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1
EXECUTIVE SUMMARIES

Two executive summaries are presented, corresponding to both parts of this integrated thesis project.

PART I: AEROSPACE ENGINEERING THESIS
The rapid advancement of Generative Artificial Intelligence (GenAI) has introduced transformative possi-
bilities in engineering disciplines, including software development, design automation, and Model-Based
Systems Engineering (MBSE). In the aerospace industry, complex engineering workflows rely on Knowledge
Based Engineering (KBE) applications, which often lack explicit workflow documentation. This lack of docu-
mentation hampers traceability, system verification, and reusability. The Model-Driven Knowledge-Based
Engineering (MDKBE) approach has been proposed to address these challenges by integrating Knowledge
Based Engineering with MBSE, enhancing automation and structuring computational workflows.

A major challenge within MDKBE is the ability to automatically extract structured process representations
from existing KBE applications. Given the increasing role of GenAI and Large Language Model (LLM) models
in engineering, this research explores their potential for automating reverse engineering processes to improve
the accessibility and reuse of engineering knowledge.

OBJECTIVES

The objective of this research was to develop a novel reverse engineering method for KBE applications by
leveraging dynamic analysis, graph transformation techniques, and LLMs. Specifically, the research aimed to:

• Design a system - called the Reverse Engineer Process model (REProcess) tool - to extract structured
process models from KBE applications.

• Investigate the feasibility of using LLMs to abstract engineering workflows and generate effective human-
interpretable diagrams.

• Implement a prototype of the REProcess tool, capable of automatically reverse engineering singular KBE
workflows.

MAIN RESEARCH QUESTIONS

The research was guided by the following key questions:

1. What are the system specifications for the envisioned REProcess tool?

2. To what extent can state-of-the-art LLMs be used to reverse engineer a process model that captures the
workflows of KBE applications?

3. How can a practically useful reverse engineering tool be built around the LLM-based reverse engineering
method?

1
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CONCLUSIONS

The research successfully developed and evaluated the REProcess prototype, demonstrating the feasibility of
LLM-based reverse engineering for KBE applications. Key findings include:

• The proposed dynamic precedents analysis and graph transformation approach effectively extracted
structured process representations from KBE applications.

• LLMs proved effective in generating interpretable abstractions of engineering workflows but exhibited
limitations in dependency tracing.

• The REProcess tool provided structured, visual representations of process models, enhancing model
traceability and reusability.

Despite these successes, challenges remain in optimizing computational performance, improving dependency
tracing accuracy, and aligning Systems Modeling Language (SysML) representations with KBE execution
behavior.

KEY RECOMMENDATIONS

• Enhance dependency tracing methods: Future research should refine the precedents analysis algorithm
to improve accuracy and completeness in capturing interdependencies within KBE applications.

• Optimize computational efficiency: Implementing smaller, fine-tuned LLMs or applying model quanti-
zation techniques can reduce computational overhead and improve performance.

• Further development of the REProcess tool: Integrate additional visualization techniques and interac-
tive modeling capabilities to enhance usability for aerospace engineers.

This research highlights the transformative potential of LLM-assisted reverse engineering in aerospace engi-
neering, offering a pathway toward enhanced automation, knowledge management, and engineering process
optimization.

PART II: COMMUNICATION DESIGN FOR INNOVATION THESIS
The rapid advancement and increasing adoption of Generative Artificial Intelligence (GenAI) across industries
have created new challenges for interdisciplinary collaboration between AI experts and domain experts.
Effective communication between these groups is essential for the successful integration of GenAI into
complex, high-stakes domains such as engineering. However, misaligned expectations, knowledge gaps, and
differences in working culture often hinder collaboration. While existing communication strategies focus on
either technical documentation or general interdisciplinary teamwork, they do not adequately address the
unique challenges posed by GenAI projects. This thesis explores structured communication methods to bridge
these gaps and facilitate better collaboration.

OBJECTIVES

The primary objective of this research was to design and evaluate a structured communication tool that
improves interdisciplinary collaboration in GenAI projects. Specifically, the goal was to enable domain experts
to articulate their needs more effectively and help AI experts communicate technical constraints in a way that
aligns with domain requirements. To achieve this, the research aimed to:

• Identify key communication challenges in GenAI projects.

• Develop a structured approach to facilitate communication between AI and domain experts.

• Validate the effectiveness of the proposed approach through expert feedback and case studies.

MAIN RESEARCH QUESTIONS

1. What are the key collaboration and communication challenges between AI experts and domain experts
in interdisciplinary AI projects, and how do these relate to each other?

2. How can a structured communication tool improve mutual understanding and alignment between these
groups?
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CONCLUSIONS

The research identified a lack of shared knowledge as the main barrier to effective interdisciplinary collabo-
ration in GenAI projects. This knowledge gap manifests in two ways: misaligned expectations before project
initiation and miscommunications during project execution. AI experts and domain experts often struggle to
establish a shared mental model, leading to unrealistic expectations, inefficient workflows, and difficulty in
integrating AI into domain-specific applications.

To address these issues, a structured communication tool based on a morphological chart was developed. This
tool systematically maps AI capabilities to domain needs, providing a visual and interactive way for teams to
explore design options. Expert validation sessions confirmed that this approach:

• Enhances expectation management by clarifying what GenAI can and cannot do.

• Encourages structured discussions that align technical feasibility with domain requirements.

• Reduces miscommunication by providing a shared reference framework.

KEY RECOMMENDATIONS

• Integrate structured communication tools early in project initiation: Establishing a shared under-
standing at the outset significantly improves collaboration and reduces friction during development.

• Encourage cross-training between AI and domain experts: Providing AI literacy training for domain
experts and domain-specific training for AI experts can enhance mutual understanding and improve the
effectiveness of interdisciplinary teams.

This research underscores the importance of structured communication in GenAI projects and provides a
concrete approach for improving interdisciplinary collaboration. Future work should explore the scalability of
the proposed tool across different domains and further refine its usability across additional domains.

PART III: DISCUSSION OF INTEGRATED THESIS PROJECT
By designing and implementing a GenAI-powered engineering tool that demonstrates how selective utilization
of GenAI technology can be used to implement new and improved work practices while mitigating inherent
risks, and developing a communication tool that facilitates (technical) domain experts and AI experts to col-
laboratively conceptualize and develop other GenAI-powered systems to enhance existing work practices, this
combined thesis provides a significant contribution to the adoption of GenAI technology for the engineering
of complex, critical systems.
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REPORT INTRODUCTION

This chapter briefly introduces the overarching context of this combined thesis project. Subsequently, it
outlines how both parts of the combined thesis contribute to a single, overarching objective and describes the
relation and synergy between both parts.

2.1. PROJECT CONTEXT
The public release of ChatGPT in November 2022 was a pivotal moment in the history of Generative Artificial
Intelligence (GenAI). Since then, many businesses and organizations have been scrambling to adapt and adopt
this new technology. At the same time, the extreme popularity of the technology has sparked huge additional
investments causing developments to accelerate at an ever-increasing pace. Initially, many knowledge workers
believed the technology was not mature enough to consider handing off parts of their work to AI, but the
extremely rapid progress of the technology has meant this sentiment is changing and the question of adoption
is starting to shift from ’if’ to ’how’.

This trend also applies to the world of (aerospace) engineering. While typically conservative, the vast amount
of information associated with engineering processes - think of requirements specifications, concept renders,
3D models, source code, simulation data, test data, etc. - means that there is great potential for data driven
approaches, and in particular GenAI, to assist humans in design and engineering processes. Notably, the
keyword here is assist. There is a broad consensus under scientists and (governmental) organizations that
GenAI should be used to assist humans, rather than fully replace them [1–4]. Two main reasons for this are the
black-box nature of GenAI models, and its tendency to hallucinate1 when prompted to perform a task that
is too difficult to solve, instead of notifying the user or simply returning an error. These characteristics set
GenAI apart from other, more traditional AI domains. An overview of key AI domains and their interrelations
is presented in Figure 2.1.

When comparing the characteristics of the different types of AI described in Figure 14.3, a key trend when
moving from the outermost layer towards the inner circles is that the mapping from input to output becomes
increasingly more abstract and harder to trace. For an expert system, this mapping is completely clear since the
rules and knowledge are explicitly programmed into it by humans. On the other hand, such a clear mapping
is completely absent for GenAI models, which is why they considered a black-box. This, combined with the
potential for hallucination, is very problematic from an engineering perspective and explains why many
engineers are skeptical or even dismissive towards the technology as a whole. On the flip side, however, there
is also a beneficial trends when moving inwards in Figure 2.1. Namely, the ability to perform complex tasks
increases, as well as the ability to deal with large amounts of variable and unstructured data.

2.1.1. COMPLEX AND CRITICAL SYSTEMS
A context where the adoption of novel technologies like GenAI is typically very slow is the engineering of
complex and critical systems. Here, the term complex refers to systems that consist of many interacting

1Hallucination is the phenomenon where a GenAI system generates output that is nonsensical and inaccurate but presents it as if it were
true or factual, therefore making it easy to overlook at first glance.

4
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Figure 2.1: A comparative visualization of AI, Machine Learning, Deep Learning, and Generative AI. Obtained from [5].

components. These different components often correspond to different (engineering) domains like the engines
and the wings of an aircraft, for example. The term critical refers to the potential for severe consequences
due to failures of the system. For instance, personal injury, loss of human life, or severe legal/financial
repercussions. Besides aircraft, some notable examples of complex and critical systems are nuclear reactors,
payment processing networks, and emergency telecommunications.

Within these domains, the design of every component is evaluated on aspects like safety, reliability, quality
and other key performance metrics. Because of the emphasis on safety and reliability, these domains typically
follow a highly conservative approach toward the adoption of novel technologies. However, as mentioned
before, GenAI also has a lot of potential due to its ability to perform complex tasks and deal effectively with
large amounts of variable and unstructured data. Based on this combination of characteristics, the integration
of GenAI technology within the engineering process of complex and critical systems is characterized as a
high-risk, high-reward area of application.

2.1.2. EXPLAINABLE AI
An approach that can be adopted to harness the potential of GenAI while mitigating its inherent weaknesses
and risks is the concept of Explainable AI. In fact, as per the European Act, it is even mandatory to do so
when developing high-risk GenAI applications [1]. The essence of this approach is that the human users
remain responsible for the overall output. To achieve this, the GenAI system should provide transparency and
ensure traceability of its internal GenAI processes so that humans can be involved in the process. This can be
done in several ways, ranging from direct control where humans direct the AI during every step of the way,
to more distant roles where humans monitor the process (e.g. via a dashboard) or simply have to approve
the final output. The most suitable approach will vary on a case by case basis. Through careful selection and
implementation, such Explainable AI approaches can ensure the trustworthiness of the output and mitigate
the previously discussed risks and downsides of GenAI.

Explainable AI is closely related to Trustworthy AI and Reliable AI. However, these related concepts typically
refer to an even broader scope by also including ethical and societal concerns such as fairness, bias, and
social norms [1]. While these aspects are highly important, this thesis research will focus specifically on the
development of transparent and traceable (Gen)AI systems. Therefore, the term Explainable AI will be used
throughout the rest of this report.

Given that the widespread diffusion of GenAI technology itself has only happened very recently, awareness
about more detailed concepts like Explainable AI is still largely absent under professionals. Furthermore,
although the concept of Explainable AI has been described at a high level by other authors and organizations,
a key question that remains is how to practically implement it within GenAI-powered engineering systems.
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2.2. COMBINED THESIS OBJECTIVE AND SETUP
The overarching objective of this thesis is to investigate and contribute to the realization of GenAI’s potential
to support engineering processes - in particular engineering of complex, critical systems. To this end, two
separate lines of research were pursued which correspond to the two Masters degrees for which this combined
thesis project was carried out.

The first research line constitutes the aerospace engineering part of this combined thesis. Here, a GenAI-
powered software tool was designed and a prototype was implemented that can be used in a novel engineering
approach based on KBE and MBSE. This approach and the developed software are further introduced in
chapter 3. Aside from the practical benefits provided by the developed tool itself, it also serves as a real-world
demonstration of how Explainable AI principles can be applied to integrate GenAI technology into engineering
workflows. This part of the combined thesis was completed first.

The second research line corresponds to the science communication part of this combined thesis. From the
perspective of this second part, the previous development of the GenAI-powered software tool served as an
in-depth case study. By going through this development exercise, a lot of valuable knowledge and experience
was gained about GenAI technology, as well as about the development process. This knowledge and experience
was put to use during the science communication part of this thesis to investigate other GenAI projects where
similar applications are developed. The focus of this investigation was on the interdisciplinary collaboration
that typically characterizes GenAI development projects. By combining the knowledge gained during the
aerospace part with insights obtained from interviews and literature, a communication tool was designed
that facilitates the collaborative development of novel GenAI-powered engineering systems. The science
communication part of the thesis is introduced further in chapter 10.

In the third and final part of this combined thesis, a number of high-level findings and conclusions are
presented that were determined based on the integration of both parts of the project. These are presented in
chapter 18.
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3
AEROSPACE THESIS INTRODUCTION

A key trend in the field of aerospace engineering is that work is becoming more complex and multidisciplinary.
Meanwhile, global competition and ambitious sustainability goals are pushing Tier 1 and Tier 2 suppliers to
reduce recurring development costs and lead times. In response to these challenges, the aerospace sector
has been working on the development and adoption of new technologies and engineering approaches. A
prime example of this is the recently concluded Design Exploration Framework based on AI for froNT-loaded
engineering (DEFAINE) project. One of the main outcomes of the DEFAINE project was the proposal and
development of a novel methodology for the development of Knowledge Based Engineering (KBE) applications
based on Model-Based Systems Engineering (MBSE) [6].

Additional background information for readers who are less familiar with KBE or MBSE is provided in Ap-
pendix A.

3.1. MODEL-DRIVEN KNOWLEDGE BASED ENGINEERING
The DEFAINE project used rather convoluted phrases to refer to their novel methodology such as “the MBSE
based methodology for KBE application development”. To improve clarity and conciseness, this thesis adopts
the term MDKBE approach to refer to the same methodology.

Beyond the persistent goals of reducing recurring development costs and lead times, the purpose of the
MDKBE approach is to address several key challenges related to KBE applications: 1) their development
is often case-based and unstructured, lacking a standardized development methodology; 2) they tend to
become black-box applications due to having large code bases, as well as software development being
prioritized over writing and updating documentation; and (3) they suffer from limited reusability and project-
to-project knowledge transfer, as high-level design knowledge is often not captured, and there is no standard
exchange format for transferring knowledge between different KBE tools [7, 8].

To address these issues, the MDKBE approach was developed as a framework for systematically capturing,
developing, and maintaining KBE applications. A high-level visual representation of the MDKBE approach
is provided in Figure 3.1. This figure focuses on presenting the four main steps (highlighted in bold text) of
DEFAINE’s novel methodology for developing KBE applications. A detailed description of each of these steps
is provided below.

3.1.1. STEP 1: KNOWLEDGE MODEL
The first step of the MDKBE approach consists of domain experts and KBE developers collaboratively creating
the so-called knowledge model using SysML and the CATIA Magic modeling platform. This knowledge model
consists of a requirements package, containing the stakeholder needs and requirements for the KBE application;
the process package, specifying the behavior of the KBE application (i.e. the engineering workflows embedded
in the source code); and the product package which describes the KBE application’s (hierarchical) software
structure [10]. The corresponding requirements-product-process ontology, showing the relations between
model elements from each of these packages, is presented in Figure 3.2.

8
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Figure 3.1: The envisioned Model-Driven Knowledge-Based Engineering approach, with the four main steps for the development of a new
KBE application highlighted in bold text Adapted from [9].

SYSML-FOR-KBE
To define the knowledge model, the MDKBE approach envisioned in the DEFAINE project uses a subset
of SysML diagrams, consisting of the Package, Requirement, Activity, Block Definition, and Internal Block
diagrams [8]. The specific SysML diagrams and methods used in the MDKBE approach to capture the product,
process and requirements packages of the KBE application knowledge model are outlined below. If available,
their respective Unified Modeling Language (UML) counterparts are also mentioned as a reference for readers
with a software background. For a more detailed specification of the knowledge model, including individual
model elements and their mapping to specific aspects of the ParaPy KBE system, the reader is referred to
[9, 10]. Background information about the notation and usage of the mentioned SysML diagrams and methods
can be found in Friedenthal et al. [11] (Ch.3) as well as online documentation1.

• The product model is contained in the product package of the KBE application knowledge model. It
is defined using structure diagrams from SysML, specifically Block Definition Diagrams (BDDs) and
Internal Block Diagrams (IBDs). The UML counterparts of these are Class and Component diagrams,
respectively. The product model captures the hierarchical structure of the KBE application’s software
components (Python classes, in case of ParaPy). The model elements used to represent the individual
software components in the BDDs and IBDs are called blocks.

Using an analogous concept from the MBSE domain, the product model corresponds to the physical
architecture2. This is also referred to as the structural architecture in this report, because it is considered
to be more intuitive and better suited to the software-centric project context.

• The process model is contained in the process package of the KBE application knowledge model. It is
defined using behavior diagrams from SysML, specifically Activity Diagrams (ADs). These diagrams also
featured in UML so they have a direct counterpart. The process model captures the internal processes of
the KBE application, i.e. the engineering workflows embedded in the source code. The model elements
used to represent individual process steps in ADs are called actions. The term activity refers to the
collective sequence of actions defined in an activity diagram.

Again using some analogous concepts from the MBSE domain, the product model corresponds to the
functional3 and behavioral4 architectures.

• The allocation matrix is a SysML concept that can be used to link the product and process models. This
process, called functional allocation, is facilitated by the allocation matrix. It consists of specifying which

1Recommended source: https://sysml.org
2https://sebokwiki.org/wiki/Behavioral_Architecture_(glossary)
3https://sebokwiki.org/wiki/Functional_Architecture_(glossary)
4https://sebokwiki.org/wiki/Behavioral_Architecture_(glossary)

https://sysml.org
https://sebokwiki.org/wiki/Behavioral_Architecture_(glossary)
https://sebokwiki.org/wiki/Functional_Architecture_(glossary)
https://sebokwiki.org/wiki/Behavioral_Architecture_(glossary)
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individual processing steps (i.e. actions) are performed by which structural software components (i.e.
blocks). This process is depicted by the arrow between the process and product nodes in Figure 3.2.

• The requirements model is contained in the requirements package of the KBE application knowledge
model. It is defined by means of Requirement Diagram (RD) diagrams, for which no UML equivalent
exist. The requirements model captures the stakeholder needs and requirements for the KBE application.

• The satisfaction matrix is a SysML concept that can be used to link the requirements model to the
process and the product model. This process, called requirements allocation, is facilitated by the
satisfaction matrix. It consists of specifying the specific model element(s) that have to satisfy each
individual requirement. As depicted by arrows originating from the requirements node in Figure 3.2,
both process model elements (activities or actions) and product model elements (blocks) can be linked
to the requirements.

Figure 3.2: Relations between requirements, product features and process steps. Obtained from [10].

HIGH-LEVEL KNOWLEDGE MODEL

Theoretically, the knowledge model could be used to capture all relevant information regarding a particular
KBE application. However, adding a lot of highly detailed information into the model is cumbersome and less
efficient than writing it directly into the source code of the KBE application. Therefore, the goal during this first
step of the MDKBE approach is to create a high-level knowledge model that specifies the main requirements,
engineering processes and structural software components. Fine-grained details follow in later steps.

3.1.2. STEP 2: AUTOMATIC CODE GENERATION
The second step involves using the Translation Engine developed by Fernandes [12] to automatically generate
the skeleton code of the KBE app. This results in a Python project filled with packages, modules, etc., where
each module contains boilerplate code for standardized syntax elements like class and input parameters
declarations, along with doc strings. The information used for this automated code generation is taken from
the product model. A small section of KBE application code generated automatically by the Translation Engine
is shown on the left-hand side of Figure 3.3.

3.1.3. STEP 3: MANUAL CODE COMPLETION
The third step of the MDKBE approach is performed by KBE developers. They take the auto-generated skeleton
code as a starting point and manually complete the code to turn it into a fully functional KBE application. This
manual code completion consists of adding domain-specific knowledge and operational logic into the source
code app, similar to “traditional” KBE development. An example of completed KBE code is presented on the
right-hand side of Figure 3.3. The manually added knowledge and rules are highlighted in green.

3.1.4. STEP 4: MODEL REVERSE ENGINEERING
A consequence of the manual code completion step is that the KBE application source code now contains more
information than its knowledge model. Moreover, KBE developers could also have made significant structural
changes to the code. As a result, the knowledge model created during step 1 has become outdated. Considering
that an important function of the knowledge model is to act as documentation, this is not desirable. Therefore,
the fourth and final step of the MDKBE approach consists of generating an updated knowledge model. For the
product and process models, this generation is performed automatically through the use of Software Reverse
Engineering (SRE) methods that extract model information directly from the updated KBE application. As
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Figure 3.3: A small section of auto-generated KBE application code using the Translation Engine (MDKBE step 2) is shown on the left. On
the right, the same section is shown after the KBE application code has been manually completed (MDKBE step 3) by a KBE developer.

The added knowledge and rules are highlighted in green. Obtained from [10].

such, these tools are referred to as code-to-model (c2m) tools. For the requirements model, such automated
extraction is not possible. If applicable, updating the requirements still has to be done manually.

ALTERNATIVE STARTING POINT

The alternative starting point on the right-hand side of Figure 3.1 is used to indicate that any working KBE
application can be used as the input for c2m tools. Thus, even existing KBE applications which completely
lack a knowledge model can still be reverse engineered in order to generated their corresponding product and
process models. This is a key benefit from the reverse engineering tools as it greatly simplifies to adoption of
the MDKBE approach for existing KBE applications.

3.1.5. ROUND-TRIP ENGINEERING
Round-trip engineering, or round-tripping for short, refers to the process of seamlessly exchanging data
between different tools, models, or systems while preserving consistency across iterations. As denoted
in Figure 3.1, in case of the MDKBE approach the term is used to refer to the closed loop formed by the
combination of forward engineering (steps 2 and 3) and reverse engineering (step 4). Using this closed loop
information flow, a working process is envisioned where KBE developers work with both the model and the
code side-by-side, seamlessly switching between them. Whenever they make a change on one side, the other
representation is immediately updated accordingly. Once all software components of the MDKBE approach
are fully implemented, this round-tripping approach can be realized.

3.1.6. MODEL BASED KNOWLEDGE REPOSITORY
A final component of the MDKBE approach presented in Figure 3.1 is the model based knowledge repository.
The purpose of this repository is to facilitate the transfer of project knowledge and reuse of existing KBE
application code. Essentially, it is a database containing the knowledge models from many different KBE
applications. The defining characteristic of this database is that it stores the individual knowledge model
elements that define (high-level) features of existing KBE applications along with their corresponding segments
of source code. This facilitates re-use of these existing features during the subsequent development of
other KBE application using the MDKBE approach. Namely, instead of defining the entire knowledge model
from scratch during the first modeling step, these existing elements can be imported from the model based
knowledge repository. During subsequent automatic code generation, the source code attached to existing
knowledge model elements can be used to generate more than just skeleton code for these parts of the KBE
application, reducing the amount of manual code completion required during step 3.
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3.1.7. MDKBE IMPLEMENTATION ACHIEVED IN DEFAINE
The DEFAINE project successfully developed the methodology and software needed to perform the first three
steps of the MDKBE approach. Additionally, the software needed to perform the fourth step was partially
implemented. A c2m tool was developed to perform the reverse engineering of the product model. However,
a c2m tool for the process model was not developed within DEFAINE. Correspondingly, the objective of this
thesis project is to take the next step towards implementing the MDKBE approach by making a significant
contribution to the development of this c2m tool, which will be referred to as the REProcess tool from hereon.
To provide a foundation for the discussion of the REProcess tool development, an overview of the field of SRE
is presented in the next section.

3.2. SOFTWARE REVERSE ENGINEERING
As defined by Chikofsky and Cross [13], “reverse engineering can be viewed as a process of analyzing a system to:
identify the system’s components and their interrelationships, and create representations of the system in another
form or at a higher level of abstraction”. A high-level overview of key SRE concepts and their interrelations is
presented in Figure 3.4. From the concepts and interrelations presented in this figure, those in the green and
dark red boxes (the middle and bottom groups) are most relevant for this thesis work. The relevant concepts
used in the SRE overview from Canfora et al. [14] are briefly outlined below.

Figure 3.4: UML Class diagram of the key concepts of software reverse engineering and their interactions. Obtained from [14].

• Software Artifact: This is an umbrella term for the various things used as input for the software reverse
engineering process. The most prominent example is the source code itself, but also included are
executables (i.e. compiled source code), execution traces, project documentation (including e.g. model
views drafted during initial software design phases), test cases, and change requests.

• Analyzer: The analyzer’s job constitutes processing the software artifacts in order to extract and generate
data that can be used reliably for subsequent abstraction steps. The research field corresponding to this
specific part of the reverse engineering process is called program analysis. As depicted in Figure 3.4,
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several main types of program analysis exist. From these, static and dynamic analysis methods are most
relevant for this thesis project.

– Static analysis methods operate by analyzing the source code itself. The word “static” refers to
the fact that the software does not have to run in order to perform the analysis. Instead, static
analyzers operate by parsing the source code in order to extract data such as semantic information
(e.g. comments and parameter names), code structure and dependencies.

– Dynamic analysis methods operate by running the source code and then tracking what happens
during execution. As such, they inherently require analyzed code to be executable, which may be
a limiting factor depending on context. Some examples of dynamic analysis includes measuring
runtime performance and generating process logs.

– Hybrid analysis methods are a combination of static and dynamic analysis methods.

– Historical analyzers capture information about the evolution of a software product. Version control
systems, like Git5, are a prime example.

• Information Base: A data container storing output generated by the analysis methods. Having such
a database is particularly relevant when multiple analysis methods are used in parallel to provide
information for the subsequent abstraction step. In the case of the REProcess tool, it also stores the
internal representation of the process model. Importantly, this internal representation is not in SysML
format. A SysML model is only generated when the process model is exported as the final output.

• Abstractor: The task of the abstractor is to construct higher level representations of the analyzed software
applications. As indicated in Figure 3.4, these higher-level representations typically are software views.
A wide variety of abstraction methods exist. Main categories of abstraction methods include filtering,
clustering, pattern detection, formal concept analysis, and heuristic algorithms [15].

• Software Views: The generation of software views typically is the end goal of SRE. These software views
can take many forms and represent many different aspects of the targeted software system. They can
range from highly formalized visualizations of the structural and functional software architecture, such
as UML and SysML diagrams, to less formal and more data-driven representations, like correlation
matrices depicting the relations between an application’s software components [16], layered architecture
graphs [17], or polymetric views [18].

Note: specifically in case of the REProcess tool, it would be more precise to substitute software view by
the word model in Figure 3.4 because the former may suggest that the objective is to generate a single
SysML activity diagram while the actual goal is to generate a more elaborate SysML model capturing
the entire set of engineering workflows embedded in the KBE application. The distinction between the
overarching process model and individual activity diagrams is further discussed in chapter 4.

3.2.1. EXISTING REVERSE ENGINEERING METHODS
In a conducted literature review of existing reverse engineering methods, the state-of-the-art was established
and potentially useful tools and methods that could be adopted for development of the REProcess tool are
identified. Based on this review, a gap in existing work is defined as the combination of automation and
high-level abstraction. To illustrate this, two examples of existing SRE methods are discussed in more detail.

SEMANTIC CLUSTERING

The semantic clustering approach was developed by Kuhn et al. [16]. This reverse engineering approach
consists of a four steps. The first step is static analysis method consisting of parsing the target application’s
source code to extract the identifier names and comments used in each source code file. Secondly, Latent
Semantic Indexing (LSI) is applied to compute the similarities between the source code files. Hereby, the
so-called correlation matrix is obtained. Then, hierarchical clustering is used to rearrange the correlation
matrix into a human-interpretable form. Finally, each cluster is labeled using the terms from the LSI step that
best describe the entire cluster. An example output from this approach is presented in Figure 3.5. Note how
the automatically generated labels presented on the right-hand side vary greatly in terms of communicative
quality. Some, like “action, box, component, event, button, layout, Graphical User Interface (GUI)” provide

5https://git-scm.com

https://git-scm.com
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a good indication about the role and purpose of their cluster, while others, such as “start, length, integer,
end, number, pre, count”, are too general and therefore fail in providing a useful description of a cluster. This
limitation was also noted by Kuhn et al. [16], who presented the automatically generated output as a starting
point for further investigation by the user of the tool who could then improve the labels by updating them
manually.

Figure 3.5: Example output from the semantic clustering approach. Obtained from Kuhn et al. [16].

MERGING EXECUTION TRACES

Ziadi et al. [19] developed a fully dynamic approach for reverse engineering UML sequence diagrams. This
approach starts with dynamic analysis to collect execution traces6. Subsequently, these execution traces are
transformed to graph-based representations and a k-tail merging algorithm is applied to merge the set of
execution traces into one comprehensive graph. Finally, a transformation algorithm is used to generate a UML
sequence diagram of the targeted application. An overview of this approach is provided in Figure 3.6 and an
example output is presented in Figure 3.7.

Figure 3.6: Overview of the reverse engineering approach from Ziadi et al. [19]. LTS stands for Labeled Transition System, which is the
graph-based representation of the execution traces.

Similar to the semantic clustering approach, note the textual descriptions used in Figure 3.7. These are again
made up of strings taken directly from the source code. Besides the work of Kuhn et al. [16] and Ziadi et al.
[19], this is a pattern that was observed for many different existing SRE tools and methods[20–28], indicating
an inherent limitation of traditional abstraction methods. Due to this limitation, fully automated reverse
engineering of high-level diagrams - like SysML activity diagrams - remained out of reach. However, recent
advancements in LLM technology present a novel opportunity to develop reverse engineering systems capable
of addressing this gap.

6An execution trace is a process log of the sequence of operations executed by a program during a run
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Figure 3.7: Example of a UML sequence diagram that can be generated using the reverse engineering approach from Ziadi et al. [19].

3.2.2. LARGE LANGUAGE MODEL-BASED REVERSE ENGINEERING
Recent developments in LLM technology present a novel opportunity to automate the high-level abstraction
step of the SRE process. The latest LLMs are trained using vast amounts of general data, which typically
includes various programming languages as well. Moreover, highly capable, specialized programming models -
called big code models - have become available too. Most of the development attention of big code models lies
on the automated generation of source code, based on natural languages instructions. So far, using LLMs for
SRE purposes has received far less attention. At the start of this thesis project, no relevant publications were
found where large language models were used for the reverse engineering of high-level software architecture7.

A significant advancement in recent LLMs is their expanded input capacity. As of November 2023, GPT-4 Turbo
can process up to 128,000 tokens, approximately equivalent to 96,000 words of English text. This represents
a substantial increase from the 2,048-token limit (about 1,500 words) of the original GPT-3 model released
in 2020 [29]. This dramatic expansion in context window size enables the processing of extensive codebases
and complex systems within a single analysis, thereby enhancing the potential for automating high-level
abstraction in SRE.

In the context of the REProcess tool, a key capability of state-of-the-art LLMs is their proficiency in interpreting
source code, even when encountering syntax from Python packages like ParaPy, for which they were not
explicitly trained. Current advanced models achieve this by leveraging the semantic information contained in
the syntax, combined with interpolation and extrapolation of similar functionalities and patterns learned from
the vast array of Python packages in their training dataset. Naturally, this approach introduces a margin of
error, raising questions about its feasibility and effectiveness for reverse engineering ParaPy KBE applications.
To address these concerns, a feasibility study was conducted at the start of this project. The study yielded
promising results, confirming the potential of using state-of-the-art LLMs for developing the REProcess tool.

3.3. PROJECT OUTLINE
The overarching goal of this thesis is to address several key KBE application development challenges including
the tendency of becoming black-box applications, the limited project-to-project knowledge transfer and the
limited reuse of existing KBE applications. To this end, this thesis builds upon the foundation established by the
DEFAINE project, with the overarching objective of advancing the implementation of the MDKBE approach.
Specifically, this research contributes to the development of the Reverse Engineer Process model (REProcess)
tool, an essential component of this approach. A visualization of the purpose of the REProcess tool is presented
in Figure 3.8.

7Based on a Scopus search on 01-05-2023 using the following search query: "TITLE-ABS-KEY("large language models" AND ("reverse
engineering" OR re-engineering OR reengineering) AND (software OR program OR "source code" OR application OR "object oriented"))
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Figure 3.8: Visualization of the purpose of the REProcess tool.

3.3.1. PROJECT OBJECTIVES
The project follows an MBSE approach, structured around two key objectives:

1. System Specification & High-Level Design

• Synthesize a high-level system specification and design of the REProcess tool including system
requirements and software architecture.

2. Prototype Development & Testing

• Investigate the feasibility and effectiveness of utilizing state-of-the-art LLMs as a novel SRE ap-
proach to perform automated, high-level abstraction.

• Design and implement a proof-of-concept prototype, referred to as the REProcess prototype,
capable of reverse engineering the engineering workflows embedded in ParaPy KBE applications.

3.3.2. SCOPE
The primary focus of this research is the exploration and implementation of the LLM-based reverse engi-
neering method. Given this focus, not all features of the complete REProcess tool are implemented in this
project. Three major aspects remain outside the scope of this thesis:

• SysML model generation: To enable importing the reverse-engineered process model into SysML
modeling tools like CATIA Magic, a particular type of data file is required8 which requires an extensive
data transformation algorithm. Developing this transformation algorithm lies outside the scope of this
thesis project.

• Multi-workflow integration: While the implemented prototype can process complex workflows, includ-
ing interactions between multiple classes, Python modules, and external toolboxes (e.g. flow solvers,
Finite Element Method (FEM), etc.), it is currently limited to handling one workflow at a time.

• Training custom LLMs: This research assesses the capabilities of several open-source LLMs but any
training/fine-tuning of custom LLMs was not feasible due to a lack of training data.

To maintain clarity, this thesis adopts the following terminology:

• The REProcess tool refers to the complete envisioned system, integrating all features required for the
MDKBE approach. This includes the SysML model generation and multi-workflow integration.

• The REProcess prototype refers to the developed implementation, specifically focusing on the LLM-based
reverse engineering method.

8XML Metadata Interchange (XMI) data format, specified in [30]
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3.3.3. RESEARCH QUESTIONS
Following the MBSE approach, the research questions are structured to address the high-level specifications,
the feasibility of LLM-based reverse engineering, and the practical implementation of the reverse engineering
method:

1. What are the system specifications for the envisioned REProcess tool?

2. To what extent can state-of-the-art LLMs be used to reverse engineer a process model that captures the
engineering workflows embedded in KBE applications?

3. How can a practically useful reverse engineering tool be built around the LLM-based reverse engineering
method?

3.3.4. REPORT STRUCTURE
The structure of this report follows the adopted MBSE methodology, consisting of two phases which correspond
to the two main project objectives:

• Phase 1: REProcess Tool System Specification & High-Level Design

– chapter 4 defines the system requirements and presents a set of example activity diagrams to
specify the desired output from the REProcess tool.

– chapter 5 details the conceptual system architecture and data processing structure.

• Phase 2: REProcess Prototype Development & Testing

– chapter 6 outlines the prototype-specific requirements.

– chapter 7 describes the design and implementation of the REProcess prototype.

– chapter 8 presents the test results generated for the verification and validation of the implemented
REProcess prototype.

• Conclusions & Recommendations

– chapter 9 summarizes key conclusions, discusses limitations and open issues and provides recom-
mendations for future work.

OVERVIEW OF APPENDICES

In addition to the report chapters outlined above, a series of appendices are added at the end of this report. An
overview of the appendices related to the aerospace part of this combined thesis is provided below:

• Appendix A contains background information about KBE and MBSE for readers who are less familiar
with these concepts.

• Appendix B contains a user manual for the implemented REProcess prototype.

• Appendix C presents the full set of test cases that were performed to verify and validate the REProcess
prototype.



4
REPROCESS TOOL SYSTEM SPECIFICATIONS

This chapter provides a high-level specification of the complete REProcess tool, constituting the first step of
the adopted MBSE approach. While implementation of the complete system specification of the REProcess
tool presented in this chapter lies outside the scope of this thesis work, the findings are useful to sharpen the
vision and understanding of the REProcess tool. To this end, the first section presents a set of manually created
SysML activity diagrams belonging to an example process model. These provide a better understanding of
the output to be generated by the REProcess tool. Subsequently, an overview and discussion of the system
requirements defined for the REProcess tool is presented in section 4.2.

4.1. EXAMPLE PROCESS MODEL
This section presents a set of SysML activity diagrams corresponding to a single process model that was created
manually using the CATIA Magic modeling platform1. They were created using an iterative process, in parallel
with the synthesis of the system requirements presented in section 4.2. The purpose of these diagrams is to
better understand and define the desired output from the REProcess tool. Naturally, this is a key aspect of the
system requirements for the REProcess tool. Later in this project, during the implementation of the REProcess
prototype, these diagrams were also used as a baseline for comparison with automatically generated results.

KBE APPLICATION USED FOR MODELING EXERCISE

The KBE application used for this modeling exercise was created for the design of Unmanned Aerial Vehicle
(UAV) drones and is aptly called the “Modular UAV app”. This KBE application was also used during the
previous thesis work of Fernandes [12], which focused on the implementation of the Translation Engine (step
2 of the MDKBE approach). A screenshot of the Modular UAV app’s GUI is presented in Figure 4.1. Part of the
previous work with the Modular UAV app by Fernandes [12] was the creation of a SysML knowledge model,
including several activity diagrams. The availability of this existing SysML model was a key motivation to select
the Modular UAV app. Additionally, it was found to be well-structured, readily available and it incorporates a
broad range of KBE features including generation of complex geometries, utilization of a simulation toolbox
(XFoil Analysis Module), and automated generation of PDF reports. The existing knowledge model created by
Fernandes [12] was used as a baseline to generate the diagrams presented in this section.

4.1.1. EXAMPLE ACTIVITY DIAGRAMS
The most important characteristic of the example activity diagrams is that they all correspond to the same
high-level functionality of the Modular UAV app, namely the aerodynamic analysis of the UAV’s propeller
geometry using blade element theory. In other words, they collectively model a single engineering workflow.
Thereby, the diagrams provide a good indication of the most defining characteristic of the process model,
namely its multi-layered, hierarchical structure. This, together with several other key characteristics, is
discussed further after the introduction of the diagrams themselves.

The top-level activity diagram, outlining all (high-level) steps of the workflow, is presented in Figure 4.2. Note
how both the “Generate main blade” and “Do Blade Element Theory Analysis” nodes in Figure 4.2 contain a

1https://www.3ds.com/products/catia/catia-magic
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Figure 4.1: Screenshot of GUI of the Modular UAV applications developed and previously used by Fernandes [12].

rake symbol in the bottom-right corner. This indicates that both of these nodes represent activities which are
defined in lower-level activity diagrams. The activity diagram corresponding to the “Generate main blade”
node is presented in Figure 4.4. The activity diagram corresponding to the “Do Blade Element Theory Analysis”
node is presented in Figure 4.3. All three diagrams were created based on a highly detailed review of the
corresponding source code. The last activity diagram (Figure 4.3) was generated from scratch. The others were
created by adapting existing diagrams from Fernandes [12].

Figure 4.2: The “Generate Propellers” activity diagram. Adapted from [12].
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Figure 4.3: The “Execute Blade Element Theory Analysis” activity diagram. Adapted from [12].



4.1. EXAMPLE PROCESS MODEL 21

Figure 4.4: Additional activity diagram specifying the “Generate main_blade” activity. This diagram corresponds to a lower level of
abstraction due to the presentation of additional details such as the data flow between nodes.
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4.1.2. KEY CHARACTERISTICS OF THE PROCESS MODEL
This subsection presents the key characteristics of process model and the activity diagrams that have to be
generated by the envisioned REProcess tool. The manually generated example activity diagrams are used
to support these discussions. Some of the key characteristics, such as the hierarchical structure, align with
previous findings from the DEFAINE project. Others are novel characteristics corresponding to important
changes or additions, which includes the adaptations made to the original diagrams from Fernandes [12]. The
underlying rationale for these design decisions is also provided.

MULTI-LAYERED, HIERARCHICAL STRUCTURE

A defining characteristic of the process model and its activity diagrams is the hierarchical structure, where the
engineering workflows embedded in a KBE application are represented at multiple levels of abstraction. This
structure mirrors the hierarchical nature of software and system design, where complex processes are broken
down into manageable sub-processes, each corresponding to a different level of detail.

Top-level activity diagrams, e.g. Figure 4.2, provide a high-level overview of the engineering workflow, focusing
on the primary functional steps. Lower-level diagrams then decompose each step into more detailed sub-
processes, gradually transitioning towards a representation that is closer to the underlying source code.
This stepwise functional decomposition is visualized on the left-hand side of Figure 4.5. A corresponding
decomposition of the product model is shown on the right. This side-by-side comparison highlights the
relation between activities and blocks (i.e. allocation) from each level in the hierarchical breakdown.

Figure 4.5: Visualization of the hierarchical, multi-layered structure of activity diagrams from the process model (left) and block definition
diagrams from the product model (right). The horizontal layers highlight the relation between activities and blocks at each level in the

hierarchical breakdown. Obtained from [12], which adapted the figure from [31].
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Using a multi-layered, hierarchical structure for the process model has a number of key benefits:

• Alignment with MBSE approach: One notable advantage of generating diagrams at multiple levels
of abstraction is that it aligns with the hierarchical approach often employed in MBSE methodologies
(e.g. the V-model). As such, it will be familiar and intuitive for engineers and software developers to
understand. Furtermore, modeling platforms like CATIA Magic are specifically built to support such
hierarchical structures. A great example is the navigation feature that allows users to easily “zoom in” on
a particular function block by double-clicking it to open the corresponding lower-level activity diagram.

• Cognitive effectiveness: The size and complexity of industry-level KBE applications means that dis-
playing the entire engineering workflow in a single diagram would result in massive diagrams that
could overload a user with too much information. In other words, they would have very low cognitive
effectiveness. One of the key benefits of generating activity diagrams at according to a multi-layered,
hierarchical structure is that it servers as a means to divide the information over multiple diagrams
while ensuring the user can still easily navigate to the specific information they are looking for, thereby
increasing cognitive effectiveness of the model.

• Facilitating (partial) re-use: The modularity resulting from the hierarchical structure improves the
traceability between model and code and facilitates re-use of (parts of) existing KBE applications, which
is one of the overarching objectives of the MDKBE approach.

• Tailor to user-specific needs: Different types of users of the REProcess tool will have different needs
and objectives. For example, a KBE developer working on implementing a new algorithm might use the
REProcess tool to search within applications developed by their colleagues for similar implementations.
This requires examining detailed, low-level diagrams, as well as inspecting metadata attached to various
model elements (e.g. the specific data parameters that are passed between sub-functions). On the other
hand, a customer who ordered the development of a KBE application may use the REProcess tool to
verify that the engineering workflow they specified was correctly embedded in the application. For
this task, they are not interested in implementation-specifics but only require high-level diagrams that
provide an overview of the workflow. By generating the process model using a hierarchical structure, the
REProcess tool can be used flexibly and meet the specific needs of various types of users.

Final note: when moving from higher to lower levels of abstraction, the focus shifts from describing what is
achieved (e.g. “generate a mesh around the wing”), to how it is achieved (e.g. “1) define mesh boundaries; 2)
select meshing parameters; 3) generate point cloud”) and by which part of the KBE applications (i.e. functional
allocation). Correspondingly, an interesting way to view the source code of the KBE app itself is to simply regard
it as the functional representation at a very low level of abstraction. By taking this alternative perspective, the
sharp distinction and between model and code is reduced and it becomes easier to see them as two parts of the
same whole.

CAPTURE ALL MAIN FUNCTIONALITIES

KBE applications typically incorporate multiple distinct functionalities, such as geometry generation, data
export, high-level parameter computation (e.g., total system weight, manufacturing cost, or energy efficiency),
and design optimization. Rather than being combined into a single, continuous workflow, these functionalities
are typically implemented as independent yet interrelated processes, which can be triggered individually
through the application’s user interface (e.g. by clicking a button).

Since a KBE application consists of multiple, distinct workflows, its process model must reflect this modular
structure rather than attempt to integrate all functionalities into a single monolithic diagram. To achieve this,
a top-level SysML package diagram is required to provide a structured overview, organizing functionalities
into logically grouped packages. Each main functionality can then be represented through a high-level SysML
activity diagram, which can be further decomposed into lower-level activity diagrams as needed.

SWIMLANES

A very noticeable characteristic of the adapted SysML are the swimlanes, i.e. the vertical partitioning of the
diagram headed by <allocate>. As stated in Friedenthal et al. [11] [page 259]: “A set of activity nodes [...]
can be grouped into an activity partition (also known as a swimlane) that is used to indicate responsibility for
execution of those nodes. A typical case is when an activity partition represents a block or a part and indicates
that any behaviors invoked by call actions in that partition are the responsibility of the block or the part. The
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use of partitions to indicate which behaviors are the responsibilities of which blocks specifies the functional
requirements of a system or component defined by the block.”

In the original activity diagrams, simlanes were only used to allocate actions to external tools. However,
while adapting the original diagrams, it was found to be quite challenging to correlate the actions to their
corresponding source code segments. To address this issue, the design decision was made to place all action
nodes within swimlanes if the actions in an activity diagram are defined in multiple different Python classes.
Due to the swimlanes it becomes very explicit how the execution flows through the various classes, thereby
increasing traceability between source code and model.

DATA FLOW CONNECTOR TYPE

Data flow connectors (solid lines) are used as the default type of node connectors. This represents a change
with respect to the control flow connectors (dotted lines) used in the original activity diagrams. The rationale
for making this change is that data flow connectors allow specifying the data parameters flowing through them.
Moreover, data flow connectors are deemed to better represent the backwards chaining mechanism of KBE
systems, where a preceding method in the dependency chain is invoked if no valid data for a particular slot is
available.

METADATA

The inclusion of metadata represents another key characteristic of the process model. In fact, it is a defining
characteristic of SysML models in general. The metadata can be attached to entire diagrams (e.g. the diagram
name) as well as the nodes (e.g. actions or blocks) and edges (i.e. node connectors). Some notable examples
of the metadata attached to various model elements are functional allocation (also represented visually by
swimlanes), requirements allocation, and the specification of comments to attach the corresponding snippets
of KBE application source code snippets to actions or blocks. Another, very clear example of metadata being
attached to model elements is the data flow, represented by annotations of parameter names next to each data
flow connector, shown in Figure 4.4.

4.1.3. THE COMPREHENSIVE PROCESS MODEL
The combination of characteristics outlined above is really what sets a diagram from a SysML model apart
from “regular” software visualizations created by many other reverse engineering methods. To highlight this,
often the term comprehensive process model is used in subsequent parts of this report instead of just referring
to it as the process model. Note, however, that both terms refer to the same thing. The additional term merely
serves the purpose of highlighting its key characteristics, namely the multi-layered, hierarchical structure,
capturing all main KBE application functionalities, and the inclusion of a wide array of metadata. Together,
these characteristics ensure clarity and traceability, as well as facilitating the (partial) re-use of existing KBE
applications.

4.2. SYSTEM REQUIREMENTS FOR REPROCESS TOOL
The system requirements for the envisioned REProcess tool were synthesized based on information from
several key sources: the project objectives outlined in subsection 3.3.1, DEFAINE documents where the reverse
engineering step from the MDKBE approach was described [6, 9, 32], and discussions held with supervisors
during the early stages of this thesis project. The exercise of manually generating (part of) a process model
presented in the previous section also provided key insights. The resulting overview of system requirements is
presented in Table 4.1. Each of the requirements is described in more detail in the remainder of this section.

Table 4.1: System requirements for the complete REProcess tool.

Identifier Description

SR-01 The design of the REProcess tool shall be suited to ultimately be integrated into the envisioned
MDKBE approach (Figure 3.1).

SR-02 The REProcess tool shall automatically generate a comprehensive process model of the engi-
neering workflows embedded within the analyzed KBE application.
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SR-03 The visualization of large, complex engineering workflows shall be divided into a set of hierar-
chically structured diagrams, representing parts of the workflow at various levels of abstraction.

SR-04 The generated process model shall be defined using SysML.

SR-05 The generated process model shall include activity diagrams to visualize the engineering
workflows.

SR-06 The REProcess tool shall work for KBE applications developed with the Parapy KBE system.

SR-07 The REProcess tool shall be suited for the analysis of industrial KBE applications.

SR-08 Workflows to be reverse engineered by the REProcess tool shall be executable parts of the KBE
application.

SR-09 The REProcess tool shall generate cognitively effective activity diagrams.

SR-10 The smallest individual processing step that should still be captured in the process model is
the evaluation of user-defined part or attribute slots.

SR-11 If a process model for the analyzed application exists, the REProcess tool shall combine the
original and reverse engineered model.

SR-12 The internal data structure used to represent the process model shall facilitate the integration
of interrelated workflows.

SR-13 The conceptual design (ie, software architecture) shall allow for a tiered development ap-
proach, where each phase can be concluded by a standalone functional prototype.

SR-01: INTEGRATION INTO MDKBE APPROACH

The design of the REProcess tool shall be suited to ultimately be integrated into the envisioned MDKBE
approach (Figure 3.1).

Due to the limited scope of this thesis work, the complete REProcess tool and the prototype implemented
during this thesis work will mostly be considered and tested as stand-alone tools during their development
process. However, it is crucial to keep in mind the long term goal of integrating the tool into the envisioned
MDKBE approach (Figure 3.1) because this drives a lot of other requirements and design decisions. Therefore,
it is included explicitly as the first system requirement.

SR-02: COMPREHENSIVE PROCESS MODEL

The REProcess tool shall automatically generate a comprehensive process model of the engineering work-
flows embedded within the analyzed KBE application.

The term “comprehensive process model” was defined in subsection 4.1.3 and refers to the complete functional
software architecture, defined as a combination of the following features: capturing all main KBE application
functionalities according to a multi-layered, hierarchical structure, and the inclusion of a wide array of
metadata including allocation of functions and requirements.

SR-03: HIERARCHICAL DIAGRAM STRUCTURE

The visualization of large, complex engineering workflows shall be divided into a set of hierarchically
structured diagrams, representing parts of the workflow at various levels of abstraction.
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The hierarchical diagram structure mentioned in this requirement description goes hand-in-hand with the
functional breakdown described for SR-02 above. However, whereas SR-02 described the functional breakdown
as a required feature for the model itself, SR-03 is specifically about the diagrams of the model (i.e. the model
views). Essentially, this system requirements states that the diagrams used to define and describe the process
model should match the hierarchical structure resulting from the functional breakdown.

SR-04: USING THE SYSTEMS MODELING LANGUAGE

The generated process model shall be defined using SysML.

As described in chapter 3, the decision to use SysML as the main language to describe the model was already
made during the DEFAINE project. That design decision was simply translated to this system requirement for
the REProcess tool. The standardized data format used to save, import and export SysML models is called XML
Metadata Interchange (XMI) [11]. Hence, stating that “the generated process model shall be defined using
SysML” implicitly means that the REProcess tool will have to generate an XMI file that defines the process
model. For more information about SysML and the XMI data format, the reader is referred to [11] and [33]
respectively.

SR-05: SYSML ACTIVITY DIAGRAMS

The generated process model shall include activity diagrams to visualize the engineering workflows.

Similar to the adoption of SysML, this requirement represents a decision that was already made during the
DEFAINE project. When considering the following description from [11], one can easily understand why
Activity diagrams are the logical choice to represent the reverse engineered workflows: “The activity diagram is
the primary representation for modeling flow-based behavior in SysML and is analogous to the functional flow
diagram that has been widely used for modeling system behavior. Activities provide enhanced capabilities over
traditional functional flow diagrams, such as the capability to express their relationship to the structural aspects
of the system (e.g., blocks, parts).” [p.205].

SR-06: PARAPY KBE SYSTEM

The REProcess tool shall work for KBE applications developed with the Parapy KBE system.

While many KBE systems share fundamental characteristics, such as object-oriented programming and
demand-driven evaluation [34], their implementations vary significantly. As a result, developing a generic
reverse engineering tool is impractical. The REProcess tool is therefore tailored for ParaPy, leveraging its
built-in dependency tracking and slot evaluation mechanisms. However, the conceptual design may serve as a
foundation for future tools aimed at other KBE systems.

SR-07: INDUSTRIAL KBE APPLICATIONS

The REProcess tool shall be suited for the analysis of industrial KBE applications.

The following implications of focusing on analyzing industrial KBE applications are identified:

• Decent level of code quality: Large companies standardly use quite rigorous and mature DevOps
processes, focusing on adherence to coding standards. Typically they also make use of (custom) code
checking tools and code review practices. Moreover, on average their KBE developers will be relatively
experienced (or they rely on knowledge from external KBE experts like developers from ParaPy). Thereby,
it is assumed that the target KBE applications to be reverse engineering by the REProcess tool feature
a decent level of code quality. This is beneficial from a reverse engineering perspective, because it
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means more information will be present that is useful for reverse engineering purposes (e.g. source code
comments, meaningful parameter naming, etc.), and it is present more consistently.

• Proprietary source code: A downside of analyzing industrial KBE applications, from a reverse engineer-
ing perspective, is that they will often demand confidential data treatment because a lot of proprietary
information is embedded in the source code. This means using LLMs hosted on external online servers
(e.g. ChatGPT or OpenAI API) is not possible. Instead, downloadable, open-source LLMs will have to be
used that run on private servers or local machines.

• Large, complex applications: Professional KBE apps developed and used in the industry can feature
large, complex engineering workflows. Part of this complexity is interfacing with one or more external
analysis and simulation tools such as flow simulation tools (e.g. XFoil2 or Ansys CFX3) and structural
analysis tools (e.g. Ansys Mechanical4). The REProcess tools should therefore be capable reverse
engineering KBE applications that incorporate these tools.

SR-08: FOCUS ON EXECUTABLE PARTS

Workflows to be reverse engineered by the REProcess tool shall be executable parts of the KBE application.

This system requirement is essentially a scope limitation that also happens to align well with the characteristics
of dynamic analysis methods. To perform dynamic analysis, all source code included in the analysis must be
executable to allow capturing data at runtime. Thus, in practical terms, this requirement states that it should
be possible to instantiate the analyzed KBE app and evaluate all slots included in the analysis scope without
resulting in errors or crashes.

The phrase “executable parts of the KBE application” indicates that any parts of the KBE app excluded from
analysis do not have to be executable code. This is made possible by the object-oriented programming style
and demand-driven slot evaluation, which allows for non-functional code to exist in the code base without
causing errors as long as it is not actively called.

SR-09: COGNITIVELY EFFECTIVE DIAGRAMS

The REProcess tool shall generate cognitively effective activity diagrams.

The term cognitive effectiveness stems from the field of cognitive science. It is defined as “a combination
of the speed, ease and accuracy with which information can be extracted from a representation” [35, 36].
The term is used in this thesis project to refer to the capability of generated diagrams to improve a user’s
comprehension of the reverse engineered KBE application. To achieve this, the REProcess tool will break down
complex workflows into hierarchically structured diagrams, ensuring users can navigate different levels of
abstraction without being overwhelmed. Key design choices — such as swimlanes for functional allocation
and data flow visualization — improve readability and traceability.

SR-10: CODE-TO-MODEL MAPPING CARDINALITY

The smallest KBE workflow step that should be captured as an individual model element in the process
model is the evaluation of user-defined part or attribute slots.

The term cardinality is used to refer to the mapping between KBE source code and knowledge model elements.
For the process model, the evaluation of a ParaPy attribute or part slot is defined as the smallest step (i.e.
lowest level of abstraction) that should still be captured as an individual element (i.e. an action) in the process
model. The definition of input slots is considered too minor to be relevant as a separate process step. Note,

2https://web.mit.edu/drela/Public/web/xfoil
3https://www.ansys.com/products/fluids/ansys-cfx
4https://www.ansys.com/products/structures/ansys-mechanical

https://web.mit.edu/drela/Public/web/xfoil
https://www.ansys.com/products/fluids/ansys-cfx
https://www.ansys.com/products/structures/ansys-mechanical
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however, that the control and data flow associated to input slots is still considered relevant information. Thus,
when removing the nodes representing input slots from reverse engineered workflows, care should be taken to
transfer the associated control and data flow information to the node that represents the evaluation of the
ParaPy part to which that input slot belongs. This is explained in more detail in subsection 5.2.3.

SR-11: COMBINE ORIGINAL AND REVERSE ENGINEERED MODEL

If a process model for the analyzed application exists, the REProcess tool shall combine the original and
reverse engineered model.

This system requirement was derived from SR-01. In case the REProcess tool is used as an integrated part of
the roundtripping system envisioned in the MDKBE approach, two different versions of the process model
will exist: the “original” process model that is no longer up-to-date with the KBE source code after step 3,
and the reverse engineered model generated by the REProcess tool. Despite being outdated, the original
model can still contain valuable information that was not included in the KBE source code. For example, the
allocation between requirements and processes, or certain comments that were added to diagrams of the
initial knowledge model. This necessitates developing a functionality to identify and merge corresponding
elements from the old into the updated knowledge model.

SR-12: INTERNAL DATA STRUCTURE

The internal data structure used to represent the process model shall facilitate the integration of interrelated
workflows.

A proper internal data structure is crucial for ensuring the scalability and integration capabilities of the
REProcess tool, particularly as it handles large and complex engineering workflows. Moreover, it will contribute
to the development process of the tool itself because it facilitates accessing and storing data, as well as aiding
developers in comparing and spotting differences between implementation variants.

SR-13: TIERED DEVELOPMENT APPROACH

The conceptual design of the REProcess tool shall allow for a tiered development approach, where each
phase can be concluded by a standalone functional prototype.

This requirement aligns with the second main objective of this thesis project, namely the development of a
stand-alone REProcess prototype. Moreover, by designing the REProcess tool according to this requirement,
its implementation can be spread out more easily over multiple, separately conducted projects. This will
facilitate the continued development of the REProcess tool, after the development of the REProcess prototype
in this thesis project is concluded.



5
CONCEPTUAL DESIGN OF THE REPROCESS

TOOL

The REProcess tool is envisioned as a software system for reverse engineering KBEapplications. This chapter
outlines its conceptual design, formulated based on the system requirements defined in the previous chapter.
The design process follows the MBSE methodology, ensuring a structured, high-level approach to system
development. The chapter begins with a high-level functional breakdown of the tool (section 5.1), defining its
key capabilities and the sequence of steps required to construct a comprehensive process model. The most
critical of these operations is the LLM-based SRE method, which forms the core of the REProcess tool. The
conceptualization of this novel SRE method is discussed in section 5.2. Other key steps are the identification
main KBE app functionalities and the integration of individual reverse engineering results obtained from the
SRE method. These are discussed in section 5.3. The last key step, exporting a SysML model, is discussed in
Figure 5.5.

Finally, an integrated overview of the conceptual REProcess tool design is presented in section 5.5 and some
preliminary conclusion based on the findings in this chapter are discussed in section 5.6.

5.1. HIGH-LEVEL FUNCTIONAL BREAKDOWN
This functional breakdown, presented below, was created based on the high-level system specification pre-
sented in the previous chapter.

1. Identify main KBE app functionalities: As described in the specification of SR-02, the desired com-
prehensive process model should capture all main functionalities of a KBE app. Therefore, the first
high-level functionality to be implemented by the REProcess tool involves identifying all the main func-
tionalities of the analyzed KBE application. The input for this step is the KBE application source code,
and the output is a list of main functionalities. This list serves as the main input for the next step.

Note that the implementation of this functionality lies outside the scope of the REProcess prototype
developed in this thesis work. However, some conceptual design options and suggestions are provided
in subsection 5.3.1.

2. Individually reverse engineer each main functionality: The second high-level step constitutes individ-
ually reverse engineering each main KBE application functionality from the identified list. The set of
example activity diagrams from section 4.1 serve as a reference for the expected output from each of
these reverse engineering runs. Note, however, that representing the reverse engineered workflows as
SysML activity diagrams is defined as a separate REProcess tool functionality which is outlined further
below. Instead, the output from each reverse engineering run is an internal representation of the reverse
engineered workflow that is stored in the so-called information base of the REProcess tool.

The development of this key REProcess tool feature was the primary focus of this research as it directly
corresponds to the design and implementation of the novel LLM-based SRE method introduced in
chapter 3. The exact purpose of this novel SRE method is to reverse engineer individual workflows

29
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embedded in ParaPy KBE applications. Its high-level conceptual design is discussed in section 5.2. A
detailed discussion of its implementation in the REProcess prototype is presented in chapter 7.

3. Integrate results: Once all main KBE application functionalities have been reverse engineered indi-
vidually, the comprehensive process model (defined in subsection 4.1.3) is created by merging all of
the individual workflows stored in the information base. A key aspect of this merging process is the
identification of duplicate (sequences of) steps. The common occurrence of such duplicate (sequences
of) steps relates to the interconnected nature of KBE applications. Correspondingly, the merger of
duplicate (sequences of) steps typically results in a significant reduction of the overall size of the model.
More importantly, through this integration process, the set of individual workflows is transformed into a
single, interconnected representation: the comprehensive process model.

Note that the implementation of this functionality lies outside the scope of the REProcess prototype
developed in this thesis work. However, some conceptual design options and suggestions are provided
in subsection 5.3.2.

4. Export SysML model: The final high-level REProcess tool functionality can be regarded as a data
transformation. It consists of exporting the internal representation of the reverse engineered process
model as an XML Metadata Interchange file, which is a file format can be imported in SysML modeling
platforms like CATIA Magic [33].

Note: Implementation of this functionality lies outside the scope of the REProcess prototype developed in
this thesis work. However, some conceptual design options and suggestions are provided in section 5.4.

A high-level concept of the REProcess tool software architecture is defined based on this functional breakdown.
This architecture consists of three main software components: the core reverse engineering method, the model
composer, and the XMI writer. The core reverse engineering method implements the novel LLM-based SRE
method (functionality 2 listed above). Its conceptual design is presented next, in section 5.2. Functionalities
1 and 3 are allocated to the model composer, which is discussed in section 5.3. Subsequently, section 5.4
outlines the XMI writer that should implement the 4th high-level REProcess tool functionality. Finally, an
integrated view of the conceptualized REProcess tool architecture is presented in section 5.5.

5.2. THE LLM-BASED REVERSE ENGINEERING METHOD
This section presents an overview of the conceptual design of the LLM-based reverse engineering method. The
purpose of this method is to perform reverse engineering of individual KBE application workflows. In the first
subsection, a brief description of key design options is presented, along with the rationale for particular design
decisions. The three subsequent subsections describe the sequence of program analysis and abstraction
methods that collectively define the conceptual design of the proposed LLM-based SRE method.

5.2.1. CONCEPTUAL DESIGN OPTIONS
The traditional SRE process consists of two key steps: program analysis (extracting program structure and
execution flow) and abstraction (deriving high-level descriptions from lower-level representations). The first
important design choice consisted of choosing between using an LLM for both of these steps (analysis and
abstraction) or restrict its use solely for the abstraction step.

In the context of the REProcess tool, the analysis step must determine the process flow of a ParaPy KBE
application — that is, the sequence of execution steps. To assess the feasibility of using an LLM for program
analysis, some tests were conducted. Several ParaPy class definitions were provided to an open-source LLM1),
accompanied by an instruction to deduce the execution sequence. The experiment was then repeated after
modifying the order of slot definitions in the source code. Due to ParaPy’s object-oriented paradigm and
backward-chaining execution mechanism, the order of slot definitions does not dictate execution order [34].
However, despite explicitly specifying this in the instruction to the LLM, it still incorrectly assumed a top-to-
bottom execution order, demonstrating its inability to accurately infer control flow. Based on these findings, it
was concluded that current open-source LLMs are not well-suited for the analysis step and should instead be
leveraged exclusively for the abstraction step, i.e. generating natural language descriptions from extracted
code elements.

1Llama2: https://huggingface.co/docs/transformers/model_doc/llama2

https://huggingface.co/docs/transformers/model_doc/llama2
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Given that the LLM is unsuitable for program analysis, an alternative method was required. Three main
approaches were considered:

• Utilizing existing reverse engineering tools

• Leveraging built-in ParaPy dependency tracking methods

• Developing a custom analysis tool from scratch

Given the substantial effort required for custom development, the first two approaches were prioritized.
A review of existing reverse engineering tools—such as MoDisco [25], AgileUML [26, 37], Scalpel [27], and
ModMoose [38] revealed significant limitations. Most of these tools were not optimized for Python/ParaPy,
relied only on static analysis methods, lacked high-level process abstraction capabilities, or were closed-source
and non-extensible.

Fortunately, the second approach—leveraging ParaPy’s built-in precedents analysis method—proved highly
promising. This method directly accesses ParaPy’s dependency tracking system, a core feature of KBE systems
[39], providing an accurate and robust representation of execution flow. Given its alignment with the objectives
of REProcess tool, precedents analysis was selected as the primary analysis method for extracting execution
sequences.

5.2.2. STEP A: PRECEDENTS ANALYSIS
Precedents analysis was selected as the main program analysis method for the REProcess tool. This is a
dynamic analysis method that consists of instantiating the KBE application and tapping directly into the
dependency tracking system, an key feature of KBE systems [39]. In case of the Parapy KBE system, this can be
done by calling an Application Programming Interface (API) method called get_precedents_tree() [40].
The get_precedents_tree() method has to be executed on a target attribute of an instantiated Parapy
object. See the example (Listing 1) provided below. In this example, the analysis target is the center of gravity of
the fused_boxes part. To obtain the precedents tree for this attribute, the get_precedents_tree() method
can be called in two ways. Either by running it on the fused_boxes_cog attribute (example A, line 35), or by
directly running it on the cog attribute of the example_obj.fused_boxes object (example B, line 36).

The output of get_precedents_tree() is a highly nested dependency tree, formatted as a dictionary of
dictionaries. A partial example of a dependency tree is shown below in Listing 2. This example corresponds to
the output from precedents_tree_example_A (line 35 in the previous example). Notice how cache objects
(e.g. Cache fused_boxes_cog at 0x1fba365d720>) are used to define each node. Node connections are
established by adding nodes to the list corresponding to the children key. The nodes listed as children are
preceding nodes, meaning they lie upstream relative to the current node. In other words, children nodes
are executed before their parent node. The Parapy system also provides a built-in method to generate a
visualization of the precedents tree using Graphviz2. This method is called on line 37 in Listing 1. The output
of this method is visualized in Figure 5.1. Note that this visualization represents the same graph (partially)
shown in Listing 2.

DATA TRANSFORMATION TO NETWORKX GRAPH

After obtaining the call tree, a data transformation is applied to convert it to a graph format. The result from this
data conversion is the so-called raw precedents graph. More specifically, the tree is transformed to a directed
graph, which is defined using the NetworkX Python library3. This facilitates all downstream manipulation and
visualization steps, including the merger of individual workflows into a comprehensive model.

5.2.3. STEP B: GRAPH TRANSFORMATION
The output obtained from the precedents analysis essentially forms the starting point of the reverse engineering
method. Looking at Figure 5.1, however, it is clear that a lot of work is still needed before it starts to resemble
an activity diagram similar to those presented in section 4.1. Two obvious aspect are the visual layout and the
textual node descriptions, which are addressed further down the line. The aspect addressed in this step of the
proposed SRE method is the structure of the graph itself.

2https://graphviz.org/
3see https://networkx.org/

https://graphviz.org/
https://networkx.org/
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1

2 from parapy.core import *
3 from parapy.geom import Box, TransformedShape, OXY, FusedSolid
4 from parapy.gui import display
5

6 class MyClass(Base):
7 width = Input(5)
8 length = Input(5)
9 height = Input(5)

10

11 @Part
12 def start_box(self):
13 return Box(width=self.width,
14 length=self.length,
15 height=self.height)
16

17 @Part
18 def transformed_box(self):
19 return TransformedShape(shape_in=self.start_box,
20 from_position=OXY,
21 to_position=OXY(x=1, y=2, z=3))
22

23 @Part
24 def fused_boxes(self):
25 return FusedSolid(shape_in=self.start_box,
26 tool=self.transformed_box,
27 color='green')
28

29 @Attribute
30 def fused_boxes_cog(self):
31 return self.fused_boxes.cog
32

33 parapy_obj = MyClass()
34

35 precedents_tree_example_A = parapy_obj.get_precedents_tree("fused_boxes_cog")
36 precedents_tree_example_B = parapy_obj.fused_boxes.get_precedents_tree("cog")
37

38 print(parapy_obj.show_precedents_tree("fused_boxes_cog", "PRC_tree__fused_boxes_cog.png"))
39

Listing 1: Source code example of a Parapy class, including calls to get_precedents_tree and show_precedents_tree methods.

Again referring to Figure 5.1, note that there are significantly more nodes - 33 in fact - than the four attribute
and part slots defined in the corresponding source code (Listing 1). The additional nodes cluttering the
diagram can come from several main sources. The first is the definition of input slots. As defined in SR-10,
definition of input slots is considered too minor of a step to warrant representation as an individual model
element (i.e. node) in the process model. Another source of clutter is the ParaPy KBE system itself. Many nodes
in Figure 5.1, correspond to the internal workings of the ParaPy KBE system. Some examples are the nodes
denoted by the terms TopoDS_Shape, builder, TOPODIM, or TOPOLEVEL on their bottom row. Collectively,
these nodes are referred to as implementation details. The goal of this graph transformation step is to remove
these implementation details and rearranges the overall graph structure into something better resembling
an activity diagram. The main types of methods applied by the graph transformation algorithm are filtering
(based on heuristics) and graph edge contraction. Correspondingly, the graph transformation is considered
an abstraction method. This chapter will not go into further detail about the algorithm itself. A detailed
specification of the implemented algorithm is presented in chapter 7.

An example of the difference between the raw and transformed graph is provided in Figure 5.2. This comparison
highlights the differences in graph structure. Node content is not meant to be readable because it is not
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1 precedents_tree = {
2 'node': <Cache fused_boxes_cog at 0x1fba365d720>,
3 'children': [
4 {
5 'node': <Cache fused_boxes at 0x1fba365ce20>,
6 'children': []
7 },
8 {
9 'node': <Cache cog at 0x1fba365d8a0>,

10 'children': [
11 {
12 'node': <Cache TopoDS_Shape at 0x1fba365e1a0>,
13 'children': [
14 {
15

16 < OMMITTED FOR BREVITY >
17

Listing 2: Truncated example of the precedents_tree_example_A (line 35 in Listing 1).

relevant here. This example clearly shows the reduction in node count. Another change achieved by the graph
transformation algorithm is that the workflow graph now has a singular starting point, located at the top of the
transformed graph. This is an example of how the algorithm transforms the graphs in order to make them
better resemble an activity diagram. The graph transformation is described in full detail in section 7.3.

The output of the graph transformation step forms the first main ingredient to generate a SysML activity
diagram of the analyzed workflow. Specifically, the structure of the transformed graph forms the blueprint for
an activity diagram. It contains all important steps and connectors/dependencies. The other main ingredient,
still missing at this point, is the set of the textual descriptions describing each of the performed computation
steps represented by the nodes. These are generated in the subsequent step.

5.2.4. STEP C: LLM-BASED ABSTRACTION
After the transformed precedents graph is obtained, the LLM-based abstraction step is performed. In essence,
this comprises of formulating a prompt for each node in the transformed precedents graph and running this
through an LLM - a process called inference - to get the corresponding node description. An example of such
an LLM prompt is provided in Listing 3, which shows their typical 3-part structure. The first is the System
Prompt which is used to provide general context and instructions to the LLM. Subsequently, the User Message
contains the specific request that the LLM should address. Finally, the Assistant Response header indicates
where the LLM should start formulating its output. For additional information about prompt engineering, the
reader is referred to documentation from OpenAI4 or Google5.

In this example prompt, observe that both the system prompt and user message contain natural language text
instructions, in addition to the source code snippet. Here, system prompt is “Your task is to reverse engineering
an existing knowledge based engineering application.”, and the user instruction (directly below the source
code) is “Write a concise summary (maximum 10 words) of the source code provided above”. Due to the inherent
freedom of natural language, there are infinitely many ways how these instructions could be re-formulated. As
a consequence, there is a lot of design freedom related to this aspect of the reverse engineering system. How
well an LLM responds to a particular prompt formulation mainly depends on the formatting of the prompts
it was trained with, which differs for each LLM. Tuning the prompt formulation can therefore be best done
iteratively until a satisfactory formulation is found.

A textual description for every node is obtained by iteratively looking up the corresponding source code snippet
from each node in the transformed precedents graph and injecting it into a prompt that is passed to the LLM
for inference. Once all individual prompts are processed by the LLM, the main ingredients to generate a
workflow diagram are obtained. The graph structure, obtained from the transformation algorithm, forms the

4https://platform.openai.com/docs/guides/prompt-engineering
5https://cloud.google.com/discover/what-is-prompt-engineering

https://platform.openai.com/docs/guides/prompt-engineering
https://cloud.google.com/discover/what-is-prompt-engineering
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Figure 5.1: Example diagram generated by calling show_precedents_tree on the fused_boxes_cog attribute (line 37 in 1). The first
line of each node is the qualified name of the Parapy object, and the second line is the name of the slot.

Figure 5.2: Comparison between the raw and transformed precedents graph that highlights the differences in graph structure. Node
content is not meant to be readable because it is not relevant here. Coloring is used as a substitute for SysML swimlanes and refers to the

ParaPy class corresponding to the nodes.

blueprint of the graph and the nodes can be “filled” with the descriptive summaries produced by the LLM.
Meanwhile, the original node representation data is all saved as metadata to ensure a rich and complete model
representation of the workflow is obtained. The graph in which all of this information is combined will be
referred to as the activity graph. This name refers to the fact that an activity diagram can be generated based
on all information stored in this data object.

5.3. THE MODEL COMPOSER
The model composer performs two REProcess tool functionalities. First, it identifies a list of main KBE
application functionalities. This list represents the reverse engineering targets on which the method outlined
in the previous section are called. This first functionality is described in subsection 5.3.1. Subsequently, once all
individual workflows have been reverse engineered, the second task of the model composer is the integration
of the results. This is functionality is outlined in subsection 5.3.2.

Note: the implementation of the functionalities outlined in this section falls outside the scope of this work. They
are discussed to provide a better understanding of the overall envisioned system. Furthermore, the proposed
conceptual design options provide a starting point for follow-up work.
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1

2 ### System Prompt
3 Your task is to reverse engineering an existing knowledge based engineering application.
4

5 ### User Message
6 @Attribute
7 def x_loc_MAC(self):
8 # ADDED BY JK
9 taper = self.w_c_tip / self.w_c_root

10 y_bar = 2*self.w_semi_span/6 * (1+2*taper) / (1+taper)
11 x_bar_MAC = tan(radians(self.sweep)) * y_bar
12 x_bar_ac = 0.25*(2/3) * self.w_c_root * (1+taper+taper**2)\
13 / (1+taper)
14

15 x_MAC = self.wing_position_fraction_long * self.fu_length + \
16 x_bar_MAC + x_bar_ac
17

18 return x_MAC
19

20 Write a concise summary (maximum 10 words) of the source code provided above.
21

22 ### Assistant Response

Listing 3: Typical example of an LLM prompt.

5.3.1. IDENTIFY MAIN KBE APPLICATION FUNCTIONALITIES
As described in the specification of SR-02, the desired comprehensive process model should capture all
main functionalities of a KBE app. Therefore, the first step of the REProcess tool’s internal workflow involves
identifying all of these main functionalities within the targeted KBE application. The input for this step is the
KBE application source code, and the output is the list of main functions to which the core reverse engineering
method will be applied in the subsequent step.

PROPOSED CONCEPTUAL DESIGN

A very straightforward approach to implement this step would be to simply consider the computation of all
attribute and part slots defined in the main class of the KBE application as main functionalities. The main
class is the one typically used to instantiate the KBE application. For example, the Drone class of the Modular
UAV app, or the Aircraft class of the Primiplane KBE application (example below). The rationale behind
this heuristic approach is based on the observation that KBE developers tend to define important slots in this
main class to make them easily accessible to users interacting with the KBE application. Of course, this will
not hold for all cases, but due to its simplicity and effectiveness it is considered a great starting point for the
implementation of this functionality in the REProcess tool.

PRIMIPLANE EXAMPLE USE CASE

As an example, consider the KBE application called Primiplane6. The Primiplane app is capable of generating
aircraft geometry, with a specific focus on movables (ailerons, elevators and rudder), as well as running XFoil
analysis7 to compute basic lift and drag characteristics. A screenshot of the app is provided in Figure 5.3. The
main class of this application - the one used to instantiate the GUI presented in Figure 5.3 - is the Aircraft
class. The list below is obtained by following the main functionality identification approach proposed above.
A brief description of each slot, including the corresponding class, is provided for reference. The asterix (*)
denotes standard classes from the ParaPy system itself.

1. fuselage - Part slot that generates the fuselage geometry by instantiating the Fuselage class.

2. right_wing - Part slot that generates the right wing geometry by instantiating the LiftingSurface
class.

6Obtained from [41]
7https://web.mit.edu/drela/Public/web/xfoil

https://web.mit.edu/drela/Public/web/xfoil
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Figure 5.3: Screenshot of the GUI of the Primiplane KBE app

3. left_wing - Part slot that generates the left wing geometry by mirroring the right wing using the
MirroredShape* class.

4. vert_tail - Part slot that generates the vertical tail geometry by instantiating the
LiftingSurface class.

5. h_tail_right - Part slot that generates the right horizontal tail geometry by instantiating the
LiftingSurface class.

6. h_tail_left - Part slot that generates the left horizontal tail geometry by mirroring the right tail using
the MirroredShape* class.

7. xfoil_analysis - Part slot that runs the XFoil analysis on the right wing airfoil geometry by instantiating
the XfoilAnalysis class.

By iteratively applying the SRE method defined in section 5.2 to each of these slots, a set of individual KBE
application workflows is obtained. Notably, the occurrence of several duplicate sequences of workflow steps
can already be deduced from the slot descriptions added to the set main KBE application functionalities
above. For instance, the part geometries from both the left_wing and h_tail_left are created by mirroring
their right-side counterparts, indicating a direct dependency. Correspondingly, the workflow to generate the
left_wing part will consist of the exact same workflow to generate right_wing part plus one additional
mirroring step. The same holds for the h_tail_left part. Furthermore, the xfoil_analysis slot also takes
the right_wing as input, meaning there are not two but three separate occurrences of the right_wing
workflow stored within the in the REProcess tool information base after the iterative reverse engineering
process is complete. This highlights the need to integrate the results from the individual reverse engineering
runs into one single representation, which is the focus of the step outlined below.

5.3.2. INTEGRATE RESULTS
The objective of this high-level REProcess tool functionality is to integrate all the individual workflows created
by the iterative application of the proposed SRE method and thereby generate the comprehensive process
model.

PROPOSED CONCEPTUAL DESIGN

To start, an empty “master” graph is created that will contain the process model. Then, an iterative process
is followed to merge all of the individual activity graphs into the master graph. This merging process can
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be implemented using the compose function from the NetworkX library8. By definition, graph composition
merges any identical nodes present in both graph while preserving the edges from both graphs. An example of
this process is provided in Figure 5.4. As shown, the S and t-nodes, which were present in both graphs, have
been merged into one respectively while preserving the incoming and outgoing edges from both of the original
graphs. The result is a single, connected graph.

An important note regarding the NetworkX compose function is that its default behavior when merging two
identical nodes is to only keep the metadata from one of the original nodes. The metadata from the other node
is simply discarded. Therefore, some custom logic must be added before the using the compose function itself
that identifies identical nodes and takes care of correctly merging the attached metadata.

Figure 5.4: Example of graph composition. Adapted from [42]

Three different scenarios can occur when composing a reverse engineered activity graph into the process
model graph. These are defined based on the degree of overlap between the two graphs:

1. The first scenario is where the activity graph turns out to be a complete sub-graph of another workflow
that was already composed into the model graph. This indicates that the workflow represented by the
current activity graph is in fact not a main function. Instead, it should be placed one level lower in
the abstraction hierarchy. Naturally, the opposite could also occur. An example of this scenario was
previously encountered when

2. The second scenario is that there is absolutely no overlap between the two graphs, aside from the first
node representing the initialization of the KBE app. This indicates that the activity workflow being
composed into the process model indeed represents a stand-alone functionality, and implies it should
indeed be regarded as main functionality of the analyzed KBE application.

3. Finally, there is the mixed scenario where there is partial overlap between the two graphs. This can take
multiple forms. The simplest is when both workflows share an initial sequence of lower-level steps, but
somewhere the graphs diverge and arrive at a unique end-point. Alternatively, two already-diverged
graphs can also “converge” again for some limited sequence of steps, only to then diverge again later.
Larger, complex graphs can also exhibit combinations of both. In any case, an overlapping sequence of
steps indicates that it collectively provides one higher-level functionality. The same is true for each of
sequence of unique steps.

8https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.operators.
binary.compose.html

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.operators.binary.compose.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.operators.binary.compose.html
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Identification of these different scenario’s can help to make sense of the interrelations between all of the
individually reverse engineered workflows and place them at the right level in the hierarchical structure of the
process model. Doing so will also reduce to total amount of main functions with respect to the list originally
defined during step 1. The remaining list will only contain functions that are really distinct from each other with
regard to the output they provide and the processes that are invoked. Accordingly, the updated list represents
the different use cases that the KBE app can provide. An overview of these use cases can be represented using a
SysML use case diagram. This diagram is a functional representation of the analyzed KBE app at the highest
level of abstraction.

5.4. THE XMI WRITER
The XMI generation is the final step of REProcess tool workflow. This step should be viewed as a data trans-
formation, from the internal representation of the process model (a NetworkX graph) to the formal XMI data
format specified by the Object Management Group (OMG) [33].

Note: the implementation of the functionalities outlined in this section falls outside the scope of this work. They
are discussed to provide a better understanding of the overall envisioned system. Furthermore, the proposed
conceptual design provides a starting point for follow-up work.

PROPOSED CONCEPTUAL DESIGN

Implementation of this step can be achieved by extending the product model reverse engineering tool for
which an XMI writer was already developed by [32]. This has two main benefits. Firstly, the functionality to
setup the overall structure and general content (e.g. specification of the SysML profile) of the XMI file does not
have to be developed. This can be handled completely by the existing tool. Secondly, using the full product
model reverse engineering tool capability first will mean the model is already populated with all of the blocks
that represent the classes. Consequently, the REProcess tool can refer to these same classes when creating the
swimlanes in the activity diagrams that specify the functional allocation.

An important remark regarding the implementation of this step pertains to the XMI data format. Unfortunately,
while it is the standard for exchanging SysML models, it has one major flaw: a standardized data format for the
definition of model views (i.e. diagrams) is not included in the official specification from OMG. It only provides
a standardized format for the definition of the model itself. As a result, different modeling platforms (Magic
Systems of Systems Architect (MSOSA), Enterprise Architect, Papyrus, etc.) each implemented their own
variation. Correspondingly, the implementation of this step can not be completely platform-agnostic. A way
to (partially) address this issue that was proposed in the DEFAINE project is to use JSON as an intermediate
data format [32]. This is visualized in Figure 5.5. Note that Cameo is the former name of the CATIA MSOSA
platform. A noteworthy alternative option that lies on the horizon is to implement the XMI writer for SysML
v2, which is planned for release in early 20259.

Figure 5.5: Implementation concept for the XMI writer developed in DEFAINE for the product model reverse engineering tool. Obtained
from [43].

9https://www.edumax.pro/blog/what-is-new-in-sysml-20

https://www.edumax.pro/blog/what-is-new-in-sysml-20
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5.5. REPROCESS TOOL ARCHITECTURE
An integrated view of the REProcess tool software architecture is provided in Figure 5.6. The three structural
software components are represented by the three vertical swimlanes. Within these, the nodes correspond to
the high-level REProcess tool functionalities discussed previously in this chapter. The allocation of main these
functionalities to the structural software components is indicated using the swimlanes.

• Core reverse engineering method: This software component performs the reverse engineering of
individual main KBE application functionalities (functionality 2 defined in section 5.1). The conceptual
design of the LLM-based SRE method was presented in section 5.2. This component directly correlates
to the implementation of the novel LLM-based SRE method. Hence, the REProcess prototype (presented
in chapter 7) can essentially be regarded a stand-alone implementation of this software component.

• Model composer: The model composer performs two of the high-level REProcess tool functionalities
defined in defined in section 5.1, namely step 1 (identifying main functionalities) and step 3 (integrating
the results). Therefore, the model composer can be considered as a so-called wrapper function of the
core reverse engineering method. This is also reflected by the activity flow in Figure 5.6. Both the
steps before and after the execution of the core reverse engineering method are allocated to the model
composer. The output generated by the model composer is referred to as internal representation of the
comprehensive process model.

• XMI writer: The final part of the REProcess tool is the XMI writer, which is tasked with generating the
output file that can be imported by a modeling tools like CATIA Magic. To achieve this, the XMI writer
has to perform a data transformation, from the internal representation of the composed process model
to the XMI data format.

Figure 5.6: Integrated representation of the proposed conceptual design for the REProcess tool. The vertical swimlanes indicate the
allocation of the process steps to the main software components of the REProcess tool.
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5.6. PRELIMINARY CONCLUSIONS BASED ON CONCEPTUAL DESIGN SPECIFICA-
TION

Based on the findings presented in this chapter, a number of preliminary conclusion can be drawn:

1. The primary research objective of this thesis is to evaluate the feasibility of using state-of-the-art LLMs
to reverse engineer process models from ParaPy-based KBE applications. A key conclusion from this
conceptual design phase is that LLMs cannot be reliably used for the program analysis step due to their
inability to accurately infer execution order in object-oriented, backward-chaining environments like
ParaPy. Instead, the precedents analysis method—which directly leverages the dependency tracking
mechanism inherent to KBE systems—was selected as a robust and reliable alternative.

2. Furthermore, it was established that structuring and abstracting the extracted execution flow into a
meaningful representation is a non-trivial challenge. The graph transformation step plays a crucial
role in simplifying complex execution structures, while the LLM-based abstraction step enables the
automatic generation of concise, natural language descriptions for each workflow step.

3. This chapter has also indicated the challenge and complexity of developing the complete REProcess
tool envisioned for the MDKBE. It requires knowledge and skills about many different topics, namely:
KBE systems (both general and Parapy-specific), the Systems Modeling Language, the XML Metadata
Interchange format, Software Reverse Engineering methods, graph theory, Large Language Models, de-
velopment of (object-oriented) software applications, data engineering, acquiring/setting up hardware
to run the system locally, and cognitive science to adequately test and improve the performance of the
developed system.

NEXT STEPS

The next phase of this research will focus on the implementation and evaluation of the LLM-based reverse
engineering prototype. The REProcess prototype will serve as a proof of concept, testing the feasibility of the
proposed analysis-abstraction workflow and identifying further improvements. The next chapter presents
a detailed specification of the prototype requirements. The design and implementation of the REProcess
prototype are presented in chapter 7.



6
REPROCESS PROTOTYPE SPECIFICATIONS

Having established the conceptual design for the REProcess tool, this research now moves to the second phase:
development of the prototype that implements and investigates the core reverse engineering functionality,
namely the reverse engineering of individual KBE workflows.

This chapter presents detailed specification of the REProcess prototype. An overview of synthesized require-
ments is presented in the first section below, followed by an in-depth discussion of each requirement. The
second part of this chapter goes into detail about the graph transformation algorithm of the REProcess
prototype. This so-called black-box specification approach specifies in significant detail what the graph
transformation algorithm should achieve. An introduction of the approach, along with a glossary defining
key terminology used during all subsequent stages of the design is presented in section 6.2. Thereafter, the
desired behavior of the algorithm for every type of node in the precedents graphs is defined in section 6.3. The
question of how this is implemented is answered in the next chapter.

6.1. REPROCESS PROTOTYPE REQUIREMENTS

Table 6.1: List of requirements for the REProcess prototype implementing the core reverse engineering method.

Identifier Description Derived from

PR-01 The REProcess prototype shall be capable of reverse engineering individual
workflows performed by a KBE application.

SR-02, SR-03

PR-02 The REProcess prototype shall work for KBE applications developed using
the Parapy KBE system.

SR-06

PR-03 The REProcess tool shall capture the following source code features in the
reverse engineered activity graphs:

• All main types of Parapy slots: inputs, attributes, parts & sequences of parts
• Usage of functionalities from the kbeutils library
• Slots without precedents

SR-06, SR-07,
SR-10

PR-04 The REProcess tool shall be capable of analyzing Parapy KBE applications
without errors that include the following source code features:

• All features mentioned above for PR-03
• DynamicType
• .validators
• Regular (i.e. non-decorated) class methods
• KBE modules located in different folders

SR-06, SR-07

PR-05 The source code of the target KBE application shall be at least of decent
quality.

SR-07

41
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PR-06 The REProcess prototype shall accept all main types of user-defined slots as
the reverse engineering target: inputs, attributes & parts.

SR-06, SR-07

PR-07 The targeted slot shall be defined either at root level, or lower in the product
hierarchy.

SR-02

PR-08 The REProcess prototype shall only include parts of the KBE application into
the model that are involved in the computation of the target slot.

SR-08

PR-09 The REProcess prototype shall visualize the reverse engineered workflows
using diagrams that are semantically similar to SysML Activity diagrams.

SR-05

PR-10 The REProcess prototype shall be capable of generating partial workflow
diagrams to break down the visualization of a large, complex workflow into
multiple, more manageable diagrams.

SR-03, SR-09

PR-11 The REProcess tool shall be deterministic, i.e. repeating the reverse engineer-
ing process with identical inputs shall lead to the same output.

SR-01

PR-12 The REProcess tool shall not make use of web services from external parties
such as cloud computing from AWS, Microsoft Azure, etc.

SR-07

PR-13 The REProcess prototype shall be capable of reverse engineering one KBE
application workflow within 1 hour.

SR-01

PR-01: INDIVIDUAL WORKFLOWS

The REProcess prototype shall be capable of reverse engineering individual workflows performed by a KBE
application.

This prototype requirement is basically a formalized way of stating that the REProcess prototype should
implement the core reverse engineering method (step 2) of the concept outlined in chapter 5. As such,
it corresponds directly to the second of the main objectives that were formulated for this thesis project
(subsection 3.3.1).

PR-02: PARAPY APPS

The REProcess prototype shall work for KBE applications developed using the Parapy KBE system.

This requirement is the direct equivalent of SR-06 (Parapy KBE system), only on a prototype level. Therefore,
the discussion of SR-06 also applies to this requirement (see section 4.2). It was added to the prototype
requirements for the purpose of completeness.

PR-03: CAPTURE KBE FEATURES

The REProcess tool shall capture the following source code features in the reverse engineered activity graphs:
• All main types of Parapy slots: inputs, attributes, parts & sequences of parts
• Usage of functionalities from the kbeutils library
• Slots without precedents

The relation between this prototype requirement and SR-06 (Parapy KBE system) is due to the list of Parapy
features used in its definition, making this requirement Parapy-specific. Furthermore, it is related to SR-10 due
to usage of the term “correctness”. SR-10 stated that the reverse engineered process model should correctly



6.1. REPROCESS PROTOTYPE REQUIREMENTS 43

represent the KBE application, and provided a high-level definition of what this means. However, this high-
level definition is far from sufficient to guide the implementation of the REProcess prototype. After all, the
behavior of a Parapy KBE application due to the evaluation of an input slot or a part slot is markedly different,
so it makes sense that the “correct” way to represent them in the reverse engineered process model differs as
well. Therefore, the high-level definition from SR-10 was used as a starting point to synthesize more precise
specifications for each of the listed Parapy features. These specifications define the correct way to represent
each Parapy feature in the reverse engineered process model.

• Inputs: According the definition of correct representation provided for SR-10, input slots do not represent
a computation step that is significant enough to capture in the model as a standalone step. Instead,
the correct way to capture input slots in the process model is to represent them as data objects flowing
between the main computation steps. To better explain this, the following two textual descriptions are
used as an analogy:

– A process consists of three steps: First, compute attribute A. Next, use this attribute to define input
slot X for part B. Finally, create part B.

– A process consists of two main steps: First, compute attribute A. Then, create part B (with its input
slot X defined using attribute A).

The latter of these descriptions is analogous to way that input slots should be represented in the model, as
this description does not treat the definition of the input slot as a separate step. Instead, the information
regarding the input slot is treated as a side-note by placing it between brackets. For the actual process
model, this translates to storing input slots as metadata to the associated nodes and connectors. When
stating that the data flow of input slots should be correctly captured, this is what is meant.

Furthermore, SR-10 also mentioned that the control flow of inputs slots should be captured correctly.
This refers to the way that node connections (i.e. graph edges) should be defined in the process model.
Specifically, it is considered incorrect to define any node connection by referencing input slots due to
the implicit nature of this approach. Instead, the part to which a particular input slot belongs should be
used to define these connections.

• Attributes: The evaluation of an attribute slot is considered to represent a significant computation step,
meaning it should be represented by a corresponding action node in the process model. Moreover, the
source code of the attribute should be attached to the action node as metadata in order to improve
traceability between model and code. Any slot that provides input for computation of the attribute
should be captured in the model by node connectors flowing from those nodes to the node representing
the attribute slot. Similarly, node connectors should also be included to all the downstream slots that
use the computed value of the attribute as input for their computations. The attribute slot should be
attached as metadata to these downstream node connections.

• Parts: The evaluation of a part slot is considered to represent a significant behavior step that should be
captured in the process model. Correctly representing these steps in the process model is defined similar
as for attributes in many regards: adding the source code as metadata, and incorporating all of the node
connections to represent the data and control flow aspects. A crucial difference between attributes and
parts, however, is that parts are defined as class objects. This is particularly relevant when the class used
to create the part is one of the classes that was developed as part of the KBE application itself. In that
case, the part creation step invokes a lot of additional behavior that should also be represented in the
process model. Since all of this behavior is contained, or “nested”, within the part creation step, it is
referred to as lower-level behavior.

For the process model, it is important that the diagrams effectively communicate this nested behavior.
The previously presented example diagrams presented in section 4.1 showed two ways to achieve this.
The first is to use swimlanes to represent the different parts. A benefit from this solution is that the
behavior of multiple different parts can be captured in one visualization. Moreover, the control and data
flow between nodes from the different levels can be represented. The alternative to using swimlanes is
to define a separate activity diagram that describes the lower-level behavior and link it (indicated by the
fork symbol) to the part creation node from the higher-level diagram.

Of course, parts can also be created using standard classes from Parapy (e.g. FittedCurve() or
LoftedSolid()). In that case, the lower level behavior is not considered relevant to include in the



6.1. REPROCESS PROTOTYPE REQUIREMENTS 44

process model because it is standardized behavior from the KBE system. Therefore, it is considered ade-
quate to represent the creation of such a part by a single node, similar to how an attribute is represented.

The distinction between various types of parts and classes, and the specific behavior desired from the
REProcess prototype corresponding to each of these types, is one of the most complex aspects of the
REProcess prototype. Therefore, this topic is further elaborated in section 6.3, after the other prototype
requirements have been discussed.

• Kbeutils features: These are add-on features offered by Parapy that provide specialized analysis, synthe-
sis and optimization functionalities. For example, a dedicated meshing toolbox is available, along with
XFoil and AVL for aerodynamic analysis, MSC NASTRAN and ANSYS Mechanical for structural analysis
to name a few1. The explicit inclusion of kbeutils features reflects the high priority that was placed on
developing this feature. This priority was derived from SR-07 (suited for industrial KBE applications),
based on the consideration that the additional capabilities provided by the kbeutils toolboxes provide
are essential for more advanced, industrial KBE applications.

Since kbeutils features are provided by Parapy, they represent standardized behavior. In this regard, they
are similar to Parapy geometry classes. Accordingly, the lower level behavior of these features does not
have to be represented explicitly in the process model. However, it is important that the process model
captures how these features are integrated into the reverse engineered application.

• Slots without precedents: When a slot is defined that does not have any precedents, this should be
correctly reflected in the model by ensuring there are no data flow connectors flowing to this node. While
this is situation is quite rare, it can occur in KBE applications and should thus be accounted for.

The final aspect of correctly representing the KBE features involves the textual descriptions of attributes and
parts to be generated by the LLM. This was defined by the following set of criteria:

• The descriptions should be concisely formulated, using 10 words at maximum.

• The descriptions should adopt a high-level functional perspective, focusing on what the step entails
rather than how it was implemented.

• The description should mention usage of standardized methods/approaches/tools where applicable.
For example, “Compute lift and drag coefficient using XFoil”.

• The descriptions of attributes and parts should be clearly distinguishable from each other.

• The descriptions should be accurate with respect to the source code. I.e. they may not contain falsehoods.

PR-04: TOLERATE KBE FEATURES

The REProcess tool shall be capable of analyzing Parapy KBE applications without errors that include the
following source code features:

• All features mentioned above for PR-03
• DynamicType
• .validators
• Regular (i.e. non-decorated) class methods
• KBE modules located in different folders

The word “tolerate” is used to refer to the situation where the REProcess prototype should be capable of
successfully reverse engineering a KBE app where a feature is present (and may be invoked during a reverse
engineered workflow) but does not have to be captured correctly in the output. In other words, these feature
may be ignored but should not lead to any errors. This means both fatal errors, which stop execution of
the reverse engineering process, as well as errors in the representation of KBE features that should have
been correctly represented according to PR-03. Hence, this requirement specifies features that occupy a
middle ground between features listed in PR-03, and features that are completely excluded from the scope

1Complete list available here: https://parapy.nl/features/simulation-toolbox

https://parapy.nl/features/simulation-toolbox


6.1. REPROCESS PROTOTYPE REQUIREMENTS 45

of the REProcess prototype. The specific features listed for PR-04 are discussed individually below. For more
background information regarding the listed features, the reader is referred to the Parapy documentation [40].

• All features from PR-03: These are included explicitly for completeness. As discussed, the ability to
correctly capture features (PR-03) is a step beyond tolerating them.

• DynamicType: The DynamicType feature is one of the key methods how dynamic behavior can be
implemented using the Parapy KBE system. It allows selecting the class used to create a part at run-
time, based on a conditional statement. There are two main ways how this feature can be used. The
conditional statement can either be linked to user input, to allow users to switch between different
modes while interacting with the GUI of the KBE app. Alternatively, internal logic can be implemented
to autonomously switch between different modes based on certain conditions and thresholds.

When the DynamicType feature is used in a reverse engineered workflow, the dynamic aspect of its
behavior does not have to be represented perfectly in the model. Specifically, the control behavior
(i.e. abstraction of the conditional statement + different workflows related to each option) do not have
to be captured. Only the path that was actually executed during a particular run has to be correctly
represented in the model.

• Validators: As the name suggests, these can be defined in the source code of a KBE application to validate
whether a provided input value meets certain conditions. There are two syntax variants to specify a
validator, of which one meets the criteria posed in the previous chapter to be classified as a significant
step. Despite this, they are not considered as such because they actually define lower-level behavior of
input slots. Since the declaration of input slots is considered to not represent a significant step, its lower
level behavior is also excluded.

• Regular class methods: This refers to class methods that are not decorated to define them as a Parapy
slot, but are simply implemented as a class method of a regular object-oriented Python program. This is
allowed by the Parapy system and does not lead to any errors. However, the main consequence of not
being decorated as a Parapy slot is that these regular class methods are not included in the dependency-
tracking system, which means they are also not returned by the get_precedents_tree() method. As
such, the inability to capture the computation steps corresponding to regular class methods in the
reverse engineering output is essentially a limitation of the system resulting from the conceptual design
choice to use get_precedents_tree() as the main analysis method.

• KBE modules located in different folders: The source code of more elaborate and complex KBE apps
is usually structured using some sort of hierarchical folder structure. This is relevant and should be
accounted for because the KBE app has to be instantiated by the REProcess prototype in order to run the
dynamic precedents analysis. Due to the nature of Python import statements, a specific implementation
is required in order to prevent breaking runtime errors.

PR-05: QUALITY CODE

The source code of the target KBE application shall be at least of decent quality.

The concept of “decent quality code” was operationalized by reviewing the most essential Python and Parapy
coding guidelines [40, 44], as well as taking into account specific limitations imposed by the conceptual design
decisions presented in the previous chapter. This resulted in the following list of criteria used to define KBE
code that is at least decent quality:

• Meaningful parameter naming: For example, l eng th instead of l , or ai r _densi t y instead of r ho.
Aside from being good coding practice, the textual information embedded in meaningful parameter
names is a key source of information for an LLM to make sense of a piece of code and perform abstractive
summarization. Without it, the LLM-based abstraction step will perform worse.

• Well-segmented code: This is defined as at least 90% of attribute slots being defined with less than 100
lines of code. Note that both numbers used to quantify this criteria are “ball-park figures” and should be
used more as an indication/guideline than as a hard boundary. What this criteria aims to capture is that
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defining a single Parapy attribute using 1000 lines of code is generally considered bad practice, as it is
not in line with the object-oriented programming style and detracts from the legibility of the code.

Moreover, such massive attribute source code definitions also pose a problem for the conceptualized
software design because the evaluation of an attribute (or part) slot was defined to be the smallest,
still-relevant step to include in the process model. Correspondingly, the conceptualized REProcess tool
always summarizes an attribute as a single step, regardless of whether it is defined using 20 or 1,000 lines
of code. In case of the latter, however, this is most likely too big of a reduction in information. As a result,
the generated process model would be overly simplified, or in other words, its “resolution” would be too
low to properly represent the workflow.

• Well-structured code: This refers to the typical hierarchical class structure used for KBE applications.
One class should be the main class, which uses several other application classes to create its main parts.
Moreover, each of the application classes of the KBE application should represent some larger, more
high-level function.

Such a code structure is a rather natural thing to do, so most applications will meet this criteria. It is
important for the conceptualized reverse engineering system because the slots representing the main
functions are expected to be defined in such a main class.

• Docstrings: Additional information about attribute and part slots should be added as docstrings, rather
than using comments on the line above the start of the class method declaration. This complies with
the PEP style guide [45]. In addition, it is useful for the LLM prompt generation because docstrings will
be included when the source code of a slot is parsed, while comments placed above are not. Similar to
having useful parameter naming, the additional contextual information provided in the docstring will
improve the abstraction performance of the LLM.

This prototype requirement was derived from SR-07. The rationale is that the source code of industrial KBE
applications is generally expected to be of higher quality than that of applications developed in educational or
academic contexts. This is primarily due to the greater experience of developers, both individually and due to
the presence of larger teams, as well as the implementation of professional development practices such as
code reviews and standardized development pipelines.

PR-06: TARGET SLOT TYPES

The REProcess prototype shall accept all main types of user-defined slots as the reverse engineering target:
inputs, attributes & parts.

Recall that the target slot refers to the slot on which the get_precedents_tree() method is called. Thus, this
requirement stipulates that any input, attribute, or part slot should be a valid input for which the corresponding
workflow can be reverse engineered by the REProcess prototype. Note that, while the evaluation of an input
slot itself might not represent a significant computation step, the workflow executed to arrive at a particular
input value can still be interesting for a user of the REProcess tool.

This requirement is particularly comprehensive for part slots because, as will be explained in the implementa-
tion chapter, several different categories of parts exist, each with unique underlying behavior. For example,
there is a significant difference between specifying a singular part and a part sequence. In Parapy, this is
achieved by using the quantify argument when defining a part. Although this change is small and the source
code definition of singular parts and part sequences looks very similar, it triggers large differences under the
hood.

In order to meet this prototype requirement, a solution had to be developed that accounts for all possible
variations in underlying Parapy behavior of different types of part slots.

PR-07: TARGET SLOT LEVEL

The targeted slot shall be defined either at root level, or lower in the product hierarchy.
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The level of the target slot refers to its nesting depth relative to the root object, so it is equivalent to Parapy’s
concept of tree_level. For example, in the primiplane application, the aircraft itself is the root object, created
using the Aircraft class. Slots of the root object, such as the fuselage or the right_wing part, are considered
“root level target slots”. In contrast, a lower level target slot, such as the center of gravity of the right wing,
would be referred to as “aircraft.right_wing.cog” in the product hierarchy.

According to SR-02, the REProcess prototype should be capable of reverse engineering any slot evaluation
workflow, regardless of the target slot’s level in the product hierarchy. Given that different implementations
of the get_precedents_tree() analysis method are required to handle the two possible variations (root vs.
lower level target slot), this prototype requirement was established.

PR-08: ONLY INVOLVED SLOTS

The REProcess prototype shall only include parts of the KBE application into the model that are involved
in the computation of the target slot.

This requirement relates to several system-level requirements, notably SR-08 and SR-09. SR-08 specifies
that only the operational parts of the KBE application need to be reverse engineered. By focusing strictly
on the components involved in the computation of the target slot(s), the risk of encountering errors from
unimplemented or faulty slots is minimized.

Additionally, this requirement aligns with SR-09, as including only the actively used parts of the KBE application
helps to focus and reduce the overall information load, thereby enhancing cognitive effectiveness.

PR-09: ACTIVITY DIAGRAM-LIKE VISUALIZATIONS

The REProcess prototype shall visualize the reverse engineered workflows using diagrams that are semanti-
cally similar to SysML Activity diagrams.

Naturally, this prototype requirement was defined as a substitute for SR-05, which specified that the reverse
engineered workflows should be visualized by means of activity diagrams. As indicated by the REProcess
software concept, meeting this system requirement would involve implementing the XMI writer, which is
extensive and beyond the scope of this thesis project. Instead, this prototype requirement stipulates that the
diagrams should generated that are semantically similar to SysML activity diagrams. This means a substitute
should be found for all diagram elements discussed in the specification of SR-05, namely:

• A clear initial node that defines the start of the workflow.

• Action nodes to specify each behavior step.

• Data flow connectors to indicate how computed slot values are used by subsequent processes.

• Metadata attached to both action nodes and the connectors to include additional key information (e.g.
source code corresponding to an action node).

• Swimlanes to add structure and present the allocation of functions to structural software components
(i.e. classes).

PR-10: PARTIAL VISUALIZATIONS

The REProcess prototype shall be capable of generating partial workflow diagrams to break down the
visualization of a large, complex workflow into multiple, more manageable diagrams.

This is the requirement is the prototype equivalent of SR-03, which stated that a set of hierarchically structure
diagrams should be used to visualize large, complex workflows. It is also related to SR-09 because doing so also
contributes to the cognitive effectiveness of the diagrams. The main difference between the SR-03 and PR-10 is
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that for the prototype, the functionality does not have to be automated. For the prototype, it is acceptable
that the partial visualization functionality works based on user input. Specifically, the user should specify
which parts of the complete workflow should be included in each partial visualization. Based on this input, the
REProcess prototype should generate the corresponding diagrams.

The development of the feature specified by this prototype requirement is expected to provide two benefits.
Firstly, it demonstrates the conceptualized approach to generate a set of hierarchically structured diagrams,
which is a key aspect of the envisioned system. In addition, it unlocks the ability to assess the cognitive
effectiveness of generating a set of hierarchically structured diagrams instead of a single, very large diagram.
Therefore, a follow-up study can be performed using the REProcess prototype to evaluate possible imple-
mentations of the hierarchical breakdown approach, which would be super valuable input for subsequent
development of the complete REProcess tool.

PR-11: DETERMINISTIC PROCESS

The REProcess tool shall be deterministic, i.e. repeating the reverse engineering process with identical
inputs shall lead to the same output.

This prototype requirement directly related to the conceptual design decision to use an LLM-based abstraction
approach. Anyone who previously used a LLM-based tool such as ChatGPT will recognize that asking the
same question twice does not result in identical answers. A simplified explanation for this behavior is that
the underlying LLM is given some “artistic freedom” by introducing small stochastic variations in the answer
formulation process. The purpose of these variations is to make the generated answers sound less “mechanical”
due to being repetitive and predictable. Of course, this is only an issue when the LLM is formulating long
answers, which does is not the case for this LLM application in REProcess tool. On the contrary, there are very
good reasons why the opposite behavior is desired for the REProcess prototype (and tool). The following two
scenario’s underline why it is important that a deterministic core reverse engineering method is implemented
that generates the same output when identical input is supplied multiple times.

• In practice, it is extremely likely that some parts of a KBE application will be analyzed by the REProcess
prototype multiple times while remaining unchanged. For example, when a KBE developer is focused
on implementing a certain function in one part of the code while leaving the rest of the app untouched.
When this developer uses the REProcess tool/prototype several times during the implementation process
to evaluate the effect of their changes, it would be very confusing if the tool generates a completely
different output even for functionalities that they did not touch during their work.

• As stated in SR-01, the final goal for the REProcess tool is to be integrated in the envisioned MDKBE
approach, which includes generating a model database. For this database, change management is
important. It is undesirable to have a particular KBE function is represented multiple times in the
model database while the underlying source code is actually identical. This requires the method to be
deterministic.

PR-12: NO EXTERNAL COMPUTING

The REProcess tool shall not make use of web services from external parties such as cloud computing from
AWS, Microsoft Azure, etc.

This requirement was derived from SR-07 which stated that the REProcess tool should be suited for analyzing
industrial KBE applications. In virtually all cases, these applications will be proprietary software. Because
using cloud computing services from external parties poses a confidentiality risk, using these services is not an
acceptable for the REProcess tool nor the prototype.
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PR-13: COMPUTATION PERFORMANCE

The REProcess prototype shall be capable of reverse engineering one KBE application workflow within 1
hour.

Performing the workflow reverse engineering within 1 hour of computation time is important for future
integration into the MDKBE approach (SR-01). In fact, much better performance will be required to make
the envisioned development approach practically feasible. A KBE developer who makes changes to a Python
module should not have to wait more than a couple of seconds before the behavioral impact of their changes
is processed by the REProcess tool. However, there are a lot of performance gains that can still be achieved
between the implementation of the prototype and the complete tool (see the discussion in chapter 9). Mean-
while, the relentless improvement of computing power and LLM capabilities will also lead to a reduction in the
required computation time. Based on the large potential for improvements, the computational performance
target was set at a maximum of 1 hour for the prototype. This should leave sufficient margin to ensure that the
general approach is feasible for future integration into the MDKBE approach.

6.2. INTRODUCTION OF THE BLACK-BOX SPECIFICATION APPROACH
Based on the presented set of prototype requirements, the desired behavior of the graph transformation
algorithm was specified using the so-called black-box approach. This specification can be regarded as an
intermediary step between the prototype requirements and the actual software implementation. It forms the
blueprint for the implementation of graph transformation algorithm.

The general approach consists of reviewing the input data, in this case the raw precedents graphs generated
by the get_precedents_method(), and correlating patterns and features from this input data to the desired
output. This can be best explained using the example presented in Figure 6.1.

Figure 6.1: Example showing how a black-box approach was used to specify the desired functionality of the graph transformation
algorithm.

In this example, the node highlighted in the transformed graph on the right-hand side represents the creation
of a part called right_wing. According to the previously provided specification (PR-03) this is how the creation
of a part should be represented in the model. However, as highlighted on the left-hand side in the example,
the generation of the right_wing part was represented in the raw precedents graph by a total of six nodes.
Closer inspection would reveal that each of these nodes corresponds to the initialization of an input slot of the
right_wing part. The black-box representation provides an elegant and concrete way to combine all of this
information into a very concrete specification that describes one of the functionalities to be implemented by
the graph transformation algorithm. Namely, the graph transformation algorithm should contract all of the
input nodes into their corresponding part node.

The black-box behavior specification approach was applied to each of the Parapy features listed in prototype
requirement PR-03 to obtain a complete set of specifications. However, before presenting these specifications,
first some additional terms and concepts are introduced regarding the Parapy KBE system and the node objects
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from the raw precedents graph. These are used to characterize various aspects of the precedents graphs and
are crucial for the subsequently presented discussion of the desired black-box behaviors.

6.2.1. DEFINITION OF TERMS AND CONCEPTS
In order to adequately discuss the desired black-box behavior of the abstraction methods to be implemented
for the REProcess prototype, it is crucial to first define a number of terms and concepts that can be used to
characterize and discuss various aspects of the precedents graph and the Parapy KBE system.

PARAPY VS. APPLICATION OBJECTS

The first concept to introduce is the distinction between Parapy and application objects:

• Application node/slot/class/function/etc.: In the context of the reverse engineering method, the terms
“application node/slot/class/function/etc.” are used to refer strictly to things for which an explicit source
code definition is present in the KBE application code itself. In other words, anything not defined in
the code of the Parapy KBE system itself. The opposite of “application” nodes/slots/classes/functions
are “Parapy nodes/slots/classes/functions”. This categorization is dichotomous, meaning a particular
node/slot/class/function/etc. is either an “application” or a “Parapy” thing.

• Parapy node/slot/class/function/etc.: in the context of the the reverse engineering method, the terms
“Parapy node/slot/class/function/etc.” are used to refer to nodes, slots, classes, functions from the Parapy
KBE system itself. For example, all the Parapy geometry classes such as Box(), LoftedSurface(), or
Point() are Parapy classes. Some other notable examples are Sequence(), DynamicType(), Base(),
GeomBase(), and any classes or functions imported from the kbeutils package. Essentially, anything not
defined explicitly in the source code of the KBE application.

It is important to note that even when an object is instantiated using an application class, this object can
still have Parapy slots when these were added into the application class via inheritance from a Parapy
class. A good example would be the LiftingSurface(LoftedSolid) class from to the previously
used Primiplane example. Here, the inheritance from LoftedSolid() introduces numerous additional
slots such as color, position, volume, faces, edges, builder, and children, to name a few. These are all
categorized as Parapy slots, even though they are properties of an application object. Note however that
Parapy slots can still be overwritten with a custom specification in the LiftingSurface() class itself. In that
case, they would again be designated as application slots.

As a general rule, designating something as a “Parapy node/slot/class/function/etc.” means it is not
considered relevant to include in the process model. These are the “implementation details” mentioned
in the discussion of step A from subsection 5.2.2, and should generally be removed from the raw
precedents graph by the graph transformation algorithm. A few important exceptions do exists, however.
Most notably the so-called geometry node, which will be discussed later in this section.

TERMS AND CONCEPTS RELATED TO PRECEDENTS GRAPH NODES

Previously, when discussing precedents graphs the focus was on the structural perspective. From hereon,
however, the representation and characteristics of the individual nodes also becomes relevant. Therefore,
this subsection is dedicated to providing an understanding of key terms and concepts used to describe nodes
from the precedents graph. The explanations will be presented by referring to the annotated close-up of a
precedents graph node2 presented in Figure 6.2.

The first important note to make regarding the visualized node representation is that the nodes from the raw
precedents graph are actually defined solely by the cache object presented on the first row (annotated by
“Node”). All information presented on the additional rows are properties of this cache object. In fact, each
node’s cache object has dozens more properties3 than those that are shown here. Note that having access to all
of this data is a direct result from using get_precedents_tree() as the main analysis method, because that
method is what actually returned the nodes as cache objects. Having access to all of this additional data from
the KBE system is therefore one of the key benefits of using this approach.

2For the interested reader, this particular node is the third purple node from the left highlighted in Figure 6.1.
3Even more when also including nested properties. Inspecting all of these can be best done by using the variable window in PyCharm’s

Python console
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Figure 6.2: Annotated example of a precedents graph node, highlighting the final selection of additional node properties that were found
to be relevant for reverse engineering purposes

The specific node properties shown in Figure 6.2 were selected over the course of the development process of
the REProcess prototype. They all present information that is somehow important for the reverse engineering
methodology. Each of these properties is described below.

• Node: This property can be accessed using the <node> syntax. Each node in the raw precedents graph
is a defined as a cache object. Hence, they can be regarded as the fundamental building blocks of the
graph. A cache object is included in the precedents graph corresponding to every slot evaluation that
was executed during the analyzed workflow.

• Node object: This property can be accessed using the <node>.obj syntax. It contains the class name
and instance of this node’s parent object. Given that each node corresponds to the evaluation of a slot, it
is crucial to also know to which part object the slot belongs. This information is provided by the node
object.

The node object in the annotated example above indicates that this particular node represents a slot
from a part that was created using the LiftingSurface() class. Furthermore, it provides the qualified
name of the parent object (“root.right_wing”), which specifies both the name of the parent part, and its
location in hierarchical product tree.

• Node slot: This property can be accessed using the <node>.slot syntax. As can be observed from
Figure 6.2, it provides information both regarding the type of Parapy slot (input/attribute/part) as well as
the slot data itself. From a reverse engineering perspective, the information regarding slot type is very
useful. As will become apparent later in this chapter, differentiating between the different slot types is
an essential capability for the reverse engineering method.

Additionally, the slot data itself is also essential. Observe how the slot from the annotated example
shows that the source code definition of the position slot was inherited from the GeomBase() class.
This indicates that the data from the node slot can be used to differentiate between Parapy slots and
applications slots. Specifically, this is achieved by using the data from slot module and is_user_defined,
which are sub-properties of the node slot itself. Both are introduced further below in this list.

By combining the information from the node object and node slot it really becomes apparent what a
particular node represents. In Figure 6.2, for example, combining this information enables the under-
standing that this node represents the definition of the right_wing position.

• Node value: This property can be accessed using the <node>.value syntax. As the name suggests, it
contains the value of the slot represented by the node. In Figure 6.2, for example, it indicates that the
position of the right_wing part is defined at XYZ position: 20.26, 0, -2.0.

At this point, one might wonder why the numerical value of a slot is so interesting from a reverse
engineering perspective that it was was included in the selection of node properties to be visualized.
This is a just question because the answer is, it isn’t. However, there is one particular type of nodes,
namely part nodes, for which the value property does contain key information. This will be further
explained during the introduction and discussion of the part node concept, later in this chapter.

• Slot module: This property can be accessed using the <node>.slot._module syntax. Note how this
syntax indicates that, as mentioned before, the so-called slot module is a sub-property of the node
slot. Furthermore, it should be noted that the value of the slot module displayed in Figure 6.2 is an
abbreviated version of the full output, which is the full qualified name indicating the specific Python
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module used to instantiate the object. For differentiation purposes however, only the first part is relevant
so the rest is omitted. Correspondingly, the only possible return values of slot modules are “parapy”,
“kbeutils”, or the name of the analyzed KBE application’s root directory (for the node from Figure 6.2 this
would be “primiplane”). Accordingly, the slot module can be used to easily determine whether a node
represents a parapy or application slot. The relevance of this distinction was discussed in the previous
subsection.

• is_user_defined: This property can be accessed by using the following syntax:
< node > .ob j .i s_user _de f i ned(str (< node > .sl ot .__name__)). Note that this differs from the pre-
vious properties because i s_user _de f i ned technically is a method instead of a property itself. As a
consequence it has to be called, instead of the property value being available directly. The returned value
by calling this method is a boolean (Tr ue or F al se). To explain this method, the following description
was taken from the Parapy documentation [40]:

User-defined means that user has overwritten the default value for a slot, either by:

1. Passing it into the constructor of this object, e.g. Box(wi d th = 1); changing the value programmati-
cally at runtime, e.g. ob j .wi d th = 1; or by changing the value in the GUI.

2. Defining a child rule in @Part expressions,

3. The slot is defaulting and the user defined a slot higher up in the composition tree that encapsulates
the computation.

4. The slot is_required and the user defined a slot higher up in the composition three that is trickling
down its value.

From this description, it is concluded that the i s_user _de f i ned value can be very relevant for reverse
engineering purposes. When it is Tr ue, it means the data represented by a node might be relevant for
users of the REProcess tool who aim to understand the behavior of the KBE application, even when it
is a Parapy node. Note that a Tr ue value for i s_user _de f i ned therefore provides an exception to the
general rule where all Parapy nodes are considered implementation details.

The node from Figure 6.2 is a good example of this case. The source code from the Primiplane app
that defines the r i g ht_wi ng part is presented below. Note that the position slot is passed explicitly
into the constructor. Hence, the positioning of the r i g ht_wi ng part is custom behavior, unique to this
particular KBE app which makes it relevant to capture (as metadata) in the reverse engineered process
model. However, as shown in Figure 6.2, the position slot appears as a Parapy node in precedents graph
because the source code definition itself is still inherited and not overwritten by a custom definition in
the LiftingSurface() class. This explains the added value of evaluating i s_user _de f i ned alongside
the slot module property.

167

168 @Part
169 def right_wing(self):
170 return LiftingSurface(
171 pass_down="airfoil_root, airfoil_tip, w_c_root, w_c_tip,"
172 "t_factor_root, t_factor_tip, w_semi_span, "
173 "sweep, twist",
174 position=rotate(
175 translate # longitudinal and vertically translation w.r.t. fuselage
176 (self.position,
177 "x", self.wing_position_fraction_long * self.fu_length,
178 "z", self.wing_position_fraction_vrt * - self.fu_radius),
179 "x", radians(self.wing_dihedral)),
180 # wing dihedral applied by rigid rotation
181 mesh_deflection=0.0001,
182 mov_start=self.wing_mov_start,
183 #: spanwise position of inboard section, as % of lifting surface span
184 mov_end=self.wing_mov_end,
185 #: spanwise position of outboard section, as % of lifting surface span
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186 h_c_fraction=self.wing_h_c_fraction,
187 # hinge position, as % of chord
188 s_c_fraction1=self.wing_s_c_fraction1,
189 # frontspar position, as % of chord
190 s_c_fraction2=self.wing_s_c_fraction2
191 # back spar position, as % of chord
192 )
193

• Aggregate node object: This is a sub-property of the node object and can be accessed using the
<node>.obj.aggregate syntax. The default value defined for the aggregate property is None. The only
exception occurs when this node corresponds to one of the instances from a part sequence. In that case,
the value of this property will be a back-pointer to the sequence object [40]. As such, this property is
very useful to identify sequences in the raw precedents tree. Based on this identification, specialized
behavior can be implemented to ensure the sequences are correctly represented in the model. This will
be further elaborated later in this section.

• Object module: This is a sub-property of the node object and can be accessed using the
<node>.obj.__module__ syntax. This property is similar to the previously discussed slot module but,
as the name suggests, now the value of this property is determined by the “origin” of the object rather
than the slot. Or, put differently, whether the class used to instantiate the node object is an application
class or a Parapy class. Due to this difference, the object module is simpler because it is not as dynamic.
Contrary to specific slots, entire Parapy classes will not be overwritten by application-specific definitions.
If an object is a Parapy object, it will stay a Parapy object.

During the previous introduction of the ParaPy vs. application characterization, it was already mentioned
that objects created with application classes can have ParaPy slots. Observe that Figure 6.2 presents
an example of this occurring in practice: the slot module indicates this node is a Parapy slot, while the
object module shows its an application object (Primiplane).

For reverse engineering purposes, the most useful aspect from assessing the value of the object module
is that it can be used to identify all nodes corresponding to Parapy objects. This means it can be used to
remove all detailed, lower-level behavior associated with Parapy classes.

6.3. BLACK-BOX BEHAVIOR SPECIFICATION PER NODE TYPE
Three main types of nodes appear in the precedents graphs, namely input, attribute an part nodes. As discussed,
these can be differentiated based on the node slot. An example of an input node was already provided in
Figure 6.2. Examples of nodes from the other two main types are presented in the annotated precedents graph
from Figure 6.3. This diagram is a close-up of the transformed graph previously depicted in Figure 5.2. Note
that, aside from containing attribute and part nodes, this example also introduces two special (sub-)types: the
initialization and geometry nodes. These node (sub-)types were identified/defined during the development of
the REProcess tool. Additionally, it was found that the definition of part sequences, as opposed to singular
parts, presents unique challenges for the graph transformation algorithm, which also requires specialized
behavior. This section is dedicated to defining the required black-box behavior of the graph transformation
algorithm for each of these types of nodes/Parapy features.

6.3.1. BLACK-BOX BEHAVIOR FOR INPUT SLOTS
According to PR-03, the declaration of input slots does not reflect a computation step that is significant enough
to capture in the model as a standalone step. Therefore, only the control flow and data flow aspects of input
slots should be captured in the process model.

In concrete terms, this means all input nodes present in the raw precedents graph should be removed. Before
doing so, however, the data represented by the input node itself should be attached as metadata to all of its
downstream node connectors (i.e. outgoing graph edges) in order to retain the data flow information related
to the input node. This should only be done if this data is relevant. The relevance of the data is determined
by reviewing both the slot module and the i s_user _de f i ned property. The data is considered relevant when
the slot is either an Application slot, or i s_user _de f i ned is True. When this is the case, the data should be
stored as metadata, and the input node should be contracted into its part node. When the data is not relevant,
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Figure 6.3: Annotated transformed precedents graph, presenting examples of attribute and part nodes, as well as so-called initialization
and geometry nodes.

it can discarded. Note that, when discarding a node, care should be taken to not break dependency chains.
Therefore, direct connections (i.e. graph edges) should be added between the nodes directly upstream and
downstream of the input node before removing the node itself.

A final important note is that generally a corresponding part node is present in the raw precedents graph for all
input nodes. However, in certain situations this may not be the case. In those case, the corresponding part
node should be added into the graph in order to subsequently use that as the merge target for the input node
contraction. This approach can be used solves all exceptions, except one special case. Due to complicated
reasons related to the implementation of the Parapy KBE system, it is not possible to introducing a part node
for the root object. Therefore, a work-around was invented in the form of the so-called initialization node.

THE INITIALIZATION NODE

The initialization node (also referred to as init node, or initial node) is exceptional in the regard that it is
“manually” defined as a string object, rather than being a Parapy cache object like all of the other nodes. This
string is composed of the word “INITIALIZE”, followed by a string representation of the root object.

The initialization node serves a dual purpose in the transformed precedents graph. Firstly, it represents the
starting point of the workflow, similar to the initial node in SysML. As defined in the specification of PR-09, such
a single starting point is required. The second purpose is more practical and related to the implementation.
Namely, the initial node provides a substitute target wherein all input nodes from the root object can be
contracted. In this regard, the initial node fulfills a similar role as a part node. The need for a substitute
originates from the g et_pr ecdent s_tr ee() method, which does not include a part node for the root object.
Introduction of the initialization node provides a solution to this issue.

6.3.2. BLACK-BOX BEHAVIOR FOR ATTRIBUTE SLOTS
The evaluation of an attribute slot represents a significant computation step, meaning an action node should
be included in the process model for every application attribute slot that was evaluated during the analyzed
workflow. Moreover, the source code defining these attribute should be attached as metadata to its representing
action node to improve traceability. Any other slots used used for computation of an attribute should be
captured in the model by node connectors flowing from those nodes to the action node that represents the
attribute slot evaluation.

Generally speaking, nodes representing Parapy attribute slots should be removed from the graph using the
same procedure outlined above for removing input slots to ensure dependency chains are preserved. One
notable exception to this rule are geometry nodes, which are a special kind of attribute slots.
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GEOMETRY NODES

Geometry nodes, or geom nodes for short, are a special type of attribute nodes. Even though they represent
Parapy slots, it was determined that some should be kept in the precedents graph to represent the geometry of
a part. Their occurrence in the precedents graph is an artifact of the Parapy implementation. Intuitively, one
might assume that a part node itself describes the geometry. This would be analogous to having a physical part
in the real world, where the object and its geometry are inextricably linked. However, this intuitive assumption
does not apply to Parapy. There, the part node only represents the instantiation of the part object, which acts as
a container for all aspects related to the part. The actual part geometry is defined as properties, i.e. lower-level
slots, of this part object. The nodes appearing in the raw precedents graph corresponding to these geometry
slots are referred to as geometry nodes. Here, note the explicit usage of plural forms, which relates to the fact
that multiple geometry nodes appear for each part object. Some examples of geometry nodes are listed below.

• TopoDS_Shape (shown in Figure 6.3)

• builder

• Handle_Geom_Curve

• TopoDS_Vertex

The specific combination of geometry nodes that appear in the raw precedents graph for a given part object
depends on the type of geometry of the part. For example, a Handle_Geom_Curve node appears when the part
geometry is some sort of curve which would be the case when for instance the F i t tedCur ve() class is used.
The TopoDS_Shape and builder nodes were found to be the most general and commonly occurring types of
geometry nodes.

For the transformed precedents graph, it was determined that one of geometry nodes should be kept in the
graph in order to represent a part’s geometry generation step in the process model. The other geometry nodes
should be removed, similar to regular Parapy attribute nodes. The specific node kept in the transformed graph
to represent the geometry will be referred to as the geometry node (singular form). *-+ ““““““““““‘

6.3.3. BLACK-BOX BEHAVIOR FOR PARTS SLOTS
In the transformed graph, part nodes represent the creation of a part, which includes both the instantiation and
initialization of the object. One of the key discoveries made during the development of the REProcess prototype
was the identification of several different types of part slots. Each type was found to behave differently from a
reverse engineering perspective. This posed a major complicating factor for the development of the REProcess
tool and prototype. Each type requires different processing behavior to represent ensure they are correctly
represented in the reverse engineered process model. The different types of parts that were identified are
described below. For each type, a definition of the “correct” way to capture it in the process model is also
provided.

• Type 1: Parts created with Parapy classes. Examples are the Box(), FittedCurve(), or avl.Component()
classes.

Given that all of these classes are standardized, it is assumed that users of the REProcess tool are not
interested in the internal behavior of parts instantiated with a type 1 class. Therefore, the correct way to
capture type 1 parts in the process model is defined as using a single node to represent the creation of
the part. All lower-level nodes representing internal behavior of the type 1 class should be contracted
into the part node.

• Type 2: Application classes inheriting from type 1. By inheriting from type 1 classes, some of the
behavior from these classes is standard Parapy behavior. Moreover, in the specific case where a class
inherits from a parapy.geom.occ class, which was found to occur quite often in practice, the part
created with the type 2 class will have an associated geometry. Some examples of type 2 classes are
Airfoil(BSplineCurve) from the Modular UAV app [12], as well as Fuselage(LoftedSolid) and
Airfoil(FittedCurve) from the Primiplane app4 [41].

The correct representation of type 2 parts was defined as keeping all custom, application-specific
internal behavior in the process model while removing all the standardized processing steps related

4Specifically the Primiplane app from tutorial 8 of the KBE course material.
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to the type 1 ParaPy class that was inherited. There is one important exception to this general rule,
namely the generation of the part geometry. Previously, for type 1 parts, the creation of a part and all
intermediary steps up to and including the generation of its geometry were contracted into the part node.
A beneficial side-effect of this approach is that it makes intuitive sense to a REProcess tool user that is
less familiar with object-oriented programming and/or KBE systems. After all, creating a part’s geometry
“feels” synonymous to creating the part itself. However, for KBE systems this is not actually the case. In
reality, the “creation” of a part corresponds only to the instantiation and initialization of a Python object
using the specified class. The geometry of the created part object is contained in one of its slots (most
commonly called “TopoDS_Shape”). Evaluation of this geometry slot is only performed when its slot
value is demanded and after the dependency tracking system has resolved all preceding computations
required to get the necessary inputs. Based on these considerations, the correct representation in the
process model of type 2 parts with geometry slots was defined to be as follows: 1) a part node should be
present to indicate the instantiation and initialization of the part; 2) each application specific, lower-level
processing step should be represented with a separate node in the process model; and 3) a geometry
node should be included to explicitly represent the part geometry generation step.

A final interesting note regarding the “generate geometry” nodes from type 2 classes is that they will
generally be the final node of the lower-level behavior. This can be explained by considering that
these nodes tend to embody the “purpose” of the class. The previously named examples explain this
quite well. For instance, the main purpose of the Fuselage(LoftedSolid) class is to generate the
fuselage geometry. This is already suggested by the class name (Fuselage), but the inheritance from the
parapy.geom class makes it extra clear. Should the geometry generation not have been the main purpose
of the Fuselage class, it is much more likely that the KBE developer would have opted to inherit from the
more generalized approach to inherit from the ParaPy Base or GeomBase class instead (which would
have made it a type 3 class).

• Type 3: Application classes inheriting from (Geom)Base. For any application class, the only alternative
to inheriting from a type 1 class is to inherit from the Base or GeomBase class instead. Otherwise, the
KBE application class would not be a functioning part of the KBE system. Some examples of type 3
classes are XFoilAnalysis(Base) and Blade(GeomBase) classes, both from the Modular UAV app
[12].

Based on practical experience gained during the implementation phase, two main categories of type
3 classes were identified. First, there are classes similar to type 2 classes, which still have the main
purpose to generate part geometry. However, for these classes, the KBE developer has opted to create
a type 1 part within the class definition of the type 3 part to contain the geometry. For example, the
previously mentioned Blade() class has a part slot called my_blade where the representative geometry
of Blade() class is generated. Alternatively, there is also a group of type 3 classes that are not focused on
geometry generation. Instead, these often perform some sort of analysis function, such as the previously
mentioned XFoilAnalysis(Base) class.

For both categories of type 3 classes, the desired behavior of the graph transformation algorithm is
similar as for type 2 classes: all relevant application nodes from these classes need to be preserved, while
the inherited Parapy slots should be removed. Of course, a key difference is that type 3 classes will not
have a geometry node. Another key aspect where differences between type 2 and 3 classes will emerge is
the textual descriptions generated by the LLM. This will become apparent later, in subsection 7.4.2.

6.3.4. BLACK-BOX BEHAVIOR FOR PART SEQUENCES
Part sequences are relevant to discuss separately because they also introduce unique patterns in the precedents
graph that have to be accounted for by the prototype implementation. Part sequences can be created for all
three part types presented above. Thus, the REProcess implementation will have to account for sequences of
type 1, 2 and 3 parts. Technically, parts sequences could contain a mixture of different part types. However,
this is quite rare. Due to the associated complexity, this case is excluded from the scope of this thesis work.
The identification and processing of nodes belonging to part sequences is greatly facilitated by the aggregate
node object property.

In Parapy, defining a part sequence in the application source code can be achieved simply by specifying the
quantify argument when creating a part. Although this change is small, and the source code definition of
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singular parts and part sequences looks very similar, it triggers large differences under the hood. Specifically,
the sequence class is invoked as a wrapper and all of the individual part instances are stored in the slots of the
sequence object. Importantly, a unique, stand-alone part object is created and evaluated for every sequence
instance. Even when the geometry is identical for all parts and only the position of the part instances differs,
the geometry is still re-computed for every single part. Correspondingly, a lot of duplicate sub-graph tend to
be present when part sequences are generated which greatly clutters up the raw precedents tree.

The desired black-box behavior for sequences of type 1 parts is very straightforward. Since none of the lower-
level behavior is relevant to include in the process model, the lower-level nodes of all sequence instances
should simply be contracted into the part node. This tends to yield a massive reduction in overal node count.

By contrast, the processing of sequences of type 2 & 3 parts is significantly more complex. A perfect solution
would be to compare the sub-graphs of all sequence instances to identify all unique segments and capture this
information in the process model. However, after determining empirically that the lower-level behavior of the
sequence instance tends to be identical, the simplifying assumption was made that the lower-level behavior of
all sequence instances may be represented by one particular instances. To limit the impact of this simplifying
assumption, a mitigation measure will be implemented. Namely, the user should be able to specify the specific
sequence instance that will be used to represent the lower-level behavior of all sequence instances. Thereby,
the user can still reverse engineer different sequence instance variations and compare these by performing
multiple runs.



7
REPROCESS PROTOTYPE IMPLEMENTATION

The conceptual design for the core reverse engineering method of the REProcess tool was already presented
in chapter 5, namely a sequence of dynamic precedents analysis, graph transformation, and LLM-based
source code abstraction. Subsequently, each of these functions was further defined by the detailed prototype
specifications from the previous chapter. Additionally, this the prototype specifications introduced some
additional functionalities that are required to turn the core reverse engineering method into a functional
standalone tool. This chapter presents how all of these functionalities were implemented in the REProcess
prototype. First, an overview of the software architecture of the prototype implementation is presented in
section 7.1. This overview is followed by a series of sections dedicated to describing the implementation of
each of the main functionalities.

7.1. SOFTWARE ARCHITECTURE OF THE REPROCESS PROTOTYPE
An overview of the structural architecture of the prototype implementation is presented in Figure 7.1. It
shows the allocation of main functionalities to the software components of the prototype implementation. An
object-oriented programming style was used for the prototype implementation, in order to match with the
implementation of the Parapy KBE system itself.

The leftmost swimlane in Figure 7.1 represents the user of the tool. The three actions in this column represent
three commands that a user needs to enter to execute the complete reverse engineering process. Each of
these commands relates to the initialization of one of the classes that were implemented for the REProcess
prototype. The ReverseProcessModel class represented in the second swimlane is the main, overarching class
of the implementation. From this class, both the DataflowAnalyzer and LLMPrompter classes are invoked. The
DataflowAnalyzer class implements all of the functionalities related to the graphs, meaning both the precedents
analysis method as well as the graph transformation algorithm. As the name suggests, the LLMPrompter class
implements the LLM-based source code abstraction method. A more detailed description of each of the main
functionalities is provided in the list below. This list also indicates the sections where the implementation of
the specific functionalities will be further elaborated.

1. Precedents analysis (section 7.2)

(a) Call get_precedents_tree() method

(b) Convert tree data to graph

2. Graph transformation algorithm (section 7.3)

(a) Merge/remove duplicate sequence instances

(b) Merge/remove input nodes

(c) Merge/remove remaining Parapy nodes

(d) Introduce and merge into initialization node
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(e) Add additional metadata

(f) Relabel to ID graph

3. LLM-based source code abstraction method (section 7.4)

(a) LLM selection and implementation

(b) Prompt engineering

4. Output generation (section 7.5)

(a) Diagram visualization

(b) Writing output file

Figure 7.1: Software architecture implemented for the REProcess prototype.

7.2. PRECEDENTS ANALYSIS IMPLEMENTATION
The precedents analysis is the first main step of the core reverse engineering method. This step is responsible
for creating the raw precedents graph. This section details the implementation of the precedents analysis
method, highlighting the key components and logic used to generate the graph.
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7.2.1. CALLING THE GET_PRECEDENTS_TREE METHOD
The precedents analysis is implemented by the generate_precedents_graph method from the Dataflow-
Analyzer class. It was designed to handle syntax differences when utilizing the get_precedents_tree()
method across different Parapy slot types, including Parts, Sequences, Attributes, and Inputs.

The generate_precedents_graph method first checks whether the target slot’s qualified name indicates
a nested location within a part hierarchy. This is done by searching for a dot (.) in the name. If a nested
location is detected, the target part path is extracted, and the target_attr_name is set to the last component
of the qualified name. After determining the target slot, the method differentiates between the target slots
categorized as parts (including Sequences) and attributes/inputs. This differentiation is important as it dictates
the approach used for subsequent steps in generating the precedents graph.

PROCESSING OF PART SLOTS, INCLUDING SEQUENCES

For target slots identified as part objects, the method checks whether the object is a sequence or a singular part.
If a sequence object is identified, the user is prompted to specify the sequence instance to analyze. When the
target target slot is a part, it checks whether this part has a TopoDS_Shape slot. If this is the case, it is assumed
the user meant to target this slot for the reverse engineering analysis. When no TopoDS_Shape slot is found,
the user is prompted to specify a more specific target slot from within the class of the previously specified part
object. This is necessary because the get_precedents_tree() method does not work properly when a part
is provided as the target.

PROCESSING OF ATTRIBUTES AND INPUTS

For attributes and inputs, the processing is a lot simpler. These can be used by the get_precedents_tree()
method as-is. However, it should be noted that the get_precedents_tree() method does not work correctly
when targeting input slots. The precedents from within the application class of the input slot are correctly
identified and returned, but this is where the tracking stops. Any preceding slot evaluations executed within
objects higher up in the product hierarchy to provide a value for the targeted input slot are not returned. When
evaluating root.right_wing.get_precedents_tree(root_profile), for example, any slot evaluations
that precede root_profile but occurred before the right_wing part was instantiated are not returned by
get_precedents_tree() even though they should have been added to the precedents tree. To account for
this, the following warning is provided to the user when the target slot is identified as an input slot:

input("\nWARNING: Parapy's get_precedents_tree() method, which forms the basis of "
"the current reverse engineering method, does not search for data "
"dependencies outside of the class of the Input slot that was provided as "
"the analysis target. Therefore, the activity diagram will be incomplete. "
"Press enter to continue anyway.")

7.2.2. CONVERTING THE PRECEDENTS TREE TO GRAPH FORMAT
The transformation of the precedents tree into a graph structure is a crucial step in the precedents analysis
process. This functionality is implemented in the transform_nested_precedents_dict_to_obj_graph
method of the DataflowAnalyzer class. The transformation process begins by initializing a directed graph,
obj_graph, using the NetworkX library’s DiGraph() function[46]. Subsequently, a recursive helper function,
add_nodes_edges, traverses the raw_precedents_tree (nested dictionary) and populates the created graph
object with nodes and edges.

7.3. GRAPH TRANSFORMATION ALGORITHM
The desired behavior of the graph transformation algorithm was already extensively discussed in section 6.3.
For the implementation, the main remaining challenge was to figure out the order of the processing steps.
Based on extensive iterations, the order of steps presented in this section was determined.

7.3.1. MERGE/REMOVE SEQUENCE NODES
The first step in the graph transformation algorithm involves merging or removing duplicate sequence in-
stances in the precedents graph. This process ensures a cleaner and more concise representation of the
KBE application’s structure by eliminating redundant sequence nodes. This functionality is implemented in
the merge_sequence_into_part_node method from the DataflowAnalyzer class. This method follows the
following three steps:
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1. Criteria for removing sequence instances The merge_sequence_into_part_node method begins
by defining criteria for removing sequence instances. This involves checking if a node belongs to a
sequence object. If the node is a sequence instance, it is marked for removal unless it is belongs to
the so-called representative sequence instance. This is the case when it is either the primary sequence
instance (“child_0”), or if it belongs to the specific instance specified in the analysis target.

2. Merging type 1 sequence nodes Sequence nodes corresponding to type 1 parts are merged into their
corresponding part nodes. The merge target is identified based on the aggregate object of each node
(see Figure 6.2). If this identification method finds multiple aggregate objects, a user warning is issued to
investigate the inconsistency.

3. Removing type 2 and type 3 sequence nodes Sequence nodes corresponding to type 2 and 3 parts
are removed from the graph. The removal is based on the criteria defined earlier, ensuring that only
redundant sequence instances are eliminated. Note that in this particular instance, a simple removal
approach is used. In the previous chapter, the concept of dependency chain-preserving node removal
was introduced but that does not have to be applied here because the dependency chain from the
representative sequence instance remains untouched.

An example of the input (raw precedents graph) and output from the merge sequence step is presented in
Figure 7.2. The block of blue nodes highlighted in the top figure shows the typical graph structure of node
sequences. A close-up Figure 7.3 of this block is provided in Figure 7.3. This close-up also shows the identified
merge target of the blue nodes. The location of this merge target in the resulting output graph is highlighted by
the red arrow from Figure 7.2.

Figure 7.2: Illustration of the sequence merging process. On top: the raw precedents graph. On bottom: the output graph after the
merging step on the bottom. Annotations highlight merging of sequence nodes into their aggregate object. Close-up of the sequence

nodes provided in Figure 7.3.
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Figure 7.3: Close-up of the sequence nodes from Figure 7.2. The aggregate slots from the sequence objects are highlighted. On the
right-hand side, the node merge target is identified (<Cache profiles at 0x7f2ae39d7be0>). The criteria used to highlight the

merge target: a part node (third row) with node.value (fourth row) equal to aggregate object from the sequence nodes.

7.3.2. MERGE/REMOVE INPUT NODES
The second step in the graph transformation algorithm involves the merger and removal of input nodes.
This process is implemented in the merge_inputs_into_part_node method of the DataflowAnalyzer class.
The goal of this step is to ensure that input nodes are either merged into their corresponding part nodes, or
removed from the graph1. Aside from removing redundant implementation details, a second key benefit from
merging input nodes into their part node is that the flow of information starts to better resemble a activity
diagram. This is illustrated in the example presented in Figure 7.4. In the top figure, a block of input slots is
highlighted that is merged into the corresponding part node, indicated by the blue arrow to the node in the
same graph. The result of this merging step is that this part node moves to a much more “upstream” position
in the graph, as shown by the arrow. This transformation is desired because the part node can then later be
used to represent the initialization of the part.

Figure 7.4: Illustration of the input merging process. On top: precedents graph after the previous sequence merging step. On bottom: the
output graph after the input step. Annotations show how the merging of input slots to their corresponding part node, identified in the

same graph, leads to rearranged graph shown on the bottom. The rearranged position of the part node used as merge target is indicated
by the blue arrow in the bottom graph.

CRITERIA TO MERGE INPUT NODES

The decision to merge or remove input nodes depends on whether the input nodes represent relevant informa-
tion that should be captured in the process model. The criteria below are used to identify nodes relevant for

1The input nodes corresponding to the root object form an exception. These will be processed later, by the introduce_initialization_nodes
method
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merging. If one of criteria these are not met, the node is non-relevant for merging and are later removed by the
algorithm.

• The node must be of type cache.Cache, ensuring it is a valid cache object within the graph.

• The node slot must contain the string "Input". This indicates that the node is an input node.

• A node is completely excluded from merging/removal if it is designated as the reverse engineering target
node (i.e. input parameter of get_precedents_analysis method). This ensures that the primary node
of interest remains intact throughout the analysis.

• A node is relevant for merging if its slot does not originate from the parapy or kbeutils modules. A
complementary merge criteria is if it is explicitly defined by the user, which is identified through the
is_user_defined method from the ParaPy KBE system.

PROCESSING OF INPUT NODES

Input nodes identified as relevant are subsequently processed to store them as metadata and transform the
graph structure. For each input node identified as relevant, the incoming edges are analyzed to determine
the source nodes contributing to the input. These nodes are captured in a dictionary format, which is then
assigned to the received_inputs_dict attribute of the corresponding part node. Additionally, input nodes
identified as relevant are appended to the data_flow attribute of its outgoing edges. This step ensures that
the relevant data represented by input nodes is captured in the process model, despite being merged into
another node.

Following metadata storage, the algorithm proceeds to merging and/or removing the input nodes. This process
is implemented by the steps outlined below. Note that when a node is identified as non-relevant, the first four
steps - which correspond to node merging - are skipped.

1. Identifying the part node: Each input node is examined to locate its corresponding part node, the
intended merge target. Identification of the merge target is performed by looking for the presence of a
“Part” identifier in the node slot, combined with the node value being equal to the node object of the
input node.

2. Handling aggregate objects: If no merge target is found in the previous step, the algorithm performs
another search to check if a merge target in the form of a part sequence node can be found instead. This
involves checking if the node’s value aligns with the aggregate attribute of any part nodes.

3. Introducing part nodes: When a valid merge target was still not found, the algorithm attempts to actively
introduce a part node into the graph.

4. Node merging: Once a valid part node is identified, the input node is merged into it using the
nx.contracted_nodes function provided by the NetworkX library. This operation combines the at-
tributes and edges of the input node with those of the part node, effectively integrating the input node’s
data into the part node. Associated metadata is also transferred to the part node, consolidating all
important aspects into the part node.

5. Node removal: In cases where a node was identified as non-relevant, or when a suitable part node
could not be identified for merging, the algorithm performs node removal. This is performed by
the remove_node_with_path_preserve function, also defined in the DataflowAnalyzer class. This
function ensures that the edges connected to the input node are rerouted to maintain connectivity,
thereby avoiding disruptions in the graph’s dependency chains. This is achieved by adding direct edges
between all nodes directly upstream and downstream of the input node, effectively creating “bypasses”.
When the input node is subsequently removed, these bypasses keep the previous dependency chains
intact.

6. Process tracking: Throughout the process, counters are maintained to track the number of input nodes
successfully merged and removed. These counters provide feedback on the algorithm’s performance
and are logged for verification purposes.

7.3.3. MERGE/REMOVE REMAINING PARAPY NODES
The third step in the graph transformation algorithm focuses on merging and removing remaining Parapy
nodes that were not addressed in the previous steps. It is implemented by the remove_all_parapy_nodes
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method from the DataflowAnalyzer class. This process further refines the graph representation by eliminating
nodes that are either redundant or considered implementation details. An example of this step is presented
in close-ups corresponding to the input (Figure 7.5) and output (Figure 7.6 of this step. An overview of the
complete output graph of is presented in Figure 7.7. Note that, compared to the bottom graph of Figure 7.4,
several other sequences of nodes have also been merged. For example, the tall vertical stacks of yellow nodes
from Figure 7.4 are no longer present in Figure 7.7. The implemented process performing this step is described
below.

Figure 7.5: Close-up of the right-hand side of Figure 7.4, which is the graph used as input for this step. This is before the merging/removing
of ParaPy nodes is performed. The nodes highlighted in this figure with red and green boxes are also present in Figure 7.6.

Figure 7.6: Close-up of the graph obtained after the merging/removing of ParaPy nodes. Note how the highlighted nodes (red and green
boxes) remained in the graph after this processing step, but the nodes in between are removed.
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PROCESSING OF PARAPY NODES

The process to merge and remove remaining Parapy nodes involves the following steps:

1. Identification of type 2 node objects: As discussed in section 6.3, the geometry nodes of type 2 ob-
jects present a key exception to the general rule that all Parapy nodes should be removed. There-
fore, the first step is to identify all type 2 part objects present in the graph and select one of the ge-
ometry nodes from each of these parts that will represent the geometry generation step in the final
process model. The combination of type 2 part objects and their geometry nodes is stored in the
type_2_object_to_geom_node_mapping dictionary, which subsequently saved as metadata (in the form
of a graph attribute).

2. Removing/merging the remaining Parapy nodes: The implementation of this step involves iterating
through the graph and using the slot module and is_user_defined properties to identify and remove
all remaining Parapy nodes. Naturally, the other exception criteria are also checked before nodes are
processed. This includes the previously identified type 2 geometry, as well as checking if the node is not
the analysis target node.

For specific cases, Parapy nodes are merged, namely when they are geometry nodes. In case of the
node corresponds to a type 1 part (sequence), its part node is used as the merge target. In case of
type 2 geometry nodes, the selected geometry node is used as the merge target for the other geometry
nodes. Both these merging operations are implemented to ensure the control and data flow are correctly
represented in the final process model.

In all other cases, Parapy nodes are simply removed using the same remove_node_with_path_preserve
method that was used to remove nodes in the previous algorithm step.

Similar to the previous algorithm step, the number of nodes merged and removed is again recorded during this
step for verification purposes. The final output of this step is presented in Figure 7.7.

Figure 7.7: Overview of the output obtained from the merge/remove ParaPy nodes step. Figure 7.6 is a close-up of the four purple nodes
on the left-hand side of this figure.

7.3.4. INTRODUCE AND MERGE INTO INITIALIZATION NODE
The fourth and final main processing step in the graph transformation algorithm involves introducing the ini-
tialization nodes and merging all input slots from the root object into it. The reasons to implement this behavior
were discussed previously, in section 6.3. This step is implemented by the introduce_initialization_nodes
method from the DataflowAnalyzer class. The example output is presented in Figure 7.8. Note that only the
top row has changed, compared to Figure 7.7, and now shows the initialization node.

Figure 7.8: Example output from introduce initialization node step. Note how all nodes on the top row of Figure 7.7 are merged into the
initialization node.
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PROCESSING OF INIT NODE

The process to introduce and merge into initialization nodes is carried out as follows.

1. Cluster nodes by object: The first task is to cluster nodes based on their associated objects. This step
groups nodes that belong to the same object, specifically focusing on root objects in the graph. Each root
object cluster will later be represented by an initialization node. Note that this step can identify multiple
root-level objects. This is necessary because the usage of functions from the kbeutils library was found
to sometimes lead to the initialization of a separate root object, instead of defining it as lower-level
behavior of an existing object in the part object hierarchy. Note that a graph attribute is used to store the
“original” root object as a metadata property. This ensures an explicitly-defined, singular starting point
for the reverse engineered workflow is captured in the process model (which is required to comply with
PR-09).

2. Create initialization nodes: Subsequently, an initialization node is introduced for each root object in
the graph. This node acts as a placeholder that will replace all input nodes associated with the root
object. The initialization node is assigned attributes to track the object it represents and is marked with
a specific node type for identification. This node type is stored as metadata each init node.

3. Merge input nodes: All input nodes related to the root object are merged into their respective initializa-
tion node, using a similar approach as when merging inputs into their part nodes.

4. Handle disconnected initialization nodes (optional): If an initialization node is found to be discon-
nected from the rest of the graph after the previous step, an additional edge is introduced to connect it
to the most likely node that it should have been connected to. This node is determined by making some
assumptions. Correspondingly, a user warning is returned to make the user aware of this exceptional
situation. Note that this only occurs in exceptional, highly specific cases.

5. Merge stand-in target node (optional): In the special case where the user provided a part node as the
analysis target and the algorithm corrected this to the geometry slot of the part, a TopoDS_Shape node
is still present in the graph after all previous processing steps. In this step, this TopoDS_Shape node is
merged into its part node in order to comply to the desired behavior from the user.

Throughout this step, the number of nodes merged is recorded to monitor the effectiveness of the simplification
process and ensure that the resulting graph maintains the necessary data flow information.

7.3.5. ADDING ADDITIONAL METADATA
This step is listed under the graph transformation algorithm because it is also implemented in the Dataflow-
Analyzer class. However, it does not involve any graph transformation steps. As the name suggests, this step
only involves the storage of a lot of additional metadata attributes. The purpose of this additional metadata
is to enrich activity graph and prepare it for the output generation. As will be discussed later, all data in the
generated output files is “flattened” to string representations. This means that all of the properties from the
cache objects defining the nodes can no longer be accessed. Therefore, all properties that could be relevant
for the process model are stored as additional graph, node and edge attributes. The method implementing
this functionality is the add_metadata_to_graph_and_nodes. An illustrative example of attached metadata is
provided in the next subsection. An overview of the captured metadata parameters is provided below:

GRAPH ATTRIBUTES

• part_node_list: A list of all application part nodes.

• kbe_instance: Stores a string representation of the KBE instance associated with the graph.

• kbe_target_obj: Stores a string representation of the object used to call the get_precedents_method.

• target_slot_qualified_name: The fully qualified name of the target slot.

• target_attr_name: Stores the name of the attribute used as the target of the get_precedents_method.

• seq_instance_target_idx: Stores the sequence instance index when a particular sequence instance
was specified as the revers engineering target.

• sequence_part_to_representative_obj_mapping: A dictionary that maps sequences to their rep-
resentative objects.
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• ppy_obj_set: The set of all Parapy objects present in the transformed precedents graph.

• part_type_2_3_dict: A dictionary mapping the part nodes of type 2 and type 3 parts to their part
objects.

• graph_type: Used to differentiate this graph from the so-called ID graph which will be introduced in
the subsequent subsection.

NODE ATTRIBUTES

• source_code: The node slot source code is added as a string value to each node

• node_type: The type of this node, based on the specification presented in section 6.3. Appended by
“_sequence” for sequence instance nodes

• ppy_cache: String representation of the Parapy cache object representing the node in the precedents
graph

• tree_level: Level of this node’s object in the part hierarchy (0 indicates the root level)

• parent_objs: Ordered sequence of parent objects, starting from the node object up until the root
object.

• node_obj_class: Class of the node object.

EDGE ATTRIBUTES

• contraction: Nested dictionary created by the nx.contracted_nodes() function. Used to capture
the edge attributes corresponding to each original edge when edges overlap due to a node contraction
operation.

• data_flow: Dictionary of relevant Parapy slots flowing through a graph edge.

7.3.6. RELABEL TO ID GRAPH
The final step of the graph transformation algorithm involves relabeling all graph nodes to a qualified string
representation, resulting in the so-called ID graph. The need to relabel the activity graph nodes is related to PR-
11 (deterministic process). As-is, the activity graph does not comply to this requirement due to the the memory
address2 included in the cache objects representing the part nodes. This memory address will differ for every
re-run of the analysis. Another undesirable effect of this node definition style is that it is not user friendly. As
discussed in section 6.2, several additional properties need to be presented in order to clarify the exact part
of the KBE app that a node represents. Therefore, a relabeling method (named relabel_obj_to_id_graph)
was implemented in the DataflowAnalyzer class.

Figure 7.9 illustrates the output from this step. Note that, aside from the node ID’s themselves, two rows with
additional information are printed in this illustrated example. A tooltip showing the metadata attached to the
final node is also presented. This tooltip is shown when hovering the mouse button on a node (only works
when opening the SVG file of a graph). The mouse can also be hovered on the node edge to display the data
flow (ParaPy slot names).

PROCESSING STEPS

The relabel_obj_to_id_graph method implements a comprehensive relabeling process. In addition to
relabeling the node representations in the graph itself, it also has to process all of the metadata that was
attached to the graph, as well as the individual nodes and edges. Below is a detailed breakdown of each
operation involved in the relabeling process:

1. Initialization and Input Definition: The relabel_obj_to_id_graph method begins by defining lists
of node, edge, and graph attributes that require relabeling. These lists include attributes such as
received_inputs_dict, data_flow, and init_node. Additionally, mappings are initialized to main-
tain a relationship between the original cache objects and the newly assigned identifiers.

2. Build relabel mappings: For every node cache object, a unique string identifier is generated and and
stored in a mapping dictionary. The string identifiers are generated by the relabel_cache_to_id

2(i.e. the underlined part in: <Cache right_wing at 0x7f460853e620>
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Figure 7.9: Example ID graph generated as output from this processing step. The tooltip showing the metadata attached to the final node
is also presented.

method from the DataflowAnalyzer class. Essentially, this method defines each node as a fully qualified
name that represents its location in the part hierarchy. The class name of the root object is used (instead
of “root”) as the first component of the qualified name. This ensures multiple root objects can be
differentiated when the edge-case is encountered where additional root objects were initialized (by
kbeutils) and captured in the activity graph. Note that initialization nodes are also relabeled by the
relabel_cache_to_id method. Since init nodes represent the creation of the root object itself, their
qualified name only consists of this first component. For other nodes, the qualified name consists of
additional components separated by “.” dots. The final ID component is the name of the node slot
(except for geometry nodes, which use “geometry_slot” instead of TopoDS_Shape, Handle_Geom_Curve,
etc.). Optionally, the qualified name includes additional components in between the root class and slot
name. These are names of node objects (i.e. parts), which indicate how lower-level nodes are nested in
the overall product hierarchy. Some examples of these qualified names are provided below:

• Aircraft (initialization node)

• Aircraft.right_wing (part node)

• Aircraft.right_wing.root_airfoil (part node)

• Aircraft.right_wing.root_airfoil.points (attribute node)

• Aircraft.right_wing.root_airfoil.geometry_slot (geometry node)

The relabeling mappings are stored as graph metadata for both forward and reverse conversions, facili-
tating subsequent transformations and maintaining clear traceability between original and relabeled
nodes. Furthermore, the graph_type attribute is set to “id”.

3. Node Relabeling: The NetworkX relabel_nodes() function is used to relabel the graph, based on the
mapping specified in the relabeling dictionary.

4. Metadata processing: After the graph nodes themselves are converted, iterative functions execute the
relabeling of the metadata attributes. Only explicitly listed attributes are relabeled, because the purpose
of some attributes is to refer back to the original cache objects.
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7.4. IMPLEMENTATION OF THE LLM-BASED ABSTRACTION METHOD
This section will cover the implementation of the LLM-based abstraction method. The hardware aspect is
discussed first, as this drives design decisions regarding the software implementation which is presented there-
after. The latter is broken down into two main aspects: the prompt engineering, and the LLM inference. Note
that, although both are considered part of the LLM-based abstraction method, only the latter is implemented
in the LLMPrompter class. As depicted in Figure 7.1, the prompt engineering is (mostly) implemented within
the perform_LLM_abstraction method of the overarching ReverseProcessModel class.

A final important note before diving into the LLM implementation, is that not every textual node description is
generated by the LLM(!), because not all nodes from the transformed precedents graph have an associated
definition in the application source code. Specifically, this applies to types of special nodes, i.e. the initialization
and geometry nodes. For these two node type, a template based approach is used. This will be further discussed
in section 7.5.

7.4.1. ACQUIRING COMPUTATIONAL RESOURCES
Implementation work related to the LLM-based abstraction method started with the question of how to get
access to the required computational resources. This issue was the first to address because it drives subsequent
design decisions. For instance, the available amount of GPU vRAM determines the range of Large Language
Model sizes that can be chosen from.

For this thesis project, the computational resource requirement was characterized as “high availability, medium
power”. The emphasis on high availability corresponds to the iterative development approach that was applied
in order to deal with the exploratory nature of this thesis project. The medium power aspect was determined
based on a previously conducted feasibility study, which indicated that models between 10-20B nodes should
be more than capable of delivering the desired output. Note that these models were used as-is during this
project, so the workstation was only used LLM inference meaning no additional power was required for
training or finetuning purposes3.

Three main options were identified to access the required computational resources:

• DelftBlue4: This is the massive CPU and GPU cluster from TU Delft. It is available for all students and
researchers from the TU Delft. Unfortunately, the computation jobs submitted by students are assigned
lower priority in the job que. As a result, it even occurred during experimentation with DelftBlue that
jobs went backwards in the que due to the large amount of TU Delft researchers being given priority.
This option was disregarded due to the (extremely) low availability.

• Hugging Face inference endpoints5: These provide a production solution for deploying any Transform-
ers, Sentence-Transformers, and Diffuser models from the Hugging Face Hub. The inference endpoints
run on dedicated, auto-scaling infrastructure and are kept separate from the Hugging Face Hub source
repositories, ensuring high security and reliability. Therefore, they could be considered despite PR-12 (no
external computing). However, it was determined the monthly billing structure with the flexible pricing
scheme did not fit within the financial constructs of TU Delft. Therefore, this option was disregarded.

• High-performance workstation: The third option consisted of acquiring a dedicated, high-performance
workstation for this and future projects. This option was chosen after the other two were eliminated.
For the GPU, an NVIDIA RTX 6000 Ada was selected (48 GB of vRAM) which more than fulfilled the
requirements. It even provided additional opportunities in terms of LLM selection. Remote desktop
access was setup so the machine could be operated remotely.

7.4.2. PROMPT ENGINEERING
In the REProcess tool, prompt engineering plays a crucial role in generating effective and meaningful ab-
stractions of the analyzed KBE application. Moreover, the design space of this aspect is massive due to the
virtually infinite possibilities of formulating the natural language instructions. On one hand, this poses a
great challenge for the implementation, but it also provides many highly interesting opportunities. For the
REProcess tool, this is further amplified by the fact that the prompt engineering acts as an interface between

3Although this would be an interesting research avenue to pursue in future research.
4https://doc.dhpc.tudelft.nl/delftblue/
5https://huggingface.co/inference-endpoints/dedicated

https://doc.dhpc.tudelft.nl/delftblue/
https://huggingface.co/inference-endpoints/dedicated
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multiple analysis and abstraction methods. An interesting way to look at the prompt engineering is to regard
prompts as containers wherein relevant information from multiple sources/analysis methods is combined. In
case of the REProcess prototype, the nodes in the transformed graph dictate the prompts that are formulated.
The corresponding source code is obtained by the inspect Python module (which could even be considered a
static analysis component). And, as will be discussed later, different prompt variants are generated based on
the node’s metadata (this is done by the keyworded response start feature). This is visualized in Figure 7.10

Figure 7.10: Visualization of the information collection characteristic of prompt formulation.

Of course, there are many more possible implementation of this information combination processes which
indicates that the interface role of the prompt engineering system from the REProcess tool/prototype increases
the number of design options even further. Unfortunately, pursuing all of these opportunities was not possible
within the scope of this thesis project. This subsection will only outline the specific prompt engineering
strategies employed in the tool, focusing on user prompts, system prompts, and the keyworded response start
feature. Additionally identified ideas and opportunities will be presented later, in the discussion and final
recommendations.

USER PROMPT FORMULATION

The user prompt is the specific part of the instruction to the LLM. When using ChatGPT as an analogy, the
entire chat message is the user prompt. In case of the REProcess prototype, the user prompt is built up from
parts: the source code snippet (code_snip) and the user instruction (user_instruction). A special user
prompt generation feature implemented for the REProcess prototype is the so-called prompting context mode.
Essentially, this context mode allows a user to switch between two different modes of generating the user
prompt. In the “method” mode, the code snippet injected into each user prompt is that of the specific node
slot (i.e. the class method definition). Alternatively, in the “class” mode, the source code of the entire class
corresponding to the node object is used. Of course, while the provided source code changes, the goal for the
LLM in both cases is still to generate a description for one specific node. Therefore, a slightly different user
instruction (and system prompt) is used for the second case which instructs the LLM to focus on generating a
description of a specific node, instead of the entire class. Examples of each prompt context mode are provided
below:

Method prompt context example

### User Message

@Attribute # required input to the BSplineCurve superclass
def control_points(self):

airfoil_file = self.airfoil_name + '.dat'
file_path = AIRFOIL_DIR / airfoil_file
with open(file_path, 'r') as file:
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point_lst = []
for line in file:

# the cartesian coordinates are directly interpreted \
# as X and Y coordinates
x, y = line.split(' ', 1)
point_lst.append(self.position.translate(

"x", float(x) * self.chord, # the x points are scaled \
# according to the airfoil chord length
"y", float(y) * self.chord * self.thickness_factor)) \
# the y points are scaled according to the thickness factor

return point_lst

Describe the task performed by the source code provided above using a maximum of 10 words.

Class prompt context example

### User Message

class Airfoil(BSplineCurve):

"""Airfoil geometry, a curve through points."""

#: airfoil name
#: :type: string
airfoil_name = Input()
#: chord [m]
#: :type: float
chord = Input(1.)
#: thickness factor [%]
#: :type: float
thickness_factor = Input(1.)

mesh_deflection = 1e-5
degree = Input(10) # Note (JK): without Input() this causes an
# error. Likely due to different ParaPy version or Python version?

@Attribute # required input to the BSplineCurve superclass
def control_points(self):

airfoil_file = self.airfoil_name + '.dat'
file_path = AIRFOIL_DIR / airfoil_file
with open(file_path, 'r') as file:

point_lst = []
for line in file:

# the cartesian coordinates are directly interpreted \
# as X and Y coordinates
x, y = line.split(' ', 1)
point_lst.append(self.position.translate(

"x", float(x) * self.chord, # the x points are scaled \
# according to the airfoil chord length
"y", float(y) * self.chord * self.thickness_factor)) \
# the y points are scaled according to the thickness factor

return point_lst

Describe the task performed by the control_points method defined in the class source code provide above
using a maximum of 10 words.

When comparing the examples above, note the difference in the user instruction (at the end of each prompt).
In case the class prompt context mode, the control_points method is mentioned explicitly. In terms of
performance, the differences between the prompting methods is characterized as follows:
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• The class prompt context method is a more complex assignment. It asks more from the instruction-
following capability of the LLMs (focus on a specific part of the code). Also, larger inputs are provided in
this case so the computation performance is (slightly) worse. Correspondingly, the used LLMs should
be trained with larger context windows because KBE class definition can be very extensive. However,
well-trained LLM should be able to generate better abstractions by having access to more contextual
information. Especially when method source code is very short (just a few lines of code).

• The method prompt context is simpler, with better expected computational performance due to smaller
inputs. The concise, simple nature of the prompt means there is less risk of instruction misinterpretation
by the LLM that could lead to hallucinations.

In addition to the development and assessment of the two different prompt context modes, the following
design aspects of the user prompt generation were also investigated.

1. User instruction formulation: Naturally, the specific formulation of the user instruction was considered
and iterated quite extensively. The formulation(s) presented in the user prompt examples above reflect
the final iteration.

2. Ordering of code snippet and user instruction: The ordering of the source code snippet and user
instruction was also assessed. It is known LLMs can have trouble “remembering” specific instructions
when large inputs are provided, leading to hallucinations. Based on experimentation where the order
of the code snippet and instruction was swapped, it was indeed found that it was best to provide the
contextual information first, followed by the specific instruction to the LLM.

SYSTEM PROMPT FORMULATION

System prompts can be used to provide high-level information describing the LLM’s role and context in order
to shape its response style. The system prompt is used to provide general information and is appended in front
of every user prompt. In case of the REProcess prototype, the system prompt positions the LLM as a reverse
engineering assistant, guiding it to understand and abstract the KBE application’s behavior. Two variations
were implemented, tailored for the method and class modes. The final variants, presented below, were the
result from multiple iteration sequences.

• Method context system prompt: “Your task is to reverse engineer an existing knowledge based engineer-
ing application. The application is written in Python using object-oriented programming. I will provide
code snippets of a class method from this application. Your job is to summarize this source code using a
maximum of 10 words.”

• Class context system prompt: “Your task is to reverse engineer an existing knowledge based engineering
application. The application is written in Python using object-oriented programming. I will provide
the source code of a class from this application. Your job is to summarize the source code of a specific
method from this class definition, using a maximum of 10 words.”

KEYWORD RESPONSE START FEATURE

The final interesting prompt engineering feature that was implemented is the so-called keyworded response
start. This is a novel feature that enhances the specificity and relevance of the LLM output by forcing it to
start its response with certain predefined keywords. This aids in generating accurate, concise and functionally
meaningful descriptions. By default, this feature is turned on in the REProcess prototype implementation
but it can also be turned off by setting the keyword_response_start input parameter to False when calling
the perform_LLM_abstraction method (the third user command). The implementation of the keyworded
response start feature is presented below. This source code, taken from the DataflowAnalyzer class, shows
the different keywords used for each node types as well as presenting some additional options that were
considered:

136 if keyword_response_start:
137 # Good options for...
138 # - Attributes: Compute, Determine, Calculate,
139 # - Parts: Generate, Initialize (= SITUATIONAL, only type 2/3 parts!),
140 # - @Inputs: Compute, Define,
141 # - Context_dep.: Analyze, Use, Assess, Perform
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142

143 if (self.dataflow.act_graph.nodes[node_i]['node_type'] == 'attribute'):
144 response_start = 'Compute'
145 elif (self.dataflow.act_graph.nodes[node_i]['node_type']).startswith(
146 'part_type-1'):
147 response_start = 'Generate'
148 elif (self.dataflow.act_graph.nodes[node_i]['node_type']).startswith('part'):
149 response_start = 'Create'
150 elif (self.dataflow.act_graph.nodes[node_i]['node_type'] == 'input'):
151 response_start = 'Determine'

Note that implementation of this feature does not simply add the response start as an additional element
in the user prompt. Instead, the entire prompt is formatted first, including the LLM response start cue, and
then the response start is appended. This “tricks” the LLM into thinking it has already formulated a part of its
response so it simply continues from there. This implementation was considered to be most robust.

7.4.3. IMPLEMENTATION OF THE LLMPROMPTER CLASS
The list presented below provides an overview of the important, general aspects of the LLMPrompter class
implementation. The remainder of this subsection will go into more depth about the specific LLMs selection,
and the used model configuration(s).

• Hugging Face platform: used to select and acquire open-source LLMs.

• Transformers library: used for LLM instantiation and inference.

• PyTorch + CUDA 12.1: to enable GPU-based inference.

• Bitsandbytes library: used for model quantization.

• inspect module: to extract KBE source code snippets.

LLM SELECTION

The REProcess prototype was built using a model-agnostic implementation approach in order to account for
the extremely rapid development pace of Large Language Models. In other words, the specific LLM used by
the system is easily interchangeable, allowing it to benefit from the continuous improvements in LLM perfor-
mance. In the REProcess prototype, swapping LLMs can be done simply by changing the llm_checkpoint
input parameter passed into the perform_LLM_inference function (see section B.1). Moreover, this im-
plementation approach meant that the final decision for a particular model could be made later, based on a
comparison of actual, reverse engineered diagrams created by the prototype.

Selecting an appropriate LLM was one of the essential aspects of the REProcess prototype development. The
Hugging Face platform was used for this purpose. Aside from offering an extensive collection of open-source,
state-of-the-art models, another key feature from this platform are the leaderboards. Specifically, the Big Code
Models Leaderboard6 was found to be most useful. It ranks the big code models on the Hugging Face Hub
based on several key benchmark scores. Based on these rankings, four LLMs were selected for implementation
and testing in the REProcess prototype:

• CodeLlama-13b-Instruct-hf:7 The CodeLlama models are code-specialized versions of the general-
purpose Llama 2 model. This is the instruction-tuned variant with 13B nodes, which fits on the worksta-
tion GPU without quantization. Trained on 16K token sequences. Additional inference improvements
shown on inputs of up to 100,000 tokens [47].

• CodeLlama-34b-Instruct-hf:8 This is the 34B variant of the CodeLlama model described above, which
requires 8-bit quantization to fit on the workstation GPU.

• Phind-CodeLlama-34B-v2:9 Fine-tuned version of the CodeLlama-34B model above, trained on an
additional set of high-quality programming-related data.

6https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
7Model page: https://huggingface.co/meta-llama/CodeLlama-13b-Instruct-hf
8Model page: https://huggingface.co/meta-llama/CodeLlama-34b-Instruct-hf
9Model page: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/meta-llama/CodeLlama-13b-Instruct-hf
https://huggingface.co/meta-llama/CodeLlama-34b-Instruct-hf
https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
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• Deepseek-coder-33b-instruct:10 Instruction-tuned version of the Deepseek coder model, which was
trained from scratch. It has a context window size of 16K tokens. Like the 33B models above, it requires
8-bit quantization to fit on the workstation GPU.

From an implementation perspective, it should be noted that a key difference between these models is that they
use different prompt formats. In order to account for these differences, the LLMPrompter class implements
a do_prompt_formatting method that checks the specific model type and applies the appropriate format.
Examples of two different prompt formats are shown in the code snippet below, which was taken from the
do_prompt_formatting method. Note that the REProcess prototype implementation was developed before
the apply_chat_template was introduced, which can be used to automate this task.

def do_prompt_formatting(self, system_prompt, code_snip_i, user_instuction):
[...]

if self.checkpoint == "Phind/Phind-CodeLlama-34B-v2":
self.formatted_prompt = (

"### System Prompt\n"
f"{system_prompt}\n\n"
"### User Message\n"
f"{code_snip_i}\n"
f"{user_instuction}\n\n"
"### Assistant Response\n"

)
# Define llm_response_start_cue to be equal to the final line of the formatted prompt:
self.llm_response_start_cue = "### Assistant Response\n"

elif "codellama/CodeLlama-" in self.checkpoint and "Instruct-hf" in self.checkpoint:
self.formatted_prompt = f"""\

[INST] <<SYS>> {system_prompt} <</SYS>> \
{code_snip_i} \n
{user_instuction} \
[/INST]\n"""

# Define llm_response_start_cue to be equal to the final line of the formatted prompt:
self.llm_response_start_cue = "[/INST]\n"

[...]

return self.formatted_prompt

Based on experimentation, the Phind-CodeLlama-34B-v2 model was selected due to its proficiency in
handling complex code interpretation tasks, including Parapy-specifc syntax such as DynamicType. Also its
ability to follow the specific instructions provided in the prompt (e.g. limiting to a maximum of 10 words)
stood out compared to the other models.

LLM CONFIGURATION

Once a set of models was selected, the next step was to determine the optimal parameters and settings to
maximize the tool’s efficiency and output quality. The implementation of the LLMPrompter class provided the
foundational structure for this process. Key parameters such as quantization and generation configuration
were adjusted and tested iteratively.

• Quantization configuration: The model was loaded with an 8-bit quantization setting, as specified
by the BitsAndBytesConfig with load_in_8bit=True. This approach significantly reduces memory
usage while maintaining a high level of precision in output generation. Although a 4-bit quantization
was considered, the 8-bit configuration provided a better balance between performance and accuracy.

10Model page: https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct

https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
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• Output generation configuration: The output generation parameters were carefully tuned to enhance
output quality. Key settings included:

– num_beams=2: This parameter enabled beam search, an effective decoding strategy that evaluates
multiple sequences simultaneously, thus improving the likelihood of generating the most relevant
descriptions.

– max_new_tokens=500: This constraint ensured that the model’s output was concise, preventing
overly verbose responses that could detract from the clarity of the generated abstractions.

7.5. OUTPUT GENERATION IMPLEMENTATION

7.5.1. TEMPLATE-BASED TEXT GENERATION FOR SPECIAL NODES
As mentioned in the discussion of the algorithm steps above, geometry nodes and an initialization node
are kept in the graph to represent specific important steps in the KBE application workflow. For these two
nodes, relevant KBE application source code is not available so the LLM based abstraction method cannot be
used to generate the textual descriptions of these nodes. This is highlighted in the example provided below
(Figure 7.11). The tooltip for the final node is shown which presents the corresponding source code. The last
parameter shown in this tooltip shows the source code from the TopoDS_Shape slot, which is defined within
the KBE system itself. This code is not specific to the KBE application itself, so providing it to an LLM to let it
generate a textual node description cannot lead to a useful output. Instead, a template-based method is used to
generate the corresponding node description: f"Generate <node name> geometry using <class name
of node object>". A similar template based approach is used for the initialization node, included at the top
of Figure 7.11.

Figure 7.11: Example activity diagram generated using the reverse engineering method. A tooltip corresponding to the final node is
depicted that shows the metadata attached to this node.
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7.5.2. DIAGRAM VISUALIZATION

Diagrams are generated with Pygraphviz11, which is a dedicated graph visualization tool. A dedicated function
is integrated into NetworkX to convert the NetworkX graph to a Pygraphviz graph (nx.nx_agraph.to_agraph).
Subsequently, Pygraphviz is used to generate the diagrams (using the “dot” layout engine).

1. Node shapes are rounded rectangles. This is most semantically similar to action nodes in activity
diagrams.

2. Coloring of the nodes is used as a substitute for SysML swimlanes. The color assignment is performed
based on alphabetical sorting of class names. Additionally, the class of the root object is always set
to green. Both measures increase consistency between different diagrams, and therefore cognitive
effectiveness.

3. Data flow is captured in the edge tooltips. These are shown when hovering on them with the cursor. This
ensures the desired data is present in the diagram for users that would like to review it, while hiding it in
the diagram itself to prevent cluttering the diagram with a lot of additional information.

4. Tooltips are shown when hovering the cursor on specific nodes or edges to present additional, more
specific information to the user. For example, the node type, object class, and corresponding class
method source code are shown when hovering on nodes. Edge tooltips present the data flow by listing
all of the slots flowing through a connector. For connectors flowing to/from Parapy parts, this includes
all individual input slots. These tooltips are a substitute for the specification window that can be opened
when using modeling platforms such as CATIA Magic Systems of Systems Architect to inspect the
metadata associated to nodes and node connectors.

7.5.3. WRITING OUTPUT FILES
In addition to the visualizations, two output files can be generated by the REProcess prototype: the raw LLM
data (including performance metrics), and DOT file that captures the full activity graph. Aside from the graph
structure, this DOT file includes all relevant metadata of the graph, nodes and edges as well as the textual node
descriptions generated by LLM.

7.5.4. PARTIAL VISUALIZATION METHOD
The visualize_partial_graph() method is an additional feature that was implemented in the Reverse-
ProcessModel class to provide another key functionality to the tool user. This method was implemented to
mimic a key feature of the SysML models represented in modeling platforms like CATIA Magic Systems of
Systems Architect, namely the ability to “collapse” a whole bunch of lower-level behavior into a single node
and represent this in a separate activity diagram.

The visualize_partial_graph() method mimics this as follows. Once called by the user (by calling
<process_model>.visualize_partial_graph()), it prints a numbered list with all the class names present
in the reverse engineered activity graph and prompts the user to provide a list of the specific classes that
they would like to include in the partial visualization. Based on this list, it generates a partial graph that only
contains nodes from the specified classes. All other nodes are contracted into their respective part nodes.
Results from this functionality are presented in the next chapter.

11https://pygraphviz.github.io

https://pygraphviz.github.io


8
REPROCESS PROTOTYPE RESULTS

This chapter presents the key results and findings obtained with the REProcess prototype, highlighting its
capabilities and performance characteristics. section 8.1 briefly outlines the verification approach, detailing
the selection of test cases and their alignment with the system requirements. Following this, section 8.2
presents the key findings, including example diagrams and qualitative insights into the prototype’s ability
to reverse engineer KBE application workflows. These results highlight the completeness of the extracted
metadata, the capability of hierarchical diagram generation, and the ability to swap LLMs without altering the
tool’s core implementation. Additionally, the impact of several key features of the REProcess prototype are
also discussed, along with an analysis of computational performance across different test cases. Finally, some
remaining issues and limitations identified based on the results are discussed in section 8.3.

8.1. VERIFICATION
A set of test cases was composed for the verification of the implemented REProcess prototype. Two KBE
applications were used for the bulk of these test cases, namely the Primiplane app1 and the Modular UAV app
[12]. A few test cases analyzed other KBE applications, including the Asystor app [48] and a small, custom
developed application (ref_KBE_JK).

Note: all reference KBE applications used in this research are included in the separately provided source code
repository of the REProcess prototype.

The approach used to define the test cases consisted of two main steps. First, an initial set of test cases was
created that covers the full range of target slots specified by the combination of prototype requirements 6 and
7. Concretely, this meant two target slots were included for every type of Parapy slot: inputs, attributes, parts,
and Sequences of parts. Per slot type, one test case targeted a slot from the root object, while the other targeted
a lower-level slot nested within another part object (i.e. lower in the product hierarchy). For both parts and
part sequences, test cases were included for all three part types defined in subsection 6.3.3 (i.e. type 1, 2, and
3).

The second step consisted of assessing this initial set of test cases and determining which of the other prototype
requirements were not yet covered. Based on this assessment, some changes and additions were made. Some
target slots were swapped out for others in order to include additional special Parapy features into the test
plan. For example, an instance of DynamicType() was manually introduced into the Fuselage class of the
Primiplane application, since this feature was not used in either of the two original KBE applications. Finally,
some specialized test cases were added to cover edge cases and specific design features implemented in the
REProcess prototype. For example, analyzing the same test case both with and without using keyworded
response start feature.

A complete overview of the verification test set is provided in Appendix C. The remainder of this chapter
presents and discusses a number of diagrams that were selected to highlight key features and obtained results.

1Specifically, the Primiplane app from tutorial 8 of the KBE course material [41]
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8.2. KEY RESULTS
This section presents several example diagrams and other REProcess tool outputs that showcase its capabilities
and highlight key features of the implementation.

COMPREHENSIVE METADATA

Figure 8.1 presents an annotated example of one of the generated activity diagrams. The figure was composed
by combining four screenshots to include the four tooltips, which can normally only be viewed one at a time,
by hovering the mouse on the respective component (only works for SVG files). Two of the tooltips showcase
the metadata attached to the nodes themselves, while two others show the data flowing through the node
edges. This visualization showcases the comprehensive metadata attached to the model elements, highlighting
how the REProcess tool is capable of reverse engineering a model of the software, rather than just generating a
particular software visualization,

Figure 8.1: Activity diagram showing four tooltips to highlight the comprehensive amount of attached metadata.

PARTIAL DIAGRAMS (MODULAR UAV )
One the following three pages, a set of diagrams is presented that showcase the partial diagram generation fea-
ture of the REProcess prototype. The reverse engineering target is the Propeller.JK_eta_from_bet_analysis
slot from the modified Modular UAV application. To allow readability, the reader is referred to the digital version
of this document, as it contains the PDF-versions of these diagrams that support high levels of magnification
to make the node content legible.

The first diagram represents the complete output, i.e. all relevant steps from the entire workflow. The two
subsequent diagrams respectively focus on the first and second segments of this comprehensive workflow.
These segments are divided by the centrally positioned “Create a Blade Element Theory Analysis for the
propeller. Propeller.bet_analysis)” node (dark green, right above the cluster of pink nodes). Collectively, this
set of diagrams show the REProcess tool capability to generate a set of hierarchically structured diagrams
corresponding to a single workflow, similar to the set of SysML activity diagrams presented in section 4.1 that
exemplified the so-called comprehensive process model defining the desired output from the REProcess tool.
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An additional key remark about these diagrams is that they present the largest and most complex KBE ap-
plication workflow from the test cases included in the verification set. This is highlighted by the size of its
precedents graph obtained after the first reverse engineering step. It consisted of roughly 2,300 nodes (!). To
better understand the magnitude of this number, consider that the diagram on the next page, which represents
the entire workflow and includes all relevant steps, already seems large and complicated. However, the amount
of nodes in this diagram is “just” 80. This massive reduction in node count, combined with the fact that the
resulting diagram accurately reflects the internal process steps, is deemed a significant achievement.
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TESTING DIFFERENT LLMS

As discussed in , the REProcess prototype was built using a model-agnostic implementation approach in
order to account for the extremely rapid development pace of Large Language Models. The specific LLM
used by the system is easily interchangeable, allowing it to benefit from the continuous improvements
in LLM performance. In the REProcess prototype, swapping LLMs can be done simply by changing the
llm_checkpoint input parameter passed into the perform_LLM_inference function (see section B.1).
For the comparison between two top-performing Big Code models from the corresponding HuggingFace
leaderboard2, another version of the second diagram from the previously presented set of three diagrams
is provided on the following page, which was generated using the Deepseek-coder-33b-instruct instead of
Phind-CodeLlama-34B-v2. The instructions, context and other model settings were identical. A comparison of
the textual descriptions generated by these models shows the Deepseek model has a tendency to write longer
descriptions compared to Phind-CodeLlama-34B-v2. Moreover, the descriptions from the Deepseek model
produces are more focused on the source code steps, often refering to code constructs like lists, instances, and
parameters, rather than abstracting higher-level functions. This highlights why the Phind-CodeLlama-34B-v2
is preferred.

2https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard, accessed on 6-20-2025

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
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METHOD VS. CLASS CONTEXT MODE

To showcase the difference between the method and class context mode, Table 8.1 below presents a selection of
ten paired responses that best illustrate the impact of using different levels of context when querying the LLM.
These example were obtained from a test with the Modular UAV application on the JK_eta_from_bet_analysis
attribute.

Table 8.1: Comparison of LLM output: slot context vs. full class context

Response with slot context Response with full class context
Compute r_hub by dividing d_prop by 2 and mul-
tiplying by 0.08.

Compute propeller hub radius.

Compute propeller diameter using thrust, den-
sity, limit, and coefficient.

Compute propeller diameter based on thrust co-
efficient and propeller limit.

Compute thrust coefficient based on propeller
attributes.

Compute thrust coefficient for propeller.

Compute hover thrust using MTOW and
num_arms.

Compute required thrust per motor for hovering.

Compute atmospheric density based on altitude. Compute air density at altitude.
Compute CST coefficients for airfoil root and tip
boundaries.

Compute CST coefficients for root and tip airfoils.

Create Airfoil object with given parameters. Create root airfoil part using Airfoil class.
Create B-spline curve with points, deflection, and
color.

Create B-spline curves for airfoil profiles.

Create LoftedSolid object with blade_profiles,
max_degree 2, and mesh_deflection 1e-5.

Create a lofted solid blade geometry.

Create solid propeller with blades and hub. Create solid propeller model.

The examples above highlight a number of key differences:

• Level of Detail: The responses generated with full class context tend to be more concise and conceptually
complete, whereas the slot context responses are often more specific but sometimes lack higher-level
meaning. For example, the slot context response explicitly describes the computation of the propeller
hub radius formula, whereas the full class context response generalizes it to a direct statement of intent.

• Contextual Awareness: In cases where dependencies exist between different parts of the class, the slot
context mode lacks awareness of how a method interacts with the broader system. For instance, when
computing thrust coefficient, the slot context response only references “propeller attributes” generically,
whereas the full class context response acknowledges the computation in a broader aerodynamic
framework.

• Abstraction vs. Precision: The slot context responses frequently include implementation details such
as numerical parameters, while the full class context responses provide higher-level descriptions of
their purpose. This is evident in the responses for computing CST coefficients, where the slot context
response emphasizes numerical constraints while the full class context response provides a broader
description of airfoil characteristics.

• Function Naming and Readability: Responses in the full class context mode often align with human-
readable descriptions of engineering concepts, whereas slot context responses may be more technical
and specific to their immediate computation. This difference is apparent in how the creation of B-spline
curves is phrased—the full class context response provides a clear description, while the slot context
response includes additional implementation-specific details.

• Response Efficiency and Generalization: The full class context mode enables the LLM to infer general
relationships, avoiding redundant descriptions across different method calls. This is beneficial in
reducing unnecessary verbosity in responses and promoting a more structured representation of a
knowledge-based engineering application.

Overall, while the slot context mode provides specific, implementation-heavy responses, the full class context
mode offers a more holistic and structured understanding of the functions within the KBE application. This
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indicates that for applications requiring high-level process modeling, the full class context mode is the preferred
approach.

KEYWORDED RESPONSE START

Similar to the analysis above, Table 8.2 present a series of paired examples between LLM output. In this case
the difference is the use of the keyworded response start feature. These example were obtained from a test
with the Modular UAV application on the JK_eta_from_bet_analysis attribute.

Table 8.2: Comparison of LLM output: keyworded_response_start True vs. False. Both cases used class method context mode.

Response with keyworded_response_start =
True

Response with keyworded_response_start =
False

Compute propeller hub radius. The r_hub method calculates the hub radius of
the propeller in meters.

Compute CST coefficients for root and tip airfoils. The cst_root_tip method calculates the CST co-
efficients for the upper and lower root and tip
airfoils.

Create root airfoil part using Airfoil class. The b_r_a method creates an Airfoil object for the
root airfoil of the blade.

Create a lofted solid blade geometry. The my_blade method creates a 3D model of a
blade using lofted solid geometry.

Create solid propeller model. The propeller_solid method creates a 3D solid
model of the propeller by fusing the hub and
blade parts.

The comparison presented in Table 8.2 illustrates the impact of enabling the keyworded response start feature
in LLM outputs. When the keyworded response start feature is disabled, the LLM produces short, functional
summaries (e.g., “Compute propeller hub radius”), which are succinct and to the point. These responses focus
purely on the action being performed without unnecessary elaboration. The non-keyworded responses tend to
be longer and contain additional contextual information, making them more informative but also potentially
harder to parse quickly. For technical documentation where clarity on function-level responsibilities is crucial,
enabling keyworded response start is advantageous.

COMPUTATIONAL PERFORMANCE

An indicative overview of the computational performance of the REProcess prototype for various test cases is
presented below in Table 8.3. Note that some cases, like “Modular UAV, eta” exhibited unexpectedly long load
times related to occasional hardware performance fluctuations, but these are considered outliers that do not
reflect systematic inefficiencies in the method. The attained level of performance meets the requirements for
prototype.

Table 8.3: Computational performance of \ac{reprocess} prototype accross various test cases

Test case [KBE app, target slot name] Model loading time Total time (load + run) Average tokens/sec

Primiplane, stability_margin 16 sec 1 min, 13 sec 61.18
Primiplane, left_wing 16 sec 43 min, 20 sec 67.68
Primiplane, right_wing 16 sec 48 min, 18 sec 92.5
Modular UAV, bet_analysis 16 sec 27 sec 13.23
ref_KBE_JK, cog 17 sec 33 sec 40.58
Modular UAV, scaled_propeller 17 sec 2 min, 41 sec 43.96
Primiplane, movable_faces 22 sec 1 min, 50 sec 81.62
Modular UAV, eta 4 min, 9 sec 8 min, 39 sec 100.8
Average 46 sec 13 min, 22 sec 62.7
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8.3. REMAINING ISSUES AND LIMITATIONS
A list of encountered issues and limitations is presented below:

1. Sporadic LLM misinterpretations: Although not very common, some cases of source code misinterpre-
tation were identified. For example:

• Drone.propeller_main.main_blade.cst_sections (method context mode) standard CST coefficient
method not mentioned, and description is objectively wrong. This is an example of LLM under
performing in core task. Expected cause is a lack of context.

• Drone.propeller_main.hub.hub_solid (class context mode) -Objectively wrong description. This is a
case of instruction misinterpretation. It seems the LLM is mixing up hub_solid and hub_solid_filleted,
which is defined directly below this part in the code. This is an example of a more complex LLM
instruction (class context mode) going wrong.

2. Nested slot referencing: This term refers to the situation where the value of a lower-level slot is used
in the definition of another slot, instead of the top-level slot itself. For example, in the underlined text
of this source code statement: weight_averaged_cog_x_loc = self.fuselage_weight_frac *
self.fuselage.cog.x. When this occurs, it poses a challenge in terms of correctly drawing connectors
because it could mean lower level computations had to be performed of which the output is then passed
back up to higher levels in the product hierarchy. Conversely, this can also result in node connectors that
flow directly from higher level nodes to nodes that are multiple levels lower in the product hierarchy. It is
debated whether this is a feature or a bug. On one hand, it is a more detailed and accurate representation
of the application behavior. On the other hand, it leads to an increase in the overall amount of node
connectors and makes the diagrams feel less organized because they do not follow the standard behavior
where data to lower-level nodes always flows via the respective part nodes.

3. Precedents analysis issue: get_precedents_tree() method only includes inputs to a part in the
output from get_precedents_tree() if they were strictly necessary for the computation of the tar-
get slot. This means an input that is provided to a part that is the target object does not by defini-
tion show up in the precedents tree, while intuitively this would be expected. For example when the
get_precedents_tree() method is called on an attribute or sub-part of a type 2 target object, only
the inputs and their precedents used to compute the target slot of the target object are included. This
imposes challenges and limitation on the completeness of this analysis. However, this is a typical concern
for dynamic analysis methods [49].

Another issue related to the get_precedents_tree() method is that it does not work as expected for
input slots. This was observed in both test cases using a lower-level input slot as the reverse engineering
target. These findings indicate that the precedents related to particular input slots are not traced beyond
the scope of their own class. In other words, preceding slots belonging to parent objects are not returned.
This is an inherent issue of the ParaPy get_precedents_tree method that cannot be solved easily
without their involvement. Fortunately, while this finding does present a limitation on feasible analysis
targets, the impact is low because reverse engineering the workflows related to input slots has less
practical, real-world applications. Reverse engineering the workflows corresponding to attributes and
parts is much more relevant from a practical perspective.

4. LLM context overload warning: For the class prompt context mode, some LLM prompts (test case
produced a warning that the input was larger than the advisable context length. These test cases were
examined in additional detail. However, no deviating outputs were discovered. It was concluded the
setting to throw this warning was set conservatively.

Despite these limitations, the REProcess tool successfully extracts structured process models for complex
engineering workflows. Future work can refine certain aspects, such as dependency tracing and response
accuracy, to further enhance model completeness. The next chapter will present the conclusions of this
research, and outline recommendations for future improvements.
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CONCLUSIONS & RECOMMENDATIONS

The rapid advancement of Generative AI (GenAI) has introduced transformative possibilities across various
engineering disciplines, including software development, design automation, and model-based systems
engineering. In the context of knowledge-based engineering (KBE), GenAI offers promising capabilities for
automating tasks such as code generation, process abstraction, and reverse engineering. However, integrating
GenAI into engineering workflows presents key challenges, particularly in dependency tracing, interpretability,
and computational performance. Addressing these challenges is critical to leveraging AI-driven automation
while ensuring model traceability, maintainability, and efficiency in complex engineering applications.

The aerospace industry, characterized by intricate engineering processes and stringent verification require-
ments, has increasingly turned to model-based approaches to enhance automation and knowledge integration.
The Model-Driven Knowledge-Based Engineering (MDKBE) approach presents a structured methodology that
combines the advantages of knowledge-based engineering with Model-Based Systems Engineering (MBSE)
principles. By structuring computational workflows in a model-driven manner, MDKBE aims to improve
efficiency, standardization, and adaptability in aerospace engineering applications.

A central challenge within MDKBE is the lack of explicit workflow documentation in KBE applications. While
KBE systems effectively automate complex design processes, they often result in workflows that are difficult to
trace and interpret. This limitation hinders system verification, application reuse, and broader integration
with MBSE frameworks. The ability to automatically extract structured process representations from these
applications is therefore essential for improving model transparency and lifecycle management.

9.1. THE REPROCESS TOOL AND RESEARCH QUESTIONS
Given the rapid evolution of GenAI, Large Language Models (LLMs) have emerged as a promising tool to
address these challenges. LLMs have demonstrated strong capabilities in understanding and generating
structured representations of software, making them a potential solution for automating process model
extraction in KBE applications. However, due to the novelty of this approach, significant uncertainties remain
regarding the effectiveness, reliability, and practical feasibility of using LLMs for reverse engineering KBE
workflows.

To explore this potential, this research focused on developing a novel method for reverse engineering KBE
applications by leveraging dynamic analysis, graph transformation techniques, and LLM-based source code
abstraction. The primary objective was to advance process model extraction and representation, bridging
the gap between software engineering and model-based approaches in aerospace KBE systems. This led to
the conceptual design and prototyping of the REProcess tool, which implements core reverse engineering
functionalities.
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The research was guided by three main questions:

1. What are the system specifications for the envisioned REProcess tool?

2. To what extent can state-of-the-art LLMs be used to reverse engineer a process model that captures the
engineering workflows embedded in KBE applications?

3. How can a practically useful reverse engineering tool be built around the LLM-based reverse engineering
method?

9.2. ADDRESSING THE RESEARCH QUESTIONS

9.2.1. SYSTEM SPECIFICATIONS FOR THE REPROCESS TOOL
The envisioned REProcess tool was conceptualized with a set of high-level specifications to ensure its practical
utility in aerospace engineering contexts. The primary system requirements were as follows:

• Process Model Extraction: The tool should reconstruct structured process models from unstructured
KBE applications.

• Interoperability: It should ensure compatibility with widely used modeling languages such as SysML
and MBSE frameworks.

• Scalability: The tool must support various levels of detail, from high-level process overviews to detailed
functional descriptions.

• Visualization and Usability: The system should provide clear and interpretable visualizations of the
extracted workflows, aiding engineers in understanding and refining processes.

An investigation into the reverse engineering capabilities of LLMs, specifically related to (ParaPy) KBE ap-
plication code, determined their capacity to abstract meaningful natural language representations of KBE
source code. However, they lacked the capability to extract the processing flow directly from the source code.
Building upon the insights, a high-level design of the REProcess tool was conceptualized consisting of three
core components:

• Core Reverse Engineering Method: This method reverse engineers individual workflows of the analyzed
KBE application. It consists of a sequence of dynamic precedents analysis, graph transformation, and
LLM-based source code abstraction.

• Model Composer: This component performs a high-level analysis to determine the set of workflows that
should be reverse engineered. It integrates the separate outputs into a comprehensive process model
and incorporates previously existing SysML model data where applicable.

• XMI Writer: Implements functionality to transform the internal representation of the process model
into the SysML format and output it as an XMI file. This allows users to inspect and interact with the
model in platforms like CATIA Magic Systems of Systems Architect.

These different components underscore the complexity of implementing a fully functional MDKBE system,
requiring expertise in KBE systems, software engineering, model-based systems engineering, graph theory,
generative AI, and cognitive science for usability testing and refinement.

9.2.2. REPROCESS PROTOTYPE IMPLEMENTATION
The REProcess tool effectively implemented the core reverse engineering method. It performs the following
four core functionalities:

• Dynamic precedents analysis: Extracts dependency trees from KBE applications, using the get_precedents_tree
method built into the ParaPy KBE system.

• Graph Transformation: Highly complex, heuristical algorithm that converts raw extracted precedents
tree data into a structure representing engineering workflows captured in the process model.

• LLM-Based Abstraction: Applies generative AI techniques to summarize individual steps from the
reverse engineering workflows and generate natural language text descriptions.

• Visualization method: Generate process diagrams to aid user interpretation and validation.
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9.3. LIMITATIONS & OPEN ISSUES
1. Proper scientific evaluation and testing of the tool was identified as one the major remaining challenges.

The concept of cognitive effectiveness was identified as a way to operationalize the tool’s performance.
However, applying this concept in an evidence-based validation and/or iteration approach was found
be impossible due to practical reasons. The setup of such a user experiment requires a huge amount of
work. First, a test has to be devised that enables quantifying the added value of the REProcess tool. This
test should measure the improvement in a user’s program comprehension, as well as the response time
in order to evaluate the cognitive effectiveness of the diagrams. Naturally, this also requires a control
group, performing the same test without access to the diagrams generated by tool. Creating such a test
is already a big task. Then, a second challenge is to actually find a statistically significant amount of
willing and motivated test participants. The combination of these practical factors prevented a proper,
user-based validation of the current prototype.

2. This project was marked by a lack of training data and rigorous performance/quality metrics. However,
despite these challenges, a functional and decently performing tool was developed capable of providing
added value in the engineering process. This is a crucial conclusion because it goes against one of the
fundamental arguments of data scientists and AI experts to disregard new project ideas and product
concepts. Typically, they consider the lack of available training data and performance/quality metrics
as a deal-breaker. However, this project shows that the recent improvements in foundational model
capabilities are beginning to debunk this traditional notion.

Furthermore, this opens up the possibility for a new development route. If a decent Minimum Viable
Product can be created with an existing model, the resulting AI product can subsequently double up
as a data collection method by collecting input from users. For example, like the thumbs up/down
system from ChatGPT. With these approaches, a “proper” dataset can be created to train or fine-tune
a dedicated LLM. This approach turns the traditional Machine Learning workflow on its head, and
therefore represents a paradigm shift for many developers of AI systems.

3. Testing challenges: A big challenge related to the testing of the LLM performance in the REProcess
prototype is the need for “real-life” examples. These are required to properly assess the interpretative
capability of the LLM. Simplified test cases, often used to test other aspects of KBE systems, are not
sufficient because a meaningful context is very important for an LLM to be able to properly interpret
the source code. When the source code contains an equation that can be recognized and identified
by the LLM, this provides valuable information about the purpose of that piece of source code. For
example, the source code of an Attribute called "re" might contain the equation to calculate the Reynolds
number. Based on the parameter name alone the LLM might not have recognized that this attribute
represents the Reynolds number. However, the equation(s) in the source code definition of this attribute
provide this additional information, based on which the LLM can identify this. In doing so, the LLM
is then also able to infer that this application has something to do with flows, making it likely that it
models some type of aircraft or ship. Because an LLM uses this kind of logical inference to make sense
of what it has to do and generate better responses, it is necessary to test the prototype with “real-life”
applications of which the source code makes actual sense. In contrast, the typical testing approach for
showcasing and/or testing certain features of KBE applications would be to use use extremely basic KBE
applications that are written as succinctly as possible to only include the particular feature of interest.
Unfortunately, based on the reasoning above, testing with such basic examples is deemed to lead to
unrepresentative results regarding the LLM-based abstraction part of the prototype. To assess this aspect
properly, well-written “real-life” KBE applications need to be used. This poses a challenge because only
a very limited number of such applications is available for this research.

Moreover, assessing the quality of the output is more difficult as well. For one, this is because no hard
criteria such as metrics can be used. The quality of the generated descriptions has to be gauged manually
with a judgment call. Consequently, an effort by the researcher to properly understand the analyzed
application has to be made first before the output generated by the prototype tool can be properly
assessed.

4. A mismatch between the SysML modeling paradigm, and the dynamic behavior of KBE applications:
The flexibility provided by the dynamic behavior of KBE applications is a strength from a user/developer
perspective, but it also introduces a big challenge for modeling/reverse engineering. It means that a
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particular behavior observed during execution of the KBE app can’t be generalized with 100% certainty.
This is known to be an inherent challenge of reverse engineering programs that are written using
a declarative programming style, but it becomes extra apparent when trying to generate a process
SysML model of the reverse engineered application. The reason is that generalization is one of the
core mechanics on which the SysML modeling language is built. For example, creating an action node
and naming it “ : initialize KBE application” means the node will specify the generalized behavior of
initializing the app. This means when an action node with the same name (“ : initialize KBE application”)
is created in a second, unrelated activity diagram of the same overarching model, it is automatically
correlated and linked to the similarly-named node from the first activity diagram. As a result, all
associated metadata like output data pins and underlying behavior is added to the node of the second
diagram. Unfortunately, this modeling behavior is not desired in this situation because the goal is
actually to define a different, unrelated scenario. This example illustrates the fundamental mismatch
when using activity diagrams to model specific scenario’s. Activity diagrams are meant to specify the
generalized behavior of a system which is, by definition, not context-specific. On the other hand, the
reverse engineering workflows are in fact instances of the system behavior, which could be highly
context-specific. Here, the word “could” is key because in practice the observed behavior is very often
not context-specific. This makes it very appealing to simply generalize single, reverse engineering
workflows since it works for most cases. However, when it does not, the fundamental mismatch of using
SysML activity diagrams to model context-specific behavior suddenly becomes troublesome.

There are some possible workarounds to mitigate this fundamental mismatch such as to always include
context-specific pointers when formulating behavior names. For example, use “ : Initialize KBE app
for the geometry generation use case” instead of just “ : Initialize KBE app”. In addition, control flow
elements could be used added to the diagrams to indicate multiple context-specific variations exist.
Such solutions have pro’s and cons of course. The main benefit is, of course, that the mismatch issue is
resolved, which means SysML can still be used to correctly represent the process model. However, the
diagrams will become more difficult to read (i.e. lower cognitive effectiveness) as a result of adding more
text and/or (types of) model elements to the diagrams.

A concrete issue related to this discussion is the question whether the desired to merge two nodes
where the exact same behavior occurs, but with different input and output values. A good example
would be the generation of root_airfoil and tip_airfoil parts in the Primiplane app (e.g. test
case R-2.1). Here, both of these parts are created twice: once for the right_wing part and another
time for vert_tail. Here, is it desirable to represent each airfoil generation step once in the diagram,
meaning the right_wing and vert_tail both refer to the same node for these steps, or twice (as is
done now)? This question is left as an open research question, to be addressed in follow-up research.
The overarching research topic to which this question belongs the definition of a detailed ontology for
the reverse engineered process model. This would look similar to the previous work from Fernandes
[12], but now focused specifically on the process model.

9.4. RECOMMENDATIONS
The following list summarizes the most important recommendations based on the information, results and
experiences from this project:

9.4.1. RECOMMENDATIONS FOR IMPROVING THE REPROCESS PROTOTYPE
1. Developing a preliminary version of the model composer class would provide a lot of added value and

would be quite easy to implement. The set of main application functions could simply be defined as
all top-level slots from the main KBE application file. Then implementing a loop to execute the core
reverse engineering method for each slot is very straightforward. Finally, the compose() function from the
NetworkX library1 would be a great and easy way to implement the model integration step. The only real
issue with using this function is that it overwrites metadata when merging two graphs. Fortunately, this
could be addressed by a simple function that combines the metadata from both graphs in dictionaries,
and assigns these dictionaries as metadata to each respective model element instead. Implementation

1NetworkX documentation: https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.
algorithms.operators.binary.compose.html#compose

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.operators.binary.compose.html#compose
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.operators.binary.compose.html#compose
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of these additional features would already allow the REProcess prototype to generate a comprehensive
process model, instead of individual workflow diagrams.

2. Computational performance improvements: The following list of design improvement were identified
that could be implemented in order to improve the computational performance of the REProcess system.

(a) LLM batch processing

(b) First compose the model (when generating an integrated process model) and identify all duplicate
nodes. Subsequently, only run LLM for the set of unique nodes included in the entire composed
graph.

(c) Change management system + (vector) database to store and re-use previous LLM runs.

(d) Use smaller LLM, but finetune this model to achieve comparable quality. Additional prompt
iteration could also be performed to improve performance of smaller model.

Note that these aspects would improve the computational performance of the LLM-based abstraction
method. However, the get_precedents_tree() method was actually found to be the biggest bottle-
neck in terms of computational performance. This will have to be addressed by Parapy itself, since it
concerns an API method which is part of the KBE system itself.

3. Few-shot prompting: this is a technique where several context-specific questions-answer pairs are
included in the prompt in order to improve LLM performance. This technique is particularly useful
in scenarios with limited labeled data. For the REProcess tool, it is considered to have huge potential
in two aspects. Firstly, it can be used as a means to instruct the LLM how to deal with Parapy-specific
syntax elements, such as kbeutils functionalities or DynamicType instances. Thereby, it presents a
simpler alternative to generating a large dataset and finetuning the model. Furthermore, by providing
node type-specific examples of answers (i.e. for inputs, attributes, type 1 parts, type 2, etc.) few shot
prompting can be used as way to achieve a similar result as with the keyworded response start feature.
Namely, the LLM can be steered to use a particular style of answer formulation.

Note: the LangChain library2 was identified as an interesing option for the implementation of more
intelligent prompt engineering methods.

4. Variable mapping cardinality: Mapping cardinality refers to the mapping between nodes in the trans-
formed precedents graph, and action nodes in the reverse engineered process model. A strict one-to-one
mapping was implemented for the current REProcess prototype. However, implementing additional
mapping cardinalities is a very interesting options. For example, a many-to-one mapping would work
well in case of the left_wing and right_wing from Primplane. For these, it would make sense to represent
them together as “generate wing geometry” at a higher level. Conversely, a one-to-many mapping
would also be interesting to address the case where attribute slot definitions are super extensive. For
example, the Asystor app features a single attribute of more than 1000 lines of code(!). In the current
implementation, the LLM is instructed to summarize this entire definition in just 10 words. Naturally,
this means the behavior must be massively oversimplified so it is captured well in the process model.
These examples indicate the benefits of implementing a variable mapping cardinality.

In terms of implementation, several options were identified which mostly vary in how much intelli-
gence/responsibility is asked from the LLM versus using some heuristics to more strictly guide the
process. On one end of the spectrum is the LLM-centric implementation. This would use a more open
user instruction, such as “Described the functionality performed by this class method using a bulleted
list”. This leaves it up to the LLM to decide how many bullet points (i.e. action nodes) it uses. On
the other hand, the strictly guided option would implement some heuristics to look for breakpoints
or, oppositely, merge cues and format the prompts based on these. For example, a for-loop defined
using more than 10 lines of code could be defined as a pattern that should be attributed a dedicated
action node. Then a custom prompt would be generated where the LLM is instructed to focus solely on
describing this particular for-loop. An example of a mid-range option would be to count the number of
lines of code, and introduce slight prompt modifications. For example:

2https://www.langchain.com/

https://www.langchain.com/
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• if slot source code is less than 50 lines of code -> prompt: “generate a single description of the
provided source code”

• if slot source code is 51-200 lines of code -> prompt: “generate a description of the provided source
code, formatted as a bulleted list. Use a maximum of 3 bullet points”.

• if slot source code is 201-500 lines of code -> prompt: “generate a description of the provided
source code, formatted as a bulleted list. Use a maximum of 5 bullet points”.

• etc.

5. Implement additional output formats: An attempt was made to generate outputs in other graph data
formats than DOT, namely GML and GraphML. This would enable the opening the graphs in other
interactive graph tools such as yED3. Unfortunately the associated NetworkX functions (write_gml and
write_graphml respectively) were found to be incapable of dealing with the complexity of the graph
data. Specifically, the complex data types attached as metadata, and the usage of any other punctuation
mark than underscores in strings. There still is great potential in implementing this export functionality,
because it allows using advanced graph manipulation tools like yED. However, it will require a significant
effort to implement the necessary data transformation function that converts all important metadata in
the activity graph to formats that can be handled by the output writing functions from NetworkX without
losing important aspects. For example, simply converting a dictionary to its string representation is not
possible when only underscores and alphanumerical characters are allowed.

6. Partial visualization method improvements:

(a) A nice feature would be to generate two or more diagrams based on the provided user input instead
of just one. This could be achieved by prompting the user to specify the classes to be included in the
top-level diagram. Through the process of elimination this implicitly defines the lower-level classes
as well. Therefore, their diagram(s) could also be generated. Determining how many diagrams
are required could be done by checking whether the removal of all top-level nodes leads to one
connected sub-graph, or multiple disconnected sub-graphs. In case of the latter, each disconnected
sub-graph should be represented in a separate graph.

(b) A simpler alternative to the current prompt, where users are asked to specify the individual classes
to be included in the partial visualization, is to ask for a product tree level. Here, providing a value
of 0 would mean only the nodes from the root object are included; a value of “1” would also include
all nodes nested within each parts of the root object; etc. This is a more holistic approach to provide
this input and could be easier and more user-friendly.

(c) Finally, the partial visualizations could also be generated based on some heuristic algorithm. For
instance, by looking at the amount of nodes in a diagram. An optimization could be implemented
that breaks down the full activity graph into a set of smaller sub-graphs such that each diagram
is closest to a target amount of nodes (e.g. 15-20 nodes per diagram). Thereby, each diagram
would present roughly the same amount of information to the user. In order for this to truly
apply, however, it would be advisable to first implement the variable mapping cardinality. Without
this feature, the number of nodes could be a poor representation for the amount of information
represented in a diagram.

7. Implement the current feature to generate an activity diagram within the current Parapy GUI. Could be
introduced relatively easy as an extra option when right-clicking a particular part (in the viewport), or
attribute (in the property window). The resulting SVG could be displayed in a pop-up window.

9.4.2. OTHER FOLLOW-UP RESEARCH OPPORTUNITIES
In addition to implementing improvements of the tool, several other interesting areas for future work are also
identified:

1. Dissemination of the REProcess prototype: due to the established benefits of the current REProcess
implementation, it can already support the design of KBE applications in its current form. This highlights
the potential for making the tool widely accessibly and actively disseminating it.

3https://www.yworks.com/yed-live/

https://www.yworks.com/yed-live/
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2. Start collecting training data for training/fine-tuning custom LLMs on ParaPy A labelled dataset is
required, consisting of examplary question-answer pairs. To start, this would probably be high-quality
natural language descriptions of ParaPy source code snippets (e.g. individual slots, or entire class
definitions). A more advanced option would be to capture the knowledge model data insstead of the
source code. Note that these custom LLMs can be trained for both model-to-code and code-to-model
applications, which could be applied respectively for step 2 and step 4 of the proposed MDKBE approach.

3. Dedicate a follow-up research project to defining an exact ontology for the reverse engineered process
model, in order to address the mismatch between SysML and the execution behavior KBE applications.

4. The Aerospace Engineering faculty should implement a structural solution to support novel AI-based
research. Current facilities are lacking, and AI education and training of students and staff is required to
stay at the forefront of developing advanced design methodologies.

9.5. FINAL REFLECTIONS
This research highlights the transformative potential of LLM-based reverse engineering in aerospace en-
gineering. The REProcess tool provides a promising approach to capturing and structuring engineering
workflows, paving the way for improved knowledge management and process optimization. While challenges
remain—such as model accuracy, computational efficiency, and integration complexity—the findings of this
thesis suggest that AI-powered reverse engineering can significantly contribute to the future of automated
engineering analysis.

Future research should focus on refining the tool’s capabilities, exploring domain-specific LLM fine-tuning, and
conducting user studies to evaluate its effectiveness in real-world applications. Additionally, interdisciplinary
collaboration between AI researchers and aerospace engineers will be crucial to ensuring the successful
adoption of such tools within industry practices.

The development of the REProcess tool marks an important step towards AI-powered engineering, offering a
glimpse into a future where generative AI enhances the efficiency and effectiveness of complex, safety-critical
systems in aerospace and beyond.
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10
COMMUNICATION THESIS INTRODUCTION

10.1. COMMUNICATION CONTEXT
One of the main findings from the aerospace part of this thesis was the significant complexity associated with
developing GenAI-powered software systems for domain-specific applications like the envisioned MDKBE
approach. Knowledge and skills from a wide range of different domains is required. Continued development
of the MDKBE approach, for instance, requires expertise from domains including engineering, programming,
Knowledge Based Engineering (KBE), (generative) AI, modeling languages, and user interface design, among
others. In order to cover this broad range of required expertise and tackle this comprehensive challenge, it was
concluded that further development of the GenAI-powered software systems requires a closely collaborating,
interdisciplinary team.

This demand for interdisciplinary collaboration extends far beyond the development of software tools for
the MDKBE approach. It is, in fact, a defining characteristic of projects that seek to apply GenAI solutions to
domain-specific problems. When GenAI is employed to (partially) automate work practices within the context
of engineering complex and critical systems1, it is particularly important that this collaboration goes well
because the effectiveness of the collaboration is a key determinant for the quality of the developed solutions,
as well as the required time and cost. However, these kinds of interdisciplinary collaborations are known to
face a multitude of challenges [50].

10.1.1. CHALLENGES IN INTERDISCIPLINARY GENAI PROJECTS
Effective interdisciplinary collaboration in GenAI projects plays a pivotal role in determining project outcomes.
Yet, achieving such collaboration is inherently difficult [51]. For example, differences in terminology and
disciplinary jargon often impede communication, while conflicting objectives and priorities can undermine
alignment. Additionally, trust issues between team members and unequal power dynamics further complicate
the collaborative process [50, 52]. Good communication between the different experts involved is essential to
overcome these inherent challenges.

In addition to general interdisciplinary collaboration challenges, these GenAI projects also face an array of
challenges related specifically to the technology itself. Some, like the black-box nature of the technology and
the potential for hallucination, were already discussing in chapter 2. Yang et al. [53] describe two additional key
factors that make Human-AI interaction uniquely difficult to design together with end users: the uncertainty
surrounding AI’s capabilities, and the complexity of its output. These factors play a major role in the perception
of GenAI technology. Lupetti and Murray-Rust [54] found that a lack of understanding can even lead to
enchantment and lead to a magical perception of GenAI technology. Other, more high-level challenges also
impact GenAI projects. An extensive overview of is provided in the literature review by Dwivedi et al. [55].
Some indicative examples they describe are presented below, providing an indication about the complexity
faced by the interdisciplinary teams working on GenAI projects.

1Defined in chapter 2

96



10.2. PRIOR RESEARCH 97

• Data issues Data-related issues are among the most critical barriers to effective AI implementation. The
lack of sufficient, high-quality data is one of the major reasons why projects with great ideas have to be
abandoned. A common cause for this is that relevant data is frequently dispersed across many different
teams, departments and organizations meaning it is too difficult to centralize and standardize the data.

• Organizational and managerial challenges AI integration is often hampered by internal organizational
issues. A lack of in-house AI expertise, and fear under employees to be automated are common prob-
lems. Furthermore, organizations frequently lack clear strategies for implementing AI or fail to align AI
solutions with their operational needs.

• Legal, privacy and security challenges The legal landscape surrounding AI remains underdeveloped,
presenting a major hurdle. Ambiguities in accountability and governance create uncertainties for
organizations deploying AI technologies. Furthermore, concerns over privacy, security, and compliance
with regulations hinder progress.

10.1.2. SCOPE OF THIS THESIS PROJECT
The wide array of challenges faced by interdisciplinary teams working on GenAI also provides some insight to
the many different types of stakeholders that play a role in these projects, such as data scientists, AI developers,
managers, (engineering) domain experts, IT, legal experts, privacy and security officers, etc. Due to practical
consideration (limited time and investigative capacity) this thesis will focus on the two most central and
essential stakeholders in these collaborative GenAI projects: the domain experts and AI experts.

1. Domain experts who work on, or interact with complex, critical systems (e.g. aerospace, nuclear, medical
technology, etc.). In addition, these experts are involved in AI-driven projects that aim to improve current
work practices in terms of efficiency, quality, speed, safety, etc.

2. AI experts working on novel tools and methods in close collaboration with domain experts from group 1.
Here, the term AI expert is used to refer to a variety of AI-specific professional roles. Depending on the
context (academic or business domain), they might call themselves AI researchers, AI developers, AI
engineers, or data scientists, for example.

Note: When referring to these experts the term AI is used instead of GenAI because they typically have a
broader background in AI, machine learning and/or data science, rather than being limited to GenAI
specifically. Thus, even though the scope of this research focuses specifically on GenAI projects, these experts
are referred to as AI experts to reflect their broader domain knowledge.

In addition to forming the core of the collaborative GenAI projects, another key part of the rationale to focus
on these two types of stakeholders was that they have the most overlap with the knowledge and expertise
gained during the aerospace part of this thesis. Essentially, both of these roles were fulfilled during the first
part of this combined thesis. By focusing on the collaboration and communication between these two groups,
this previous experience is put to optimal use.

10.2. PRIOR RESEARCH
A limited amount of prior research focused specifically in the interdisciplinary collaboration in AI projects
between domain experts and AI experts. The most notable contribution is the work by Piorkowski et al. [56].
Their study investigated how AI developers navigate communication challenges when collaborating with
multidisciplinary teams. Using the lens of shared mental models, they identified three key themes: knowledge
gaps, trust building, and expectation management. The authors reported that mismatched expertise across
roles often leads to significant communication barriers. For example, domain experts frequently struggle
to understand complex AI concepts such as model algorithms and evaluation metrics, while AI developers
find it challenging to translate these into actionable insights relevant to the domain experts’ workflows. To
address these gaps, AI developers in the study employed strategies such as informal education sessions,
iterative clarification through examples, and artifact-based communication tools like slide decks and shared
documentation. These efforts aimed to align team members’ mental models, mitigate misunderstandings,
and foster effective collaboration.

Unfortunately, as noted by Piorkowski et al. [56] themselves, their study also had a critical limitation: it focused
exclusively on the perspective of AI developers, neglecting the viewpoint of domain experts. Other qualitative
studies tend to follow a similar pattern. For example, Sadek et al. [57] performed four workshops involving 17
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AI researchers to develop Responsible AI design guidelines, but no domain experts were involved. Furthermore,
previous studies that do involve domain experts focus on other domains or other, “non-generative” types of AI.
For example, the training neural networks to detect anomalies in medical images, and the interaction between
doctors and this technology, is well-studied [58].

This leaves a significant gap in understanding the bi-directional dynamics of these collaborations. Addressing
this gap and understanding interdisciplinary GenAI projects from the side of engineering domain experts is
essential to better support interdisciplinary teams in their collaborative effort to develop novel GenAI-powered
engineering systems.

10.3. PROJECT OUTLINE
The high-level objective of this thesis project is to contribute to the development of GenAI-powered engineering
systems by improving the interdisciplinary collaboration between AI experts and domain experts through the
design of a communication tool.

In order to develop a truly impactful solution first a deep understanding of the existing problem(s) must
be obtained. Given the gap in the understanding of the specific interactions and communication problems
between domain experts and AI experts, the initial focus of this thesis project was to perform an in-depth
investigation of the interdisciplinary collaboration between AI experts and domain experts from both of
their perspectives. This aligns well with the double diamond approach, which was therefore adopted [59]. A
visualization of the double diamond approach is presented in Figure 10.1. The blue boxes below the figure
represent the main findings. The green boxes describe the main activities that were carried out during these
phases.

Figure 10.1: High-level project approach mapped to the double diamond. Figure adapted from [59].
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10.3.1. RESEARCH QUESTIONS
The first two phases of the double diamond (discover and define) are aimed at understanding the problem.
For this thesis project, this corresponded to answering the following research question:

RQ-1: IDENTIFY KEY CHALLENGES

What are the key collaboration and communication challenges between AI experts and domain experts
in interdisciplinary AI projects, and how do these relate to each other?

A series of structured interviews with domain experts and AI experts was conducted to find an answer to
this research question. This type of qualitative research is well-suited to obtain the deep insights about the
problem that are required to develop a truly impactful solution. The choice for a structured interview approach
was motivated by the need to compare the interviews conducted with a variety of participants from multiple
organizations and backgrounds. Moreover, the structured approach facilitated identification of the most
critical problems so that these could be prioritized during the subsequent design and implementation of the
tool.

In addition to determining the key collaboration and communication challenges, the structured interviews
were also used to determine a general solution direction. While preparing for the interviews, a list of solution
ideas was collected on the side. Subsequently, these ideas were presented and discussed with participants
at the end of the interviews. In this way, the structured interviews served a dual purpose by also providing
an answer to the second main research question which is presented below. Strictly speaking, this represents
a minor deviation from the double diamond approach as this normally postpones ideation and selection
of solutions to the second phase. However, in this specific case it was possible due to the knowledge and
experience gained during the aerospace thesis project. By also incorporating this second topic into interviews,
the opportunity to collect input from AI experts and domain experts was used to the fullest extent.

RQ-2: DETERMINE SOLUTION DIRECTION

Which communication tool idea has the most potential to facilitate the collaboration between AI experts
and domain experts?

PHASE 2:
In the second phase of the double-diamond approach (develop and deliver), the focus shifted from under-
standing the problem to developing the solution - in this case designing and implementing the selected
communication tool idea. This corresponds to the following research question:

RQ-3: COMMUNICATION TOOL DESIGN

How to implement the selected communication tool concept such that it provides real added value?

Determining how to implement the tool such that it has real added value, will require determining the best
application as well as exploring which similar tools already exist. Hence, research question 3 invoked two
additional related questions (RQ-4 & RQ-5) which are presented below. Two main types of research activities
were conducted to answers these. The first was another literature review, aimed at finding communication
tools similar to the selected solution idea. The second type of activity constituted an iterative design process
where the input from interviews, literature, and personal experience were used to develop iterations and
presented these to professionals in order to collect additional input and feedback. The last of these major
iterations was used to perform the concept validation. Through this iterative process, an answer to RQ-3 was
obtained too.
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RQ-4: DETERMINE DESIGN FOCUS

Which specific use case should the morphological chart be geared towards?

RQ-5: IDENTIFY SIMILAR EXISTING TOOLS

To what extent do similar tools exist, both in scientific and non-scientific contexts?

10.3.2. REPORT STRUCTURE
Before any interviews could be conducted, first the structured interview protocol had to be developed. To this
end, a literature study was performed to identify common collaboration challenges and build a conceptual
framework. These findings are presented in chapter 11. Subsequently, the results and analysis of the conducted
interviews are presented in chapter 12. A solution direction was determined based on the interview results.
This solution direction is presented in chapter 13, along with some additional follow-up questions that were
prompted by the interview results and had to be answered next.

Phase two of the double diamond approach (develop and deliver) consisted mainly of two types of design-
based research activities. The first was a second literature review, now aimed at finding communication tools
similar to the solution idea that was selected based on the interview results. These findings are presented in
chapter 14. The second type of activity was a series design iterations. Here the knowledge and experience
from the previous aerospace thesis was combined with insights from the interviews and literature to iteratively
develop a series of prototypes. More details about the approach, the main iteration cycles and the insights
obtained from these activities is provided in chapter 15. Additionally, the final step of this approach, namely
the concept validation sessions, are also discussed in this chapter. The finalized design of the communication
tool is presented in chapter 16. Lastly, chapter 17 wraps up the science communication part of this combined
thesis report with the conclusions, limitations and recommendations.

A separate, third part of this report presents a number of high-level findings and conclusions that resulted
from the integration of the both parts of this combined thesis project. These are presented in chapter 18.
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CONCEPTUAL FRAMEWORK AND INTERVIEW

PROTOCOL

This chapter presents the findings from the problem exploration phase. The end goal of the activities from
this phase was to create the protocol used to conduct the interviews with AI experts and domain experts.
Three main research activities were conducted to achieve this, namely 1) reviewing existing literature about
related research; 2) composing a conceptual framework by identifying and selecting suitable collaboration and
communication theories/models; and 3) conceptualizing a range of communication tool ideas that could solve
identified challenges and could be further developed during the second phase of the project. These activities
are described in section 11.1, section 11.2 and section 11.3 respectively. Finally, the interview protocol itself is
presented in section 11.4.

Note: a different research direction explored initially during this work about the role of visualization in making
software workflow visualization more comprehensible, which identified a gap research gap but could not be
explored due to practical limitations. Ssee Appendix D for details about this study.

11.1. EXPLORATIVE LITERATURE REVIEW
The literature review served a dual purpose: first, to identify studies that employed similar, qualitative
methods, and second, to find state-of-the-art insights into collaboration challenges and barriers in interdisci-
plinary AI projects. The former was essential for informing the methodology and theoretical framework used
in this research, while the latter provided valuable insights into the challenges faced by interdisciplinary teams
working on AI projects.

11.1.1. PRIOR RESEARCH USING A SIMILAR APPROACH
To identify relevant studies, a series of targeted queries were performed in Scopus, focusing on interdisciplinary
collaboration, communication, and mental models in the context of AI. An example of one of these queries is
provided below:

TITLE-ABS-KEY ( "mental model" AND ( ( inter-disciplinary OR multi-disciplinary OR trans-
disciplinary ) AND ( collaboration OR communication ) ) AND ( survey OR interview ) )

KEY FINDINGS: PIORKOWSKI ET AL. (2021)
A particularly influential study was the work by Piorkowski et al. [56], which explored how AI developers
address communication challenges in multidisciplinary teams. This study was deemed a "must-read" for its
detailed insights into the practical challenges and solutions related to communication in AI projects.

The study by Piorkowski et al. [56] examined the communication challenges faced by AI teams and their
stakeholders within the same organization but across different departments. Their research utilized the
concept of Shared Mental Models and five realization principles from Scheutz et al. [60]. These are discussed
later, in section 11.2. The study identified several key communication gaps in interdisciplinary AI teams:
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1. Knowledge gaps across roles: These were addressed through bidirectional education and workshops
designed to align domain-specific knowledge with AI concepts.

2. Establishing mutual trust: Regular contact and educational efforts were critical for building trust and
fostering understanding.

3. Expectation management: Differences in mental models, such as mismatched expectations about AI
performance, were mitigated through education and clear communication of goals and limitations.

The study also emphasized the importance of education as a key determinant of project success, highlighting
the role of audience-adapted communication. Best practices included allocating longer planning periods,
building shared documentation as both a conversational and knowledge management tool, and using iterative
pilot projects to build trust and confidence among stakeholders. Design suggestions for improving collabora-
tion tools included customizable documentation, better integration of data science and communication tools,
and automating project updates through AI-powered tools.

11.1.2. KNOWN COLLABORATION AND COMMUNICATION CHALLENGES
The identification of previous work about collaboration and communication challenges in interdisciplinary
(gen)AI project had a very practical purpose, namely to obtain a list of potentially relevant issues that could
serve as a basis for discussion during the subsequent interviews. The main search query that was used is
outlined below. Findings were limited to 2015 or later, only journals & books, and 5+ citations. This yielded 134
results. Subsequently, relevant articles were selected based on title and abstract.

TITLE-ABS-KEY( ( (multidisciplinary OR interdisciplinary OR transdisciplinary OR “cross-functional”)
AND (collaboration OR team OR communication) AND (barriers OR challenges OR enablers OR
framework OR factors OR criteria) ) AND ("generative ai" OR "artificial intelligence" OR ai) AND (
(engineering OR development) AND (method OR tool OR approach OR framework) ) )

KEY FINDINGS: DWIVEDI ET AL. (2021)
The most important finding from the literature search aimed at identifying challenges was the work by Dwivedi
et al. [55]. Based on an extensive literature review and input from experts, they collected a comprehensive
overview of challenges and categorized these in 7 different categories. Their results are presented in Table 11.1
below. In the right-hand column, the challenges that were incorporated into the interview protocol are
highlighted in bold. These were selected based on relevance for the specific context and scope of this thesis.
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Table 11.1: AI Challenges from the literature [55]

AI Challenge Details
Social challenges Patient/Clinician education; Cultural barriers; Human rights;

Country-specific disease profiles; Unrealistic expectations towards
AI technology; Country-specific medical practices and insufficient
knowledge on values and advantages of AI technologies.

Economic challenges Affordability of required computational expenses; High treatment
costs for patients; High cost and reduced profits for hospitals; Ethical
challenges including lack of trust towards AI-based decision-making
and unethical use of shared data.

Data challenges Lack of data to validate benefits of AI solutions; Quantity and qual-
ity of input data; Transparency and reproducibility; Dimensionality
obstacles; Insufficient size of available data pool; Lack of data inte-
gration and continuity; Lack of standards for data collection; Format
and quality issues.

Organizational and man-
agerial challenges

Realism of AI; Better understanding of health system needs; Organiza-
tional resistance to data sharing; Lack of in-house AI talent; Threat
of workforce replacement; Lack of strategy for AI development; Lack
of interdisciplinary talent.

Technological and technol-
ogy implementation chal-
lenges

Non-Boolean nature of diagnostic tasks; Adversarial attacks; Lack of
transparency and interpretability; Design of AI systems; AI safety;
Specialization and expertise; Big data; Architecture issues and com-
plexities in interpreting unstructured data.

Political, legal and policy
challenges

Copyright issues; Governance of autonomous intelligence systems;
Responsibility and accountability; Privacy/safety; National security
threats from foreign-owned companies collecting sensitive data; Lack
of rules of accountability in AI use; Costly human resources still legally
required to account for AI decisions; Lack of official industry standards
for AI use and performance evaluation.

Ethical challenges Responsibility and explanation of AI decisions; Processes relating
to AI and human behavior; Compatibility of machine versus human
value judgments; Moral dilemmas and AI discrimination.

11.2. DEFINING THE CONCEPTUAL FRAMEWORK
Building the conceptual framework was an iterative process. A list of 48 communication theories and models
obtained from the Communication Sciences website from UT Twente [61] was used as a starting point. This list
was subsequently used as input to formulate a series of prompts for a SciSpace ChatGPT conversation used to
narrow down the list to a selection of theories most suited for the context of this research. To enable SciSpace
ChatGPT to make this assessment, an elaborate description of this research was included. Subsequently, the AI
model was asked to suggest a list of additional theories that could be potentially useful to create the conceptual
framework. Based on these initial filtering and exploration steps, a short-list of 15 communication theories
and models was obtained. The complete prompts and corresponding results can be found in Appendix E.

The next steps were performed without AI assistance and consisted of verifying the findings based on their
original sources and assessing the quality and usefulness of the theories. Selecting the specific theories and
models to include in the conceptual framework was the real iterative part of the framework development.
This part was performed in conjunction with the development of the interview protocol itself. The high-
level approach that was followed was to review a current version of the interview protocol and determine its
strengths and weaknesses. Subsequently, specific theories and models were selected that could be used to
address identified weaknesses. A categorized overview of all theories and models that were considered at
some point during this process is provided below. Given the overlap between these models, not all models
were included in the final selection to prevent overload and redundancy. After several iterations between
the interview protocol and conceptual framework, a final set of four were selected: Mental Model theory, the
Collaborative Continuum, Relational Coordination theory, and the PMI Project Lifecycle Model. These are
discussed in more detail in the remainder of this subsection.
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• Aligning teams

– Theory of Interactive Team Cognition [62]

– Mental Model theory, including Team Mental Models [63] and Shared Mental Models [60].

– Common Ground Theory: [62]

– Expectancy Value Theory: [64]

– Uncertainty Reduction Theory: [65]

• Communication methods

– Media Richness Theory: [66]

– Time-Space Matrix [67]

– Computer Mediated Communication [68]

– Contextual Design [69]

• Collaboration maturity

– Collaborative continuum [70]

– Relational Coordination Theory [71].

• Technology adoption

– Diffusion of Innovations Theory [72]

– Technology acceptance model [73]

– Consumer Acceptance of Technology model [74]

• Characterizing project phases

– V-model [11]

– DevOps [75]

– PMI Project Lifecycle Model [76]

RELATIONAL COORDINATION THEORY

Relational Coordination Theory, developed by Gittell and Ali [71], emphasizes the importance of high-quality
communication and strong interpersonal relationships in coordinating work across teams. This theory focuses
on how relationships influence performance in tasks that are complex and interdependent, highlighting the
critical role of communication in such contexts.

This model is particularly useful for distinguishing between intensive and sporadic collaboration. Intensive
collaborations are characterized by frequent, high-quality communication, shared goals, and mutual respect,
while sporadic collaborations often involve more transactional and infrequent interactions. By examining
these factors, the theory provides valuable insights into how teams interact and coordinate their efforts.

The decision to incorporate this model into the conceptual framework was based on several factors. As
noted on its website1: “Relational coordination is particularly important for achieving these outcomes when
work is highly interdependent, uncertain, and time constrained.” This makes it highly applicable to the
interdisciplinary collaboration between domain experts and AI experts under investigation in this research.
Secondly, it is a validated model with a proven track record of analyzing coordination in complex projects. A
standardized and validated survey of 7 questions is available which provides solid input for the interview
protocol [77]. The use of categorical questions in this survey made this theory even more fitting, because this
facilitates results comparison and prioritization of the most critical problems. Furthermore, in addition to
its emphasis on communication, this theory also addresses other key collaboration aspects, namely shared
knowledge, shared goals and mutual respect. By covering several areas, the inclusion of this theory simplified
the conceptual framework by reducing the total number of theories and models required.

1https://heller.brandeis.edu/relational-coordination/about-rc/index.html

https://heller.brandeis.edu/relational-coordination/about-rc/index.html
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COLLABORATIVE CONTINUUM

The Collaborative Continuum Model conceptualizes collaboration as a spectrum, ranging from Immur-
ing to collaboration and integration, with each stage reflecting varying levels of interaction, formality, and
interdependence[78]. The various levels and their definitions are presented in Figure 11.1. This figure was
obtained from the Teaglefoundation2

Figure 11.1: Collaboration Continuum model.

This model was particularly useful in this research for analyzing the varying levels of collaboration within
interdisciplinary GenAI projects. It helped differentiate between teams that engage in occasional information
sharing and those that work closely together to achieve shared goals, providing a structured framework to
examine team dynamics in these projects.

PMI PROJECT LIFECYCLE MODEL

The PMI Project Lifecycle Model defines five key phases that represent the standard progression of a project:
initiation, planning, execution, monitoring, and closing. This model provides a clear and structured framework
for managing projects, ensuring that each phase supports specific goals. In the initiation phase, project
objectives are defined, and feasibility is assessed. The planning phase focuses on developing detailed strategies,
timelines, and resource allocations. Execution involves carrying out the planned activities, while monitoring
ensures progress is tracked against established metrics. Finally, the closing phase formalizes the project’s
completion and reviews its outcomes [76].

This model was chosen as the basis for the interview protocol because of its simplicity and accessibility,
making it ideal for guiding participants in identifying the current phase of their project. Unlike more complex
models, such as the V-model, which includes up to nine detailed phases, the PMI framework avoids excessive
elaboration that overcomplicates data collection.

THEORY OF SHARED MENTAL MODELS

The theory of Shared Mental Model (SMM) highlights the critical role of aligned knowledge, goals, and plans in
facilitating effective collaboration and teamwork. The theory is operationalized through five core principles:
consistency, reactivity, proactivity, coordination, and knowledge stability [60].

• Consistency Consistency involves maintaining stable, synchronized team knowledge by resolving con-
flicts caused by differing perceptions or incomplete information. This is achieved through mechanisms
like conflict resolution and shared updates.

• Reactivity Reactivity is the ability to quickly detect and respond to unexpected changes in the environ-
ment or tasks. It ensures goals and strategies are adapted in real-time to maintain team effectiveness.

• Proactivity Proactivity focuses on anticipating issues and taking preemptive actions, such as identifying
bottlenecks or offering clarification and assistance. This helps mitigate disruptions before they escalate.

2https://www.teaglefoundation.org/Teagle/media/GlobalMediaLibrary/documents/resources/
CollaborationContinuum.pdf

https://www.teaglefoundation.org/Teagle/media/GlobalMediaLibrary/documents/resources/CollaborationContinuum.pdf
https://www.teaglefoundation.org/Teagle/media/GlobalMediaLibrary/documents/resources/CollaborationContinuum.pdf
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• Coordination Coordination ensures teamwork through shared goals, clear task assignments, and trans-
parent communication. It fosters open information sharing and cooperation to achieve collective
objectives.

• Knowledge Stability Knowledge stability refers to recognizing the staleness of information and adjusting
actions or communication accordingly. It ensures decisions are based on timely and reliable information.

11.3. COMMUNICATION TOOL IDEAS
Conducting the explorative literature research, developing the conceptual framework and iterating on the
interview protocol also provided inspiration for potential solutions. Initially, these ideas were stored in a list
that was kept on the side with the idea of revisiting them after the interviews had been conducted. In this
approach, the interview results could be used to ideate additional solutions and then select one to work out
in detail during the subsequent design phase. When the list started to form, however, this approach was
reconsidered because it was deemed very interesting to use the list during the interviews themselves to gather
participants’ input on the ideas. The list of ideas that was incorporated into the interview protocol is presented
below.

• Design a morphological chart for AI-powered tools/methods: A morphological chart could provide a
structured way to explore and combine different attributes of GenAI-powered tools and methods. This
visual framework allows teams to systematically generate, compare, and evaluate potential solutions
based on key variables relevant to GenAI development.

• Imagination sparker, e.g., curated list of inspirational projects or infomercial: This tool would aim
to stimulate creative thinking and innovation by showcasing a curated selection of successful GenAI
projects, use cases, or promotional content. By exposing stakeholders to these examples, the tool could
help inspire new ideas or highlight potential applications of GenAI in their domain.

• Design a community for sharing resources/best practices (platform + interaction mechanics, promo,
etc.): This concept involves creating a dedicated platform where stakeholders can share resources,
insights, and best practices related to GenAI development. Features such as discussion forums, collabo-
rative tools, and promotional strategies would encourage interaction and foster a culture of knowledge
exchange within the community.

• Knowledge extraction approach aimed at domain experts: This idea focuses on developing a tool or
method for efficiently extracting and formalizing the tacit knowledge of domain experts. Such a tool
would help bridge the gap between GenAI developers and domain experts by providing structured,
accessible information to guide the development process.

• Campaign to convince directors/managers to increase structural resource allocation to AI devel-
opment processes: This initiative would involve designing a targeted communication campaign to
demonstrate the importance and long-term benefits of investing in GenAI development. By presenting
compelling evidence and success stories, the campaign aims to persuade decision-makers to allocate
more resources and support to these processes.

11.4. STRUCTURED INTERVIEW PROTOCOL
The interview protocol was designed according to a funneling approach, moving from broad, exploratory
questions about the participant’s AI-related projects to more specific questions addressing collaboration and
communication challenges. This structure aligns with the research objective of identifying and analyzing key
barriers to effective multidisciplinary collaboration. Below is an overview of the main blocks of questions,
along with their purposes and connections to the conceptual framework.

1. Background: The purpose of these questions was to gather contextual information about the partici-
pant’s current AI-related projects, their role in those projects, and the stakeholders involved. This block
aimed to establish the engineering and organizational context, including the project phase and the
nature of their collaboration with domain experts or other AI researchers. These questions helped to
ground subsequent discussions in the participant’s specific experiences.

Link to conceptual framework: The five project phases from the Project Management Institute were used
as response categories to question the current phase of the participant’s main AI project.
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2. Collaboration questions: This block focused on the nature and quality of the participant’s collaboration
with domain experts (Group 1) or AI researchers/developers (Group 2). Questions explored the role
distribution, the level of collaboration, as well as rating the quality (scale of 1-10) and motivation of both
sides (intrinsic vs extrinsic). In addition, this block aimed to establish the most relevant collaboration
challenges/barriers, in terms impact and frequency, faced in practice within AI projects.

Link to conceptual framework: The Collaboration Continuum was used as a scale for participants to
characterize the current level of collaboration. This scale was also used to ask what collaboration level
they would be striving for in the future. In addition, the five PMI project phases were used to ask if there
was a particular project phase when this increased level of collaboration would be most beneficial.

The list of collaboration barriers composed during the literature study (subsection 11.1.2) was used
as the basis for the question about key collaboration challenges/barriers. The participants were asked
to use this list to compose a top-3 of the most relevant and obstructive collaboration barriers in their
project.

3. Alignment questions: These questions examined the extent to which the participant and their collabora-
tors shared goals and knowledge, and felt mutual respect. The goal of these questions was to determine
the alignment, or relational coordination, between project members with different disciplinary back-
grounds and to identify the most critical are to improve.

Link to conceptual framework: These questions were based on the Relation Coordination Survey,
but adapted to the specific context of this project. They were also reformulated as statements, to be
answered on a five-point Likert scale ranging from completely disagree to completely agree. Moreover,
the questions about shared knowledge and mutual respects were each broken down into two questions
to capture the perspective from each side separately. For example, the standard relational coordination
survey question about shared knowledge was: “How much do people in these roles know about your
role in [work process]?”. The corresponding statements incorporated in the interview protocol were: 1)
“The AI-specific knowledge of domain experts is sufficient to understand the project work”; and 2) “The
domain-specific knowledge of AI professionals is sufficient to understand the project work”.

4. Communication questions: This block explored the frequency, timeliness, accuracy, and problem-
solving orientation of communication between the participant and their collaborators. Additional
questions examined the use and reuse of standardized communication artifacts (e.g., documentation,
diagrams) to facilitate information exchange. Participants were also asked to reflect on communication
gaps and strategies for addressing miscommunication.

Link to conceptual framework: Heavily based on the Relational Coordination Theory’s.emphasis on
effective communication patterns, while also addressing practical tools (e.g., artifacts) that support
collaboration.

5. Solution ideas: This section sought to identify potential solutions to improve collaboration and com-
munication. Participants were asked to provide feedback on specific design ideas (e.g., morphological
charts, knowledge-sharing platforms) and to propose additional solutions. This block emphasized
practical, actionable insights for enhancing multidisciplinary teamwork and GenAI tool development.

Link to conceptual framework: Supports the study’s applied focus by integrating participants’ feedback
into the iterative development of tools and strategies to address collaboration barriers.

11.4.1. COMPLETE INTERVIEW PROTOCOL
The finalized interview protocol is presented in Table 11.2. As stated before, this final interview protocol was
developed iteratively. The final step of its development was the first interview itself, which was conducted with
AI-2. Aside from gathering data, this sessions was also used to test and verify the protocol itself. Overall, the
protocol was found to perform well. Several minor tweaks were made, such as the inclusion of some additional
wrap-up questions and making the categorization more explicit so interviewees could better understand the
progression and anticipate future questions.
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Table 11.2: Complete interview protocol used for structured interviews

Nr Questions Prio Related concepts
& theories

Introduction & background (10 min)
1 Could you briefly describe the main project you are currently working

on related to (Gen)AI?
H

2 How does this project aim to improve or transform current work prac-
tices?

H

3 Who are the end users of the developed AI tool? (overlap with group 1,
internal/external)

H

4 In what phase is your main AI project? [Initiation, planning, execution,
monitoring, completion]

H PMI project
phases

5 What is your role in the AI project? H
6 Is your work data-, model-, or product-centric? H Mentioned in Pi-

orkowski et al. [56]
7 How many AI researchers/developers (group 2) and domain experts

(group 1) are involved?
H

8 Are there other stakeholders that play a key role in the AI project? H

Collaboration barriers (15 min)
The following questions are about your collaboration with domain ex-
perts/AI researchers

9 Could you characterize the typical domain expert/AI researcher in-
volved in the project?

H

10 How would you describe the role distribution (yours vs. theirs) in this
collaboration? (responsibilities, time investment)

H

11 How would you define your level of collaboration with them? [Immuring
- networking - coordinating - cooperating - collaborating - integrating]

H Collaboration
Continuum

12 How would you rate the overall quality of your collaboration with do-
main experts/AI researchers on a scale from 1-10?

H

13 Do you feel intrinsically or extrinsically motivated to collaborate with
them [DE or AI]? Please explain. [Highly intrinsic - Mostly intrinsic -
Mixed - Mostly extrinsic - Highly extrinisic]

M Relates to adop-
tion attitude +
power dynamics

14 Do you feel they [DE or AI] are more intrinsically or extrinsically moti-
vated to collaborate with you? Please explain. [Highly intrinsic - Mostly
intrinsic - Mixed - Mostly extrinsic - Highly extrinisic]

M Relates to adop-
tion attitude +
power dynamics

15 If you feel a need for more collaboration with domain experts during the
development process, what level of collaboration would you strive for?
Please explain. [Immuring - networking - coordinating - cooperating -
collaborating - integrating]

H Collaboration
Continuum

16 At what stage of the development process do you think this collaboration
will be most beneficial? Please explain. [Initiation - planning - execution
- monitoring - completion]

H PMI project
phases
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Table 11.2: Complete interview protocol used for structured interviews

Nr Questions Prio Related concepts
& theories

17 From the following list of potential collaboration barriers related to
AI projects, please select a top 3 of the ones most obstructive to your
collaboration with domain experts:

• Differences in working culture
• Differences in mental model
• Threat of replacing human workforce
• Unrealistic expectations towards GenAI technology (high or low)
• Insufficient knowledge on value/advantages of GenAI technology
• Lack of trust towards AI-based decision making
• Transparency and reproducibility of output
• Legal responsibility and accountability
• Negative associations with AI due to bad prior experience with non-

related tools
• Quantity and/or quality of training data
• Lack of data to validate benefits of GenAI technology
• Lack of inhouse AI talent
• Lack of multidisciplinary talent
• Lack of AI development strategy
• Restrictive AI laws (national + EU)
• Limited computational resources
• Other...?

H Dwivedi et al. [55]

18 Please explain your choices

Team alignment (5 min)
The following statements are about your alignment with the domain
experts involved in your AI project

19 The domain experts share my goals for the AI project. [Completely
disagree - Mostly disagree - Neither - Mostly agree - Completely agree]

H Relational Coordi-
nation Survey, Co-
ordination (SMM)

20 The AI-specific knowledge of domain experts is sufficient to understand
the project work. [Completely disagree - Mostly disagree - Neither - Mostly
agree - Completely agree]

H Relational Coordi-
nation Survey, Co-
ordination + Con-
sistency (SMM)

21 The domain-specific knowledge of AI professionals is sufficient to un-
derstand the project work (of domain experts). [Completely disagree -
Mostly disagree - Neither - Mostly agree - Completely agree]

H Relational Coordi-
nation Survey, Co-
ordination + Con-
sistency (SMM)

22 The role of AI professionals within the project is respected. [Completely
disagree - Mostly disagree - Neither - Mostly agree - Completely agree]

H Relational Coor-
dination Survey,
Consistency
(SMM)

23 The role of Domain Experts within the project is respected. [Completely
disagree - Mostly disagree - Neither - Mostly agree - Completely agree]

H Relational Coor-
dination Survey,
Consistency
(SMM)

24 From these aspects (shared goals, shared knowledge, mutual respect),
which one is the biggest challenge? Please explain and provide example.

H

Communication (15 min)
The following questions are about the communication between you and
domain experts involved in your main AI project. When answering, please
consider all forms of communication (meetings, phone calls, emails, etc.)

25 What are the main ways you communicate? (e.g. [Meetings (physi-
cal/online?), email, documentation, scrum board, ...])

M
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Table 11.2: Complete interview protocol used for structured interviews

Nr Questions Prio Related concepts
& theories

26 Who generally takes the initiative to communicate? [Always me - Mostly
me - Balanced - Mostly them - Always them]

M Relates to collabo-
ration motivation,
power dynamics

27 How frequently do you and domain experts communicate about your
AI project? [Not nearly enough - Not enough - Just the right amount - Too
often - Much too often]

H Relational Coordi-
nation Survey

28 How timely is the communication between you and domain experts
about your AI project? [Never on time - Rarely on time - Sometimes on
time - Often on time - Always on time]

H Relational Coordi-
nation Survey

29 Are you able to communicate accurately with domain experts about
the project work (i.e. clear, free of misinterpretations)? [Never - Rarely -
Sometimes - Often - Always]

H Relational Coordi-
nation Survey

30 When problems occur within the project, do the domain experts tend to
blame others or work with you to solve the problem? [Always blame -
Mostly blame - Neither blame nor solve - Mostly Solve - Always solve]

H Relational Coordi-
nation Survey

31 Out of the four aspects of communication, which one is the biggest
problem in your project? Please explain and provide an example

M

32 In what direction do you experience the greatest communication gaps?
[Overwhelmingly from DE to AI, Mostly from DE to AI, Similar in both
directions, Mostly AI to DE, Overwhelmingly from AI to DE]

L

33 To what extent are you able to anticipate communication problems and
proactively address them? [Never - Rarely - Sometimes - Often - Very
often]

L Proactivity (SMM)

34 To what extent are you able to recognize and address miscommunica-
tion while they occur? [Never - Rarely - Sometimes - Often - Very often]

L Reactivity (SMM)

35 How often do you (re)use standardized communication artifacts (slid-
edecks, documentation, youtube links, etc.) to share information with
domain experts? [Never - Rarely - Sometimes - Often - Very often]

L Piorkowski et al.
[56]

36 Can you share and/or describe some examples?
37 To what extent do you (re)use standardized communication artifacts (e.g.

intake forms, miro/canva boards, surveys, etc.) to collect information
from domain experts? [Never - Rarely - Sometimes - Often - Very often]

L Piorkowski et al.
[56]

38 Can you share and/or describe some examples?

Ideas for improvement (15 min)
39 If you could propose one improvement to the collaboration process

between your team and domain experts, what would it be?
L

40 In your opinion, which option would be most useful to improve the
development of novel AI-powered tools & methods, and why?

• Motivating more domain specialists to become involved
• Improve communication from AI developer to domain expert
• Improve communication from Domain expert to AI developer

H

41a Which idea(s) do you like best? And why? Full list of design ideas:

• Design a morphological chart for AI-powered tools/methods
• Imagination sparker, e.g. curated list of inspirational projects or in-

fomercial
• Design a community for sharing resources/best-practices (platform +

interaction mechanics, promo, etc.)
• Knowledge extraction approach aimed at domain experts
• Campaign to convince directors/managers to increase structural re-

source allocation to AI development processes

H List of design ideas
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Table 11.2: Complete interview protocol used for structured interviews

Nr Questions Prio Related concepts
& theories

42a Any additional comments regarding these options? H List of design ideas

41a Current favourite design idea is to design a morphological chart for AI-
powered tools/methods:

• Quick & convenient overview of key design decisions
• Raise awareness of possibilities

What are your initial thoughts on such a tool? Added value? Existing
similar tools?

H Used instead of
41a during inter-
views with AI-1
and AI-3

42b Which key design decisions do you think should be included? H Used instead of
42a during inter-
views with AI-1
and AI-3

Wrap-up (5 min)
43 Any final comments or insights? H
44 Would you like to stay in the loop for future updates? H Test interview with

AI-2
45 Would you be open to testing & validation of the tool/method? H Test interview with

AI-2
46 Do you know other interesting interviewees for my research? M Test interview with

AI-2



12
INTERVIEWS WITH AI EXPERTS AND DOMAIN

EXPERTS

This chapter is presents interview process and results. The first section describes the methodology used
for selecting participants, conducting the interviews, and processing the responses. This is followed by a
presentation of initial, high-level interview findings in section 12.2 outlining the most significant collaboration
and communication challenges. Subsequently, section 12.3 provides a more in-depth analysis of these
challenges, examining their underlying causes and interdependencies. section 12.4 presents the insights
gathered from participants regarding potential solutions, contributing to the development of a structured
communication tool to support interdisciplinary GenAI projects. Finally, a reflection on the interview process
is provided in section 12.5.

12.1. METHODOLOGY

12.1.1. HUMAN RESEARCH ETHICS
In preparation of conducting the interviews, a number of steps were performed to comply with TU Delft ethical
standards for conducting human research1. A data management plan was created, and a risk assessment and
mitigation plan was setup. Subsequently, an the interview participant consent form was created according to
these plans. This consent form is presented in Appendix G. A formal application was sent to TU Delft’s Human
Research Ethics Committee, which gave their approval to conduct the study.

12.1.2. PARTICIPANTS
The following criteria were used to select interview participants:

• Balanced representation: Efforts were made to ensure a balance between the number of AI experts and
domain experts to equally capture both perspectives.

• Active interdisciplinary research: Participants were required to be actively engaged in an interdisci-
plinary project where the integration of AI knowledge and domain expertise is a core component.

• Project diversity: Instead of conducting a focused case study with participants from a single AI project,
the aim was to interview professionals across a range of projects and contexts (academia, government,
and industry). This broader approach was taken to help determine whether certain challenges are
widespread or specific to particular projects.

• Pairwise comparison: For each included AI project, the aim was to interview both an AI expert and a
domain expert. This approach ensures optimal comparison between the two perspectives under similar
conditions. If interviewing both was not possible, attempts were made to recruit two AI experts or two
domain experts to maintain consistency.

1https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
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INTERVIEWEE RECRUITMENT APPROACH

Two primary avenues were pursued to gather interview participants. The first involved reaching out to relevant
professionals from the researcher’s personal network. Conveniently, the aerospace part of the thesis project
was initiated under the DEFAINE project, which also included various companies and research organizations.
These connections were now approached to participate in the interviews. In addition, they were asked to
suggest additional participants from their professional network to broaden the pool.

The second approach was to search for participants within TU Delft’s AI Labs 2. These AI Labs were founded
specifically with the intention of facilitating interdisciplinary research between researchers from different
faculties. A total of 24 AI Labs exist, each focusing on a specific application of AI. The descriptions of all 24 labs
were reviewed to make an initial selection of labs that fit within the scope of this research. Subsequently, the
individual research projects carried out within each of these labs were assessed in order to obtain a short-list
of researchers and lab directors. These were contacted via email.

A one-pager describing the research and providing some indicative example questions was created and
attached to the emails that were sent out to potential participants. Two versions of these

FINAL SET OF PARTICIPANTS

A final set of six participants was obtained. Three of these were AI experts, and the other three domain experts.
They are divided over four different projects, and work in five different organizations. Two pairs working on
the same project were found: one AI expert and domain expert pair (same organization), and one pair of two
domain experts (different organizations). A brief overview of project descriptions is provided below:

• Developing text-to-CAD tool for designers and engineers.

• Developing a chat platform for internal use by employees. Broadly similar to ChatGPT-4o (i.e. agen-
tic, connected to external tools and databases) but custom-built and with unique, domain-specific
capabilities.

• Developing a (partially) autonomous robot to support emergency responders.

• Developing tools to (partially) automate engineering workflows and connect/integrate various domain-
specific engineering tools (parametric design, analysis & simulations, etc).

ADDITIONAL INSIGHTS FROM PARTICIPANT SEARCH

Aside from recruiting interview participants, it was found that the exercise of reviewing a wide array AI projects
also helped to sharpen the research scope. For instance, medical technology was initially considered as one
of the most interesting domains to include in this research. At first glance, this field seemed to fit very well
with the descriptive characteristics of being “complex and critical”. However, after reviewing various project
descriptions, it became evident that most AI applications in this domain primarily involve training neural
networks for data analysis tasks, such as processing medical images to identify tumor cells.

Although promising, these projects were found to be a poor fit for the intended research focus but the reason
for this misalignment was not immediately clear. After further deliberation, it was concluded that these
projects typically require minimal collaboration between medical domain experts and AI experts. Namely,
once a dataset of (labeled) medical images is provided by domain experts, AI specialists can often handle the re-
mainder of the process independently. Such collaborations are multidisciplinary rather than interdisciplinary,
and thus fall outside the scope of this research.

As a result, the search criteria were refined to emphasize projects that use AI to automate domain-specific
work processes. This approach inherently requires detailed domain knowledge and necessitates close, interdis-
ciplinary collaboration between AI experts and domain experts, thereby aligning very well with the research
scope and objectives.

12.1.3. CONDUCTING INTERVIEWS
All interviews were conducted online, using Microsoft Teams. A slidedeck was created with the questions and
response categories which was presented throughout the interview via screen sharing. An example of one of
the slides that was used is shown in Figure 12.1.

2https://www.tudelft.nl/en/ai/tu-delft-ai-labs

https://www.tudelft.nl/en/ai/tu-delft-ai-labs
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Figure 12.1: Example slide presented via screen sharing while conducting the structured interviews

While a time slot of 90 minutes was requested of all participants, only two participants could actually free up
this amount of time for their interview. The four other participants had to be interviewed in 60 minutes. To
make optimal use of the participant’s available time, the questions were categorized based on priority. This
prioritization was used for time management during the interviews. When falling behind on schedule, lower
priority questions were skipped to ensure that at least the key questions of each topic could be answered.

• Mandatory: The consent form check, research introduction and background questions were considered
mandatory elements of the interview. They lay a foundation for the rest of the interview and are required
to make sense of all the other answers and place them in the proper context.

Note: In case project members of the interviewee had been interviewed previously, an attempt was made
to reduce the time spent on background questions. Instead of discussing the full set of background ques-
tions, a brief overview of their AI project was presented based on the understanding gained during the
previous interview with their colleague. Then the interviewee was asked if their project was understood
correctly. If confirmed by the interviewee, the background questions about their project were skipped.
Personal background questions, like “What is your role in the project?”, were still asked.

• Top priority: The questions that directly addressed the research questions were assigned the highest
priority. This includes the following (groups of) questions:

– Questions based on the Collaboration Continuum, in particular the question about desired level of
collaboration.

– The question to compose a top 3 of most obstructive collaboration barriers.

– Questions based on the Relational Coordination Survey (both the alignment and communication
aspects).

– Questions about improving collaboration with a communication tool. More specifically the best
direction/purpose, and discussing the list of ideas with an emphasis on discussing the idea(s) with
the highest potential.

– Question to rate the overall collaboration quality.

• Medium priority:

– Questions about intrinsic vs extrinsic motivation to collaborate.

– Question about methods of communicating, and communication initiative.

• Low priority: Detailed questions about specifics communication aspects.

– Direction of communication gaps.

– Ability to anticipate miscommunications and react to them.
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– (Re)use of standardized communication artifact.

– Communication tool ideas from participants to improve collaboration

12.1.4. CAPTURING AND PROCESSING INTERVIEW DATA
Processing the interview data was performed according to the following steps:

1. The interview recordings were reviewed and the auto-generated transcripts were cleaned up using
Microsoft Stream (online). This is the default platform for watching back Microsoft Teams meeting
recordings, and has the particularly useful feature where a text segment of the auto-generated transcript
can be clicked to skip to that part of the recording. The guiding principle for cleaning up the transcripts
was to produce text that was completely accurate with respect to the interviewees’ statements while
also being understandable in a standalone document. With this in mind, the following corrections were
made:

(a) Correcting misinterpreted words

(b) Adding/correcting punctuation

(c) Removing unfinished (parts of) sentences

(d) Removing repeated words

(e) Removing verbal fillers

2. While watching back the recordings during the previous step, a second activity performed in parallel was
to collect the answers to all categorical questions in a large spreadsheet. In addition to these categorical
answers, quotes with insightful explanations and examples were also added to their corresponding
question topic. Notably, when interesting remarks were made about a particular question topic while
answering a completely different question, these quotes were also stored according to topic. In such
cases, the timestamps were also added.

3. In parallel with cleaning up the transcript, a systematic collection of interview responses was carried out.
Answers to all categorical questions were documented in a comprehensive spreadsheet. Alongside these
categorical responses, quotes that provided insightful explanations or examples were also captured in
this spreadsheet. These quotes were stored according to topic. Thus, when an interesting remark about
a particular topic was made while answering an unrelated question, it is stored as a quote under the
questions that actually addressed that topic. In such cases, the timestamp is added too for easy reference.
This dual approach ensured both structured data collection and preservation of nuanced, qualitative
insights for further analysis.

4. Due to the substantial amount of categorical questions incorporated in the interview protocol, the
completed spreadsheet provides a very clear overview of the results. Combined with the activity of
reviewing all interview recordings, a very good understanding of the results was obtained. These pieces
of information were used to derrive and formulate a number of preliminary high-level conclusions.
Specifically, the key collaboration and communication challenges were identified, and a particular
solution idea was selected.

12.2. HIGH-LEVEL INTERVIEW RESULTS

12.2.1. CHARACTERISTICS OF AI-DE COLLABORATIONS
Based on the background questions and overall understanding obtained from the interviews, the following
characteristics of the collaborations between AI and domain experts were found:

• Small teams: With the exception of one AI expert, all AI projects were being performed in small core
teams, consisting of 4-5 people.

• Early project phase: Generally, the projects were in the initiation or planning phase (5x). One interviewee
was working on multiple projects in many phases.
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• Internal focus: The generative AI systems that were being developed within the projects of the inter-
viewees were typically intended for internal use. Moreover, the involved domain experts were often
representative of the end users.

• Currently at ’collaboration’ level: Most respondents placed themselves relatively highly on the Col-
laboration Continuum scale, namely at ’collaborating’ (4x) or ’cooperation’ (1x). One outlier placed
themselves significantly lower, at the ’networking’ level.

• Overall very positive about collaboration quality: The average grade given for overall quality of the
interdisciplinary collaboration was an 8,0 (n = 5). Respondent AI-1 indicated they could not answer this
question because it was too “bimodal”. This respondent explained they were collaborating with two
domain experts, and the collaboration quality with them was completely different (“Either very high, or
very low”).

• Developer-client role distribution: Typically the collaborations were initiated by the domain experts,
who were looking for a solution to a problem they were dealing with. Subsequently, the AI experts ended
up leading the collaborative project. This pattern was very clear from the interview question about who
generally took the initiative to communicate. Except for DE-1, everyone responded this was most often
the AI experts.

12.2.2. KEY COLLABORATION CHALLENGES
Two components of the interview were directed explicitly at identifying the key collaboration and communica-
tion challenges, namely the questions based on the relational coordination survey and the question about
composing a top-3 of the most obstructive collaboration barriers. Since these were all categorical questions,
aggregating their results was straightforward and formed the starting point of the results analysis.

RELATIONAL COORDINATION RESULTS

The aggregated results for the interview questions based on the Relational Coordination Survey are presented
in Table 12.1. The first five questions relate to alignment (i.e. relational coordination) while the latter four are
about communication specifically.

Table 12.1: Aggregated results for the interview questions based on the Relational Coordination Survey. Quantitative scoring and coloring
based on prescribed methodology [71, 77]. Green is high (score > 4), blue is medium (score 3.5-4.0), and red is low (score < 3.5).

Nr Question topic
AI expert
responses

(n = 3)

DE
responses

(n = 3)

1 Shared goals 4,0 4,7
2 Knowledge of domain experts about AI 2,7 3,5
3 Knowledge of AI experts about project-specific domain 3,3 3,2
4 Feeling respect for role of AI experts 4,7 5,0
5 Feeling respect for role of Domain Experts 4,3 5,0
6 Frequent communication 4,7 4,3
7 Timely communication 4,7 4,2
8 Accurate communication 3,8 4,0
9 Blaming vs. problem-solving communication 3,3 4,7

From the alignment questions, both questions 2 & 3 score very low indicating that shared knowledge is the
main issue. Interestingly, the scores for the domain-specific knowledge of AI experts (question 3) are very
much in agreement, but this is not the case the other way around (question 2). While domain experts rate
their own knowledge about AI with an average score of 3.5, which is still considered medium, AI experts rate
them significantly lower at just 2.7. The same holds for the first question, about shared goals. Although the
averages are much higher, the AI experts are significantly more critical about domain experts than the other
way around.

This could be explained by a number of reasons. Domain experts typically have a client role in these projects
while AI experts are there to develop systems that solve their problems. As such, domain experts may have a
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particularly positive feeling about shared goals within the project because their problems are the ones being
solved. Furthermore, the score difference for the knowledge of domain experts about AI may indicate that
domain experts overestimate themselves.

From the communication questions, two main results jump out. First of all, the low score given by AI experts
for blaming vs. problem-solving communication. Here, it is particularly important to understand the context
and nuance. The following quote explains this well:

AI-2: “It depends mostly on what kind of expectations you’ve created, of course. I do think that they
usually are very easy to blame the technology, so they don’t necessarily blame the AI experts. But
let’s suggest we try something and the first iteration it didn’t work. We weren’t able to do it properly.
Instead of blaming us, that usually doesn’t happen, they say ’Oh, well, the technology is not there yet,
it’s too difficult, let’s stop because it’s over’ instead of trying to really solve the problem. Usually what
we find is that we need a few iterations to really get something right, and they are sometimes a little
bit too willing to blame the technology.”

The second result to highlight is the relatively low score for accurate communication. On this, AI and domain
experts are in agreement. In addition to the numerical scores presented in Table 12.1, four interviewees were
asked specifically which of the four communication aspects from questions 6-9 was the biggest issue for
collaboration. From these four interviewees, three responded it was communication accuracy and one said
timeliness.

MOST OBSTRUCTIVE COLLABORATION BARRIERS

The aggregated answers to the question where interviewees had to compose a top-3 of most obstructive
collaboration barriers are presented in Figure 12.2. The answers are grouped into three partially overlapping
categories: social, knowledge, and practical barriers. The category of social barriers contains all cultural,
interpersonal, and emotional factors. Knowledge barriers includes everything related to a lack of technical
knowledge about (Gen)AI or specific domains. Finally, practical barriers are issues with a less personal, and
more “external” origin. They impact collaboration but need to be addressed typically at the organizational level,
or at an even larger scale. The categorization used in Figure 12.2 is based on the categories of AI challenges
from Dwivedi et al. [55] where most of the response categories were taken from, namely: social, data, and
organizational & managerial challenges. This categorization was adapted to provide more granularity on the
(inter)personal level, separating social/emotional factors (related to “soft skills”) from knowledge (related to
“hard skills”). As a consequence all other barriers were grouped together in the practical category.

For each barrier, the number that is included indicates how many interviewees provided that answer. Not all
interviewees adhered strictly to formulating a top-3. Some provided fewer or more answers. All responses were
included, which explains why the total number of answers is slightly more than expected (21 instead of 18).

Several barriers were placed on the overlapping sections in Figure 12.2 to indicate that they are related to
both aspects. For example, the unrealistic expectations towards (Gen)AI barrier was positioned in both the
social and knowledge categories because it could result from a lack of knowledge and understanding of the
technology, as well as from poor interpersonal communication. Similarly, a lack of multidisciplinary talent
is clearly a knowledge-related issue, but it can also be a direct result of decisions at the organizational level,
such as a poor hiring strategy or a lack of personal development programs. It could even be related to external
factors outside the reach of organizations, such as a lack of suitable educational programs.

12.2.3. MAIN CHALLENGE: LACK OF SHARED KNOWLEDGE
In Figure 12.2, the knowledge barriers category contains the highest amount of responses and in Table 12.1, the
questions about shared knowledge (both questions 2 & 3) received the lowest scores. Based on these results it
was concluded that the lack of shared knowledge is the main challenge in the collaboration between AI and
domain experts. Moreover, the lack of shared knowledge was found to lie at the root of many other challenges
and issues. The previously presented quote from AI-2, for instance, showed how a lack of understanding
about generative AI makes expectation management very important to prevent domain experts blaming the
technology and giving up on the project after an unsuccessful first try.

Having established that the lack of shared knowledge forms the main overarching problem, we can zoom in on
some additional, more specific factors like expectation management and communication accuracy. These
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Figure 12.2: Venn diagram with the aggregated interview results for the question about most obstructive collaboration barriers. The
numbers indicate how many interviewees provided that answer.

secondary issues, along with their relationship to the overarching problem of lack of shared knowledge, are
discussed in the next section.

12.3. DETAILED PROBLEM ANALYSIS
Part of the secondary collaboration and communication issues discussed in this section could be regarded as
“symptoms” of the lack of shared knowledge, while others act more like “compounding factors”.

12.3.1. MISALIGNED EXPECTATIONS
Misaligned expectations are closely related to a lack of shared knowledge. In-depth analysis of the interview
results revealed two different types of misaligned expectations. They differ in terms of their cause and relation
to the lack of shared knowledge as well as the specific context in which they occur and their impact.

TYPE 1: MISUNDERSTANDING

The first type of misaligned expectations are those that exist without any communication between AI and
domain experts about a particular issue has taken place. They are caused by a lack of awareness or incorrect
assumptions about (aspects of) each other’s domain. Thus, type 1 misaligned expectations are directly related
to the lack of shared knowledge. The typical context of this type of misaligned expectations is before, and in the
process of setting up, new interdisciplinary projects. Their occurrence typically decreases over the duration of
the project.
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Collaboration barriers from Figure 12.2 related to this type are Unrealistic expectations towards (Gen)AI,
Insufficient knowledge on advantages of (Gen)AI, and the Lack of multidisciplinary talent. A selection of
interview quotes that highlight this is provided below:

• AI-1: “What I found out is that people misunderstand what AI can do.”

• AI-2: “Unrealistic expectations towards Gen AI technology is one of the biggest things. [...] Moravec’s
paradox, I’m not sure if you know it? What it implies is that people think some things are very hard to
do for technical systems, so for example generative AI, which are in fact really easy to implement, and
the other way around is just as likely. So sometimes they think ’Oh GenAI should be very good at this. It
should be very easy to implement.’ And then we [AI experts] look at the problems and are like ’This is so
complicated, so complex, we’re not able to do this.’ So there’s very much of a mismatch between those
roles. And I think that is quite crucial.”

• AI-2: “[...] if the base necessities aren’t met to really bring a project a step forward, then you might as well
not try it, because you are going to set expectations which are never able to be met. People will never be
able to use it because it will die in a proof-of-concept phase, or in a pilot phase, and then you start to
cut corners. So, you have on the one hand the expectations management of ‘Can an AI do it?’ but the
other way around you have ‘Can we do AI, as an organization?’. And for <my organization>, usually the
answer is no for the more complex and the more advanced systems. [...] With GenAI especially, you need
a very mature set of base requirements to be met before you can really do something properly, and that
is something that you need to communicate effectively.”

• AI-3: “I think one key AI concept that is misunderstood by domain experts is the capabilities of generative
AI models. What it can do currently, what it cannot, and what outputs it can produce. So, for example,
what kind of representation a generated CAD model is, and whether that is usable for manufacturing
purposes or whether it can be only used for conceptualization and during the planning phase of the
product development life cycle. The key point here is understanding the generative AI model technology
itself, and the capabilities and the limitations of the model.”

• DE-2: “The deeper you go into this, the more you realize there’s actually quite a lot of tools that you need
to be aware of. It’s not just a single API and that’s it.”

These examples highlight that type 1 misaligned expectations have the biggest impact on the initiation of new
collaborative AI projects which makes sense, when considering that this type of misaligned expectations exist
before communication has taken place between AI and domain experts. Moreover, these interview results
(and others) indicated that domain experts often have a poor understanding of the capabilities (strengths
and weaknesses) of generative AI technology, as well as the prerequisites (data, quality metrics) and required
investment (time, effort, money) to develop the generative AI systems. All these factors relate to the lack
of shared knowledge and degrade the ability of domain experts to identify high-potential opportunities for
generative AI projects.

TYPE 2: MISCOMMUNICATION

The second type of misaligned expectations are those resulting from miscommunications. These occur in
scenarios where collaborations between AI and domain experts are already set up and they are actively working
together on the design problem. This is one of the differentiating aspects between the two types of misaligned
expectations.

Another key difference is that the lack of shared knowledge plays a different role. Instead of being a direct cause,
here the lack of shared knowledge has an indirect effect by hindering the communication between collaborators.
When working collaboratively on design problems, in-depth technical knowledge about particular topics from
each others domain will be required. When this is lacking, collaborators need to educate each other on the
spot. In and of itself, learning something new comes with a risk of misunderstandings which can lead to
misaligned expectations. In addition, a lot of technical jargon is typically used in these design discussions
which provides another way for a lack of shared knowledge to create misunderstanding. In particular, when a
multitude of new technical terms are explained and immediately used in subsequent discussions.

Type 2 misaligned expectations correspond to the Differences in mental model barrier in Figure 12.2, as well as
the lower scores for communication accuracy and blaming vs. problem-solving communication in Table 12.1.
A selection of interview quotes that further highlight this issue is provided below:
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• AI-2: “So one of the tools that we build is a B1 tool. B1 is a language level which is quite simple. [...] we
said, ‘well, Generative AI is very suited for this’. We did some preliminary tests and it was going quite
well. But what we really found was, first of all, what is B1? Like can we quantify that level? That’s very
hard to do, and if you ask 10 experts, you get 11 opinions. So it’s very much trying to find the middle
ground and find a interpretation of B1 level that works for most people. So what we did was we said,
‘OK, let’s not set our goal at creating 100% B1 level texts. Let’s just aim for 80% and help people to get
started.’ Those last 20 percents are usually the hardest part because then you really get to the finicky
terms and the difficult terms that you have to still explain it in a very easy way. But you can at least get
started and remove the easy-language writers block. That’s what a lot of people have when they need
to talk in a different way than what they’re used to. So we set an expectation of 80% and that implies
that suddenly we can measure what 80% B1 is. We did some tests with a lot of users, domain experts,
and communication experts and we had a few metrics to score the texts. Then you could interpret those
results as a percentage. So they interpreted 80% in such a way that if we have five metrics for B1 level
and all texts scored four out of five metrics positively, then it’s an 80% B1 text. That is the expectation we
set. But that was not the way we wanted to validate or measure it. It was more of an abstract concept
that we tried to get across. Instead of ‘we guarantee that everything that comes out of this tool is B1’ we
just meant ‘we’ll get you started, and you get mostly there’. They were now interpreting the results that
we measured with them as ‘did we achieve our goal’. Our goal was to get people started in writing a text
on B1 level, or close to it, but they said ‘OK, we scored 76 percent so we didn’t succeed’. But that was
not the point, you know? So that is something where using those quantitative measures or words, it can
really throw people off.”

• AI-2: “We have a mismatch in the communication, which sets the wrong expectations, which results in
people blaming the wrong parts of the problem. You can have very timely and very frequent communica-
tion, but if you can’t really understand each other, you’re missing the point entirely. [...] When something
didn’t work the way we expected, that is also expectation management in a sense, but [also] explaining
the results. So why are the expectations not met? And do we think that we can solve that problem, or is it
something we will have to accept? So it’s just as much before we start as it is when we finish.”

• From these four aspects: frequency, timeliness, accuracy and problem-solving, which one would you say
needs to be improved most?
AI-3: “I think it’s communicating accurately, so making sure that we are on the same page, that we are
referring to the same meaning of the same terminology, and we understand the domain of each other’s
roles.”

• AI-3: “In the collaboration between domain experts and AI engineers, it’s very important to emphasize
understanding first of all the existing workflows of domain experts. And at the same time, it’s also very
important for domain experts to understand how the AI development life cycle, or the machine learning
development life cycle works. So what the requirements are for better data, training data, etcetera. These
are the main points that I think are very important to facilitate the collaboration.”

• DE-2: “So obviously when we started looking at this kind of work, we didn’t really know much about AI
and all the different technologies and AI tools. Luckily a lot of them are Python-based but yeah, there
was a phase where there was a very steep learning curve. Myself and <another domain expert>, we come
from a design team. We still don’t fully understand all the different AI terminology and tools out there
but it’s kind of familiar territory. So we are on a learning journey.”

12.3.2. COMPOUNDING FACTORS
In addition to the previously described mechanism, other issues and barriers also relate to the misalignment
in expectations. Collectively, these are considered compounding factors. An overview of these compounding
factors is presented, along with example quotes.

LACK OF INTRINSIC MOTIVATION

Another important compounding factor that has not yet been discussed is a lack of intrinsic motivation to really
engage in the project. This aspect was discussed with interviewees separately, and therefore not incorporated
in previous results, like Figure 12.3 or Table 12.1. However, it is very important, as highlighted in the following
quotations:
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• AI-2: “It depends mostly on their [domain experts’] personal willingness to learn about the more
technical side of things, because a lot of times they just throw something your way. They have a question,
they have a problem, so they come to you. They think that we can solve it with AI and they just have to
fill out the [intake] form and send it over, and then three months later everything is done and they can
do exactly what they want without collaborating. That is not very often the case, but you sometimes feel
that energy.”

• DE-2: “In general, I would say it’s quite difficult to find designers that are programmers as well, or are
willing to become programmers. They are quite different skill sets. So it’s a niche, within a niche, within
a niche, right? If you want to do this, you need someone who’s a designer. Within that they need to
be a programmer, and within that they need to be fluent with AI and machine learning tools. So it’s
kind of difficult to hit all those three things. A typical designer, I would say, they’re not interested to do
programming.”

EXTERNAL PRESSURE

Aside from intrinsic motivation, building shared knowledge also requires having room for personal develop-
ment and learning about new domains like (Gen)AI. A process called “cross-skilling” by one of the interviewees.
However, based on the interviews, several external factors were identified that prohibit personal development,
in particular of domain experts, and incentivize them to focus on other tasks and responsibilities. Different
factors were found between industry and academic contexts, but their overall effect is largely the same.

Within industry, the external factor is typically management who put pressure on domain experts to focus only
on their own tasks and core responsibilities. meanwhile, within in academia it is mostly individualism. This is
highlighted by the following examples.

• DE-1: “I think if there was more time and if we had this [shared] end goal more from the start, then by
now we would probably have reached that state of integrating. But in the end they also want to ensure
that you develop into an independent researcher. Really integrating your work with another PhD student
from the start is not very common, but ideally for this project that would have been the case from the
start.”

• AI-1 “Just before doing the PhD, I worked four years as an analysis lead and I did that [developing
engineering tools] on top of my responsibilities [...] and it’s a really stressful situation. But we believe
that building these tools will help us in the long term to answer the customers faster. That’s why we
try to invest the time to do it. And this is unofficial. It’s not really recognized as your day-to-day job, if
that makes sense, because they [management] will tell you: ‘No, don’t develop tools, just focus on the
customer’. But if you start developing the tools on the side, this started in reality on the evenings and
weekends outside of normal working hours, and they are really useful then you can bring it into your job
and it saves you time. And then you can use that saved time to develop more of these tools. [...] Now it
has gotten to the point that it’s been recognized that, ‘OK, these tools are a thing. You developing Python
modules and releasing it somehow helps everyone else.’ But in the beginning we couldn’t. We pitched
the business case, the improvement case, and asked them [management] to let us do that and it was:
‘No, no, you cannot to do it.’ [...] Like if you’re trying to push a car with flat tires, it’s like saying ‘I’m not
stopping to get new tires’. That’s kind of the feeling that you get.”

DIFFERENCES IN WORKING CULTURE

A number of interviewees also mentioned and described the effect of differences in working culture.

• AI-2: “My current role is more that of product owner, but I have a background in the data and the
modeling world. So, I view the products through a data scientist’s or an AI engineer’s lens. We’re trying to
really see the questions that we get from our stakeholders as modular abstractions.”

• DE-1: “I think that ties a bit into differences in working culture because, of course, in academia you need
a research gap, and things should be novel, et cetera. But they [the client] were like, ‘OK, but for us just
this is fine. [...] It doesn’t need to be so complex for us.’”

• DE-3: “With differences in mental model, I mean not being on the same page regarding problem
definition. We [domain experts] have a concrete issue, and we are looking for a solution for that issue.
We are not looking for anything else because we think it won’t add any value, or maybe it’s sensitive
within the organization. [...] But when you ask a bunch of clever AI researchers and just explain your
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situation, they give you a whole variety of solutions. However, I don’t need everything. [...] I understand
this [approach] from their point of view, but for us certain things are not that relevant.”

AFRAID TO ASK "STUPID" QUESTIONS

The fear of asking stupid questions can also act as a compounding factor that reduces knowledge exchange
between experts from different domains and, thereby, the process of building shared knowledge. Although,
compared to the other factors, it was found to be less of an issue. One domain experts mentioned this as a
factor, but only for the beginning of the project. Another domain expert even made an explicit comment that
this was not an issue in their projects. Clearly, this factor can be a compounding factor but it was not a major
issue within the projects of interviewees.

• DE-1: “In the beginning, it was hard that you don’t have a lot of knowledge about the other field that
your colleague is working on. So it might also hinder you a bit in terms of the questions you ask, or you
might feel limited in terms of speaking out because you think some things are stupid or you’re afraid to
ask stupid questions, for example.”

• DE-2: “If we do have questions or don’t understand something, we will openly ask questions. There’s no
shame. [...] it’s probably because of the nature of our business. We are hard-wired to be very helpful and
ask questions to each other. I can understand it can be very different in other companies.”

12.3.3. INTEGRATED REPRESENTATION OF THE KEY COLLABORATION CHALLENGES
The model presented in Figure 12.3 integrates all of the main collaboration and communication problems that
were discussed. The red boxes contain the main issues and challenges that obstruct the collaboration between
AI and domain experts. The dark blue boxes contain the compounding factors that put additional pressure on
the core problems and can further aggravate the issues. The negative consequences that can result from this
interplay of collaboration and communication challenges are depicted in yellow on the right-hand side.

Figure 12.3: Integrated representation of the key interview results showing how the interrelations between the main collaboration and
communication problems (red), compounding factors (dark blue) and resulting consequences (yellow).

ANSWER TO FIRST RESEARCH QUESTION

The problems contained in the blue circle in Figure 12.3 form the core of the problem. In other words, they
are the most critical collaboration and communication challenges between AI experts and domain experts.
Therefore, Figure 12.3 represents the answer the first research question: What are the key collaboration and
communication challenges between AI experts and domain experts in interdisciplinary AI projects, and how do
these relate to each other?
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12.4. NEEDS AND INPUT ON SOLUTION IDEAS
In addition to investigating collaboration and communication problems, a part of the interviews was dedicated
to discussing how the current situation could be best improved. These results are presented in this section.

FOCUS ON PROJECT INITIATION PHASE

A notable result was that all interviewees indicated they either wanted to move toward completely integrated
teams of AI and domain experts in the future, or expand the amount of work performed at the ’collaborating’
level on the Collaboration Continuum scale. In addition, multiple interviewees indicated that this close and
intense collaboration is most important at the project initiation phase to really invest in establishing the
objectives and scope of the project, getting to understand each other’s perspective, and begin educating each
other on important cross-disciplinary knowledge. A collection of related interview quotes is provided below:

• DE-1: “I think it makes these following steps [planning, execution, etc.] easier if you already start with
integrating at the initiation phase.”

• DE-1: “I think what would be nice and really work for such a project is to have like one or two full days in
which you work together. So not planning one meeting of one or two hours, but a week in which you
really stay together for two full days and you continuously discuss each other’s work and expertise to
basically speed up this process of creating a shared knowledge. Something to really reach this integration
stage that we discussed at that early stage of the project.”

• If there is an improvement that you could propose to improve the collaboration process between you and
these domain experts, what would it be?
AI-2: “I would say quality over quantity. So I would prefer a couple of goods deep-dive sessions in a
physical environment where we really discuss the problem together, rather than a few more hours but
online and in between different meetings. That is something that usually due to planning and scheduling
isn’t possible, but if we could do that, I think it would really improve our results.”

• AI-3: “The phase where AI engineers collaborate most intensively with domain experts is in the beginning
of the machine learning development cycle. [...] the most overlap between this [development] life cycle
of AI engineers and the domain experts lies in the first part, which is identifying the data, preparing the
data, and also identifying the challenge or the problem statement before starting the development itself.
This is very important in order to analyze the data properly, and also to understand within the domain
which data is needed in order to develop the machine learning system.”

• AI-3: “The design team are the domain experts and they are also the end-users or the customers, so
to say. And that requires them to be included during the initiation of the project, of course, in order to
understand what they need, what they want. Their needs are requirements in general. And then also
at the same time [their involvement is required] to understand the domain specific terminology, the
domain specific data. All of these kind of things.”

INCONCLUSIVE RESULTS ON COMMUNICATION TOOL OBJECTIVE

Before presenting the actual list of solution ideas, interviewees were asked about the most useful objective for
a communication tool. They were given the choice to either focus on improving the communication quality in
existing collaborations; or motivate more professionals to engage in collaborative AI projects.

In response, all three domain experts opted for engaging more professionals in AI projects, while two AI experts
both chose to increase communication quality. The third AI expert did not provide input on this topic because
the question had to be skipped due to time constraints. It is interesting that the responses are aligned per
response category. Unfortunately, this division also means that the overall result is quite inconclusive and
cannot be used to make a well-informed design decision.

• DE-2: “Engaging more professionals in these projects would be best, because then they themselves
might say ’This is actually an interesting topic. I’m going to get some training. I’m going to do some
learning. I’m going to try and show the work to other people in the company. Maybe I can get some
more interest.’”

12.4.1. NEEDS HIGHLIGHTED BY INTERVIEWEES
The list of quotes provided below represents a collection of a variety of needs and specific areas for improvement
that were described explicitly by the interviewees:
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• Little emphasis on communication: AI-2: “So, for our current project I just finished up a report, which
is partly business case and partly implementation plan on how to move forward. And I made it very clear
that I think that it should be a program which includes one technical project, building the thing, and it
should also include a project that is more of an implementation strategy which really invests heavily in
learning and development, really invests heavily in educating our users and also our stakeholders, our
domain experts. And if I suggest that it’s usually, ‘Yeah, yeah, we should do that’, but then I do get money
for the technical solution part and I don’t get money for the more communication side of things. So, I’m
able to pitch it, but it doesn’t always really land or cause any different policy changes or decision.”

• Focus on interaction: AI-2: “Create a list of inspirational projects. It really depends on whether or
not the organization is homogeneous in their work processes. So, for example, I have a lot of different
organizations with a lot of different work processes. If I create a item on my list that is a work process
for <organization A>, people from <organization B> won’t always be able to map their problem to this
problem. So, we need to talk into more in abstractions that people are able to map their problem onto,
and I think the morphological chart in that sense is more effective. It doesn’t mean that it’s not handy to
have those listings. Especially if you can make it into a list of demo’s rather than a text-based list. That
really helps because people see the interaction. If you have a video, for example, it’s much easier for
them to map their problem to the interaction rather than to the description of the project.”

12.4.2. INPUT ON SOLUTION CONCEPTS
The input on the presented list of solution ideas was more aligned. From the first four interviews, two
interviewees responded that the morphological chart was their favorite idea, and a third respondent rated it a
second. Furthermore, the community idea was reviewed as favorite once, and twice as second-best. The other
ideas received significantly less attention.

Regarding the morphological chart, the following this were said:

• AI-2: “When I need to create new slides for a presentation, this is pretty much what I’m aiming for. It’s
nice to have a word for it. So what are the design decisions? What are the design patterns? What is the
flow chart, almost, of such a project? Where do you end up? So I think that is very effective during intake.
Nobody will do this unguided. You really need somebody to guide you through such a chart. But that’s
very effective to get very clear expectations very early.”

• DE-1: “I really like the morphological chart. I think it’s great that such a chart provides an overview of
possibilities, but also the different combinations of them. I think that always works really well to have
this overview and, in a way, that already can inspire people to even come up with novel methods, right?”

• DE-2: “If I wear my technical hat, the morphological chart would be really exciting.”

Regarding the idea to design a community, the following comments were made:

• AI-2: “That [a community] is the golden goal, I think, but my experience is communities are incredibly
hard to curate [in practice]. I’m currently trying to curate a community for synthetic data within <my
organization> and partners and such. And we have to pull so hard on everyone to come, to organize
something, to give some information back to the community and not only come there to take information.
That is just very hard. It takes a lot of time, it takes effort, it takes organization. [...] It should be the best
solution, but it doesn’t really happen by itself.”

• DE-1: “I also really like the community for sharing resources and best practices. I think that also works
really well. Again, it ties a bit into the other idea. I think it’s great if you have this overview, in this case
of best practices, what worked well for certain people, and why it worked well, because it can facilitate
creative thinking and generating new ideas.”

• DE-2: “I think overall though, a community, a design community will be excellent because it can help
spark ideas for all the other ones. So I would go with that, personally.”

INPUT ON MORPHOLOGICAL CHART

After the first four interviews, the morphological chart was selected as the best option. Therefore, during the
last two interviews, only input on this particular idea was gathered. A summary of these additional results is
provided below:
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• AI-1: “My initial thought about the morphological matrix, or the limitation of a morphological matrix,
is that it assumes complete independence between the different categories. You need to add on some
other methods to add and manage the incompatibilities. So that’s difficult to do in general, because of
the morphological matrix itself. So completely unrelated to AI, but I see that in the AI domain as well.
[...] But yeah, I think in general some sort of categorization would be good. It doesn’t necessarily need to
be on every category, but the dependencies would be interesting.”

• AI-3: “I really like the idea, especially related to the identifying the existing workflow without adopting
AI in it. So the existing design workflow. And then identifying the areas in which AI can help improve the
designer process or reduce the time, automate it, or streamline the design process or the workflow. So I
need to find the areas in the designer process and then suggest the tools or the requirements that might
be needed in order to implement that. So I really like this train of thought.”

12.5. REFLECTION ON THE INTERVIEW PROCESS
During the structured interviews, several unexpected patterns and challenges emerged that influenced data
collection and analysis. These observations are discussed below, providing additional context for interpreting
the interview findings.

CHALLENGES IN INTERVIEWEE CLASSIFICATION

The process of classifying interview participants into either AI experts or domain experts proved to be more
complex than initially anticipated. Several interviewees did not fit neatly into either category, revealing the
fluid and overlapping nature of expertise in interdisciplinary AI projects. For example, after contacting a lead
researcher of a TU Delft AI Lab about interviewing an AI expert, they referred a colleague. However, during the
interview, it became apparent that this individual was more aligned with the domain expert classification. The
discrepancy arose due to differences in personal and institutional definitions of what qualifies as AI expertise
(as discussed in chapter 2).

Similarly, another participant initially identified themselves as an AI researcher via email but, after explicit
follow-up questions, turned out to have a professional background in engineering and manufacturing. Their
self-classification was based on their intent to learn more about AI and reflected their current personal
development efforts in the AI domain area rather than their core expertise. This mis-classification highlights a
typical phenomena related to the novel nature of the GenAI field: many professionals are re-skilling themselves
to become experts, but they do not have a formal background in the field.

INTERVIEWEE SELF-INCONSISTENCIES IN SURVEY RESPONSES

Another notable observation was the inconsistency between qualitative statements made during the inter-
view and the responses provided to categorical questions. This was particularly evident in the Relational
Coordination survey questions. For instance, in one interview, a participant repeatedly mentioned issues
related to misaligned project goals between AI experts and domain experts. However, when directly asked
about goal alignment in the survey, they provided a relatively high score (“Mostly agree”)—contradicting their
earlier statements. One possible explanation is that the structured nature of categorical questions prompted
immediate, socially desirable responses, whereas open-ended discussions allowed for more reflective and
nuanced answers.

Additionally, it is theorized that the unfamiliarity of technical experts with deeply discussing and analyzing
communication and collaboration problems also played a role. It was observed that questions provoked a
thinking process that continued after moving on from the current (categorical) question. They simply had
not considered such questions before, so they did not have a readily available answer. Therefore, additional
thoughts and conclusions that came after answering the initial thought-provoking question are then mentioned
and infused into later answers. In other words, the questions need time to “perculate”. Especially when being
asked to give a critical categorical answer on the spot, like for the relation coordination questions, the natural
reflex to give socially desirable answers takes over. Interestingly, this theory was found to have practical
benefits. A pattern was observed where in many instances, interviewees addressed certain topics in an answer
that were considered to be much more relevant and applicable to a question posed just a couple of minutes
back. When taking this “perculation” effect account, entire sections of certain interviews which were previously
considered to be rather confusing suddenly made a lot of sense.
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LACK OF DIFFERENTIATION IN CATEGORICAL ANSWERS

Another general observation regarding categorical questions is that (some) interviewees had a tendency to not
differentiate their responses. Participants often provided similar ratings across different questions, even when
their qualitative statements suggested varying levels of difficulty in specific collaboration areas. A feasible
explanation is that participants were asked to evaluate entire groups (e.g., AI experts or domain experts) rather
than individual collaborators. These group-level evaluations likely led to response averaging, reducing the
differentiation between responses. Another, more direct explanation can be found in the definition of the
Likert scale from the Relations Coordination Survey. Its response categories cover a very extreme range. For
example, questions respectively have an lower and upper bound of “never” and “always”. Such extreme answers
are virtually never given in practice, which then limits the “viable” answers to just three remaining options. In
future work, it is deemed worth looking at these scale and adjusting them to a more fine-grained and useful
range of answer categories. These findings emphasize the need for careful interpretation of categorical survey
responses and suggest that future studies could benefit from supplementing quantitative questions with
structured qualitative follow-ups.



13
SOLUTION DIRECTION AND FOLLOW-UP

QUESTIONS

The interview results presented in the previous chapter marked a significant step in the design process. A
solution direction for the communication tool was selected on the basis of these results, which is presented in
section 15.1. Here, the term solution direction is used because, although the type of communication tool was
selected, a number of different use cases were also identified for which the tool could be designed. These use
cases correspond to different conceptual design options. These are also presented in the first section. In order
to define and select the actual communication tool concept, instead of merely the solution direction, a number
of key follow-up questions were identified. These are presented in section 13.2, along with an outline of the
research activities that were conducted to answer them.

13.1. SELECTED SOLUTION DIRECTION
The morphological chart was selected as the solution direction. This design decision was made based one
three key considerations. Firstly, this idea was the overall favorite during the first four interviews1 that were
conducted (with AI-2, DE-1, DE-2, DE-3). The second important consideration has a practical nature, namely
the potential to realize a positive impact. Given the huge challenge of setting up and curating a successful
community, as described by interviewee AI-2, and the fact that there is currently no clear stakeholder to carry
such a community and invest the required time and effort over a prolonged period of time, the community
idea was considered to have less potential impact than the morphological chart idea. Finally, compared to the
community idea, the morphological chart also integrates much better with the aerospace part of this thesis.
In fact, there are several ways how the design process of this tool can benefit from the previously performed
work. For one, the knowledge gained about GenAI can be applied directly to define and select the set of design
features and respective design options to be included in the morphological chart. Furthermore, the personal
experience of being an aerospace domain expert who wants to develop a GenAI-powered tool will help to
empathize with the intended target audience. Lastly, the REProcess prototype developed for the aerospace
thesis can serve as a very convenient test case during the development of morphological chart. By being its
developer, the REProcess prototype is completely understood. Therefore, any version of the morphological
chart can be quickly evaluated by using it to characterize the REProcess prototype. This consists simply of
going down the list and selecting the design option(s) implemented for the REProcess prototype for each of
the included design features. Due to these synergies between the aerospace thesis work and the morphological
chart idea, the experience gained during the aerospace part of this thesis project is put to maximum use. For
the community design idea, comparable natural synergies could not be identified.

Based on the considerations discussed above, it was concluded that the morphological chart is the best solution
direction. Hereby, the second research question - Which communication tool idea has the most potential to
facilitate the collaboration between AI experts and domain experts? - is answered

1In the last two interviews (AI-3 and the interview with AI-1) where only this design idea was presented, to enable having a more in-depth
discussion in more depth, the feedback was also positive.
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13.1.1. DESIGN REQUIREMENTS BASED ON INTERVIEWS
Based on the interview results, a set of high-level requirements were formulated to guide the design of
the morphological chart. These requirements are closely linked to the critical issues that were included in
Figure 12.3.

1. The morphological chart should facilitate the development of GenAI-powered systems used to (partially)
automate engineering workflows within the context of complex, critical systems.

2. The morphological chart should help domain experts and AI experts to align their vision and expectations
about GenAI-powered systems.

3. The morphological chart should focus on GenAI features and design options that domain experts often
misunderstand or are unaware of.

4. The morphological chart should help domain experts to understand the prerequisites and investment
required to develop GenAI-powered systems.

13.1.2. POSSIBLE USE CASES FOR MORPHOLOGICAL CHART
Initially, the selection of the morphological chart idea was believed to provide a very clear direction for the
subsequent design and implementation phase. However, it was quickly realized that, while the overall form
of the tool was now clear, the answer to the next main research question - How to implement the selected
communication tool concept such that it provides maximum added value? - was not trivial. A key part of this
was the realization that the morphological chart could be applied in a lot of different ways. In particular, two
use cases were identified that were both deemed very interesting but have different implications for the design.

1. Communication focus: The morphological chart is placed on the table during intake meetings and
initial design discussions between AI experts and domain experts. For online meetings, the equivalent
would be to use a virtual whiteboard tool (e.g. Miro or Mural).

Primary objective: Improving the accuracy of communication between AI experts and domain experts.
The AI expert can guide the domain expert through the chart to explain all the different aspects that have
to be considered. The options presented per design aspect provide a means for the domain expert to
articulate what kind of tool they envision and what fits best with their context. This concept is more
focused on addressing Type 2 misaligned expectations (defined in section 12.3).

2. Education focus: The morphological chart is presented to domain experts in settings where they do not
interact with AI experts. For example, on posters placed near the coffee machine, in the hallway, etc.

Primary objective: Educate domain experts on the capabilities (strengths and weaknesses), and the
prerequisites and investment required to develop GenAI-powered tools. This should improve their
ability to identify high-potential applications of GenAI within their own domain (inspiration and realistic
expectations), as well as their ability to communicate with AI experts. This concept is more focused on
addressing Type 1 misaligned expectations (defined in section 12.3).

In addition to the two primary use cases, a third possible use case that was identified is to use the morphological
chart to present the design of implemented GenAI-powered tools in a clear and concise way. This way of using
the morphological chart, however, could work in combination with either of the use cases presented above. In
other words, this was not a “design-to” use case but rather an additional application of the final tool that will
be viable either way.

13.2. FOLLOW-UP QUESTIONS
For either of the two primary use cases, the design of the communication tool would have to meet different
requirements and the final design will look rather different. For example, when focusing on the second use
case, a requirement along the lines of “The morphological chart should improve domain expert’s ability to
identify high-potential applications of GenAI within their domain.” could be added to the list, but for the first
use case this would not be a crucial requirement. On the other hand, when focusing on the first use case a
greater emphasis on designing the usage process surrounding the morphological chart itself is required. At this
early stage, that usage process was envisioned to be something along the lines of the methodology outlined
below:



13.2. FOLLOW-UP QUESTIONS 129

1. Sketch / visualize current engineering process/workflow

2. Formulate desired impact (work speed up, improve quality, increase job satisfaction, . . . ) to be obtained
by novel GenAI]-powered tool.

(a) Define using Key Performance Indicator (KPI)’s (current + target)

(b) Specify the change w.r.t. current engineering workflow (using previously made diagram of current
workflow).

3. Use morphological chart to discuss and define envisioned GenAI intervention.

Corresponding to this open question of what the specific focus of the morphological chart communication
tool should be, the following main research question was formulated:

RQ-4: DETERMINE DESIGN FOCUS

Which specific use case should the morphological chart be geared towards?

Another key question that was raised at this point was deduced more directly from research question 3.
Determining how to implement the tool such that it has real added value, will require finding out which similar
tools already exist. Based on this information, the morphological chart can be designed to address a gap in
existing work and thereby provide real added value. Additionally, performing this investigation could also
help to find an answer to the research question 4. To guide this investigation, the following research question
defined:

RQ-5: IDENTIFY SIMILAR EXISTING TOOLS

To what extent do similar tools exist, both in scientific and nonscientific contexts?

13.2.1. SUBSEQUENT RESEARCH AND DESIGN STEPS
The following activities were carried out to refine the content of the morphological chart and its accompanying
methodology:

• Follow-up literature study: A follow-up literature study was aimed at identifying similar tools. This
literature study directly relates to research question 5. The findings will also be useful as inspiration for
the design itself In addition, the literature study can be used to identify a niche that is not yet covered
by existing tools. Thereby, helping to answer research question 4. This literature study is presented in
chapter 14.

• Design based research: An iterative approach was used to create the morphological chart and answer
research question 4. Information collected from all previous research activities was used to develop
and iteratively refine prototypes of the morphological chart. These prototype iterations were used
during follow-up discussions (meetings/interviews) conducted with experts from the initial series of
interviews as well as additional AI experts and domain experts. Their input was used to inform design
improvements and in the end to determine an answer to research questions 3 and 4. These activities
and their results are presented in chapter 15.

• Final design: The final design, which integrates the answers to all research questions, is presented in
chapter 16.
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FOLLOW-UP LITERATURE REVIEW

The aim of the follow-up literature review was to identify communication tools and frameworks developed by
other researchers that fulfill a similar purpose as the envisioned morphological chart. This information serves
a dual purpose. Firstly, it is useful to identify a specific gap that can be addressed through the design of the
morphological chart and secondly, the existing tools and frameworks can be used as input and inspiration for
later design work.

14.1. METHODOLOGY
The initial focus of this literature review was to identify similar communication tools and determine the specific
gap. Once this was established, the scope of the search broadened and shifted towards finding and selecting
work that can provide useful input for the design process.

14.1.1. SEARCHES FOR SIMILAR TOOLS

GOOGLE IMAGE SEARCH

Before diving into any scientific literature, it was recognized that insights and inspiration could also be obtained
from assessing non-scientific sources. Large technical consultancies, for example, also write about AI and
how to implement it. Therefore, a Google image search was performed first to find any existing morphological
charts for GenAI. The following relatively simple queries were used:

• morphological chart generative ai

• morphological matrix generative ai

• design matrix generative ai

• design framework generative ai

SCOPUS SEARCH

The follow-up literature study was performed using Scopus and Google Scholar. The following search queries
were used:

• TITLE-ABS-KEY ( ( morphological AND ( chart OR matrix OR table OR analysis ) ) AND ( "generative
AI" OR "generative artificial intelligence" ) AND ( applications OR systems OR programs OR tools OR
methods ) )
Findings: just 4 results, 2 interesting.

• TITLE-ABS-KEY ( ( "ai tool design" OR "ai system design" ) AND ( "framework" OR method OR method-
ology OR approach OR practice OR taxonomy ) )
Filteris: limited to Computer Science and Engineering subject areas, published since 2019 (last 5 years),
and at least 1 citation.
Findings: 17 findings, 3 relevant based on title and abstract, 2 relevant after reading intro, results and
conclusions.
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GOOGLE SCHOLAR SEARCH

Due to the limited number of findings obtained from search literature with the Scopus search engine, a switch
was made to Google Scholar. This resulted in a big increase in the number of findings. The first search query in
the list below was identical to a previous Scopus search, but now yielded 8810 results instead of just 4.

• ( morphological AND (chart OR matrix OR table OR analysis) ) AND ( "generative AI" OR "generative
artificial intelligence" ) AND (applications OR systems OR programs OR tools OR methods )
Filtering: since 2019 (6050 results), sorted by relevance, assessed first 50 results.
Findings: initially resulted in 3 interesting finds. 2 discarded after reading more. Majority of findings
not relevant because they were A) articles where GenAI was used to generate a morphological chart, B)
focused on non-relevant domains, or C) less than 5 citations.

• "design" AND ( specification OR dimensions OR principles OR features ) AND ( "framework" OR method
OR methodology ) AND ( generative AND ( ai OR "artificial intelligence" ) AND (applications OR systems
OR tools OR methods))

• ((design OR development) AND ( framework OR method OR methodology OR approach) AND ( "genera-
tive AI" OR "generative artificial intelligence" OR "GenAI" ) AND (applications OR systems OR tools OR
methods))
Filters: since 2019, sorted by relevance, assessed first 50 results.

14.2. CONCLUSIONS ABOUT EXISTING COMMUNICATION TOOLS
The following results were drawn based on results from the literature study:

• A significant portion of identified research is about attempts to use GenAI to perform a morphological
analysis in order to (partially) automate the design process, instead of applying morphological analysis
to GenAI systems themselves.
Notable examples: Zhang and Yin [79],

• Other existing communication tools and frameworks typically contain a lot of AI-specific jargon and
technical information. They seem to be created by AI experts, for AI experts. These tools may be be
useful to facilitate communication during the collaboration between AI and domain experts but they
are not suited as stand-alone communication artifacts that domain experts can use or understand by
themselves.
Notable examples: Sengar et al. [80], Bandi et al. [81],

• The remaining communication tools and frameworks that were identified are not geared specifically
towards generative AI nor engineering contexts.
Notable examples: Rittelmeyer and Sandkuhl [82, 83]

• A gap was identified as a combination of characteristics: 1) morphological analysis of generative AI
systems; (2) geared towards engineering contexts; and (3) understandable by non-AI experts.

Another design requirement for the communication tool was formulated based on these literature study
conclusions:

The morphological chart should be understandable as a stand-alone communication artifact to
domain experts without in-depth GenAI knowledge.

14.3. SELECTION OF RELATED WORK FOR DESIGN PROCESS
In addition to identifying and verifying the gap in existing work, the second objective of this literature review
was to compose a selection of key sources that will be used to provide input and inspiration for the subsequent
design phase. Here, the target was to select between 5 and 10 sources used for in-depth analysis and compar-
ison. The selection was based on the criteria outlined below. In the rest of this section, these key literature
findings are presented. Their application to the design of the communication tool is presented in the next
chapter (section 15.3). In the remainder of this section, each of the selected sources is presented.

• Maturity: Sources were selected for their maturity, assessed using various characteristics. Examples
include the comprehensiveness of the framework (i.e., breadth and level of detail), extent of practical
application or validation, number of citations, and size or reputation of the associated organization(s).
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Note that these characteristics varied depending on the source type. For instance, citation count is
relevant to scientific sources, whereas organizational size is more applicable to non-scientific sources.

• Scope coverage: Recognizing that different sources emphasize different aspects of AI system design, the
selection ensured adequate coverage across all relevant dimensions.

• Diversity: The selection aimed to include a diverse range of sources to incorporate input from multiple
perspectives. This is reflected in the wide array of backgrounds from the authors of the selected works:

– Weisz et al. [2] - The authors are researchers affiliated with IBM Research, specializing in human-
computer interaction and AI design. This work was presented at the CHI Conference on Human
Factors in Computing Systems.

– Yildirim et al. [84] - This interdisciplinary team comprises researchers from Carnegie Mellon
University, with expertise spanning HCI, design, and AI. Publication: The study was published in
the Proceedings of the 2023 ACM Designing Interactive Systems Conference

– Shi et al. [85] - The main authors come from the Department of Electrical and Computer Engineer-
ing, Purdue University, USA, and their expertise is on GenAI and LLMs. Article published only on
arXiv.

– Rittelmeyer and Sandkuhl [82] - Authors come from Institute of Computer Science, University of
Rostock, Germany & School of Engineering, Jönköping University, Sweden. Paper was published in
Perspectives in Business Informatics Research, Lecture Notes in Business Information Processing.

– Yüksel et al. [4] - Authors come from Department of Industrial Design Engineering, Gazi University,
Turkey. Published in journal of Engineering Applications of Artificial Intelligence.

– Schmid et al. [3] - Main authors from University of Leipzig, Germany, or IBM, Germany. Published
in KI - Kunstliche Intelligenz journal.

14.3.1. DESIGN PRINCIPLES FOR GENERATIVE AI APPLICATIONS
Weisz et al. [2] Defined six design principles for Generative AI applications, formulated as “Design for ...”
statements. This recent framework (from 2024) claims to differentiate itself from existing work by focusing
specifically on Generative AI applications: “Existing human-AI design guidelines fail to address the unique
design challenges of generative AI because they do not cover generative use cases or new considerations
stemming from generative variability, and they do not cover new or amplified ethical issues stemming from
the models’ generative nature.”

The six design principles and corresponding design strategies for how to implement that principle are presented
in Table 14.1 below, which was obtained from [2].

Table 14.1: Design Principles for Generative AI Applications, obtained from [2]

Design Responsibly Ensure the AI system solves real
user issues and minimizes user harms.

• Design for the user by understanding their needs and
pain points, and not for the technology or its capabil-
ities.

• Consider and balance different values across people
involved in the creation, adoption, and usage of the
AI system.

• Determine whether generative capabilities beyond
the intended use case should be surfaced to the user
or restricted.

• Identify relevant user harms (e.g. bias, toxic content,
misinformation) and include mechanisms that test
and monitor for them.

Design for Generative Variability Help the user man-
age the ability of generative models to produce multiple
outputs that are distinct and varied.

• Generate multiple outputs that are either hidden or
visible to the user in order to increase the chance of
producing one that fits their need.

• Show the user the outputs they have created and
guide them to new output possibilities.

• Design user-driven or automated mechanisms for
organizing, labeling, filtering, and/or sorting outputs.

• Help the user identify how outputs generated from
the same prompt differ from each other.
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Design for Mental Models Communicate how to work
effectively with the AI system, considering the user’s
background and goals.

• Help the user understand the AI system’s behavior
and that it may produce multiple, varied outputs for
the same input.

• Help the user learn how to effectively use the AI sys-
tem by providing explanations of features and exam-
ples through in-context mechanisms and documen-
tation.

• Build upon the user’s existing mental models and
evaluate how they think about your application: its
capabilities, limitations, and how to work with it ef-
fectively.

• Capture the user’s expectations, behaviors, and pref-
erences to improve the AI system’s interactions with
them.

Design for Co-Creation Enable the user to influence
the generative process and work collaboratively with
the AI system.

• Assist the user in prompting effectively to produce
outputs that fit their needs.

• Let the user control generic aspects of the genera-
tive process such as the number of outputs and the
random seed used to produce those outputs.

• Let the user control parameters specific to their use
case, domain, or the generative AI’s model architec-
ture.

• Allow both the user and the AI system to improve
generated outputs.

Design for Appropriate Trust & Reliance Help the user
determine when they should or should not rely on the
AI system’s outputs by teaching them to be skeptical of
quality issues, inaccuracies, biases, underrepresenta-
tion, and other issues.

• Be clear and upfront about how well the AI system
performs different tasks by explaining its capabilities
and limitations.

• Show the user why a particular output was generated
by identifying the source materials used to generate
it.

• Encourage the user to review and think critically
about outputs by designing mechanisms that slow
them down at key decision-making points.

• Determine the role the AI system will take within the
user’s workflow.

Design for Imperfection Help the user understand and
work with outputs that may not align with their expec-
tations.

• Caution the user that outputs may not align with their
expectations and identify detectable uncertainties or
flaws.

• Help the user identify outputs that satisfy measurable
quality criteria.

• Provide ways for the user to fix flaws and improve
output quality, such as editing, regenerating, or pro-
viding alternatives.

• Collect user feedback to improve the training of the
AI system.

14.3.2. CREATING DESIGN RESOURCES TO SCAFFOLD THE IDEATION OF AI CONCEPTS.
Yildirim et al. [84] performed three design experiments:

Design Experiment 1: identify AI capabilities in ways that are useful for designers. This experiment resulted in
a resource of 8 high-level capabilities, collection of 40 AI examples with granular capabilities, and a grammar
for capturing and extending this resource with new capabilities and examples.

Design Experiment 2: Can designers use AI capability abstractions and examples to improve their ideation
process? How can we assess whether ideation is better? We detail a failed pilot study involving ideation sessions
with HCI students. This experiment revealed the importance of AI model performance, and resulted in a Task
Expertise-AI Performance matrix. The analysis of AI examples on the matrix suggested the need to search for
situations where moderate performance creates value. The experiment also surfaced tensions around the
user-centered design process when designers have predetermined that AI is the solution.

Design Experiment 3: Can designers sensitize innovation teams to look for opportunities where moderate
model performance might be valuable? We assembled an interdisciplinary team of data scientists and critical
care clinicians, and we brainstormed AI concepts for the intensive care unit (ICU). We found that starting
with examples of AI systems that create value with moderate model performance helped the team generate
concepts that were valuable and low-risk. The experiment revealed that an innovation process blending
user-centered and technology-centered approaches leads to better ideation.
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14.3.3. AN HCI-CENTRIC SURVEY AND TAXONOMY OF HUMAN-GENERATIVE-AI INTERAC-
TIONS

The AI design specification framework presented in the article Shi et al. [85] focuses on systematically analyzing
and organizing human-Generative AI interactions through a detailed taxonomy. This framework identifies six
key dimensions for designing effective and user-centered GenAI systems. An overview of these dimensions is
presented in Figure 14.1,

DIMENSIONS OF THE FRAMEWORK:
1. Purposes of Using GenAI: Outlines various goals for leveraging GenAI, such as refining outcomes, explor-

ing alternatives, automating processes, enhancing experiences, augmenting sample data, understanding
subjects, and getting answers to inquiries. Each purpose represents a distinct use case.

2. Feedback from Models to Users: Categorizes how GenAI systems communicate their outputs to users.
This dimension includes:

• Output Modalities: Text, images, audio, 3D models, etc.

• Functions of GenAI Models: Generation from scratch, transformation, inter-modal conversion,
and aggregation.

• Output Synchronization: Timing of feedback—real-time, delayed, or preliminary.

3. Control from Users to Models: Examines how users influence GenAI outputs. Key aspects include:

• Methods to Improve Outputs: Option selection, parameter tuning, natural language commands,
re-initialization, etc.

• Objects Controlled: Input prompts, latent space, parameters, and hyper-parameters.

• Mediums of Control: GUIs, voice commands, gestures, brain signals, etc.

4. Levels of Engagement: Defines the degree of user involvement in creating outputs, ranging from passive
(receiving information) to collaborative (co-creating content with GenAI).

5. Application Domains: Identifies diverse use cases, such as art and creativity, science and research,
programming, education, robotics, and quality of life.

6. Evaluation Strategies: Describes methods to assess GenAI systems, including technical evaluations,
user studies, and demonstrations.

Figure 14.1: Visualization of the Human-GenAI interaction taxonomy developed by Shi et al. [85].
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14.3.4. MORPHOLOGICAL BOX FOR AI SOLUTIONS: EVALUATION AND REFINEMENT WITH A

TAXONOMY DEVELOPMENT METHOD
Rittelmeyer and Sandkuhl [82] developed a structured framework for evaluating and refining AI solutions
using a morphological box approach, enhanced by a taxonomy development method. The morphological
box is a product development tool to break down a complex problem (in this case, AI solution design and
implementation) into distinct features, each representing a critical dimension of the solution. For each feature,
a range of possible values is defined, enabling organizations to evaluate different configurations systematically.
The box is presented in Figure 14.2.

Figure 14.2: Morphological box to support AI tool development. Obtained from [83]

14.3.5. REVIEW OF ARTIFICIAL INTELLIGENCE APPLICATIONS IN ENGINEERING DESIGN
The framework presented in the article by Yüksel et al. [4] provides a comprehensive overview of how AI
methods can be applied to engineering design. They include both classical AI methods (e.g., expert systems,
genetic algorithms, fuzzy logic) and modern AI techniques (e.g., machine learning, deep learning) to address
the different needs of the engineering design process. It emphasizes tailoring AI methods to specific stages
and challenges within the design lifecycle. This framework serves as a roadmap for systematically integrating
AI into engineering design workflows, enabling more efficient, innovative, and adaptable outcomes.

14.3.6. THE AI METHODS, CAPABILITIES AND CRITICALITY GRID
Schmid et al. [3] developed a three-dimensional classification scheme for AI applications. The three dimensions
they included were AI methods, capabilities and criticality. From these, the capabilities dimension is most
relevant for this research, as the others are too technical or classification-focused. The capabilities overview,
however, was found to be very elaborate and detailed. It is presented in Figure 14.3.

14.3.7. OTHER CONSIDERED WORKS
Some notable mentions other interesting works were identified that did not make the final selection: Strobel
et al. [86], Lupetti and Murray-Rust [54], Furtado et al. [87], Hughes et al. [88], Brereton et al. [89], Sahu [90],
Pradas Gomez et al. [91]. Informative, non-scientific sources include documentation from Microsoft1, Google2,
and Apple3 (last accessed: 1-10-2025).

1https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/getting-started/
llmops-checklist

2https://pair.withgoogle.com/guidebook/patterns
3https://developer.apple.com/design/human-interface-guidelines/machine-learning

https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/getting-started/llmops-checklist
https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/getting-started/llmops-checklist
https://pair.withgoogle.com/guidebook/patterns
https://developer.apple.com/design/human-interface-guidelines/machine-learning
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Figure 14.3: Comprehensive overview of AI capabilities obtained from [3].
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14.4. CONCLUSIONS FROM FOLLOW-UP LITERATURE STUDY
A number of conclusions were drawn based on the follow-up literature study that was performed.

NO EXISTING MORPHOLOGICAL CHARTS FOR GENAI SYSTEMS

A morphological chart for generative AI systems could not be found, despite extensive searches in Scopus,
Google Scholar, and with “regular” Google image searches. It is concluded that such a chart has not been
developed before.

EXISTING FRAMEWORKS: BY AI EXPERTS, FOR AI EXPERTS

Many design frameworks for GenAI systems were found, with varying levels of comprehensiveness and
maturity. However, an overarching similarity is that all seem to be created by AI experts, for AI experts. This
important conclusion is based on the two main findings.

Firstly, the existing frameworks represent the design problem as a set of design aspects (i.e. dimensions) or
questions that have to be addressed. However, notably absent in the existing frameworks is an overview of
the main design options for each of those aspects/dimensions. For example, Weisz et al. [2] directly address
the AI system developers with things that they should consider, such as “Ensure the AI system solves real user
issues and minimizes user harms.”. However, they do not provide an overview of the ways how to achieve this.
Conversely, when existing works do include specific options, they focus on a small subset of design aspects. For
instance, Hughes et al. [88] and PricewaterhouseCoopers [92]. A framework covering all system-level design
aspects and the corresponding design options for each of the design aspects was not discovered.

The second aspect indicating that the existing frameworks are geared towards AI experts is their wording.
The GenAI frameworks typically use a lot of jargon and technical AI terms in their descriptions. For example,
Schmid et al. [3], Strobel et al. [86], or Shi et al. [85]. Therefore, they are very difficult to understand and
use by people who lack in-depth AI expertise, like (engineering) domain experts. In combination with the
previous characteristic, this led to the conclusion that existing frameworks were created “by AI developers, for
AI developers”.

OPPORTUNITY FOR NOVEL FRAMEWORK

Based on the previous conclusions, a gap is identified in the form of an AI design framework that is geared
specifically towards (engineering) domain experts. This gap could be addressed by designing a novel framework
that avoids AI jargon, and presents an overview of the options and possibilities for each of the AI system
design dimensions, instead of merely listing questions and factors that should be accounted for by the AI
system designers. Correspondingly, the following design requirement was formulated and added to the list
presented previously in section 15.1:

The morphological chart should be understandable as a stand-alone communication artifact to
domain experts without in-depth GenAI knowledge.
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MAIN DESIGN ITERATIONS

This chapter presents the method and findings used to iteratively develop the communication tool. In the
figure below the main iterations steps (blue) and activities used to generate are outlined from left to right.
The setup of this chapter is based on the main iterations steps outlined in this figure. The methods and their
findings related to each iteration are discussed respectively in dedicated sections.

Figure 15.1: The iterative design process used to design and implement the morphological chart. The sequence of methods (green) that
provided input to the next iteration (blue) are ordered from left to right.

HIGH-LEVEL DESIGN BREAKDOWN AND APPROACH

The design of the morphological chart was approached by breaking it down into three main aspects. Firstly,
the usage, i.e. the method by which AI and domain experts should use the tool. Are there any preceding steps?
And when (in the timeline of the project) to use it? Secondly, the content which is basically the answer to the
question which design dimensions and, for each of these dimensions, which specific design options should be
included. Finally, there is the visual aspect, so what will it look like? This includes, for example, determining
how to visually organize design dimensions and options, and using icons to represent them.

The focus of the first iterations (1-3) was on the content. The visual design was initially completely disregarded
but in iterations 2 and 3, it was gradually given some more attention in preparation for the validation sessions.
In these validation sessions, the usage was determined. For the last design iteration, all information was
combined and all three aspects (usage + content + visual design) were finalized. The final design is presented
in the next chapter.

15.1. DESIGN ITERATION 1: CREATING THE INITIAL PROTOTYPE
As previously discussed in section 12.4 and , the final part of the last two interviews (with AI-1 and AI-3) focused
specifically on the morphological chart idea instead of discussing all solution ideas. This allowed gathering
input from these experts regarding the potential implementation of this idea. Additionally, a follow-up meeting
with AI-2 was organized to obtain similar input from them. The interview findings and meeting notes from
these sessions are included in Appendix H. A summary of the most important findings from these sessions,
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typically mentioned by multiple experts, is presented in subsection 15.1.1. The input from these experts was
one of the main ingredients used to create the initial prototype. Additionally, the knowledge and experience
from the previous aerospace part of this thesis was also used to brainstorm a list of possible design dimensions
and corresponding options. This list is provided in Appendix I. An early version of this list was also used as a
basis for discussion during the follow-up meeting with interviewee AI-2. The initial prototype that was created,
based on all collected information is presented in subsection 15.1.2.

15.1.1. SUMMARY OF DESIGN INPUT FROM INTERVIEWED AI EXPERTS
• Understanding AI Capabilities and Limitations: A recurring theme across interviews was the need

for domain experts to gain a clearer understanding of the capabilities and limitations of generative
AI. Participants highlighted that misconceptions about what AI can achieve often hinder effective
collaboration. For instance, while AI can generate conceptual designs or basic sketches, it is not yet
capable of producing fully functional Computer Aided Design (CAD) models or manufacturable outputs.
Similarly, understanding the GenAI development lifecycle, including training data requirements and
intermediate steps in the GenAI pipeline, was deemed essential for fostering mutual understanding
between AI experts and domain experts.

• Transparency and Human-in-the-Loop Systems: Transparency in AI processes was emphasized as a
critical feature for the communication tool. Interviewees noted the importance of intermediate outputs
being accessible to domain experts, allowing them to verify and approve these steps before final outputs
are generated. This approach supports the inclusion of human-in-the-loop workflows, where domain
experts actively validate AI-generated results to ensure trust and alignment with project goals.

• Role of GenAI within the tool: The interviews underscored the importance of defining the tool’s purpose
and level of automation. The communication tool must clarify GenAI intended role: whether it serves as
a supportive agent offering suggestions, an autonomous decision-maker, or a system under the complete
control of the user. The tool should also allow to define the level of integration with existing workflows
and engineering tools, such as KBE or Finite Element Modeling.

• Preconditions for Success: Several preconditions were identified as critical for the successful imple-
mentation of AI-driven systems. It would be beneficial for the communication tool to make this explicit.
Examples of these preconditions are:

– Well-documented workflows and structured data.

– Effective risk management practices, such as the four-eyes principle, to support human-in-the-loop
systems.

– A clear division of responsibilities between designers, other software tools, and the new GenAI-
powered system to avoid confusion and inefficiencies.

15.1.2. INITIAL PROTOTYPE
The full list of ideas for possible design dimensions and options (Appendix I) This list was created based on the
input from follow-up meetings, combined with experience and previous interview results. Subsequently,

To create the first prototype of the tool the design input from experts was used as a guide to refine and extend
the complete list of possible design dimensions and options from Appendix I. Thereby the first prototype was
obtained, which is presented in Figure 15.2.

15.2. ITERATION 2: ADDITIONAL INPUT FROM EXPERTS

15.2.1. INTERVIEW ABOUT FIRST PROTOTYPE
The first prototype of the communication tool was put in front of a new interviewee (AI-4) who was not part
of the first round of interviews. This interviewee was recruited based on recommendation by one of the
interviewees from the first round. They were highly experienced in the field of (Gen)AI, having contributed
and overseen more than 300 AI projects.

The interview consisted of two main blocks. During the first block, the research was introduced and the
findings from the problem exploration phase were introduced. The interviewee was asked to reflect on the
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Figure 15.2: First prototype of the morphological chart.

identified challenges. Thereby, additional input for the problem definition was obtained. The second part of
the interview was focused on gathering input on the developed prototype.

During the meeting, notes were kept. These were processed after the meeting into a 2-page summary which
was sent to the interview to verify and approve that everything was understood correctly. They approved the
content.

DO YOU RECOGNIZE THESE FINDINGS? ANY ADDITIONS OR COMMENTS?
Yes, in addition the following comments:

1. Often the requirements of the potential solution are not clear. In particular with regard to the user
experience and the training data. This applies to both sides (AI developers + end users/clients). Too
often in a project they continue based on assumptions.

2. Clients/end users can have unrealistic expectations, for example that a model will have 100% accuracy.
Some even view AI as something magical. When subsequently using the tool, they are easily disappointed
and have a tendency to give up (after 1 try). Therefore, expectation management is crucial. Both in terms
of realistic performance expectations, as well as usage of the tool (e.g. prompting). They need to learn
how to use the final tool in order to get the expected performance out of it.

3. These issues can be mitigated by proper team composition. End-users should be actively engaged as
part of the development team throughout the project.

WHAT IS YOUR CURRENT APPROACH TO ADDRESS THESE CHALLENGES?
We use CRISP-DM (CRoss Industry Standard Process for Data Mining) as project life cycle approach. Formalized
processes, including end user input/feedback/engagement, are defined for the steps defined in this process.
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Figure 15.3: CRoss Industry Standard Process for Data Mining

WHAT ARE YOUR INITIAL THOUGHTS ABOUT THE MORPHOLOGICAL CHART CONCEPT + USAGE METHOD?
Very important to start with how things are currently done. High-level usage scenario should look something
like this:

1. Sketch current engineering workflow

2. Specify desired improvement à define this using KPI’s (current + target)

3. Perform impact analysis: evaluate all points in the current engineering workflow where GenAI provides
potential for improvement. For every point, the 4 aspects below should be evaluated.

(a) Development cost

(b) Ease of development

(c) Ease/cost of integration (adoption, learning, training)

(d) Ease/cost of maintaining

4. Use morphological chart to characterize envisioned GenAI system

Additional notes on above:
The impact analysis + corresponding advice (step 3) is performed because clients generally have a poor
understanding of suitable applications of GenAI technology within their workflows. In 99% of cases, clients
approach us with the wrong question. They ask to automate step X with GenAI, but then the impact analysis
shows that improving step Y is much more cost-effective. This is true despite the technical knowledge of clients
(engineering organizations). In summary: Engineering clients are not good at identifying their own problem
cases where GenAI is a viable solution.

Using the morphological chart in step 4 might not be necessary anymore, because different design options
were already conceptualized and assessed by the AI team during impact analysis (step 3).

WHICH KEY DESIGN ASPECTS COULD BE ADDED TO MORPHOLOGICAL CHART?
It would be valuable to incorporate the following design aspects/questions:

• Security & Privacy: align with organizational data policy. For example, should all data be kept internal?
Is it okay to send to a server outside EU?
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• User experience: Understand/define the potential prompts. Which questions will the end user pose to
the model? How will they specifically formulate these?

• Life cycle management: How will the GenAI system be evaluated and improved over time?

ANY FINAL COMMENTS OR INSIGHTS?
Make use of existing tools/capabilities, and incorporate them into my tool and methodology. For example,
OpenUML or www.websequencediagram.com. The latter is particularly interesting. A key feature is its user-
friendly textual language to quickly define and iterate on sequence diagrams. Additionally, many templates
(created by user community) exist for a variety of interaction patterns. It would be useful to create additional
templates specifically for GenAI user/system interactions.

15.2.2. APPLYING FIRST PROTOTYPE TO REPROCESS TOOL FROM AEROSPACE THESIS
In this exercise, the morphological chart was “filled out” for the REProcess prototype that was developed for
the aerospace part of this thesis. This constituted selecting the design option(s) for every design dimension in
the morphological chart prototype according to the design decisions made for the REProcess prototype. This
lead to the following result:

1. GenAI integration with existing systems: 3. Integral component of envisioned system or workflow

2. Control & autonomy of GenAI: 1. Intermittent AI + human in control: human initiates AI (batch
processing)

3. GenAI purpose: 3. Data extraction/transformation (bridging function) + 4. Summarization, interpreta-
tion (analysis)

4. Type of input(s): 2. Semi-structured text (eg source code)

5. Context data collection: 2. Non-AI system provides (additional) input data

6. AI information access: 5. Other: None

7. Explainability & Transparency: 1. Stepwise traceability + Deterministic

8. Type of output(s): 1. Unstructured text (eg natural language)

9. Viable product launch maturity / Targeted product maturity for launch: 1. Prototype (TRL 4/5)

CONCLUSIONS FROM THIS EXPERIMENT

A review of these results led to a number of insights and conclusions. First and foremost, the representation
of the REProcess prototype by the morphological chart is still extremely high-level and abstract. Based on
this information alone, an outsider who does not know the REProcess tool would still have no idea what the
actual software system would look like. Adding additional contextual information, like a sketch of the current
engineering workflow and the highlighting the step where the envisioned GenAI system should intervene,
will be crucial. Furthermore, the existing definitions of the dimensions and design options included in
the morphological chart should be refined and additional design dimensions should be added to make the
resulting specification more fine-grained and informative.

15.2.3. SECOND PASS THROUGH ORIGINAL INTERVIEW RESULTS
During this iteration, the original interview results presented in chapter 12 were also reviewed again for
inspiration. Specific statements were linked to related aspects of the morphological chart design in a dedicated
column of the morphological chart, which is shown in Figure 15.4.

15.2.4. SECOND MAJOR ITERATION
Based on the findings from the design activities discussed in this section, a second major iteration step was
performed. The result is presented in Figure 15.4. For every design dimension, the related input is listed
(column 4).

http://www.websequencediagram.com/
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Figure 15.4: Second major communication tool iteration
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15.3. ITERATION 3: FOLLOW-UP LITERATURE STUDY
The third iteration was created by taking each of the frameworks presented in section 14.3 and using it as a lens
to reflect on iteration 2 of the framework. Every individual item of each literature frameworks was reviewed
and categorized as: 1) directly related to design dimension(s) already included in the morphological chart, or
2) not related to any design dimension of the morphological chart. In case of the former, the literature item
was added as a note to the corresponding design dimension in the morphological chart. After all literature
frameworks were reviewed, these notes were used to refine the corresponding definitions. This resulted in the
next iteration of the morphological chart. The following design dimensions were modified:

• Role of GenAI

• Targeted PLM phase

• User control & system autonomy

• Workflow Flexibility & Automation

• Iteration & approval of GenAI output

• Input modality (context data)

• Context augmentation approach

• Transparency

• Future developments steps

In case items were found to not be related to any specific aspects of the current morphological chart, they
were evaluated based on relevance and potential added value. If they were deemed potentially interesting
to incorporate, they were stored in a separate list of applicable findings. After reviewing every individual
component from the literature frameworks, some general comments about the applicability and insights were
captured as well. These individual analysis findings per framework are provided in Appendix J. Potential design
dimensions to be added on the basis of this analysis step are described below:

• Add dimension about risk (mitigation) features: Many frameworks explicitly included features re-
lated explicitly to risk mitigation, such as highlighting high levels of uncertainty in GenAI output, and
notifications to the user about potential to hallucination, potential bias, etc.

• Add (even more) user-related design dimensions and options: Additional characterizations of users
and user interaction were found. For example, user output annotation and curation features, and
characterization of the end-users by expertise (IT-expert, IT savvy, or layman) or their domain (writing,
programming, robotics, etc.).

After some deliberation, it was decided to not include additional design dimensions in the third design iteration.
The main reason for this design decisions was made based on the already large size of the morphological chart,
which already consisted of 85 different design options spread out over 18 design dimensions. Instead, these
additional findings will be revisited after testing the tool in the next iteration step.

15.3.1. LAYOUT UPDATE
In preparation of the testing and validation sessions a visual improvement to the communication tool was
made. Instead of simply listing the design options as a textual list, they were now organized in columns. This
made the tool much more recognizable as a morphological chart and facilitated the side-by-side comparison
of design options participants needed to perform during the testing and validation sessions.

The version of the morphological chart used during validation is presented in Appendix K.

15.4. ITERATION 4: VALIDATION SESSIONS
The testing and validation sessions were set up to assess to what extent the developed morphological chart is
successful in educating domain experts about GenAI systems (regarding capabilities, prerequisites, required
investment) and facilitating accurate communication and expectations regarding envisioned GenAI systems.
By adopting this dual focus, the validation sessions will also help to determine the most suitable application
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for the developed tool (i.e. use case 1 vs. use case 2) and thereby provide an answer to Research Question 4.
During the validation sessions, the morphological chart was assessed on the following aspects:

1. Clarity and understandability: Do participants understand how to work with the morphological chart?
Can they understand the design dimension descriptions and their corresponding options?

2. Coverage: Does the set of design dimensions and options cover all important areas? Should certain
dimensions or options be added or removed?

3. Educational benefits: To what extent does the morphological chart improve the understanding of
domain experts about capabilities and the possible design space of GenAI-powered tools?

4. Ideation support: To what extent does the morphological chart support ideation of novel GenAI-powered
systems?

5. Communication benefits: To what extent does the morphological chart facilitate clear and accurate
communication in order to help to align on the vision and expectations regarding novel GenAI-powered
systems?

15.4.1. VALIDATION SESSION PARTICIPANTS
Two different validation sessions were set up. Both sessions were conducted with domain experts who had not
been involved previously involved in the research. The first was conducted with a single domain expert (DE-4)
who fulfills a chief engineer position in a large research and technology organization (+/- 500 engineers). Given
that this session was conducted with only one expert, the emphasis of this session was on the first four aspects
and somewhat less on communication because the communicative qualities could not be directly assessed.

In the second session, all 5 aspects were investigated but the emphasis of the second session, which was
performed with 2 participants, was more on the communication benefits. Ideally, this second session would
have been performed with a domain expert and AI expert to really test the communication benefit in the target
scenario. However, a suitable setting for such an experiment could not be found. Therefore, the next best
option was chosen, which was a setting with two domain experts (DE-5 + DE-6) who would discuss a novel
GenAI-powered system. These domain experts were colleagues working in an academic environment.

15.4.2. VALIDATION SESSION SETUP
In terms of the overall process, a similar setup was used as for the initial round of interviews. MS Teams was
used to record and automatically transcribe the sessions. Additionally, notes were made during the observation
phase. Participants were informed of this setup and data capturing methods in the initial invitation, and a
similar consent form as for the structured interviews (Appendix G) was signed by all participants.

The validation sessions consisted of three main phases. The first phase was the introduction. Here, a brief
introduction to the research and background of the communication tool was provided so participants could
understand the context and the problems that the communication tool is intended to address. The second
phase revolved around capturing the first impressions and reflection of the participants about the morphologi-
cal chart. Before introducing the chart itself, the participants were instructed about this intent. They were
asked to think and reflect out loud while reading through the morphological chart from top to bottom. The
idea behind this method was to capture their real and honest responses, rather than socially desirable answers,
which is essential for proper validation. For this same reason, an additional explicit instruction was provided
that the goal of the session was to learn, so participants were asked to avoid socially desirable answers and be
honest. The main slides used to introduce the research and outline this exercise for phase 2 are presented in
Figure 15.5.

Note: at the particular moment in time that the validation sessions were conducted, the expected design direction
was more towards the educational use case (through design of an education poster) than the communication use
case. This explains why the communication tool introduction (slide c) is somewhat biased towards this.

In session 2, the second phase included another exercise after capturing the first impressions from the
participants. This second exercise consisted of using the morphological chart to discuss a new GenAI-powered
engineering tool that was previously conceptualized by one of the participants (DE-5). The other participant
(DE-6) was not yet aware of this idea. Hence, during this exercise participant DE-5 initially took the lead to
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(a) Slide: Science communication introduction (b) Slide: Research conclusions (presents Table 12.1)

(c) Slide: Communication tool introduction (d) Slide: instruction for phase 2 exercise

Figure 15.5: Four slides used during the validation sessions to introduce the research and outline the test assignment

explain the idea. Subsequently, after the intended context and concept of the tool was broadly explained, the
instruction was to use the morphological chart to further discuss and refine the idea together.

During both sessions, the researcher was present in an observer role. When encountering items that really
could not be resolved without intervention, the researcher stepped in to clarify the intent and meaning of
a particular concept so it could be used as intended. This was only done after a waiting period. When such
clarifying interventions were required, this was noted as a point of improvement.

The third phase of both validation sessions consisted of reflection and evaluation questions to assess to what
extent the communication tool could achieve the intended benefits. The four main evaluation questions
are outlined below. Note that each question consists of a quantitative and qualitative part. This allows for
optimal comparison of the answers while also obtaining detailed insights. During the second session, both
participants were asked to write their answers down rather than discussing them out loud as to prevent them
from influencing each other.

1. To what extent does my tool help DE to better understand the GenAI capabilities?
• scale of 1 - 5
• suggestions?

2. To what extent does my tool help to better understand the possible design space of GenAI systems?
• scale of 1 - 5
• suggestions?

3. To what extent do you think it can help with ideation of GenAI systems?
• scale of 1 - 5
• suggestions?

4. To what extent do you think it can help communication about GenAI systems with AI experts?
• scale of 1 - 5
• suggestions?

5. Any final comments or suggestions?
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15.4.3. VALIDATION SESSION RESULTS
The quantitative results corresponding to evaluation questions 1-4 from the list above are presented in Ta-
ble 15.1. Based on this table, a number of very clear conclusions can be drawn. Namely, that the morphological
chart is much better suited as a communication tool (use case 1) rather than a stand-alone educational tool
(use case 2). When looking at the additional comments made regarding the positive score for ideation, it
became clear that a key reason why participants provided this score was due to both providing options as well
as highlighting prerequisites and limitations. This, and several other qualitative findings are discussed in the
remainder of subsection. Thereafter, the results regarding clarity and understandability are presented.

Table 15.1: Quantitive results from validation sessions (scoring range: 1-5).

Evaluation questions
Average score

(n = 3)
Spread [lowest - highest]

(n = 3)

1. Understanding GenAI capabilities 2.3 2 - 3
2. Understanding GenAI design space 3.3 2.5 - 4.5
3. Help with ideation 4.2 4 - 4.5
4. Help with communication 4.3 4 - 4.5

SUITED APPLICATION CONTEXT AND USAGE

The differentiation between the lower scores obtained for understanding GenAI capabilities and design
space, and the higher scores for ideation and communication can be well-understood based on the following
comments made by participants about what they envision is the best application of the morphological chart:

• AI-4: “So the way I think that tool is good. For me, you would use that tool at the requirements capture
stage of a new project where you’re developing a new AI model. Before you showed it to me, I’d have
thought that it might be something that you’d have up in a breakout area or on a wall somewhere that
people could look at and get more awareness of what AI is capable of, but I don’t think it explains
capabilities that well. I think it’s good at specifying requirements of systems.”

• AI-4: “I think it does that [ideation] a little better than the other two [understanding capabilities & design
space]. So, I’d put that at a four because if you’re giving people options, they can kind of fill in the gaps as
to what’s possible.”

• DE-5 “By going through this, you as AI expert are inviting me to give you detailed information that is
relevant for you to decide if it’s doable with AI, or with this technology instead of the other. So me as
a knowledge expert, a domain expert, I don’t learn about AI. It’s not that I become more literate about
this.”

• AI-5: “I see it more as giving you all the information that apparently is relevant for AI experts to under-
stand how to match the tools and technology they have to the domain experts needs.”

• DE-6: “This is a communication tool that helps the domain expert to tell the AI people what they would
like to have, and that would then require the AI people to have a look, have a chuckle, and come back to
the domain experts and say, we may need to talk.”

• AI-6: Good preparation for a meeting between AI expert and domain expert to consider items that are
relevant: “What I think it does really well is it prompts me to think about the things that the AI expert is
likely to ask about”.

• AI-6: “Helped notice a few possibilities, options”

• AI-6: “[The tool] Serves as reminder about training data and validation.”

POSITIVE REACTIONS SHOWING LEARNING AND EXPANDING THOUGHT PROCESSES

Multiple design dimensions induced expressions that indicated they really expanded the participants thinking.
For examples, utterances of “Aha”, or “Hmmm, interesting...”. Provoking such reactions is one of the main goals
of the morphological chart so these reactions are deemed highly positive. An overview is provided below:

• Interaction synchronization: Up front option -> “Aah, interesting” - DE-4
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• User approval & iteration (of GenAI output): “"Aah, not thought about it before but actually useful to
think about. Last 4 options all useful, only thought about approval or manual correction. [...] interesting
to discuss with AI expert” - DE-6

“This a category I didn’t think about before that’s actually useful. So I would have gone with this one
[option 3] first to generate the thing and then you’d see whether you like it or maybe you’ll correct the
code manually. But this actually highlights there are that there are other ways to do this.” - DE-6

• Method of collecting (additional) input data: “I understand the reason to put it in though” - DE-4

• Target level of output maturity: “Phoe... ideally top level but what is feasible?” - DE-6

• GenAI determinism: “Hmm [long pause]. Yeah.” DE-4

• Output quality assessment: “Companies might want to apply existing quality processes to AI output.
Good prompt to make the user think about. That’s good” - DE-4
DE-5 and DE-6 both ask question out loud: “Can you actually quantify this?”

• Training data: “No idea how much data is needed [...] Hmm, that is actually very hard to find.” - DE-6
“Forces domain experts to think about data as important requirements for the project” - DE-6

• Current work process, level of formalization: “That one really makes sense” - DE-4

• Data Security & Privacy: “Probably same answer for an entire company but good that its in there” - DE-4

PROVIDE MORE INFORMATION ABOUT FEASIBILITY AND IMPLEMENTATION EFFORT OF COMPOSED SOLUTION

The domain experts expressed a need for more information about the feasibility and implementation effort
associated with developed a composed solution. An explaining factor is that an AI expert was not present
during the validation sessions, who would normally provide this input.

• DE-5: “However, if I as a domain expert, go through this and say this is what I want, there is nothing
guaranteeing that that is actually possible. [...] if I just put a wish list together there is a high probability
that it’s not going to be feasible. ”

• DE-6 “Not sure what types/sizes of models would be required, or what’s feasible.”

• DE-6: “I’d really like some feedback on what the choices mean for the task at hand.”

• DE-6: “It would have been really interesting if there’s like some complexity scale that indicates ’Yeah,
what you’ve just put together is really hard to do’ or ’Yeah, this is easy’.”

ADDITIONAL DESIGN DIMENSIONS

Some additional design dimensions were suggested:

• Commercialization dimension suggested by DE-4: “Businesses are driven by time, cost and quality. So,
[I’d suggest] putting somewhere some reference in to what the expected business output is. Is this to
increase throughput time, so making a process quicker, or is it improving the quality?”

• Scope for model improvement dimension suggested by DE-4: “daily model update or only one revision
per year?”,

• Internal dissemination dimension suggested by DE-4: “Used by one person or entire business?”

IMPROVING CLARITY AND UNDERSTANDABILITY

Overall, the tool was found to be mostly clear and understandable based on the results from phase 2 of the
validation sessions (first impressions, thinking out loud, discussing new idea for GenAI-powered system).
However, as noted by DE-5, “Tool answers can still be ambiguous”. Specifically, the following dimensions need
to be modified to improve clarity:

• Targeted product life cycle phase: Design and Development currently in separate options, but they
should be together.

• Interaction synchronization: The dimension itself was not immediately clear, but it became clear after
reading the options. Some ambiguity remained about the boundary between real-time and delayed
(Seconds? Minutes?)
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• Workflow Flexibility & Automation: Not immediately clear, but icons helped participants to finally
figure it out (mostly). The specific focus of this dimension on the internal processing workflow needs to
be clarified.

• User approval & iteration (of GenAI output): Dimension really clear but difference options 1 and 2 not
distinctive enough. Option 3 needs to be clarified more specifically.

• Method of collecting (additional) input data: More tricky to interpret. "Collection" term makes it
unclear. It provoked thinking from project-level perspective instead of software system implementation.

• Transparency: redefine red text for option 1 to generally not advised

• Training data: MVP terminology not clear. Also redefine dimension to Availability of training data.

15.4.4. DESIGN CHANGES COMPARED TO ITERATION 3
An overview of the changed and added design aspects compared to the morphological chart used during the val-
idation sessions (iteration 3) are presented below, along with associated rationale. These modifications aimed
to improve usability, clarity, and applicability while ensuring the tool remains an effective communication aid
for both AI experts and domain experts.

ADDED TITLE: Ideation Matrix for Generative AI-powered Automation Systems
The new title was chosen to better reflect the intended purpose of the tool. The term Ideation Matrix was
preferred over Morphological Chart as it more clearly conveys the matrix’s role in structured brainstorming
and early-stage AI system design. Additionally, the title explicitly highlights Generative AI-powered systems
with a focus on automation, ensuring that the scope is well-defined. The term "engineering" was deliberately
omitted, as the final design turned out to be broadly applicable across different domains, with minimal
engineering-specific content.

ADDED ICONS FOR IMPROVED CLARITY

Icons were integrated into the matrix to visually support certain design dimensions. However, not all di-
mensions were assigned icons to prevent excessive visual clutter. The inclusion of icons followed three key
criteria:

1. Emphasizing dimensions that are less understood or commonly overlooked by domain experts. This
decision was informed by insights from the aerospace project, findings from previous design iterations,
and validation session feedback.

2. Enhancing the clarity of design dimensions and options that were identified as difficult to interpret.

3. Providing a visual complement to textual descriptions, improving comprehension where beneficial.
Notably, for some dimensions (e.g., training data), attempts to introduce icons led to reduced clarity
rather than improvement, and were therefore omitted.

All icons were sourced from the Flaticon online database and were customized to match the color scheme of
their respective categories. The curated collection of icons is available online1.

ENHANCED TEXTUAL DESCRIPTIONS FOR CLARITY

Text descriptions of various design dimensions and options were revised to improve clarity, particularly those
that were flagged as ambiguous during the validation sessions.

VISUAL REFINEMENTS

The overall layout of the matrix was improved for better readability and usability. This included the introduction
of "danger triangle" icons to indicate generally non-advisable design options. These warnings replaced textual
descriptions to streamline the design while maintaining essential guidance. Additional clarifications and
details were included as comments in the Excel version of the matrix2. Furthermore, references to the online
version, authorship, and attribution were added at the bottom of the matrix.

1https://www.flaticon.com/collections/NTY1NjA3NzY=
2https://docs.google.com/spreadsheets/d/1DVCikZT1rKJ4ci35XkS2aqfTi0JoNHLD/edit?usp=sharing&ouid=
102117738994161547080&rtpof=true&sd=true

https://www.flaticon.com/collections/NTY1NjA3NzY=
https://docs.google.com/spreadsheets/d/1DVCikZT1rKJ4ci35XkS2aqfTi0JoNHLD/edit?usp=sharing&ouid=102117738994161547080&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1DVCikZT1rKJ4ci35XkS2aqfTi0JoNHLD/edit?usp=sharing&ouid=102117738994161547080&rtpof=true&sd=true
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ADDED A COMMENTS SECTION

A dedicated section for comments was incorporated into the matrix. This allows users to take notes during
design discussions, capturing relevant considerations for each design dimension.

INCORPORATION OF ADDITIONAL DESIGN DIMENSIONS AND OPTIONS

Based on feedback, additional design dimensions were integrated, including Target Users and Targeted
Improvement. These align with suggestions from participant DE-4, who referred to them as the internal
dissemination dimension and commercialization dimension, respectively. Additionally, several previously
identified dimensions that were set aside during iteration 3 were revisited and included to provide a more
comprehensive representation of user-related design considerations.

REMOVAL OF THE FUTURE OUTLOOK DIMENSION

The Future Outlook dimension was removed as it contained only a single item and did not contribute
significantly to the core objectives of the matrix. Efforts to expand this category led to distractions from the
intended application context. To maintain conciseness and relevance, this dimension was excluded from the
final design.

DEVELOPMENT OF A USER MANUAL

A structured user manual was developed to guide AI and domain experts in effectively utilizing the matrix. The
finalized manual is presented in subsection 16.1.1.



16
FINAL COMMUNICATION TOOL DESIGN

This chapter presents the final design of the communication tool developed during this research, called
the Ideation Matrix for Generative AI-powered Automation Systems. The final design and intended use
(including user manual) are presented in section 16.1. Subsequently, the design rationale, outlining the changes
with respect to iteration 3 validated in the previous chapter and alignment with the design requirements, is
provided in section 16.2.

16.1. FINAL DESIGN: THE IDEATION MATRIX
The Ideation Matrix serves as a structured communication tool designed to facilitate discussions between
domain experts and AI experts in the early stages of GenAI-powered automation system development. It
enables users to systematically explore design possibilities, align expectations, and assess prerequisites and
limitations. The finalized design is presented on the next page. The matrix is organized into five main
categories of design dimensions: Scope & Purpose, User Experience, AI Input, AI Output, and Prerequisites
& Limitations. Descriptions of these categories and their corresponding design dimension and options are
provided in subsection 16.1.2.

16.1.1. USER MANUAL FOR THE IDEATION MATRIX

PURPOSE AND INTENDED USE

The Ideation Matrix is a structured communication tool designed to facilitate the initial design meetings
between domain experts and AI experts when exploring the development of a GenAI-powered automation
system. The primary purpose of the matrix is to:

• Help domain experts and AI experts collaboratively define and refine project ideas.

• Provide a structured approach to making abstract AI-related ideas more concrete.

• Identify key design dimensions, dependencies, and feasibility constraints.

• Highlight prerequisites and limitations associated with implementing GenAI solutions.

• Serve as an intake form that domain experts can fill out in preparation for a subsequent meeting with AI
experts (optional).

HOW TO USE THE IDEATION MATRIX

The Ideation Matrix is designed for use during the early-stage scoping and ideation phase of GenAI-powered
system development. It can be used in two main ways:

1. As a discussion guide during meetings The matrix is used to facilitate a structured discussion to
systematically explore the domain expert’s needs, assumptions, and expectations. The role of the AI
expert is to clarify technical implications and feasibility related to each design decision. The discussion
progresses as follows:
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(a) The domain expert describes their initial idea for an AI-powered automation system. They are
recommended to visualize the envisioned novel working process to support their story, for example
by drawing a flowchart.

(b) Subsequently, the AI expert and domain expert walks through the design dimensions in the matrix
together. Using a physical copy or large format screen is recommended. For each design dimension,
the AI expert and domain expert collaboratively discuss the design options corresponding to the en-
visioned concept. For each dimension, they either select one or more specific options to implement
the envisioned system, or define it as an open question that requires further investigation.

Note: the dimensions are structured in a logical order, but adhering to the top-to-bottom order is not
mandatory. A more flexible approach can be also be used.

(c) At the end of the session, an initial assessment of the system feasibility, implementation effort and
added-value can be made based on the completed matrix. If this assessment is positive, the matrix
also provides basis to define the follow-up steps.

(d) Note: a final recommended step is to provide a physical copy of the filled-out matrix to the domain
experts. They should be encouraged to take this back to their own team and show it to others, aiding
the dissemination of the tool and contributing to improving AI literacy.

2. As an intake form (optional) Before the meeting, the AI expert may send the matrix to the domain expert
and request them to fill it out to the best of their ability. The matrix serves as a preparatory tool that
structures the domain expert’s input:

• The domain expert selects one or multiple options per design dimension where they have a clear
preference or requirement.

• They may also cross out options that they believe are irrelevant or unsuitable.

• If certain design dimensions are unclear, they may leave them blank. These will be discussed
during the meeting.

• The AI expert reviews the filled-out matrix before the meeting, allowing for a more focused discus-
sion.



Category Design dimension Comments

Add-on to 
existing system

Integrating 
component

User interaction and 
communication

Generate (new or 
refined)

Diversify, augment, 
explore alternatives

Analyze, interpret, 
summarize

Decision making 
(support)

Transform 
(bridging function)

Conceptualization and 
Requirements

Design and 
Development

Verification and 
Validation

Production and  
Deployment

Operations and 
Maintenance

AI runs up-front 
(e.g. suggestion pop-

up)

Delayed AI output 
(e.g. batch processing)

Static, fixed workflow
(no user control)

Static workflow, 
user controls inputs

Dynamic workflow, 
human-in-the-loop

Dynamic workflow,
logic-based control

Dynamic workflow,
controlled by AI agent 

No iteration or  
user approval ⚠

Manual correction & 
approval

User chooses from 
options

Prompt-based 
iteration

Multimodal iteration 
(e.g. highlight + instruct)

None, rely on GenAI 
model knowledge ⚠

User provides 
additional context data

Logic-based 
context injection

External computation
of additional context

AI agent context 
search and retrieval

Black-box approach  
⚠

Piecewise traceability 
(input-output pairs)

Deterministic  
(identical re-runs)

Quality quantification  
methods exist

Quality quantification 
can be defined

Robust qualitative 
assessment exists

Robust qualitative 
assessment definable

Unfeasible to robustly 
assess quality ⚠ 

Formalized, well-
documented process

Undocumented,  
flexible processes ⚠

No issue to send data 
to servers outside EU

Only EU servers 
allowed

Private online 
servers allowed

Compute on internal 
servers (intranet) ⚠

Compute on 
local device ⚠

Design options marked with ⚠  are generally non-advisable, specifics provided in comments in digital version available at: https://docs.google.com/spreadsheets/d/1DVCikZT1rKJ4ci35XkS2aqfTi0JoNHLD/edit?usp=sharing&ouid=102117738994161547080&rtpof=true&sd=true
Author: Joris Koopman, www.linkedin.com/in/jpkoopman
Icons: Distributed under creative common license, authors listed here: www.flaticon.com/collections/NTY1NjA3NzY=

Data Security &
Privacy

Formalization of 
current work process Undocumented, 

standardized process
Novel process,

undocumented ⚠

P
re

re
q

u
is

ite
s 

&
 L

im
ita

tio
n

s

Output quality 
assessment methods

Training data
High-quality, 

labelled training 
dataset available

Training data 
unavailable, but can 

be retrieved

Manual generation of 
training data required

Obtain training data 
retrospectively 
(from users of 
implemented 

prototype)

Unfeasbile to obtain 
training data ⚠

GenAI Determinism
Non-deterministic 
(variation in re-runs)

Target level of 
output maturity

Proof-of-concept 
prototype  
(TRL 3/4)

Minimum-Viable 
Product 
(TRL 6)

Mature & 
qualification 

tested 
(TRL 8)

Images Graph data
Other: ...  

(e.g. audio, video, 
sensors, robot control)

Transparency
Stepwise traceability 

(process logs)
Provide output 

rationale

Graph data
Other: ...  

(e.g. audio, video, 
sensors, robot control)

Method of retrieving 
additional AI input 

(context injection)

A
I 

O
u

tp
u

t 

Type of output
Unstructured text
(e.g. documents, 
web publications)

Semi-structured text  
(e.g. source code,

legal contracts,
req. specifications)

Structured data files  
(e.g. spreadsheets, 

3D models)

A
I 

In
p

u
t

Type of additional input
(besides instruction prompt)

Unstructured text
(e.g. documents, 
web publications)

Semi-structured text  
(e.g. source code,

legal contracts,
req. specifications)

Structured data files  
(e.g. spreadsheets, 

3D models)
Images

Instructional 
presentation

Training sessions
Coaching 
on the job

Instruction manual 
or videos

Interactive tutorial 
within tool

U
se

r 
E

xp
e

ri
e

n
ce

User-AI
synchronization Real-time, concurrent AI

(e.g. chatbot)

Internal workflow 
complexity & user 

control

Output iteration & 
approval 

Required
user training

Role of GenAI within 
system

Targeted product life 
cycle phase

(implementation context)

Targeted
improvement

Do things better
(quality)

Do things cheaper
(cost)

Do things quicker
(time)

Do more things
(scope)

Small group of 
specialists

(internal)

Department or  
business unit

(internal)

Entire organization
(internal)

Multiple (partner) 
organizations

(external)

Commercial product 
(external)
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Integration with 
existing software

(PLM, CAD, …) Stand-alone 
AI system

Centralizing
AI system

Target users



16.1. FINAL DESIGN: THE IDEATION MATRIX 154

16.1.2. DESCRIPTION OF DESIGN DIMENSIONS AND OPTIONS
The Ideation Matrix is organized into five main categories of design dimensions: Scope & Purpose, User
Experience, AI Input, AI Output, and Prerequisites & Limitations. Descriptions of these categories and their
corresponding design dimension and options are provided below.

SCOPE & PURPOSE

The Scope & Purpose category captures the fundamental role of the GenAI-powered system within an organi-
zation and defines the overarching goals of its implementation.

• Integration with existing software: How the AI system will be incorporated into existing workflows,
whether as an independent tool, an enhancement to an existing system, or a fully integrated solution.

• Target Users: Who will interact with the GenAI-powered system, ranging from small expert teams to
entire organizations or external stakeholders.

• Role of GenAI within system: The role of the GenAI component within the broader envisioned automa-
tion system. Highlights the development GenAI-powered systems, rather than focusing solely on the
GenAI component itself.

• Targeted product lifecycle phase: The stage(s) in the engineering or operational process where GenAI-
powered system will provide value, such as early conceptualization, development, production, or
post-deployment optimization.

• Targeted improvement: The primary objectives of introducing the GenAI-powered system, such as
increasing efficiency, reducing costs, improving quality, or expanding system capabilities.

USER EXPERIENCE

This category addresses how users interact with the GenAI-powered system, the level of control they have, and
how the system integrates into existing workflows.

• User-AI Synchronization: Defines whether the GenAI-powered system runs before interacting with
the user (e.g. automatically generated recommendations), operates concurrently in real-time (e.g.,
interactive assistants) or provides results with a delay (e.g., batch processing).

• Internal workflow complexity & user control: Determines whether the workflow is predefined, user-
guided, or dynamically managed by AI-driven decision-making.

• Output iteration & approval: Establishes how users engage with GenAI-generated outputs, whether
through direct oversight, iterative refinement, or fully autonomous operation.

• Required User Training: Considers the extent of training or onboarding required for users to effectively
interact with the AI system, ensuring successful adoption.

AI INPUT

The AI Input category defines the nature of the data provided to the GenAI-powered system and how additional
context is gathered to enhance performance. This ensures that AI operates with the necessary information to
deliver meaningful results.

• Type of additional input: Specifies the format of input data the GenAI-powered system requires beyond
basic prompts, such as structured datasets, unstructured text, or images.

• Method of retrieving additional AI input: Outlines how the GenAI-powered system obtains additional
context information (a process called context injection), either through user-provided data, automated
retrieval mechanisms, or computation by external software systems (e.g. a KBE application from the
aerospace thesis project).

AI OUTPUT

The AI Input category defines the nature of the output data obtained from the GenAI model.

• Type of output: Specifies the format of output data from the GenAI model, such as structured datasets,
unstructured text, or images.
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• Transparency: Defines mechanisms to enhance interpretability, such as process logs, explainability
tools, or traceability of AI-generated outputs.

• GenAI determinism: Establishes whether the AI system should produce consistent (deterministic) or
variable (non-deterministic) outputs for the same input conditions.

• Target level of output maturity: Defines the required level of refinement and usability of AI-generated
outputs. Some systems may generate preliminary drafts that require human oversight, while others
produce high-fidelity results ready for direct implementation.

PREREQUISITES & LIMITATIONS

This category captures the constraints and requirements necessary for ensuring that AI-generated outputs are
reliable, interpretable, and aligned with user expectations.

• Output quality assessment methods: Describes how AI-generated content is evaluated for accuracy
and reliability, including traceability, quality metrics, or human validation.

• Training data availability: Considers whether high-quality training data is readily available, must be
collected, or is infeasible to obtain, impacting AI system viability.

• Formalization of current work process: Evaluates whether the current workflow is already well-
documented and structured. A highly formalized process can ease the adoption of AI-driven automation,
whereas loosely defined workflows may require additional standardization efforts before AI integration.

• Data security & privacy: Examines the impact of AI implementation on data protection, regulatory
compliance, and intellectual property security. This dimension triggers domain experts to considers
the feasibility of their envisioned idea from the perspective of adhering to legal and ethical standards
and dealing with sensitive or proprietary information.

16.2. VERIFICATION & VALIDATION
The design and use of the finalized Ideation Matrix was resulted from a rigorous, iterative design approach
that integrated information from multiple key sources - including expert input and feedback, scientific &
non-scientific literature, and personal experience - leading to a very well-considered design. An overview how
the final design aligns with the design requirements is provided below, along with a brief discussion of how
they were implemented through various design aspects of the final design.

1. The morphological chart should facilitate the development of GenAI-powered systems used to (par-
tially) automate engineering workflows within the context of complex, critical systems.

Implementation: The user manual outlines how the matrix provides a means to support design discus-
sions and clarifies how AI can automate engineering workflows in complex, critical systems.

2. The morphological chart should help domain experts and AI experts to align their vision and expecta-
tions about GenAI-powered systems.

Implementation: The ideation matrix makes the design dimensions and options explicit in a structured
and comprehensive overview, facilitating design discussions, the alignment of expectations and building
of a shared vision between AI experts and domain experts.

3. The morphological chart should focus on GenAI features and design options that domain experts
often misunderstand or are unaware of.

Implementation: This requirement guided the selection of design dimensions and options, incorporating
experience from the aerospace thesis project as well as results from the follow-up literature study and
design iterations.

4. The morphological chart should help domain experts to understand the prerequisites and investment
required to develop GenAI-powered systems.

Implementation: A dedicated prerequisites and limitations category, with four key design dimension
was included. Attention symbols (!) are also added to highlight options that are particularly challenging
to implemented.
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5. The morphological chart should be understandable as a stand-alone communication artifact to
domain experts without in-depth GenAI knowledge.

Implementation: Special care was taken during the design of the tool to avoid AI jargon and define
dimensions and options in a clear and intuitively understandable way. Furthermore, icons were added
to provide visual clarification of design options that are more difficult to understand based on brief
textual descriptions alone.

VALIDATION

The tool concept, specifically the use case of serving as a communication tool and its content, were validated
based on the validation session findings section 15.4. These validation session also concluded that the Ideation
Matrix is less suited for the education use case (e.g presenting the matrix on an educational poster placed
in common areas like near the coffee machines of domain experts). To also make it effective for this use
case, participants remarked the Ideation Matrix would need to provide more explanations of technical GenAI
concepts and/or present informative examples. The next chapter suggests some design ideas how this could
be implemented, along with more general conclusions and recommendations related to the communication
thesis research.



17
CONCLUSIONS OF SCIENCE

COMMUNICATION RESEARCH

The rapid advancements in GenAI technology have prompted widespread discussions about its potential
applications, particularly in knowledge-intensive fields like engineering. While GenAI has demonstrated
remarkable capabilities in processing unstructured data and performing complex tasks, its adoption in en-
gineering — especially in the development of complex and critical systems — remains limited. A primary
reason for this reluctance is the inherently black-box nature of GenAI models, which hinders explainability,
trust, and accountability in engineering workflows.

The risks associated with GenAI are particularly pronounced in industries where safety, reliability, and preci-
sion are paramount - like aerospace engineering. In such contexts, adopting GenAI without sufficient oversight
could lead to errors with severe consequences. This concern was reinforced by findings from the aerospace the-
sis component of this research, which explored the development of a GenAI-powered Reverse Engineer Process
model (REProcess) tool. The design of the REProcess tool revealed the significant complexity of developing
Explainable AI systems suited for the engineering of complex and critical systems. Within these contexts, the
development of GenAI-powered engineering systems requires close interdisciplinary collaboration between
AI experts and domain experts, yet these groups often struggle to communicate effectively. This science
communication research bridges the gap between AI experts and domain experts by developing a structured
communication tool called the Ideation Matrix. This tool was designed to facilitate early-stage collaboration in
GenAI development projects by providing a structured framework for defining system requirements, aligning
expectations, and ensuring a shared understanding of GenAI capabilities and constraints.

The following section summarizes the key findings of this research, addressing the main research questions
and discussing broader insights gained through the development and validation of the communication tool.
An overview of research limitations is provided next. The final section outlines directions for future work.

17.1. OVERVIEW OF KEY FINDINGS
This thesis project was to contribute to the development of GenAI-powered engineering systems by improving
the interdisciplinary collaboration between AI experts and domain experts through the design of a communi-
cation tool. Answers to the research questions are presented first, followed by an overview of additional key
findings.

RQ-1: IDENTIFY KEY CHALLENGES

What are the key collaboration and communication challenges between AI experts and domain experts
in interdisciplinary AI projects, and how do these relate to each other?
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The central challenge in interdisciplinary AI projects was identified as the lack of shared knowledge between
AI experts and domain experts. This gap leads to misunderstandings, misaligned expectations, and ineffective
collaboration. The research found that communication barriers stem from multiple factors, including differ-
ences in technical language, lack of common mental models, and varying levels of intrinsic motivation among
domain experts to engage with AI concepts. The reluctance of some domain experts to ask questions due to
fear of appearing uninformed further exacerbates the issue. These challenges were visualized in Figure 17.1.

Figure 17.1: Key collaboration and communication challenges between AI experts and domain experts.

RQ-2: DETERMINE SOLUTION DIRECTION

Which communication tool idea has the most potential to facilitate collaboration between AI experts
and domain experts?

Several conceptual solutions were identified from which a morphological chart was selected as the most
promising communication tool based on expert feedback, practical feasibility, and its alignment with findings
from the aerospace thesis project. Its structured format allows for clear articulation of design decisions, making
it particularly useful in early project discussions.

RQ-3: COMMUNICATION TOOL DESIGN

How to implement the selected communication tool concept such that it provides real added value?

The design of the communication tool was broken down into three key elements: content, methodology,
and visual design. An iterative design process was adopted, initially focusing on the design of the first two
aspects. Over the course of three main iteration cycles, the content and methodology were refined using input
and feedback collected from interviews (both the initial interviews and additional follow-up meetings and
interviews), literature insights, and feedback from validation sessions. This input was formalized in the list of
key design requirements outlined further below. The final design was structured to balance accessibility for
domain experts with technical depth for AI experts, making it an effective means of bridging communication
gaps. chapter 16 presents the finalized tool and its accompanying methodology.

RQ-4: DETERMINE DESIGN FOCUS

Which specific use case should the morphological chart be geared towards?
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Two main use cases were identified focusing on education or communication, respectively. Based on the
validation sessions, the morphological chart was found to be most effective when used in early project phases,
specifically for ideation and requirements specification. By providing domain experts with a structured way to
express their needs and expectations, the tool facilitates meaningful discussions with AI experts. Additionally,
because the chart is understandable as a standalone document, it can also be used as a pre-meeting intake
form to help domain experts prepare for discussions.

RQ-5: IDENTIFY SIMILAR EXISTING TOOLS

To what extent do similar tools exist, both in scientific and non-scientific contexts?

While some existing tools share similarities with the developed morphological chart, they generally lack
specificity in terms of GenAI-powered system development, especially in engineering contexts. Tools identified
in literature (e.g., Shi et al. [85], Weisz et al. [93], and Rittelmeyer and Sandkuhl [82]) tend to be either too
technical for engaging domain experts or lack a structured and comprehensive approach. This gap in existing
tools highlights the added value of the communication tool developed in this research.

KEY REQUIREMENTS & CONTRIBUTIONS
Based on the findings outlined above, a series of design requirements were formulated that together high-
light the key contributions of this research. These are outlined below. For each requirement, the aspects
corresponding to their implementation into the design communication tool are also provided.

1. The morphological chart should facilitate the development of GenAI-powered systems used to (partially)
automate engineering workflows within the context of complex, critical systems.
The Ideation Matrix structures discussions to clarify how AI can automate engineering workflows in
complex, critical systems.

2. The morphological chart should help domain experts and AI experts to align their vision and expectations
about GenAI-powered systems.
The Ideation Matrix makes key design decisions and trade-offs explicit by presenting a structured overview
of, thereby facilitating a common understanding between AI experts and domain experts of the system’s
scope.

3. The morphological chart should focus on GenAI features and design options that domain experts often
misunderstand or are unaware of.
This requirement guided the selection of design dimensions and options. The process incorporated
experience from the aerospace thesis project as well as findings from the follow-up literature study and
design iterations.

4. The morphological chart should help domain experts to understand the prerequisites and investment
required to develop GenAI-powered systems.
A dedicated “Prerequisites & Limitations” category with four key design dimension was included.

5. The morphological chart should be understandable as a stand-alone communication artifact to domain
experts without in-depth GenAI knowledge.
Special care was taken during the design of the tool to avoid AI jargon and define dimensions and options in
a clear and intuitively understandable way. Furthermore, icons were added to provide visual clarification
of design options that are more difficult to understand based on brief textual descriptions alone.

17.2. RESEARCH LIMITATIONS AND OPEN ISSUES
A number of factors the limit the generalizability of the results from the conducted research activities:

• Small sample size: The qualitative nature of the interviews placed practical restrictions on the number
of interviews that could be conducted. Only a limited number of people participated in the initial series
of structured interviews (3 AI experts and 3 domain experts). Using these participants to represent
two different groups instead of one further reduced the sample size used to represent a group by half.
Two measures adopted to mitigate this issue were to 1) first investigate similar collaborations and AI
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development challenges within literature, and 2) include different participants in the follow-up interview
and validation sessions. However, even when including the 4 additional participants from these follow-
up sessions, the overall sample size (10) still remains small which detracts from the generalizability of
the results.

• Participant collection: In the end, most participants were recruited through networking (both personal
network and those of already involved participants). The fact that this was not a random process, means
it is another potential source of bias affecting the results.

• Personal bias: The results were processed and interpreted by a single researcher, leaving room for
subjectivity and bias. An attempt to mitigate this was made through the inclusion of quantitative
questions which do not leave room for interpretation. The important role that the personal experience
from the previous aerospace thesis project played in defining this research and design project also
contributes to an increased susceptibility to confirmation bias. From this perspective, it could be argued
that the previous experience is both a blessing and a curse.

• No validation in real-life setting: An important limitation of the validation sessions was that, due to
practical limitations, the communication tool could not yet be tested in the exact real-life setting that it
was designed for, namely facilitating the communication between AI expert and domain experts. Given
that design intent of the communication tool is to facilitate communication coming out from domain
experts, however, these tests were still considered to give solid evidence towards the validity of the tool.
In addition, the strong theoretical foundations, inclusion of input from many experts and the ability
to use experience from the aerospace thesis project are all factors that also mitigate the impact of the
validation limitations.

17.3. RECOMMENDATIONS FOR FUTURE WORK
The fundamental benefits of the developed Ideation Matrix already provide benefits, which was confirmed by
the results from the validation sessions. However, many ideas were conceptualized that can be implemented
in future work to improve the effectiveness of the tool, as well as extending it with additional capabilities (e.g.
making it more viable for educational purposes). An overview of improvement ideas is provided below.

1. For every design dimension, order the design options (left-to-right) based on implementation effort, so
the time and money required to do machine learning, develop user experience features, perform testing
& validation, etc. Then the filled-out chart gives a global indication of the required development effort
when viewed from afar. If, overall, a lot of right-hand side options are selected, the implementation
effort will be high, and vice-versa. An alternative idea is to add ’complexity tokens’ which represent
the implementation effort related to each design options. Follow-up research is required to determine
the implementation effort associated to each design option. Moreover, certain options will also be
much challenging in particular combinations with others. Further research is required to determine the
implementation effort and these specific interactions. A suggested method is to sent out a survey sent
out to AI experts who start making use of the communication tool.

2. Create an interactive user interface for the morphological chart. Users could be this interactive version
with a QR code (see Figure 17.2). A number of dynamic features were conceptualized that could add a
lot of value to the communication tool:

• Collapsed presentation mode: feature to visualize a collapsed version of the morphological matrix
that only displays the selected design options for each dimension. By removing clutter, this
alternate view can be used to present the selected design decisions to others in a much clearer way.

• Alternate presentation mode: feature to automatically generate alternate visualization aimed at
presenting the selected design options. For example, a circular arrangement of the selected design
options, or a grid pattern. This feature is provides similar benefits to the collapsed presentation
mode, but then more advanced (and more complex to implement).

• Add feature to let the user cluster or highlight design dimensions linked to a particular concept, for
example: Design dimensions related to Trustworthiness and Explainable AI, or Design dimensions
relevant from Ethical perspective.
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• An improvement to the ordering of design options from left-to-right could be to make it dynamic,
based on a user-selected criteria (e.g. required computation power, development cost, complexity,
etc)

• Display a tooltip with additional information when hovering on design dimensions and options.
For instance, these tooltips could provide references to real-world examples showcasing particular
design options, or show technical concepts and technologies that are associated to a design
dimension. Some of this information is already attached in a hidden column of the digital version
of the Ideation Matrix. An example of this is provided in Figure 17.3.

• Highlight or automatically lock (e.g. “graying out”) mutually exclusive design choices after one
of these options is selected. For example, a Mature & qualification tested application can not be
created for Undocumented, flexible processes. When one is selected, the interactive version could
make it impossible for the user to select the other option. Currently, the responsibility of making
this assessment lies with the AI expert involved in the process.

3. Automated post-processing of the selected design. For example, a software repository for a new GenAI
system could be automatically generated that is filled with folders code files corresponding to the
relevant software components. This is similar to the skeleton code code generation implemented for the
MDKBE approach (step 2), which was discussed in the aerospace thesis (chapter 3).

4. Categorize existing tools (ChatGPT, GitHub CoPilot, etc.) with the morphological chart. These could
be presented as example use cases. This can achieve two things at once. Firstly, it shows an example of
how to use the tool so it helps people to use it. Secondly, it could help to engage and educate people.
Some design decisions embedded in existing tools might be different from what they expected, which
provokes them to rethink what they know and how to design similar tools. For example, many people
will think they are interacting with a single LLM when ineracting with ChatGPT. In reality, there are
dozens of distinct model architectures and configurations operating together internally, with key models
fine-tuned for specific functions. For instance, it uses specific models for sentiment analysis to adapt
tone and formality to the user’s input style and intent, and search decision model to decide whether a
query requires internal knowledge or an online search. All these models works in tandem in a so-called
pipeline to ensure accuracy, relevance, and fluency in responses. Thus, ChatGPT is defined as a Dynamic
workflow, controlled by AI agent.

5. Include a design dimension that lists an array of alternative technological options that are not generative
AI to implement the desired functionality. Different but similar ways to make users to consider this are
also possible, like including an explicity question in the methodology and user manual. The question
that’s important is whether generative AI is indeed the best method, or if there was a fixation on this
technology (due to hype, unrealistic expectations, etc).

FURTHER TESTING

In addition to the extensive list of identified design improvements and additional features, another interesting
line of work is to further test and validate the existing design. It would be highly interesting to deploy the
communication tool in real-world interdisciplinary projects to assess its impact in practice. When further
testing the tool, a key improvement opportunity consists of the set of quantitative validation questions that
were used in this research. These should be focused more specifically on the design requirements of the tool. A
quantitative assessment to what extent the morphological chart helped to clarify GenAI project prerequisites
and limitations would be valuable.

This thesis report and the finalized Ideation Matrix design were shared with all interviewed participants to
make a start with the dissemination of the tool.

DESIGN TRADE-OFF CHALLENGE

One of the most challenging aspects of the design was the trade-off between coverage and specificity. This
became particularly noticeable after conducting the design experiment where the first prototype of the
morphological chart was applied to the REProcess tool developed for the aerospace thesis. Due to the extremely
wide range of capabilities and potential applications of GenAI, achieving good coverage while preventing
to overload the user with too much information - by including too many design dimensions and options -
results in a very high-level tool that does not offer much added value. On the other hand, focusing too much
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Figure 17.2: Design idea to guide users to an interactive version of the morphological chart, with additional dynamic features.

Figure 17.3: Example highlighting the idea to include additional information highlighting technical implementation associated to
particular design options.

on a particular set of GenAI capabilities detracts from the tool’s objective to raise awareness and increase
understanding about novel ways to use GenAI technology to improve existing practices and processes. In
reality, the optimal balance between these aspects will depend on the specific application context and it will
evolve over time as the AI literacy of domain experts improves. A lot of interesting future work could focus on
investigating and optimizing this further.

ADDITIONAL APPLICATION AREAS

The communication tool design scope was focused specifically on the context of engineering complex and
critical systems. However, the large majority of design dimensions and options that were incorporated into
the final design of the communication tool are not specific to this particular context. The main reason for
the limited scope was the need for well-functioning interdisciplinary collaboration which is particularly high
in the context of engineering complex and critical systems. However, aside from some minor things like the
inclusion of 3D models as one of the options for the Types of additional input dimension, the final design of the
morphological chart is applicable to other contexts as well. Thus, the tool could be easily be adopted in other
many other contexts to reap the communication and ideation benefits. This represent another interesting area
for future work.
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FINAL TAKEAWAYS
When adopting GenAI, it is crucial to do it according to a responsible and context-aware approach. This means
there will be an increased need for more interdisciplinary GenAI projects in the coming years, which will grealy
benefit from improved communication and AI literacy of domain experts. A greater emphasis on setting up and
facilitating interdisciplinary collaborations is required. The research presented in this thesis contributes to the
growing field of interdisciplinary collaboration in GenAI-powered system development. By addressing a critical
communication gap between AI experts and domain experts, the developed communication tool provides a
structured and accessible means to facilitate meaningful discussions. While there are still opportunities for
further refinement and validation, the insights gained from this study serve as a foundation for future work
aimed at improving the effectiveness of interdisciplinary GenAI projects.

An overarching discussion that reflects on this combined thesis project and some final remarks are provided in
chapter 18.
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18
OVERARCHING DISCUSSION ON INTEGRATED

THESIS

This integrated thesis project provided a unique opportunity to explore both the technical and communicative
dimensions of Generative AI (GenAI) in engineering. By approaching the field from two complementary
perspectives—developing a GenAI-powered engineering tool and designing a communication tool for interdis-
ciplinary collaboration—this research has yielded valuable insights into both the potential and challenges of
GenAI adoption in complex, high-stakes domains.

One of the key takeaways from this dual perspective is that the successful integration of GenAI in engineering
is not solely a technical challenge, but also a human and organizational one. While technological capabilities
continue to advance at an unprecedented rate, the ability of AI experts and domain experts to collaborate
effectively remains a fundamental limiting factor. This thesis contributes to bridging that gap by providing
both a concrete engineering demonstration and a structured framework for interdisciplinary communication.

18.1. KEY REFLECTIONS ON THE INTEGRATED RESEARCH APPROACH

THE INTERSECTION OF TECHNOLOGY AND COMMUNICATION
Developing an actual Generative Artificial Intelligence (GenAI)-powered engineering tool (as done in the
aerospace engineering part of this thesis) provided deep insights into the practical challenges of implemen-
tation—not just in terms of coding and system integration, but also in defining clear design requirements,
managing expectations, and ensuring explainability. At the same time, studying the collaborative processes
behind AI development (in the communication part of this thesis) highlighted how misaligned assumptions
and knowledge gaps between engineers and AI specialists can hinder the success of such projects. This
interdisciplinary approach reinforced a critical finding: AI systems are not just technical artifacts; they are
socio-technical systems that require careful collaboration between multiple stakeholders to be successful.

BRIDGING THE GAP BETWEEN AI EXPERTS AND DOMAIN EXPERTS
The interdisciplinary nature of GenAI development demands a shared understanding between AI experts and
domain experts. However, as identified through interviews and literature, this shared understanding is often
lacking. The two groups approach problems from different perspectives, use different terminologies, and have
different priorities.

The morphological chart-based communication tool developed in this thesis was specifically designed to
facilitate structured discussions between these groups. It helps domain experts articulate their needs without
requiring extensive AI knowledge, while also providing AI experts with a systematic way to explain technical
constraints. The validation sessions confirmed that this structured approach improves clarity, helps align
expectations, and reduces the risk of miscommunication—a key barrier to effective AI adoption in engineering.
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RETHINKING THE ROLE OF DATA IN GENAI-POWERED SYSTEMS
The aerospace engineering part of this thesis demonstrated how the latest generation of Large Language
Models (LLMs) can operate effectively without requiring extensive task-specific datasets. This challenges a
deeply ingrained assumption in the AI community: that large amounts of training data are always necessary.

Many AI experts — due to their background in machine learning and data science — place a strong emphasis on
data availability when evaluating potential projects. However, as this research has shown, GenAI’s capabilities
extend beyond traditional AI paradigms. Engineers and AI specialists must update their assumptions about
what is feasible with modern GenAI, and remain open to new methodologies that do not strictly rely on vast
amounts of domain-specific training data.

Conversely, domain experts — especially those working in highly regulated industries like aerospace — often
overestimate the limitations of AI, assuming that GenAI is not reliable enough for their field. This skepticism,
while valid to some extent, can lead to missed opportunities. A cultural shift on both sides is needed to strike a
balance between caution and innovation when exploring AI-driven solutions.

18.1.1. EXPANDING THE IMPACT: USING THE COMMUNICATION TOOL BEYOND AI PROJECTS
Beyond its intended application in interdisciplinary AI projects, the ideation matrix developed in this thesis
could serve a broader purpose. It has the potential to help future students and researchers in defining their
own thesis projects and navigating the vast design space of GenAI-powered systems. By providing a structured
approach to breaking down complex AI design decisions, the tool can assist in:

• Scoping AI research projects more effectively

• Clarifying design trade-offs early in the process

• Identifying key challenges and limitations before implementation begins

This potential for broader application reinforces the idea that structured communication is a critical enabler
of progress — whether in academia, industry, or interdisciplinary research initiatives.

18.1.2. THE ROLE OF VISUALIZATION IN AI-DRIVEN ENGINEERING AND COMMUNICATION
Throughout this integrated thesis, a recurring challenge emerged: the complexity of visualizing AI-powered
engineering processes and effectively communicating these processes to diverse stakeholders. While the initial
focus of the science communication thesis was on interdisciplinary collaboration, an initial research direction
explored during this work was the role of visualization in making complex AI-driven engineering workflows
more comprehensible (see Appendix D).

Engineering workflows, particularly those involving Generative Artificial Intelligence (GenAI), inherently in-
volve high-dimensional, abstract data and complex decision-making processes. Traditional visual modeling
languages such as Unified Modeling Language (UML) and Systems Modeling Language (SysML) are widely
used in engineering but have notable limitations when applied to AI-based systems. As identified in prior
literature, these notations often lack sufficient cognitive effectiveness for conveying abstract AI-related con-
cepts [94? ]. Additionally, layout algorithms used in existing modeling tools do not always follow established
visualization principles, leading to cluttered and inefficient representations [95]. Research into visualiza-
tion guidelines has shown that effective visual representations must optimize perceptual discriminability,
visual expressiveness, and semiotic clarity [96]. However, these principles are not yet well integrated into
mainstream tools used in engineering. This gap presents an opportunity to improve both AI system design
workflows and communication practices between AI experts and domain experts.

Although this research direction was ultimately not pursued in-depth within this thesis, it remains a significant
area of interest for improving GenAI adoption in engineering. The challenges observed during the aerospace
engineering thesis—such as defining clear AI-related system requirements and explaining AI decision-making
processes—demonstrate the need for better visualization techniques. Further research in this area could
provide a crucial link between AI system design, engineering workflows, and effective interdisciplinary
communication. Future work could explore integrating cognitive visualization principles into AI engineering
methodologies, ensuring that engineers, AI experts, and decision-makers can collaboratively interpret and
refine AI-driven designs in a more structured and intuitive manner.
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18.2. FINAL REMARKS
This thesis was conducted during a period of unprecedented acceleration in artificial intelligence. Over the
past few years, the transition of Artificial General Intelligence from a distant possibility to an imminent reality
has reshaped industries, workplaces, and society at large. Now, in 2025, the widespread integration of AI into
various aspects of life seems inevitable — a matter of years, not decades. Even those with a highly skeptical
stance toward the technology cannot deny the momentum driving its adoption.

However, rapid technological progress presents a crucial challenge: ensuring that the integration of GenAI into
high-stakes domains is conducted responsibly, effectively, and transparently. Nowhere is this more critical than
in the engineering of complex and critical systems, where careful implementation is essential. The potential
benefits of GenAI in these domains—ranging from knowledge augmentation to workflow automation—are
vast, but so too are the risks. Issues of trust, explainability, and interdisciplinary misalignment pose serious
barriers to successful implementation. Without deliberate efforts to address these challenges, the introduction
of GenAI could lead to unintended complications rather than meaningful improvements.

Beyond these technical challenges, there is a broader, more fundamental concern: the potential impact of
AI on human interaction and collaboration. As artificial intelligence takes on more roles in communication,
decision-making, and negotiation, we must carefully consider its effects on how people engage and connect.
Emily Bender articulates this concern succinctly:

“We’ve learned to make machines that can mindlessly generate text. But we haven’t learned how to
stop imagining the mind behind it.”

As AI systems take on greater responsibilities in facilitating communication, there is a risk that human in-
teraction could become increasingly mediated by technology. If we allow AI to act as an intermediary in
our discussions, negotiations, and collaborations, we may gradually rely less on direct human-to-human
engagement. While AI can enhance communication in many ways, overreliance on it could lead to unintended
barriers, making interactions more transactional and reducing opportunities for deeper mutual understanding.
This concern extends beyond the field of engineering; it is a societal challenge that underscores the importance
of ensuring that AI tools foster, rather than diminish, meaningful connections.

This thesis has demonstrated that structured communication and collaborative design processes can help
bridge the gap between engineers, researchers, and domain experts in interdisciplinary projects. However, the
work is far from complete. The increasing complexity of AI models, the evolving regulatory landscape, and the
growing role of AI in industry ensure that interdisciplinary communication will remain an ongoing challenge.
The research presented in this thesis provides a foundation, but further work is needed to refine, expand, and
adapt communication strategies as the role of GenAI continues to evolve.

Encouragingly, the European Union’s vision of Industry 5.0 provides a framework for addressing these chal-
lenges. Unlike its predecessor, which prioritized automation and efficiency, Industry 5.0 reintroduces the
human element. It envisions a future where technology augments rather than replaces human capabilities,
emphasizing resilience, sustainability, and human-centric industry practices. The development of GenAI-
powered systems should align with this vision, ensuring that AI serves as a collaborative partner that enhances
human expertise rather than an autonomous system that isolates or replaces it.

As we move forward into this new era of artificial intelligence, one thing is clear: the success of GenAI in
engineering and beyond will not be determined by technological breakthroughs alone. Instead, it will depend
on our ability to collaborate, communicate, and ensure that AI is developed with purpose, transparency, and
responsibility. This thesis contributes to that effort, and it is my hope that its insights will help shape a future
where GenAI is not only powerful but also trusted, understood, and thoughtfully integrated for the betterment
of engineering and society as a whole.
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A
BACKGROUND INFORMATION ABOUT KBE

AND MBSE

A.1. KNOWLEDGE BASED ENGINEERING
Knowledge Based Engineering (KBE) is a technology based on the use of dedicated software tools, called
KBE systems or KBE platforms, which can be viewed as the merger of traditional CAD systems with Expert
Systems AI (see Figure 2.1). The CAD part of a KBE system allows for the generation and manipulation of
product geometries, while the Expert Systems AI functionalities allow embedding engineering knowledge and
reasoning (typically using some customized programming language). The relation between KBE, CAD and AI
is visualized in Figure A.1. Through this combination of functionalities, KBE systems can be used to capture
and systematically reuse product and process engineering knowledge, thereby providing a means to automate
repetitive and non-creative design tasks and support Multi-disciplinary Design Optimization (MDO) activities
in all the phases of the design process[34].

Some examples of KBE systems are Siemens Knowledge Fusion1, the Adaptive Modeling Framework from
Technosoft2, and ParaPy3. In practice, these KBE systems are used by KBE developers to create so-called
KBE applications. While the KBE system is a general purpose platform, a KBE application is a particular
implementation focused on a specific use case. KBE applications can be developed for any engineering

1https://plm.sw.siemens.com/en-US/nx/cad-online (note: integral component of Siemens NX CAD software)
2https://www.technosoft.com/
3https://parapy.nl

Figure A.1: Relation between Knowledge Based Engineering, (Expert Systems) Artificial Intelligence and Computer Aided Design.
Obtained from [34].

169

https://plm.sw.siemens.com/en-US/nx/cad-online
https://www.technosoft.com/
https://parapy.nl


A.1. KNOWLEDGE BASED ENGINEERING 170

domain ranging from the design of bridges, to ships or aircraft. To create these applications, KBE developers
typically collaborate with domain experts, who provide the domain-specific engineering knowledge and
expertise to be embedded into the application.

Within DEFAINE the ParaPy KBE system was used. As suggested by the name, ParaPy is a Python-based KBE
language. When greatly simplifying, the development process of a ParaPy KBE application consists of opening
a new Python project, importing the ParaPy package, and then using its custom programming syntax and
features to define the desired engineering product (e.g. an aircraft) and embed a set of associated engineering
rules (e.g. a mathematical relation between aircraft mass and surface area of the wings). Subsequently, once
the desired product features and engineering rules have been incorporated in the code, the Python program
can be executed to instantiate the KBE application and launch its GUI. A screenshot of the GUI from a ParaPy
KBE application is provided in Figure A.2.

Figure A.2: Screenshot of the GUI from a ParaPy KBE application called Primiplane. Application source code obtained from [41].

Within this GUI, users of the KBE application can inspect the product’s geometry. Moreover, they can modify
its governing parameters (e.g. aircraft mass) which automatically triggers an update of any related parameters
and parts (e.g. wing surface area). This allow the users to see and better understand the effects of their changes.
Furthermore, depending on the functionalities embedded by the KBE developers, the KBE application can also
have buttons to trigger certain high-level actions, like running simulations using external software packages or
automatically generating a PDF report of the current design.

By simplifying the generation and modification of product geometries, and by embedding and automating
entire sequences of steps required to perform high-level tasks like running simulations, KBE applications can
be used to improve the efficiency and productivity of engineers. Another benefit is that KBE applications are a
way to capture and retain valuable engineering expertise, even when engineers leave the organization [97].

A.1.1. KBE DEVELOPMENT CHALLENGES
Besides the benefits, there are also a number of challenges associated with KBE applications: 1) their devel-
opment is often case-based and unstructured, lacking a standardized development methodology; 2) they
tend to become black-box applications due to having large code bases, as well as software development
being prioritized over writing and updating documentation; and (3) they suffer from limited reusability and
project-to-project knowledge transfer, as high-level design knowledge is often not captured, and there is no
standard exchange format for transferring knowledge between different KBE tools [7, 8].

In response to these issues, a number of methodologies have been developed that aimed to improve and
formalize the KBE application development of which the Methodology and tools Oriented to Knowledge-based
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engineering Applications (MOKA) approach has been the most accepted4 [8]. One of the main aspects of the
MOKA methodology is the role of the so-called knowledge engineer, who forms a bridge between engineering
domain experts and KBE developers. More specifically, their job consists of talking with engineers in order
to capture their domain knowledge and formalize it into a knowledge model. This knowledge model is then
provided to KBE developers as a basis for implementing the KBE application [98, 99].

Despite its promise, MOKA adoption remains low, as it primarily supports knowledge engineers in creating
knowledge models rather than directly benefiting domain experts and KBE developers. Also hindering MOKA’s
adoption is the reliance on the availability of specialized knowledge engineers - who are scarce - along with a
knowledge modeling approach that is not intuitive to engineering domain experts [8]. Due to these considera-
tions, the novel KBE application development approach proposed and developed within the DEFAINE project
is based on MBSE and leverages SysML, a widely adopted standard in systems engineering practice.

A.2. MODEL-BASED SYSTEMS ENGINEERING
The International Council on Systems Engineering (INCOSE) defines Model-Based Systems Engineering
(MBSE) as “The formalized application of modeling to support system requirements, design, analysis, verification
and validation activities beginning in the conceptual design phase and continuing throughout development
and later life cycle phases” [100]. Central to the practice of MBSE is the integrated modeling platform, which is
the software used to generate, govern, and visualize the models. Some notable examples are CATIA Magic5,
Enterprise Architect6, and Papyrus7. The DEFAINE project selected CATIA Magic (i.e. Magic Systems of
Systems Architect) as the modeling platform (rationale provided in [9]).

A.2.1. SYSTEM MODELING LANGUAGE
The Systems Modeling Language (SysML) is the most widely adopted modeling language within the domain of
MBSE. It is an extension of the Unified Modeling Language (UML), which focuses specifically on the domain
of software engineering. SysML supports modeling of requirements, product structure, behavior (i.e. process
information), and parametrics in order to provide a complete system description. All elements of a model
are contained and captured in a model repository. The different aspects of the model can be described and
represented using 9 types of diagrams. A particular model element may appear on zero, one or multiple
diagrams. In addition, a model element often has relationships to other model elements that may appear on
the same diagram or other diagrams. For an extensive overview of SysML, including detailed descriptions of
every SysML diagram and its usage, the reader is referred to Friedenthal et al. [11].

4Others notable examples are Common Knowledge Acquisition and Documentation Structuring (CommonKADS), and Knowledge-
Oriented Management Advisory and Design (KNOMAD)

5https://www.3ds.com/products/catia/catia-magic (note: also known as Magic Systems of Systems Architect, previously Cameo
Systems Modeler)

6https://sparxsystems.com/products/ea/
7https://eclipse.dev/papyrus/ (note: open-source)
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B
USER MANUAL FOR REPROCESS PROTOTYPE

This appendix provides a user manual for the REProcess prototype. First, the user commands and associated
input parameters are described in section B.1. section B.2 presents which high-level function calls invoke
which steps of the algorithm.

B.1. USER COMMANDS TO INITIATE THE REVERSE ENGINEERING STEPS
A source code snippet presenting each of the required user actions depicted in Figure 7.1 is provided below. In
the prototype implementation, this code is located within the if __name__ == "main" block at the bottom
of the c2m.reverse_process_module(). All of the the input parameters passed into the respective steps
are also declared in this block, directly above these lines. Regarding the three steps, note that only the first
user command explicitly contains a class instantiation. The DataflowAnalyzer and LLMPrompter classes are
initialized indirectly by calling the analyze_kbe_dataflow and perform_LLM_abstraction class methods
from the ReverseProcessModel class.

589

590 #################### Run analysis ####################
591 ## Step 1: instantiate REProcess tool
592 prcs_model = ReverseProcessModel(target_kbe_app_dir,
593 target_class_qualified_name,
594 init_kwargs_dict, # -> optional
595 )
596

597 ## Step 2: Run dataflow analysis on target slot
598 prcs_model.analyze_kbe_dataflow(target_slot_qualified_name)
599

600 ## Step 3: Perform LLM-based source code abstraction
601 selected_prompting_mode = str(input("\nWhich prompt generation context mode should be used "
602 "for the LLM-based abstraction? \n -> Choose 'm' for "
603 "method, 'c' for class, 'b' for both, or press <enter>"
604 " to skip LLM abstraction step:"))
605

606 if selected_prompting_mode:
607 if 'm' in selected_prompting_mode.lower() or 'b' in selected_prompting_mode.lower():
608 ## A.) METHOD prompting_context_mode
609 prcs_model.perform_LLM_abstraction(system_prompt=system_prompt_method,
610 user_instruction=user_instruction_method,
611 llm_checkpoint=hf_llm_checkpoint,
612 keyword_response_start=True,
613 prompting_context_mode='method')
614
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615 if 'c' in selected_prompting_mode.lower() or 'b' in selected_prompting_mode.lower():
616 ## B.) CLASS prompting_context_mode
617 prcs_model.perform_LLM_abstraction(system_prompt=system_prompt_class,
618 user_instruction=user_instruction_class,
619 llm_checkpoint=hf_llm_checkpoint,
620 keyword_response_start=True,
621 prompting_context_mode='class')
622

B.1.1. DESCRIPTION OF MAIN INPUT PARAMETERS
The input parameters used in the source code snippet are described in the list below. Only the input pa-
rameters related to step 1 and 2 are described. For the general definitions of the system_prompt and
user_instruction, the reader is referred to subsection 5.2.4. The specific variations of these parameters
mentioned in the source code, denoted by _method and _class, as well as the other LLM-specific parameters
are presented in section 7.4.

• target_kbe_app_dir: A string value specifying the directory name of the KBE application that should
be analyzed. These directories are located within the reference folder. Example values are: “Modu-
lar_UAV_app”, or “primiplane_tut”.

• target_class_qualified_name: A string specifying the fully qualified name of the class to be analyzed
within the KBE application. The KBE app will be instantiated using the class specified in this param-
eter. Some example values are: “application.Propeller”, “application.Blade”, “primiplane.Aircraft”, or
“asystor.aircraft.Aircraft”.

• init_kwargs_dict : A dictionary containing initialization parameters for the target class. These param-
eters provide specific values used for instantiation of the KBE object. Depending on the specific KBE
application, this parameter can be optional. Namely, when default input values are specified for all input
slots of the target class. An example of an init_kwargs_dict for the “application.Propeller” class of the
“Modular_UAV_app” is provided below:

init\_kwargs\_dict = {
"d_prop": 0.508,
"num_blades": 2,
"blade_root_airfoil": "NACA_2414",
"blade_tip_airfoil": "Clark_Y",
"root_airfoil_thickness_factor": 1,
"tip_airfoil_thickness_factor": 0.5,
"rpm": 6500,
"v_0": 5,
"h": 300,
"num_elements": 10

}

• target_slot_qualified_name: A string specifying the fully qualified name of the target slot (input,
attribute or part) within the class. This parameter identifies the specific slot for which the corre-
sponding workflow will be reverse engineered. Some example values include: prop_symmetry_point,
main_blade.blade_profiles[5], xfoil_analysis, vert_tail.movable_element.movable_faces.
Note how for part sequences, a specific sequence is specified between square brackets.
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B.2. ALGORITHM STEPS
The list below provides a detailed description of all of the processing steps triggered by the three user commands
referred to in Figure 7.1.

1. Instantiate ReverseProcessModel

(a) Initialize class parameters

(b) Instantiate KBE app

2. Initialize DataflowAnalyzer (perform activity graph analysis)

(a) Instantiate Analyzer

i. Generate precedents tree

ii. Transform to NetworkX graph

iii. Visualize ’raw’ precedents graph (optional)

(b) Transform to activity graph

i. Merge sequence instances

A. Sequences of type 1 parts: merge all sequence instance nodes into their part node.

B. Sequences of type 2 & 3 parts: remove all sequence instance nodes, except for first instance
(child_0) and, if applicable, user-defined target sequence instance.

ii. Merge input slot nodes into their part node

A. Before merging, add relevant inputs as metadata to the part node and downstream edges.

B. Execute input merging loop:

C. If corresponding part node not found, try to add part node to the graph.

D. If that also fails, remove the node (with path preserve) instead of merging.

iii. Remove parapy nodes

A. Before removing, identify type 2 parts and find their geometry nodes. Save this as metadata

B. Execute remove parapy loop:

C. For (sequences of) Type 1 parts, merge geometry nodes into part node

D. Skip removing geometry nodes of type 2 parts

E. Remove all nodes of which the SLOT is from parapy/kbeutils unless they are defaulting
inputs slots (this also removes ’mystery nodes’ from kbeutils functions)

F. Also remove node if it belongs to an OBJECT generated with a parapy geom class, even for
defaulting input slots.

iv. Introduce initialization nodes

A. Identify the nodes that belong to root-level objects (legacy implementation using clus-
ter_nodes_by_node_object method + excluding if-statement in subsequent for-loop)

B. Add ’init node’ for the root-level object(s)

C. Merge remaining input nodes into their corresponding init node

D. For special case where the init node remains disconnected from the rest of the graph due
to lacking data dependencies, add artificial edges to try representing the control flow.

E. In case the analysis target was a type 2 part (sequence), merge the stand-in target node
(i.e. the geometry node)

(c) Add lots of additional metadata to the activity graph, and its nodes and edges. For example:
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i. Mapping of type 2 part objects to their corresponding geometry nodes

ii. Source code definition corresponding to each slot

iii. Data flowing across each edge

(d) Determine color coding, based on node objects

(e) Visualize intermediate graphs (optional)

(f) Relabel activity graph nodes, from cache objects to qualified identifiers (QIDs)

(g) Visualize QID graph

(h) Generate DOT file for QID graph (optional)

3. Initialize LLMPrompter (Perform LLM-based source code abstraction)

(a) Instantiate LLMPrompter

i. Initialize specified LLM and load onto GPU

(b) Loop through all nodes:

i. Skip over special nodes not suited for LLM abstraction (init nodes, geometry nodes)

ii. Format input prompt, based on provided inputs (system prompt, user instruction, prompt con-
text mode, keyworded response start) and LLM settings (checkpoint, quantization, decoding
strategy, etc.)

iii. Run LLM inference

iv. Save LLM output to dict and add as node metadata to QID graph

(c) Add LLM outputs to QID graph

(d) Add node description text as node metadata

i. Use LLM output, if available

ii. Else, for special nodes, format a description based on boilerplate text .

(e) Write LLM outputs and responses to .txt file (optional)

(f) Visualize abstracted graph (optional)

(g) Update QID graph visualization and its DOT file with abstraction results (optional)



C
VERIFICATION TESTING

TWEAKS TO THE ORIGINAL KBE APPLICATIONS

Below, the tweaks and additions made to the respective KBE applications are discussed. As will become
apparent, all tweaks and additions were marked with the initials (“JK”) so they can be easily identified in the
source code of the KBE application.

Primiplane app:

1. In the aircraft.py module several slots were added to represent the computation of a stability margin.
These computations referenced lower-level Parapy slots (e.g. the underlined part is this example:
self.fuselage.cog.x) nested within parts of the aircraft object, in order to evaluate this aspect of PR-03.
Moreover, a “regular” class method (i.e. not stereotyped as Attribute or Part) was defined that performed
part of this computation, called compute_stability_margin(self), to cover this aspect of PR-04.

Finally, a JK_xfoil_results attribute was added to this file, which simply brings the nested attribute
value self.xfoil_analysis.xfoil_analysis up to the root level. This was used to check if there
were any other differences in output between root-level and lower-level target attributes, besides the
final node.

2. In the liftingsurface.py module, an Input slot was added (“color”) to evaluate differences between
Input and Input slots. Furthermore, a sequence of type 2 parts (airfoil_seq_type2) was introduced
because this specific type was not present in either of the two KBE applications. Correspondingly, the
wing_from_airfoil_seq_type2 part was added as well to assess how the prototype handled parts
that used this type 2 sequence part as an input.

3. In the fuselage.py module, the fu_length slot was added as a lower-level test case of the Input slot type.

4. A separate liftingsurface_DynamicType.py module was created. It is a copy of the fuselage.py module,
except that the profiles part is redefined as a DynamicType that uses either the Circle or Octagon
class to generate the cross-sectional fuselage profiles. It determines this based on the value of the
fu_shape Input, which was added as well.

5. The main.py, movable.py, and xfoilanalysis.py modules were left unchanged, as well as the data files in
the airfoil_library.

Modular UAV app:

1. For comparison of LLM performance w.r.t. prompting context mode, all code comments placed above
attribute and part definitions were moved to within the method definition so the information was also
available for method prompt context mode.

2. In drone.py a test case for a sequence of type 3 parts was added in the form of the arm_main_st3b part.
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3. Some minor tweaks were made to the Modular UAV app to fix minor issues. For example, the airfoil.py
module contained a regular class parameter (degree), instead of defining it as a Parapy slot. This
resulted in a breaking compilation error. The statement was changed to an input slot to solve this issue.

Another examples from propeller.py is position definition of hub part (line 100). Here, self.hub.height
was changed to self.hub_height because this attribute already existed in but it was not used in this
statement. This was considered a typo, and therefore corrected. While the original definition did not
cause any errors, the dependency of the Part’s position on one of its own attributes led to a loop in the
precedents graph that was confusing to interpret.

4. In drone.py, The arm_main_st3b part was added as a test case for type 3 part sequences. Therefore,
the arm_offset_JK attribute was also added. This attribute is used as a substitute for the original
arm_offset attribute to define the position of the arm_main_st3b part. Otherwise, this dependency
would mean the arm_main_st3b part still depends indirectly on arm_main, via the arm_offset at-
tribute. This dependency results in both arm_main variants being included in the output, which was not
necessary and only found to be confusing.

5. In propeller.py, the following changes were made:

• Two attributes were added to represent lower-level (Parapy) slots as root-level application slots,
namely JK_propeller_cog_attribute and JK_eta_from_bet_analysis. Note that only the
latter was used in for the final verification test set.

• The main_blades_st3b part was introduced, which is very similar to the definition of the original
main_blade part. However, the key difference is that main_blade is a singular (type 3) part, whereas
this attribute is a sequence of (type 3) parts. This part was used in test case L-2.1. It was also used
to study the behavior of the Parapy KBE system1.

6. In prop_blade.py, the JK_prop_blade_cog_attribute was introduced. It was only used during devel-
opment. This method was not evaluated in any of the final set of verification test cases.

7. The remaining Python modules were left unchanged: main, arm, battery, bet_calculations, frame, motor,
prop_hub, results_pdf, slicer, utilities, xfoil_analysis, xfoil_section, propeller_strip. The data files in the
inputs sub-directory were also left unchanged.

OVERVIEW OF TEST CASES

An overview of the test cases is presented below. The values between parentheses at the end of some test
cases indicate the additional input that was supplied to further specify the target slot, after being prompted by
the REProcess prototype that this was required. The “-> TopoDS_Shape” indications refer to cases where the
algorithm found a TopoDS_Shape slot for the specified part, and determined by itself that this should be used
as the specific target. Note that this occurs based on the initially specified target slot, as well as after additional
specification are provided by the user through the prompts.

1. Root level slots:

(a) R-1.1 (Inp) -> primiplane.Aircraft.fuselage_weight_frac

(b) R-1.2 (@Inp) -> primiplane.aircraft.wing_fuel_weight_frac

(c) R-2.1 (Attr) -> primiplane.Aircraft.stability_margin

(d) R-2.2 (Attr) -> modular_UAV.Propeller.JK_eta_from_bet_analysis

(e) R-3.1 (Part type 1) -> primiplane.Aircraft.left_wing

(f) R-3.2 (Part type 2) -> primiplane.Aircraft.right_wing

(g) R-3.3 (Part type 3) -> modular_UAV.Propeller.bet_analysis (delta_r)

(h) R-3.4 (Part type 3) -> primiplane.Aircraft.xfoil_analysis (section -> TopoDS_Shape)

(i) R-4.1 (Part type 1 sequence) -> modular_UAV.Blade.blade_profiles[1] (-> TopoDS_Shape)

1Specifically, it was checked whether the lower-level xfoil_analysis slot, which incorporates a kbeutils function, would be re-evaluated for
every sequence instance. This was indeed found to be the case, verifying that each sequence instances is truly a standalone object
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(j) R-4.2 (Part type 2 sequence) -> primiplane.LiftingSurface.airfoil_seq_type_2 ([1] -> TopoDS_Shape)

(k) R-4.3 (Part type 3 sequence) -> modular_UAV.Drone.arm_main_st3b[0].my_arm (-> TopoDS_Shape)

2. lower level slots:

(a) L-1.1 (Inp) -> primiplane.Aircraft.vert_tail.airfoil_tip

(b) L-1.2 (@Inp) -> primiplane.Aircraft.vert_tail.color

(c) L-2.1 (Attr) -> modular_UAV.Drone.arm_main_st3b[0].arm_width

(d) L-2.2 (Attr) -> modular_UAV.Propeller.bet_analysis.eta

(e) L-3.1 (Part type 1) -> primiplane.Aircraft.right_wing.lofted_solid (-> TopoDS_Shape)

(f) L-3.2 (Part type 1) -> modular_UAV.Drone.propeller_main.scaled_propeller (-> TopoDS_Shape)

(g) L-3.3 (Part type 2) -> primiplane.Aircraft.right_wing.root_airfoil (-> TopoDS_Shape)

(h) L-3.4 (Part type 3) -> modular_UAV.Drone.propeller_main.bet_analysis (eta)

(i) L-3.5 (Part type 3) -> primiplane.Aircraft.vert_tail.movable_element.movable_faces_comp (TopoDS_Shape)

(j) L-4.1 (Part type 1 sequence) -> modular_UAV.Propeller.main_blade.blade_profiles[5] (TopoDS_Shape)

(k) L-4.2 (Part type 2 sequence) -> primiplane.Aircraft.right_wing.airfoil_seq_type_2[0] (-> TopoDS_Shape)

(l) L-4.3 (Part type 3 sequence) -> modular_UAV.Propeller.bet_analysis.sections[0] (beta_n)

(m) L-4.4 (Part type 3 sequence) -> modular_UAV.Propeller.scaled_propeller.bet_analysis.sections ([0],
blade -> TopoDS_Shape)

3. Special test cases:

(a) The SplitSolid() class was identified as an edge case. The get_precedents_tree() method generates a
deviating pattern, including unique nodes for this class. A small, additional KBE app was created
to generate a test case for it called ref_KBE_app. Here, the Omelet.omelet_fused was used as the
target slot.

(b) R-2.2 was executed twice: once with, and once without the keyworded response start feature.

(c) L-3.2 was executed twice, using both the method and class prompting context modes for com-
parison purposes. Also the LLM output files were generated for these test cases to compare
performance, both in terms of output and processing time.

(d) L-2.1 showed also attributes nested within sequences could be targeted.

(e) R-4.1, R-4.2, and L-4.1 all used non-zero sequence instances to demonstrate the capability to
target those as well besides the “standard” option to use instance 0 as the representative sequence
instance.

(f) An additional KBE app was introduced, called Asystor, which was used to verify the prototype is
able to handle larger, more complex applications that are defined using a hierarchical directory
structure.

C.1. REPROCESS PROTOTYPE REQUIREMENT VERIFICATION
The overview below presents how each of the other prototype requirements were verified. The full dataset was
provided to separately, and can be requested by contacting the thesis supervisor.

• PR-01: Verified by the entire set of test cases presented above.

• PR-02: Verified by the entire set of test cases presented above.

• PR-03: Verified by the entire set of test cases. The usage of kbeutils functionalities specifically is included
in test cases R-2.2, L-2.2 (both KBE applications used for testing used the xfoil module from kbeutils).
The Blade class from the Modular UAV app (prop_blade.py) included the y_coords attribute, which
does not have any precedents. This slot is appears in R-2.2, R-3.3, R-4.1, and R-4.3, amongst others.
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• PR-04: The full set of test cases was designed specifically to cover all features from PR-03. The Dynamic-
Type class was introduced through the fuselage_DynamicType.py variant used in test case R-2.1 to verify
the implemented prototype could handle DynamicType occurences. Validators are used extensively on
the input slots of the drone.py module, so this feature was verified by test cases R-4.3, L-2.1, L-3.2, L-3.4.
The special Asystor app test case was used to verify the system could handle KBE modules located in
different, hierarchically structured folders.

• PR-05: This input requirement was fully met for the Primiplane app. For the Modular UAV app, the
aspect of providing additional info regarding a slot as docstrings (instead of comments on the line above
the part slot) was not met. However, the impact of this was considered small. At most, it would have
slightly reduced the LLM performance for the method prompt context mode.

• PR-06: Verified by the entire set of test cases presented above, except for input slots. For these, the
prototype was found to not be working as intended. This will be discussed in the next section.

• PR-07: Verified by the entire set of test cases presented above, except for input slots. For these, the
prototype was found to not be working as intended. This will be discussed in the next section.

• PR-08: This requirement was implemented through the design decision to use the get_precedents_tree()
as the main (dynamic) analysis method.

• PR-09: This requirement was implemented through the design decisions related to the diagram visual-
ization:

– Coloring is used as a substitute for swimlanes.

– Tooltips are shown when hovering the cursor on specific nodes or edges to present additional, more
specific information to the user. For example, the node type, object class, and corresponding class
method source code are shown when hovering on nodes. Edge tooltips present the data flow by
listing all of the slots flowing through a connector. For connectors flowing to/from Parapy parts,
this includes all individual input slots. These tooltips are a substitute for the specification window
that can be opened when using modeling platforms such as CATIA Magic Systems of Systems
Architect to inspect the metadata associated to nodes and node connectors.

– The implemented partial visualization method provides a functionality similar to that of interactive
SysML diagrams in CATIA Magic where a separate, lower-level diagram can be used to provide a
detailed specification of an action that is represented by a single node in a higher-level diagram.

• PR-10: This requirement was implemented through the addition of the partial visualization method (see
subsection 7.5.4).

• PR-11: Overlap between various test cases, e.g. R-4.2 and L-4.2, was used to verify the method was
deterministic.

• PR-12: This hardware-related requirement was implemented through the design decision to use a
high-performance workstation for the LLM inference.

• PR-13: The computation time was measured for all test cases. The longest LLM inference run was
10 minutes, 7 seconds for all nodes in the graph (average of 3.8 seconds per node). This occurred for
test case R-2.2 (modular_UAV.Propeller.JK_eta_from_bet_analysis). Surprisingly, the evaluation of the
get_precedents_tree() method itself took longer than the LLM inference for the most complex test
cases( roughly 20 minutes). Still, this meant all computations were completed within the pre-defined
performance requirement of 1 hour.



D
INITIAL COMMUNICATION RESEARCH

DIRECTION

Before settling on the development of a communication tool for AI-domain expert collaboration, an alternative
research direction explored in for the communication thesis project was improving software visualization
techniques to enhance program comprehension. This exploration was motivated by the recognition that
visual representations play a crucial role in making complex engineering and software models more accessible
and understandable.

However, the literature review revealed that while extensive research has been conducted on effective visual
communication principles, particularly in the domain of software engineering, the gap between research
findings and practical implementation remains significant. Many existing modeling languages and tools—such
as UML and SysML—do not fully incorporate well-established visualization principles. Despite the existence of
guidelines for aesthetically and cognitively effective visual notations, these guidelines are rarely implemented
in industrial tools.

D.1. VISUALIZATION GUIDELINES FOR SOFTWARE DIAGRAMS
The reviewed literature identified several key criteria and frameworks for designing effective software visualiza-
tions, ranging from low-level layout aesthetics to high-level cognitive effectiveness principles. A summary of
notable contributions is provided in Table D.1.

Table D.1: Summary of key visualization guidelines in software engineering

Authors Year Title Citations Key Guidelines Theoretical
Founda-
tions

Comments

Purchase
et al. [101]

2002 Layout Aesthet-
ics in UML: User
Preferences

99x User preference-
based aesthetics:
bends, edge crossings,
orthogonality, layout
width, text direction,
font type, inheritance
style, directional
indicators

Based on
literature
(Colman,
Stott
Parker
1996; Petre
1995)

Layout-
specific
guidelines

180
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Table D.1: Summary of key visualization guidelines in software engineering

Authors Year Title Citations Key Guidelines Theoretical
Founda-
tions

Comments

Moody
and Hil-
legersberg
[96]

2008 Evaluating the
Visual Syntax
of UML: An
Analysis of the
Cognitive Effec-
tiveness of the
UML Family of
Diagrams

58x Cognitive effective-
ness principles: semi-
otic clarity, percep-
tual discriminability,
visual expressiveness,
graphic parsimony

Based on
Moody’s
frame-
work
(2009)

Defines
criteria for
evaluat-
ing UML
diagrams

Wong and
Sun [94]

2006 On Evaluating
the Layout of
UML Diagrams
for Program
Comprehen-
sion

23x Guidelines based on
perceptual theories:
Gestalt Laws, Marr’s
theory, Theory of
Notation

Perceptual
organi-
zation
and seg-
regation
theories

Covers
not only
layout but
also color,
proximity,
and inter-
pretation

Agrawala
et al. [102]

2011 Design Princi-
ples for Visual
Communica-
tion

145x General principles for
effective visualization
in communication

Broad
synthesis
of percep-
tual and
cognitive
theories

Siebenhaller
and Kauf-
man [95]

2006 Drawing Activity
Diagrams

19x Algorithm-based ap-
proach for optimizing
diagram layout

No theoret-
ical frame-
work

Focus
on auto-
mated
layout gen-
eration

Munzner
[103]

2014 Visualization
Analysis and
Design

636x High-level visual-
ization framework;
strong emphasis on
interactivity

Synthesis
of various
visual-
ization
theories

Nested
model for
research
design;
interactive
visual-
izations
empha-
sized

Pacione
et al. [104]

2004 A Novel Soft-
ware Visual-
ization Model
to Support
Software Com-
prehension

75x Notation-based
comprehension
framework

No specific
theoretical
founda-
tion

Moody
and van
Hillegers-
berg [35]

2009 The “Physics”
of Notations:
Toward a Scien-
tific Basis for
Constructing
Visual Notations
in Software
Engineering

773x Defines "cognitive ef-
fectiveness" as a mea-
surable property of vi-
sual notations

Synthesis
of multiple
theories,
including
semi-
otics and
commu-
nication
theories

Foundational
paper for
defining
cognitive
effective-
ness in
visual
notation
design
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D.2. KEY FINDINGS IN PROGRAM COMPREHENSION RESEARCH
To complement the study of software visualization, a review of program comprehension research was con-
ducted. This section summarizes key studies that investigated how visual representations impact the under-
standing of software systems.

INTUITIVE UNDERSTANDABILITY OF PROCESS DIAGRAMS ( JOST ET AL., 2016)
Jost et al. [105] conducted an empirical study comparing the intuitive understandability of process diagrams
created with UML Activity Diagrams (AD), BPMN, and EPC. Their research introduced a computational method
for determining control-flow complexity and evaluated how quickly and accurately non-experienced users
could interpret these diagrams. The study found that higher control-flow complexity negatively impacted
interpretability.

SUMMARIZING LARGE EXECUTION TRACES FOR COMPREHENSION (HAMOU-LHADJ & LETHBRIDGE, 2006)
Hamou-Lhadj and Lethbridge [106] introduced a trace summarization algorithm designed to filter large
execution traces and improve software comprehension. Their study focused on distinguishing between
"utility" and "implementation detail" components within a trace. The method was evaluated using a case study
where programmers assessed the quality of generated sequence diagrams using a Likert-scale questionnaire.

EXECUTION TRACE ABSTRACTION USING META PATTERNS (NODA, 2012)
Noda [107] proposed a novel trace summarization approach that integrates static and dynamic analysis to
detect meta patterns in Java source code. The study introduced metrics for program complexity, such as the
number of source files, runtime objects, and detected patterns. While the work provided a framework for
abstraction, it lacked empirical validation through comprehension experiments.

CONTROLLED EXPERIMENT ON TRACE VISUALIZATION (CORNELISSEN ET AL., 2011)
Cornelissen et al. [49] conducted one of the first controlled experiments to quantitatively measure the benefits
of trace visualization in program comprehension. Their study compared participants using the Eclipse IDE
with those using the Extravis visualization tool. Performance was assessed based on task completion time and
correctness, revealing that visualization tools significantly aided comprehension.

COMPARING TRACE VISUALIZATION TOOLS (FITTKAU ET AL., 2015)
Fittkau et al. [108] extended prior research by comparing the effectiveness of two trace visualization tools—Extravis
and ExplorViz—using controlled experiments. Their study applied the Goal-Question-Method approach and
found that different tools yielded varying levels of comprehension benefits, highlighting the importance of
visualization design.

EVALUATING UML SEQUENCE DIAGRAMS FOR THREAD INTERACTION (XIE ET AL., 2007)
Xie et al. [109] assessed the effectiveness of an extended UML sequence diagram notation in helping students
understand multi-threaded concurrency. Using Bloom’s taxonomy, the study formulated questions at different
abstraction levels to evaluate comprehension. A pre-test/post-test experiment revealed that participants using
the extended notation performed better in understanding thread interactions.

CONTROLLED EXPERIMENTS ON SYNCHRONIZATION-ADORNED UML DIAGRAMS (XIE ET AL., 2008)
Xie et al. [110] conducted follow-up research with an improved experimental design, comparing standard UML
sequence diagrams with their extended notation. The study employed a larger sample size and introduced
two experiments—one with a simple program and another with a more complex system. Their findings
demonstrated that synchronization-adorned UML diagrams significantly improved comprehension in multi-
threaded environments.

D.3. CONCLUSION
Improving visualization-based communication remains an important challenge, particularly in engineering
disciplines where complex system models are frequently used. However, the literature study results presented
above indicated such a the widespread gap between visualization research and practical modeling tools that it
was deemed infeasible given the limited scope of this thesis project to dive further into this field and use it as
the topic for communication thesis. Future work may explore how the principles summarized in this appendix
can be incorporated into modern software reverse engineering tools like the REProcess tool to enhance the
clarity and usability of model-based design and software engineering diagrams.



E
DETAILED STEPS AND RESULTS FROM

EXPLORATORY RESEARCH CONDUCTED WITH

SCISPACE CHATGPT

This appendix presents a detailed account of the exploratory research activities that were conducted with
SciSpace ChatGPT during to development of the conceptual framework (chapter 11). Note that this method
was only used for filtering and exploration to identify potentially useful theories and models. These findings
provided a starting point for further research in which the findings were checked and verified based on original
sources.

E.0.1. PROMPT CONTEXT INTRODUCTION
During the aerospace part of this thesis, the importance of providing GenAI models with significant contextual
information was discovered. Therefore, an elaborate introduction was written and provided at the start of the
SciSpace ChatGPT conversation. This introduction is presented below.

I’m currently working working out my research plan for my science communication thesis research.

Research context: I focus on the development of new ways-of-working and corresponding software
tools. I simplify the situation by categorizing people into two groups. Group 1 are generative AI
researchers/developers and staff who are designing and implementing the future ways of working
to be used in engineering practice. Group 2 are engineers who are actually working in everyday
practice on the development of complex, technological, safety-critical systems and will need to
approve of and adopt these tools.

Main problem/hypothesis: Researchers/developers of generative AI systems (group 1) are quickly
developing new tools with new capabilities, but they currently don’t focus enough on the specific
needs and demands of engineers who are working on complex, safety-critical technologies and
systems (group 2). These two groups need to communicate better and collaborate more closely
moving forward. My focus is on improving the communication and collaboration *process*
between these two groups.

Research goal: Develop a communication tool/methodology/framework that can improve collab-
orative development of AI devs & engineers on engineering tools powered by Generative AI.

Your assignment: My next step is to build a theoretical framework to further strengthen my inter-
view protocol. My theoretical framework should help to further specify my interview questions. In
particular on the topics of:

1.) Defining/characterizing collaboration: I need to more precisely define the collaboration in
my specific context between group 1 (AI researchers/developers), and group 2 (engineers). For
example their relationship and the (perceived) role they fulfill in this. The goal of this literature
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research is to define statements regarding specific collaboration barriers/enablers/factors that I
can use in the interview to get more specific answers. Otherwise I see a risk where my interviewees
will give too generic answers to the questions about Challenges and Goals.

2.) The second aspect I want my theoretical framework to focus on are the different phases that
the collaboration between the two groups could be in, and the consequences related to this. When
thinking about the GenAI tools that would be developed, I realized that it will make a big difference
for the collaboration characteristics if the GenAI tools are still in the conceptual phase (defining
vision, needs, requirements), or in active development (iterative, adjusting specific things, very
concrete questions) or already implemented and in active use (collaboration focused on reflection
and evaluation). My goal here is to support/extend this notion. What does literature say about
these different phases? Are there more phases? What are the collaboration characteristics related
to each phase?

E.1. MOST USEFUL THEORIES FROM UT TWENTE LIST
After the extensive context introduction, the following question was posed:

From the following list of communication theories, what are the top 5 theories that could be useful
for my theoretical framework? Also describe why and how they would be relevant.

[list of 48 theories from [61] inserted here]

E.1.1. GENERATED OUTPUT
Based on this question the following output was generated:

DIFFUSION OF INNOVATIONS THEORY

• Relevance: This theory explains how, why, and at what rate new technologies or innovations spread
through cultures or groups. In your context, it can help analyze the adoption of generative AI tools
by engineers (Group 2) and how the collaboration between developers and engineers can facilitate or
hinder this process.

• How it applies: Diffusion theory can guide questions about the adoption barriers of AI tools, helping
you identify the factors that promote or impede the acceptance of these new ways of working within
engineering teams. Understanding the stages of innovation diffusion (knowledge, persuasion, decision,
implementation, confirmation) will also help frame interview questions about current challenges in
collaboration.

MEDIA RICHNESS THEORY

• Relevance: Media Richness Theory (MRT) deals with the effectiveness of different communication
media based on their ability to convey rich information. For example, face-to-face communication is
considered "richer" than emails because of the availability of verbal and non-verbal cues.

• How it applies: In improving communication between AI developers and engineers, this theory can help
assess which communication tools are most effective at conveying complex technical details, reducing
misunderstandings, and ensuring that the right information is transmitted in the right way. This will
help in framing questions about how communication tools are used and where they fall short.

MENTAL MODELS

• Relevance: Mental Models refer to the cognitive frameworks or structures that people use to understand
and interact with the world. AI developers and engineers likely have different mental models due to their
distinct expertise and experiences.

• How it applies: Investigating how the different mental models of engineers and AI developers affect their
communication and collaboration can help identify gaps in understanding or alignment. Questions
could explore how each group conceptualizes the role of AI in safety-critical systems and where their
mental models diverge, causing barriers to collaboration.
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SOCIAL PRESENCE THEORY

• Relevance: Social Presence Theory focuses on the degree to which a communication medium allows
users to perceive others as being physically present, even in digital or remote interactions. It’s important
in understanding how collaboration happens in remote or asynchronous environments.

• How it applies: For teams working remotely or using digital collaboration tools, Social Presence Theory
can help frame how the perceived "presence" or engagement of team members affects the quality of
collaboration. This can be used to ask about the impact of digital tools on team cohesion and how
engineers and developers feel connected—or disconnected—during collaborative development efforts.

ADAPTIVE STRUCTURATION THEORY

• Relevance: This theory examines how people interact with technology and each other within organiza-
tional settings, especially focusing on how structures (such as tools or systems) evolve based on human
actions and feedback.

• How it applies: This theory is relevant when investigating how collaboration tools or communication
systems (e.g., shared documents, design platforms) are used by developers and engineers and how
they might need to be adapted over time. The theory can guide questions about how current systems
either enable or hinder collaboration and where adaptability is needed to improve communication and
teamwork.

E.2. ADDITIONAL THEORIES TO CHARACTERIZING TYPES OF COLLABORATIONS
After obtaining the result presented above, the following question was posed:

What theories/models exist that I can use to characterize types of collaborations? For instance on
characteristics like short-term vs long-term collaboration, intensive vs sporadic, etc.

E.2.1. GENERATED OUTPUT
Based on this question the following output was generated:

RELATIONAL COORDINATION THEORY

• Overview: Relational Coordination Theory, developed by Jody Hoffer Gittell, emphasizes the role of
high-quality communication and strong relationships in coordinating work across teams. It focuses on
relationships and their impact on performance in complex and interdependent tasks.

• How it applies: This theory can be used to characterize intensive vs. sporadic collaboration by looking at
how teams communicate and relate across different types of tasks. Intensive collaborations are marked
by frequent, high-quality communication and shared goals, whereas sporadic collaborations might
involve more transactional and infrequent interactions.

• Key characteristics: Frequency of communication, shared goals, mutual respect, and task interdepen-
dence.

TIME-SPACE MATRIX ( JOHANSEN, 1988)
• Overview: The Time-Space Matrix characterizes collaboration based on whether the interactions are

synchronous or asynchronous and whether they happen in the same physical location or remotely.

• How it applies: This model can help distinguish between short-term vs. long-term collaborations and
intensive vs. sporadic interactions by considering how the collaboration is coordinated over time (e.g.,
in real-time or over a longer period) and whether participants are co-located or remote.

• Key characteristics: Time (synchronous/asynchronous) and location (same place/different places).

COLLABORATIVE NETWORK THEORY

• Overview: This theory explores how organizations or teams collaborate in networks to achieve shared
objectives. It is particularly useful for understanding long-term, sustained collaborations vs. short-term
or project-based collaborations.

• How it applies: This theory helps to characterize long-term vs. short-term collaboration by analyz-
ing how formal or informal networks of collaboration are structured, and how they adapt over time.
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Long-term collaborations are more likely to involve strong, trust-based networks, while short-term
collaborations may be more transactional.

• Key characteristics: Network structure (formal/informal), duration (temporary/ongoing), purpose, and
resource sharing.

PROJECT LIFECYCLE MODELS

• Overview: Project lifecycle models, such as the PMI’s Project Lifecycle or Agile frameworks, provide
structures for understanding collaborations based on their stages (initiation, planning, execution,
monitoring, and closure). These models also highlight how collaborations may evolve from intense
(development phase) to sporadic (maintenance phase).

• How it applies: These models can help characterize the intensity of collaboration at different phases of
a project. Early stages (planning, design) tend to be more intensive, while later stages (implementation,
maintenance) may be more sporadic or less involved unless issues arise.

• Key characteristics: Collaboration intensity, focus on deliverables, project stages, feedback loops.

TRANSACTIONAL VS. TRANSFORMATIONAL COLLABORATION

• Overview: This framework differentiates between transactional collaboration, where parties engage
in exchanges of resources or information for immediate benefit, and transformational collaboration,
which focuses on deeper, long-term partnerships aimed at mutual growth and innovation.

• How it applies: You can use this to assess the nature of collaboration: short-term, goal-focused engage-
ments (transactional) vs. long-term, deeply interwoven collaborations that seek transformative change
(transformational).

• Key characteristics: Depth of engagement, duration, mutual benefit, and innovation potential.

COLLABORATIVE CONTINUUM ( THOMSON & PERRY, 2006)
• Overview: The collaborative continuum model suggests that collaboration exists on a spectrum from

cooperation to coordination to collaboration, depending on the depth and formality of the interaction.

• How it applies: This model is useful for characterizing collaborations based on their formality and inten-
sity. Cooperation represents low-intensity, short-term, or sporadic collaboration, while collaboration
involves higher-intensity, more formal, and long-term relationships.

• Key characteristics: Degree of interdependence, intensity of collaboration, shared authority, and trust.

STRENGTH OF WEAK TIES (GRANOVETTER, 1973)
• Overview: Granovetter’s theory of the Strength of Weak Ties explains that weak, sporadic connections

between individuals or groups (e.g., occasional collaborators) can be just as important as strong, intense
relationships for sharing novel information and forming new opportunities.

• How it applies: You can use this to explore sporadic vs. intensive collaboration. Weak ties are valu-
able in short-term or sporadic collaborations, whereas strong ties are critical for long-term, intensive
partnerships.

• Key characteristics: Frequency of interaction, strength of relationship, and information exchange.

ADAPTIVE STRUCTURATION THEORY

• Overview: Adaptive Structuration Theory (AST) explains how teams and organizations adapt communi-
cation and decision-making structures based on available tools and technologies.

• How it applies: This theory can be used to characterize the evolution of collaboration over time, from
initial (short-term, sporadic) to mature (long-term, intensive) collaborations. It helps assess how teams
adjust collaboration styles depending on the phase of a project and the communication technologies in
place.

• Key characteristics: Adaptability, technology use, evolving team structures, and duration of collabora-
tion.
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TUCKMAN’S STAGES OF GROUP DEVELOPMENT (1965)
• Overview: Tuckman’s model identifies five stages of group development: forming, storming, norming,

performing, and adjourning.

• How it applies: This model can be used to assess how collaborations evolve over time, from initial,
short-term stages (forming) to more long-term engagements (performing), where the group operates
effectively and efficiently. The model also highlights how collaboration intensity shifts through these
stages.

• Key characteristics: Group development stages, conflict management, team cohesion, and performance.

TASK INTERDEPENDENCE THEORY

• Overview: Task Interdependence Theory classifies collaboration based on how much one member’s
work relies on the actions of others. There are three main types: pooled, sequential, and reciprocal
interdependence.

• How it applies: Task interdependence is a way to characterize collaboration intensity. High inter-
dependence (reciprocal) requires close, frequent interaction (intensive collaboration), whereas low
interdependence (pooled) allows for more independent work and sporadic collaboration.

• Key characteristics: Degree of interdependence, collaboration frequency, complexity, and coordination
needs.



F
INTERVIEW DESCRIPTION

This one-page interview description was attached to the email invitations sent out to potential interviewees:

Introduction
My name is Joris Koopman (email: j.p.koopman@student.tudelft.nl) and I’m working on my MSc thesis for a
double degree in Aerospace Engineering and Science Communication at TU Delft. My thesis focuses on the
development of novel engineering tools & methods powered by (generative) AI.

Science Communication research:
For the Science Communication part of my thesis, I’m investigating the communication between differ-
ent stakeholders involved in the development process of AI-powered tools & methods. In particular, I’m
investigating the interaction between two groups:

• Group 1: Domain experts who work on or interact with complex, critical systems. (e.g. aerospace,
nuclear, medical technology, etc). In addition, these experts are involved in AI-driven projects that aim
to improve current work practices in terms of efficiency, quality, speed, safety, etc.

• Group 2: (Generative) AI researchers and developers working on novel tools and methods in collabora-
tion with domain experts from group 1.

The nature of the complex, critical domains imposes strict requirements on any new tools or methods adopted.
As a result, successful tool development relies on effective interdisciplinary collaboration between these
two groups. However, there are many (potential) challenges: different backgrounds, different organizations,
unrealistic expectations, etc.

Research Objective and Plan
My main objective is to enhance the collaboration between the two groups outlined above by increasing
the effectiveness of their communication. To achieve this, I first need to learn more about current practices
and identify key collaboration and communication challenges. I am therefore reaching out to interview
professionals from both groups.

Indicative questions
A few example questions are provided below to give you an idea of the topics we’ll discuss:

• How do you think your domain-specific work practices will be transformed by (generative) AI-powered
tools and methods, and why?

• Based on your experience, what are the 3 most relevant challenges related to AI tool development? [select
from list of options]

• To what extent is the shared knowledge about each other’s domain sufficient to communicate effectively?
[scale 1- 5]

• From the following ideas for communication tools/methods, which one(s) do you like best, and why?
[review list of options]
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Confidentiality
The interviews are part of a TU Delft thesis research project. Transcripts and recordings are kept confiden-
tial and results will be anonymized before presentation/publication. Participants may refuse to answer, or
withdraw from the study at any time.



G
INTERVIEW CONSENT FORM

Interview consent form
You are being invited to participate in a research study titled Improving interdisciplinary communication in
advanced AI projects. The study is carried out by Joris Koopman (j.p.koopman@student.tudelft.nl) for a Master
thesis project at TU Delft, under supervision of Caroline Wehrmann (c.wehrmann@tudelft.nl).

The purpose of this study is to better understand the interdisciplinary collaboration between AI researcher-
s/developers and experts from other domains, and identify key collaboration and communication challenges.
To this end, a series of interviews will be conducted with both groups (AI researchers/developers and domain
experts). These will serve as input to inform the design of a tool or method that improves interdisciplinary
communication.

The collected data is used for the MSc thesis project of the researcher and will be anonymized in any publica-
tions (e.g. thesis report). In addition, publications will mainly present aggregated results. Specific, anonymized
quotes may be included but full transcripts or recordings will not be published.

As with any online activity the risk of a breach is always possible. To the best of our ability your answers in this
study will remain confidential. We will minimize any risks through the following measures:

• Only MS Teams and its built-in functionalities will be used to capture data.

• Recordings and transcripts will only be processed locally.

• Recordings and unprocessed (i.e. identifiable) transcripts will only be shared with supervising re-
searchers. They will not be shared with any other third-parties. This includes uploading to web and
cloud services.

• Recordings and unprocessed (i.e. identifiable) transcripts will be removed at the end of this research
project (Feb 2025).

Your participation in this interview is entirely voluntary and you can withdraw at any time. You are free to omit
any questions. Furthermore, until 17 Jan 2025, you may: 1) access your data in order to rectify it or erase it; 2)
submit a written request to be excluded from the study, upon which all data will be removed. After this date,
preliminary results may have already been submitted and exclusion from the study cannot be guaranteed.

Please sign below to consent to the terms of this study:

Name of participant Date Signature
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DESIGN INPUT FROM INTERVIEWEES ABOUT

MORPHOLOGICAL CHART

H.1. INPUT FROM AI-3
Conclusions/takeaways:

• Most important cross-domain knowledge to share:

– Make DE understand the capabilities and limitations of GenAI technology, including different levels
of maturity of an output. For example, it can generate images of concepts, but not their technical
drawings. Or for auto-generated part design: AI can generate simple 2D sketches/drawings to be
used during the conceptual design phase, but not (yet) a complete CAD model.

AI-3: “one key AI concept that is misunderstood by domain experts is the capabilities of generative
AI models. What it can do currently, what it cannot, and what outputs it can produce. So, for
example, what kind of representation a generated CAD model is, and whether that is usable for
manufacturing purposes or whether it can be only used for conceptualization and during the
planning phase of the product development life cycle. The key point here is understanding the
generative AI model technology itself, and the capabilities and the limitations of the model.”

– The current engineering workflow of Domain Experts + The ML workflow of AI developers and
required training data.

AI-3: “Of course, it depends on different use cases, but in the collaboration between domain experts
and AI engineers, it’s very important to emphasize understanding first of all the existing workflows
of domain experts. And at the same time, it’s also very important for domain experts to understand
how the AI development life cycle, or the machine learning development life cycle works. So what
the requirements are for better data, training data, et cetera. These are the main points that I think
are very important to facilitate the collaboration.”

• Most important AI features to educate DE on:

– Provide transparency, Human-in-the-loop system, with intermediate checking/approval steps
AI-3: “At the same time, providing maximum transparency how the AI model is operating or is being
run. This also a very important key concept that domain experts should be aware of. Transparency
in terms of, for example, if you have an intermediate step that is performed before the final output
in the AI pipeline, the output of that intermediate step should go back to the user or to the domain
expert in order to verify the output. So they can be the human-in-the-loop factor here, in order to
verify how the AI model was able to generate the output, based on the intermediate outputs or the
intermediate steps. Providing maximum transparency of the AI pipeline to the domain experts is
very useful, and actually might be required by domain experts so they can verify and approve the
output of the intermediate step before the AI pipeline generates the final output.”
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H.2. INPUT FROM AI-1
Three key aspects that need to be included:

• Purpose: What exactly are you delegating to the LLM? Are you merely using it to perform a certain step
(eg connect/transforming inputs and outputs from other analysis steps in the engineering process)? Or
is it agentic, and does it get the responsibility to make certain decisions? These could be design decisions
(e.g. select a certain part, use certain architecture, etc.) or design process decisions (based on analysis
results X, the next step is to perform analysis Z).
Related to above, two types of errors can occur: 1) it can do things wrong, or 2) it can do the wrong thing.
When doing things wrong (option 1), its usually because LLM is doing activity that should be done by
tool or human (eg calculations)

• Level of automation / user interaction:

– Do you want it to be a chat that says: “hey, here’s my suggestion for your new design. You could do
this or that”.

– Do you simply want it taken care of by the AI?

– Or do you want the engineers in complete command and control over it?

• Computational support, how much knowledge is taken from the Generative AI and how much is done
by traditional engineering tools / systems (like KBE app, CFD, FEM, etc.). And how much still by designer
themselves?

Triangle of ownership basically defines the design space as division of responsibility in the automation and
interaction between:

• Designer – AI:

– How much control over the workflow?

– How much knowledge from Designer vs AI?

• Designer – Tool:

– Through what interface (chatting)?

– How much manual input vs (AI-powered) automation?

• LLM – Tool:

– How much design knowledge used from LLM itself (so embedded in NN) vs traditional computa-
tions/analyses?

Quotes from AI-1 related to conclusions:

• Issue of design feature dependencies “Core assumption of morphological matrices in general is that
design dimensions are independent, which does not hold for LLMs” -> Challenging to create a ma-
trix because many design choices/aspects depend on others and certain design choices are mutually
exclusive.

• “I think that you first need to decide what it [the AI] is gonna be doing. What is the intention? Like what
is the purpose of the AI? Why do you want it there? Why did you want to do this? And then once you have
it, you have a subset of questions. So if it’s to analyze things, then you ask the question if it is using tools
or not using tools. Is it supposed to do that? But if it’s just summarizing, for example, then you don’t have
to ask all those questions and the according levels [options]. So that’s why I said maybe a morphological
matrix is not ideal.”

• Clarify purpose and approach: “I think what you should add is to try to understand what is the purpose
of the AI tool, the generative AI tool. Similar to synthesis and so on, but I don’t think it’s clear enough
what the model can do. Especially because you’re talking about generative AI and due to the ChatGPT
legacy and experience. Basically, an agentic LLM can do two things: it can choose what steps to take,
and it can execute steps as well. That’s a distinction.”
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• AI capabilities: “the problem when you are developing a tool is that you can get it wrong in two ways.
You can get it wrong because the Large Language Model is doing the wrong thing, or because it’s doing
the thing wrong. So, doing the thing wrong typically is not the problem. The problem is that you are
giving the Large Language Model an activity that should be done by another tool or by a human, so we’re
not using the Large Language Model to its best. For example, ‘add 72 point something plus something’,
you should use a calculator for doing that. Just don’t ask the model.”

• Level of user control vs automation (division of responsibilities/ownership): “what is the automation
that you’re expecting from the tool? Do you want it to be a kind of chat suggesting new design, like ‘Hey,
a suggestion. You could do this or that.’ Or can I just ignore it and have the engineers in command and
control?”

• Level of user control vs automation: “How much do you want this to be automated? Do you want it to
be taken care of, or do you want to do it in an interactive way? To what extent is someone in command?”

• Computational support: “And then within the computational support: how much is done by the LLM,
or generative AI, and how much is done by traditional tools?”

• Workflow flexibility: “How much freedom does the generative AI have in in answering your questions?
Is it like what we said before? Is it really fixed flow of things to do? Or is it depending on the output to do
one thing or the other? Is it a free script React architecture?”

• Purpose: “I think that you first need to decide what it [the AI] is gonna be doing. What is the intention?
Like what is the purpose of the AI? Why do you want it there?”

H.3. INPUT FROM FOLLOW-UP MEETING WITH AI-2
• User-Friendliness: Customization Control The ability to create a system prompt yourself versus only

having access to a simple text box. This raises the question: how much do you want to do yourself?

• Types of Domain experts who approach AI team

– Dimension 1: Level of AI understanding

⋄ Those who simply view AI as an abstract entity that can provide a solution to their problem.

⋄ “Find and replace” users: for instance, “if it can easily find IBANs, it should also handle names
or locations.”

⋄ Users who understand the broad family of AI solutions but only need knowledge about specific
applications.

– Dimension 2: Source of motivation to start project with AI team:

⋄ "The desperate" who are seeking a solution for acute problems. Eg being overloaded with
more work than they/their team can handle.

⋄ “The status seekers” who are incentivized by prospect of gaining professional status associated
with being involved in successful ai project. It makes them appear competent

⋄ “The balanced” who have a pretty good understanding of the tech and required investment
from their side. Generally less urgent/stressed than the desparate and more intrinsically
motivated than the status seekers.

• Preconditions for Success:

– How well is your workflow documented?

– Is the data well-organized and properly meta-tagged?

– Are proper risk management and control practices, like a four-eyes principle, already used and/or
defined in formal processes? This enables easy human-in-the-loop implementation

• Levels of AI Autonomy:

– Human Out of the Loop: Fully autonomous operation.
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– Human on the Loop: Monitoring with occasional intervention (e.g., wildlife cameras).

– Human in the Loop: Active involvement in decision-making.

– Human in Control: Full oversight and command.

• Neuro-Symbolic Compound AI Systems: Combining symbolic reasoning with neural networks.

• Response Latency:

– Do you prefer well-checked and thought-out answers, or snappy responses?

– Implementation could involve an agent, a controller, or just an LLM (e.g., GPT-4).

– Consider batch processing versus real-time chat systems.

• Interpreting Results: Should outputs be human-readable (e.g., text) or machine-readable (e.g., JSON)?

• Iterating on Output:

– Input into another system (e.g., code).

– Iteration within the chat interface (e.g., editing the second sentence).

– Copy-pasting elsewhere for further refinement without returning to the original system.

Managing Temporary Context:

• Do you build a chat history?

• Consider the trade-off: more compute and time versus better continuity.

• Criticality of Downtime: Batch processing use cases versus real-time requirements like chatbots.

• LLM Capabilities: LLM = knowledge base + logic skills -> advisable approach is to rely more on logic
skills than on stored knowledge.

• AI Scope: How broad or narrow is the task spectrum? Narrow implementations can involve either
prompts or fine-tuning.

• Control Over Behavior: Fine-tuning is essential for controlling AI skills and behavior.

• Context Provision: Do users need to supply context manually, or is this automated?

• LLM Integration Approaches:

– Embedding a tool into an LLM.

– Embedding an LLM into an existing tool (e.g., Copilot).

– Using an LLM alongside existing tools.

• Proving Effectiveness:

– What data proves the system works?

– How critical is it to validate this, depending on the use case?

Input and Response Taxonomy: Structured prompting, such as JSON-based “fill in the gap” tasks.

Ethical Considerations: Categories of risk: Low, Medium, and High.
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LIST OF DESIGN DIMENSION IDEAS

The list below contains thoughts and ideas for design dimensions collected over time. Some were ideated
based on personal knowledge and experience, others inspired by literature or mentioned by interviewees
during the initial interview series and follow-up conversation conducted with some of them. This list formed
the basis for the first prototype (iteration 1) that was created.

• Target users: Only specific roles; All engineers in organization; All staff in organization; All engineers
from partnership (inside and outside organization); Open to community; Etc.

• Output (what does the GenAI tool provide?): Analysis; Recommendations; Synthesis; (autonomous)
Decisions

• AI Role: Analyze, Synthesize, Agent

• GenAI modality: Text (natural language); Source code; Datasets; Images; Video; Etc.

• Explainability & traceability: Black-box (only save output or prompt+output); Chain-of-thought
prompting (save all steps); Rule-based breakdown + prompting (save all steps); RAG (save prompts,
retrieved sources, outputs); Etc.

• User control: Running permanently in background; Only on request of user itself; Also on request of
other users; Etc. Inspired by Tsiakas and Murray-Rust [111]: “Human-AI interaction is defined as ’the
completion of a user’s task with the help of AI support, which may manifest itself in non-intermittent
scenarios’ [71]. Following this definition, there are three main Human-AI (HAI) interaction paradigms,
intermittent, and continuous, and proactive, taking into consideration ’how differences in initiation and
control result in diverging user needs’”.

• GenAI scope: Provide entire functionality; Only provide specific, partial functionalities (eg when
combined with heuristic algorithm).

• Human-AI Team structure: 1 human & 1 AI; many humans & 1 AI; 1 human & many AI’s; many humans,
many AI’s

• Collaboration hierarchy: Human above AI; human equal to AI; AI above human.

• AI information access: Company intranet/wiki; Engineering database; Personal communication (e.g.
email); Access to public internet; Etc.

• Relations to other tools (+ integration?): Stand-alone system; Add-on to existing tool; Synergy with
existing tool; Replacement of existing tool;

• Future developments: Expand capabilities of this tool; Integrate into larger system; Connect to other
tools/systems/platforms; Etc.

• Model performance metrics: Look into Design at Scale AI Lab from TU Delft.
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• Cardinality / Traceability: At what level are questions posed to the LLM? Ie what is the size of the infor-
mation chunk that is provided in one prompt, and how comprehensive is the output that is requested?
Are we mapping entire classes to a single description; or a sequence of code lines to a listed summary;
or. . . ?

• Neural Network Datatype: Text tokens, Graphs (Graph Neural Networks), Pixels, . . .

• Targeted project lifecycle phase: Conceptualization; Development; Production/Manufacturing; Ser-
vice&Support; Retire

• Model training effort: Pre-trained model (off-the-shelf); Finetune model; Training your own model

• Model input collection (prompt engineering): Which information sources are collected and combined
into the input? → None (only use embedded knowledge); Additional textual information; Example
Question-Answer pairs; Additional non-textual information (i.e. multimodal, like image retrieval); etc.

• Desired response structure: None; keyworded response start; structured prompting.

• Required maturity: Prototype (Technology Readiness Level 4/5); Minimum-Viable Product (TRL 6);
Launch V1.0 spec (TRL 7); Mature and extensively tested (TRL 9)
Note: This corresponds to different approaches in the Machine Learning (ML) workflow. If domain expert
agrees to target a lower maturity (prototype or Minimum Viable Product), more Reinforcement Learning
can be used instead of extensive Finetuning, testing and verification up front. This directly translates
into more iterative approach. However, on the flipside more effort should be invested into the pipeline of
collecting user feedback and quickly using this to improve the model after launch.
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ITERATION 3: ADDITIONAL RESULTS FROM

COMPARING MORPHOLOGICAL CHART WITH

EXISTING LITERATURE FRAMEWORKS

DESIGN PRINCIPLES FOR GENAI APPLICATIONS

• Authors: Weisz et al. [2]

• Reviewed components: Table 1 (Table 14.1 in this report)

• Relevant for which aspects of morphological chart: All

• Applicable findings:

– Add risk dimension with list of potential system harms? Options: address value tensions between
users, manage emergent behaviors, potential bias, hallucination

– Add customizable user experience dimension? Options: No differentiation, user can tune specific
things, different user profiles, ...?

– Add output annotation and curation? Options: user-driven or automated systems to organize, label,
filter and/or sort outputs. Could also include: output highlighting to draw attention to differences
or variations across outputs + ways to make uncertainty visible in output.

• Comments: Only model that related well to transparency, determinism and user training dimensions.
This also indicates a gap in existing related work. Also really underlines the importance of the limitations
and prerequisites category of the morphological chart

DESIGN RESOURCES TO SCAFFOLD AI CONCEPT IDEATION

• Authors: Yildirim et al. [84]

• Reviewed components: Table 3, page 7 (2332)

• Relevant for which aspects of morphological chart: Role of GenAI

• Applicable findings:

– Provide lots of synonyms to clarify different Role of GenAI within envisioned system

• Comments: Aside from the roles of GenAI, the approach of this was more interesting than the content
and findings of the article itself

AN HCI-CENTRIC TAXONOMY OF HUMAN-GENAI INTERACTIONS

• Authors: Shi et al. [85]

• Reviewed components: Sections 4-8 -> all Categories and Options
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• Relevant for which aspects of morphological chart: All

• Applicable findings:

– Output Synchronization: Improvement over previous Human-AI interaction mode dimension

– Add Application domains dimension? Options: Research & Science, Writing, Programming,
Robotics & IoT, Training, 3D modeling, Design

• Comments: Very useful overall. Cardinality could be used for GenAI function categorization: Interesting
but not yet determined how to use or include. Objects to control and Mediums of control: this raised the
question whether the current morphological chart has got enough user interaction aspects.

MORPHOLOGICAL BOX FOR AI SOLUTIONS

• Authors: Rittelmeyer and Sandkuhl [82]

• Reviewed components: Figure 1, page 2

• Relevant for which aspects of morphological chart: All

• Applicable findings:

– Add end-user characterization? Options: IT-expert, -savvy, or layman

• Comments: In terms of the form, this was the most similar tool to the morphological chart of this
research which made it interesting to use for comparison. However, the communicative quality of this
tool was rated to be rather low. It adopts a more technical perspective, has several unclear dimensions
and options with lacking explanation, and the ordering is rather chaotic. It was interesting to have such
a similar tool to compare with but due to its quality, the yield in terms of applicable findings was rather
low.

REVIEW OF AI APPLICATIONS IN ENGINEERING DESIGN

• Authors: Yüksel et al. [4]

• Reviewed components: Table 2 + Fig 20

• Relevant for which aspects of morphological chart: Role of GenAI

• Applicable findings:

– Design practices category used for Role of GenAI within system

• Comments: Quite technical, good understanding application of different AI methods in engineering
context. However, besides the design practices category, it was not suitable for direct application to the
morphological chart to inform specific design dimensions and options.

THE AI METHODS, CAPABILITIES, CRITICALITY GRID

• Authors: Schmid et al. [3]

• Reviewed components: Table 3 (capabilities) + Fig 2 (criticality)

• Relevant for which aspects of morphological chart: Role of GenAI + Risk/Criticality

• Applicable findings:

– Add risk dimension? Options: Based on AI Criticality (Fig 2) which directly relates to risk assessment
-> adopt these levels of risk + mitigation through test & regulation

• Comments: The AI capabilities overview (Figure 14.3): turned out to not be so useful. They used a
different perspective for the medium level categorization (e.g. factual, conceptual, procedural, etc.),
which is too technical. One level higher the terms are too broad (e.g. "process and understand" category).
Lowest level is too fine-grained, (e.g. terms like recognize, classify, provide, differentiate, determine,
assemle). The risk dimension was found to actually be more interesting. Aligns with risk classification
from European AI act [1].
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MORPHOLOGICAL CHART ITERATION USED

FOR VALIDATION
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