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Abstract—Federated learning is a private-by-design distributed
learning paradigm where clients train local models on their own
data before a central server aggregates their local updates to
compute a global model. Depending on the aggregation method
used, the local updates are either the gradients or the weights of
local learning models, e.g., FedAvg aggregates model weights.
Unfortunately, recent reconstruction attacks apply a gradient
inversion optimization on the gradient update of a single mini-
batch to reconstruct the private data used by clients during
training. As the state-of-the-art reconstruction attacks solely
focus on single update, realistic adversarial scenarios are over-
looked, such as observation across multiple updates and updates
trained from multiple mini-batches. A few studies consider a
more challenging adversarial scenario where only model updates
based on multiple mini-batches are observable, and resort to
computationally expensive simulation to untangle the underlying
samples for each local step. In this paper, we propose AGIC,
a novel Approximate Gradient Inversion Attack that efficiently
and effectively reconstructs images from both model or gradient
updates, and across multiple epochs. In a nutshell, AGIC (i)
approximates gradient updates of used training samples from
model updates to avoid costly simulation procedures, (ii) leverages
gradient/model updates collected from multiple epochs, and (iii)
assigns increasing weights to layers with respect to the neural
network structure for reconstruction quality. We extensively
evaluate AGIC on three datasets, namely CIFAR-10, CIFAR-
100 and ImageNet. Our results show that AGIC increases the
peak signal-to-noise ratio (PSNR) by up to 50% compared to
two representative state-of-the-art gradient inversion attacks.
Furthermore, AGIC is faster than the state-of-the-art simulation-
based attack, e.g., it is 5x faster when attacking FedAvg with 8
local steps in between model updates.

Index Terms—reconstruction attack, federated learning, feder-
ated averaging

I. INTRODUCTION

Federated learning (FL) [1]–[5] is a popular collaborative

learning paradigm that aims at providing accurate predictive

models while preserving the clients’ data privacy and reducing

communication costs. In a FL system, the training data of a

client never leaves its initial premises. In each global round,

the server first sends the most recent model to clients, which

then train the local model on their private data and send

gradients or model updates back to the server. At the end of a

global round, the server is able to update the global model by

aggregating all the gradients or model updates it has received.

An attacker that would compromise the server would ob-

serve model parameters and their updates, but would not have

access to training samples. Therefore, FL is often assumed to

safely protect the clients’ local data. However, recent works

have shown that the observation of model parameters and

gradient updates might allow attributes of local samples to

be leaked [6], class representatives to be inferred [7], [8], and

even real training samples to be reconstructed [9], [10].

Gradient inversion attacks that directly reconstruct training

samples based on a model and gradient updates on it result

in the most serious data leakages. Most gradient inversion

attacks are optimization-based. In an optimization-based gradi-

ent inversion attack, the adversary randomly initializes dummy

samples, and executes forward and backward propagation on

them to obtain dummy gradients. The dummy samples are

then optimized to minimize the sum of the distance between

the observed real gradients and the dummy gradients, and reg-

ularization terms. To improve the reconstruction performance,

some works define new distance functions and regularization

terms [10], while others exploit prior knowledge, e.g., by

using batch normalization data [11] or pre-trained generative

models [12].

Gradient inversion attacks are designed to reconstruct sam-

ples from gradient updates. However, in practice, federated

learning systems often use federated averaging (FedAvg) [4]

where clients send model updates after conducting multiple

local steps, each executed over a mini-batch, in order to further

reduce the communication overhead. Few previous works have

discussed how to attack model updates generated by FedAvg.

These works either use simulation [10], which is slow and

incompatible with label inference, a sub-task that significantly

improves the reconstruction performance [13], or make an

averaging approximation [14] to estimate the gradient of a full

batch for FedAvg, which does not extend to the most general

case where mini-batches are used.

In this paper, we describe AGIC, a novel Approximate

Gradient Inversion Attack that specifically targets federated

learning systems based on FedAvg’s model updates, and is

also compatible with gradient updates. Overall, AGIC makes

the following contributions.

First, to avoid the computational overhead of simulation

attacks, AGIC leverages a one-batch approximation, which

assimilates multiple local steps executed over multiple mini-

batches as a single local step executed over a single aggregated

mini-batch. The corresponding gradients of that larger mini-

batch can also be approximated based on the received model

update. Thanks to this one-batch approximation, AGIC is

faster than previous simulation-based attacks on FedAvg and

is compatible with label inference.
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Second, based on the observation that the attacker is able to

observe updates across multiple epochs, AGIC better exploits

the information contained in multiple updates that have been

computed over common data samples. AGIC matches the

collected updates with specific training samples and jointly

optimizes with the updates to improve the reconstruction

quality of the specific training samples.

Finally, AGIC assigns different weights to the gradients of

different layers in the distance function to optimize, inspired

by the results of recent works on model compression that

have shown that model layers have unequal effects on model

accuracy and other metrics [15], [16]. Interestingly, AGIC
uses a layer weight modifier for convolutional neural networks

(CNN) that use ReLU as activation function, to balance the

contribution of each convolution layer, because ReLU imports

zeros into gradients.

Our experiments with three datasets show that AGIC out-

performs two representative state-of-the-art baselines in both

reconstruction quality and efficiency. When attacking gradient

updates, AGIC’s peak signal-to-noise ratio is up to 50% higher

than with both baselines. When attacking FedAvg model

updates configured with 8 local steps, AGIC reconstructs

samples five times faster than the only applicable baseline,

a state-of-the-art simulation-based attack.

The remainder of this paper is organized as follows. Sec-

tion II provides some background on federated learning and

gradient inversion attacks. Section III introduces our system

and threat models, and an overview of AGIC. Section IV de-

scribes AGIC’s three key features. Section V evaluates AGIC’s

performance. Finally, Section VII concludes this paper.

II. BACKGROUND

A. Federated learning

Federated learning (FL) [2], [5] is a collaborative learning

paradigm that allows distributed data owners (called clients)

to jointly learn machine learning models without centrally

pooling their data. Clients train the model using their own local

data and rely on a central server to aggregate their learning

results. The FL system progresses over multiple global rounds.

At the beginning of a global round, the server sends the latest

global model to clients. Clients then train the latest model on

their own data, and send their training results, i.e., gradients

or model updates, back to the server.

The local training process typically follows the stochastic

gradient descent (SGD) algorithm, which iterates through the

data using batches. A batch might contain the full local dataset,

but in the more general case a batch is a subset of the local

dataset and is also called a mini-batch. During an epoch,

clients iterate over their complete training data once. A client

may use its full dataset in a single batch during one round,

which is then regarded as an epoch. We focus on the more

general mini-batch case, where the full dataset is split into

multiple mini-batches, and the client iterates over these mini-

batches in multiple global rounds during an epoch.

Figure 1 depicts two typical local training procedures of FL

learning systems that respectively send gradient updates after

Fig. 1: A global federated learning round with gradient update

and with model update.

one local step (top), or send model updates after multiple local

steps (bottom), which is the case with federated averaging (Fe-

dAvg) [4]. With the first method, the clients execute a single

local training step on a batch of local samples and their labels

(X, y) with the latest received global model W , and send

back the corresponding gradient update ∇W . With FedAvg,

the clients run T local steps on T batches, which means that

they will update their local model parameters T times, and

then send the trained model weights WT back to the server. In

practical scenarios, FedAvg is more commonly used because

it reduces the amount of data transmitted over the network, in

particular because a client can process several batches during a

global round, i.e., before sending its results to the server. In the

rest of this paper, we will note ΔW=WT−W , the difference

between the updated model sent by the client at the end of a

round and the global model it received at its beginning.

B. Gradient inversion attacks

Even though the clients and the server only exchange inter-

mediate learning results such as models or gradient updates, it

has been shown that sensitive information from local training

datasets can be inferred in FL systems [6], [8]. Furthermore, it

has been shown that an attacker that obtains gradient updates

can launch a gradient inversion attack to recover the training

samples that were used by clients to generate the gradients [9].

Gradient inversion attacks generally assume the attacker is an

honest-but-curious server [10].

Most existing gradient inversion attacks solve an optimiza-

tion problem, as illustrated in Figure 2a. After retrieving

gradient updates ∇W , the attacker generates dummy samples

(X̂, ŷ) and minimizes the distance between the received gradi-

ents ∇W and its dummy gradients ∇W ′, which are retrieved

by feeding dummy samples through the obtained model in

one forward-backward pass. During the optimization process,

the values of the dummy samples are optimized, so that at the

13

Authorized licensed use limited to: TU Delft Library. Downloaded on March 07,2023 at 13:06:33 UTC from IEEE Xplore.  Restrictions apply. 



(a) Attack based on gradient updates. (b) Simulation-based attack based on model updates with 2 local
steps using simulation.

Fig. 2: Gradient inversion attacks based on gradient updates and model updates.

end of the attack the dummy samples approximate the training

samples.

An optimization-based gradient inversion attack typically

relies on an optimization objective such as:

min
X̂

Dist(
∂L(F (W, X̂), ŷ)

∂W
,∇W ) + Reg(X̂, ŷ) (1)

Formula 1 uses the following notations. W is the current

values of the trainable parameters of the attacked neural

network. ∇W = ∂L(F (W,X),y)
∂W is the gradient update received

from a client. F is the forward propagation function of the

model. L is the loss function of the model. X̂ is the generated

reconstruction samples and ŷ is the labels of the samples.

Dist is a distance function such as the L2 distance [9] and

the cosine distance [10], which are the two most widely used

distance functions in gradient inversion attacks. Reg refers to

regularization terms. For attacks on image classification tasks,

additional regularization terms can be leveraged to generate

more natural images. For example, total variation [10] is used

to reduce image noise, and clipping terms [14] are used to

prevent abnormal values that are out of range for a pixel. The

sum of the distance and regularization terms for generated

samples forms the objective to be minimized.

In the previous paragraph, we mention that both dummy

samples X̂ and dummy labels ŷ are simultaneously optimized

to recover the local training data (X, y). In reality, to avoid

jointly optimizing on the labels and reducing the complexity

of the optimization problem, recent analytical approaches infer

the labels before conducting the optimization by analyzing the

distribution of the gradient tensor of the last fully connected

layer [11], [13]. Label inference is a crucial step to improve

reconstruction quality of the most recent gradient inversion

attacks.

Designing accurate gradient inversion attacks on model

updates with mini-batches is more difficult than on gradient

updates. Indeed, assuming a batch size B for each local step,

an adversary attacking gradient updates needs to reconstruct B
samples. With model updates, from T local-step model updates

respectively computed over T different mini-batches of size B,

the adversary needs to reconstruct TB samples for an identical

update size, i.e., number of model parameters.

While most gradient inversion attacks can only be applied

to gradient updates, a recent attack on model updates [10]

simulates the execution of T local steps in each optimization

iteration, retrieves the dummy model update W ′
T after the

last local step, and optimizes the dummy samples in all

mini-batches X̂1, ..., X̂T based on the difference between the

dummy model and the observe model ΔW ′
T = W ′

T −W and

the real observed model difference ΔWT . Figure 2b illustrates

a simulation-based gradient inversion attack based on FedAvg

model updates.

III. OVERVIEW OF AGIC

This section defines our system and threat models, and

provides an overview of AGIC, our gradient inversion attack.

A. System and adversarial models

We consider a FL system with one server that aggregates

updates and multiple clients. We assume all clients to be

correct and that the server is honest-but-curious. Therefore,

our adversary observes the communications between the server

and the clients and can retrieve both models and model up-

dates. The attack can occur at any phase of the training process

to target untrained, in-training or well-trained networks. The

attacker may observe updates from different epochs during

training. During an epoch a client iterates over its whole

dataset, possibly using different mini-batches.

We focus on attacking convolutional neural networks

(CNN), which are used for image classification, one of the

most popular uses of FL systems. For example, it can be

used by medical institutes to collaboratively train a diagnosis

model [17] without sharing patient-related information.

B. Attack overview

To successfully run gradient inversion attacks on FedAvg,

AGIC relies on three key features: the one-batch approxima-

tion for federated averaging, the leveraging of model updates

from multiple epochs, and the assignment of layer weights in

the distance function.

14

Authorized licensed use limited to: TU Delft Library. Downloaded on March 07,2023 at 13:06:33 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Overview of AGIC.

Figure 3 illustrates AGIC and its key features. Compared

to the simulation attack on FedAvg, which was presented in

Figure 2b, this Figure shows AGIC key features. First, AGIC
uses a one-batch approximation so that mini-batches X̂1, X̂2

within a two-step FedAvg update compose a larger batch

X̂1+X̂2 (cf. §IV-A). Figure 3 also illustrates two FedAvg

model updates from two different epochs ei, ej that have used

overlapping samples in their first local step, i.e., first mini-

batch, respectively X1 and X3. Tensors X̂1 and X̂3 thus have

overlapping components and can be jointly optimized. (cf.

§IV-B). αlayer represent the different layer weights that AGIC
uses in its distance function (cf. §IV-C).

Base loss function used during optimization. The base

loss function that AGIC uses to reconstruct images from an

update is the negative cosine distance between the dummy gra-

dients ∇W ′ = ∂L(F (X̂,W ),y)
∂W and the received real gradients

∇W , to which is added a total variation (TV) regularization

term that reduces image noises with weight ζTV [18]:

min
X̂

1− cos(∇W ′,∇W ) + ζTV TV(X̂) (2)

cos(∇W ′,∇W ) =
∇W ′ · ∇W

‖ ∇W ′ ‖2 ‖ ∇W ‖2 (3)

The dummy samples are optimized based on the gradient

values from back propagation of the loss. AGIC modifies this

base loss function to adapt to different attack scenarios.

AGIC is a novel approximate gradient inversion attack that

is applicable to both model updates and gradient updates. We

focus on the more challenging model update scenario, but our

methods (namely, leveraging multiple epochs and choosing

layer weights) also apply to gradient updates.

IV. KEY IMPLEMENTATION FEATURES OF AGIC

This section details AGIC’s three key features that enable

its use with FedAvg and increase its accuracy: one-batch

approximation, use of multiple updates, and layer weights.

A. One-batch approximation for FedAvg

As previously explained, accurately reconstructing samples

from FedAvg’s model updates is more difficult than with

gradient updates because a model update is computed using

Fig. 4: Gradient inversion attack with AGIC’s one-batch

approximation on FedAvg model updates. Here, clients use

2 local steps before sharing model updates with the server.

more samples. When attacking FedAvg with possibly multiple

local steps, AGIC is faster and more accurate than simulation-

based gradient inversion attacks thanks to its one-batch ap-

proximation. This approximation allows AGIC not to use

computationally expensive simulation and to be compatible

with label inference, as there is no need to assign inferred

labels to different local steps.

The one-batch approximation is equivalent to assuming

that the model remains mostly identical after each local

step. This assumption has been discussed in large mini-batch

training [19]. A similar first-order approximation has been

used in meta learning [20]. It should be noted that if model

parameters change drastically in each local step, e.g. when

the learning rate of local SGD is 1 × 10−2, the one-batch

approximation should not be used. In our experiments, with

a learning rate of 1 × 10−4, the approximation brings good

performance (cf. V-B).

Figure 4 illustrates AGIC’s one-batch approximation on Fe-

dAvg’s updates. Compared to the multi-step simulation of [10],

which is presented in Figure 2b, AGIC’s approximation only

runs one local step with the aggregated batch, and its loss

function is based on approximated gradients instead of models

difference ΔW . More precisely, given all the mini-batches

used in one FedAvg update X1, ..., Xn and their inferred

labels y1, ..., yn, and local learning rate μ, AGIC makes the

approximation that all the mini-batches compose a larger batch

XA = [X1, ..., Xn] to produce the received model update:

ΔW ≈
N∑

j

−μ∂L(F (W,Xj), yj)

∂W
= −μ∂L(F (W,XA), yA)

∂W

(4)

Based on Formula 4, AGIC computes the approximated

gradients ∇W = ΔW
−μ for aggregated batch XA from the

model updates given then local learning rate. Then AGIC
initializes dummy samples X̂A as the size of XA, and op-

timizes on the distance between dummy gradients from X̂A

and the computed gradients from received model updates. Be-

cause the objective function is the distance between gradients,

any improvement method designed for gradient updates can
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(a) Pre-reconstruct from updates
from multiple epochs separately.

(b) Measure similarity between
image pairs of same inferred la-
bel.

(c) Match most similar image
pairs with greedy algorithm.

(d) Match updates and conduct
joint reconstruction.

Fig. 5: Reconstruction from updates from multiple epochs.

We use updates with batch size 1 for illustration purposes.

be directly applied on FedAvg model updates with AGIC’s

approximation.

B. Leveraging updates from multiple epochs

A training sample is used in many global rounds, each

round producing an update, and thus is involved in multiple

updates that are communicated to the server. The attacker

can therefore observe several updates that are based on some

specific samples. AGIC demonstrates that the adversary can

better reconstruct the samples by making use of the updates

it observes.

Prior work by Geng et al. has shown that reconstruction

quality of a specific batch is improved if jointly optimizing

with more pairs of model parameters Wk and their correspond-

ing gradient update from that batch W ′
k [14]. However, this

method only works on full batch gradient descent and does not

provide a solution to the general case where the client uses

multiple mini-batches to go over its data as in an epoch. In

contrast, AGIC is able to reconstruct training samples using

multiple model updates or gradient updates from different

mini-batches across epochs during training.

AGIC processes updates from multiple epochs in two

steps: (i) update matching, which matches the collected up-

dates whose corresponding samples are overlapping; and (ii)

joint reconstruction, which reconstructs the samples from the

matching updates. We discuss those two steps in the following,

and Figure 5 illustrates them with a batch size equal to 1.

Step 1: Update matching. AGIC first matches updates that

have overlapping samples so that they can be jointly recon-

structed afterwards. If the training process does not shuffle the

samples used between epochs, or if the entire local dataset is

used in a full batch, then the matching process is trivial. In the

general case, a more complex algorithm is required to match

gradient updates of single mini-batches or FedAvg model

updates based on multiple mini-batches. AGIC’s matching

mechanism first conducts a reconstruction process for each

update to obtain a first reconstruction of images, and then

identifies the most similar pairs of reconstructed images.

As the adversary observes updates from two complete

epochs, the pre-reconstructed samples from the first epoch’s

updates can be mapped one-to-one with the samples from the

updates of the second epoch. Equivalently said, for any sample

Xc, two updates from the two epochs have been trained on it.

To match pairs of reconstructed images, we evaluate the

similarity of pairs of images by processing the images with

an average pooling layer that takes average value of each

small part of an image in order to mitigate noises, and

computing their mean squared error. We refer the reader to

§V-D, which demonstrates the performance improvement that

using a pooling layer brings.

We use a simple greedy algorithm to find a one-to-one map-

ping between reconstructed images from two epochs. First, we

measure the similarity of each image pair and sort them. From

the highest similarity to the lowest one, we check each pair of

still unmatched images and associate them to each other. Using

this method, all pre-reconstructed images from one epoch can

be matched to those from another epoch. For any matched

image pairs, which are then considered to reconstruct the same

sample, AGIC executes a joint reconstruction using the all

updates they participated in (Step 2).

It is easy to extend this method to leverage more than

two epochs, by successively computing matching update pairs

from consecutive epoch pairs. A specific sample is then

associated to the image pairs reconstructed from updates from

consecutive epochs, and to one reconstructed image per epoch.

A sample is therefore associated to exactly one update per

epoch.

Since label inference can be applied before optimizing for

each update, AGIC uses a label-based filter. Based on their

inferred label, AGIC computes the similarity between image

pairs that have the same inferred label to reduce the search

space and limit the possibility of incorrect matching, thereby

increasing accuracy. For a multi-sample batch, generated either

from gradient update directly or from the one-batch approx-

imation of model update, label inference returns a list of

labels for all samples. Therefore, whether two samples can

be matched depends on whether their inferred label lists share

at least a common label.

Step 2: Joint reconstruction with multiple updates.
AGIC jointly optimizes updates that have been identified

as having been trained over a common sample, in order

to improve reconstruction quality. We use gradients during

the optimization process, obtained either from the one-batch

approximation of model update or directly from received

gradient update. Our distance function uses the summation of

distance of all pairs of input gradients and dummy gradients,

with weights γi assigned. A decreasing weight is assigned

to the gradients generated later during the training process,

because the reconstruction quality of gradient inversion attacks

is higher in the earliest training phases. These gradient weights

are set as experimental hyperparameters (§V details the values

16
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TABLE I: PSNR results for reconstructing size-4 batches

from untrained ResNet20-4, with different layer assignment

functions. The decreasing functions pass through (1, 1) and

(Nconv, 0.5), and the increasing functions pass through (1, 1)
and (Nconv, 2), where the number of convolutional layers

Nconv = 21 in ResNet20-4. The two points and function

expressions determine the used functions.

Monotonicity Convexity Function CIFAR-10 CIFAR-100

None None y = 1 14.836 15.190

Decrease Convex −a log x+ b 14.182 14.332
Decrease Concave −aex + b 14.727 15.175
Decrease None −ax+ b 14.354 14.471

Increase Convex aex + b 15.255 16.001
Increase Concave a log x+ b 15.505 16.311
Increase None ax+ b 15.601 16.702

we use).

Let us assume that after the update matching step, AGIC
has identified that gradients ∇Wi with corresponding model

parameters Wi from different epochs have been trained over

a given sample Xc. We note ∇W ′
i the dummy gradients from

the dummy batches. AGIC’s distance function with multiple

gradient updates is the following.

min
X̂k

∑

k

(1− ∇W ′
k · ∇Wk

‖ ∇W ′
k ‖2 ‖ ∇Wk ‖2 ) · γk (5)

The reconstruction results of AGIC’s joint reconstruction

are of higher quality than those that would be obtained by

separately optimizing based on single updates. To illustrate

why, let us consider two gradient updates from two epochs that

are respectively trained from batches X1, X2 with overlapping

sample Xc. In this situation, dummy sample X̂c is a common

component of dummy batches X̂1, X̂2 and always has a single

value in each dummy batch during optimization. Therefore,

both updates provide information that AGIC uses to optimize

the sample.

If updates are observed in two or more complete epochs

then all training samples can be better recovered thanks to the

update matching and joint reconstruction steps. Note that an

update is used B times to jointly reconstruct different samples

if the batch size is equal to B.

C. Assigning layer weights

It has been observed that different layers of a neural

network have variable impact on model accuracy [16], energy

consumption [15], and can be selectively pruned for model

compression [21]. Similarly, we observe that gradients from

different layers have different effect on the performance of a

gradient inversion attack.

Based on these previous works, AGIC assigns different

weights αi to layers in the distance function used in the

gradient inversion attack. For a CNN that has Nconv con-

volutional layers before the fully connected layers, suppose

that the input gradients can be decomposed by layers from

first to last as ∇W = (∇L1, ...,∇LNconv ,∇Lfc) and so

do the reconstructed gradients ∇W ′. AGIC’s negative cosine

similarity objective with layer weights αi is indicated in

Formula 6.

min
X̂

1−
∑

i αi(∇L′
i · ∇Li)√∑

i αi ‖ ∇L′
i ‖22

√∑
i αi ‖ ∇Li ‖22

(6)

Linear assignment. It is impractical to separately select

a weight for each layer using tedious methods like grid

search. Therefore, we use a function to assign the weights to

convolutional layers, and set weights of fully connected layers

to the average of convolutional layer weights.

Both the shape and the range of the weight function affect

performance. For the range, we first determine that the func-

tion passes through points (1, 1) and (Nconv, β). Parameter β
controls the range of the function and β = 1 implies homo-

geneous weights. We also look into various function shapes,

such as linear functions y=ax+b, exponential-like functions

y=aex+b and logarithmic-like functions y=a log x+b to cover

various function shapes (e.g., concave or convex). The two

points (1, 1) and (Nconv, β) determine values of coefficients

a, b in the various functions.

Table I presents some results obtained with different func-

tion shapes. We experimentally observe that an increasing

linear weight function maximizes the reconstruction perfor-

mance, and therefore determines a layer’s weight using For-

mula 7.

li = 1 +
β − 1

Nconv − 1
(i− 1) (7)

In practice, the properties of the attacked network change

during the training process. For example, the magnitude of

gradient values becomes smaller and the reconstruction quality

deteriorates. In consequence, the best value for parameter β
changes according to the attacked training phase (as illustrated

in Figure 9).

ReLU modifier. We can directly set αi=li in the general

case, but we additionally propose a layer weight modifier

for CNNs that apply ReLU after convolution layers, as

ReLU(x) = max (0, x) is the most commonly used activation

function in current CNN designs such as ResNet [22]. ReLU

is more popular than sigmoid functions, because it simplifies

gradient computation in backward propagation and avoids

gradient vanishing and gradient inversion.

When the input of ReLU is negative, its output is set to

zero, and as a result, after back propagation, the gradients

of input are also equal to zero. Therefore, a proportion of

zeros exists in each convolution layer’s gradients. These zeros

limit the performance of gradient inversion attacks, because it

is then easier for the optimization process to get its dummy

gradients to achieve these zeros, which appear as soon as

the corresponding output of a convolutional layer is negative.

Thus, layers that have more zero gradients contribute less in

the reconstruction.

To remove the effect of zeros imported by ReLU and

balance the contribution of each convolutional layer, AGIC
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(a) DLG-Adam

(b) InvG

(c) AGIC (this work)

(d) Ground truth

Fig. 6: Reconstructed CIFAR-10 images from untrained

ResNet20-4 with batch size 1.

(a) DLG-Adam (b) InvG

(c) AGIC (this work) (d) Ground truth

Fig. 7: Reconstructed ImageNet images from untrained

ResNet50 with batch size 1.

relies on a layer weight modifier based on the proportion of

zeros of each layer. Assuming that the proportion of zeros in

a convolutional layer’s gradients is pi, its modifier zero-based

coefficient is computed as zi=
1

1−pi
.

In conclusion, the layer weight for the i-th convolutional

layer is equal to a linearly assigned weight li, which is

multiplied by a zero-based weight zi if ReLU is used, and

the layer weight of a fully connected layer is the average of

the linearly assigned weights of convolutional layers:

αi = li · 1

1− pi
i-th convolutional layer

αfc =

∑Nconv

i=1 li
Nconv

fully connected layers

(8)

V. PERFORMANCE EVALUATION

A. Setup

Hardware. We use a machine equipped with an AMD

EPYC 7542 32-core CPU, 256GB of RAM and an NVIDIA

GeForce RTX 2080 Ti GPU for our experiments.

Datasets. We conduct experiments on three image datasets:

CIFAR-10 (size 32 × 32, 10 classes) [23], CIFAR-100 (size

32 × 32, 100 classes) [23], and ImageNet (size 224 × 224,

1000 classes) [24]. All three datasets contain 3-channel colored

images. The datasets are normalized to mean 0 and standard

deviation 1. For the experiments, we randomly select 100 mini-

batches from the validation set of each dataset. We attack

ResNet trained on the datasets [22]: ResNet20-4 on CIFAR-10

and CIFAR-100, and ResNet50 on ImageNet.

Baselines. We compare our attack with two baselines. The

first is an improved version of DLG [9], namely DLG-Adam,

which uses the Adam optimizer instead of L-BFGS in the

original version, because L-BFGS often fails to converge while

attacking large networks like ResNet [10]. The other baseline

is Inverting Gradients [10], which we call InvG. The two

baselines cover the two main distance functions applied in

gradient inversion attacks.

We do not compare our attack to those based on pretrained

models, e.g., an image generative model [12], because we

do not assume the attacker to have access to additional

knowledge. We also do not consider a batch normalization

(BN) regularization term [11], because it requires that each

synchronous BN layer has cross-node communication dur-

ing forward propagation, which is very time-consuming and

impractical in FL. Our methods are however orthogonal to

these methods that leverage extra information and could be

combined with them.

Hyperparameters. The Adam optimizer with learning rate

0.1 is used based on the gradient values on dummy samples

during optimization. ζTV is equal to 10−4 for untrained

ResNet20-4, 10−2 for trained ResNet20-4, 10−3 for untrained

ResNet50, and 10−1 for trained ResNet50. For FedAvg, the

learning rate of local SGD is μ = 1×10−4. The kernel size of

the averaging pooling layer used in update matching is 2× 2
and the stride of it is 2. Regarding epoch weights γi in multi-

epoch reconstruction, γ = 1 for a batch from the first epoch,

and γ = 0.1 for the other batches. For layer weights, β = 50
for untrained networks, and β=2 for trained networks. The

optimization has 10,000 iterations.

Because label inference is an independent subtask that

has already been well explored and for which very accurate

methods already exist, we assume that labels are correctly

inferred in experiments of gradient updates, if not specified

in other ways. For our experiments with FedAvg, we apply

the label inference method from [11]. Labels in a mini-batch

are assumed not to be duplicated, following the experiment

setup of previous works [10], [11].

Metrics. We use three metrics to measure the similarity be-

tween the reconstructed images and the real training samples:

(i) peak signal-to-noise ratio (PSNR), (ii) structural similarity

index measure (SSIM) [25], and (iii) LPIPS, a perceptual

image similarity score [26]. Higher PSNR, higher SSIM, and

lower LPIPS all indicate better reconstruction quality.

18

Authorized licensed use limited to: TU Delft Library. Downloaded on March 07,2023 at 13:06:33 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Reconstruction quality of gradient inversion attacks on untrained ResNet20-4 on CIFAR-10 and CIFAR-100, and

trained ResNet50 on ImageNet, on FedAvg model updates. Here, FedAvg runs on 4 size-1 mini-batches and 4 local steps.

Method simulation CIFAR-10, untrained CIFAR-100, untrained ImageNet, trained

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DLG-Adam � 13.611 0.391 0.123 15.114 0.463 0.096 8.044 0.028 1.314
InvG � 14.108 0.414 0.117 15.465 0.480 0.092 10.593 0.167 0.779

AGIC (this work, one-batch) × 14.250 0.414 0.115 15.437 0.475 0.093 10.522 0.161 0.791
AGIC (this work, one-batch + layers) × 16.182 0.529 0.112 19.133 0.672 0.050 10.699 0.177 0.780

TABLE III: Reconstruction quality of gradient inversion at-

tacks on FedAvg, with local step 4 and batch size 2, on

ResNet20-4 on CIFAR-100. The matching batches from two

epochs are assumed to have the same samples. A ’1’ in the

Epochs column means that the updates are collected after

one epoch, while ’1, 2’ means that the matching updates are

collected after one epoch and two epochs.

Method Simulation Epochs PSNR↑ SSIM↑ LPIPS↓

DLG-Adam � 1 12.196 0.292 0.087
InvG � 1 14.398 0.419 0.065

AGIC (this work) × 1 15.651 0.486 0.055
AGIC (this work) × 1,2 16.664 0.533 0.040

TABLE IV: Reconstruction quality of gradient inversion at-

tacks on single gradient updates, reconstructing CIFAR-10

images from untrained ResNet20-4 and ImageNet images from

untrained ResNet50.

Dataset Batch
size

Method PSNR↑ SSIM↑ LPIPS↓

CIFAR-10 1

DLG-Adam 19.908 0.727 0.034
InvG 20.671 0.753 0.031
AGIC (this work) 31.341 0.963 0.004

CIFAR-10 4

DLG-Adam 14.034 0.412 0.110
InvG 14.421 0.433 0.103
AGIC (this work) 17.183 0.586 0.092

ImageNet 1

DLG-Adam 11.311 0.094 0.751
InvG 12.832 0.214 0.691
AGIC (this work) 15.573 0.366 0.670

ImageNet 4

DLG-Adam 9.879 0.070 0.801
InvG 11.640 0.216 0.720
AGIC (this work) 12.836 0.302 0.721

B. Overall performance of AGIC

We first report the overall performance of AGIC on FedAvg

model updates and Gradient updates. Table II shows the

attack results on single FedAvg model updates. The one-batch

approximation and layer weights are used with this FL setting.

AGIC with the one-batch approximation outperforms the other

two baselines that are based on simulation of FedAvg. Table III

further shows the attack results on FedAvg with updates from

multiple epochs. One can also observe that AGIC further

increases its reconstruction quality when reconstructing from

matching updates from multiple epochs.

AGIC can also attack gradient updates, the most common

setup in gradient inversion attacks, as shown in Table IV.
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Fig. 8: Reconstruction qualities and computation times for

the simulation-based attack InvG and for AGIC on CIFAR-

10 images from untrained ResNet20-4. Each model update is

generated with 8 images, e.g., for the 8-step scenario each

update is generated from 8 size-1 mini-batches.

These results are interesting because only layer weights are

used in this experiment, and AGIC significantly outperforms

baseline methods, with different datasets and batch sizes.

AGIC improves the PSNR over CIFAR-10’s by up to almost

50%. The reconstructed CIFAR-10 samples in Figure 6 are vi-

sually almost identical to the ground truth. Figure 7 shows two

examples of reconstructed ImageNet samples, where AGIC
also clearly outperforms the baselines.

C. Computation time reduction with the one-batch approxi-
mation

We further compare the one-batch approximation of AGIC
with the simulation approach of InvG, for attacking FL sys-

tems using FedAvg. We look into the case where a FedAvg

update is generated from 8 images, but they are divided

into mini-batches with different sizes in different experiments,

which implies that the number of local steps also changes.

Figure 8 show that AGIC outperforms InvG in both quality

and speed with all settings. It can also be noticed that both

methods have worse performance when the number of local

steps increases, if the total number of samples are fixed.

When the number of local steps increases, the time cost

of attacks based on simulation also increases, while the one-

batch approximation implies that AGIC has a constant time

cost. When FedAvg has 8 local steps, AGIC is 5 times faster

than InvG: AGIC requires 6.7 minutes on an NVIDIA GeForce

RTX 2080 Ti GPU instead of 33.2 minutes with InvG.
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TABLE V: Matching success rate of 1000 CIFAR-100 images

from epochs 1 and 2, with different update matching methods

and batch sizes.

Labels Pooling Batch size 1 Batch size 4

× × 0.819 0.509
× � 0.873 0.547
� × 0.988 0.672
� � 0.981 0.705

TABLE VI: Reconstruction quality with 200 CIFAR-100 im-

ages using gradients from epochs 1 and 2, using label inference

and update matching, and equal layer weights. The model is

ResNet20-4 and the batch size equals 1.

Epochs PSNR↑ SSIM↑ LPIPS↓

1 20.379 0.665 0.026
2 19.085 0.626 0.022
1,2 21.464 0.697 0.016

D. Reconstruction quality improvement with update matching
and joint reconstruction

We now focus on reconstructing samples from mul-

tiple epochs. We first conduct experiments on our pre-

reconstruction matching method with 2,000 iterations. We

consider matching with and without using an average pooling

layer, and with and without restriction on inferred labels.

Table V presents the matching rate with pre-reconstructed

CIFAR-100 images. It shows that with pre-reconstruction, the

matching rate is very high (0.988) when the batch size is 1.

When the batch size is 4, the matching rate decreases (0.672),

because reconstruction quality decreases when the batch size

increases, but it is still high. Using inferred labels provides

strong prior knowledge for gradient matching, even when the

batch size is larger than 1, which implies that labels may

be incorrectly inferred. A pooling layer successfully mitigates

noise, except in the case where the batch size equals 1 and

labels are used, which already has an almost perfect accuracy.

We further evaluate on a full setup that includes label infer-

ence the matching of gradient updates and joint reconstruction.

Pre-reconstruction runs 2,000 iterations. Gradient updates are

matched based on pre-reconstructed single images. Table VI

shows that the reconstruction results based on two updates

from two epochs are better than with single updates from either

epoch (e.g., PSNR of 21.464 instead of 20.379 or 19.085).

E. Reconstruction quality improvement with layer weights

We investigate the effect of layer weights on reconstruction

quality by varying the ratio β between the weights of the

last convolutional layer and the first one, using ResNet20-4

on CIFAR-10. Figure 9 presents our results. The effect of

layer weights is very significant on the untrained network.

As training continues, the effect of weights weakens, and

the best β value is also lower. However, assigning larger

weights to later convolutional layers (β > 1) still improves

performance, compared with the equally assigned weights

at β = 1, even in trained networks. Figure 10 shows the
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Fig. 9: Effect of different layer weights on PSNR with

different experimental settings, including untrained and trained

networks.

Fig. 10: Reconstructions of a CIFAR-10 image of a horse

from untrained ResNet20-4 with a weight ratio β that ranges

from 1 (left) to 20 (right).

reconstructed images of one CIFAR-10 sample on untrained

ResNet20-4, with increasing β values. One can notice that the

reconstruction quality improves when β increases.

Figure 9 also compares attacking untrained ResNet20-4 with

and without ReLU weight modifier zi. The zero-proportion-

based weight modifier consistently improves the attack perfor-

mance, bringing up to 2.0% improvement on PSNR.

VI. RELATED WORK

A. Gradient inversion attack on gradient updates

Gradient inversion attacks on federated learning systems re-

construct training samples from gradient updates. Deep Leak-

age from Gradients (DLG) [9] is the first gradient inversion

attack. DLG jointly optimizes on the samples and on the labels,

which complicates the optimization objective and impairs the

reconstruction quality if the labels are inaccurately optimized.

Improved DLG (iDLG) [13] proposes to conduct label infer-

ence before DLG’s optimization and shows that labels can be

inferred with perfect accuracy using some analytical method

when the batch size is equal to 1. Following iDLG, several

label inference methods explained how to infer labels in larger

batches with higher accuracy [11], [14], [29]. Label inference

is now an essential part of current gradient inversion attacks

since it significantly improves the reconstruction quality.

Most existing gradient inversion attacks are optimization-

based: they formulate an optimization problem and minimize

the distance between the real observed gradient update and a

dummy gradient update in order to optimize the reconstructed

samples. Therefore, one way to improve the performance of
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TABLE VII: Comparison of AGIC and other gradient inversion attacks on (horizontal) federated learning systems.

Method Main loss
term

Other loss terms Optimizer Label
inference
capability

Extra knowledge Trained
network

Multiple
epochs’
updates

FedAvg

DLG [9] L2 None L-BFGS No use No × × ×
iDLG [13] L2 None L-BFGS One No × × ×
Inverting Gradients (InvG
in this paper) [10]

Cosine Total variation Adam One No � × �

CPL [27] L2 Label-based L-BFGS One No × × ×
R-GAP [28] Recursively N/A N/A One No × × ×
Grad-Inversion [11] L2 Total variation, L2

of input, BN, group
consistency

Adam Multiple BN statistics,
pretrained image
alignment model

� × ×

Geng et al. [14] L2 Clipping, scaling L-BFGS Multiple No × × Only full
batch

GIAS [12] Cosine Total variation Adam One Pretrained
generative model

× × ×

AGIC (this work) Cosine Total variation Adam Multiple No � � �

a gradient inversion attack is to design a better objective

function. Geiping et al. uses the cosine distance instead of L2

distance in DLG [10]. CPL adds a label-based regularization

term to improve the optimization stability [27]. Another way

to improve the reconstruction performance is to leverage prior

knowledge in specific scenarios. GradInversion adds a batch

normalization regularizer, because the attacker is assumed to

know batch normalization statistics, and it designs a group

consistency regularization term leveraging multiple reconstruc-

tion processes with different initialization seeds to find an

enhanced reconstruction result [11]. GIAS assumes a known

data distribution and improves the reconstruction quality using

a pre-trained generative model [12].

R-GAP is a gradient inversion attack that is not based on

optimization. Instead, R-GAP recursively reconstructs each

layer’s input from the last layer to first by solving linear

equations, which is limited to a batch size equal to 1 [28].

The works we have discussed so far consider horizontal FL

systems [3], [30] where client datasets share a given feature

space. Differently, CAFE is a gradient inversion attack [31]

for vertical FL systems where client datasets have different

feature spaces [32], [33].

Table VII compares our attack, AGIC, with existing gradient

inversion attacks, and shows that it is applicable in more

general federated learning scenarios.

B. Gradient inversion attack on FedAvg model updates

Although using FedAvg model updates is more practical

than using gradient updates, only a handful of gradient inver-

sion attacks on FedAvg’s model updates have been described.

To be compatible with the multiple local steps of FedAvg,

Geiping et al. simulate the local training process of multiple

local steps to obtain a dummy model update, and then mini-

mize the distance between the dummy model update and the

real model update [10]. However, this method is incompatible

with label inference because it is unable to associate correct

labels to each mini-batch, as label inference returns a set of

labels for all mini-batches. In addition, the computation time

of simulation-based attacks also increases with the number of

local steps FedAvg uses, because the computation graph for a

model update then also gets larger [10]. Geng et al. present an

attack that targets FedAvg systems that use full batch gradient

descent [14]. Their attack divides the received model update

by the number of local steps to approximate the model update

of each local step, which is then used to approximate the full

batch’s gradient update. However, this attack cannot cover the

common case where FedAvg uses multiple mini-batches.

AGIC addresses the limitations of previous attacks on

FedAvg. First, its one-batch approximation is compatible with

label inference. Second, AGIC can be used in common FedAvg

scenarios that use several mini-batches per round, and it is

faster than simulation-based attacks.

VII. CONCLUSION

In this paper, we presented AGIC, an accurate and fast

gradient inversion attack that can leverage both model up-

dates and gradient updates across multiple epochs. AGIC
uses a one-batch approximation to convert model updates

into approximate gradient updates of a larger mini-batch.

AGIC also leverages updates from multiple epochs with up-

date matching to jointly reconstruct specific training samples

accurately. Finally, AGIC assigns different weights to layers

in the objective function, which significantly improves the

reconstruction quality. Compared to previous works, AGIC can

be used with more general federating learning system settings.

Our experiments demonstrate that AGIC reconstructs samples

with up to 50% PSNR improvement compared to state-of-

the-art baselines, and is up to 5x faster than simulation-based

attacks, which is the only baseline that can attack FedAvg.
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