets of A. Furthermore, we assume that the norm |/f|[x in X
satisfies, besides the wusual norm conditions, some additional
conditions which are immediate generalizations of well-known
properties of L, norms, and which have their origin in the theory
of Lebesgue integration. These additional conditions are:

(1) The norm ||f||x is defined for all g-measurable complex f(x)
on /4 (but it may be + oo for some f), and feX if and only if ||f||x<<oco.

(2) If fu(x)=>0 (n=12,...) and fp1f almost everywhere on
A, then |[fullx}Ifllx-

Finally, some hypotheses of minor importance are added in
order to guarantee that X contains a sufficient number of functions.
As a consequence of (2) an analogue of Fatou's Lemma holds,
ie. if lim, , fu(x) = f(x) a.e. on 4, then ||f||lx < lim inf |/fx]lx.

In Ch. 1, section 1, we first prove the well-known fact that (1)
and (2) together imply that the normed linear space X is complete,
i.e. X is a Banach function space. Furthermore, we introduce the

*) Numbers in square brackets refer to the references cited at the end
of the thesis.
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“associate space” X’ of X consisting of all w-measurable g(x)
such that [jg]lx. = sup . <1 [4lfg|dp is finite. It turns out that X’
(with the norm |lg/lx) 1s also a Banach function space having the
same properties as X. It is then a natural question to ask whether
the associate space X" of X' is again the original space X, and we
prove that the answer is affirmative. The analogue of Fatou’s
Lemma plays an essential part in the proof of this result. In section
2 the subspace X* of all f(x) having an absolutely continuous norm
(roughly: if w(E)—0 and Xg is the characteristic function of E,
then ||/Xz||—0) is introduced, and one of the theorems proved is
that X is reflexive it and only if X = X* and X' = (X")* Section
3 is devoted to a discussion of several weak topologies which may
be defined on X or X', and here interesting analogies and differences
with the work of G. Kdothe-O. Toeplitz [1] and J. Dieudonné [2]
become visible. FFurthermore we prove in this section that X is
separable (in the norm topology) if and only if X=X* and the
measure p 1s separable.

In Chapter 2 we develop the theory of Orlicz spaces. These
spaces are interesting not only since they give us a non-trivial
example of the general theory in Ch. 1, but also since they are
modulared spaces in the sense of H. Nakano, so that the cha-
racteristic features of two abstract theories are blended. In the
discussion a certain non-negative, non-decreasing convex function
¥(x) plays an important part, and peculiar difficulties arise
whenever this function jumps to infinity (i.e. whenever there exists
a finite x, such that ¥(x)<oco for x<x, and ¥ (x) =oco for x>x,),
so that it is a pleasant surprise that many results remain the same
whether ¥(x) jumps or not. It seems that the results obtained in
this thesis may be of some value for future investigations on
Fourier series and integral equations.




CHAPTER I
GENERAL BANACH FUNCTION SPACES

1. Banach Function Spaces and their Associate Spaces.

In the following pages we shall assume, unless otherwise stated,
that the point set 4, the o-ring /1 of subsets E of 4 (the “measurable”
subsets of A) and the countably additive measure ux (defined for
all £ e, and satisfying 0 < u(E) < oo) form a measure space
(in P.R. Halmos’ terminology [1]). Moreover, we shall make the
assumption that the measure g is complete and totally o-finite,
ie. u(E) = 0 implies FF € A for any set ' c E, and 4 is the union
of a countable collection of sets of finite positive measure. We now
choose for once and all a fixed increasing sequence A, e (n = 1,
2,...) of sets of finite positive measure such that 4, converges
to A. For reasons of convenience, and analogous to the case of
Lebesgue measure in Euclidean space, we shall call any w-mea-
surable set E, satisfying E c Ay for some £, a “bounded” set.
Furthermore, / will always mean /,.

Let P be the collection of all y-measurable non-negative functions
f(x) defined on 4, and let ¢(f) be a metric function (0<<g(f) <o)
on P with the properties:

(P1) o(f)-=0 if and only if f(x) =0 a.e. on 4; o(f,-+/) <
o(fy) +o(fy), and o(af) =ap(f) for any constant a> 0.

(P2) If fu(x)eP (n=1,2,...), and fn(x)1/(x) a.e. on 4, then
o(fa) te()-

(P3) If E is any bounded set, and Xg(x) is its characteristic
function, then p(%g)<<co.

(P 4) For every bounded set E there exists a finite constant
Ap>0 (depending only on the set E) such that [pfdu << Ag o(f)
for every f(x) e P.

Since for any w-measurable complex function f(x) on 4 the
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function |f(x)| is also w-measurable on 4, the metric function
/Il = o(|/]) is a legitimate extension for complex f(x) of the above
o(f), and this leads to the following definition:

Definition 1. By X = X (A,u) we denote the set of all p-measurable
complex functions f(x) on A for which ||f|x = |Ifll = o(|f]) is finite.

As an immediate consequence of properties (P 1)-(P4) of o
and Def. 1, we obtain:

Lemma 1. (a) |fllx = O s equivalent to f(x) = 0 a.e. on A.

(b) I/ If1(x )]g lfa(%)| a.e. on A, then f,e X implies f, € X, and
Illx < [Ifallx-

(c) If fe X, then f(x) s finile a.e. on A.

) If fac X (n = 1,2,...), fa(x) = 0, and fu(x)1f(x) a.e. on 4,
then either e X and ||fu||xM/llx o7 ||fullx?1 oo

(€) If fue X (n=1,2,...) and lim fo(x) = [(x) a.e. on A, then
Wlx < lim anf ||fullx (“Fatow's Lemma’).

() 1} E is any bounded set, and %g(x) s its characteristic function,
then ||Xg||x<oo.

(&) For every bounded set E there exist a finite constant Ap= 0
(depending only on the set E) such that [g|fldu < Agl|lfllx for every
feX.

Proof. Only (c) and (e) need a proof. In order to prove (c), observe
that, if feX, then [|f||x<co. Let E be the set on which |f(x)] is in-
finite, and supposc that u(E) >0, hence ||Xg||x>0. Then it follows
from (a) and (b) that ||f|x = n |[Xgllx forn = 1,2, ..., hence ||f||x == oo,
wich contradicts feX. For the proof of (e), write /i, (x¥) = inf
(fn(®)], |fasa(x)], ...). Then O < hy(x) 4 |f(x)] a.e. on 4, hence
il = Tim [JEallx < lim inf [fallx by (P,) and (b).

The set X as introduced in Def. 1 is obviously a normed linear
space with norm |/f||x, if we identify functions which are equal
a.e. on A. The completeness of X (i.e. ||fm — fullx — 0 as m, n — oo
implies the existence of an element feX such that [[f — fullx =0
as n —oo) will be shown now by a variation of a well-known
argument which is originally due to J. von Neumann ([1], p. 111)
and H. Weyl, and which was used by several other authors for
similar purposes (see e.g. H. W. Ellis — I. Halperin [1], Th. 3.1,
P 279,

Theorem 1. The space X is a Banach space.

4



Proof. We have only to show that X is complete, ie. given a
sequence fpeX such that ||/ —ful| =0 as m, n - co, we have to
prove that there exists a unique feX such that [[fy — f|| = 0as# — co
Since ||fm — fnl| =0, there exists a subsequence g,(x) such that
2% 1 llgn+1 — gnll<oo. For each xed we put g(x) = g (%) + 252,
lgns1(x) —gn(®)], hence [lgl < lgsll + £ llgnsz — gall<co by (P 2),
which implies that the set E on which g(x) = oo is of u-measure
zero (Lemma 1, (c)). Writing now f(x) = 0 for xeE and f(x) =
g1(%) + 2321 [gna (%) — gn(x)] for xe 4 - E, we find ||f|] < [lg]| <oo
and ||f - gill =0 as 7 — oo, hence finally ||f —full < |If — gill + llgi —
fnll = 0 as n (and 7) — oo. The uniqueness of f follows from Lemma
1, (a). Observe that in the proof no use is made of (P 3) and (P 4).

Remark. This proof shows that if lim [|f —fu]| = 0, then the se-
quence fy, and also every subsequence of f, contains a subsequence
which converges pointwise to f(x) a.e. on A. It follows that f,(x)
converges to f(x) in measure on every set S of finite measure, i.e.
if ¢ > 0 is arbitrarily given, and E, is the subset of S on which
lf(%) = fa(x)| > &, then lim u(E,) = 0. In fact, assuming this to
be false for some & > 0, we should have u(Ey,) > ¢ for some > 0
and some sub-sequence #;. But (taking a subsequence of #ny if
necessary) we may assume that f,, (x) converges to f(x) a.e. on
S, so lim sup Enk has measure zero. Hence 0 = u (lim sup Ey,) >
lim sup u (En,) = 6 > 0, which is absurd. Observe that this ar-
gument does not depend on (P 3) or (P 4); using (P 4), one may
argue as follows, provided S is bounded: eu(Eyn) << [s|f— fuldw
< Ag |If = full =0, hence lim u(E,) = 0.

For any metric function ¢(f), defined on the set P of all non-
negative pu-measurable functions f(x), and satisfying (P 1) — (P 4),
we introduce the “associate” metric function o' (f) on P by o'(f)
= sup [f(x)g(x)du for all g(x)eP such that o(g)< 1. We shall
show that p’ satisfies (P'1) — (P’4), analogous to (P 1) — (P 4).

(P'1) If f(x) = 0 a.e. on A4, then ¢'(f) = 0. Let now o' (f) =0,
ie. [fedu = 0 for every geP, such that g(g) <1, in particular
for g(x) = Xy,lo(%,,). Then f(x) =0 a.e. on every A, hence
f(x) =0 a.e. on 4. The other conditions of (P’l) are trivially
satisfied.

(P'2) Let fu(x)eP (n =1,2,...) and fu(x) 1 f(x) a.e. on 4. If
o' (f) is finite, and ¢ >0 is given, there exists an element g(x)eP

5
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such that ¢(g)<<1 and ffgdu > o'(f) —e. Hence, on account of
fn(®)g(x) 1 f(x)g(x) a.e. on 4, there exists an index N(g) such
that [fugdu > o' (f) —2¢ for n > N. It follows that o'(fu) >
0'(f) —2¢ for n > N(e), and since o'(f;) < o'(fy) <... < 0'(f)
(it is evident by definition that if f;, f, eP and /,(x) < f,(x) a.e.
on 4, then o' (f,) < ¢'(f;)), we have shown that ¢'(f,) 1 o'(f).
If o' (f) = oo, the proof is similar.

(P’3) Let E be bounded, and ZXp its characteristic function.
Then, if o(f) <1, we have [Zgjfdu < Aro(f) < Ar by (P4),
hence o' (¥g) < Agp<oo.

(P’4) Once more, let E be bounded, and Xz its characteristic
function. We have to prove that [gfdu << App’(f) for all fe P.
If w(E) = 0 there is nothing to prove; let therefore w(E) > 0.
Then ¢'(f) =/ [/%glo(Xe)] du, hence [ fdu < o(%g) o'(f), so that
A'p = o(Xg) satisfies all that is required.

The preceding argument shows that if the metric functions
o™ (f) on P are defined by ¢ (/) = o(f),
o™ (f) = sup ffedu for all geP such that o™ (g) <1 (n = 1,2, ...),
then every o™ (f) satisfies (P 1) - (P4). We extend the domain
of o™ to complex u-measurable functions f(x) on A by taking
o™ (|f]), which leads to:

Definition 2. By X® (n=20,1,2,..) we denote the set of all
p-measurable functions f(x) on A for which ||f|xm = o™ (|f|) is finite.

Each X® (n=20,1,2,...) is obviously a normed lifhear space
with norm ||f||xm), if we identify functions which are equal a.e.
on A. Furthermore, since every o™ (n = 0,1,2,...) satisfies (P 1) —
(P 4), we have (as an extension of Th. 1):

Theorem 2. Every space X™ (n=0,1,2,..) is a Banach space.

Remarks. (1) For reasons of convenience we shall denote the
spaces X© XM X@ and X® by X, X', X" and X' respectively.

(2) The space X’ consists of all uy-measurable complex f(x) on
A for which

I/llx- = o' (If) = sup [l|fgldu = sup |/[fgdu|<oo,

where sup is over all geX satisfying [|g|lx << 1 (observe that [|g|lx =
lleyllx, where g = g/sgn f). An analogous statement can be made
for the spaces X® (n > 1).

Definition 3. 7he Banach function space X"V is called the associate

space of the Banach function space X (=10,1;2; )
6




In the lemmas which follow now, we have collected some simple
properties of X and X".

Lemma 2. (“Holder's inequality”). If f(x) and g(x) are u-measurable
on A, then flfgldp < |flxllgllx:. In pan‘z’cular, if feX, geX’, then

|ffgdu| < Jlfgldp < IIfllxllgllx <

Proof. If |f|lx = 0 or ||f|lx = oo, there is nothing to prove. Let
therefore 0<||f|[x<oo. Then, by definition, [[|fg|/||flx] dr < ||glx,

hence [|fgldu <||f||xllgllx-

Remark. By definition of |jg||xs this inequality is sharp in the
following sense: if ge X’ and ¢ > 0, there exists an element feX
such that [flx =1 and 0 < [|gllx’ — | /fgdul| <e.

Lemma 3. Every ge X' defines on the space X a bounded linear
functional g*(f) = [ [fgdu with norm ||g*|| = ||gllx. The canonical
mapping g — g* of the associate space X' into the conjugate space
X* 1s therefore isometric.

Proof. The linear functional ¢*(f) = [fgdu is bounded, since by
Holder’s inequality |g*(f)| < |lgllx’ ||f/lx. This shows, moreover, that
llg*]] < |lgllxs; the converse inequality follows from the definition

of |lgllx

Remark. In general the canonical mapping of X’ into X* is not
“onto”, as the example X = L_ shows, where X' =L, is a proper
subspace of X*.

The next lemma is an inverse of Holder’s inequality.

Lemma 4. fe X' if and only if [(x)g(x) is integrable over A for
every ge X.

Proof. “Only if” is evident. “If” can be proved by means of the
Banach-Steinhaus Theorem (A. C. Zaanen [3], p. 135), as follows:
Assume that f(x)g(x) is integrable over 4 for all geX, and write
fn(%) = f(x) for xe dy,|f(x)| < n, and fy(x) = 0 elsewhere on A.
Then fp e X’ n=1,2,...) by (P3), and lim f,(x) = f(x) a.e. on
A, so the bounded linear functionals f,*(g) = [ fugdu (n =1, 2, ...)
on X have the property that the sequence |f,*(g)| is bounded for
each geX since, on account of |fug| 1 |fg|, we have |f,*(g)] < lim
J|fngldu = [|fgldu. An application of the Banach-Steinhaus The-
orem now shows that ||f,|lx» << M for all n, so that ||f||x» < lim inf
Ifallxr < M by “Fatou’s Lemma.”

g
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A second proof, in which no use is made of the Banach-Steinhaus
Theorem, is obtained by using a device due to G.G. Lorentz-D. G.
Wertheim [1]. Assume that f(x)g(x) is integrable over A for all
¢eX, and that nevertheless |f||xr = oco. This implies the existence
of a sequence gy (x) (n = 1, 2, ...) such that 0 < g, (x) €X, [lgullx < 1
and [|fgn|du > n3. Write g(x) = 232, n* gu(x). Then, by (P 2),
llgllx is finite, hence [|fg|du is finite by hypothesis. On the other
hand, however, [|fgldu > n? [|fgnldu > n for n =1, 2, ... This
is a contradiction.

Remark. In the same way one can prove that e X for some
n=1,2,..1if and only if f(x)g(x) is integrable over A for every
ge X1,

Lemma 4 gives a new characterization of the Banach spaces
X® for n = 1, 2, .... This enables us to show that X* and X+
for n = 1, 2, ... consist of the same functions. Indeed, X™ ¢ X+2)
is trivial (Hélder’s inequality and Lemma 4), and holds even if
n = 0. In order to prove that X"+)cX® for n =1,2, ..., let
fe X"+2) ie. let f(x)g(x) be integrable over A for every ge X"+,
Then, since X* 1 c X"+ for n = 1, 2, ..., the function f(x)g(x)
is integrable over 4 for every ge X", which implies f € X™ by
Lemma 4. This argument does not give any information about
the problem whether X = X" or not. The only fact we have been
able to prove so far in this direction is that X ¢ X"".

The next lemma gives more precise information.

Lemma 5. If f(x) is u-measurable on A, then |flx. < |/flx, and
Ifllxtm = |Ifllxtn+2) for m = 1,2, ..., i.e. X® and X"+ aye identical
forn=1,2, ..., so X" and X"V are mutually associate.

Proof. We first prove that |f|x»+2 < ||f [|x» for » =0, 1, 2, ...
By definition, |[|f|[x(n+2) = sup [|fg|du for all g such that ||g||xn»+1)<1,
and this does not exceed ||f||x(» by Holder’s inequality. Next, for
n =1, 2, ..., we find on account of ||g]|xn+1) < |lg|lx(»—1) that [|f|[xn+2)
= sup f|fgldu (for [|gllxm+n< 1) = sup [flfgldu (for [|gllxn—n<1) =
|lf|x(. Observe that this argument fails for » = 0.

It turns out, therefore, that among all Banach spaces X®
(n =0, 1,2, ...) which we have introduced so far there are at most
three essentially different ones: X, X’ and X" (since X = X’
forn =1,3,5, ..., and X® = X" forn = 2, 4, 6, ...). The property

8
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that two spaces, like X® and X®*V for » = 1, 2, ..., are mutually
associate, deserves a name of its own:

Definition 4. The space X is called perfect whenever X and X' are
mutually associate (i.e. whenever ||f||x == ||f||x:+ for every p-measurable
f(x) on A).

Hence ,by Lemma 5:

Theorem 3. The spaces X' and X' are perfect.

In 1934 G. Kéthe and O. Toeplitz [1], (G. Kothe [1; 2]) gave,
in connection with their investigations on sequence spaces, a
definition of what they called “ein vollkommener Raum.” The
meaning of “perfect space’” as defined here is closely related to the
meaning of “vollkommener Raum”, and was introduced for the
first time in a paper by G.G. Lorentz-D. G. Wertheim [1], where
they generalized the Kothe-Toeplitz theory to function spaces
(so-called Ko&the-Toeplitz spaces) with a norm topology. Another
generalization to function spaces of the Kothe-Toeplitz theory has
recently been given by J. Dieudonné [2]. In order to obtain a
complete survey, we briefly describe here what Kothe-Toeplitz
spaces are: Let C be a non-empty collection of non-negative u-
measurable functions ¢(x) on 4 such that

(a) C is normal : if ceC and 0<C ¢;(x) < ¢(x) a.e. on 4, then ¢,eC.

(b) C is convex: if ¢,eC and 0 <a, <1,X”%,a; =1, then 27,
aji ci(x) eC.

(c) if cu(%)eC (m=1,2,..) and cu(x) 1 c(x) a.e. on 4, then
c(x)eC.

(d) if E is bounded, and Zg(x) its characteristic function, then
XEEC.

(e) for every bounded set E there exists a finite constant A= 0
such that [ c(x)du < Ag for every ceC.

The Kothe-Toeplitz space X = X(C) consists then of all u-
measurable complex functions f(x) on 4 for which ||f||lx = o(lf]) =
sup,ec f1f(%)] ¢ (%) du<<oo. Wesee at once that o(f), if feP, satisfies
(P 1)-(P4), and therefore every Kothe-Toeplitz space X (C) is
a Banach space of the type considered in the preceding pages.
Moreover, it is evident that the associate space X’ of any space X
is a Kothe-Toeplitz space, if we take for C the set of all non-negative
c(x)eX satisfying |c]x < 1. Finally, if X = X(C), the proof of

9
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Lemma 5 shows that |lc|lxr << 1 for all ceC, hence ||f||x/» = ||f||x for
all fe X(C), i.e. all Kéthe-Toeplitz spaces are perfect.

The systematic investigation of Banach function spaces whose
norm is derived from a metric function ¢ (f) possessing the properties
(P 1), (P 2) and several other properties varying from theorem to
theorem, was begun by H. W. Ellis - [. Halperin [1]. Of course
one finds traces of similar ideas here and there in the older literature,
e.g. already in Banach’s famous book ([1], p. 86). The introduction
of (P 3) and (P 4) is due to A. C. Zaanen, and the resulting theoretical
structure turns out to be of satisfactory elegance and generality.
It remains largely a matter of future investigation to decide how
much of the theory remains valid without (P 3) or (P 4), although
some results in this direction are already known.

We now turn to the problem whether every space X, as defined
by us, is perfect or not, i.e. whether X is a Kothe-Toeplitz space
or not. The answer is affirmative. The first proof was found by
G. G. Lorentz [4], and the fact was communicated by letter (in
answer to a question on this subject) to A. C. Zaanen in November
1954. The author independently found a proof in December 1954,
which later on turned out to be quite different from Lorentz’s
proof. The main idea of our proof is the use of a separation theorem
(N. Bourbaki [1], p. 73) for closed convex sets in locally convex
linear topological vector spaces. Sticking to the same idea I. Halperin
has simplified our proof, and extended the statement to his more
general spaces. We reproduce here Halperin’s simplified version;
in section 3 of the present chapter we shall briefly outline the
original version.

Theorem 4. The space X is perfect, i.e. X is a Kothe-Toeplitz space
X = X (C) where C consists of all non-negative p-measurable functions
c(x) on A for which |c|lx. < 1.

Proof. We have to show that ||f||x/» = ||f ||x for every u-measurable
complex f(x) on A. For any such function we know already that
Il < |Ifllx, it is sufficient, therefore, to prove the inverse
inequality. Write, for n =1, 2, ..., fu(x) = |[f(x)| if [f(x)] < =
and xedy, fu(x) =n if |/(x)] > n and xedy,, and fy(x) = 0 if
xeA-Ayp. Then fy(x) 1 |f(x)] a.e. on 4 and fp(x)eX (n =1, 2, ..);
hence, if we can prove that |/f,]|x << ||[fullx~ for all n, the property

(P 2) shows that [[f|x <C ||fllx». We choose therefore an arbitrary
10



index N, which is kept fixed in what follows, and, denoting by
S the unit sphere of X (i.e. the set of all feX such that ||f|x < 1),
we observe that in the Lebesgue space L, (4n,u) the set U = S n
L, (An,u) is a convex subset, closed in the norm topology of L, (4y,u).
Indeed, the convexity of U is evident, and since every sequence
gn € U (n=1,2,..) which converges in the norm topology of
L,(4y, n) to an element geL,(4y,u) contains a subsequence gz (x),
k = ny, ny, ..., which converges pointwise a.e. on Ay to g(x), we
find by “Fatou’s Lemma” that ||g|lx < lim inf [|gz/x <C 1, hence
ge U. Without loss of generality we may suppose that ||fy]x > 0.
Then, for any constant ¢ > 0, the non-negative function g(x) =
(1 + &) /v (x)/|/fwllx belongs to L,(4n,u), but not to U, and hence
can be separated from U by a closed hyperplane in L, (dy,u),
determined by some element f*e (L,)*. Every such f* may be ex-
pressed by means of a function 4 (x) e L, (4w, ), so there exists
a constant C > 0 such that |/, ghdu| > C and |/, fhdu| < C for
all / € U. These inequalities remain true if we replace % (x) by & (x),
where k(x) = |h(x)| for g(x) #0, and k(x) =0 for g(x) =0
(observe that feU implies f/sgn & € U).

Next we prove that [/, f & du| < C for all feS. For this purpose,
let 0 < f(») €S. Then, for n =1, 2, ..., the function min {f(x),
ng(x)} is contained in L, (4y, #) and in S, so that [, fkdu = supy
[ay min {f(x), ng(x)}. £(x)du < C. Our result so far is therefore
that /ehdp > supyes|/fhdul. Hence [,y [(1 + &)fy(®)/lixlx]
k(x)du > ||k||x,, from which we deduce by Holder's inequality
that [l < (1+ &) [y [iv(@) R@)/Iklx] de < (1+ €) il
In this inequality & > 0 is arbitrary, hence ||fy|lx < |Ifwllx/

Remarks. (1) If feX, then f*(g) = [fgdu defines on X" a bounded
linear functional, and [|f*|| = ||f|x.

(2). Holder’s inequality /[|fgldu < |/llxllgllx- is sharp in two
respects: given ¢ > 0 and feX, there exists a function geX’ such
that |lgllxr =1 and 0 < ||flx — |/fedul<e, and given ¢ > 0 and
geX’, there exists a function feX such that ||f||lx = 1 and 0 <C ||g||x —
|fgdul <e.

(3) If B is an arbitrary Banach space, and the unit sphere
of the conjugate space B* is denoted by S*, then ||f|| = supses«
|/*(f)| for any feB. Now, if B’ is a linear subspace of B*, and S’ =
S* N B’, the subspace B’ is called a norm fundamental sub-
space of B* whenever ||f| = supes/|f*(f)| for all feB. What we
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have proved therefore in Th. 4 is that X’ is a norm fundamental
subspace of X*.

It is perhaps interesting to observe that (in the general Banach
space situation) B’ is norm fundamental if and only if S’ is dense
in S* in the weak* topology of B* (i.e. the topology generated by
the elements of B). In fact, if S’ is dense in S*, and f*€S*, feB,
¢ > 0 are given, there exists an element g*eS’ such that |/*(f)—g* (/) |
<e. Hence |/*(f)|<|g*()] + & < suppes [g*()] + & so [fil <
supprese|f* (/)| < supgres |¢* (/)] -+ &, which implies [f| < supgres
|¢*(f)|. The inverse inequality is trivial, so B’ is norm fundamental.
Assume conversely that B’ is norm fundamental, and that, never-
theless, S’ is not dense in S*. Then the closure S’ (in the weak*
topology) is a proper convex subset of S* = S* so there exists an
element f;eS* not contained in S”. An application of the separation
theorem shows the existence of an element feB and a constant
C > 0 such that |f;(f)| > C and |g*(f)| < C for all g*eS’. Since
feeS*, the first inequality implies ||f|| > C; since B’ is norm fun-
damental, the second inequality implies ||f| << C. This is the desired
contradiction.

2. Absolute Continuity of the Norm and Reflexivity.

Let X be a Banach function space of the type considered in
section 1, and let, for any set Ec4, Xg(x) be the fixed notation
for the characteristic function of £. We introduce the following
definition (similar to a definition given by G. G. Lorentz [2; 3]):

Definition 1. An element feX is said to have an absolutely continuous
norm whenever the following conditions arve satisfied:

(a) If E is bounded, and E, is a sequence of u-measurable subsets
of E such that u(Ey) — 0 as n—oo, then ||fXg,|| — 0 as n—oo.

(b) [If%a-a,|| =0 asn — oo.

The space X is said to have an absolutely continuous norm
whenever every feX has an absolutely continous norm.

The definition suggests that the property of possessing an
absolutely continuous norm depends to a great extent on the
particular choice of the sets 4,. This dependence, however, is
only apparent:

Lemma 1. An element feX has an absolutely continuous norm if
and only if [ satisfies the following conditions:
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(a) Given e > 0, there exists a number & > 0 such that u(E)<<
implies ||fLg||<e.

(b) If the sequence of sels En (n =1, 2, ...) converges to a set of
measure zero, then (fXEy|| — 0 as n — oo.

Proof. If feX satisfies the conditions of Lemma 1, then / is evidently
of absolutely continuous norm. Let now, conversely, /eX be of
absolutely continuous norm, and let u(Ey) — 0. Then, if ¢ > 0 is
given, there exists an index N (e) such that ||[fXa-ay|l < ¢/2. Write
now E,=E,’ + E,”, where E,’  =E, 0 Ay and E,” = E, 0
(4-Ay). Then |[f2e,|| < [%el] + el < %yl + €2 < e for n
sufficiently large, since E,'c Ay and u(E,") — 0.

Next, let E, converge to a set of measure zero. Given ¢ > 0,
we determine IV such that [|fXa-ay||<<e/2. Then ||fXg,|| < ||fXE, o ayll
4+ |Xe, o a—ay|| <|IfXE, A ayll + €/2. Hence, since the sequence
Eyn Ay of subsets of Ay converges to a set of measure zero (so
that their measures converge to zero on account of u(dy)<<oo),
we obtain ||fXg,|| < ¢ for » sufficiently large.

The following definition is suggested now by Def. 1:

Definition 2. By X* we denote the set of all feX which possess an
absolutely continuous norm.

Evidently the set X* is linear. Furthermore X* is normal, i.e.
the relations fe X* geX and [g(x)| < |f(x)] a.e. on 4 imply g € X*.
Hence, if fe X*, then fXp € X* for every u-measurable set E.

Theorem 1. X* is a normal linear subset of X, closed in the norm
topology of X, i.e. X* is a normal linear subspace of X.

Proof. We have only to prove that X* is closed. Let j,e X* (n =
1,2,...) and [|f{~fu|| = 0 as # — oo. Then, given & > 0, there exists
an index N () such that [|f — fn||<e/2. In order to prove now that
the norm of f satisfies condition (a) of absolute continuity, let E
be bounded, and EucE (n = 1, 2, ...) such that w(E,) — 0. Then
el < ||(F-1w) %8, || + || /5 XE, || < € for n sufficiently large. The
proof for condition (b) is similar.

Remark. It is possible that the subspace X#*cX contains only the
null element of X as is shown for example by the case X =
L. (A,u) (provided the measure u contains no atoms). For the other
Lebesgue spaces Ly(4,u), 1<p<oo, we have evidently (Lp)* = L.

Lemma 2. If fpeX* (n = 1,2, ...), then fy converges strongly (i.e.
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in the norm topology) to an element fe X* if and only if fn(x) converges
in measure to f(x) on each set S of finite measure, and the norms of
[n are uniformly absolutely continuous.

Proof. We first prove that the conditions are necessary. Since
strong convergence in X implies convergence in measure on sets
of finite measure (section 1, Th. 1, Remark), we have only to show
that the norms of f, are uniformly absolutely continuous. Given
e > 0, there exists an index ny(e) such that |[[f—/,/| < ¢/2 for
n = ny(e). Let now E be bounded, and E,, c E such that u(E;) -0
as m — oo. Then, since the norms of f and all f, are absolutely
continuous, there exists an index m(¢) such that, for m =m(¢),
we have ||fXg,| < ¢/2 and ||(fn — f)¥E5,)| < /2 for n = 1, 2, ..., n,.
Hence, if m = mg(e) and » is arbitrary, then ||fy X,/ <|(fn—/)
Xe,|| + |/%x,|| < e. The proof for condition (b) is similar.

We now turn to the proof that the conditions are sufficient.
The hypothesis that the norms of /, are uniformly absolutely
continuous implies that, given ¢ > 0, there exists an index N (o)
such that ||fy¥a—ayl| < 0/2 (n=1,2,...), 50 ||(fm —fn) Xa—ayll < o
for all m, n. If, furthermore, for any fixed ¢ > 0, we write Ep, , =
{x: | fm(x)—fu(x) | =€} 0 Ay, then || (fm—fa)Xayl < (fm - fn)de—Em,nH
+ (7 — o) XEpp | < & [ Zay || + I|(fm — fn) XEnull. By the con-
vergence in measure on /Ay and the fact that the norms of
fn are uniformly absolutely continuous, ||(fm—fn) ?E, ./ can be
made arbitrarily small for sufficiently large m, n, so that lim
supmn ||(fm— fu)%ayll < & |[Xayll. This holds for any e > 0, hence
| (fm—tn) %ayl — 0 as m, n — oo. Finally, [[fm—fu || < || (fm—fn) %yl +
| (fm— fn) ¥a—ay|| implies lim sup,,, || fm—/fu | < o, and since o > 0
is arbitrary we have ||fm—/fn || — 0 as m, n — oo. But then f, con-
verges strongly to some g € X%, and, from the convergence in measure
of fu(x) to g(x) on each set of finite measure (section 1, Th. 1,
Remark), as well as to f(x) (by hypothesis), we conclude that
f(x) = g(») a.e. on 4. Hence ||[f - fu || =0 as n - co.

Corollary. (1) Any sequence f, € X* such that |fu(x)| | O a.e. on A
has the property that || fn || | O.

(2) X = X*if and only if any sequence fne X such that |fn(x)| | O
a.e. on A has the property that ||| | O.

Proof. We have only to prove the second part. “Only if” is evident.
If, conversely, any sequence f,X such that |fx(x)] | O satisfies
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Iz 4 0, and if feX is given, we consider the sequence f, = fXs—a4,.
Then |fn(x)| | O, hence [[jXa—a,) | 0. Also, if E bounded, and E,
is any decreasing sequence of subsets of E such that u(E,) — 0,
then similarly ||fXE,|| — 0. It remains to prove that the same is true
if E, is not necessarily decreasing. Assuming that the statement
is false, there exists a number ¢ > 0 such that [|f2g,|| > & for some
sequence E,cE satisfying u(E,) — 0. We may assume that u(Ejy)
< n? Then, if F, = Uy, E; the sequence F, is decreasing,
w(Fy) is decreasing, w(f%) — 0 and |fXF,/| > ¢, in contradiction
to what has already been proved.

Remark. If we apply this lemma to a Lebesgue space of type L,,
we find necessary and sufficient conditions in order that a sequence
of integrable functions converges in mean to an integrable function
(compare P. R. Halmos [1], p. 108).

We shall now consider another linear subspace of X.

Definition 3. By XV we denote the closure (in the novm topology of
X) of the set of all bounded p-measurable (complex) functions f(x)
on A, having the property that the set on which f(x) # 0 is bounded.
The subspace (X')0 of X' s defined similarly.

Obviously, if feX?, then the real and imaginary parts of / belong
to X?, and also fXz € X? for any u-measurable set E. Furthermore,
it is easy to see that (X')? is a norm fundamental subspace of the
Banach space X* (the conjugate space of X), ie. if feX, then
[lfllx = sup f|fg|ldu for all ge (X')? such that [g[lx. < 1. In fact, if
fe X and ¢ > 0 are given, there exists, since by the perfectness of
X, Holder’s inequality is sharp, an element geX’ such that [|g]jxs <1
and 0 < [/l /lfeldu < ef2. Put gu(x) = g(x) forx € A, lg(x)] <,
and gu(x) = 0 elsewhere. Then 0 <C [|fg|du —/[|fgnldpn < €/2 for
n > ny(e). Hence, for n > ny(e), we have gue(X')?, |lgnllx < 1 and
0 < |Ifllx =/lfg.ldu << &, which shows that ||f||lx = sup /[|f¢|du for all
ge(X')? satisfying |lgl|x» < 1. Similarly X? = (X"")? is a norm
fundamental subspace of (X')* so certainly a norm fundamental
subspace of X = X"’. Moreover, this argument leads to a non-trivial
extension of Lemma 4 in section 1, which we formulate in the
following lemma:

Lemma 3. fe X (o7 fe X') if and only if f(x)g(x) is integrable
over A for every g e (X')0 (or for every g e X?).
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The subspaces X* and X? are closely related. A first result is
embodied in:

Lemma 4. X*c X,

Proof. Let fe X* and fu(x) = f(x) for xed,|f(x)|<n, and
fn(x) = O elsewhere. Then f,e X? (n =1, 2,...), and if we write
En = {x: [a(x) # f(x)}, the sequence E, decreases to a set of
measure zero. Hence, by Lemma 1 (b), we have ||f - full = ||/¥E,|
— (0 as n — oo, which shows that fe X?.

Examples. I'or the Lebesgue spaces L, (1 <p < oo) and the
spaces A(a, p) (1 <p<oo) of G. G. Lorentz [1;2] we have
X=Xb=X*UHX=L_ (4, n), where u(4) < oo and u contains
no atoms, then {0} = X*c X? = X. The following example shows
that {0} c X*c X?cX may occur, where all inclusions are proper.
l.et u be Lebesgue measure on the interval [0, co) and ||f[|x =
Solf(x)|du + [IfX < <ol Then X* consists of all f(x) such that
/eL;(0,1) and /f(x) = 0 a.e. on [1,00), and X? consists of all
f(x) such that fe L,(0,1), f(x) is bounded on [1, co) and such that
/(x) =0 as ¥ — oco. In chapter 2 we shall discuss more examples.

Now we shall discuss the problem on what conditions we have
X* = XV An answer can be formulated as follows:

Theorem 2. In order that X* = XV it 1s necessary and sufficient
that the conjugate space (X0)* of X may be isometrically identified
with the associate space X' of X.

Proof. In order to prove that the condition is necessary, we have
to show that every bounded linear functional g*(f) on the Banach
space X* = X? can uniquely be written in the form g*(f) = [fgdu,
geX'. Assume therefore that g*(f) is such a bounded linear functional,
and define the set function F(E) by F(E) = g*(Xg) for all u-
measurable subsets EcA,. Since |F(E) | < ||g¥|| [Xellx—0 as u(E) =0,
there exists an integrable function g(x) on 4; such that g*(¥g) =
F(E) = [ay Xggdu (Radon-Nikodym Theorem). We extend F (E)
and the corresponding g(x) in an obvious way to all 4,. Hence
g*(%g) = F(E) = [Xggdu for any bounded set E, from which we
immediately deduce that g*(f) = / fgdu for all step functions f(x)
vanishing outside a bounded set. For any f(x), non-negative,
bounded and vanishing outside a bounded set, there exists a sequ-
ence of these step functions f,(x) > 0 such that f,(x) 1 f(x) uni-
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formly on 4, hence ||/ - ful[x — 0 as n — oo. This implies g*(f) =
[fedu for every such f, and the same is then true if f(x) is no longer
non-negative. We next show that ge X'. Let fe X, and write /,(x) =
If(x)|/sgn g(x) for xedy |f(x)| <n, and fu(x) = 0 elsewhere.
Then [|fallx < I, s0 [¢* ()| < g [allx < llg*] . But g*(fn) =
[ b = [ lfn gldn, so that, since [fa(x) g(x)[ 1 [(x) g(x)[ a.c. on
A, we obtain f |fgldu — lim / |fugldu — lim g* () < [lg*| il < oo.
It follows that f(x)g(x) is integrable over 4 for every feX, hence
geX’ by Lemma 4 in section 1. Finally, we prove that g*(f) =
[fedu for any fe X* = X? First we take fe Xb= X* such that f(x)

vanishes outside some Ay. For n =1, 2, ..., write fp(x) = f(x) for
If(x)] < n, and fy(x) = O elsewhere. Then u(En [¥: fu(x) 7 f(x)])
—0 as n - oo, hence |f - fullx = [If¥E,/lx = 0, and g*(f) = lim

¢*(fn) = lim [fugdp = [fgdu by dominated convergence. Let next
fe Xb = X* be arbitrary, and write f» (%) = f(#) on 4y, and f, (x) =0
elsewhere. Then |f — fullx = ||fX4-4,/lx = 0 as » — oo, hence once
more g*(f) = [fgdu. Since X?is a norm fundamental subspace of
X (see Def. 3, Remark), we have |[g||x- = sup |/ fgdu| (for fe XP?,
Ifllx < 1) = ||g*||, and this shows too that g(x) is unique. Con-
versely, every ge X' obviously generates a bounded linear functional
¢*(f) = [fgdu on X, and therefore on X? = X*. The final result
is therefore that there exists a 1-1 isometric correspondence between
(X)* and X'.

In the proof that the condition (X?)* = X’ is sufficient, we shall
adopt a slightly more general point of view. Assuming that " is a
linear subspace (i.e. a closed linear subset) of X with the property
that if fe V, then the real and imaginary parts of f belong to V,
and also fXgel for any measurable set E, we shall prove that V'*
= X’ implies V' cX* The particular case V = X? will imply then
that X?c X* and since X*c X? is always true by Lemma 4, we
obtain the desired result X? — X*. Let therefore V'* = X'. Then,
by a well-known theorem (J. Dieudonné [1], p. 128) the unit sphere
S” of X’ is compact in the corresponding weak* topology (i.e. the
topology generated by the elements of V). If V' cX* is false, there
exists a function fel” which does not possess an absolutely continuous
norm, and, since it follows from the hypotheses on V' that any fe V/
is a linear combination of non-negative functions belonging to V,
we may assume that f(x) > 0. Let first condition (a) for an ab-
solutely continuous norm not be satisfied by this particular f.
Then, for some bounded set E and some ¢ > 0, there exist subsets
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E,cE such that u(Ey) < n* and ||fXg,|| > e for n =1, 2, ..., so,
writing [, = U, E;, the sequence F, is decreasing, u(fy)—>0
and ||f Xr, || > & for all n. Consider now the sequence 4, = { ge X" :
| [{%r,g du| < &} (n =1, 2, ...) of weak* open subsets of X' = V'*;
these sets A, constitute a weak* open covering of X', hence, by
the compactness of S’, there exists a finite number of indices
1y, Ny, ..., N With the property that for any geS’ there exists an
index n; = n4(g), 1 <1<k, such that |/fXr, gdu| < e. But then,

since /(x) = 0 and ge S’ implies |g|e S’, we also have f|fXF,,j gldu < ¢

for some n; = n,].(g), 1 <7 < k. It follows, since I, is decreasing,
that for n = N = max (ny, s, ..., ng) we have [|fXr,g|du < & for
every ge S’, hence ||f%r,|| < ¢ for n == N. This, however, contradicts
l/%r,|| > e for all n. The proof that condition (b) for an absolutely

continuous norm is satisfied by any fe V is similar.

Corollary. Let V' be a linear subspace of X such that:
(a) If feV, then the real and imaginary parts of | also belong to V.
(b) If feV, then fXg € V for any u-measurable set EcA.
(c) XbcV.
Then V* = X' if and only if V = X* = Xb,
We do not know if this is also true if V' does not satisfy (c).
The following theorem is an immediate consequence:

Theorem 3. X* = X' (isometrically) if and only if X = X* = X?
(i.e. if and only if the space X has an absolutely continuous norm).

By means of this theorem we can obtain necessary and sufficient
conditions in order that X is reflexive. Similar conditions have
recently been obtained by I. Halperin [3] and G. G. Lorentz [4].

Theorem 4. X is reflexive if and only if both X and its associate
space X' have an absolutely continuous norm.

Proof. The sufficiency of both X and X’ having absolutely con-
tinuous norms is evident by Th. 3. The necessity can be proved as
follows: As we have seen before (Lemma 3 in section 1), X'cX*.
Now, if X" 7 X* and X is reflexive (i.e. X = X*¥), there exists,
by the Hahn-Banach Theorem, an element fe X** = X such
that [[f|lx > 0 and [fgdu = O for all ge X', which is absurd. Hence
X' = X* which implies (X') = X = (X*)* = (X')*. The
desired result follows now by Th. 3.
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Remark. It is an immediate consequence that the Lebesgue spaces
Ly (A, u) are reflexive for 1 < p < co and, provided u contains
no atoms, fail to be so for p = 1 and p = co.

3. Linear Topologies, Separability and Reflexivity.

In the present section we shall assume that the reader is familiar
with the elementary theory of locally convex linear topological
vector spaces (see e.g. N. Bourbaki [1], J. Dieudonné [1, 3] and
H. Nakano [2]). We briefly recall some of the most important
notions.

A mapping N: f — N(f) of a linear vector space R into the real
numbers such that N(0) =0, 0 < N(f) <oco for each fe R;
N(f; + 1) < N(fy) + N(fy) for each pair £, foe R; N(af) = |a|
N (f) for each fe R and each complex a, is called a semi-norm on
R. Each set {N} of such semi-norms on R defines a locally convex
linear topology on R in the following way: The particular sets
{f: N(f-f,) < e} for all Ne{N}, all fje R and all ¢ > 0 are the
generators of the topology, i.e. the open sets are all unions of all
finite intersections of these generators. We shall always assume
that the set {IN} contains so many semi-norms that if N(f) =0
for all Ne{IN}, then f = 0. The resulting topology is then a Haus-
dorff topology.

A well-known example is the weak topology on a Banach space
B, generated by a total subset Y of B* (the statement that Y is
total means that f*(f) = 0 for all f*¢ Y implies f = 0). The semi-
norms N (f) are defined by N (f) = |/*(f)|, f*¢ Y. We denote this
topology by o (B, Y). If no confusion is possible, (B, B*) is usually
called “the weak topology” on B. Similarly o(B*, B**) is the weak
topology on B*. It is stronger than ¢(B*, B), the weak* topology
on B*. These two topologies on B* are identical if an only if B
is reflexive. It is a well-known theorem (and we have used it already
in Th. 2 of section 2) that the unit sphere ||f/*|| < 1 of B* is compact
in the weak* topology.

The subset H of B is called o(5, Y) bounded if for each f*e¢ Y
there exists a number M (depending on f*) such that [f*(f)| < M«
for all fe H. The sequence fre B (n =1, 2, ...) is called a o(B, Y)
Cauchy sequence if f*(f,) converges for each f*¢ Y to a finite
number, and it is called ¢ (B, Y) convergent if there exists an element
foe B such that lim f*(f,) = f*(f,) for each f*e Y.
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Lemma 1. I/ Y is a norm fundamental subspace of B*, then the
subset H of B is o(B, Y) bounded if and only if it is bounded in norm.

Proof. If H is bounded in norm, so [|f|| << M for all fe H, then
I1*(H)| < M ||f*|| = M« for each f*¢ Y and all fe H. If conversely
|/%(/)| < M« for each f*¢ Y and all fe H, then, considering the
bounded linear functionals F(/*) = /*(f) on the Banach space Y,
we have ||F|| << M for all I’ by the Banach-Steinhaus Theorem.
Furthermore, if we denote by S* the unit sphere of B5*, ||F| =
SUPpestny | I (/*)| = sup |[f*(f)| = |/fl, since Y is norm fundamental.
Hence ||f|| < M for all fe H.

Let X be a Banach function space of the type considered in
sections 1, 2, and let again, for any set Ec4, Zg(x) be the fixed
notation for the characteristic function of E.

A semi-norm N on X will be called a normal semi-norm if it
has the property that |/ (x)| < |f(x)] a.e. on 4 implies N (f,) <
N (f). Hence, if N is normal, and |f,] = |/,| a.e. on 4, then N (f;) =
N (f,). The semi-norms N (f) = |[fgdu|, g X', which define the
topology ¢ (X, X’), are not normal, for, replacing f(x) by f;(x) =
|f(x)|/sgn g(x), we have |f;(x)| = |/(x)|, and nevertheless N (f;) =
Jlfgldp > N(f) in general. The semi-norm N (f) = /|fg|du, g X',
however, is normal.

We shall need the following lemma:

Lemma 2. If f,(x) € Ly(4, ) (n = 1, 2, ...), and the sequence
of set functions Fy (E) = [g fn du converges to a finite set function F (E)
for each u-measurable E c A, then
(a) the functions Iy (E) are uniformly absolutely continuous, 1.e.
given ¢ > 0, there exist a number 6 > 0 and an index N such that
Jaaylfnl du < & for all fn, and [g|fn] du < & for all fy if w(E) < 6,
(b) there exists a function fy(x) € L, (4, u) suchthat F (E) = [& fydu.

Proof. For the existence of 6 > 0 and f, (x) we refer to P. R. Halmos
([1], p. 170). In order to prove the existence of the index N we
write Dy =4, Dp = Ap—Ap_y (n =2, 3, ...), and Ey = E 0 D,
for any w-measurable set E. The measure » on 4 is now defined by
v(E) = 27 w(En) /271 + u(Dyp)}] Then »(4) < oo, and »(E) =0
if and only if x(E) = 0. Hence all F,(E) are absolutely continuous
with respect to the measure ». It follows that, given ¢ > 0, there
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exists a number 6; > 0 such that »(E) < ¢, implies |, (E)| < ¢/4 for
all n. But »(4 — 4y) < 6, for N sufficiently large, so |/g fn du| < /4
for any Ec4 - Ay and all n. Hence [, ;. |fu|du < & for all n.

Lemma 3. Let Ly = L,(S, u) for some bounded set S, and L_, =
L (S,u). Then every o(L,, L) Cauchy sequence is o(L,, L_)convergent.

Proof. Let f,eLl, (n = 1, 2, ...) be a o(L,, L.,) Cauchy sequence.
Then it is obviously ¢(L,, L_) bounded, hence bounded in norm
by Lemma 1; so ||fs]| < M. Since Xg € L_, for any u-measurable
EcS, the sequence I, (E) = [ fn dp converges to a finite set function
F(E) on S. Hence, by Lemma 2(b), there exists a function f,(x) €L,
such that lim /g fy du = [& [, du for all pw-measurable EcS. It
follows that lim [s fn gdu = /s f, gdu for each u-measurable step
function g(x) on S.

Let now 0 << g(x) eL... Then there exists a sequence g,(x) of
non-negative step functions such that g, 1 g uniformly, so lim
llg — gnll., = 0. Hence

[J(fo—ta)gdu | < |[fo(e —gn)du | + |/(fo — fn)endu| + | /fn(gn—g)dul
<N/ — o) gy dpl + [lfoll + M] lIg —&xlor

so that, given ¢ > 0, we may first take N so large that the second
term does not exceed ¢/2, and then # so large that the first term
does not exceed &/2. It follows that lim [sfngdu = /s [, gdu for
such a non-negative g(x), and the same is then true for any g(x)eL_..

Theorem 1. Let Y be a linear subspace of X' such that (X')cY,
and such that feY implies fXg € Y for any u-measurable EcA. Then
every o(X,Y) Cauchy sequence is o(X,Y) convergent.

Proof. Let fpe X (n=1,2,...) be a o(X,Y) Cauchy sequence.
Then it is obviously o(X, Y) bounded, hence bounded in norm
by Lemma 1 (since Y is norm fundamental on account of (X")?cY);
so ||fallx < M. Furthermore, since f, € L,;(4,, p) for all n, and
L.(4,, n) c (X')bcY, the sequence f, is a o(L;, L,) Cauchy
sequence on Ay, so that by the preceding lemma there exists a
function fyeL; (44, p) such that lim [fugdu = [f,gdu for each
geL (4, u). Extending f,(¥) in an obvious way to all Az, we
obtain lim [fugdu = [f,gdu for each geL_ (4, u).

We next prove that f, € X. Let ge X’ be arbitrary, and, for m =
1, 2, ..., let gn(x) = |g(x)|/sgnfy(x) for xedm, |g(x)] < m, and
gm(x) =0 elsewhere. Then ge L, (dm, u), s0flfo gmldp = [fogmdp =
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limy, [fugmdp < M ||g||x/, which implies on account of [gn (¥)| 1 |g(x)]
that [|fogldu = limy, [|fogm|du < M ||g|lx,. Hence f,g is integrable
over /A for each ge X', which is equivalent to f,e X.

It remains to prove that lim [fugdp = [fogdp for each geY.
Let first g vanish outside some 4. Since gfge Y for any p-measur-
able EcAy, the sequence Iy (E) = [fu ¢ Xgdu = [g fn gdn converges
to a finite set function on A;. Hence, given ¢ > 0, there exists
by Lemma 2(a) a number 6 > 0 such that w(E) < 6 implies
|Fy(E)| < e for all n. Moreover, we may take ¢ so small that also
| [efogdu] < e if u(E) < 6. Now split up Ay into two sets A4’ and A"
such that u(4") < ¢ and g(x) is bounded on A”". Then
|/ (Fa = fo) gdu] < |/ao(fn = fo)gdp | + [Fu(A)| + | [afogdul < 3e
for sufficiently large n. Finally, if g€ Y is arbitrary, the sequence
Fy(E) = [ fug%pdy = [efngdu converges to a finite set function
on A. Hence, given ¢ > 0, there exists by Lemma 2(a) an index N
such that |/, , fagdu| < e for all n, and also |f,_,, fogdu| < e.
Then |/ (fn—f,) gdu| << 3 e for sufficiently large 7.

Corollary. Every o(X, X') Cauchy sequence is o(X, X') convergent.

The following definition is analogous to Def. 1 in section 2:

Definition 1. 7The semi-norm N(f) on X is called absolutely con-
linuwous whenever it has the following properties:

(a) I} E is bounded, and E, is a sequence of py-measurable subsets
of E such that u(Ey) — 0 as n— oo, then N (fXg,) — 0 as n — oo
for each fe X.

(b) N (fX4-4,) — 0 as n ~ oo for each fe X.

1f the set {N} of semi-norms defines the topology T on X, and if
each Ne {N} is absolutely continuous, then the topology T is said to
be absolutely continuous.

Exactly as in section 2, the dependence on the sets 4, is only
apparent, as our next lemma shows.

Lemma 4. The semi-norm N (f) is absolutely continuous if and
only if it satisfies the following conditions:

(a) Given e > 0 and fe X, there exists a number 6 > 0 such that
w(E) < 6 implies N (fXg) < e.

(b) If the sequence of sets Ey (n = 1,2, ...) converges to a set of
measure zero, then N(fXg,) — 0 as n — oo for each fe X.

Proof. Analogous to the proof of Lemma 1 in section 2.
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It is easy to give examples of absolutely continuous semi-norms.
If g¢ 4 =1, ..., n) are elements of X', then N{f) = sup;cic,
[1gidu| is absolutely continuous; the topology ¢ (X, X’) is therefore
absolutely continuous. A less trivial example is the following one:

Lemma 5. If fobe X (n=1,2,...)is a o (X, X') Cauchy sequence,
then N (g) = supn [|fngldp is an absolutely continuous normal semi-
norm on X'

Proof. We observe first that N (g) < oo for each g € X’ on account
of the boundedness of the sequence |/fy||x. The absolute continuity
follows from Lemma 2(a), since the sequence of set functions
Fp(E) = [fng%gdp = [Efagdu converges to a finite set function
on A.

In the Lemmas 6, 7 and in Theorem 2, which follow next, we
assume that the topology 7 on X defined by the set {N} of semi-
norms, is absolutely continuous, and that all Ne{/V} are normal.

Lemma 6a. Let fe X, fuc X (n=1,2,...), let fu(x) converge in
measure to f(x) on each set S of finite measure, and let finally, for
each Ne{N}, the absolute continuity of N (fn) be uniform in n. Then
N(f—fn) = 0 as n - oo for each Ne{N}, i.e. [n converges to f in
the topology T.

Proof. Analogous to the sufficiency proof of Lemma 2 in section 2

(even somewhat simpler, since fp — fy may be replaced by /- /).

Corollary. (1) Any sequence fpe X such that |f,(x)| | O a.e. on A has
the property that N (fn) | O for each Ne {N}.

(2) If 0 < fu(x) € X and fn(x) 1 f(x) € X, then N(f —fn) — 0 for
each Ne {N}, so certainly N (fn) 1 N(f) for each Ne {N}.

Our next aim is to prove that the conditions of Lemma 6a are
not only sufficient but also necessary for the convergence of f,
to f in the topology 7. The difficulty lies in the proof of the con-
vergence in measure. In the corresponding proof of Lemma 2 in
section 2 the success is due to the fact that [|f — /fy[|x — O implies
the existence of a subsequence g, of f, such that g,(x) converges
to f(x) pointwise a.e. on 4. We shall show that the convergence of
fan to fin T implies the same, but in order to do so it seems inevitable
to extend each semi-norm N to a domain which may be larger than X

Let P be the set of all non-negative y-measurable functions on 4,
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and Q = PNX. Then Q is closed under addition, multiplication
by non-negative constants, and the lattice operations of taking
max (fy, f,) and min (f,, ;). This is evident for min (f,, f,), and for
max (f,, f,) it follows by observing that max (f, f,) < f; + /s
Let L be the class of limits of monotone increasing sequences of
functions of (. Evidently L>(), and the class L is also closed under
addition, multiplication by non-negative constants and the lattice
operations. If /(x)e L, and Ne {N}, we wish to define N (/) = lim
N (fn), where f, €Q and f, 1 [, and where -+ oo is admitted as a
possible value of N (/). In the particular case that /e (, the second
part of the above Corollary shows that the new definition agrees
with the old value of N (/). However, we have to show first that
N(I) is independent of the particular sequence f, 1 I. Let therefore
fn and gy be increasing sequences of functions of (), and let lim
gm < lim f,. Then f, > min (fn, gn) and min (fn, Gn) 1 gm as n—oo,
hence lim N (f,) > N(gm), so that, letting m — co, we obtain lim
N (fn) = lim N(gn). Once the uniquencess of N (/) is established,
the properties N(I) >0, N(}, + L) < N(4) + N (/) and N (al) =
a N(l) for any constant a > 0 are evident. Furthermore, if /e L
and 0 << [;(x) < ly(x), then e L and N(}) < N(l,). In order to
prove this, let f,e Q and fy 1 . Then g, = min (f,, 4) € @ and
gn 1 4, so Lel and N(})) = lim N(g) < lm N(fn) = N({).
Finally, if /(x) is a u-measurable complex function on 4 such that
|A(x)| €L and N(|h]) < co, we define N(h) = N(|h]). Observe
that for #e X this agrees with the old value (since N is a normal
semi-norm).

Lemma 6b. I/ feX, fpe X (n = 1,2,..), and [, converges to f in
the topology T, then fn(x) contains a subsequence which converges
pointwise to f(x) a.e. on A.

Proof. Without loss of generality we may assume that all f,(x)
are finite everywhere on 4. We start by picking one semi-norm
Ne{N}. Since lim N (fm —fn) = 0 as m, n — oo, there exists a
subsequence g, of f, such that X N(guy1 — gn) << oo. Then, if
I(x) = |g(®)| + 27|gn+1 (%) — gu(%)], we have I € L, N(I) < oo,
and, if g(x) = g (*) 4+ 27 {gn11(x) — gu(x)} for I(x) < oo and
g(x) = 0 for I(x) = oo, we have |g(x)| < I(x), hence |gle L and
N(g) = N(lg]) < oo. Similarly N(g—-gs) — 0 as n — oo, so, since
N(f—gn) — 0as well, N(f—g) = 0.

Now pick a second norm N*e{N}. Then N*(f-g,) — 0, and,
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for a suitable subsequence g,* (x) of g, (x), the function g*, defined
by g*(x) — &*(#) + I, g (®) - g (@)} for [(x) < co and
g*(x) = O for I(x) = oo, satisfies N*(f - g*) = 0. But g* = lim
gn* = lim g, = g for each x at which /(x¥) < oo, and g* = g = 0
if /(x) = oo. Hence g* = gforall x, so N(f—g) = N*(f-g) = 0.
This implies N (f —g) = N (|f —g|) = 0 for each Ne {NV}. It remains
to prove that if ke L, N(k) = 0 for all Ne {N}, then & = 0 a.e.
on A. Let g € Q, gnt k. Then 0 << N(gn) < N(R) = 0 for all
Ne {N}, hence N(gy) = 0 for all Ne {N}, so gy(x) = 0 a.e. on 4
since the topology 7" is a Hausdorff topology. This holds for n =
1, 2, .., so &lx) =10 a.e on A

Lemma 6c. Iffe X, fpeX (n =1, 2, ...), and fy converges to [ in
the topology T, then fn(x) converges in measure to f(x) on each set of
finite measure, and, for each N € {N}, the absolute continuity of
N (fn) 7s uniform in n.

Proof. The convergence in measure follows from the existence of a
subsequence converging pointwise to f(x) a.e. on 4 (see section 1,
Th. 1, Remark). The proof of the absolute continuity of N(f,),
uniformly in 7, is analogous to the corresponding part in the proof
of Lemma 2 in section 2.

In order to prove a further important property of the topology
T, we need a lemma:

Lemma 7%. Let g* € X*. Then g¥e X' (i.e. there exists a function
g(x)e X' such that g*(f) = [ fgdu for all fe X) if and only if g* has
the property that 0 < fu(x)e X (n = 1, 2, ...), fu(x) | 0 a.e. on 4,
implies g*(fu) — 0 as n — oco.

Proof. If g*¥e X', then it obviously has the mentioned property
(dominated convergence theorem). Assume, therefore, conversely
that g*e X* has this property. By F(E) = g*(Xg) we define a
finitely additive set function for all u-measurable sets EcA,. We
shall prove that F(E) is countably additive. If Exc4, (k =1, 2, ...)
is a sequence of disjoint w-measurable sets, and £ = Uy, Ey,
Gn = E — U%Ey, the sequence Gy is decreasing, and X, | O as
n — oo. Hence F(E) — X7 F(Ex) = F(Gy) = g*(¥s,) — 0 by
hypothesis, so F(E) is countably additive. Since u(E) = 0 implies
F(E) = 0, it is also absolutely continuous, so there exists (by the
Radon-Nikodym Theorem) a function g(x)e L;(4, u) such that
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g*(Xg) = [Xpgdu for any p-measurable E c 4,. The remaining
part of the proof is very similar to the corresponding part in the
proof of Th. 2 in section 2.

Theorem 2. Let the topology T on X, defined by the set {N} of normal,
absolutely continuous semi-norms, be stronger than the topology
o(X, X') and weaker than the norm topology of X. Then X' is the
dual space of X, i.e. any linear functional G(f) on X ,continuous in
the topology T, is of the form G(f) = [fgdu, g € X', and conversely.

Proof. Let G(f) be a linear functional on X, which is continuous
in the topology 7. Then, since 7" is weaker than the norm topology,
G(f) is also continuous in the norm topology, i.e. G(f) is a bounded
linear functional on X. Let now 0 < f,(x) € X, fu(x) | O a.e. on
A. Then (by Lemma 6a, Coroll. (1)) f, converges to zero in the topo-
logy T, hence G (f,) — 0 by hypothesis. This shows that the bounded
linear functional G on X satisfies the conditions of Lemma 7, so
GeX'. Conversely, if g(x) € X' is arbitrarily chosen, then G(f) =
/[/gdp defines a mapping of X into the complex numbers which is
continuous in the o(X, X’) topology, and therefore also in the
stronger topology 7.

Corollary. If H is a linear subset of X, then H is closed in the topo-
logy T if and only if it is closed in the o(X, X') topology.

Proof. Since 7' is stronger than ¢(X, X'), any set which is closed
in ¢(X, X') is also closed in the topology 7. Assume, conversely,
that A is a linear set which is closed in the topology 7. Then, by a
well-known theorem, H is the intersection of all closed hyperplanes
(in the topology T) which contain H. But, by Th. 2, each closed
hyperplane in the topology 7 is determined by an equation G (f) =
[ fedu = ¢, g € X', ¢ constant, and it is also known that each closed
hyperplane in the topology o(X, X’) has an equation of the same
form. Hence H is the intersection of a set of closed hyperplanes
in o(X, X’), and this shows that H is closed in ¢(X,X").

Remark. The proof of Th. 2 is independent of the perfectness of
X, i.e. we can prove Th. 2 (and the Lemmas 6a and 7, upon which
the proof of Th. 2 is founded) without using the property that X
is perfect.

We now show that the statement in Th. 2 is not an empty
statement by giving an example of a topology 7" which actually
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satisfies all conditions of Th. 2. A similar topology on a Banach
lattice was considered by H. Nakano [1].

Definition 2. By |o|(X, X') we denote the topology on X defined
by means of the set of semi-norms Ny(f) = [l|fgldu, g € X'. The
topology |o| (X', X) on X' is defined similarly.

Each Ny (f) is evidently a normal semi-norm, and if N,(f) = 0
forall ge X', then f = Oa.e. on 4. Furthermore, each IV, is absolutely
continuous, so |o|(X, X’) is absolutely continuous. In order to
prove that |o| (X, X’) is stronger than ¢(X, X’), it is sufficient to
prove that any set O, = {f:|[fgdu| < ¢, g € X', ¢ > 0} contains
a |o|(X, X') open set. The set O, = {f: [|fgldu < &} satisfies this
condition. Similarly, since O, contains the norm open set {/:
I/lIx/lgllx, < €}, the norm topology is stronger than |of(X, X').
Hence, as an immediate consequence of Th. 2:

Theorem 3. The dual space of X in the topology |o| (X, X') is X"

Lemma 8. I/ feX, f, e X (n=1,2,...), then fy is |o|(X, X')
convergent to f if and only if fn is (X, X') convergent to f, and fy(x)
converges in measure to f(x) on each set of finite measure.

Proof. In view of the Lemmas 6a, 6c we have only to show that
the statement “f, is o (X, X') convergent to /'’ implies the statement
“for each ge X", the absolute continuity of /|f»g|du is uniform in »”’.
This, however, is a consequence of the convergence of F,(E) =
/[ ng%pdp (Lemma 2).

Lemma 9. The unit sphere S = {f:|f|x <1} is closed in the
lo| (X, X') topology.

Proof. If S is not closed, there exists an element f,eX such that
lfoll > 1 and every |o|(X, X') neighbourhood of f, contains at
least one f € S. Take & such that 0 < & < (||fy]|—1)/2, and then
determine the index N such that 1 + & < ||fpXayll < |lfoll- Next,
consider for #» =1, 2, ... the neighbourhoods V, = {f: [|f, — [|¥ay
du < n'} of f,. Each V), contains an element f, € S. Furthermore,
since the sequence f, X4, converges in the L, (4y, ) norm topology
to fy Zay, it contains a subsequence g, X4, which converges pointwise
to foXay a.e. on A. Hence 1 + & << ||fgXay]| < lim inf, |jgpXay|| <lim
inf [|gy]| < 1 by “Fatou’s Lemma”, which is absurd.

Corollary. If fo e X, fae X (n=1,2,..), and [y is |o
convergent to fo, then ||fol| << lim inf ||f,].
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Proof. If a = lim inf ||fy]] < [/fy]] = b, there exists a subsequence
gn of fn such that @ = lim ||g,||, so, if ¢ = (a + 0)/2, we have ||gn]] < ¢
for sufficiently large n. The sphere ||f|| < ¢ is closed in |o|(X,X"),
all g, (except a finite number) are contained in this sphere, but
their limit f; is not. This is absurd.

Remarks. (1) The proof of this lemma is independent of the
perfectness of X.

(2) Our first version of the proof that X is perfect is essentially
based on this lemma, and the proof may be carried out as follows:
If ¢ > 0 and 0 # f, € X are arbitrarily chosen, then g, = (1 + ¢)fy/
Il7oll is not in S, so that, since S is closed and convex, g, can be
separated from S by a closed hyperplane which is determined by
a |o|(X, X") continuous linear functional. Hence, by Th. 3, there
exists an element % e X’ such that [gohdu # [fhdu for all fe S.
Then [g, hdu # 0, so h =~ 0; we may therefore assume that ||4[|x, = 1.
If / runs through the whole of S, the numbers /[ fidu cover at least
the open circle |z] < 1 in the complex plane, hence |/gohdu| = 1,
ie. |[fohdu| = |lfollx (1 4 &)~'. But then, denoting by S’ the unit
sphere of X', we obtain sup ;s /Ifo|dp = [lfyllx (1+€) 7", so [lfyllx» =
Ifollx (1 + &)~ This holds for any &> 0, hence |follx» = [folix-
Combined with the trivial inverse inequality, this gives the desired
result [/follxr = llfollx-

Making use of the perfectness of X, Lemma 9 may be replaced
by a stronger statement.

Lemma 10. The unit sphere S of X is closed in the (X, (X')?)
topology of X.

Proof. In section 2 we have already found that, due to the per-
fectness of X, the subspace (X')? is norm fundamental, i.e. S is
the set of all fe X such that|/fgdu| <1 forallge S"n (X’)?, where
S’ is the unit sphere of X'. For each ge(X’)?, the set of all fe X
satisfying | /fgdu] < 1is o (X, (X')?) closed; since S is an intersection
of such sets, S is also closed in o (X, (X')?).

Corollary. If fo e X, fae X (n=1,2,..), and fn is o(X, (X)?)
convergent to f,, then ||yl < lim inf ||fnl|.

Theorem 4. The space X, provided with the topology |s| (X ,X'), is
complete.
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Proof. Let A be a directed index set, and let {/,}, @ € 4, be a Cauchy
directed set in X in the topology |o|(X, X’) (i.e. to any ge X’
corresponds an index ayeA such that /|(f, — f,») gldu <1 for all
a’, " > ay). We have to prove the existence of a unique fe X
with the property that to any ge X’ corresponds an index a, € 4 such
that /| (f,—f) gldu < 1 forall @’ » a;. This element f is then the limit
of {f,}. In the argument which follows we shall make use of the
following facts which are easily proved: If R is a metric space
(metric d(f, g)), complete in the ordinary sequence sense, and if
{4 is a Cauchy directed set in R (hence, there exist indices ay
(n =1, 2. ...) such that d(f,, /) < n'forall «, a’ } az), then
{/.} contains a Cauchy subsequence /, = f,m such that a® % a,
a®* & ¢ and the unique limit f of A, is also the unique limit
of {/. If R is not complete, but %, converges nevertheless to an
element fe R, then fis the unique limit of {f;}. Observing now that
the given set {f,} in X is also a Cauchy directed set in each Lebesgue
space L;(dy, p) (n=1,2,..), application of these facts easily
leads to the existence of a unique u-measurable f(x) on 4 such that
{/.} converges to fZa, in each L, (4, u). We shall prove first that
fe X. Let g be an arbitrary element of X', and consider the topology
Ty = T,y(g) on X defined by the countable set of normal semi-norms
No() = flfgldp, Nu(f) = [li%s,du (n=1,2, ..). This topology
is weaker than |o| (X, X’), so {f,} is also a Cauchy directed set in
T,. Furthermore 7T is metrizable (but not necessarily complete).
Hence, choosing the subsequence %, from {f,} in the indicated way,
hy is a Cauchy sequence in the topology T,. But, since T, is
stronger than the norm topology of L, (4w, u) for each N, and
{f converges to fXay in this norm topology, it follows that A,
converges to fXa, in this norm topology. We may assume therefore
(passing, if necessary, to a suitable subsequence) that /4, (x) con-
verges pointwise to f(x) a.e. on 4. Now, if E = {xe 4 : [g(x)| > 0},
the sequence %, g is a Cauchy sequence in the space L,(E,v),
where dv = |g|du, and on account of the pointwise convergence its
limit is fZg (observe that “almost everywhere on E” is the same for
the measures 4 and »), hence f4g € L,(E,»), so [|fgldu < oo.
Since ge X' is arbitrary, this shows that fe X. Finally, since {f;}
converges to f in the topology 7,(g) for each ge X', f is also the
limit of {f,} in the topology |o| (X, X').

There are several notions of compactness in topology and we
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briefly recall their definitions. The subset H of a topological space
is called semi-compact if every infinite subset of H has at least one
point of accumulation which belongs to H. If the latter condition
is omitted, H is called relatively semi-compact. The subset H is
called sequentially compact if every sequence of points of H contains
a converging subsequence whose limit belongs to H. If the latter
condition is omitted, H is called relatively sequentially compact.
The subset H is called compact if every open covering of H contains
a tinite subcovering, and H is called relatively compact if its closure
is compact. Obviously, in order that H be relatively semi-compact
(or relatively sequentially compact), it is sufficient that its closure
be semi-compact (or sequentially compact). This, however, is not
a necessary condition. It is well-known that compactness, as well
as sequential compactness, implies semicompactness, and the same
holds for the corresponding notions of relative compactness. In
general, however, there does not exist any other implication between
these three pairs of notions (for examples we refer to A. Grothen-
dieck [1]). In a metric space the three notions of compactness are
equivalent, and the same is true of the three notions of relative
compactness. A. Weil [1] showed that in a complete uniform space
(relative) compactness and (relative) semi-compactness are equi-
valent. The weak topology of a Banach space is an example of a
uniform topology which in general is not complete and not metri-
zable, but for which relative semi-compactness implies relative
compactness according to a theorem of W. IF. Eberlein [1], and
relative semi-compactness also implies relative sequential com-
pactness according to a theorem of V. Smulian [1; 2]. These results
together show therefore that for the weak topology of a Banach
space the three notions of relative compactness are equivalent.
A. Grothendieck, in the paper cited above, proved the following
two theorems (which we shall announce as lemmas), direct gene-
ralizations of Eberlein’s and Smulian’s results:

Lemma o. (4. Grothendieck (1], Proposition 2, p. 177). Let E be a
vector space, and T, T, two locally convex linear Hausdorff topologies
wm E such that E is a complete space with the topology T,. Then, if
the dual space of E with T, and the dual space of E with T, arve identical
(i.e. if any linear functional is continuous in Ty if and only if it is
continuous in 1Ty), the notions of relative semi-compactness and relative
compactness in the topology Ty are equivalent.
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Remark. If £ is a Banach space, we obtain Eberlein’s Theorem
by taking for 77 the norm topology and for 7, the weak topology.

Lemma B. (4. Grothendieck [1], Proposition 6, p. 181). Let E be
a locally convex linear Hausdorff space, comtaining a countable
collection of neighbourhoods of the ovigin having the origin as inter-
section. Then, if E* s its dual space, and f, (n = 1, 2, ...) a sequence
in E which s relatively semi-compact in the topology o(E, E¥*), [
contains a subsequence which s convergent in the topology o (E, E*).

Remark. If E is a Banach space, there always exists a countable
collection of neighbourhoods ot the origin having the origin as
intersection, and so we obtain Smulian’s Theorem.

Returning to the function space X, and basing ourselves on the
Lemmas «a, , we shall consider now compactness properties in
the ¢ (X, X’) and |o|(X, X’) topologies.

Lemma 11. (a) In the o(X, X') topology the three notions of relative
compactness are equivalent.

(b) If T is any other locally convex linear Hausdorff topology on X
such that the dual space of E provided with the topology T is X', then
the three notions of relative compactness in the topology 1 are equi-
valent. This holds in particular for T = |o|(X, X').

Proof. (a) Since X, provided with the topology |o| (X, X'), is a
complete space (cf. Th. 4) having X’ asits dual (cf. Th. 2), it follows
from Lemma a that relative semi-compactness and relative com-
pactness in the topology o (X, X') are equivalent. Lemma /3 shows,
by taking for E the space X with the topology |o| (X, X’) and for
the countable system of neighbourhoods of the origin the sets
Viem = {f : [|f|Xa,du < n*} (m, n =1,2,...), that relative semi-
compactness implies relative sequential compactness in the topo-
logy o (X, X').

(b) Once more, it follows from Lemma a that relative semi-
compactness and relative compactness in the topology 7  are
equivalent. Let H be a subset of X which is relatively semi-compact
in the topology 7. Since 7 is stronger than ¢ (X, X’), the subset H
is also relatively semi-compact in the topology o(X, X’), and
therefore relatively sequentially compact in ¢ (X, X'). Hence any
sequence f, taken from H contains a subsequence g,which is ¢ (X,X")
converging to some fe X. Now, any point of accumulation of the
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point set {g,} in the topology 7 is also a point of accumulation of
{gn} in the topology o (X, X'), and coincides therefore with f; it
follows that f is the only point of accumulation, and therefore the
limit of gy in the topology 7'. This shows that H is relatively sequen-
tially compact in the topology 7.

Corollary. The subset H of X s |o|(X, X') relatively compact if
and only if it is o (X, X') relatively compact, and if every sequence of
elements from H contains a subsequence which converges in measure
to an element of X on each set of finite measure.

Proof. By Lemma 11(b) H is |o| (X, X’) relatively compact if and
only if any sequence of elements from H contains a |o| (X, X')
converging subsequence, and by Lemma 8 the sequence f, is
lo| (X, X') convergent to fe X if and only if it is o (X, X’) convergent
to f, and if f, (x) converges in measure to f(x) on each set of finite
measure.

Remark. A result similar to Lemma 11 was obtained for a large
class of locally convex linear topological function spaces (Kothe
spaces) by J. Dieudonné [2].

Theorem 5. The subset H of X is o(X, X') relatively compact if
and only if N(g) = sup,y [|fgldu is an absolutely continuous normal
sema-norm on X'

Proof. If H is o(X, X') relatively compact, then H is o(X, X')
bounded, since otherwise there exist elements ge X', fueH (n =
1, 2, ...) such that |/fugdu| = n, but this is absurd by Lemma 5
since f, contains a ¢(X,X’) converging subsequence. Hence H is
bounded in norm by Lemma 1, so N(g) is finite for each ge X’
This shows already that N (g) is a normal semi-norm on X’. Assume
now that there exists a sequence E, of bounded sets such that
w(Ey) — 0 and N (gX&,) > a for some a > 0 and some ge X'
Then [k, |fugldu > a for suitable fpbeH (n =1, 2, ...), where (by
Lemma 11) we may assume that /, is a o (X, X') converging sequence.
But Lemma 5 shows that N, (g) = supy [|fag|du is absolutely con-
tinuous, so /g, |fugldp > a (n =1, 2, ...) is absurd. It follows that
N (g) satisfies the first condition for absolute continuity. The proof
that N (g) also satisfies the second condition is similar.

Let now, conversely, N(g) be an absolutely continuous semi-
norm on X', Since N (g) < oo for any ge X', the subset His ¢ (X, X)
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bounded, so (by Lemma 1) bounded in norm. But then, since
X = X" is isometrically imbedded in the conjugate space (X')* of
X', the closure H of H in the weak* topology o((X')*, X') is
compact in this topology. In order to prove that H is ¢ (X, X’)
relatively compact, it is sufficient, therefore, to show that H is a
subset of X = X". If f*¢ H, there corresponds to any pair ¢ > 0,
ge X' an element fe H such that [f*(g) — ffedu| < &, so|f*(g)| <
/I/gldu + €, which implies |f*(g)| < N(g). Now, since N (g) is
normal and absolutely continuous, it has (by Corollary 1 of Lemma
6a) the property that g, € X', |gu| | O implies N (g5) — 0. But then
(by |f*(g)] < N(g)) thelinear functional /* (¢) has the same property
so f*¢ X" = X by Lemma 7.

Theorem 6. Let 1" be a locally convex linear Hausdorff topology on
X which is defined by a set of normal semi-norms, and let the dual
of X (with the topology T) be X'. Then the topology T is absolutely
continuous.

Proof. Let N (f) be one of the semi-normsof 7, 4 = {fe X : N (f) <
1} and A° the polar set of 4, i.e. A°={ge X" : |ffgdu| < 1 for all
fe A}. Since A is normal we have supy, |/fgdu| = sup,, /|fg|du;
hence we may write as well 4° = {ge X' : [ |fg|ldu < 1 for all
fe A}, so A®is a normal subset of X’. We shall prove that N (f) =
SUP,eq0 f1fgldp. It is evident that N (f) > sup,, /|fgldu. In order
to prove the inverse inequality, let f; € X, N (fy) # 0. Then (by the
Hahn-Banach extension theorem) there exists a linear functional
f* on X such that f*(f,) = N (fp) and |f*()| < N(f) for all fe X.
This shows that f* is continuous in the topology 7', hence (since
the dual of X is X”) there exists an element goe X’ such that f*(f) =
J1go dp for all fe X. It follows that sup,, |/fg,du| = sup |/*(f)| <
sup N(f) =1, so g, € A% and therefore N (f)) = f*(f) < Supeq
|/fogdu| = supgeqo [Ifog|du. Furthermore, since X' is the dual of
X, A%is a ¢(X’, X) compact subset of X’ (the proof is similar to
the proof of the theorem that the unit sphere in the conjugate
space B* of a Banach space B is ¢ (B*, B) compact), hence, by
Th. 5, N(f) = sup,e [l|fg|dp is absolutely continuous.

Remark. The hypothesis that X" is the dual of X also implies that
T is stronger than ¢(X, X’) and weaker than the norm topology.
The present theorem is therefore an exact converse of Th. 2. If T°
is the norm topology in Theorems 2 and 6, we obtain Th. 3 in sec-
tion 2.
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In the remainder of this section we are concerned with the

question under what conditions the space X is separable (in the
ordinary norm topology). We obtain results which are closely
related to similar results obtained recently by H. W. Ellis - I.
Halperin [2] and G. G. Lorentz [4].
Theorem 7. Let Z be a linear subspace of X such that X c Z, and
such that f € Z implies fXy € Z for any u-measurable subset E of A.
Then Z is separable if and only if Z = Xb = X*, and the measure
w 1s separable.

Proof. The proof that the conditions are sufficient is standard.
Since u is separable, there exists a sequence of sets F, (1 =1, 2, ...)
of finite measure which is dense in measure (i.e. if £ is any set of
finite measure, and e > 0, then /|Xg—Xr]|du << ¢ for some F;).
Then the double sequence ;0 .4y, (i, n = 1, 2, ...) is also dense in
measure. Given fe X* = X? and ¢ > 0, we first approximate f
by a function g (x) which is bounded and vanishes outside some Ay:
Ilf — g1l] < ¢/3. This function g, may be written as (h; — hy) + i(hy—h,),
where each 4y (p = 1, 2, 3, 4) is non-negative, bounded and zero
outside Ay. Approximating these 7, uniformly from below by
rational step functions, we obtain a complex rational step function
g (%), 7ero outside Ay, such that ||g; — g/| < ¢/3. We have therefore
g = X% ¢, X&,, where all ¢, are complox rational, all £, are disjoint
and contamed in Ay. Giv ul one of these E,, we can m'lke u(E,—
Findn) + p(Findy — Eq) arbitrarily small by suitable choice of
Fin Ay, hence, since Zay € X* we can choose P, = F;nAy in
such a way that

¥, — Xp || = [[Xay Xie—Py

/ R (
2 N (P—Egll < &3 Xie,|.

Taking now gy = X} ¢, Xp,, we find

llga = gall = 127 ¢, (Xe,—Xp) || < Ziley| e, — Xp,]| < &3,
hence [[f —g; || < &, whcre ¢4 1s chosen from the countable collection
of finite linear combinations with complex rational coefficients of
characteristic functions of a countable set system.

Now we turn to the proof that the conditions are necessary.
First we shall show that if Z is separable, then Z = X* by an
argument which is due to G. G. Lorentz - D. G. Wertheim [1].
Let the sequence f, be dense in Z, and let g, e X' (n =1, 2, ...) be
an arbitrary sequence in the unit sphere of X'. Since |/f; g, du| <
I/l by Holder’s inequality, there exists a subsequence g, of g
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such that lim,, ,_ /f; g, dp exists as a finite number. Hence, by the
diagonal process and the hypothesis that f, is dense in Z, there
exists a subsequence gy, of g, such that lim [fg,u dp exists as a
finite number for each f e Z, so, by Th. 1 of this section, g,, is
o(X’, Z) convergent to some g € X'. Assume now that there exists
an element f, € Z for which the first condition for an absolutely
continuous norm is not satisfied. Then, for some A, there exists a
sequence £, c Ay such that u(E,) — 0 and |If, %g,/| = « > 0; since
X is perfect, this implies the existence of a sequence ,qn, € X’ such
that |lguf| < 1 XE, du = af2. Writing g = |gu|XE,/sgnf,
we have ||g,|| <1, [foén d,u = af2, and g is zero outside F,, According
to the above argument we may assume (by passing, if necessary,
to a suitable subsequence) that g, is o(X', Z) convergent to some

g€ X’; moreover, we may also assume that X7° u(E,) < oo.
Consequently, if E is a subset of 4, disjoint with U2, E; then

Fhpdu = lim [gyXpdp = 0, hence g (x) vanishes outside each U°”,’ p By
so g(¥) = 0 a.e. outside P = lim sup E,. But u(P) <27 u (Ej)
for each p, so u(P) = 0, and this shows that g(x) = 0 a.e. on 4.
Then 0 = [ffygdp = lim [ffy@ndp > «/2, which is a contradiction.
The proof that the second condition for absolute continuity is
satisfied is similar. Hence Z ¢ X%, and since X*cX?cZ, we obtain
£ = X¥*= X0,

To complete the proof we have to show that separability of Z
implies separability of x. The subset of Z formed by the charac-
teristic functions of all u-measurable subsets of 4, is also separable;
let %) be dense in this subset. Since, by section 1, u(E) =
le LE a’,u e corresponds to each number e > 0 a number

> 0 such that HXEH < 0, E c A, implies M(E) < e. Hence, if EcA,
and g - XV < 6, then w(E - E) 4 u(EP-E) < & so thc
sets E{Y) are dense in measure in A,. Similarly we obtain sets E{”
(k =1, 2, ...) which are dense in measure in Ay — Ay (=1, 2, ...).
It is then easy to see that the countable collection of all finite
unions of sets E{" (k, n = 1, 2, ...) is dense in measure.

Corollary 1. X is separable if and only if X has an absolutely con-
tinwous norm, and the measure u is separable.

Corollary 2. If X*= XV, then X* is separable if and only if the
measure u is separable.

Remark. If X is not separable, but X? is separable (such spaces
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exist; see Ch. 2, section 3), and if V' is a separable subspace of X
such that X? is a proper subspace of 1" (such a subspace may be
obtained for example by taking all elements g + af,, ge X?, «
complex, f, € X fixed and not belonging to X?), then I cannot have
the property that f € V' implies fXgel for each p-measurable £ c A.

Theorem 8. If the conjugate space X* of X is separable, then X is
reflexive.

Proof. If X* is separable, then X’ (as a subset of X*) is separable,
and, according to a theorem of S. Banach ([1], p. 189) X is also
separable. Hence, by Corollary 1 of Theorem 7, both X and its
associate space X’ have an absolutely continuous norm. But then,
by Th. 4 in section 2, X is reflexive.

Remark. For Banach lattices this theorem was proved by T.T.
Ogasawara [1, 2] and for function spaces by G. G. Lorentz [4].
The theorem, however, is not true for general Banach spaces as
shown by R. C. James [1], who gave an example of a non-reflexive
Banach space B for which even B** is separable.

Addendum: Unfortunately, the proof of Lemma 6b in section 3
is false. The proof can be saved if {N} contains a countable subset
{N,} such that N,(/) =0 (» =1, 2, ...) implies f = 0 a.e. Lemma
6¢ holds therefore with the same restriction. Lemma 8 remains true
since the restrictive condition is satisfied with N, (f) = [|/% .| du.
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CHAPTER 1I
ORLICZ SPACES

1. Young’s Inequality and the Young Classes Pg,

Let v = ¢@(u), # >0, be a non-decreasing real function of u
such that ¢ (0) = 0. We assume that ¢ () is left continuous (hence
@ (1) = @ (u—) for u > 0), and does not vanish identically (Example:
®0) =0, () =1 for all > 0). By u =1y (v) we denote the
left continuous inverse (if ¢ (#) is discontinuous at # = «, then y (v)
=a for ¢(a-) <v < ¢(a+), and if @) =c for a < u < b,
but ¢(#) < ¢ for u << a, then y(c) = a). Furthermore (0) = 0,
and, if lim ,_,., @ (#) = [ is finite, then y(v) = oo for v > [ (in the
example above y(v) = 0 for 0 <v <1 and ¢(v) = oo forv < 1).

Definition x. If the non-decreasing functions v = @ (u) and u = y(v),
mutually inverse, satisfy the above conditions, then the functions @ (u)
and ¥ (v), defined for u =0, v = 0 by the Lebesgue integrals

D) = [*p(t) dt, V) = [p(O)ds,

are called complementary Young functions.

The functions @ and ¥ are obviously absolutely continuous and
convex functions, @ () for 0 < # < oo, and ¥(v) in the interval
where it is finite. The reader should keep well in mind in all which
tollows the possibility that ¥ (v) may be 4 oo for all v > /, where
[ is finite.

We recall the important inequality due to W. H. Young (1912
[1]) (for the proof and further details cf. A. C. Zaanen [2], [3]):

Theorem 1 (Young's inequality). If @ (u) and ¥(v) are com-
plementary Young functions, then
w < D (u) + ¥P(v)

for arbitrary uw > 0, v > 0, and equality occurs if and only if one at
least of the relations v = @ (u), u = y(v) is satisfied.
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Corollary. We have

D) = max,y (wo—¥), V({©) = sup o (v~ (1)),
where sup mav be replaced by max if y(v) < oo.
Remarks. (1) If ®(0) = 0, @ (u) = 0 for u > 0 and @ () is convex,
then @ () is a Young function.

(2) The condition lim,, @ («)/u = oo is equivalent to lim
@ (1) = oo, and this is equivalent to y(v) << oo for 0 < v << oo.

uU-—rc0

Let @(u) and ¥(v) be complementary. Furthermore, let u be
the same totally o-finite measure on the set A as in Chapter 1.
Then, if f(x) is a w-measurable function, real or complex, on A4,
the functions ¢|f (x) |, |f(x)|, @|/(x)| and ¥|f(x)| are evidently also
p-measurable on A.

Definition 2. By the Young class Py = P4 (A, u) we shall mean the
set of all complex functions [ (x), u-measurable on A, for which M 4 (f)
= [D|f (x)|du << co. The Young class Py = Py(A, p) is defined
similarly, i.e. Py consists of all u-measurable complex f(x) such that
My (f) = [P|fldu < oo.

If @) = uf/p (1 < p < oo), then P, consists of the same
functions as the Lebesgue space Ly. For p > 1 we have V(v) =

v?q, where 1/p 4 1/g = 1, so that the complementary class P,
consists of the same functions as L,. In the case p — 1 it is rcadily
seen that Y(v) =0 for 0 <v < 1 and ¥(v) = oo for v > 1, so

Py, consists of all u-measurable f(x) satisfying |f(r)| < 1 almost
everywhere on /. Hence, in this case, P, is a proper non-linear
subset of L_.

We shall try to find necessary and sufficient conditions for P,
and P, to be linear. With this purpose in mind we first discuss the
following problem: Given two Young functions ¥ and ¥, we wish
to state a necessary and sufficient condition in order that Py c Py,
(i.e. My(f)< oo implies My, (f) < oo). The discussion which
follows extends two theorems by W. Orlicz and Z.W. Birnbaum [1].

Lemma 1. Assume that p(4) << oo, and that u is not purely atomic,
1.e. A contains a subset E, of positive measure which 1s free of atoms.
Then, if P(v) =0 for 0 <v <1 < oo and ¥(v) = oo forv > 1, we
have Py c Py if and only if ¥, () < co. In all other cases Py C Py,
if and only if there exist two constants a > 0, b > 0 such that
V() <ooand Pi(v) < b () forv > a.
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Proof. In the exceptional case the statement is evident, since P,
consists of all u-measurable f(x) such that |f(x)| < [/ a.e. on 4.
In all other cases there exists a value v, such that 0 < ¥(v,) < oo.
In these cases the sufficiency of the condition is evident on account
of ¥(a) < oo and u(4) < co. We prove the necessity. If the con-
dition is not satisfied, there exists an increasing sequence v, (n =
1,2, ...) such that 0 < ¥ (vn) < oo, ¥i(vn) > 27 ¥ (v,). Let E, be
a sequence of disjoint y-measurable subsets of E, such that u (E,) =
w(Ey) W(vy)/[27 ¥ (vy)]. This is possible, since E, is free of atoms
and 2u (Ey) < u(E,). Then, if f(x) = v, on E, and vanishes else--
where, we have

S dp =52 Won) p(En) = 55 p(By) Plog)i2n < oo,
S fdp=Z7 ¥y (0,) w(E,) =55 20 W(0,) w(E,) =Zs2, plEy) Ploy) —oo,

in contradiction to Py c Py,

Lemma 2. Let u(4) < oo, where A is the union of a countably
infinite number of atoms py of measure by, (arranged such that by <
by) and a set of measure zero. Let moreover lim inf byi/by > 0. Then
Py C Py if and only if the same condition as in the preceding lemma

1s satisfied.

Proof. As above, the exceptional case and the sufficiency of the
condition in all other cases are evident. Assume therefore that we
are not in the exceptional case, and that Py c Py,. Since lim inf
bu+1/bn > 0, there exist a constant 2 > 1 and an index N such that
for any ¢ << by the interval ¢/k << ¢ < ¢ contains at least one by,
(n > N). Determining the numbers v, as in the preceding lemma,
we can take ¢ = u(4)/[2" ¥(vy)] for n sufficiently large, hence
p(A)[[27k P(va)] < by < u(d)/[20 ¥ (vp)] for n > n,,.
It may happen that different # give the same b; , but in any case
we find an infinity of different &; for n = my, ny + 1, ... For a
moment disregarding this small complication, the choice /(x) = v,
on the atom p; leads to
Sl fldp = 22 Pvn) by < Z2 u(d)/20 < oo,

0 n 0

SPUdp = Z2 W (on) by, > Z32 20 P(og) by, > S, ud) [k = oo

’

in contradiction to Py c Py . If the mentioned complication occurs,
summation over a suitable subsequence gives the same result.
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Remarks. (1) It remains an open question whether Lemma 2 in
the non-exceptional case remains true in the absence of an additional
hypothesis such as lim inf b,44/b, > 0.

(2) If A4 is the union of a finite number of atoms of finite positive
measure, then Py ¢ Py, if and only if ¥ (v) < oo for any v for which
() < oo.

Lemma 3. If w(4) = oo, and A contains a subset E, of infinite
measure which is free of atoms, then Py C Py, if and only if there
exists a constant b > 0 such that ¥, (v) < b ¥ [©) for allv = 0.

Proof. The sufficiency of the condition is evident. We prove the
necessity. Let therefore Pyc Py . If ¥(v) = 0 for 0 <o <7 < o0
and V(v) = oo forv > [,then f(x) =1 € Py c Py, hence ¥ (1) =0
so the desired condition is trivially satisfied. Assuming therefore
that we are not in this exceptional case, Lemma 1 shows already
the existence of @ > 0 and b; > 0 such that ¥ (a) < co and ¥, (v)
< by ¥Y(v) for v > a. Furthermore it is evident that ¥(v) = 0
implies ¥;(v) = 0. Let ¢ = max {y|¥(v) = 0}. If the desired
condition is not satisfied, there exists a sequence w, | ¢ such that
Yi(w,) = v ¥(w,), and a subsequence v, = w, such that ¥ (vy)
< n % We next determine integers A, > 1 such that n % < ¥ (vn)
< 2 n? and disjoint subsets E; (i = 1, 2, ...) of E, such that u(E;)
= 1. Then, if /(x) =wvs on Ugt; E; | a4 and f(x) = O else-
where, we have

SO du = Z A Plog) < 221072 < o0,

T Hdp = & Ay Filon) = Z0la Plon) 220" = 0
contradicting Py, c Py, .

Lemma 4. I/ u(A4) = oo, and A is the union of a countably injinite
number of atoms Py of measure by such that O << lim inf by, < lim
sup by < 00, then Py C Py, if and only if V3 (v) < oo where ¥ (v) < oo,
and there exist two constants ¢ > 0, d > 0 such that 0 < ¥(c) < oo
and VYi(v) < d WP) for 0 <o < e.

=

Proof. Let the condition be satisfied, and assume that fe P, hence
2 by W |f(pn)| < oo.Then fis bounded; so max |f(pn)| = a < oo.
Hence ¥(a) < oo, so that also ¥;(a) < oo by hypothesis. But
then, by our further hypothesis, there exists a constant 4 (depending
on a) such that ¥;(v) < 4 ¥Y(v) for 0 < v < a, hence f € Py,
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The proof that the condition is necessary is very similar to the
corresponding part of the proof of the preceding lemma.

Corollary. X W|x,| < oo wmplies X Wi|xp| < oo for any complex
sequence xn, if and only if ¥, (v) < oo where ¥ (v) < oo, and ¢ > 0,
d > 0 exist such that 0 < P(c) < oo, P1(v) <dP[) for 0 <v <.

Remarks. (1) By combining Lemma 4 and Lemma 1 or Lemma 2,
several other cases may now immediately be discussed.

(2) If1 < g < p < oo, and u is Lebesgue measure on the interval
0 < x < 1, then Lemma 1 shows that L, c L, since v? v* forv > 1.
If however 4 is the interval 0 << x < oo, then Lemma 3 shows that
neither of the classes L, and L, is included in the other one. Lemma
4 shows that the sequence spaces /p and [, satisfy /, c [, since
v Lvlfor0 <v < 1.

We return to the question of the linearity of P,,.

Theorem 2. The class Py is linear if and only if Py, C Py, and
in this case Pyy) = Py,

Proof. If Py, is linear, then /¥|f|du < oo implies /V|2f|du < oo,
hence Py, C Py, Conversely, if Py, € Py, and fe Py, then
2ke P, for any integer £ > 1, hence afe P, for any complex constant
a. Furthermore, if £, f; € Py, C Py(z,), then
Tl + flde < JPTIA] + 2150 1de < 3 /P12h1dp + 1/ P\2f5|du< oo
by the convexity of Y. Hence f; + f, € Py. It follows that Py, is
linear.

Since Py, C Py, is always true on account of ¥ (v) < ¥(20),
the relations Py, C Py, and Py,y= Py, are equivalent.

Remark. The linearity condition Py, = Py, may be replaced
of course by Py, = Pyy,, Where £ is constant and & > 1.

It will be evident now that by choosing ¥, (v) = ¥ (2v) in the
Lemmas 1-4, we get linearity conditions for P,. For reasons of
convenience we introduce some abbreviations.

Definition 3. The Young function ¥ (v) is said to have the property
0y if P (v) > 0 for all v > 0, and there exist two constants a > 0,
m > 0 such that ¥'(2v) < m¥ ) for 0 < v < a, and ¥ (v) is said to
have the property A, if there exist two constants b > 0, M > 0 such
that V(b)) < oo and ¥ (2v) < MYV (v) for allv > b (hence, in this
case, ¥ (v) is finite for all v). If ¥ (v) has both properties, so if there
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exists a constant M > O such that ¥ (2v) < M ¥(v) for all v > 0,
then W(v) is said to have the property (0, As).

Property 6, is equivalent to the apparently weaker property that
there exist constants ¢ > 0, m > 0 such that ¥(a) > 0 and
¥ (2v) < m ¥(v) for 0 < v < a. Combining Theorem 2 and the
Lemmas 1-4, we obtain

Theorem 3. If u(A) < oo, and A contains a subsel of positive
measure which is free of atoms, then P, is linear if and only if ¥ (v)
satisfies Ay. If u(A4) = oo, and A contains a subset of infinite measure
which 1s free of atoms, then Py is linear if and only if ¥ (v) satisfies
(0g, Ay). If u(A) = oo, and A is the union of atoms py of measure
by such that O << lim inf by, < lim sup by << oo, then Py is linear if
and only if ¥ (v) is finite for all v = 0 and ¥ (v) satisfies 0,.

Remarks. (1) If ¥ (v) has the property 4,, so ¥(v) {inite for all
v >0 and ¥(2v) < MW (v) for v > v,, there exist constants p>1,
N > 0 such that ¥ (v) < Nv” for v > v,. In order to prove this, we
write M = 27 (hence p > 1), so ¥(2v)/(20)? < ¥ (v)/v? for v > v,.
If N is the maximal value of ¥ (v) /o? inv < v, < 2v,, it follows easily
that ¥(v) < Nv? for v > v,. The converse statement is not true
however as the following example shows: Letv, = n!/2(n = 2, 3, ...),
and let Y (v) be such that Y(v) < 9% ¥(vp) = (n-1)! v, and
¥ (2vp) — W (vp) = nlvy. Then ¥ (2u,) [V (vn) = n + 1.

(2) If lim, ,, (1) = [ < oo, then @ (u) < lu for all w > 0, hence
the Lebesgue space L, satisfies L; ¢ P,. Furthermore, if ¢ > 0 is
such that ¢ < //2, there exists a number u, such that ¢ (1) > I,
and a number u, such that 1 - ju > (I—2¢)/[(l—¢) for u = wu,.
Hence, if u > u,,

D) = (I—¢) u—uy) = (—¢e) u(l—uyfu) > u (l-2).

This shows that for u(4) < oo the classes P, and L, consist of
the same functions.

(3) If @(u) and ¥ (v) are complementary, one may ask if it is
always true that one at least of these functions has the property 4,.
The answer is negative, as shown by the following example: Take
a sequence 1 << M, < M, < ... such that lim M, = oo. The graph
of @(u) consists of straight line segments connecting the points
0, 0), (uy, vy), (us, vy), ..., Wwhere u,, v, are arbitrarily positive;
Uy = 20y, Vo = M0y; hg = My 15, v3 = 20,; 114 = 204, v, = M 544, and
so on. Then @ (u,) > } M ®(un,), ¥(vg) > L+ M, ¥(v,), and so on.
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2. Definition and some Properties of Orlicz Spaces.

We consider My, (f) = [ V|f (¥) |du. By the properties of the Young

function ¥ we have:

(a) M4 (0) = 0.

M, (kf) = 0 for all £ > 0 is equivalent to f = 0 a.e. on 4.

My (Rf) < 1 for all & > 0 is equivalent to f = 0 a.e. on 4.

If ¥(v) > 0 for all v > 0, then M, (f) = 0 is equivalent to
=0 a.e. on 4.

(b) My (%) = M, (f) for real ¢.

Ifa>0,0>0a+0b =1, then My(af + bg) < aM,(f)
+ b My (g).

(c) M (kf) is a convex left continuous function of £ for 2 > 0,
and if M, (af) << oo for some a > 0, then M, (kf) is a finite
convex continuous function of 2 for 0 < & < a.

By means of M, (f) we now define the following metric function

(Minkowski functional), at first only for non-negative functions:

Definition 1. 70 every non-negative p-measurable function f(x) on
A we assign the non-negative number o (f) = inf k™" for all k = 0 such
that M, (Rf) < 1.

It follows at once that 0 < p(f) <C oo, and ¢(f) is finite if and
only if there exists a constant £ > 0 such that M, (?f) is finite.

As an example we consider the case that P (v) = 0 for 0 <v < 1,
Y () = oo forv > 1. Then M, (kf) < 1 if and only if 2/ (x) < 1
a.e., so k1> ess sup f(x). Hence o (f) = ess sup f(x), the L_ norm

of f(x).

We shall prove that the metric function ¢(f) posesses the pro-
perties (P 1) - (P 4) of Ch. 1, section 1.

(P1) o(f) = 0if and only if M, (kf) < 1 for all # > 0, and this
is equivalent to f(x) = 0 a.e. on A. If a > 0, then g(af) = inf &7}
for all £ > 0 such that M, (kaf) < 1, and this is equivalent to
o(af) = ainf (ak)™ for all & > 0 such that M, (akf) < 1. Hence
o(af) = a o(f). Finally we shall prove that o(/i+ f,) < o(f) +
o(fy)- It o(fy) + o(fy) = oo, there is nothing to prove. Assume there-
fore that o(f;) + o(fy) = 7 < oo. Let ¢(f,) = ay and ¢o(f,) = by,
a+0b =1 Then My[(hi+ fo)/y] = Myla(filay) + b(H/by)] <
a My(hay) + b My(fby) = @ My [hle(f)] + b My (o ()]
<a+b=1henceg(fy + /) <7 = olf) + olf).
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(P 2) First we observe that f; < f, implies o(f;) < o(fy). If
o0(fy) = oo this is evident; if ¢(f,) << oo, then My[f;/o(f)] < My
[fole(f)] < 1, hence ¢(f;) < o(f,). Let now f,, } f a.e. on 4, and let
o(fs) =anta.lfa=0,thena,=0mn=1,2, ...), hence fr(x) =0
a.e. for all n, so f(x) = 0 a.e.,, and ¢(f) = 0. Since p(f) and all
o(fn) are zero, o(fn) 1 o(f) is satisfied. If a = oo, s0 ¢ (fy) 1 oo, the
relation o (fn) 1 o(f) is trivial. Let therefore 0 << @ << oo. Then,
since @ > ay and My (fu/an) < 1, we find My (fu/a) < 1, hence
M (fla) < 1 by Fatou’s Lemma, and this implies ¢(f) < a. It
follows that o(f) < a = lim o(fx) < o(f), so o(f) 1 ().

(P 3) Let Zg(x) be the characteristic function of the bounded
subset E of A. Then g (Xg) = inf £ for all £ > 0 such that /g ¥'(k)
du < 1; hence, if the range of ¥(v) covers the whole interval
0 <v<oo, we find o(Yg) = [P{u(E)y"™ If however there
exists a number / > 0 such that 0 < ¥(/) < oo, and ¥ (v) = oo
for allv > I, then o(Xg) = I if u(E) Y()) <1, and ™ < o(Xg) =
[@{u(E)Y™" if u(E) ¥() > 1. Observe that the proof not only
shows that ¢(¥g) << oo for any bounded E, but even for any E
of finite measure.

(P4) Let o(f) < oo, and let E be a bounded subset of A. Then,
if 2 = 1/o(f), we have /¥ (kf) du < 1, hence, by Jensen’s inequality,
(V) Pl e b dpy < iy JP R dp < i
If the range of ¥ (v) covers the whole interval 0 < v < oo, this
implies {u(E)}™" [z kfdu < @{u(E)}™, hence

Jp fp < @ Qu(E)} w(B) 1k = P{ju(E)} p(E)e()-

In this case, therefore, we may choose A = I:I} {uW(E)Y" p(E).
If however there exists a number / > 0 such that 0 < P(I) < oo,
and ¥ (v) = oo for all v > [, we distinguish between u(E) ¥ () > 1
and w(E)¥(!) < 1. In the first case 1/u(E) < ¥(I), so once more
Is fdp < g—p}{‘u (E)Y'u(E) o(f). In the second case, since the left
side of (1) is finite, we find {u(E)}™" fgkfdu < I, hence [;fdu <
w(E)e(f).

Once the properties (P 1) - (P 4) for o(f) are verified, we give,
in accordance with Ch. 1, section 1, the following definition:

Definition 2. The Orlicz space Lyy = Ly (A,u) is the set of all
complex functions f(x), p-measurable on A, and satisfying ||fllyye =

o(|f) < oo.
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Identifying elements /,, f, € L, if and only if u(E|f, #Z f,) = 0,
the space L,y is obviously a normed linear space with norm [|f||;;,-
By Ch. 1, section 1, Th. 1 we have

Theorem 1. The Orlicz space Ly, is a Banach space.

If W() = oJp, 1 < p < oo, then Lyy = Ly and ||flyyy =
(1/p)" Ifllp- 1t ¥'(v) = Ofor 0 <v < 1and ¥() = coforv >1,
then Ly, = L, and || f|lyy = |/l

Lemma 1. (a) fe L,y tf and only if M, (kf) < oo for some constant
k > 0. Hence Py c Ly,,.

(O) |7 lare < 1if and only if M, (f) < 1. More precisely, || f| e < 1
implies My (f) < [|/llsewr and [l > 1 implies My (f) = || llsre-

(© My(f) = 1 implies [flyy = L; if My(kof) < oo jor some
constant ky > 1, then ||f||ye = 1 tmplies My (f) = 1.

(d) lim,,_yoo |fn— Fllagw = O if and only if lim,, .., My {k(fa—f)} =0
for all constants k = 0, and in this case M, (kf) << lim inf My (kfn)
for every B = 0. If moreover M, (kofn) << oo for some ky and all n,
then M (Rf) = lim M, (kfa) for all k such that 0 < kB < R,

Proof. (a) Follows immediately from the definition of the norm
17 e

(b) Let first £ = ||f|| < 1. Then kM, (f) < My (k) = M,
(fIIf]) <1, hence M, (/) < k™= f|. Let next|/f|| > 1. Then, for
any constant & such that 1 < & < ||f|, we have M,, (k%) > 1
by the definition of |f|; hence £ My (f) > My (k) > 1, so
M (f) > k. Since this holds for every & < ||f|, we obtain M (f)
> |Ifll

(c) It is evident by (b) that M, (/) = 1 implies ||f| = 1. Let now
M, (kof) < ooforsome ky>1, and ||f|| = 1. Then, if 1 < & < &, we
have || kf|| = & > 1, hence M, (kf) > 1 by (b), so My(f) > 1 by
continuity. But also M, (/) < 1 since ||f|| = 1. Hence M, (f) = 1.

(d) lim ||fp—f]|| = O implies lim [|%(f»—f) || = O for any constant
k > 0, hence lim My, {k(f» — )} = O by (b). Conversely, if lim M,
{k(fn—1f)} = 0 for every & > 0, and ¢ > 0 is given, then M ,{e*
(-} < 1 for m > ngy(e), so e (fa—f)|| < 1 by (b). Hence
lfn = fll < e for n = ny Assuming now that lim |f, — f|] = 0 is
satisfied, we choose a subsequence g, of f, such that lim M, (kgs) =
lim inf M (kfy). Since lim || g,—/|| = 0, the sequence g, contains
a subsequence gy,, converging pointwise to f a.e. on 4. So, by
Fatou’s lemma, My, (kf) < lim My (kgn,) = lim inf M (kfy). Let
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now, moreover, My (kyfn) << oo for some &, and all #», and let
0 < k << ky Then
My (kf) = My {kfn + R(f = fa)} =
Mgk kol + (L= kg™, (1 - kg™ (f ~ )}
< kkgt Moy (kofn) + (1 kkg™) Mylk(1—kkg™)™ (/= fa)],
so M, (kf) < oo. Choose ¢ such that O < ¢ << 1 and 4; such that
k <k <<k, (hence My (& f) < oo). Then
M, (kf‘n) =My {kf +k(fa-1)} =
My{k(l—¢) f+kef+k (fn—f}=
M {(1-¢) kf + ekki' kyf + e(1 - kETY). ke (1 — kLY (faf) }
< (1—¢&) My (kf) + e kki* My (Ryf) + (1 - kETY) U,, Lke Y(1-kET)
(o= N1 < My (k) + ¢ My () + & Mylhe™ (L—kEY ™ (-]
By choosing » sufficiently large the last term can be made smaller
than ¢; hence lim sup M, (kf,) < M, (kf), from which the desired
result follows. That lim ||/, — /|| = 0 does not always imply M, (kf) =
lim M, (kfy) is shown by the following example: Let ¥ (v) = 0 for
0<v <1, and ¥ (v) =ocoforv >1,50|/f|lsyre = || f|lo- Then, if f (x) =
14+ wnlforallx (n=1,2, ..) and f(x) = 1 for all x, we have lim
lfn=fll = 0, but My(fs) = co(p=1,2, ..) and Mu,{fi = 0.

Lemma 2. [} je Ly, and E, (n = 1,2, ...) is a finite or countable
collection of disjoint subsets of A of finite positive measure, then ||f||
is not increased if on each E, we replace f(x) by its average on E,, i.e.

by [x, faup(En).

Proof. Writing f for the function obtained by replacing / by its
average on all En, we find by Jensen's inequality
SEASINNF D du = -n w1 Je, PUSINAN) dp + fayp, LA du
< 2320 fe, W pEN e NI du) dp + [4-ge, YT 4
2y /za,,_‘f’(\/l/f\/\\) dp + [yup, PULNN e = My (f/IIF) <1,
hence || f|| < ||/|| by the definition of the norm.

This lemma shows that the norm ||f|,;y 1s “levelling” in the
terminology of H. W. Ellis — I. Halperin [1].

In Ch. 1, section 1 we have assigned to each Banach function
space X its associate Banach function space X'. Choosing X = L,
we now introduce the associate space (L,.,) .

Definition 3. Let @ and ¥ be complementary Young functions. Then
the Orlicz space Ly = Lg (A, p) is defined to be the associate space
(Lyw) ', 1.e. Ly, consists of all complex functions f(x), u-measurable
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on A, for which ||f||, = sup [|fgldu < oo, where sup is for all g(x)
satisfymg gllyy < 1.

The reader will ask why (L,;,)’ is denoted by L,, since the above
definition involves only the function ¥, and not the complementary
function @. The notation L, is justified by Theorem 2 below.
The reader is also warned not to confuse the new notations L,
|l/ll, and the old notations L,,,, |//|l;;o- The Orlicz space L,,, consists,
according to Def. 2, of all /(x) such that ||f]],;4 < oo, Where [|/||,/4,
according to Def. 1, is equal to inf £ for all £ > 0 such that
My (kf) = J®@|kf|du < 1. What we shall prove in Theorem 2, and
this is the justification for the notation L,, is that L, and L,
contain the same functions /, although ||f|, and | /|, are not
necessarily equal. Before doing so, we shall make some additional
observations. In the first place, one may replace the definition of
|7]lp in Def. 3 by || /||l = sup /|/g|dp for all g satisfying /¥|g|du <1,
since M, (g) < 1 is equivalent to |lg|/;;» << 1 by Lemma 1 (b).
Furthermore, we have Holder’s inquality

J1fgldp < ||fllo I8l are
which is sharp in the sense explained in Remark (2) at the end of
Ch. 1, section 1. Finally, by Lemma 4 of Ch. 1, section 1, fe L,
if and only if [fgdu exists as a finite number for every g € L.

Theorem 2. The spaces Ly and L, consist of the same functions,
i.e. f€ Ly if and only if M, (kf) << oo for some constant k > 0. More
precisely, Mg (f/llflle) < 1 for every f e Ly which does not vanish
identically.

Proof. If f is such that M, (kf) < oo for some constant & > 0,
and M, (g) <1, then fk|fg|ldu < M, (kf) + 1 by Young’s inequality,
hence |/l < A {Mg(kf) + 1} < oo. In order to prove the con-
verse, we shall show that M, (f/||/ls) < 1 for every fe L, which
does not vanish identically. If / satisfies these conditions, then
Jligldp < 1flla i My (g) < 1, and flfgldu < 1flp My (@) if My (g) > 1
by Hélder’s inequality and Lemma 1(b). Hence /|fg|du <||/||oMy (9),
where M7, (g) == max (M, (g), 1). If first / is bounded and vanishing
outside the set A,, then M, (f/||f|ls) < oo and My, [@(|f|/||flle)] << oo;
hence, since Young’s inequality becomes an equality for g =
e (I71/Iflla)
My () = JUNNle] gdu = Mo (f/Iflle) + My (g)-

If My (g) = My(g), then My (flllflls) = 0 < 1; if My(g) = 1,
then My (f/liflla) + My(g) < 1, hence My (f/lflls) < 1. Let now
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fe L, be arbitrary. Defining fr(x) (n = 1, 2, ...) by fu(x) = 0
outside 4y, fu (¥) = f(x) ondy (|f| < %) and fr (%) = non 4, (|f|>n),
we have [fa| 1 |f], Mg (fn/llfnlle) < 1 and |fulls < |If]le- Hence
Mg (falllflle) < 1, 50 Mg (f/llflls) < 1 by Fatou's lemma.

Theorem 3. The norms ||f|y;e and ||f|lp are equivalent, i.e. the norm
topologies gemerated by these norms arve identical. More precisely,

7o < flle < 2 [1/llme
for any u-measurable f(x).

Proof. The preceding theorem shows that ||f||;; = oo if and only
if |[f|l, = oo. Let therefore fe L. If ||f||; = 0, then f = 0 a.e., so
l/llze = 0O, and conversely. Hence, we may assume that ||f||; #% 0
and [fllye # 0. The inequality My (f/l|/lls) < 1 implies ||l <
Ifle. For & = {||fllyo}" we have M, (kf) < 1, hence, by Young’s
inequality, [I/ls < ™Mo (®) + 1} < 2({le-

Now that we have obtained the three Orlicz spaces Ly, Lo
and L,, it will not be difficult for the reader to guess how the dis-
cussion is brought to a close. The fourth Orlicz space L, is introduced
as the associate space (L)  0f Lye, and ||/, = sup /| fg |du for all
¢ satisfying || g|ly;6 << 1. Analogous to what we did in Theorem 2,
we wish to prove that L, and L,;, consist of the same functions,
and that M, (f/|/|l,) < 1 for any fe L, which does not vanish
identically. The proof requires some care, since it may happen that
¥ (v) = oo tor finite v (if ¥(v) < oo for all finite v, Theorem 2
gives the desired result). Assume therefore that lim, . ¢(4) =
[ << o0, so ¥(v) = oo for v > I. We prove first that in this case
fe L, implies | f|/|| f|ly < ! a.e. on 4. In fact, assuming that |f(x)| >
l]lf|l on a set E of finite positive measure, we might put g(x) =
[u(E)]™" on E and g (x) = O elsewhere, and then, in virtue of @ (u)
< lu for all u, we should have M4(g) = p(E)®{u(E)}"] <1
and [|f¢ldp = [e!fldullu(E)] > ||}y simultaneously, which is
absurd. Hence, supposing first that f(x) vanishes outside some 4,
and choosing the arbitrary but fixed number ¢ such that 0 < ¢ < 1,
we see that both (8| |/[|/lls] and ®|g|, where g — v [8]7 I/l
are bounded a.e. on 4,, and therefore integrable over 4. Writing
M3 (g) = max (M4(g), 1), we have now

0Mo(Q) = [16flfllw gldp = My (&f/l[flle) + Ma(g),
from which we derive, since My (g) = 1 on account of M4 (g) <
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OMy(g) < My(g), that My, (6f/||flly) < 6 < 1. Making 6 11, we
obtain the desired result. The extension to the case that f(x) # 0
on a set which is not bounded is now evident. Analogous to what we
proved in Theorem 3, it follows finally that

ilare < fle < 2 ilfllpre

Example: If @ (u) = u’/p, 1 < p < oo, then ¥ (v) = v%q, where
p + ¢t = 1. We have already found that in this case [|f|[;;6 =
(1/$) ¥ [[flp and |5 = (1/g)** |1/l and an easy computation gives
Ifle = g¥4lifllp and ||flly = p"* Iflg- 1t p = g = 2, then ||fllye =
lsew = 3172 [ifl and [fllg = ly =172 Ifl: If S () = w, then
Y(w) =0tor0 <v <1and ¥(©) = oo forv > 1, so in this case
ilao = Ifle = lifl and fllyre = [flle = IIfllo- This example shows
therefore that the inequalities in Theorem 3 for ||f|, and ||/,
(and also the corresponding inequalities for ||f||, and ||f|,;,) are sharp.

Remarks. (1) In 1932 W. Orlicz [1] defined for the first time the
spaces Ly and L, (Ly and Ly in Orlicz’s notation), assuming
that @ and ¥ are complementary Young functions possessing some
additional properties (¢ () and y(v) continuous, strictly increasing
and tending to infinity). Some years earlier, however, W. H. Young
[2], making an extensive use of his important inequality, had found
a number of properties of the Young classes P, and P, in his
investigation of what he called supersummability (summability of
@|f| or Y|f]). The spaces Lgand L,, as defined by Orlicz, did not
include spaces of the L, or L_, types, owing to the restrictions im-
posed upon ¢ (u) and y(v), and this may be felt as a weakness,
since in many respects the spaces L, and L_ are, so to speak, the
cornerstones on which the whole structure of L, spaces rests. This
defect was remedied by A. C. Zaanen [2] in 1949, who extended
Young’s inequality to the case where ¥(v) may jump to infinity,
and defined L,, Ly in such a way that all Ly (1 << p << oo) were
included. However, there still remained another defect: the spaces
L, and Ly are not associate in the sense of Ch. 1, section 1, and
this makes the relation between |f|, and ||g|l, not sufficiently
clear (Hélder’s inequality in the form [|fgldu < ||flls llglly is true
but not sharp). This is the reason why we have introduced here
the spaces L, and Ly, so that finally one has to deal with the
intertwined associate pairs L4, L, and Lg, Ly, It is to the point
here to observe that H. Nakano [1, 2] has recently published a
comprehensive abstract theory of what he calls modulared spaces,
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i.e. linear spaces on which a non-negative functional, a modular,
is defined which has some but not all properties of a norm. In our
case M4 (f) and M, (f) are modulars in the sense of Nakano.

(2) By Ch. 1, section 1, Th. 4 the Orlicz spaces L, and L,,,, are
perfect, and by Ch. 1, section 1, Th. 3 the same is true of the asso-
ciate spaces Ly, and L,. Hence

1/llsre = sup [|fg|ldu for all g satisfying [|g]l, < 1,
[/ llyw = sup f1fgldu for all ¢ satistying [lglly < 1.

(3) If @ and ¥ are complementary, and E is a subset of A of
finite measure (characteristic function Xg), then u (E) = || Xg|| o || XEl yru
(compare H. W. Ellis - I. Halperin [1], p. 580). If u(E) = 0,
this is evidently true; if 0 << u(E) << oo, then |[Xg||, = sup [&|f|du
for all / such that ||f||;;» < 1. Replacing |f| on E by its average f=
w(E)T Jalfldu, we have fi [fldp = falfldp and [y < s by
Lemma 2, hence ||Xg|l, = sup [r kdu for all constants £ > 0 such
that ||kXg|,e < 1. It follows that | Xg| = u(E) [||%E| sre)™ This
result throws a new light on the constant 4 in part (P 4) of the
proof (preceding Definition 2) that o (|f|) = |/f|/;;y satisfies the con-
ditions (P 1) - (P 4) of Ch. 1, section 1. In the notations of that
proof, we have found in (P 3) that ||[Xg| . = [fﬁ{,u(E)}‘lj‘l or
|XE ||y = 7 for any set E of finite positive measure, hence by our
present result || %z]lp = u(E) piu(E)}™ or |Xgll, = lu(E). The
value Ag = u(E) @{u(E)}™ or Ag — lu(E) in (P4) is therefore
sharp, since /!f|du < [%&llg /]lys is sharp.

Lemma 3. Let @ and ¥ be complementary. If fe Ly (or feL,), and
Ey, n=1,2,..) is a finite or countable collection of disjoint subsets
of A of finite positive measure, then ||f||y (o7 ||f|ly) is not increased if
on each Ey we replace f(x) by its average on Ey, i.e. by [, fdu/u(Ey).

Proof. Writing f for the function obtained by replacing / by its
average on all £,, and assuming that ||g||,,» < 1, we find
SRl = Z2; fo, V(B fe, dul. 18] du + fuum, fgldn <
22 S VP TLR(E,) Jiy |g1dp] dit + Jasmy Vel du = /118 du,
where g is obtained by replacing |g| by its average, so |||y <1
by Lemma 2. Hence [[]l» = sup /|fe|du < sup /1igldu < [/]a-

In section 1 of the present chapter we have obtained (LLemmas
1-4) some necessary and sufficient conditions in order that Py, ¢ Py, .
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In the next theorems we shall discuss a similar problem: we wish
to find necessary and sufficient conditions in order that L, cL,,
(i.e. in order that [|f[, << co implies ||f||y, < o).

Theorem 4. If ¥ and ¥, are Young functions, then L, CLy if and
only if there exists a constant C > 0 such that ||f||ly, < C |[f|ly for every
fe L.

Proof. IfsuchaC > 0 exists, then evidently L, c L, . Let conversely
L,cLy , and let the sequence fp € Ly, (n = 1, 2, ...) be such that lim
| /n—fllg = 0, im ||fn — gll, = 0. Then fy contains a subsequence g,
which converges pointwise to f, and, since lim [|gz—glly, = 0, gn
contains a subsequence which converges pointwise to g. Hence
/ = g. This shows that the identity mapping of L, into L, is
closed, and therefore bounded by the closed graph theorem. A
second proof, which does not use the closed graph theorem, is as
follows: If @ and @, are complementary to ¥ and ¥, respectively,
and LyCLy, then LgdL,, since ge Ly implies f|fg|du < oo for
every fe Ly, hence for every fe Ly, so ge L,. Assuming now that
[Ifllg, < C ||fllg is violated for every C > 0 by some fe L,, there
exists a sequence f, such that | fu[ly, = 1, [[fully, = n. The linear
functionals [fugdu on Ly (c Lg) are uniformly bounded in » for
every ge Lq, since | ffugdp| < llfullw/l€]late = gl for all #; hence,
by the Banach-Steinhaus Theorem, [|fz|ly, << M for some constant
M, contradicting ||fully, = 7.

Next we ask if it is possible to find a condition for the functions
¥ and ¥; themselves which is equivalent to L, cL, . The reader
is reminded that in the Lemmas 1 — 4 of section 1 we have derived
that P, c Py, for the Young classes P, and P, if and only if there
exists a constant M > 0 such that ¥,(v) < M¥(v) for large v,
small v or all v, depending upon the further particulars of the situa-
tion. It is certainly not true that L, c L, is equivalent to the same
condition ¥, (v) < MY¥(v), since, choosing ¥;(v) = ¥(2v), we
have always Ly,cL, , but not always ¥(2v) < M ¥ (v). Theorem
5 below, however, will show that insertion of an additional positive
constant saves the situation. Before stating and proving this theorem
we collect some remarks about L_ in a lemma. For reasons of
convenience we shall say that ¥ jumps whenever there is a number
vy (0 < vy < 00) such that ¥ (v) = oo forv > vy,

Lemma 4. (a) If ¥ jumps, then always Ly c L.
(b) If u(4) < oo, and ¥, ¥, are Young functions such that ¥
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jumps, then Ly = L, ¢ Ly (the sign of equality means that L, and
L contain the same functions, and not necessarvily that ||f||y = |/ |s) -

(c) If u(A) = oo, then L. CLy, if and only if there exists a number
vy > 0 such that 'V (v) = 0 forv < w,,.

(d) If u(4) = oo, and A is the union of a countable number of
atoms py of measure by, such that O < lim inf by < lim sup by < oo,
then L, c L, for any V.

(¢) Under the same hypotheses on A and w as in (d), L., = Ly, 1f
and only if ¥, (v) = 0 for v < vy, where vy > 0.

Proof. (a) Has been proved already in the proof of M, (f/||f|lx) < 1.

(b) It is sufficient to prove that L_cLy (since, once this is
proved, the choice ¥, = ¥ gives L cLy,cL_ by (a)). If feL_,, then
lf(x)| < M ae., and ¥,(kM) < oo for some & > 0. Hence
My, (kf) < oo, 0 fe Ly,

(c) If L, cLy, then f(x) = 1€ Ly . Hence g(x) = ke P, forsome
k > 0, so ¥,(k) = 0. Conversely, if ¥, (v) = 0 for v < v,, where
vy > 0, then f(x) = vy€ Py, so fe L, implies fe Ly, .

(d) If fe L, then kf € Py, for some & > 0, hence Xb, ¥ (kf,) < oco.
It follows that kf (x) is bounded, so fe L_..

(¢) On account of (c) it is sufficient to prove thatL_ c L, implies
L, = Ly, This follows from (d).

Theorem 5. (a) Let pu(A) < oo, and let A contain a subset of positive
measure which is free of atoms. Then, if ¥ jumps, Ly, = L., C Ly, is
true for any W,. If 'V does not jump, then Ly, C Ly, tf and only if there
exist constants a > 0, b > 0, vy > 0 such that ¥y (av) < b¥(v) for
vV = V.

(b) Let u(4) = oo, and let A contain a subset of infinite measure
which is free of atoms. Then Ly cLy, if and only if there exist constants
a > 0,0 > 0 such that ¥; (av) < b ¥ (v) for allv = 0.

(c) Let u(A) = oo, and let A be the union of atoms py of measure
by such that 0 < lim inf by < lim sup by < oco. Then Lyc Ly, if and
only if there exist constants a > 0, b > 0, vy > 0 such that ¥ (vy) > 0
and ¥, (av) < b¥(v) for v < v,

Proof. (a) The statement for a function ¥ which jumps has already
been proved in Lemma 4(b). Assume therefore that % does not
jump. It is evident that ¥, (av) < b ¥ (v) forv > v, implies Ly, cLy,. .
In order to prove the converse, we restate (in slightly different
words) what has been proved in section 1, Lemma 1: There exists a
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constant 4 > 0, not depending upon ¥ or ¥, but only on the set
A (in fact, one may choose A4 = u(A4)), with the property that if
any f satisfying [P|f|ldu < A also satisfies f¥,|f|du << oo, then there
exist constants b > 0, vy > 0 such that ¥;(v) < b ¥(v) forv > v,
This follows from the fact that otherwise there is an increasing
sequence v, such that ¥, (v,) > 27°¥(vy) and ¥ (vy) > 1 for all n
(¥ (vy) > 1 since ¥ does not jump). Choosing now the disjoint
sets Ey such that u(Ep) = u(E,)/[2"¥ (vn)], we find as in section 1,
Lemma 1 a function f satisfying /P|fldu < wu(4), [¥|f|ldn = oo.
Furthermore, before starting on the principal part of the proof,
we observe that [V|fldu < A implies ||f|], < 4’, where 4" = max
(2, 24). In fact, if A < 1, then [[f|;y << 1 by Lemma 1(b), hence
Ifly <2, andif A > 1, then /¥ (|f|/4)du < A7 /P|f|ldu < 1, hence
e < 4, 50 [l < 24.

Let now Ly, cLy , so ||flly, < Clif|ly for every feL, by Theorem 4.
We define ¥, (v) by ¥, (v) = ¥, (v/CA’). For any f satisfying /¥|f|du
< 4 we have evidently fe Ly,cLy , hence My (f/lIflly,) < 1, so that
certainly My (f/C|/flly) < 1. But then also M, (f/CA’) < 1, so
J,|fldpw < 1. Applying now to ¥ and ¥, what has been observed
above, we may conclude that there exist constants & > 0, v, > 0
such that ¥, (v) < b ¥(v) for v > v,. Hence, recalling the definition
of ¥,(v), and writing @ = (CA’)™", we finally obtain ¥, (av) <
bW (v) for v > v,.

(b) It is evident that ¥, (av) << b¥(v) for allv > 0 implies L, C
Ly, . Let conversely L, cL, , and suppose first that ¥ is such that
Yo =0tr0 £ €L Pl =iy >Lbence L, = L.
Then, by Lemma 4 (c), there is a number v, > 0 such that ¥, (v)
= 0 for v < vy. Hence ¥, (av) < ¥(v) for some a > 0 and all
v 2> 0. Assume now that ¥ is not of this exceptional type. Then,
using now section 1, Lemma 3, and arguing similarly as in (a)
above, we obtain ¥ (a;v) < b, ¥ (v) forv > v, and ¥, (ayw) < b, ¥ (v)
for v < v,, where ¥ (v,) > 0. Hence if @ = min (a;, a,) and b = max
(b1, by, max ¥, (av) [P (v) forv, < v < v), we have ¥, (av) < 0¥ (v)
for allv > 0.

(c) We first prove that ¥, (av) < b ¥ (v) forv < v,, where ¥ (v,)
> 0, implies Ly, CLy . If fe Ly, then &fe P,, for some & > 0, hence
2by P (kfn) < oo. Since ¥'(kfn) — 0 as n — oo, we have ¥(kfy)
< ¥(vy) for » > N, hence X3, by W, (akfy) < co. It may happen
that XV b, ¥, (akfs) = oo if ¥, jumps; there exists, however, a
positive number a’ < a such that XV b, ¥, (a'kfz) < oco. It follows
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that a'kfe Py, so fe Ly, Let conversely L,cLy, and suppose
first that ¥ is such that ¥ (v) = 0 for 0 < v </, ¥(v) = oo for
v > [, hence L, = L_. Then, by Lemma 4(c), there is a number
v9 > 0 such that ¥;(v) = 0 for v < v,. Hence ¥, (av) < ¥(v) for
some ¢ > 0 and all ¥ > 0. If ¥ is not of this exceptional type,
an appeal to section 1, Lemma 4 leads to ¥,(av) < b ¥(v) for
v < vy, where ¥(vg) > 0.

Remarks. (1) A direct proof, similar to the proofs of the Lemmas
1-4 in section 1, is possible. No use is made then of Theorem 4.

(2) A theorem of similar nature, but of a more restricted type
(4 is a compact subset of R,, u is Lebesgue measure), has been
stated recently by M. A. Krasnoselskii and Y. B. Rutickii [1]
without proof.

3. Reflexivity and Separability.

Let @ be an arbitrary Young function, and L, the corresponding
Orlicz space. The main purpose of the present section is to investigate
what conditions are necessary and sufficient in order that L, be
reflexive or separable. As we have seen in section 2, the Orlicz
spaces L, and L,,, consist of the same elements, and their norms
are equivalent; hence L, is reflexive or separable if and only if
L4 18 so. We need not distinguish, therefore, between these spaces,
and for reasons of convenience we shall formulate all theorems
for L, In Ch. 1, section 2 the subspaces X* and X? of X were
introduced, and a first step towards solving the proposed problems
will be the investigation of these subspaces in the case that X = L,
(obviously L} and L} contain the same elements as L,/ and L},
respectively). For this purpose it is convenient to introduce the
following definition (compare H. Nakano [1, 2]):

Definition 1. T/he element f € Ly is said to be a finile element if
M ,(kf) << oo for every constant k = 0. The class of all finite elements
of Ly is denoted by L},

A similar definition may be given for the complementary Orlicz
space L,. As observed before, it may happen that the Young
function ¥ jumps, and this happens if and only if L}, contains only
the null function. In order to prove this statement, let first ¥ (v) =
oo for v > [, and assume that there exists an element fe L/, such
that /54 0 on a set of positive measure. Then there exists a number
¢ > 0 such that |f(x)| > ¢ on a set E of finite positive measure,
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hence g (x) = eXgeLl,. But M, (kg) = u(E) ¥ (ke), so M, (kg) = oo
for all & > [le, which leads to a contradiction. If, conversely, L/,
consists only of the null function and E is a set of finite positive
measure, then M, (kXg) = oo for some & > 0, hence u (E) ¥ (k) = oo,
and this shows that ¥ (v) = oo for sufficiently large ». On account
of the property that L}, = {0}, the case that ¥ jumps shows
exceptional features, and for that reason we shall discuss it se-
parately. It hardly needs mentioning that the theory for a function
¥ which does not jump (i.e. if v is finite, then ¥(v) is finite) is
not different from the theory for the function @.

Lemma 1. The class L, is a normal subspace of L.
[ D

Proof. It is evident that L/, is linear and normal. In order to prove
that L, is closed, let f,eLl, and |[fu—f| — 0 as # — co. Then, by
Lemma 1(d) in section 2, My{k(/~fu)} = 0 as n — oo for every
k > 0. Hence, given £ > 0, there exists an index #,(k) such that
M 4{2k (f~fn)} is finite, which implies by the convexity properties
of My that 2 My (Rf) < Mg {2k(f~/n)} + Mo (2kfn) < oco.

Theorem 1. L} = L, = L7,

Proof. We shall prove that L5 c L) cL}. On account of the general
inclusion property L) c L! (cf. Ch. 1, section 2, Lemma 4), the
desired result will follow then. In order to show that L! c L' it is
sufficient to prove that any p-measurable bounded f(x), vanishing
outside a bounded set E, belongs to L’q). This, however, is evident,
since M, (kf) < @ (M) p(E) < oo for any £ > 0, where M =
sup |f(x)|. Next, assuming that fe L, we shall prove that the norm
of f is absolutely continuous. If £ is bounded, and E, is any de-
creasing sequence of subsets of E such that u(E,) — 0, then g, =
|fXg,] | O a.e. Hence, since @ (kgy) < D (kf), we have M, (kgy) - 0
for any 2 > 0 by dominated convergence, so ||fXg,|| = |lgull — O
by Lemma 1(d) in section 2. [t remains to prove that the same is
true if E, is not necessarily decreasing. Assuming it to be false,
there exists a number ¢ > 0 such that ||fXg,|| > & for some sequence
E, c E satisfying u(E,) — 0. We may assume that u(E,) < n™>
Then, if F, = U, E,, the sequence I, is decreasing, u(Fy) — 0
and ||fZr,|| > ¢, in contradiction to what has already been proved.
The proof of ||fX4-4,|| — O is similar.

Remark. This theorem shows that L% does not depend on the
sequence A, c 4, but that L% = L% is the closure (in the norm
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topology of L,) of the set of all essentially bounded u-measurable
functions which vanish outside some set of finite measure. Moreover,
if u(4) < oo, then the closure (in the norm topology of L,) of
L., (A, n) (considered as a subset of Lg) is equal to L% = LY,

Theorem 2. Let @ and ¥ be complementary Young functions. Then
(Le)* = Lyp and (Lip)* = Ly (isometrically),

and if ¥ does not jump, then
(LY)* = Ly and (Lyp)* = L, (isometrically).

4

Proof. Follows from the general result that X* = X° implies
(X*)* = X’ (cf. Ch. 1, section 2, Th. 2).

To complete our discussion of the subspaces Lf.;, and L?;,, we
finally have to investigate the case that ¥ jumps. We shall distin-
guish between the following cases:

(A1) 0 < u(4) < oo; 4 is free of atoms, and 4, = 4 for all x.

(A2) 0 < pu(4) < oo; u is purely atomic such that A is the
union of a countably infinite number of atoms #, of measure b,
(arranged such that 0 < b,4; < by,) and a set of measure zero;
moreover, lim inf b,44/b, > 0; 4, = A for all n.

(A3) 0 < u(4) < oo; 4 contains atoms, but u is not purely
atomic (i.e. 4 contains a subset of finite positive measure which
is free of atoms); 4, = A for all ».

(B1) u(A) = oo, and 4 is free of atoms.

(B2) p(4) = oo, and 4 is the union of a set of measure zero
and a countably infinite number of atoms p, of measure b, such
that 0 < lim inf b, < lim sup b, < oo.

(B3) u(4) = oo; A contains atoms, but also a set of infinite
measure which is free of atoms.

In the next two lemmas we shall formulate some properties of
the subspaces L% and L}, of L, in the case that ¥ jumps.

Lemma 2. Let ¥ jump. Then, in the cases (A1), (A 2) (even in
the absence of the hypothesis that lim inf byi1/by > 0) and (A 3) the
space Ly, (A, p) consists of the same functions as L (A, ), and L', =
L. In the case (A 1) the subspace LY, contains only the null function,
and in the cases (A 2) and (A 3) we have {0} # LY, # L.

Proof. We have already proved in Lemma 4(b) of section 2 that
Ly(4, p) = L4, p) if u(4) < oo and ¥ jumps; hence, since
Ap = A for all n, it follows that L} = L. Since Ly (4, u) = L,
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(4, ), there exist (by Th. 4 in section 2) positive constants C; and
C,such that Cylfll.. < Ifllg < C, |Iflle for all fe Ly, hence LY, = L*,
In the case (A1) it is evident therefore that L}, = L% = {0}.
In the case (A 2) L, may be considered as a space of sequences of
complex numbers f = (f;, f,, ...) and we have fe L}, if and only
if lim f, = 0. In order to prove this, we need only observe that f
has an absolutely continuous norm if and only if to each ¢ > 0
corresponds and index N (¢) such that ||fxlly < &, where fxy = (0, 0,
v 0, fys1 v --), and, on account of Ly, = L%  thisis equivalent
to lim f, = 0. The case (A 3) is combination of (A1) and (A 2),
and in this case L}, consists of functions f which differ from zero
only on the atoms of 4, so f = (f;, f,, ...), and have the property
indicated in the case (A 2) that lim f, = 0.

Lemma 3. Let ¥ jump. Then, in the cases (B1), (B2) and (B 3)
we have Ly (A, ) c L (4, p), and Ly (A, ) = L_ (A4, u) if and only
if there exists a number vy > O such that ¥(v) = 0 for 0 < v < v,;
furthermore fe L%, if and only if lim ||fXa-a,)| = 0. In the case (B 1)
the subspace L%, contains only the null function, in the case (B 2) we
have LY, = L%, and in the case (B 3) we have {0} £ L%, - L%,.

Proof. The statements that L,cL_, and that L,, = L_ if and only
if there exists a number v, > 0 such that ¥ (v) = 0 for 0 < v <,
are merely restatements of what has been proved in Lemma 4(a)(c)
of section 2. Next, let fe L, and lim [[fX4-4,]| = 0; we shall show that
fe L%,. Since L, c L, fis essentially bounded. Hence, if f, (x) = /(x)
for xe A, and fy(x) = O elsewhere, then fye LY (n = 1, 2, ...), so
f~fnll = ||f%4-4,||— 0 as n — oo. It follows that fe L%,. If, conversely,
fe L%, then to each ¢ > 0 corresponds a bounded function g vanishing
outside some bounded set such that [/—g|| < e, hence [[fZs-4,| <
[lf—¢ll < e for sufficiently large .

Since Ly cL, it follows (by Th. 4 in section 2) that [f||, << C||f|ly»
for some constant C > 0 and all fe L, hence L}, cL?. In the case
(B 1) we know already that LY, = {0}, so L}, = {0}. In the case
(B 2), since lim inf &, > 0, we have L% cL%, and so L%, = L% on
account of the general inclusion property X*cX® (Observe inciden-
tally that in the case (B 2) we have X® = X* for any space X of
the kind discussed in Ch. 1). In the case (B 3) we have {0} = L}, =
L%, and L}, consists of those fe L%, which differ from zero only on
the atoms of 4.
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Corollary. Let @ and YV be complementary Young functions such
that ¥ (v) = oo for sufficiently large v; let furthermore A be the union
of a countably infinite number of atoms p, of measure by such that
0 < lim inf by < lim sup by << co. Then (LE)* = Ly and (LX) *
= Ly (isometrically).

Proof. Since in this case L}, = L%, the result follows from the
more general result that X* = X? implies (X*)* = X’ (cf. Ch. 1,
section 2, Th. 2).

Example: Let @ (1) = u forallu > 0, hence ¥ (v) = 0for0 <v <1
and Y (v) = oo for v > 1. Let furthermore A be the union of a
countably infinite number of atoms of measure one. Then L, =
Lyw = [ 1s the space of all bounded sequences ¥ = (13, %y, ...)
with norm |[|x]| = sup |x,|, and L}, is the subspace ¢, of all null
sequences. The corollary shows that the conjugate space of the
Banach space ¢, is isometric with the space /; of all absolutely
convergent sequences (compare S. Banach [1], p. 65).

It is interesting to observe that if ¥ jumps (i.e. if there exists a
number / > 0 such that ¥ (v) < oo forv < [ and ¥(v) = oo for
v >1), the inclusion LY, cL,, is always proper in the cases (B 1) and
(B 3). In fact, if E is a set of finite measure such that u (E—A,,) >0
for all » =1, 2, ... (such sets do not exist in the case (B 2)), then
Xp€Ly, but im || Xg Xa-4,|yyp = lm || Xe-a, |[yre = I > 0, as shown
by the computations in section 2 where we discussed the property
(P 3). Lemma 3 shows therefore that Zg does not belong to LY.
This example illustrates that in general the subspace L%, heavily
depends on the choice of the sequence 4, (n =1, 2, ...). We shall
prove below that in the case (B 2) it may happen that L}, = L,,
even if ¥ jumps.

For any Young function @ (and also for any Young function ¥
which does not jump) we have proved in Th. 1 that L% = L} =
L% cL,; hence, the Orlicz space L, has an absolutely continuous
norm if and only if all elements of L, are finite elements. This,
however, is equivalent to the linearity of the Young class P,.
On account of what we have proved about linearity of P, in Th. 3
of section 1, we obtain therefore the following theorem:

Theorem 3. Let @ be a Young function. Then in the cases (4 1),
(A 2) and (A 3), the space Ly, has an absolutely continuous noym if
and only if @ has the property A,. In the cases (B 1) and (B 3) the
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space Ly has an absolutely continuous norm if and only if @ satisfies
(8y, Ay), and in the case (B 2) the space Ly has an absolutely con-
tinuous norm if and only if @ satisfies 3,.

If ¥ jumps, then it is evident that in the cases (A 1), (A 2), (A 3),
(B 1) and (B 3) the space L, never has an absolutely continuous
norm, since in all these cases Lf,, # L. In the case (B 2), however,
Th. 3 remains true even though ¥ jumps, as shown by the following
theorem:

Theorem 4. Let ¥ jump. Then, in the case (B 2) the space L, has
an absolutely continuous norm if and only if ¥ has the property 8,.

Proof. Let ¥ (v) << oo for v << [/ and ¥(v) = oo for v > [. We
replace ¥ by a Young function ¥; such that ¥, does not jump and
¥, = ¥ for small values of v (¥, (v) may be defined e.g. as follows:
if ¢ is a constant such that 0 < ¢ < /, we put ¥, (v) = ¥(v) for
0 <v < Il-¢, and for v > /—& we define ¥, (v) as a suitable linear
function). Then, by Th. 5(c) in section 2, Ly, and L, consist of the
same functions, and so (by Th. 4 in section 2) their norms are
equivalent. Hence L}, = LY, , which implies that L}, = L,, if and
only if L’;,l = L, . But then it follows from Th. 3 that L, has an
absolutely continuous norm if and only if ¥ has the property o,.

Remark. We have already stated above that in the case (B2) it
may happen that L% = L, even though ¥ jumps. Since L}, = L7,
in this case, Th. 4 gives a complete answer: If ¥ jumps, and we find
ourselves in the case (B 2), then L}, = L, if and only if ¥ has the
property &,.

We add the {ollowing example: If @(#) = e*-1, then the com-
plementary function ¥ satisfies ¥ (v) = 0for 0 <v < 1land ¥(v) =
v (logv — 1) 4+ 1 for v > 1. The function @ has the property 3,, but
not the property 4,, and the function ¥ has the property 4, but
not the property 3,. Hence, in the cases (A 1), (A 2) and (A 3), we
have L}, = L, but L% # L,. In the cases (B 1) and (B 3) we have
Ly 5= Ly, Ly 3 Ly, and tinally, in the case {B2), L, = L; but
L%, # Ly. If, in the case (B 2), all atoms have measure one, then
Ly = Py consists of all absolutely convergent sequences, so L,
consists of all bounded sequences. If @ (1) = ¢"— u -1, then ¥(v) =
(v + 1) log (v + 1) — v, so @ has the property 3, but not the
property 4,, and ¥ has the property (8,, 4,).

In section 2 of Ch. 1 we have found in Th. 4 that the space X
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is reflexive if and only if both X and X’ have an absolutely con-
tinuous norm. If we apply this result to Orlicz spaces, and we base
ourselves on Th. 3 and Th. 4 of the present section, we obtain the
following theorem:

Theorem 5. Let @ and ¥ be complementary Young functions. Then
in the cases (A1), (4 2) and (A 3), the space L, is reflexive if and
only if both @ and ¥V have the property A,. In the cases (B 1) and (B 3)
the space Lg, is reflexive if and only if both @ and ¥ have the property
(85, Ay). In the case (B 2) the space Ly is reflexive if and only if
both @ and ¥ have the property 3, (where it may happen in this case
that 'V jumps). Evidently, Ly, is veflexive if and only if L, is reflexive.

Remarks. (1) In the cases (A1), (A2), (A3), (B1) and (B 3) it is
obvious that if L, is reflexive, then ¥ does not jump, so that in
these cases we can state that if ¥ jumps, then L, is not reflexive.

(2) Let @ and ¥ be complementary Young functions. Then ¥
has the property (3, 4,) (i.e. ¥(20) < M ¥(v) for some fixed
M > 2 and all v > 0) if and only if there exists a constant £ > 1
such that @ (ku) = 2k®(u) for all # > 0. In order to prove this,
let first ¥ (2v) < MW (v) for allv > 0. We may assume that M > 2,
Then, for & = M/|2, we have @ (ku) = max {2kuv — ¥'(20)} > 2k
max {uv — ¥(v)} = 2k®(u) for all u > 0. Conversely, if @ (ku) >
2k®D (u) for all w > 0, then ¥(2v) = sup {2kuv — D(ku)} < 2k
sup {uv — @ (u)} = 2k¥(v) for all ¥ > 0. Observe that it follows
from this proof that if @ (ku) > 2k® (u) is satisfied for some & = k&,
> 1, then it is also satisfied for all £ > &,. Similarly we may prove
that ¥ has the property 4, or 3, if and only if there exists a constant
k > 1 such that @ (ku) > 2k @ (u) for large u or small « respectively.
This argument shows that it is possible to replace the conditions
for reflexivity of L, in Th. 5, which are in terms of both @ and ¥,
by other conditions in terms of @ alone. The theorem may then be
restated as follows:

In the cases (A1), (A2) and (A 3) the space L, is reflexive if
and only if there exist constants £ > 1, M > 2k such that 2k <
D (ku) |® (1) < M for sufficiently large u. In the cases (B 1)and (B 3)
the space L, is reflexive if and only if the condition is satisfied for
all # > 0, and in the case (B 2) the space L, is reflexive if and only
if the condition is satisfied for sufficiently small #. In the last case
it may happen that ¥ jumps, but in all other cases the condition
excludes this.
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We finally derive some conditions for separability of Ly and L%.
In the first corollary of Th. 7 in Ch. 1, section 3 we have proved
that X is separable if and only if X has an absolutely continuous
norm and wu is separable. Combining this result with the Theorems
3 and 4 of the present section, we obtain:

Theorem 6. Let @ be an arbitvary Y oung function. In the cases (A 1)
and (A 3) the space Ly is separable if and only if @ has the property
Ay and p s separable; in the case (A 2) the space Ly, is separable if
and only if @ has the property Ay. In the cases (B 1) and (B 3) the
space Ly, is separable if and only if @ has the property (0, A,) and
w 1s separable. If W is a Young function which perhaps jumps, and
we are in the case (B 2), then L, is separable if and only if ¥ has
property 0.
Remark. For the particular case that 4 is the interval [0,1] and
w is Lebesgue measure (so the conditions of (A 1) are satisfied),
Th. 6 was proved by W. Orlicz [2] by a completely different method.
[t was also recently obtained by G. G. Lorentz [4] by a method
which is somewhat similar to ours. Furthermore M. A. Krasnoselskii
([11, p. 69) has recently announced that he and I. Sobolev have
obtained necessary and sufficient conditions in order that an
Orlicz space be separable.

In the second corollary of Th. 7 in Ch. 1, section 3 we have found
that if X*=X?°, then X”* is separable if and only if u is separable.
Hence:

Theorem 7. In the cases (A 1), (4 3), (B 1) and (B 3) the subspace
L of Ly is separable if and only if p is separable, and in the case (A 2)
the subspace L% is always separable. I W is a Young function which
perhaps jumps, and we arve in the case (B 2), then L%, is always
separable.

We finally observe that if ¥ jumps, and we find ourselves in one
of the cases (A1), (A2), (A3), (B1)or (B3), then the space L, is
not separable even if g is separable, since in these cases ¥ cannot
satisfy 4, or (3, 4,).

As an example we conclude this section with the following ex-
tension of a result by J. Schauder [1]:

Theorem 8. I} p is Lebesgue measurve on the interval [0, 1] and @ is
an arbitrary Young function, then Haar's orthogonal system {@n (x)}
(n = 1, 2, ...) is a basis in the subspace L% ([0,1], p).
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Proof. We have to prove that if fe L%, then ||/~2"_, ¢; @i [[yo — O
as n — oo, where the numbers ¢; (i = 1, 2, ) are the Fourier
coefficients ¢; = fj( x)pi(x)dx of f(x). We write sp(f;x) = 27,
ci @i (x). Now, as A. Haar [1] has proved, s, (f;x) is a step function;
more precisely, the interval [0, 1] may be decomposed into i (n)
subintervals [a, @], [ay, @], ..., [@m_1, am] such that if a;, < x < apy
(0 < p < m-1), then su(f;x) = [+t f(x)dx/(aps1 — ap). Hence,
4y
if £ is any positive constant, we have by Jensen’s inequality
M o (ksn) = 235 / Pl @ (ksy)dx = X770 (api1—ap) @ [f:;ﬂ kf (x)dx|

(apr—ap)] < 2 o 1 af’“ D (kf)dx = My (kf), 50 |[sullyre < [Ifllye for

all n. A. Haar has also proved that if f(x) is essentially bounded,
then s, (f;x) converges pointwise to f(x) a.e. on [0, 1], and sy, <
., = M < oco. It follows that for such functions @ (k|f-sy|) <
@ (2kM) for each constant 2 > 0, so Mg{k(f~su)} — O by the
dominated convergence theorem. Hence || /~sy|[;;o — 0 as n — oo,
which proves our statement for bounded functions.

Let now fe L% be arbitrary, and write f, (x) = f(x) for |[f(x)| < »
(n=1,2,..), and fy(x) = O elsewhere. Then lim M y{k (f~fn)} = 0
for each constant £ > 0. This shows that, given £ > 0 and ¢ > 0,
we may write f = f; + f,, where f; is bounded and M, (kf,) < e.
Hence, by the convexity properties of M,

2 Mg{k(f-sn) 4} < Mgy [R{f, - sn (/1; ) H2] + My [R{fssn(f2x)}/2]

< My [R{fi-sa(fux)}2] + 3 My(Rfy) + § Mo{ksu(fx)} <
M o[k {fi—sn(fu%)}/2] + &
so lim M4{k(f-sn)/4} = O for any & > 0. It follows that lim
IF-snllye = O.

Remark. The above proof is similar to Schauder’s proof for the
Lebesgue spaces Ly, p = 1. Recently H. W. Ellis and I. Halperin
[2] have obtained very general results on function spaces in con-
nection with Haar’s orthogonal system.

4. Uniformly Convex Orlicz Spaces.

A Banach space (elements f, g, ...) is called uniformly convex
if to each number & (0 < e < 2) corresponds a number d(e) > 0
such that the conditions [|f|| = gl = 1, [If - gl = eimply [|(/+¢) /2]
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< 1 — 0(¢). This definition is due to J. A. Clarkson [1], and he
proved that the Lebesgue spaces L, and I, (1 < p << oo) are uni-
formly convex. His proof was rather laborious, and has been sim-
plified by R. P. Boas, Jr [1], but it was finally E. J. Mc Shane [1]
who gave an extremely simple proof of this result. I am indebted
to A. C. Zaanen for pointing out to me that Mc Shane’s method
can be used to obtain a sufficient condition in terms of the function
@ (1) in order that the Orlicz space L, be uniformly convex. It is
also possible to find by the same method a sufficient condition, in
terms of the metric function o (|f|), for the space X of Chapter 1
to be uniformly convex (cf. I. Halperin [2]).

Definition 1. The Young function @ (u) is said to be strictly convex
if to each number a (0 < a << 1) corresponds a number 6 (a) (0 < 6(a)
< 1) such that

Df{(u+bu) |2} < {1~ 0(a)} {D(u) +D(bu)}/2
for all w = 0 and all b satisfying 0 < b < a.

As one can see easily, @(u) = ulp, p > 1, is strictly convex
in this sense. Furthermore, if @ () is strictly convex and 0 < & < 1,
there exists a number m (k) such that 0 < m (k) < 1 and @ (ku) <
km (k)@ (u) for all w > 0. Hence, if ¥(v) is the complementary
function of @ (u), we have (by the Corollary of Th. 1 in section 1).

Pim™ (k) v} = sup {um™ (k) v — D (u)} <
sup {ku k7w (k) v — k7 m7 (k) @ (ku)} = K (k) W (v)
for all ¥ > 0, and this shows that ¥ (v) has the property (d,, 4,).

Definition 2. The functional M ,(f) = J®|f|du is called uniformly
convex if to each number ¢ > 0 corvesponds a number q(e) > 0 such
that the conditions My (f) = My(g) = 1, My(f — g) = ¢ imply
Mo{(f+8)/2} <1 - gq(e).

We wish to prove that if @ is strictly convex and satisfies the
condition (dy, 4,), then M (f) is uniformly convex. For this purpose
we first prove the following lemma:

Lemma 1. If @ is strictly convex, and ¢ > 0, there exists a number
p(e) > 0 such that

| 217 | < {1-p(s)} 2exob
for all complex x, y satisfying |x —y|= e max (|x|, |y]).
Proof. Without loss of generality we may assume that ¢ <1,
x > 0 and |y| < #, hence |x—y| > ¢ x. Now let I'; be the closed
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circle in the complex plane with centre 0 and radius x, and I3 the
open circle with centre x and radius ex. Then y may vary in the
closed set I',-1,. On the circumference of I', we take the point a
such that arg (a —x) = 3 /4, and I', is the open circle with centre 0
and radius |a|. Obviously there exists a number y(¢) << 1 such that
l* + v < y(e) (x4 |y|) forall yin (Iy~1},) — I's, hence
D12 < yle) @ () < y(e) Wpe

for such y. If y belongs to ['1—17, and I, snnultdneously, there
exists a number f(e) < 1 such that |y| < g« (in fact, f = |a|/x).
Hence since @ is strictly convex,

D272 <@ (1) <{1-4(p)) 232
for such y. Choosing 1 —$(¢) = max {y(¢), 1 — d(f)}, we obtain
the desired result.

Theorem 1. If @ is strictly convex and satisfies the condition (0, A,),
then M 4 (f) is uniformly convex.

Proof. Let M, (f) = My(g) = 1, My(f—g) = ¢ > 0. Without loss
of generality we may assume that ¢ << 1. Let a = ¢/4 and £ =
{xred : |f-g| = a max (|f|, |g])}. If x€E, then ®|27'({+g) | <
{1-p(a)} 27" (D|f| + P|g]) by Lemma 1, hence

m(fig) Ml ) iy, (18]

M,,,( 8 xE) > () o) + Mo(825).

2

If xe A-E, then |f — g| < af ), hence @|f — g| < D {2a (|f| +
D12} < 20 @{( + lg)/2} < @ (@U] + Dlg), s Mol (/)
Xyp} <2a=¢/2. But M,(f—g) = e by hypothesis, so M ,{(f -
T} > ¢f2. Since My {(f—g) Zn} — My {(2/-20) W2} < 2
{M,(2f%g) + My(2g%g)}, this implies M, (2fXg) + M4 (2g% E)
> &. But, on account of the property (d, 4,), we have @ (2u)
M® (u) for some fixed M > 0 and all « > 0, hence M, (fXEg)
Mg (gXg) > ¢/M. It follows that 1 — M, {(f+g)/2} = p(e/4)e/2M
= ¢(e), which is the desired result.

In order to prove that under the same conditions the Banach
space L4 1s uniformly convex, we first prove two simple lemmas.

Mo (15) - Mo

—

=

<
+

Lemma 2. If @ has the property (05, A,) and if ¢ > 0, there exists
a number & (e) such that ||f||yo = € implies Mo (f) > .

64




Proof. We have to show that M,(fn) — 0 as n — oo implies
|| fnllayre — 0. Since @ has the property (0, 4y), M4 (fu) — 0 implies
M 4 (kfn) — O for each constant £ > 0, and this is equivalent to
lfnllyyre — O by Lemma 1(d) in section 2.

Remark. In this lemma we may replace ||f||yo bY |/fllo-

Lemma 3. If @ has the property (0,, Ay) and if € > 0, there exists
a number n(e) > 0 such that M ,(f) < 1- ¢ implies ||flye < 1-7.

Proof. If the statement is false there exists a sequence f, (n =
1, 2, ...) such that M, (f») < 1-¢ and ||fallye 1 1. Then, for a, =
|ful[30, We have an | 1 and [lan fullye = 1, hence, since Mg (kfn) < 0o
for each constant £ > 0 on account of the property (d,, 4,), we have
also M g(anfs) = 1 by Lemma 1(c) in section 2. But then 1 =
Mo(anfn) = Mof(an ~ D2fn + (2 - anfa} < (an — 1) Mo (2)
+ C-an)Mglls) < (- 1M My(fs) + (2 - an)Mo(fs) <
{1 + (an—1) (M - 1)}(1 — &), which contradicts ¢ > 0 for suf-
ficiently large .

Theorem 2. If @ is strictly convex and satisfies the condition (0y, As),
then the Orlicz space Ly, q ts uniformly convex.

Proof. Let ¢ > 0, and [|fllyo = ligllire = 1, If — gllsre = & Then, by
Lemma 1(c) in section 2, M,(f) = M4(g) = 1, and by Lemma 2
above M4(f-g) = é&(e). Hence Mo{(f + g)/2} < 1 - q(e) by
Theorem 1, so ||[(f + &)/2 |lye < 1-17(g) by Lemma 3. Writing
d(¢) = n(q(e(e))), we obtain the desired result.

Remarks. (1) According to a result of D. Milman (1], every uni-
formly convex Banach space is reflexive (for a short proof we refer
to H. Nakano [2]). Hence, if @ is strictly convex and satisfies
(05, 4,) then L,4 is reflexive. This result, however, is already
incorporated in Th. 5 of section 3 since, as we have shown, strict
convexity of @ implies the property (d,, 4,) for the complementary
Young function Y.

(2) It is possible to prove that under the same hypotheses on @
not only L, but also L, is uniformly convex (for the method
of proof we refer to H. Nakano [2], §§ 87, 88).

5. The Conjugate Space of an Orlicz Space.

Since the associate space L, of L, and the conjugate space Ly,
of L, are identical if and only if L% = L,, we may state that in
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general L, is a proper subspace of Ly. Denoting by ||/*|, the
norm of an element f*e Ly, and by |/*|, the norm of an element
f*e¢ L}, these norms in Ly and L}, are therefore significant
extensions of ||g||,;» and |g||,, in the spaces L., and L,, respectively.
Evidently Hf”zmp < flle < 2 [Ifllsre implies [[/*[y < [/*ly < 2[/*/ae
for any f*e Ly. The norms [|g*|,; and ||g¥|, are introduced simi-
larly. However, we may go further. For any f*e L, we define

M, (%) = sup {|f*(f)| = Ms(f)} for all fe Ly, and for any g*e L,
we define M, (g*) = sup {|g*(g)| — My (g)} for all ge L,,. It may
be proved now that if in particular f* = ge L,, then this new

M, (f*) is the old M, (g), and similarly, if g* = fe L,, then the new
M4 (g*) is the old M4 (f). Furthermore, if fe Ly, then Mg (f) =
sup {|f*(f)| — My (#*)} for all f*e Ly, and if ge L, then M, (g) =
sup {|g¥(@)| — My (¢*)} for all g*e Ly,. If ge L,, there exists a
relation between ||g|ly;y and My, viz. |ig|lyy = inf &7 forall £ > 0
such that M, (kg) < 1. It turns out that this relation remains true
for any f*e Ly, i.e. ||f*|lysy = inf &7 for all £ > 0 such that M, (kf*)
< 1. Similarly ||g*|[;» = inf &7 for all £ > 0 such that M, (kg*)
< 1. The idea to extend M, and M, as indicated above is suggested
by H. Nakano’s work on modulared spaces ([2], Ch. XI), but
Nakano had no imbedding problem to consider.

Finally, suggested by a theorem of I. Amemiya in modulared
spaces, we can prove that for any f*e Ly we have [|f*, = inf,-,
M, (kf*) + 1}jk.

The proofs of these results will appear in a joint publication
with A. C. Zaanen.
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