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Summary 

Electrical capacitance tomography (ECT) has recently been developed for the in-situ me­

asurement of the cross-sectional gas-solid distribution in a duct carrying a non-conductive 

2-phase flow. The technique rehes on the detection of electrical capacitances between 

electrodes placed on the periphery of the duct. The data depend on the permittivity dis­

tribution inside the cross-section, which has to be reconstructed. Information on the flow 

regime, vector velocity, and gas-sohd distribution in process vessels and pipehnes can be 

determined from the reconstructed images. 

The main bottleneck is still the poor quality of the image reconstruction part. In the frame 

of the ECT project at Delft University of Technology (DUT), research is done towards a 

new direct reconstruction algorithm, based on the least squares solution. 

The investigation has two goals. The investigation ofthe influence of noise on the data and 

the reconstruction of the permittivity distribution from measured data using well known 

material distributions as test cases to determine the spatial resolution. 

To investigate the influence of noise on the reconstruction, simulated noise is added to 

synthetic data. The reconstructions show that the more constraints are added to the least 

squares solution, the more robust the algorithm becomes. Noise measurements show that 

the noise level of real measured data has a neghgible influence on the constrained least 

squares reconstruction. 

Reconstruction of a rod (about | of the pipe diameter) near the wall of the sensor is 

possible. In the centre region of the pipe the quality of the reconstructed image decreases 

due to the under-determinacy in the centre of the pipe. 

Two rods can be reconstructed when both positioned close to the pipe-wall. However, they 

can not be seen seperately in the centre region and when they are close to one another. 

Bubbles (about ^ of the pipe diameter) are hard to reconstruct when positioned in the 

pipe centre. Due to their finit height 3-D efi'ects disturb the interpretation of the measu­

rements. The bubbles, however, can be detected when looking at the raw data. 
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Samenvatting 

Recentelijk is Electrical Capacitance Tomography (ECT) ontwikkeld voor het meten van 

gas-vaste stofverdelingen in een buis met een niet-geleidende 2-fasen stroming. De techniek 

maakt gebruik van electrische capaciteitsmetingen tussen electrodes die om de buitenkant 

van de buis zijn geplaatst. De data hangen af van de permittiviteits-verdeling in de door­

snede die moet worden gereconstrueerd. Informatie over het stromingsregime, snelheden 

en gas-vaste stof verdeling in proces vaten en pijpleidingen kunnen worden bepaald uit de 

gereconstrueerde doorsneden. 

Het grootste probleem is nog steeds de slechte kwaliteit van het reconstructie gedeelte. 

Binnen het kader van het ECT project aan de Technische Universiteit Delft werd on­

derzoek gedaan naar een nieuw direct reconstructie algoritme, gebaseerd op de kleinste 

kwadraten methode. 

Het doel van dit onderzoek is tweeledig: onderzoek naar de invloed van meet ruis op 

de reconstructie en de reconstructie van de permittiviteits verdeling uit gemeten data van 

vooraf bekende materiaal verdelingen om het oplossend vermogen te bepalen. 

Om de invloed van ruis op de reconstructie te onderzoeken is er ruis toegevoegd aan 

gesimuleerde data. De reconstructies laten zien dat hoe meer beperkingen aan de kleinste 

kwadraten oplossing worden toegevoegd, hoe robuuster het algoritme wordt. Ruismetin-

gen tonen aan dat het ruisniveau van echte, gemeten data een verwaarloosbare invloed 

heeft op de ingeperkte kleinste kwadraten reconstructie. 

De reconstructie van een staaf (ca. g van de buis diameter) dichtbij de wand van de 

sensor is mogelijk. In het midden van de sensor daalt de kwaliteit van de reconstructie als 

gevolg van de onder-bepaaldheid van het probleem in het midden van de sensor. 

Twee staven kunnen worden gereconstrueerd als ze beide dichtbij de wand zijn gepositio­

neerd. Echter, ze kunnen niet afzonderlijk worden gezien in het midden gebied van de buis 

en wanneer ze dicht bij elkaar zijn gepositioneerd. Bellen (ca. ^ van de buis diameter) zijn 

moeilijk te reconstrueren wanneer ze zich in het midden gebied van de sensor bevinden. 

Door hun eindige afmetingen in axiale richting verstoren 3-D effecten de interpretatie van 

de metingen. De bellen kunnen overigens wel gedetecteerd worden, wanneer naar de ruwe 

data wordt gekeken. 
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6.2.1 General definition of a norm 45 

6.2.2 Definition of the SS„;od 

6.2.3 Definition of the SS 
res 

6.2.4 Is there a relation between the SS^ocf and SSres? 46 

6.3 Definition of the test cases 48 

6.4 Reconstructions without adding noise 48 

6.5 Results achieved when adding simulated noise • 50 

6.5.1 Adding noise to the exact calculated capacitances ' 50 

6.5.2 Influence of noise on the linear least squares solution 51 

6.5.3 Influence of noise on the constrained least squares solution 52 

6.6 Discussion of SSmod and SSres 

6.7 Conclusions ^4 

7 Reconstruct ions w i t h least squares based methods 57 

7.1 Introduction • '̂̂  

7.2 Measurement system 57 

7.2.1 Capacitance sensor 57 

7.2.2 Data acquisition module 59 

7.2.3 Computer system and software 59 

7.2.4 Calibration 59 

7.3 Measurements 

7.3.1 The used permittivity components 59 

vi i 



7.3.2 The objects to be measured 60 

7.4 Reconstructions of real measurements . 60 

7.4.1 The 10 cm sensor 60 

7.4.2 The 40 cm sensor 63 

7.4.3 The 30 cm sensor 65 

7.5 Reconstructions using different Jacobian matrices 68 

7.6 Phillips-Towmey damping 70 

7.7 Noise in the three sensors 75 

7.8 Conclusions 75 

8 Sens i t iv i ty o f the capacitance sensor 79 

8.1 Introduction ' 79 

8.2 Measurement setup ' 79 

8.2.1 A i m of the measurements ; 79 

8.2.2 The phantoms 80 

8.3 • Measurements . gO 

8.3.1 The 10 cm Sensor 81 

8.3.2 The 30 cm Sensor 81 

8.4 The 40 cm sensor 86 

8.5 Conclusions 86 

9 Conclusions and recommendat ions 89 

9.1 Conclusions 89 

9.1.1 The simulations 89 

9.1.2 Noise measurements 90 

9.1.3 Addition of simulated noise • 90 

9.1.4 Reconstructions 91 

9.1.5 Sensitivity of the capacitance system 92 

9.2 Recommendations 92 

A A p p e n d i x A 95 

B M a t l a b scripts , conversion p r o g r a m p t l . c and c i rc .p l 97 

B . l Matlab scripts . 97 

vi i i 



B.2 ptl.c 101 

B. 3 circ.pl 104 

C Capacitance measurements f r o m simulat ions i n S E P R A N 107 

C. l Capacitance measurements 107 

D Mesh- inpu t f i le fo r the 16 electrode mesh 113 

Bib l iog raphy 121 

ix 



X 



Symbols 

Roman symbols 

Symbol quan t i ty dimension 

A 

B 

C 

Qnorm 

Cfull • 

«2 a 

c 

c 

Cij 

„meas 

c?-

D 

E 

E 

e 

ei,e2 

ƒ 
J 

J ü 

J 

j i 

L 

main block of smoothing matrix R 

main block of smoothing matrix R 

main block of smoothing matrix R 

normalised capacitance 

normahsed capacitance from the UMIST electronics 

capacitance when the sensor is empty 

capacitance when the sensor is f u l l 

capacitance when the sensor is filled wi th 

the lower permittivty material 

capacitance when the sensor is filled wi th 

the higher permittivty material 

data vector carrying the capacitances 

mean capacitance 

i * ' ' element of the capacitance vector 

capacitance between elecrode i and j 

capacitance between elecrode i and j 

measured capacitance 

capacitance calculated from the forward solution 

electric fiux density 

electric field strength 

overall error 

distance between measured data and predicted data 

ofi'set voltage 

frequency 

jacobian matrix 

first derivative of datum i with respect to parameter p 

j * ' ^ ring of the reconstruction mesh 

i * ' ' row of the jacobian matrix 

diagonal matrix carrying singular values 

axial electrode length 

line over electrode j 

F 

F 

F 

F 

F 

F/m 

F 

F 

F 

F/m 

Cm-^ 

Vm-^ 

Fm.-^ 

F 

V 

s - i 

Fm-^ 

Fm-^ 

V 

m 

m 

x i 



M nuinber of model parameters — 

N number of electrodes — 

n normal outward pointing vector — 

He error vector Fm~^ 

n pixel size exponent — 

P electric polarisation Cm~'^ 

p number of rings — 

Q electric charge C 

Qj electric charge on electrode j C 

R damping matrix to achieve solution smoothness — 

Rl, R2, i ï 3 dimensions o f the sensor m 

Rl, R2, Rs resistances used in the active differentiator circuit 

Rf feedback resistance used in the charge transfer circuit Q 

Tij correlaten coefficient — 

r radius of m 

rmax half the inner pipe diameter m 

S covariance matrix F'^M~'^ 

SSmod sum of squares of the differences between the 

presumed and the reconstructed parameters — 

SSres misfit of the model . F'^m~'^ 

Si standard deviation of datum i FTn~^ 

Sij covariance of datum i and j . F'^m~^ 

U orthogonal matrix carrying singular vectors — 

Uj i * ' ' singular vector — 

V random matrix — 

V electric potential V 

Vout output voltage of the active differentiator circuit V 

Vl, V2 output voltage o f the charge transfer circuit V 

Vij potential difference between electrode i and electrode j V 

Wg weighting matrix m'^F~'^ 

Greek symbols 

Symbol quan t i t y dimension 

/3 smoothening factor — 

Ti surface of electrode i TTI^ 

Ts surface of the outer surface 

6 Kronecker delta — 

e permittivity vector — 

e permittivity • Fm~^ 

e,- i'^' ' element of the permittivity vector — 

eo . permittivity of free space Fm~^ 

Ér relative permittivity — 

xi i 



eijasis relative permittivity being the basis for pertubations 

when calculating the Jacobian matrbc — 

Cfiigh relative permittivity of the higher permittivity material -

eioyj relative permittivity of the lower permittivity material — 

p total charge density Cm~ 

pj free charge density C m " 

$ objective function F'^m 

(p potential V 

Ê'' potential on parts of the boundary V 

ai standard deviation of datum i Fm~ 

<yi,nvrmalised normahsed standard deviation of datum i — 

Other 

Symbol M e a n i n g 

ECT Electrical Capacitance Tomography 

PC Principal component 

PC A Principal Component Analysis 

SNR Signal to Noise Ratio 

x i i i 



xiv 



List of Tables 

3.1 Geometry parameters of the sensors used for the noise measmements . . . . 14 

5.1 Geometry parameters of the sensors used for the noise measurements . . . . 41 

5.2 Relative standard deviation of the noise when averaging over subsequent 

measurements. N represents the number of measurements in one segment. . 43 

5.3 Relative standard deviation of the noise when smoothing using previous 

and subsequent measurements. N represents the number of measurement 

used for smoothing 44 

6.1 SSmod and SSres of the different least squares based solutions of the three 

phantom distributions 49 

7.1 Geometry parameters of the sensors used for the noise measurements . . . . 58 

8.1 Diameters of the rods used to investigate the smallest object detectable in 

the capacitance sensor 80 

8.2 Diameters of the smallest rods detectable in the three capacitance sensors. . 86 

X V 



xvi 



List of Figures 

1.1 Different tomographic techniques 2 

1.2 A capacitance based pipe flow imaging system. Electrodes are mounted 

circumferentially around the pipe. The measurements and data acquisition 

are done by the sensor electronics and the data acquisition unit. The data 

are sent to the control and data processing unit for reconstruction and image 

presentation 3 

2.1 Cross-section of the ECT system 6 

2.2 the ECT sensor 7 

3.1 How to calculate the capacitance values for a given distribution e(3;,y) . . . 11 

3.2 2-dimensional geometry of the electrical capacitance tomography sensor. . . 13 

3.3 Pie shaped segment of the sensor geometry. Rotation of this segment results 

in the total sensor geometry. The numbers in the figure refer to the curve 

numbers 13 

3.4 Plot o f the potential gradient calculated by SEPRAN. To get accurate es­

timates of the capacitances of neighbouring electrodes, the mesh has to be 

refined there where the potential gradient is large 14 

3.5 The pipe geometry of the 2-dimensional capacitance sensor, when the pie-

shaped segment is rotated N times over ^ 15 

3.6 The line integration over the 'detecting' electrode, resulting in the total 

charge found on the detecting electrode 15 

3.7 PCA plots of non correlated data (a) and correlated data (b) 18 

3.8 Example of the SCREE test, which is a graphical technique to define the 

number of retained PC's when performing a principal components analysis . 18 

3.9 Polar pixel distribution in the cross-section of the capacitance sensor 19 

3.10 Condition number of the Hessian matrix as a function of the pixel size 

exponent n 20 

3.11 Principal components analysis of a 12 electrodes system with one source 

electrode 22 

xvi i 



3.12 Principal Components Analysis of the 16 electrodes system wi th one source 

electrode 23 

3.13 First and second eigenvector o f the 16 electrodes system 24 

3.14 Third and fourth eigenvector o f the 16 electrodes system 25 

3.15 Principal components analysis o f t h e 16 electrode system wi th one source 

electrode when omitting adjacent electrode measurements and when omit­

ting opposite electrode measurements 26 

3.17 Permittivity distribution in the cross-section 26 

3.16 Principal components analysis o f the 12 and 16 electrode system with one 

source electrode 27 

3.18 PCA of 12 electrodes system wi th coupled source electrodes 27 

4.1 Two different smoothing ways when using the damped least squares solution 34 

5.1 The charge transfer principle used in the electrical capacitance tomography 

system developed by UMIST 38 

5.2 The capacitance to voltage transducer, developed at the DUT. The un­

known capacitance Cx is used as an element in an element in an active 

differentiator 39 

5.3 Circuit providing the input signal. Vin, to the measurement electrode Cx- . 39 

5.4 Cross-section o f the two ECT sensors used for the noise measurements. . . . 40 

5.5 Histogram of the noise measured between electrode 1 and electrode 7 using 

the UMIST electronics 41 

5.6 Histogram of the noise measmred between electrode 1 and electrode 7 using 

the D U T electronics 43 

6.1 General interpretation o f the SSmod (a) and the SSres (b) 47 

6.2 plots of the presumed phantom distributions: (a) the core flow (a), The 

pie-shaped segment (b), and the 'dart-board' like distribution (c). Black 

refers to a permittivity value of 2, white refers to a permittivity value of 1. 48 

6.3 Reconstructions of the phantom distributions when no noise is added, using 

the constrained least squares solution 49 

6.4 Reconstruction of phantom distribution 3 when no noise is added, using the 

weighted least squares solution 50 

6.5 SSmod (a) and SSres (b) as a function of the noise level for the linear least 

squares solution 51 
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Chapter 1 

Introduction 

This thesis is the result from a graduation project at the Kramers Laboratorium voor 

Fysische Technologie (KLFT) of the Faculty of Applied Physics, Delft. At this laboratory 

research is done towards modeUing of single and multi-fluid flow in columns, vessels and 

other conceivable geometries. 

These models can be used to control industrial processes, to give a better understanding of 

the principles of transport phenomena or to improve the design and operation equipment 

of industrial processes. 

1.1 Tomographic Technology 

The use of tomography techniques for scientific and industrial applications is becoming 

widespread and numerous image reconstructions methods have been developed. The tech­

niques used cover almost the whole energy spectrum ranging from high frequencies to low 

frequencies. For each technique, difi'erent operating modes and reconstruction algorithms 

are used. Tomographic techniques have been used for some time, although apphcations in 

engineering and particle processing have become commonplace only more recently. 

Tomography is defined as a technique that is able to acquire an image of the distribution 

of components from a multiplicity of sensors that are placed on the periphery of the pro­

cess cross-section that is under interrogation, or from sensor pairs around the cross-section 

that are rotated or switched relative to the process vessel or pipe. Information on the flow 

regime, vector velocity, and concentration distribution in process vessels and pipelines wi l l 

be determined from the images. 

In Figure 1.1 diiferent tomographic techniques are displayed. I n Figure 1.1a difi'erent ways 

of tomographic measuring techniques are shown. One can rotate the object wi th respect to 

a source and detecting sensor (left figure), use one source together with several detection 

sensors (middle figmre), or use a system wi th multiple sensors and detectors (right figure). 

The source can be any radiation source, such as X-ray or 7-ray sources, optical sources, 

acoustic sources, or an electrical source. A well known optical method is Particle Image 

Velocimetry (PIV), which is widely used to image fiow fields in stirred vessels. 

In Figure 1.1b three difi'erent electrical tomography techniques are shown: The electrical 

1 



2 Chapter 1. Introduction 

ECT EIT/ERT EMT 

(b) 

Figure 1.1: Different tomographic techniques. 

capacitance tomography, the electrical inductance/resistance tomography and the electri­

cal magnetic tomography. 

The three different electrical tomography methods have their own apphcation. ECT is 

used for both imaging flows consisting of two electrically isolating components and flame 

imaging, E R T / E I T for flows having one electrically conductive continuous phase and E M T 

for measuring the permeabihty distribution of two conductive components. 

Process Tomography is a relative new research fleld compared to Medical Tomography. 

The objective of process tomography is to image process parameters in time and space. 

In pipe flow imaging this means to image the flowing medium over the cross-section as 

a function of time and position along the pipe. Compared to medical tomography, for 

which the patient often is placed inside some tomography system for a given time period, 

a process tomography system has to be adapted to the process of interest. For a pipe flow 

imaging system this imphes that the system has to be mounted around the pipe, and be 

able to operate at a speed determined by how fast the medium changes. 

Spatial resolution using electro-magnetic radiation can be as good as good as 1%, but 

these methods have a hmited range of apphcations due to, for example, optical opacity 

when using hght, slow speed and radiation containment when using ionising radiation, 

expense when using magnetic resonance, need for operator invention and radio-active par­

ticles when using positron emission tomography. Electrical tomography sensors offer a 

modest spatial resolution,but they are very fast, inexpensive and suitable for a wide range 

of vessel sizes. 

At the Kramers Laboratorium voor Fysische Technologie, research is done towards the 
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Figure 1.2: A capacitance based pipe flow imaging system. Electrodes are mounted cir­

cumferentially around the pipe. The measurements and data acquisition are done by the 

sensor electronics and the data acquisition unit. The data are sent io the control and data 

processing unit for reconstruction and image presentation. 

dynamics oï fluidised bed reactors and transport phenomena of pipe lines. In this research 

it is investigated i f the ECT system is a valuable measuring technique for distinguishing 

between two non-conducting phases in a cross-section of a pipe. 

1.2 Electrical capacitance tomography 

The fluidised bed tomography system consists of three parts: The sensor, the sensor elec­

tronics and a computer network (Figmre 1.2). The most commonly used reconstruction 

algorithm for a capacitance based process tomography system is the linear back projec­

tion algorithm (LBP), originally developed for medical tomography-systems. The LBP-

algorithm is very fast, but not very accurate due to smoothening eifects. I n medical 

tomography apphcation, hard fleld sensor systems, i.e. sensor system for which the field 

distribution is independent of the medimn between the source and the detector, are most 

frequently used. A typical example is the CAT-scanner which utilises X-rays. For such 

sensor systems several reconstruction algorithms superior to the original LBP-algorithm 

have been developed. In process tomography application, however, soft field sensor system 

are most common, and thus the improved reconstruction algorithms are no longer vahd. 

Hence an important activity within process tomography is to develop speciahsed recon­

struction algorithms, which are capable of reconstructing the object of interest at an 

acceptable accuracy. 

Control and Data 
processing unit 
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1.3 Aim of this project 

Knowledge of unsteady solid concentration is vital to characterise the dynamic behaviour 

of a fluidised bed. The flow pattern of the fluidised bed is determined by particle-particle, 

particle-gas interaction and bubble coalescence. These interactions, in a time domain can 

therefore be characterised by both large and small scale fluctuations. The rapid fluctua­

tions of the voidage in the bed, normally negate the possibility of using radiation based 

tomography sensors, but such phenomena can be sensed using electrical methods. 

At the Chemical department of the Delft University of Technology research is done to­

wards the behaviour of fluidised beds by doing pressure measurements. These pressure 

measurements, however, are not sufiicient for measuring bubble size distributions. 

Therefore experiments and simulations have been performed in this research to test a new 

set of least squares based reconstruction algorithms, developed at the Delft University of 

Technology, and investigate their sensitivity to noise. Furthermore, the smallest object to 

be detected by the ECT system was determined. 

1.4 Structure of this report 

In Chapter 2 the basic principles of the Electrical Capacitance Tomography problem are 

described. Chapter 3 deals wi th simulations, performed to test novel sensor concepts and 

to define the amount of information provided by the data. 

In chapter 4 the new developed reconstruction algorithms are described. Chapter 5 gives 

the results from noise measurements using the ECT sensor electronics. Subsequently 

Chapter 6 deals wi th the influence of the noise measured on the reconstruction algorithms 

described in chapter 3. This influence was investigated by adding simulated noise to exact 

data f rom simulations. In Chapter 7 the reconstruction algorithms are tested using real 

data. I n Chapter 8 the sensitivity of the ECT system is investigated. Finally, in Chapter 

9 the conclusions and recommendations are given. 



Chapter 2 

The electrical capacitance 
tomography problem 

2.1 Introduction 

This chapter describes the tomographic technique and the theory of the .electrical capaci­

tance tomography system. First a description of the electrical capacitance sensor is given 

and second the theory on which the technique relies. 

The measuring technique uses the measurements of electrical capacitances in different 

locations and directions o f the cross-section of a three-dimensional object of non conduc­

tive components. These measurement data can be used to reconstruct the dielectric or 

permittivity distribution over the cross-section which is under investigation. 

2.2 Capacitance sensor 

Figure 2.1 displays a cross-section of a 12-electrode capacitance sensor. The sensor is set 

up by mounting a number of electrodes, in this case 12, around the periphery of the duct 

to be imaged. To perform a 'body scan' of the cross-section, the capacitances between 

all electrode pair combinations should be measured. The technique relies on changes in 

capacitance values between electrodes owing to the change in permittivities of flow com­

ponents. 

A n earthed outer screen is used to shield the electrode system from stray fields. The 

empty space between this screen and the pipe wah outer surface is filled with air, which 

insulates the electrodes from the shield. 

Figure 2.2 shows a side-view of the capacitance sensor. For the field fines to be as par­

allel as possible to the sensor plane, the axial shield is cut into segments. These axial 

shields are as large in circumferential direction as the measming electrodes. Applying 

the same potential to the axial shield electrodes above and under the measuring electrode 

as to the measiuring electrode itself, reduces the so-called 2D/3D-error. Since we want 

to reconstruct the distribution of components in the cross-section only, the electrostatic 

field must be ahgned in one plane. These axial shield electrodes avoid the field lines from 

5 
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Figure 2.1: Cross-section of the ECT system. 

bending in axial direction, yielding a better approach to the assumption of deahng wi th a 

two-dimensional electrostatic field [Kühn et al., 1996]. This sensor type is often referred to 

as the METC-type sensor, since this sensor type had first been used by the Morgantown 

Energy Technology Center (METC), USA [Halow and Fasching, 1993]. 

2.3 The forward problem and the inverse problem 

2.3.1 F o r w a r d p r o b l e m 

The electrical capacitance tomography problem can be subdivided into two problems. On 

the one hand we have the problem of calculating the capacitance values for a given per­

mit t ivi ty distribution. This can be accomplished using a numerical method, like a Finite 

Element Method. One the other hand there is the problem of estimating the permittiv­

ity distribution inside the cross-section using the measured capacitances, i.e. obtaining 

a dielectric distribution e{x,y) which theoreticaUy yields capacitance values equal to the 

measured ones. The former is referred to as the forward problem, the latter as the inverse 

problem [Xie et al., 1992 . 

Excitation sources (voltage or current) for use with electrical capacitance tomography sys­

tems are generally of low frequency. Therefore electricafcapacitance imaging systems are 

described by equations governing the electrostatic field. These partial differential equa­

tions for electrostatic fields are special cases of the generahsed inhomogeneous Helmholtz 

equation [Silvester and Ferrari, 1990]: 

of the medium, / ( r ) is a given driving function, and is a position-invariant constant. 
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Figure 2.2: the EOT sensor. 

In the forward problem the electric field is assumed to be static and 2-dimensional. Under 

these assumptions, the electric field in the electrode system shown in Figure 2.1 is governed 

by Poisson's equation: 

P V - E (2.2) 

where E is the electric field strength, p the total charge density and eo the permittivity of 

free space. ' • ' 

By definition, the electric flux density, D , is 

D = eoE + P = eE (2.3) 

where E is the electric field strength, e the permittivity of free space, eo multiplied by the 

relative permittivity, e,-, and P the electric polarisation. The right hand side of equation 

2.3 is only valid for dielectrics which are linear and isotropic. 

The Poisson equation can also be written as follows: 

(2.4) 

where p/ is the free charge density. In the ECT system the two phases are non conducting, 

so the free charge density, p / , is zero. Since E = -Vcf) where c^) is the potential, i t follows 

that Equation 2.2 can be written as follows: 

V • D = V • eE = V • {eV4>) = 0 (2.5) 
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The 2'dimensional forward problem involves the calculation of the capacitance values for 

a given dielectric distribution e(x,y). For this 2-dimensional case Equation 2.5 can be 

rewritten as: 

V-{e(x,y)V4>{x,y)) = 0 (2.6) 

better known as Gaufi's law. Here 4>{x,y) is the potential distribution over the cross-

section. This Laplace-like partial differential equation (PDE) can be solved numerically 

using a finite element method software package [Lorrain et al., 1987]. 

To solve Equation 2.6 the Dirichlet boundary conditions are applied. The Dirichlet bound­

ary conditions say that parts of the boundary are apphed with a constant potential. 

(V (x,y)CTi 
= \ ^ - ' (2.7) 

l o {x,y)CallTk {k^i) & {x,y) CT^ 

Here Fi refers to the surface of electrode i and Ts to the outer shield smface. In the sensor 

shown in Figure 2.1, the electrodes and the outer shield are set to a constant potential. 

To obtain a total 'body scan' the capacitances between all electrode pair combinations 

have to be measured. Applying one electrode, the source electrode, wi th a signal and 

setting all other electrodes, the detecting electrodes, to earth, all capacitances between the 

source electrode and detecting electrodes can be measured. Then the adjacent electrode 

can be set to be the source electrode and all capacitances between the new source electrode 

and the detecting electrodes can.be measmed. Setting every electrode subsequently to the 

be source electrode results in all capacitances between all possible electrode combinations. 

The governing Equation 2.6 results in a charge distribution over all detecting electrodes. 

The capacitance between two electrodes, i and j , 

CiJ - f (2.8) 

is determined by the total charge Q distributed over the detecting electrode devided by the 

potential difference between the source source electrode and this detecting electrode. The 

solution of the piecewise analytic solution to Equation 2.6, is unique [Kohn and Vogelius, 

1985]. 

I f the permittivity distribution e{x,y) is fixed, the electric field —V(}){x,y) changes hnearly 

with the potentials applied to the boundaries. However, generally the flow distribution 

e{x,y) is irregular and therefore there is no general analytical solution to Equation 2.6. ' 

Thus a numerical method has to be used. 

2.3.2 Inver se p r o b l e m 

The section above showed how the capacitance values are related to a given permittivity 

distribution e{x, y). In the industrial apphcations of tomographic techniques, the measured 

data are used to reconstruct the flow parameters. Thus, the measured capacitances are 

used in to solve the inverse problem, i.e. determine the distribution €{x,y) wi thin the 

cross-section from a limited number of measurements. 

The relation between the measured capacitance of an electrode pair and the permittivity 
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distribution e{x,y) is given by: 

C-. = e p - J g r V ^ - n dlj ^2.9) 

Here, Vij is the potential difference between electrode i, the source electrode, and electrode 

the detecting electrode, lj is the line of electrode in the 2-D model. The charge on 

electrode j is determined by the electric flux density D through detecting electrode 

defined as: 

D = e % (2.10) 
on 

Here n is the outward pointing normal vector. The relationship between the electric flux 

density, D , and the charge Qj on detecting electrode j is given by: 

Qy = £ 6 | ^ - n dlj (2.11) 

where dlj is the closed line over the outer surface of electrode j. Hence, the integral in the 

numerator of Equation 2.9 is in fact the total charge distributed on detecting electrode 

The inverse ECT problem is in fact a parameter estimation problem, in which the model 

parameters have to be determined for a given set of input and output parameters. 

The electric flux lines, expressed by the electric field vector e{x,y)V4>{x,y), are related to 

the object e{x,y) to be reconstructed. This is distinctly different from other tomography 

techniques, such as X-ray tomography. In the latter technique the exact position, where 

the data are taken, is known, and therefore the data are directly related to some position 

in the object to be measured. 

For electrostatic fields the electric fiux lines wi l l defiect when they encounter an interface 

of different permittivities. This introduces the so-called 'soft field effect', which inherently 

introduces problems in the reconstructions, since the electric flux lines change when the 

permittivity distribution changes. This explains the poor image resolution of the electrical 

capacitance tomography compared to the X-ray tomography [WiUiams and Beck, 1995 . 

Up tiU now the linear back projection (LBP) algorithm is the most commonly used al-

•gorithm to solve the capacitance inverse problem [Xie et a l , 1992]. This algorithm uses 

a larger number of unknowns, i.e. image pixels, than the number of capacitance mea­

surements. This makes the system highly under-determined (see section 3.3.2). 'A pri­

ori' knowledge can be used to alleviate the problem and decrease the degree of under-

determinacy. The LBP is merely a hnear approach to the non-linear reconstruction prob­

lem and does not correct for the soft field effect, resulting in rather qualitative than 

quantitative algorithm. 

At the Delft University of Technology (DUT), new reconstruction algorithms were devel­

oped, based on least squares methods (chapter 4). These algorithms has been tested for 

their robustness, i.e. what is the influence of noise towards the reconstruction (chapter 6), 

and have been used to reconstruct real data (chapter 7). 





Chapter 3 

Simulations 

3.1 Introduction 

This chapter presents the problem of calculating ca­

pacitances for a given e{x,y) of a circular pipe, the 

so-called forward problem. The solution to the for­

ward problem is defined as the process of predicting 

measurement data for a given system model. W i t h a 

Finite Element Method (FEM) software package, the 

capacitances between all electrode pairs of the sensor 

can be calculated for a given permittivity distribution 

e{x,y) in the cross-section of the pipe (see Figure 3.1). 

The data, calculated by the forward model, are used to Figure S.I: How to calculate the 

perform a Principal components analysis (PCA) (this capacitance values for a given 

Chapter) and, secondly, to test the inverse algorithms distribution e{x,y) 

for the electrical capacitance tomography problem (Chapter 7 and Chapter 6). 

3.2 Implementation of the ECT problem in SEPRAN 

3.2.1 T h e f o r w a r d p r o b l e m 

The ECT problem can be subdivided into two integrated problems. The so-called forward 

problem and the inverse problem (See section 2.3). In the forward problem the capaci­

tance values for a given permittivity distribution, e(x,y), are calculated. I f the permittivity 

distribution, e, is a constant with respect to space the PDE 2.6 reduces to the Laplace 

equation and a analytical solution can be found. For simple rotational symmetric permit­

t ivi ty distributions i t is also possible to find a analytical solution for Equation 2.6. 

Since the permittivity distribution in the ECT problem is not constant within the bound­

aries and is in general not symmetric, the forward problem is preferable to be solved 

numerically. I t can be proved that for any permittivity distribution, e{x,y), the forward 

problem has a unique solution. Nowadays, the finite-element method is the most widely 

used numerical method to solve partial difi'erential equations, hke Poisson's equation. 

11 
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In general, the following three stages are involved in sensor modelhng [Williams and Beck, 

1995]: 

1. The mathematical model o f t he sensor must be identified, and the governing equa­

tions and related boundary conditions determined. 

2. The geometric model of the sensor must be established. 

3. An efficient numerical method (discretisation scheme) must be chosen in order to 

realise a computer solution of the problem. 

3.2.2 G e n e r a l m a t h e m a t i c a l f o r m u l a t i o n o f t h e sensor m o d e l 

In this paragraph, the two-dimensional finite element niodel of the ECT system is de­

scribed. Figure 2.2 shows a 12 electrode capacitance sensor. For one complete tomogram, 

first the capacitances between electrode one and electrodes two to twelve are measured, 

giving eleven measurements. Electrode one is set to be the source electrode and electrodes 

two to twelve are set to be the detecting electrodes, which are at virtual earth potential. 

Subsequently, electrode two is set to be the source electrode and electrodes three to twelve 

are set to be the detecting electrodes, giving ten parallel measurements. Finally electrode 

eleven is set to be the source electrode and electrode twelve set to be the detecting elec­

trode. The capacitance Cij is equal to the capacitance Cji [Grootveld, 1996], and therefore 

there is no need to measure the capacitance Cji. 

So for one complete tomogram, a total of 66 measurements are produced. I n general, the 

number of measurements, M , for an N-electrode system is given by: 

In section 2.3 the governing equation for the electrical capacitance tomography system was 

derived. Using the assumption that the field is 2-dimensional and no free charges present 

this resulted in Gaufi's law 

This equation has an analytical solution i f the permitt ivity distribution is constant through­

out the entire cross-section or i f the permittivity distribution is rotational symmetric. 

Therefore, the domain must be made discrete. Applying then the governing equations 

to the discrete domain, the discrete numerical solution can be calculated. The following 

section wi l l briefly describe the steps towards the Finite element method model for the 

ECT forward problem. 

3.2.3 P i p e g e o m e t r y 

N{N-1) 

2 
(3.1) 

V •{e(x,y)V4>{x,y)) = 0 (3.2) 

The S-dimensional sensor in Figure 2.2 has to be modelled in a 2-dimensional geometry. 

Figure 3.2 shows the definition of the geometry of the 2-dimensional sensor model. The 

domain is subdivided into three element groups, the spacing between the outer shield and 
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Figure S.2: S-dimensional geometry of the electrical capacitance tomography sensor. 

the pipe wall, the pipe wall itself, and the inner section of the sensor where the (unknown) 

permittivity distribution is located. The electrodes now, can be defined as parts of the 

interface between the pipe waU and the air-spacing. As mentioned earher, the geometry 

has to be defined in a F E M package (in this case the package SEPRAN [Segal, 1993] is 

used). Because of the rotational symmetry of the sensor, the sensor can be subdivided 

into N identical pie-shaped segments, where N is the number of electrodes. The discrete 

pie-geometry is then created by defining the curves as shown in Figure 3.3. First the 

difi'erent nodes of one pie segment are defined. Next the lines and curves are drawn to 

define one total pie shaped segment. Finally this pie shaped segment is rotated over ^ 

t i l l one complete cross-section has been estabhshed. The mesh is then obtained using the 

Figure S.S: Pie shaped segment ofthe sensor geometry. Rotation of this segment results 

in the total sensor geometry. The numbers in the figure refer to the curve numbers. 

SEPRAN mesh generator sepmesh. Appendix D contains an example of the mesh-input 

file used in the 16 electrode sensor simulations. Here the cross section is divided into a 

large large number of triangulax elements. In these triangular elements the permittivity 

is assumed to be constant. In Table 3.1 the number of nodes and number of elements are 

given. Since there are very large gradients between the source electrode and its neigh­

bouring detecting electrodes, see Figme 3.4, the mesh has to be refined in these regions 

to get more accurate results. 
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Table 3.1: Geometry parameters of the sensors used for ihe noise measurements 

Nodes and elements 
nodes elements 

original mesh 3157 6132 

iteration 3682 7173 

2"̂ ^ iteration 5341 10480 

3*'' iteration 8086 15954 

Figure 3.4-' Plot ojlfie'pótential gradient calculated hy SEPRAN. To get accurate estimates 
of the capacitances of neighbouring electrodes, the mesh has to be refined there where the 
potential gradient is large. 

The routine MESHADAPT has iteratively adapted the size distribution of the finite ele­

ments to the vector field of the potential gradient, yielding very small elements where the 

gradients are large (see Table 3.1). 

3.2.4 B o u n d a r y values 

The geometry is made of identical pie-shaped segments. One pie shaped segment consists 

of eleven curves, which are shown in Figure 3.3. The Dirichlet boundary conditions, as 

explained in section 2.3 apply on curves 6 and 8, the 'electrode' curve and the 'outer shield' 

curve. 
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Figure 3.5: The pipe geometry of the 2-dimensional capacitance sensor, when the pie-

shaped segment is rotated N times over ^ . 

3.2.5 D i s c r e t e n u m e r i c a l s o l u t i o n o f t h e f o r w a r d p r o b l e m u s i n g S E P R A N 

In the simulations using the F E M package SEPRAN, one electrode, the source electrode 

represented by curve 6 in Figure 3.5, is set to 1 Volt. Then Equation 2.6 is solved nu­

merically with a dielectric distribution as input. SEPRAN calculates first the potential 

in every nodal point of the generated mesh for this given permittivity distribution. Sec­

ondly the gradient of the potential is calculated by means of finite difi'erences between the 

nodal points. To calculate the capacitance value, SEPRAN integrates over the 'electrode' 

curves of all detecting electrodes separately returning the total amount of charge on every 

electrode as output. 

Than the capacitance value of the electrodes follows from: 

Cij - - - - (3.3) 

Here Vij is the potential difi'erence between electrode i, 

the source electrode, and electrode j, the detecting elec­

trode, Qj the total charge distributed on detecting elec­

trode and lj the line of detecting electrode ; in the 

2-dimensional sensor model. SEPRAN returns only the 

amount of charge on detecting electrode Multiplying 

this value wi th the eo aiid the axial electrode length, lax, 

and dividing i t by the potential difi'erence, Vij, gives the 

capacitance value for a sensor wi th axial electrode length 

lax. Note that in this model the 3-D efi'ect, see section 

2.2, is neglected. 

Figure 3.6 illustrates this line integration along both sides 

ofthe detecting electrode. The small arrows represent the electric field lines, approximated 

by finite difi'erences in the finite element model. In SEPRAN this potential gradient at 

a position next to the electrode is multiplied with the permittivity value found at that 

position. The sum of these values on both sides of the electrode results in an estimate of 

the total electric fiux which arrives on the detecting electrode. From this total fiux the 

total charge on the detecting electrode can be calculated using Equation 2.11. 

detecting 

Figure 3.6: The line integra­

tion over the 'detecting' elec­

trode, resulting in the total 

charge found on the detecting 

electrode 
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3,3 Principal components analysis 

3.3.1 I n t r o d u c t i o n 

Within the problem of reconstructing an image ofthe permittivity distribution, i.e. solving 

the inverse problem, we have to divide the cross-section of the pipe into an appropriate 

number of pictme elements, the reconstruction pbcels. In these reconstruction pixels the 

assumption is made that the permittivity is constant. The number of reconstruction pixels 

should depend on the amount of information available per image, one tomogram. 

3.3.2 Ove r - a n d u n d e r - d e t e r m i n a c y 

I f there are too few pixels defined in the cross-section, the problem is said to be over-

determined. I n this case the variations in the data can not be explained by the hmited 

number of model-parameters. This means that the amount of information which is ofi'ered 

by the capacitance measurements, is not completely used to reconstruct the permittivity 

distribution. So we have to define more pixels in the cross-section. 

If , on the other hand, we define to many pixels in the cross-section, permittivity changes 

in neighbouring pixels wiU show nearly no variations in the capacitance data. This wi l l 

make the problem singular, which means that there is no unique solution anymore. This 

is the case of under-determinacy. Under-determined problems typically have more un­

knowns than data, although i t is possible to have problems that are to some degree under-

determined even when the problem hais more data than unknowns. This can be the case 

when the data kernel has a very poor structure. This is the case when there is a large set 

of data points, which only refer to one over determined sub-area of the domain. The rest 

of the domain is, thus, undetermined, resulting in a poor structure of the data kernel. 

The ECT problem is, like most inverse problems that arise in practice, nor completely 

over-determined nor completely under-determined. This is referred to as mixed-determined 

problems. To define the right number of pixels, a reconstruction pixel arrangement has to 

be found which results in an optimal situation between over- and under-determinacy. 

3.3.3 S i n g u l a r va lue d e c o m p o s i t i o n 

A possible way to search for this optimum is a principal components analysis (PCA) [Jack­

son, 1991]. Note that this is, however, only an approximation towards the problem of oveir-

and under-determinacy. This technique investigates the degree of correlation in the data. 

I f two data-points are not correlated, they are independent and therefore two model pa­

rameters can be defined. If , on the contrary, they are correlated, there is a dependency 

between the data-points. This dependency between the data-points wih reduce the actual 

amount of information available. The PCA shows the number of uncorrelated variables 

to which the data can be reduced. 

The technique is based on the reduction of a p x p symmetric, nonsingular matrix V to a 

diagonal matrix L . Premultiplying and post-multiplying this matrix V by an orthogonal 

matrix U yields: 
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U ^ V U = r ^ (3.4) 

where L = diag(ai,cT2,...,c7j.), CTI ^ 0-2 ^ • • • ^ cr̂  > 0, and U = [ u i | u 2 | • • • |up]. 

In fact this is a singular value decomposition (SVD) [Stewart, 1973], Wi th this decompo­

sition one can define the rank of the matrix V . The rank is in this case of less than fu l l 

rank, because of the zeros in the diagonal matrix on the right-hand side of equation 3.4. 

In theory, i t is no problem to define the rank of a matrix. Application of an algorithm, 

such as Gaussian elimination, to the matrix wih show the rank of the final reduced form. 

In practice the situation is more comphcated. A SVD might be a solution. 

This decomposition is basically unique. Thus the numbers c r i , c72 , . . . , ar must be the nonzero 

eigenvalues of matrix V , arranged in descending order. The columns of U are the eigen­

vectors of V . 

What in fact happens is an axis transformation ofthe elements in matrix V to an orthonor-

mal basis. The elements of V are then projected on these new axes, the eigenvectors U j . 

The principal components analysis relies on the reduction of the data covariance matrix 

For a p-variable problem the covariance matrix S is defined as, 

/ S ? 512 • • • S i p \ 

(3.5) 
S12 sf • • • S2p 

\Slp S2p • • • S p / 

where s? is the variance of X j , the vector containing the measurements of the ith. variable, 

and S y is represents the covariance between the ith and ; t h variable. When the covariance 

between two variables is not equal to zero, i t indicates there is some relationship between 

these two variables. The strength of the relationship is quantified by the correlation coef­

ficient ry '= 

Applying the principal axis transformation to the data covariance matrix S wil l transform 

the A'' correlated variables x into N new uncorrelated variables z. The coordinate axis of 

these new variables are described by the eigenvectors U j , which make up the matrix U 

used in the transformation. The principal components have zero mean and variance ai, 

the 2*'' e?5envo/ue [Jackson, 1991 . 

To define the number of principal components, i.e. reducing the number of variables 

without loosing significant information, a graphical technique, the SCREE test, is used. 

Plotting the eigenvalues ai,a2,.-,Or of Equation 3.4 against their number yields a dechning' 

curve, which exhibits the variance explained by the principal components. When the data 

are uncorrelated, the information is merely equally distributed among the orthonormal di­

rections and wi l l show a curve with a slight dechnation. On the contrary, correlated data 

yield a curve which falls down rapidly to zero, because the number of principal compo­

nents carrying information is considerably smaller than the number of variables. So, there 

is a cut ofi" between important roots, which exhibit much variance, and non-important 

roots, which exhibit nearly no variance. The more the data are correlated, the smaller 

the number of principal components carrying information. I n the diagram the curve wi l l 

dechne more rapidly towards zero. In Figure 3.7 two different PCA plots are shown for 
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Figure 3.7: PCA plots of non correlated data (a) and correlated data (h) 

two degrees of correlation; non or slight correlated data and correlated data. 

3.3.4 S C R E E t e s t 

Number of principal component 

Figure 3.8: Example of the SCREE test, which is a graphical technique to define the 
number of retained PC's when performing a principal components analysis 

To define now the number of reconstruction-pixels, the number oi principal components 

(PC) wi th a significant variance is retained. Determine more pixels than retained PC's 

wih make the problem close to singular, since the eigenvalues become close to zero for the 

rejected PC's. 

The SCREE test is a graphical technique to define the number of retained PC's. Figure 

3.8 shows a typical plot of correlated PC's. Most of the PC plots show this behaviour. 

The PC's faU off tiU some point, often called the elbow. The SCREE test then divides 

aU the PC's into two groups, shown by the dashed hne in Figure 3.8. Subsequently all of 

the PC's in the first group, on the left-hand side of the dashed line, are retained plus one 

of the latter group on the left-hand side of the dashed hne. I n Figure 3.8 the number of 

retained PC's according to the SCRE&test is five. The SCREE test, thus, recommends 

to estimate no more than five model parameters, since estimating more than five PC's 

makes the inverse problem under-determined. 
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3.3.5 P i x e l shape 

When the number of reconstruction pixels is defined, another problem arises: what sort 

of pixels to use? The most common pixel shapes are: 

• Polar shaped pixels. When an electrode sensor round a pipe is used, i t is easy to 

use polar pixels, while the cross-section of the pipe can be divided into pie-shaped 

segments, each assigned to one electrode. These pie-shaped segments can be subdi­

vided into more pixels by defining one or more concentric rings in the crossection. 

• Square shaped pixels. This is the commonly used type of pixel. This is why 

most graphical routines are developed for a grid of square pixels. Xie et al. placed a 

lattice, i.e. a square which was divided into 32x32 equally sized square pixels, over 

the cross-section of the unknown permittivity. As a consequence that at the r im of 

the cross-section the pixels were only partially covered. 

We decided on using polar pixels since these match the circular imaging domain better 

than square pixels. 

Figure 3.9: Polar pixel distribution in the cross-section ofthe capacitance sensor. 

Radia l size d i s t r i b u t i o n of the pixels 

F.T. Kühn [Kühn and van Halderen, 1997] showed that the sensitivity distribution varies 

over the cross-section, i.e. the sensitivity in the centre of the cross-section is significantly 

smaller than the sensitivity near the wah. This introduces underdeterminacy of the centre-

pixels and overdeterminacy of the wall-pLxels, since permittivity changes in pipe-centre 

pixels wi l l only slightly influence the data in comparison with the near-wall pixels. 

I t was proposed to reduce the underdeterminacy of the centre-pixels by adapting the 

pixel surface area to the radial image resolution. Thus, making the centre-pixel larger i n ' 

comparison with the near-wall pixels. 

To adjust the radial size distribution of the polar pixels. Equation 3.6 was used. 

j = l-hint(p-{—r) (3-6) 
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Where n is the pixel size exponent, rmax t t e inner pipe radius and p the number of rings, 

in this case there are evidently 3 rings. The formula assigns a cross-sectional point at 

radial position r in the forward mesh to the ring of the inverse mesh. int{) is the 

integer operation which returns the round-off figtire of its argument. 

The problem's mixed determinacy causes errors in the data vector to be amplified into 

the model parameters, i.e. the permittivity values to be calculated. The degree of this 

amplification is usually quantified by the condition number of the Hessian matrix, which 

contains the systems second derivatives (see also Section 4.3.3). This Hessian matrix 

can be approximated by multiplying the transpose of the Jacobian matrix with itself. A 

singular value decomposition of the Hessian matrix yields its eigen values, of which the 

decay is measured by the condition number, defined as the ratio of the highest eigen-value 

and the smallest eigen-value. 

F.T. Kühn computed this condition number for the polax pixel arrangement shown in 

Figure 3.9 for the pixel size exponent, n, ranging from 1.6 to 4.2. I n Figure 3.10 the 

condition nmnber of the Hessian matrix is plotted as a function of the size exponent n. 

From this figure can be seen that the condition number decreases when the size exponent 

increases. As a compromise between the mixed determinacy and a too small near-wall 
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Figure 3.10: Condition number of the Hessian matrix as a function of the pixel size expo­
nent n. 

ring, a size exponent n = 3.4 was chosen, resulting in the pixel distribution shown in 

Figure 3.9. 

3.4 Simulations using SEPRAN 

3.4.1 S i m u l a t i o n o f t h e 12 e l ec t rode s y s t e m 

The first simulations were done by F.T. Kühn [Kühn, 1997] for the 12 electrode system. 

A principal components analysis had been applied to both the correlated data and the 

uncorrelated data. The covariance matrix was calculated from the forward solution of 
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10.000 randomly picked permittivity distributions. 

The results were verified wi th a new simulation of 5.000 randomly picked permittivity 

distributions and are shown in Figure 3.11. I n this simulation one electrode is set to be 

the sovuce electrode. I t becomes clear that uncorrelated data (setting all non-diagonal 

elements of the covariance matrix equal to zero) show indeed a typical straight line and 

the simulated, correlated data faU off to zero rapidly, indicating that the information is 

distributed the most among the first PC's. 

First the capacitance values for the 5.000 randomly picked permittivity distributions are 

calculated. Than from these 5.000 sets of capacitance values the covariance matrix is 

calculated and the singular value decomposition is performed on this covariance matrix. 

Because the ratio between the capacitance value of adjacent electrodes and that of opposite 

electrodes is about 100, the covariance matrix is scaled as foUows: 

n — ~ Cempty . /o 
^i,scaled — -p^ pi ) 

Here Ci is the calculated capacitance, Cempty the capacitance value when the cross-section 

is filled with air, i.e. permittivity 1 and Cjuii the capacitance value when the cross-section 

is filled with material, i.e. permittivity 2. Thereafter the diagonal matrbc, containing the 

eigenvalues of the data covariance matrix, is normalised 

Oi^noTmalised = " 100% (3.8) 

since then not the absolute variances are plotted but the relative variances, indicated by 

the term 'explained variances'. 

I f the SCREE test is applied on Figure 3.11, i.e. try to locate the elbow of the curve, 

the number of principal components is about 25 to 30. So about 25 to 30 PC's contain 

nearly all information. From equation 3.1 follows that there are a total of 66 electrode pair 

combinations for the 12 electrode system, however only about 30 PC's contain information. 

So defining more pbcels than there are information carrying principal components, wi l l 

make the problem underdetemined, and consequently singular. This is a very similar 

result in comparison wi th the results foimd by Kühn [Kühn, 1997]. 

3.4.2 U p g r a d i n g t o an 16 e l ec t rode s y s t e m 

After these results, the question was raised whether more electrodes would result in more 

information, i.e. i f using a 16 electrode system would lead to a gain of information, while 

the spatial resolution of the capacitance tomography system depends on the number of 

sensor electrodes mounted around the process being imaged [Huang et al., 1992]. However 

the size of each electrode is reduced as the number of electrodes is increased. So the sen­

sitivity of the capacitance measurements wi l l be reduced, since the standing capacitance 

values wi l l be lower for smaller electrodes. 

To investigate this, a new simulation is carried out for the same two phases, permittivity 

1 for the lean phase and permittivity 2 for the dense phase. The simulations are adapted 

to a 16 electrode mesh. The covariance matrix is then calculated from forward solutions 

to 5.000 randomly picked permittivity distributions. For the 16 electrode system, the 
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Figure 3.11: Principal components analysis of a 12 electrodes system with one source 
electrode. 

number of different electrode combinations follows from 3.1, which results in 120 electrode 

combinations. Figmre 3.12 shows the results of the PCA and the SCREE test for the 16 

electrode configuration. 

I t is evident that an increase of the mmaber of electrodes does result i n more informa­

tion containing principal components, but does not result in gain of information. When 

increasing the number of electrodes to 16 instead of 12, there are nearly twice as much 

data-points. However the increase in nonzero principal components is no more than ten. 

To understand these figures, i t is useful to know what the eigenvectors look like. In Fig­

ures 3.13 and 3.14 the first four eigenvectors are displayed. These eigenvectors show the 

projection of the original coordinate axes on the new coordinate axes. On the x-axis the 

data number is plotted, on the y-axis the contribution of a data point to the eigenvec­

tor, which is under interrogation. From these figures can be seen that the first principal 

component (Figure 3.13a), above all, consists of diametrically opposing electrodes, and 

that there are almost no contributions from neighbouring electrodes. This means that the 

opposite electrodes have the largest relative explained variance and thus contain valuable 

information since these capacitance values vary most wi th the changes in the permittivity 

distribution. 

Nevertheless, the signal of the opposite electrodes is very poor, because of the limits of 

the sensor electronics. The standing capacitance values for opposite electrodes are of the 

order of 8 f F (8 • lO"-''^ Farad), which is near the limits of the electronics available today. 

Further, i t has been demonstrated that the neighbouring detecting electrodes incorporate 

the strongest nonlinearities in the data (see Appendix C) and therefore are the most re­

sponsible for an iterative method not to converge when solving the inverse problem (See 

chapter 2.3). 

This nonlinearity in the data is the result of the so called soft field effect: the electric flux 

lines in an electrostatic field wiU defiect, i.e. bend, when encountering an interface between 

different permittivities. This explains why image reconstruction algorithms described for 
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Figure 3.12: Principal Components Analysis ofthe 16 electrodes system with one source 

electrode. 

straight-ray transmission tomography are not applicable in electrical capacitance tomog­

raphy. When omitting the measurements between source and neighbouring electrodes the 

degree of nonlinearity wi l l decrease, but wi l l also decrease the information available for 

the reconstruction algorithm. I n Figure 3.15 the different curves when omitting neighbom: 

measurements and when omitting opposite measurements are shown. From this figure 

the difi'erences in number of principal components carrying significant information can be 

seen, when omitting the measurements wi th strong nonlinearities and when omitting the 

data which are least nonlinear. Although the first eigenvector is dominated by contri­

butions of the opposite electrode, the number of retained PC's decreases when omitting 

neighbour measurements, with respect to the case when opposite electrode measurements 

are omitted. 

Plotting the simulation results o f the 12 and 16 electrode sensor together in one figure, 

see fig 3.16, the difi'erences can be seen better. From this figure i t is clear that the curve 

of the 16 electrode system is a little more fiat than the curve of the 12 electrode system, 

so in the 16 electrode system the information is more equally distributed among this first 

principal components. Interesting feature is that in the 12 electrode PCA there is a break 

between the 12*'' and IS*'' PC, while in the 16 electrode system this break is typicaUy 

between the 16*'' and 17*'' PC. Integration of the area under these first PC's before the 

'break' for the 12 electrode and 16 electrode system shows that the amount of information 

provided by these first PC's is almost the same for both systems. Only in the 16 electrode 

system the same amount of information is distributed among more PC's. 
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Figure 3.13: First and second eigenvector of the 16 electrodes system. 

3.4.3 C o m p a r i s o n o f t h e s e n s i t i v i t y o f t h e 12 e l ec t rode a n d 16 e l ec t rode 

s y s t e m 

Main effort is to increase the sensitivity in the centre of the cross-section, since the prob­

lem is very ill-conditioned there (see Section 3.3.2). I t must, thus, be investigated i f an 

increased number of electrodes mounted around the pipe increases the sensitivity i n the 

pipe-centre. 

First the empty pipe capacitance values are calculated for both the 12 electrode system 

and the 16 electrode system. Then the capacitance values for the distribution in Figure 

3.17 are calculated for both systems. This is in fact the reconstruction mesh shown in 

Figure 3.9, where pixel 1 is set to a permittivity value of 2 and all other pixels are set to 

a permittivity value of 1. Note that the circumferential length of the electrodes of the 16 

electrode system is smaller. In the simulations this ratio is: 

lj,12electrodes 360° 

j,l6electrodes 2-Kr 
18.5° 
360° 

1.4 (3.9) 

The opposite electrode combinations contain the most valuable information of the pipe-

centre. Therefore, the changes in the capacitance values between opposite electrodes is 

inspected. 

In the simulations the electrode in the pie segment, containing pixel 1, pixel 13, and 
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Figure 3.14: Third and fourth eigenvector ofthe 16 electrodes system. 

pixel 25, is set to the source electrode and its opposite electrode is set to the detecting 

electrode. From the simulations the total charge on the opposite detecting electrodes of 

the 12 electrode and 16 electrode system can.be calculated for the empty pipe and for 

the distribution displayed in Figure 3.17. The outcome are two values which refer to the 

capacitance changes on the opposite detecting electrode of the two systems. The ratio of 

these two calculated values is 

ClJ{l2electrodes) _ ^ g 2̂_jq̂  
C'l,9(16e;ectrodes) 

This results, using Equation 3.9 for both the source electrode and the detecting one, in 

an increasing sensitivity of about 9% in the centre of the pipe. Note that the factor 1.8 

only indicates that the measurements have to be a factor 1.8 more accurate. Since the 

capacitance measurements are already towards the limits of what can be measured with 

the electronics system, this is a hopeful outcome. 

That the electric field lines prefer materials wi th a higher permittivity, could serve as an 

explanation for this effect. In the case of Figure 3.17 the electric field wi l l be 'attracted' 

by the pixel with permittivity 2. Therefore the capacitance values of the electrodes next 

to the source electrode can decrease when an object is placed near the source electrode. 

In these simulations this is also the case. Remarkable is that in the 16 electrode system 

these adjacent electrodes capacitance values decrease much more than in the 12 electrode 
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Figure 3.15: Principal components analysis ofthe 16 electrode system with one source elec­
trode when omitting adjacent electrode measurements and when omitting opposite electrode 
measurements. 

system. Here the non-linearity of the electric field becomes clear and i t is shown that the 

adjacent electrodes are the most non-linear ones (see Appendix C). 

3.4.4 A n e w v i e w o n t h e 12 e l ec t rode s y s t e m 

The results o f the 16 electrode mesh do not yield a significant 

gain of principal components and yield a small increase of sensi­

t ivi ty in the pipe-centre, so an other sensor concept is proposed 

and investigated in this section. Since one o f t he biggest prob­

lem is the resolution in the centre of the pipe, there must be 

more electric field lines crossing the centre of the cross-section. 

More field lines must be 'pushed' through the centre of the pipe. 

Figure 3.17: Permittiv- New simulations were done to investigate the additional use of 

iiy distribution in the bigger source electrodes. Instead of setting one electrode to the 

cross-section. ' source electrode, two electrodes are set to the source electrode. 

This results in a larger source electrode, which could feed the electric field better. 

First electrode one and electrode two are coupled and electrodes three to twelve are set 

as detecting electrodes. Next electrode two and three are coupled and electrode one and 

electrodes three to twelve are set as detecting electrodes. Now there are no electrode pair 

combinations which can be omitted, like in the case of one source electrode. The capac­

itance between source electrode 1 coupled with electrode 2 and detecting electrode 3 is 

not the same as the capacitance between source electrode 2 coupled wi th electrode 3 and 

detecting electrode 1. So now there are twelve difi'erent source electrode couples together 

with ten difi'erent detecting electrodes per source electrode couple, resulting in 120 capac­

itance values. The main goal was trying to get more electric field lines to the opposite 

electrodes to raise the signal of the opposite electrodes and so raise the information of the 
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Figure S.16: Principal components analysis of the 12 and 16 electrode system with one 

source electrode. 

centre pixels. 

In fig. 3.18 the results of the simulation are plotted. The coupled source electrode data, 

12 in total, are added to the single source electrode data, 66 data points, resulting in 186 

data-points. 
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Figure 3.18: PGA of 12 electrodes system with coupled source electrodes. 
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3.5 Conclusions of the simulations 

3.5.1 C o m p a r i s o n o f 12-e lec t rode s y s t e m w i t h 16-e lec t rode s y s t e m 

The simulations presented in this chapter are done to investigate novel sensor concepts, 

which would yield a higher sensitivity in the pipe centre. A higher sensitivity in the pipe 

centre can improve the ill-conditioning of the inverse problem, since the inverse problem 

is highly under-determent (see section 3.3.2). 

Looking at the PCA of the 12 electrode system and 16 electrode system, first can be 

noticed that the curve of the 16 electrode system is a lit t le lower and more fiat for the 

first PC's than the pea of the 12 electrode system. Using the scree test, the number 

of principal components containing significant information is about 40. W i t h respect to 

the 12 electrode system, with between 25 and 30 principal components, there are four 

electrodes added, resulting in 120 independent measurements. So 54 more data-points 

can be obtained, using a 16 electrode system, which yield ten more principal components 

with significant information. This wi l l give the opportunity to define more pixels in the 

reconstruction mesh than in the 12-electrode system. Note, that this is only a quahtative 

comparison. The goal is to improve the reconstruction in the centre of the cross-section, 

but there is not a significant improvement of the resolution in the middle of the pipe 

cross-section. There is an increase in the sensitivity of the pipe centre of 9%. Only a 

improvement near the wall of the pipe is expected, due to a larger spatial resolution at the 

waU, since there are more electrodes. This ofifers the possibility to define more near-waU 

pixels. However, i f polar pixels are used, this wi l l yield also more centre pixels, which 

results i n a bigger case of under-determinacy in the centre of the pipe. 

The curve of the 16 electrode system is fiatter. In the 12 electrode system can be noticed 

that the first 12 principal components have the highest explained variance, while in the 16 

electrode system this are the first 16 PC's. When the area under these first PC's is taken 

into account, the cause of the flatter curve for the 16-electrode system is found: the same 

amount of information is distributed among more PC's, resulting in a flatter curve. 

From Figure 3.13 and 3.13 can be seen that the first principal component consist mainly 

of the measurements from detecting electrodes opposite to the source electrode. Note that 

the curve is scaled so in the figmes the relative explained variance is plotted against the 

number of principal component. So these plots do not take into account the signal levels 

of each datum. 

3.5.2 T h e 12 e l ec t rode s y s t e m u s i n g c o u p l e d source e lec t rodes 

When looking at the PCA of the 12 electrode system with two-coupled source electrodes 

there is only one remark to make: There is no significant difference in the two curves and, 

thus, this sensor concept does not improve the amount of information available. This is 

evident, since the information provided by the coupled source electrodes are merely hnear 

combinations of the information provided by the single source electrodes. Therefore the 

PCA's result in almost the same curve, as can be seen in Figure 3.18. 



Chapter 4 

Least squares based reconstruction 
algorithms 

4.1 Introduction 

In literature various algorithms for solving inverse problems are described. Up tiU now 

the image quality of the capacitance tomography reconstruction algorithms is rather poor. 

The most commonly used reconstruction algorithm for capacitance tomography is the lin­

ear back projection, which is merely a qualitative approach of the capacitance inverse 

problem. Therefore a more quantitative algorithm is desired. 

At the Delft University of Technology (DUT) a new reconstruction algorithm was devel­

oped, based on least squares methods. 

4.2 Mathematical model of the capacitance tomography sys­

tem 

4.2 .1 D i s c r e t e r e p r e s e n t a t i o n o f t h e p e r m i t t i v i t y d i s t r i b u t i o n 

To use a reconstruction algorithm, first a mathematical formulation of the ECT problem 

must be formulated. Since the forward problem and the inverse problem are two integrated 

problems, they must be modelled on the same assumptions. 

The forward problem is solved using a Finite element method software package and results 

in a discrete set of capacitances. The data obtained from one tomogram, i.e. one 'body 

scan' of the cross-section in figure 2.1, yields N data-points and can be written into a 

vector c, 

c = [ c i ,C2 , . . . , c , v ]^ • (4.1) 

where C i • • • Cjv are the measured capacitances. 

The inverse problem is the mapping between the measured capacitances and the model 

parameters e. Similar to the capacitances, the relative permittivity distribution can be 

29 
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written as a vector e: 

e = [ei,e2,... ,eMf (4.2) 

where ej refers to the i^^ permittivity value in a discrete permittivity map of M pixels 

[Menke, 1989]. 

4.2.2 D i r e c t r e c o n s t r u c t i o n m e t h o d s 

A fast way to solve the inverse problem is wi th a direct method. Direct or hnear methods 

can be used for linear problems or problems which can be approximated by a linear 

approach. 

In section 2.3.2 the so-called soft field effect was introduced. Due to this soft field effect 

the inverse ECT problem is a nonlinear one. Since real-time flow-imaging, i.e. about 20 

frames per second, is preferred with the electrical capacitance tomography system, a fast 

algorithm is needed. 

Although the ECT problem is non-hnear, direct methods have been developed to test 

whether these methods give acceptable results. 

4.2,3 L i n e a r i s a t i o n o f t h e E C T p r o b l e m 

Now wi th the discrete permittivity map, the capacitance values can be coupled to the 

permittivity vector 

c = f{e) + nc (4.3) 

Here the capacitances, c, are coupled to the permittivity vector, e, by the function f{e), 

which represents the deterministic forward model. Uc is an error term, containing the 

errors due to measurement errors. 

K the error term, ng, is neglected and the forward solution is linearised, Equation 4.3 can 

be rewritten to: 

c = J • e (4.4) 

where 3 is a N xM matrix the meaning of which can be better understood by partitioning 

i t in the following way: 

J = [ j i j 2 - - - j ; v ] ^ (4.5) 

where j n is a M x 1 vector related to the n^^ capacitance value Cn-

3 is the Jacobian matrix whose entries are the first derivatives of any datum Cj with respect 

to any parameter ey. 

J « = 1^ (4.6) 

Since i t cannot be calculated analytically, i t has to be approximated by finite difi'erences. 
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Since the permittivity distribution cannot be anticipated, this Jacobian matrix has to be 

calculated beforehand when using a direct, i.e. a non iterative, reconstruction method of 

an unknown flow distribution. Due to the non hnearity of the problem, the position e 

where the Jacobian matrix is calculated influences the matrix components. The Jacobian 

matrbc is namely calculated by setting one pbcel at a high and a low permittivity value 

and then calculate the derivative of the capacitance values to the permittivity value of the 

pixel by finite diflferences. Since the capacitance values do not increase exactly linear, but 

show a small curve, and since a basic permittivity value for the whole cross-section has to 

be assumed (i.e. an average permittivity distribution over the cross-section), the Jacobian 

matrix changes when one of these values above (higher- and lower permittivity value ehigh 

and e/£^, and the average permittivity distribution etasis) is changed. 

I f the permittivity distribution can be anticipated, for example when there is already an 

estimate, the Jacobian should be calculated at this estimated parameter vector. 

I f then again this new estimated parameter vector is used to calculate the Jacobian matrix, 

the direct method can serve as the basis of an iterative algorithm. Note that this reduces 

the reconstruction speed enormous, since updating of the Jacobian matrix after every 

iteration is a very time consuming process. 

4.3 Least squares based reconstruction methods 

4.3 .1 E u c l i d e a n n o r m 

One direct method to solve the inverse problem is the method of least squares. This 

method tries to pick the model parameters so that the predicted data are as close as 

possible to the observed data. 

In the ECT inverse problem, for each measured capacitance a prediction error, or misfit, 

gj = c f - ĉ ''̂  is defined. Here is the capacitance measured with the ECT system 

(See chapter 2), cf"^ is the capacitance calculated from the forward solution (See chapter 

3). The best fit is then the one with model parameters that lead to the smallest overall 

error E, defined as 

E = {^e^ (4.8) 

The total error E is exactly the squared Euchdean length of the vector e, or E = e'̂ e. 

This method, thus, estimates the solution by finding the model parameters that minimise 

its Euclidean distance from the observations [Menke, 1989 . 

The least squares based methods uses the L2 norm, i.e. the Euclidean length (See also 

section 6.2.1), to quantify length. One could also use a high-order norm, i.e. the sum of a 

higher power o f the elements of vector e. This is in the ECT problem not preferred, since 

high-order norms weight the larger errors, such as outhers, preferentiahy. The Eucledian 

norm, on the contrary, gives more equal weight to errors of different size. 
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4.3.2 G e n e r a l l i nea r least squares s o l u t i o n 

The section above showed that the linear least squares method minimises the distance 

between the measured capacitances, c and the data predicted by the linear forward model, 

J • €. This yields the following objective function 5>: 

$ = ||e||2 = e^e = (c - Je)^(c - Je) (4.9) 

The objective function must be minimised in order to minimise the distance between the 

measured data and the predicted data. This minimum can be found by setting the first 

derivative of $ in Equation 4.9 wi th respect to one o f t he model parameters, em equal to 

zero. 

Rewriting Equation 4.9 in terms gives: 

N M M 

5] [c- - Jiyey] \ci - Jik 
(4.10) 

Multiplying the two terms on the right-hand side and reversing the order of the summations 

leads to 

M M N M N N 

^ = E E 'j'k J2 ^vJik - 2 E E ^'j'^-+E 
j k i j i i 

(4.11) 

The derivatives have to be calculated now. Performing this difi'erentiation term by 

term gives for the first term: 

M M N M M N M • N 

7 [ E E ^J^^ E -^vJik] = E E i^jP^k + ^y^kp] E "^V-^ik = 2 5̂  efc JipJik (4.12) 
^ j k i j k i k i 

The derivatives ^ can be replaced by the Kronecker delta 5ij. The second term gives: 

d M N M N N 

-2«r Ê iE-̂ î̂  =-2X:^ipE '̂-i^ = -2E'̂ ^-: dep 

Since the third term does not contain any e, i t equals zero: 

N 

ip^i (4.13) 

- y de CiCi = 0 (4.14) 

Combining these three terms and demande for an extremum, thus equal i t to zero, gives 

M N N 
9$ 

= 0 = 2j2€kJ2 JipJik - 2 E Jij^'i (4.15) 

Equation 4.15 results in M so-called normal equations. Every normal equation yields one 

parameter. Writing Equation 4.15 in matrix notation gives 

0$ 

de 
-2P ( c - J e ) = 0 (4.16) 
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This is the square matrix equation for the unknown model parameters e. Assuming that 

J^J]"'^ exists, we have the foUowing solution: 

e , , , = [ j ^ j ] - ^ J ^ c (4.17) 

which is the least squares solution to the inverse problem J • e = c [Menke, 1989]. When 

the amount of information provided by the capacitance mea.surements is not enough to 

determine uniquely aU the model parameters, the problem is said to be under-determined 

(see Section 3.3.2). From elementary linear algebra is known that under-determined prob­

lems occur when there are more unknowns than data. But under-determinacy can also 

occur due to a very poor structure of the data kernel. Solving a highly under-determined 

problem wi th least squares, one would find that the matrix [ J^J ]~ is singular or close 

to singular. In that case Equation 4.17 is not apphcable anymore. 

4.3.3 L i n e a r least squares d e r i v a t i v e s 

Most inverse problem that arise in practise are neither completely over-determined nor 

completely under-determined. The former section already mentioned that the matrix 

J^J] ~^ becomes close to singular when the inverse problem is highly under-determined. 

This under-determinacy can be measured wi th the condition number of the Hessian matrix 

(see Chapter 3). 

Ideally, we would like to sort the unknown model parameters into two groups; the over-

determined parameters and the under-determined parameters. This partitioning process 

can be accomplished through a singular value decomposition (SVD, see Chapter 3). Since 

this is a very time consuming process, an approximate process can be used when the 

problem is not too under-determined [Menke, 1989]. 

Also, one can use a priori knowledge to add more information and therefore making the 

inverse problem less imder-determined. 

D a m p e d least squares 

Instead of minimising the objective function. Equation 4.9, a solution can be determined 

that minimises not only the 3>, but also includes the solution length, e'^e. 

$ = (c - Je)^(c - Je) + /3(Re)^(Re) (4.18) 

where R is a smoothing matrix [Kühn, 1997] and /3 a weighting factor, which determines 

the relative importance given to the prediction error and the solution length. Since matrix 

R links the neighbouring parameters to one another and weighting factor P determines 

the importance of minimising the solution length, oscillations wih be damped. 

However, when the relative importance, P , given to the solution length is made large 

enough, the solution wil l not minimise the prediction error E and therefore wi l l not be a 

very good estimate of the true model parameters. There is no simple method of determine 

that value of /3, which leads to a compromise between minimising the prediction error E 

and the modified solution length (Re)^(Re). Clearly this value of ^ , has therefore to be 

determined by trial and error. 
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Minimising the new objective function, Equation 4.18, yields the following estimated pa­

rameters: 

e^st = [ J ^ J + /3R^R] J ^ c (4.19) 

This method is also known as Phillips-Twomey damping [Kühn, 1997]. Note that matrix 

R contains information about the pixels to be hnked, resulting in a smoothed solution, 

there are several ways to link the pixels for the reconstruction mesh, proposed in chapter 

3. F.T. Kühn proposed two different smoothing matrices; hnking only neighbours on the 

same ring, as i n Figure 4.1a, and linking neighbours on the same ring as well as linking 

the pixels in radial direction, see Figmre 4.1b. 

(a) Only tangential smoothing (b) Tangential and radial 
factor smoothing factor 

Figure ^ . i ; Two different smoothing ways when using the damped least squares solution 

Weighted least squares 

Weighted measures ofthe prediction error can also be useful. I f some observations are more 

accurate than others, one can define a matrix We which can be interpreted as a weighting 

factor that enters into the calculation of the length of the vector e. This matrix We gives 

the more accurate observations a higher weight and less accurate observations a lower 

weight. This can be implemented in the objective function by inserting this weighting 

matrbc Wg, as follows: 

# = e'^Wee (4.20) 

Minimising this weighted objective function yields 

e,,j = [ j^PFeJ] J^PFeC • (4.21) 

I f the observations are Gaussian distributed and the data covariance matrix (see chapter 3) 

is known from measurements or simulations, one can use the inverse of this data covariance 

matrix as weighting matrix. This is better known as the method of maximum likelihood 

[Priestley, 1981], where Wg — [cov{c)]~^. Thus, the measurements are weighted by the 

reciprocal of their variances and covariances. 
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A d d i n g constraints t o bound the so lu t ion space 

In many cases the parameters to be estimated are expected to fall within some interval. 

In this case the solution space can be boimded by defining an interval wi th both a lower 

bound and an upper bound. Using these constraints one can force the solution to fall 

within this pre-defined interval. This type of a priori knowledge is referred to as adding 

hard constraints. 

Although this section describes direct inversion methods, the constraint least squares 

method is merely an iterative algorithm, since i t iteratively modifies the Jacobian ma­

tr ix until the parameters fal l within the bounded solution space. While modifying the 

Jacobian matrix the Kuhn-Tucker is used, giving the minimum solutions to the constraint 

problem [Menke, 1989]. 

In the electrical capacitance parameter estimation problem hard, constraints can be im­

plemented by introducing a lower bound and upper bound to the permittivity value to be 

found. Note that using constraint least squares also reduces, in general, oscillations in the 

solution vector, eest-

4.3.4 H y b r i d s o f least squares de r iva t i ve s 

The former section showed some least squares derivatives, which can be used to solve the 

inverse problem. These proposed methods can also be combined to new inverse problems, 

resulting in a new objective function containing the properties of both separate methods. 

Combining the damped least squares method and the weighted least squares method yields 

a new objective function: 

Wi th this objective function a combination of minimising both the prediction error and 

the solution length, E + j3e'^e, can be achieved. Once again P must be chosen by tr ial and 

error. The estimate of the solution is then 

§ = (c - Je)^We(c - Je) + ^(Re)^(R€) (4.22) 

^est = J ^ W e J + i0(R-e)^(Re)] b ^ W e C (4.23) 

Hybrids of the constraint method can be achieved by simply applying hard constraints to 

the three proposed inversion methods. 





Chapter 5 

Noise in ECT sensor electronics 

5.1 Introduction 

The aim of this research project includes also to investigate the influence of noise on the 

reconstruction algorithms, proposed in chapter 4. This influence is investigated in two 

difi'erent ways: . 

1. Addition of simulated noise to exact data from simulations. This is described in 

chapter 6. 

2. Reconstruction of real measurements, as described in chapter 7. , . 

Therefore, the noise level of the electrical capacitance sensor has to be determined, so the 

noise can be modelled and subsequently added to the exact simulated data. 

The Delft University of Technology (DUT) has two difi'erent types of sensor electronics: 

an electrical capacitance system bought from the University of Manchester (UMIST) and 

a new electronics system, which is being developed at the DUT. Both systems were used 

to perform the noise measurements, in order to compare the new developed electronics to 

the electronics provided by UMIST. 

5.2 The UMIST system and the DUT system 

5.2.1 T h e U M I S T s y s t e m 

The University of Manchester has designed sensor electronics for the electrical capacitance 

system, which is based on the charge-transfer principle. This electrical capacitance sensor 

has a data acquisition speed of 6600 measurements per second. I t is designed for a 12 

electrode capacitance sensor and can capture cross-sectional images of the contents of 

pipes and tanks at a rate up to 100 frames per second. 

The system was delivered with image reconstruction software, based on the hnear back 

projection. This software computes images in real time using a network of transputers 

operating in parallel and controlled by a personal computer. 

37 
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Cx 

S2 S4 

Figure 5.1: The charge transfer principle used in the electrical capacitance tomography 
system developed by UMIST. 

5.2.2 T h e D U T s y s t e m 

The image resolution of ECT is significantly poorer than that of non-electrical tomography 

techniques. This is also due to the limited sensitivity of the charge-transfer principle used 

in the UMIST system. A better performance of ECT can be achieved by reducing the 

measurement noise. Also, increasing the number of electrodes and reducing the axial 

length of the measuring electrodes wi l l increase the performance, but results in smaller 

capacitances to be detected. Therefore at the D U T a capacitance transducer is being 

developed which uses the unknown capacitance as an element of an active differentiator. 

This system is designed for a maximum data acquisition speed of 9000 frames per second 

for a 12 electrode system. 

5.2.3 T h e t w o c i r c u i t s 

Charge t ransfer 

Figure 5.1 shows the UMIST electronics circuitry based on the charge-transfer principle. 

The source electrode of the unknown capacitance is connected to a pair of CMOS switches, 

Sl and S2 and the detecting electrode is connected to the switches S3 and S4. In a typical 

operating cycle, the switches Sl and S3 are first closed and S2 and S4 are open. The 

unknown capacitance, C^, is then charged to voltage Vc, and the charging cturent fiows 

into the input of the cmrent detector C D l where i t is converted into a negative voltage 

output. In the second half of the cycle, switches S2 and S4 are closed and Sl and S3 are 

left open. The capacitance Ci discharges then to earth potential, and causes a discharging 

current, which flows out ofthe current detector CD2, resulting in a positive voltage output. 

The successive current pulses in C D l and CD2 produce two d.c. output voltages 

Vi = -fV,RfCx + ei 

V2 = fVcRfCx + eo 

(5.1) 

(5.2) 
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o y 
out 

Figure 5.2: The capacitance to voltage transducer, developed at the DUT. The unknown 

capacitance Cx is used as an element in an element in an active differentiator. 

Rl 

R2 

O P I 

Figure 5.3: Circuit providing the input signal. Vin, lo the measurement electrode Cx 

where ƒ is the typical frequency of the charge-dis charge cycle and e\ and 62 are output 

offset voltages, caused mainly by the charge injection effect o f t he CMOS switches. 

The differential output voltage, Vo - V\ is taken as the output signal of the basic circuit. 

This has the advantage that the two offset voltages ei and 62 tend to cancel each other, 

provided that the charge injection effects of both current detectors are similar [Huang et 

al., 1992]. 

A c t i v e d i f fe ren t ia tor 

Figure 5.2 shows the circuitry developed at the DUT. Here the unknown capacitance, Cx, 

is an element in an active differentiator. A negative pulse wi th weU-defined fall and rise 

time and a constant amplitude is applied to the active differentiator as input signal, Vin-

The circuit in Figure 5.2 differentiates and amplifies this signal, yielding a positive peak 

and a negative one. Since the sum of their absolute values is independent of the basehne 

potential, a peak peak detector sphts the two subsequent peaks at point B into two con­

stant signals wi th amplitudes U^ at point C and U D at point D. These two voltages are 

added by a differential amplifier to the output voltage Vout-

This output voltage Vout is directly related to the unknown capacitance, Cx, by the fol­

lowing equation: 

•"3 AT 

Here is the slope of the potential fal l and rise of the input signal. Figure 5.3 shows 

the circuitry, which provides the input signal to the measurement electrode. The slope of 

the potential fall and rise is a function of electrode Cx and resistance Ri [Kühn and van 

Halderen, 1997 . 
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(a) Sensor used with UMIST (b) Sensor used with DUT 
electronics electronics 

Figure 5.4: Cross-section of the two ECT sensors used for the noise measurements. 

5.3 Noise measurements 

5.3.1 S igna l t o noise r a t i o 

Due to noise generated by the sensor electronics of the tomography systems, the measure­

ment outcome always fluctuates randomly in time, even when the distribution inside the 

cross-section is constant. This noise can be quantified by the signal to noise ratio defined 

as 

SNR = . (5.4) 

y ^ n 

Here the formula in the denominator is the root-mean-square value of the signal. 

5.3.2 E x p e r i m e n t a l s y s t e m 

The systems are tested in difi'erent sensors, since the D U T electronics is stil l under devel­

opment and therefore is coupled to a fixed test sensor. Both the sensors are METC-type 

sensors (see Figure 2.2). A cross-section of the used test sensors in shown in Figure 5.4. 

The outer screen of the D U T sensor is not circular but for practical reasons angular. Also 

the pipe geometries are different, as shown in table 5.1. The diameter, however, is chosen 

to be of the same order, since then the 3-D effect is almost the same for both sensors. 

The pipe-wall of the sensors are made of perspex. The permittivity of perspex is 2.9. The 

spacing between Ro and Rz is filled wi th air (permittivity 1). 

These differences in the sensor geometry wiU have no influence on the noise measure­

ments, since only fluctuations in the signal are significant for the noise. The geometry 

parameters determine only the absolute capacitance value. 

The electrodes in both sensors are manufactured by gluing rectangular pieces of self-

adhesive l^pm copper fo i l to the outer wall. Between the electrodes of the sensor used 

with the UMIST electronics there is a spacing of "imm in circumferential direction and 
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Table 5.1: Geometry parameters of the sensors used for the noise measurements 

m e t h o d 

UMIST sensor vs DUT sensor 

m e t h o d UMIST DUT 

Rl (m) 9.8 • 10-2 9.1 - lO-'-' 

R2(m) 10.1 • 10-2 9.4 • 10-2 

R3(m) 11.0-10-2 11.1-10-2 

Nota» hbtognm o( Ui» (Wia« b«tw«n «J««tro<i« 1 and 7 using tt%« UWIST «l«ctronl« 
5001 1 1 \ 1 1 1 

450 • 

400 • 

350 • 

300 • 

250 • 

200 • 

ISO • 

100 • 

50 • 

pl, 1 1 IJ 11,11 I M 11.1 11, 1 1 , , — 
-0.03 -O.02 -0.01 0 0.01 0.02 0.03 0.04 

nofmalis^d capacitanca 

Figure 5.5: Histogram of the noise measured between electrode 1 and electrode 7 using the 

UMIST electronics. 

between the electrodes of the sensor used with the DUT electronics a spacing of 2mm. The 

axial length of the meastuing electrodes, I q i , is 5cm for both sensors.Since the UMIST 

system only returns normahsed capacitance values and not absolute capacitance values 

(see Section 7.2.4), absolute capacitance values for the UMIST electronics can be approx­

imated using the capacitance values from simulations. 

5.4 Results 

5.4.1 U M I S T e lec t ron ics 

The noise measurements are performed using 4900 tomograms from the UMIST electronics 

system. Since the smallest capacitance occurring in a capacitance sensor is the capacitance 

between opposite electrodes, the capacitance measurements between opposite electrodes 

are used to determine the signal-to-noise ratio. The noise behaviour was tested using 

the sensor shown in Figure 5.4a. Figure 5.5 shows the histogram of the noise measured 

between electrode pair combination 1 and 7. On the x-axis the normalised capacitance is 

plotted. Note, that the offset values, see Section 7.2.4, are not as accurate as expected. 

Therefore also the mean of the normalised capacitance is substracted from the measured 

capacitances, resulting in a Gaussian-hke histogram with zero mean. Since the standing 
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capacitance value between electrode 1 and 2 is about 100 times larger than the standing 

capacitance value between electrode 1 and 7, the UMIST electronics uses a calibration 

procedure to balance the standing offsets of the measurements and has a programmable 

gain amplifier to satisfy the different sensitivity requirements. W i t h this cahbration pro­

cedure, difiiculties for the capacitance measuring circuit due to the limited dynamic range 

are overcome. 

The relative standard deviation of the noise measured is 0.99%. Huang et al [Huang et 

al., 1992] also tested their charge-transfer electronics, but used a 12 electrode capacitance 

sensor wi th an axial electrode length of 10 cm. The smallest capacitance value for this 

sensor is 15 f F and they found the standard deviation of the noise to be 0.08 fF , corre­

sponding to a relative standard deviation of 0.53%. 

A similar 12-electrode sensor wi th an axial electrode length of 5 cm is used in these ex­

periments. Therefore the minimum capacitance value is half the value found by Huang. 

Equation 3.3 has to be multiplied wi th the axial electrode length to calculate the capac­

itance value, thus a reduction of the axial electrode length by a factor 2 wi l l reduce the 

capacitance value by a factor 2. 

Since the measurements with the UMIST electronics resulted in a relative standard devia­

tion of 0.99%, i t can be concluded that the standard deviation of the noise has a constant 

offset of about 0.08 fP and is independent of the capacitance to be measured. 

5.4.2 D U T e lec t ron ics 

The new differentiator electronics have been tested using the sensor in Figure 5.4b. The 

test-software allowed up to 500 tomograms per measurement session, so the results are 

based on 500 tomograms, which is significantly lower than the number of tomograms used 

for the UMIST electronics. 

The maximum data captme rate is 9000 frames per second, which is significantly higher 

than thé charge-transfer electronics. Figure 5.6 shows the histogram of the noise between 

electrode 1 and electrode 7. On the x-axis the discrete values of from the ADC 

are plotted. The D U T capacitance measuring circuit has a fixed dynamic range, so a 

cahbration procedure to learn the 66 zeros and required gains as wi th the charge-transfer 

electronics is not needed. This explains the limited number of discrete levels for Vaut-

Therefore, the histogram in Figure 5.6 is not as smooth as the histogram in Figure 5.5. 

However the relative standard deviation o f the noise is 0.97%. Since the data acquisition 

speed is up to 9000 frames per second, the noise can be reduced by averaging multiple 

measurements. 

Two ways of averaging are tested: 

• Averaging multiple subsequent measurements. This reduces the data capture rate. 

Averaging two subsequent measurements, for example, results in a data capture rate 

of 4500 frames per second. 

• Smooth the measmements by averaging a data point wi th previous data points and 

subsequent data-points (moving average). This w i l l reduce high frequency fiuctua­

tions. 
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Figure 5.6: Histogram ofthe noise measured hetween electrode 1 and electrode 7 using the 
DUT electronics. 

Table 5.2: Relative standard deviation of the noise when averaging over subsequent mea­
surements. N represents the number of measurements in one segment. 

Averaging over segments 
N Data captirre rate 

^ frames ^ 
Relative standard deviation 

(% of minimum signal level) 

1 9000 0.97 

3 3000 0.62 

5 1800 0.52 

7 1285 0.44 

9 1000 0.35 

In Table 5.2 the results are shown when averaging subsequent measurements. AU values 

have been found using steady-state measmements of the diametricaUy electrodes. As can 

be seen from this table the relative standard deviation is decreasing with VN, when N is 

the number of measurements averaged and, thus, is in agreement with the literature [van 

Soest, 1992]. ' • • 

Table 5.3 shows the results obtained when a measurement is linked with previous and 

subsequent measmements. When N equals 3, for example, measurement Ci(n) is smoothed 

wi th measurement Ci(n — 1) and Cj(n - f l ) as follows: 

Ci{n-l)-hci{n)-hci{n + l ) 

3 ^''•''> 

This smoothed data-series contains, thus, besides the segments of table 5.2 also all other 

possible segments constructed with N subsequent measurements. Therefore, the number 

of data points remains almost the same as the original number of data points, but fluctu­

ations at high frequency are damped. Depending on the number of frames per second and 

the velocity of the object to be measured, i.e. the time that the object is in the measuring 

cross-section of the sensor, i t has to be determined i f this partitioning in segments does 

not result in to much loss of information. 
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Table 5.3: Relative standard deviation of the noise when smoothing using previous and 
subsequent measurements. N represents the number of measurement used for smoothing. 

N Relative standard deviation 
(% of minimum signal level) 

1 0.97 

3 0.60 

5 0.50 

7 0.43 

9 0.38 

5.4.3 D U T e lec t ron ics versus U M I S T e lec t ron ics 

Besides the high data acquisition speed of the DUT electronics in comparison wi th the 

charge-transfer electronics, there are more advantages of the differentiator electronics. 

The differentiator electronics does not contain CMOS switches, which are the weakest 

elements of the charge-transfer electronics. They have an inner capacitance, which is 

large compared to the capacitances to be measured, making the electronics susceptible for 

external influences. 

The charge-transfer electronics are connected to the capacitance sensor wi th coaxial cables. 

These cables have capacitances also. Small displacements of these coaxial cables influence 

the capacitance measurements. The measming channels of the differentiator electronics 

are mounted closely to the sensor, so no coaxial cables are required. 

5.5 Conclusions 

I n this chapter the noise of two different capacitance measuring circuits for electrical 

capacitance tomography is investigated. The active differentiator, developed at the Delft 

University of Technology, has been found to be superior to the charge-transfer electronics. 

The new system enables very high data capture rates in comparison wi th the charge-

transfer based electronics. The noise level is nearly the-same for both systems when 

operating at maximum data acquisition speed. However, due to the high data acquisition 

speed of the DUT-electronics, the noise level can be reduced by averaging subsequent 

measurements. 

Furthermore, the new system avoids CMOS switches, which have an inner capacitance 

which is large compared to the capacitance to be measured and the system does not use 

coaxial cables to connect the sensor to the electronic circuit, avoiding influences on the 

capacitance measurements due to displacements of these cables. 



Chapter 6 

Robustness of the least squares 
inversion methods 

6.1 Introduction 

This chapter deals wi th the robustness of the least squares based inversion methods used 

for ECT application. These methods give satisfactory results for several simple test cases, 

when inverting perfect data from simulations of the test cases. 

Real data are noisy. The sensitivity of the inversion algorithms to noise indicates the 

robustness of the algorithm. I f an algorithm is not sensitive to the noise level of real 

data, i t is said to be robust. The influence of the noise on the reconstructions has been 

investigated by using exact data simulated by the finite element software package SEPRAN 

(FEM) and then adding diiferent levels of Gaussian noise to them. Looking at the errors 

in the model parameters estimated and at the goodness of the flt to the inverse model 

gives an indication of the robustness of the algorithms. 

6.2 Definition of the SSmod and the S S r e s 

6.2.1 G e n e r a l d e f i n i t i o n o f a n o r m 

To investigate the influence of noise on the reconstruction we need a measure of the error 

in the reconstruction introduced by the noise. This can be done by using a norm, which 

indicates the length of a vector. A simple example of a norm is the absolute value function, 

which measures the distance of a scalar from the origin. The absolute value |e| of a number 

e may be defined by the equation [Stewart, 1973]: 

|e| = \ / ? (6.1) 

In general, a vector norm on R" is a function i / : R" ->• R that satisfies the following 

conditions: 

1. u{0) = u{0 • e) = Ou{e) = 0 

45 
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2. u{e) > 0 (positive definite) 

3. u{ae) = \a\u{e) (homogeneous) 

4. u { r i + e) < 1^(77) + u { e ) (triangle inequality) 

when investigating the difference between two vectors, one can look at the vector contain­

ing the differences between the individual elements of these two vectors. Two measmes 

that meet these requirements are the so-called SSmod and SSres. 

6.2.2 D e f i n i t i o n o f t h e SS^od 

The simplest norm in the inversion problem is the SS^odi given by: 

The SSmod measures the difference between the presumed permitt ivity vector etrue, 

the inputs to the forward problem, and the estimated permittivity vector Cest found by 

solving the inverse problem (see Figure 6.1a). 

I f the data are simulated, both the presumed permittivity values and the estimated per­

mit t ivi ty values are known, hence the SS^od can be calculated. 

In the ideal case, the SS^od equals zero, which means there are no differences between 

the presumed permittivity values and the permittivity values estimated. When real mea­

surements are to be reconstructed, the permittivity values inside the cross-section and, 

consequently, the SS^od are unknown. 

6.2.3 D e f i n i t i o n o f t h e SSres 

When the presumed permittivity values or the true permittivity values are not known 

beforehand, the SSres can still be used. In formula, this measure is given by: 

in which CQ is the vector containing the capacitance values when the cross-section is empty, 

i.e. filled with air, eo contains the empty pipe permittivity values, c contains the measured 

capacitance values, J is the Jacobian matrix, and eest contains the estimated permittivity 

•values. The vectors eo and Co are only used for normalisation and do not have any influence 

on the SSres-

The SSres gives an indication of the goodness of the fit. I t measures the distance between 

the data points and the data calculated by the forward model using eest (see Figure 6.1b). 

6.2.4 Is t h e r e a r e l a t i o n bet-vveen t h e SS^od a n d SS 

(6.2) 

SSres = (c - Co - J(eesi - eo))^(c - CQ - J{eest - Ê Q ) ) (6.3) 

Figure 6.1 illustrates the difference between the SS^od and the SSres- In Figure 6.1a 

the SSmod is displayed. On the x-axis the 36 reconstruction pixels, are plotted, on the 
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Figure 6.1: General interpretation of the SSmod (o-) and the SSres (b)-

y-axis the permittivity values of these parameters are plotted. The black dots represent 

the presumed permittivity values, the open dots the permittivity values estimated, when 

using an inverse algorithm. The SSmod is the sum of the squared individual distances. 

In Figure 6.1b the datum numbers, i.e. the 66 capacitance measurements, are plotted 

on the X-axis, and on the y-axis the capacitance values. The black dots represent the 

capacitance values measured (or the capacitance values calculated directly from SEPRAN). 

The open dots represent the capacitance values calculated for the permittivity values 

estimated using a least squares based inversion method.' The SSres is the sum of the 

squared individual distances. 

Thus, the SSmod serves to quantify the quality of an inverse model, so the error made on 

the parameter side. The SSresi on the other hand, measures the misfit of the model, which 

is the error made on the data side. Therefore these two measmes, in general, do not have 

a relation. 

Though, when the estimated permittivity distribution does not change by the added noise, 

the value of SSmod does not change. The capacitances calculated from the forward solution 

do not change, either. The SSres depends in this case only on the absolute noise level 

added. When the permittivity values estimated start to change, the SSres wiU generally 

increase more rapidly. Since then not only the noise added, but also the permittivity 

values estimated change the SSres-

On the contrary, when SSmod does not change and SSres does not change much, i t does 

not indicate that the estimated parameter vector e^st is not changed, either. 

By inspection of the estimated permittivity vectors for difi'erent noise levels, i t can be 

investigated i f the estimated parameter vectors Cest are identical up to a certain noise 

level. And i f so, i t can be concluded that, i f the model used for reconstruction is accurate 

enough, the SSres wih give an indication of the quahty of the reconstruction. 



48 Chapter 6. Robustness ofthe least squares inversion methods 

(a) test case 1 (b) test case 2 (c) test case 3 

Figure 6.2: plots of the presumed phantom distributions: (a) the core flow (a), The pie-
shaped segment (b), and the 'dart-board' like distribution (c). Black refers to a permittivity 
value of 2, white refers to a permittivity value of 1. 

6.3 Definition of the test cases 

To quantify the influence of the noise on the SSmod and the SSres, f t e forward problem 

is solved for presumed permittivity distributions e/rue- This is done using the FEM soft­

ware package SEPRAN, which calculates the 66 capacitances occurring in a 12-electrodes 

sensor. 

Reconstructing the permittivity values from these data wi l l give an indication of the errors 

introduced by linearisation and discretisation, i.e. only mathematical errors. Adding noise 

to the exactly calculated capacitances allows to investigate the influence of noise on the 

reconstruction. I n this way real data can be mimicked. 

The three permitt ivity distributions shown in Figure 6.2 are used in this simulation. The 

first represents a core flow, which is a rotational symmetric test case. Test case two is a 

pie-shaped segment, so there's no rotational symmetry anymore, only mirror symmetry. 

The last test case looks like a dart board. First the permittivity values are reconstructed 

from the exactly calculated capacitances, i.e. the capacitances resulting from the forward 

problem without noise added. 

6.4 Reconstructions without adding noise 

Table 6.1 shows the values of SSmod and SSres, using different least squares based inver­

sion methods. The SSmod, iu general, decreases when adding 'a priori ' knowledge. This 

is evident, since adding more information to find the solution, in general leads to a better 

solution. 

On the contrary, adding more 'a priori ' knowledge increases the SSres, meaning the model 

does describe the data points less accurate. This is evident, since changing the estimated 

permittivity values towards the true permittivity values, in general, increases the distance 

between the capacitances measured and the capacitances estimated using the model. The 

imrestricted solution searches for the absolute minimum in SSres- Hence, it is hkely that 
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Table 6.1: SSmod SSres of the different least squares based solutions of the three phan­

tom distributions. 

vs SSj-es 

m e t h o d casei casei 

( 4 • 10-25) 

SSmod 
case2 

SSres 
case2 

( 4 • 10-25) 

SSmod 
cases 

SSres 
cases 

linear Is 5.6 • 10-1 0.01 2.7 • 10+^ 0.70 1.9 • 10+1 0.01 

damped Is 1.8 • 10-1 0.10 7.2 • 10-1 2.05 9.0 0.20 

weighted Is 6.7-10-1 232.10 3.6 800.14 8.3 • 10-1 124.60 

constrained Is 0 0.13 1.5-10-1 12.48 1.8 -10+1 0.04 

2. 
1. 
1. 
1. 
1. 
1. 
1.4 
1.3 
1.2 
1.1 
1.0 

(a) test case 1 (b) test case 2 (c) test case 3 (d) Grey 
scale 

Figure 6.3: Reconstructions of the phantom distributions when no noise is added, using 

the constrained least squares solution. 

in the restricted case a different minimum for SSres is found. 

Note that the dimension ^ for the SSres is due to scaling the capacitance value with 

respect to the axial electrode length. 

Figure 6.3 shows the reconstructions of the test cases using the constrained least squares 

method. Only reconstructions of the constrained least squares method are displayed since 

these solutions are physically correct, i.e. the solutions are bounded to the highest per­

mit t ivi ty value and the lowest permittivity value used in the experiment. 

The reconstructions of the three test cases have different accuracies. The core flow, for 

example, is reconstructed perfectly by the constrained least squares solution, while the 

pie-shaped segment has some errors, when reconstructed by the constrained least squares 

solution. The dart-board like distribution is not reconstructed well, but can be recon­

structed much better using the weighted least squares method, displayed in Figure 6.4. 
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(a) test case 3 (b) Grey 
scale 

Figure 6.4: Reconstruction of phantom distribution 3 when no noise is added, using the 
weighted least squares solution. 

6.5 Results achieved when adding simulated noise 

6.5.1 A d d i n g noise t o t h e exac t c a l c u l a t e d capaci tances 

As mentioned in the sections above, Gaussian noise has been added to the exact capaci­

tances, obtained from the forward solution, and reconstruction of the permittivity values 

is performed again. To determine the noise level, real measurements have been performed 

using the DUT-electronics. These electronics have been tested in order to investigate the 

signal to noise ratio for a comparison with the UMIST electronics. The noise level was of 

the same order as the Umist electronics. The standard deviation of the minimum signal 

level amounts to 0.08 fF , which is about 1% of the minimum signal level occurring in a 

12-electrodes sensor (5 cm axial electrode length). This minimum signal level is found 

between opposite electrodes. The noise is Gaussian distributed and the absolute noise 

level is independent of the capacitance measured. 

A Gaussian distribution wi th a standard deviation equal to that of the noise from the 

real measurements is used as noise model. This results in a new set of capacitance values, 

which in fact are the exact capacitances plus a noise value, extracted from the Gaussian 

noise distribution. Reconstruction of this new set of capacitances yields new estimated 

permittivity values. This new set of permittivity values can be compared with the per­

mit t ivi ty values reconstructed when no noise was added, by inspection of the SS^od and 

tilG SS/'e .̂ 

To investigate the influence of the noise for different noise levels, the added noise is in­

creased logarithmically. These different noise levels have been added to the simulated 

data, and the effect on the l inear least squares solution and the constrained least 

squares solution has been investigated using the three test cases shown in Figure 6.2. 
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0.01 0.1 1 10 100 1000 

sigmanoise (% of minimum signal) 

(a) SSmod linear Is 

O'noise 
{% of minimum signal) 

(b) SSres linear Is 

Figure 6.5: SSmod (o.) and SSres (b) as a function of the noise level for the linear least 
squares solution. 

6.5.2 I n f l u e n c e o f noise o n t h e l i nea r least squares s o l u t i o n 

Figmre 6.5 shows two plots of the results obtained when adding noise to the calculated 

capacitances. I t displays the effect of adding noise when using the hnear least squares 

solution. Figure 6.5(a) displays the SSmod as a function of noise level. Both the x-axis 

and y-axis are logarithmic, the x-axis containing the added noise level in terms of % of 

the smallest signal, the y-axis containing the calculated SSmod on a logarithmic scale. 

For low noise levels the SS^od is almost constant. At some critical noise level the SS^od 

starts to increase rapidly. This indicates that the distance between the permittivity values 

estimated and the presumed permittivity values grows rapidly. 

The three test cases have different sensitivities to noise, since the critical point, where the 

curve starts to increase, is at different noise levels for the three test cases. 
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The arrow indicates the noise level measured in the DUT-electronics. Only test case 1 

has an increasing SS^od within the noise level found by the experiments. But test case 1 

has also the lowest SS^od, which indicates that the core-flow has the best reconstruction 

in comparison wi th the other two test cases. This is trivial, since this test-case contains a 

large degree of symmetry. 

From Figure 6.5b, we can conclude that the SSres and the SS^od behave similarly. For 

low noise levels the SSres is constant, until some critical point when the SSres starts to 

increase rapidly. 

From Figures 6.5a and 6.5b we can conclude that more accurate measurements do not 

improve the SSmod and the SSres found significantly when using the linear least squares 

method, although a small improvement is possible. Whether this constant SSmod and 

SSres mean that the estimated permittivity vectors are the same has to be investigated 

yet. 

6.5.3 I n f i u e n c e o f noise o n t h e c o n s t r a i n e d least squares s o l u t i o n 

I n Figure 6.6a and Figure 6.6b the SS^od and SSres ofthe constrained lea^t squares solution 

are shown. First look at the differences of the value of SS^od value when using the linear 

least squares solution (Figure 6.5a) and when using the constrained least squares solution 

(Figure 6.6a). The SS^od for the three test cases is much lower in the case when 'a priori ' 

knowledge is used. The SS^od of test case 1 equals zero up to a noise level of 10%, which 

is 10 times the noise level of the UMIST and D U T electronics. 

For the three test cases SSmod is constant up to a noise level, higher than the noise level 

found in the experiments. From this we can conclude that the noise level does not have any 

significant infiuence on the reconstruction, which shows the robustness of the algorithm. 

Test case 3 is not weh reconstructed as can be seen from the high SS^od at very low noise 

levels. The SS^od equals a value of 19, as can be read in Figure 6.6a and table 6.1. This 

means the sum of squared errors is very high compared to the values found in the two 

other test cases. Since the permittivity values estimated cannot exceed a permittivity of 

2 and cannot be lower than a permittivity of 1 when using the constrained least squares 

method, i t can be concluded that the estimated model parameters differ very much from 

the presumed parameters. But nevertheless the value of the SSmod is not changed that 

much wi th increased noise level, so the algorithm is still consistent and finds the same 

solution when simulated noise is added. 

In Figure 6.6b the SSres is displayed. Comparing this figure with the SSmod, the same 

trend can be seen again. First the SSres is constant unti l some point were the SSres 

increases rapidly. From this Figure it can be concluded that the noise level does not have 

any signiflcant influence on the reconstruction up to 10 times the noise level found in the 

experiments, indicating the algorithm to be very robust. 

On the other hand we can conclude from this simulation that the smaU variations in the 

data cannot be explained in the reconstruction pixels. Data fluctuations up to 5% of the 

lowest signal level can not be seen in the reconstruction. Once again the ill-conditioning of 

the problem arises. Small objects in the sensor wi l l cause very small capacitance changes, 

especially when the objects are located in the centre of the sensor. These small variations 
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(a) SSmod constrained Is 

(b) SSres constrained Is 

Figure 6.6: SSmod (o^) o.nd SSres (b) as a function of the noise level for the constrained 
least squares solution 

wil l not change the permittivity distribution calculated and therefore these objects are not 

recovered in the reconstructions. I t is, thus, important that the correlation between the 

data points is taken into account (See also chapter 8). 

6.6 Discussion of SSmod and S S r e s 

In section 6.2.4 was stated that there is, in general, no relation between SS^od and SSres, 

since they measure two different errors. But when equation 6.3 is used without eo and C Q , 

equation 6.3 changes to: 

SSres = (C - J • eest)^(c - J • Best) (6.4) 
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(a) ffnois^ 0.01% of (b) cTnoise 0.1% of (c) anoise 1 % of (d) Grey 
minimum signal minimum signal minimum signal scale 

Figure 6.1: Reconstructions of test case 2, adding different noise levels in % of the mini­
mum signal, using the constrained least squares solution. 

When the estimated permittivity distribution does not change due to the added noise, the 

value of SSmod) see equation 6.3, does not change. The capacitances calculated from the 

forward solution, J • e^st, do not change either. The SŜ es depends in this case only on the 

absolute noise level added. When the permittivity values estimated start to change, the 

SSres wi l l generally increase more rapidly. Since, then not only the noise added, but also 

the permittivity values estimated change the SŜ es-

On the contrary, when SS^od does not change and SŜ es does not change much, i t does 

not indicate that the estimated parameter vector eest is not changed, as well. 

By inspection of the estimated permittivity vectors for different noise levels, it can be seen 

whether the estimated parameter vectors eest are identical. And if so, i t can be concluded 

that, i f the model used for reconstruction is accurate enough, the SŜ es could give an 

indication of the quality of the reconstruction. Figure 6.7 shows the reconstruction of test 

case 2 using the constrained least squares method. Only three reconstructions for three 

different added noise levels are displayed here. The reconstructions for all added noise 

levels can be found in Appendix A. At first sight, the reconstructions do not differ from 

each other. Only the permittivity values of pixel one and pixel two change when increasing 

the added noise level f rom anoise—^-1% to anoise=l% of the minimum signal. Figure 6.8 

illustrates the changes in the permittivity values of pixel one and pixel two (see Figure 

3.9). From Figure 6.8 can be concluded that the estimated permittivity vector Cest does 

not significantly change for Onoise < 10%. 

6.7 Conclusions 

This chapter demonstrates that noise infiuences the reconstructions. Increasing the noise 

level win increase the errors in the parameters estimated. But i t is demonstrated as 

well, that the noise level has to reach a certain value above which the infiuence on the 

parameters estimated becomes significant. W i t h the linear least squares method this value 

is reached for a lower noise level than with the constrained least squares method. This 
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Figure 6.8: Example of the permittivity values of pixel 1 and pixel 2 as a function of the 

noise level for the constrained least squares solution of test case 2 

indicates that the hnear least squares solution is much more sensitive to small errors 

than the constrained least squares solution. Since the constrained least squares method 

finds the parameters within the physical correct interval, this is the physically acceptable 

solution. The algorithms are robust, as is concluded from the same values of SSmod found 

when a noise level, up to ten times of the noise levels in experiments, is added. From these 

simulations we can conclude that the constrained least squares method is the most robust 

one. 

The more constraints are added, the more robust the algorithm becomes. This is due to 

a reduction of its degrees of freedom. 





Chapter 7 

Reconstructions wi th least squares 
based methods 

7.1 Introduction 

This chapter deals wi th the results obtained, when real measurements are reconstructed 

using the least squares based algorithms, proposed in chapter 4. In chapter 6 the algo­

rithms are tested for their robustness, i.e. what is the influence on the reconstruction (the 

solution) when a certain amount of noise is added to the exact data. 

I t was shown that the algorithms, especially the constrained least squares method, yielded 

the same solution for the three test cases (see Figure 6.2) when a noise level of 1% was 

added to the capacitance data as in the case when no noise was added to the capacitance 

data. However, when using real data, new problems arise. 

7.2 Measurement system 

Since the DUT electronics, which have been proven superior with respect to the charge-

transfer electronics (see Chapter 5), are stih in development, the capacitance measure­

ments are performed using the UMIST-electronics. Figure 7.1 shows the three components 

of the measurement system. 

The system consists of a capacitance sensor unit, a data acquisition module and a 

personal computer equipped with custom communications and control hardware. These 

components are described briefly in the next few subsections. For more information the 

reader is referred to the Instruction manual of Process Tomography Ltd. [PTL, 1996]. 

7.2.1 Capac i t ance sensor 

The capacitance sensor unit is a custom module and can be manufactured for each indi­

vidual application. The arrangement consists of a perpex pipe {er = 2) surrounded by 12 

equally-spaced screened electrodes. The electrodes are manufactured by gluing rectangu­

lar pieces of self-adhesive 76/.iTn copper foi l to the outer waU. The electrodes are put on the 

57 
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CAPACITANCE SENSOR 

P-100 

f ) 

DATA ACQUISITION MODULE PERSONAL COMPUTER W I T H 
INTERFACE BOARD 

Figure 7.1: Electrical capacitance tomography system used to perform capac­

itance measurements and test the inverse algorithms. 

Table 7.1: Geometry parameters of the sensors used for the noise measurements 

sensor 
the three sensors at the D U T 

sensor R l R2 R3 

sensor 1 4.9 • 10-2 5.2 • 10-2 6.1 • 10-2 

sensor 2 14.2 • 10-2 15.0 • 10-2 16.7-10-2 

sensor 3 19.2 • 10-2 20.1 • 10-2 21.6 -10-2 

outside of the pipe to avoid contamination of the sensor by the material inside the pipe. 

Under and above the measuring electrodes, axial guard electrodes are used to prevent the 

electric field from bending in axial direction (see also chapter 2). 

At the Delft university of technology, three capacitance sensors have been manufactured. 

In Table 7.1 their geometries are given. The radii refer to the the geometry given in Figure 

5.4a. The outer shield electrodes have been manufactured by bending four copper or brass 

plates, two for the upper half and two for the lower half of the sensor. They can be easily 

removed to check the connections of the electrodes to the coaxial leads. 

To prevent static charge building up on the sensor electrodes, the sensor electrodes and 

the guard driven electrodes are connected to earth using discharge resistors of 1 M f i . This 

prevents damage to the CMOS input circuitry when the charged electrodes are connected 

to the data acquisition module. 
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7.2.2 D a t a a c q u i s i t i o n m o d u l e 

The electrodes of the capacitance sensor are connected to the data acquisition module, 

the DAM200, by screened flexible coaxial leads. The technique used in the DAM200 unit 

is a development of the charge-transfer principle, operating at a switching frequency of 

1.25 MHz. 

The data acquisition module is connected to the host computer system by an un-screened 

twin twisted pair cable. A l l adjustments of the data acquisition module are made from 

within the system software. These include adjustments of the circuit gain for individual 

capacitance measurements (see section 5.4.1), and calibration o f t he system (see section 

7.2.4). 

7.2,3 C o m p u t e r sy s t em a n d s o f t w a r e 

A n IBM-compatible pentium 100 MHz personal computer, containing the communications 

hardware, controls the data acquisition module. Process Tomography Ltd . developed 

the PTL PCECT-software, which runs under the windows 3.1 operating system. The 

ECT system is controlled directly by the software. This software contains also an onhne 

reconstruction function, based on the Linear back projection. However i t is also possible 

to coUect only the measured capacitance data, giving the possibility to test the algorithms 

proposed in Chapter 4. 

7.2.4 C a l i b r a t i o n 

Before capacitance measurements can be performed, the data acquisition module has to 

be calibrated. This is due to the hmited dynamic range of the capacitance measuring 

circuit. This cahbration involves carrying out a sequence of measurements to determine 

the capacitance values between each combination of electrodes i and j , Cy, for the cases 

the sensor is fllled wi th the lower permittivity component or the sensor is filled with the 

higher permittivity component. 

From the calibration data, the range of capacitance measurements for each electrode com­

bination is known, and the capacitance measurements are normahsed in a range from zero 

to unity for each inter-electrode capacitance measurement as follows: 

where ei and £2 refer to the case when the pipe is totally filled wi th the lower and higher 

permittivity component respectively. 

7.3 Measurements 

7.3 .1 T h e used p e r m i t t i v i t y c o m p o n e n t s . 

In the experiment air is chosen as the lower permittivity component. The relative permit­

t ivi ty of air, 'eair, equals 1. The spacing between the outer shield and the pipe wall was 
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filled with air. 

Polystyrene particles wi th a diameter of 560p is chosen as the higher permittivity compo­

nent. The relative permittivity of polystyrene, epoi, equals 2.56. 

Before the experiments, each sensor was calibrated to set the dynamic range of the capac­

itance measuring circuit. Thus, first the empty pipe capacitance data were measured and 

secondly the pipe was filled wi th the polystyrene particles resulting the fu l l pipe capaci­

tance data. So the PCECT system returns the normalised capacitance data (see Section 

7.2.4). 

7.3.2 T h e ob j ec t s t o be m e a s u r e d 

To approach a 2-dimensional situation, i.e. to avoid the field lines to bend in axial direc­

tion, the object to be measured was given the same geometry in axial direction. Therefore, 

a rod was chosen as the object to be reconstructed. 

This rod was manufactured by putting the polystyrene particles into a very thin circular 

case of polyethylene. 

7,4 Reconstructions of real measurements 

7,4.1 T h e 10 c m sensor 

In the 10 cm sensor, experiments were performed using either one or two rods. The 

rods, diameter of 16 mm, were placed at well defined positions of the cross-section. First 

the normalised capacitances were measured and saved on the hard disk of the personal 

computer, connected to the system. 

Secondly, the data were down loaded to a HP-Workstation and subsequently processed 

using the mathematical software package Matlab. Appendix B contains the scripts used 

for the calculations in Matlab and the c-program to convert the binary capacitance data 

from the UMIST-electronics into ASCII values. 

Reconstructions o f one r o d 

One rod has been put at difi'erent radial position in the cross-section. The first position 

refers to the position when the rod touches the pipe-wall, exactly in the middle of an 

electrode. Subsequently the rod is moved to the pipe-centre along the line between two 

opposite electrodes, in steps of 1 cm. 

In Figures 7.2 and 7.3 the phantoms and the corresponding reconstructions, using the 

constrained least squares method, are shown. The constrained least squares method was 

applied to the average of 1000 measured frames to reduce the infiuence of noise. From 

these figures can be observed that one object can be seen weU in the reconstruction when 

it is positioned near the pipe-wall. When the object is moved toward the centre of the 

sensor, the reconstructions get poorer. This is also due to the chosen reconstruction mesh, 

containing large inner pixels and small near-waU pbcels. When the object is close to the 

centre, the inner pixel is just partially covered, resulting in a lower permittivity value of 
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Figure 7.2: Plots of the position of a single rod in the 10 cm sensor. The exact positions 
are depicted in the left sub-figures (a), (c) and (e). The corresponding reconstructions 
using the constrained least squares method in sub-figures (b), (d) and ( f ) 
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(a) exact position (b) reconstruction 

(c) exact position (d) reconstruction (e) 
scale 

Grey 

Figure 7.3: Plots of the position of a single rod in the 10 cm sensor. The exact positions 
are depicted in the left sub-figures (a) and (c). The corresponding reconstructions using 
the constrained least squares method in sub-figures (b) and (d). 

the reconstruction pixel than the real permittivity value of the object. 

When the object is placed in the centre, all inner pixels are partially covered. In this 

situation all inner pixels have to exhibit an increment of their permittivity value. From 

Figure 7.3d can be seen that the most inner pixels indeed have a higher permittivity value. 

Also, i t can be observed that the inner pixels show a sort of oscillatory behaviour (also for 

all other reconstructions), i.e. 1 pixel high and its neighbouring pixel low. This is typical 

for the least squares based method, which show oscillatory behaviour in the solution due 

to small errors. 

Reconstructions of t w o rods 

To check i f the algorithm could distinguish two objects, also two rods are placed into the 

sensor, starting with one close an electrode and the other close the opposite one. These 

rods are subsequently moved from the pipe-wall to the centre of the sensor. I n the first 

position both rods touch the pipe-wall, exactly in the centre of the electrodes. In the 

subsequent positions, the rods are moved to the centre of the pipe along the Active line 

between the two rods, in steps of 1 cm. 
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Figure 7.4 shows the exact position of the rods and the corresponding reconstruction using 

the constrained least squares method. From Figure 7.4 can be concluded that two objects 

can be seen i f they are close to the wall. When the rods are near the centre the image 

gets blurred, just like in the case when one rod is used. 

Looking at Subfigure 7.3d and 7.4h the ill-conditioning of the inverse problem can be 

seen. The reconstructions look very similar, i.e. the reconstructions have almost the same 

pattern, only the intensity of the pixels in Figure 7.4h is a bit larger. When the presumed 

permittivity distribution is not known, it is very hard, even impossible, to determine i f 

there are one or two rods in the cross-section. 

Figure 7.5 shows the results obtained when one rod is at a fixed position and a second 

rod is moved along the wall towards the 'fixed' rod. The reconstructions of the first three 

positions. Figures 7.5b, d and f, show two different objects, referring to the two rods. In 

the last two positions, the reconstructions get worse. In those two reconstructions i t is 

impossible to distinguish the two rods. In Figure 7.5(j) i t is due to the reconstruction 

mesh that the two rods cannot be distinguished, since the pixels where the object is to be 

found are neighbours. I f one assumes the objects to be circular, one could decide that both 

pixels contain an object. Note that when the rod is positioned so that the rod covers both 

neighbouring pixels half, the reconstruction wi l l look almost the same. This effect can 

be seen in Figure 7.5(h), where one could decide, that originally there are three circular 

objects, which is evidently not the case looking at 7.5(g). However, these reconstructions 

show that the reconstructions of the rod near the wah are quite good. The position of the 

object is in most situations correct. 

7.4.2 T h e 40 c m sensor 

In the third sensor, diameter 38.4 cm, a rod wi th a diameter of 64mm was used for the 

measurements and reconstructions. This rod-diameter was chosen to investigate how the 

sensor behaves when it is scaled up and therefore the diameter of this rod is exactly 4 times 

larger than the rod used in the 10 cm sensor. In position 1 the rod touches the sensor 

wall and in the subsequent positions the rod is moved towards the centre of the sensor in 

steps of 4 cm. I n Figure 7.6 the positions of the phantom and the reconstructions using 

the constrained least squares method are shown. Comparing Figure 7.6 wi th the same 

positions of the 16 mm rod in the 10 cm sensor, Figure 7.2 and sub-figures 7.3a and 7.3b, 

it can be concluded that there is no significant difference in reconstruction accuracy for 

the 10 cm sensor and the 40 cm one. When the object is near the wall, the reconstruction 

is best, while closer to the centre the reconstruction gets worse, like in the 10 cm sensor. 

Just like in Figure 7.2, some pixels are given a too high permittivity. This is due to a 

mismatch between the model and the real system. The calibration of the real system 

appeared to be very inaccurate. Figure 7.7 shows the reconstruction of the empty pipe. In 

this case all the normahsed capacitances have to be zero, but, as can be derived from the 

reconstruction, they are not equal to zero at all, indicating a strong deviation from the 

ideal calibration. Using this knowledge, the reconstructions of the rod in the 40 cm sensor 
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Figure 7.4: Plots of the positions of two phantoms in the 10 cm sensor. The exact positions 
are depicted in the left sub-figures (a), (c), (e) and (g), and their reconstructions using 
the constrained least squares method, (h), (d), ( f ) and (h) . 
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Figure 7.5: Plots of the positions of two phantoms in the 10 cm sensor. The exact positions 
are depicted in sub-figures (a), (c), (e), (g) and (i), and their reconstructions using the 
constrained least squares method, (b), (d), ( f ) , (h) and (j). 

were performed again. Tiie empty pipe data were subtracted from the 'rod measurements', 

yielding a better reconstruction as can be seen from Figure 7.8. The small errors, i.e. the 

pixels wi th a too high permittivity, are reduced and therefore the reconstructions of the 

rod are much more accurate. 

7.4.3 T h e 30 c m sensor 

In the second sensor, diameter 28.4 cm, dynamic measurements were performed using a 

ping-pong ball, filled wi th the polystyrene particles. By moving the object up and down 

through the cross-section of the sensor, bubbles were simulated. The ping-pong ball has 

a diameter of 1.5 inch (=3.81 cm). Thus, the diameter of the 'bubble' is approximately | 

of the sensor diameter. 

A rising bubble is simulated by pulling the ping-pong ball up through the cross-section 

of the 30 cm sensor. This was done for several distances of the bubble from the wall. In 

every measurement the bubble is pulled up perpendicular to the fictive line between the 

middle of electrode 12 and electrode 6 and the plane of the cross-section. The distance of 

the bubble from the wall is measured from the centre of the bubble to the sensor-wall. I n 

Figure 7.9 the results are shown when the 'bubble' rises along the wall, i.e. the centre of 

the bubble is at 0.75 inch from the wah. On the x-axis the frame number is plotted, i.e. 

the discrete time. On the y-axis the normalised capacitance value is plotted. 

Only the relevant values are displayed in the two plots, i.e. the electrode pair combinations 

with electrode 12. Figures 7.9a and 7.9b show a very clear peak between frame number 40 

and 60, indicating that the bubble is passing through the cross-section. From the plot can 
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Figure 7.6: Plots of the positions of one phantom in the 40 cm sensor. The exact positions 
are depicted in the left sub-figures (a), (c), (e) and (g), and their reconstructions using 
the constrained least squares method, (b), (d), ( f ) and (h). 
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Figure 7.7: Reconstruction of the empty pipe data. Since the calibration data are not 
that accurate, the reconstruction of the empty pipe data gives false estimates for some 
permittivity values, as can be seen from sub-figure (b). 

be concluded that a bubble of a diameter of \ of the sensor diameter can be reconstructed 

when passing the cross-section of the sensor along its wall, since the relevant capacitance 

values change significantly when the bubble passes the cross-section. 

Figure 7.12 shows the reconstruction just before the bubble reaches the 'measuring' section 

(frame 20), sub-figure (a), and the reconstruction when the bubble is in the 'measuring' 

cross-section (frame 52) for both the measured data, sub-figure (b),and the measured data 

minus the empty pipe data (frame 20), sub-figure (c). 

I t is clear that the significant changes in Figures 7.9a and 7.9b do not appear in the re­

constructions. The changes of the normalised capacitances are not very large due to the 

small object compared to the pixel size and the SD-efiFect (see section 2.2), which is larger 

due to the limited size of the object in axial direction. The Jacobian matrix is calculated 

for the pixel arrangement shown in Figure 3.9, and therefore small objects compared to 

the pixel size wi l l have less effect on the parameter, i.e. the permittivity, to be estimated. 

In Figures 7.10 and 7.11 the measurements of a rising 'bubble' are plotted for the case 

when the distance between the centre of the bubble and the wall (still electrode 12) is 5 

cm and 10 cm respectively. Figures 7.12(f) and 7.12(i) show that the reconstruction of 

a bubble gets worse quickly when the bubble is closer to the centre of the sensor. The 

reconstruction of the bubble when the bubble is 10 cm from the wall is very bad and i t 

wi l l be very difficult to decide whether a bubble was detected or the fiuctuation of the 

pixel was due to noise or a extern stray field. 

From these figures can, thus, be concluded that a single bubble of diameter 1.5 inch is 

detected in the 30 cm sensor, when i t passes the cross-section near the wall, i.e. near one 

of the electrodes. When the bubble passes the cross-section of the 30 cm sensor at 10 cm 

from the wall (i.e. the electrodes) i t is very hard to detect. In Figure 7.11 i t can be derived 

from the correlation in the data that a bubble is passing, since all the capacitance values 

plotted show a li t t le increment between frame 40 and 60. However, in the reconstruction 

these changes in the capacitance value have nearly no effect on the parameters, i.e. the 

permittivity values, to be estimated. 
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Figure 7.8: Reconstruction of the rod in the 40 cm, after subtraction of the empty pipe 
data. The positions refer to the 

7.5 Reconstructions using different Jacobian matrices 

From Section 4.2.3 and Appendix C it is Icnown tliat the position where the Jacobian 

matrix is calculated matters. The Jacobian matrix is calculated by finite differences and 

since the slope of ^ decreases slightly when e increases, the Jacobian matrix changes 

when Ae^ is changed in the approximation 

To investigate the effect of different Jacobian matrices, the reconstruction of the 64 mm 

rod when touching the wall in the 40 cm sensor was reconstructed using the constrained 

least squares method together wi th the three different Jacobian matrices. Figure 7.13 

illustrates the calculation of different jacobians. I n this figure the capacitance value of one 

electrode pair combination, C j , is plotted against the permittivity value of one pixel, e,, 

while all other pixels have a constant permittivity value, etasis- From this figure, which is 

characteristic for the elements of the Jacobian matrix (see also Appendix C), can be seen 

the difference between the approximation of by finite differences using different values 

oiAej. 

In Figure 7,14 three plots are displayed when using different Jacobian matrices. The 

overall distribution for the three Jacobian matrices calculated, was equal to etasis = 1-05, 

In the Jacobian matrix used for the reconstruction displayed in Figure 7.14a, the high per­

mit t ivi ty value, efiigh, equals 1.8 and the low permittivity value, e/otu, equals 1, resulting 
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Figure 7.9: Plots ofthe capacitance values when a 'bubble' passes the through the cross-

section of the sensor. The bubble passes the middle of electrode 12 and rises along the 

wall. 

in a Ae of 0.8. I n Figures 7.14b and 7.14c ekigh equals 2 and 2.2 respectively, and eiow 

equals 1 in both cases, resulting in a Ae of 1 and 1.2 respectively. 

On the X-axis the pixel numbers, as declared in Figure 3.9, are plotted and on the y-axis 

the corresponding permittivity values of the pixels. 

The effect of calculating the Jacobian matrix for a smaller Ae is that the elements of 

the Jacobian matrbc increase and therefore changes in the capacitance data yield larger 

changes in the permittivity values. This effect is clearly shown in Figures 7.14(a) to (c). 

The peak of pbcel number 21, decreases when Ae increases, indicating that decreases 

indeed when Ae increases. Note that the scale of the y-axis is different for the three plots. 

But also another effect is observed when looking at the three plots. The permittivity 

values of pbcel number 9 and pbcel number 33 increase. This is due to the constrained 

least squares routine in Matlab. This routine is a iterative algorithm, which adapts the 

Jacobian matrix after every iteration t i l l the solution fits best in the constraints. When 

the highest peak is reduced, the constrained solution tries to raise the peak by adapting 

the jacobian matrix, resulting in higher estimates for pixels 9 and 33 also. 
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Figure 7.10: Plots oJ the capacitance values when a 'bubble' passes the through the cross-
section of the sensor. The centre of the bubble passes electrode 12 at 5cm from the sensor 
wall. 

7.6 Phillips-Towmey damping 

To suppress the oscillations in the centre pixels ofthe reconstruction mesh, a smah damping 

term was used to the constrained least squares solution. Linking the pixels to one another 

generally reduces the oscillations between neighbouring pixels. Therefore the constrained 

least squares solution was used together with a Phillips-Towmey damping to reconstruct 

the 64 mm rod at position 1 in the 40 cm sensor. 

To link the pixels to one another the matrix R in Equation 4.19 has to be defined. This 

smoothing matrix R has to link the pixels in both tangential and radial direction. When 

using the pixel arrangement shown in Figure 3.9, matrix R is composed of 3 x 3 main 
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Figure 7.11: Plots ofthe capacitance values when a 'bubble' passes the through the cross-
section of the sensor. The centre of the bubble passes electrode 12 at 10cm from the sensor 
wall. 
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(a) reconstruction (b) reconstruction (c) reconstruction 
of frame 20 of frame 52 of frame 52 minus 

the empty pipe 
data (frame 20) 

(d) reconstruction (e) reconstruction (f) reconstruction 
of frame 1 of frame 28 of frame 28 minus 

the empty pipe 
data (frame 1) 

(g) reconstruction (h) reconstruction (i) reconstruction of (j) Grey 
of frame 1 of frame 51 frame 51 minus the scale 

empty pipe data 
(frame 1) 

Figure 7.12: Reconstructions of a bubble rising near the wall: just before the bubble is 
in the 'measuring cross-section', (a), (d) and (g), when the bubble is in the 'measuring 
cross-section' (b), (c), (e), ( f ) , (h) and (i). Figures (a), (b) and (c) refer to the situation 
when the bubble rises along the sensor wall. Figures (d), (e) and ( f ) to the situation when 
the centre of the bubble is at 5 cm from the sensor wall, and Figures (g), (h) and (i) to 
the situation when the centre of the bubble passes at 10 cm from the sensor wall. 
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1 1.8 2 2.2 
permittivity 

Figure 7.13: The Jacobian matrix is approximated by finite differences. In this figure the 

effect on the elements of the Jacobian matrix is illustrated when the derivative is calculated 

at different positions, i.e. for different values of Aéj. 

To link the pixels with its neighbours on the same ring, the blocks on the main diagonal 

have nonzero entries, C=0, and A and B are: 

2 - 1 0 •• • 0 0 - 1 

- 1 2 - 1 •• ••• 0 

0 - 1 2 •• 0 

0 . 2 - 1 0 

0 ••• . - 1 2 - 1 

- 1 0 0 •• • 0 - 1 2 

(7.3) 

To link the pixels on the second ring to their radial neighbours on the inner and outer 

ring , the blocks B has to be modified as fohows: 

4 - 1 0 •• • 0 0 - 1 

- 1 4 - 1 •• ••. 0 

0 - 1 4 •• . ••• 0 

0 

0 

4 - 1 0 

- 1 4 - 1 

0 - 1 4 - 1 0 0 ' 

and block C is now a non-zero matrbc and is filled as follows: 

- 1 0 ••• 0 - 1 

(7.4) 

0 - 1 

0 0 

- 1 0 

0 0 

- 1 0 

0 - 1 

(7.5) 
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C o n s t r a i n e d least s q u a r e s solution 

(a) Ae = 0.8 

C o n s t r a i n e d least s q u a r e s solution 

pixel number 

(b) Ae = 1.0 

C o n s t r a i n e d (east s q u a r e s solution 

(c) Ae = 1.2 

Figure 7.14' Constrained least squares reconstructions ofthe 64 Tnm rod at position 1 in 

the 40 cm sensor using three different Jacobian matrices. Note that the scale of the y-axis 

of sub-figure (a) differs from the scale of the y-axis of sub-figures (h) and (c). 



7.7. Noise in the three sensors 75 

pixel number 

Figure 7.15: Reconstruction of a rod, diameter of 64 mm, in the 40 cm sensor, using the 
damped constrained least squares method. This damping is accomplished by linking ihe 
pixels io one another in radial and axial direction. The effort is to reduce ihe oscillatory 
behaviour of the centre pixels due to ihe underderterminacy of those pixels. 

Using this R matrix in Equation 4.19, the pixels are linked to each other as displayed in 

Figure 4.1b. 

The degree of damping, i.e. hnking, is governed by the factor /5 in Equation 4.19. A series 

of reconstructions was performed for a logarithmic increased value of/3. In Figure,7.15 the 

reconstructions for three different values of beta are displayed. Only these reconstructions 

are plotted, since for these values the effect of linking is seen best. From Section 4.3.3 i t 

is known that the value of /? has to be found by trial and error and the best value for P 

wil l differ per image to be reconstructed. Figure 7.15 shows that an increasing value of P 

indeed damps the solution more and more. But this damping also reduces the permittivity 

value of pixel number 21, and increases the permittivity values of pixel numbers 9 and 33. 

Therefore a compromise between damping and goodness of the reconstruction has to be 

found. Since the damping of the oscillations of the inner pixels is very small in comparison 

with the effect of damping on the permittivity of pixel number 21, i t is not recommended to 

use Phillips Towmey damping for the reconstruction of this measurement, because valuable 

information is thrown away. Note that in several cases the use of Phillips Towmey damping 

wi l l indeed improve the reconstruction, but in general i t is not recommended to use this 

damping term. 

7.7 Noise in the three sensors 

Section 7.4.2 shows that the reconstruction of a 16 mm rod in the 10 cm sensor and the 

reconstruction of a 64 mm rod in the 40 cm sensor yield comparable results. In Chapter 

6 the influence of noise on the reconstruction has been tested. I t has been shown that, 

when using the constrained least squares solution, the noise level found from the noise 

measurements (Chapter 5) has no influence on the reconstruction. When the system is 

2-dimensional, no flux-hnes bend in axial direction. This imphes that when the sensor 
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Figure 7.16: Relative standard deviation*of the noise for the three sensors (lOcm, 30cm 
and 40cm diameter, when the sensors are filled with polystyrene particles. The standard 
deviation was calculated from a static measurement of 1000 frames for every sensor. 

is scaled up, the capacitance values wi l l be the same. Figure 7.16 shows the standard 

deviation of the noise measmred for the three different sensors when the sensors are filled 

with the higher permittivity component. In Chapter 6 was found that the absolute noise 

level is independent of the capacitance to be measured. In Figure 7.16 the noise levels, 

however, are different. Note that in this figure the relative noise level is plotted. This 

relative noise is defined as: 

noiscrei = 
ncnscabs 

Cmeas 
(7.6) 

Knowing that the absolute noise level is constant for the three sensors, the measured 

capacitance value has to decrease when the relative noise level increases. This is easily 

seen when rewriting Equation 7.6 as follows: 

noiscrei = constant (7.7) 

From Figure 7.16 the 3-D effect, i.e. the bending of the electric field, can be observed. 

According to this figure the 3-D effect increases rapidly when increasing the sensor diam­

eter. Note that bigger sensors are also more sensitive for extern infiuences, and therefore 

in Figure 7.16 also other infiuences may be the cause of the increased relative noise level. 

7.8 Conclusions 

The inversion methods proposed in Chapter 4 have been tested. From reconstructions of 

simulated data was already concluded that the constrained least squares method yields, 

in general, the best results. Therefore, in this chapter only reconstructions using the 

constrained least squares and its hybrids have been tested. Note that the constrained 

least squares method is an iterative method and therefore is significantly slower than the 

other least squares based methods proposed in Chapter 4. 
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From the sections above can be concluded that reconstruction of real measurements is 

possible when using the constrained least squares method. The reconstruction have been 

proven best when the object is near the sensor wall. When the object is moved towards 

the centre of the sensor the reconstruction image becomes worse. This is in agreement 

wi th the results obtained in Chapter 3 and the results F.T. Kühn [Kühn, 1997] found: In 

the centre of the sensor the problem is under-determined and therefore the resolution in 

the centre of the sensor is very poor. 

When using a rod, i.e. the 3D-error is suppressed, the reconstructions near the wall are 

very accurate and .even two rods near the sensor wall can be distinguished. However, when 

the rods are close to the centre or when the rods are close to one another they cannot be 

seen separately. This is due to the pixel arrangement in the reconstruction mesh and due 

to mismatches between the model and the real system. 

The results obtained using the 10 cm sensor and the 40 cm sensor, when the ratio between 

the rod and the sensor diameter was kept constant, have been found almost equivalent, 

although the relative noise level is higher for the 40 cm sensor due to more losses of 

electric fiux in axial direction for bigger sensor diameters, when the axial electrode length 

is kept constant. This is in agreement wi th the results found in Chapter 6, where i t was 

demonstrated that the measmed noise level and even a 10 times higher noise level did not 

change the reconstruction when using the constrained least squares solution. Note that 

the calibration of the sensor by the PCECT-software is not very accurate either. This 

results in mismatches between the model and the system also. Subtraction of the empty 

pipe data measured from the measmed data did indeed improve the reconstructions. Note 

that in real apphcation this is not possible and therefore the calibration of the system has 

to be improved. 

The bubble measmements in the 30 cm sensor showed that a rising bubble of roughly 1 of 

the sensor diameter can be reconstructed only when it is near the sensor waU. When the 

bubble is at 10 cm from the wall i t cannot be reconstructed anymore. However, looking at 

the raw data from the measurement system, the bubble can be counted due to correlation 

in the data. 





Chapter 8 

Sensitivity of the capacitance 
sensor 

8.1 Introduction 

In the previous chapter, the reconstruction algorithms, proposed in Chapter 4, were tested 

on real data. I t was shown that the least squares based reconstruction algorithms can be 

used as an inversion technique for the ECT problem. However, just like the hnear back 

projection, the reconstruction gets rapidly worse, when the object is even at a smah 

distance from the wall. 

Figures 7.9 and 7.10 showed that a rising bubble could be seen in the reconstruction, when 

it i t passes the sensor near one of the electrodes. However, when a bubble of approximately 

1.81 cm passes the cross-section at 10 cm from the inner sensor wall of the 30 cm sensor, 

the bubble is hardly seen in the reconstruction due to the very small changes in the 

capacitance values. From Figure 7.11 i t can be seen that the bubble is indeed detected. 

Therefore the question arose: what is the smallest bubble that can be detected by the 

ECT system, especially in the centre of the sensor, since there the sensitivity is smallest. 

8.2 Measurement setup 

8.2.1 A i m o f t h e measu remen t s 

Instead of reconstruction of the measmred data, in this measurements only the raw data 

from the PTL data acquisition in Figme 7.1 module have been investigated. 

The aim of these measurements is to determine the smallest diameter of a 2-dimensional 

object at different radial position in the cross-section for the three sensors, specified in 

Table 7.1. Just like in the previous chapter, a 2-dimensional object is chosen for the 

measurements. This is done to reduce the 3-D effect in the sensors, which has been 

demonstrated to increase when the sensor diameter increases (see Figure 7.16). 

79 
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Table 8.1: Diameters ofthe rods used to investigate the smallest object detectable in the 

capacitance sensor. 

r o d number diameter (m) 

rod 1 0.9 • 10-2 

rod 2 1.6-10-2 

rod 3 2.0-10-2 

rod 4 2.5 • 10-2 

rod 5 3.3 • 10-2 

(a) positions of the rod (b) positions of the rod (c) positions of the rod 
in the 10 cm sensor in the 30 cm sensor in the 40 cm sensor 

Figure 8.1: Plots of the radial positions of the different rods in the three sensors. Figure 

(a) the positions in the 1 0 cm sensor, Figure (b) the positions in the 30 cm sensor and 

the positions in the 4 0 cm sensor in Figure (c). 

8.2.2 T h e p h a n t o m s 

Five rods of different diameters were used, ranging from 9 mm to 33 mm. The rods were 

manufactured by putting polystyrene particles, diameter of 560^, into a very thin circular 

case of polyethylene. In Table 8.1 the diameters o f the rods are given. 

8.3 Measurements 

First the rod with smallest diameter was determined, that gave significant capacitance 

changes when i t was moved inside the sensor, judged from the online histogram on personal 

computer in Figure 7.1. This rod diameter was used as the first rod to be measured. 

The measurements are performed by doing static measurements of that rod at different 

radial positions. A l l measurements are averaged over 1000 frames, in order to reduce the 

infiuence of noise. Using averages over 1000 frames, smah changes in the capacitance 

values can be detected more easily. 
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8.3.1 T h e 10 c m Sensor 

In the 10 cm sensor the smaUest rod with significant changes in the onhne histogram was 

rod number 1, the smaUest rod with a diameter of 9 mm. 

The rod was moved from the centre of the 10 cm sensor towards the wall, where electrode 

1 is positioned, in steps of 1 cm. In 8.1a the five positions of the rod are shown. From 

Figure 8.2a can be concluded directly that the rod can be reconstructed when placed at 

position 5 and position 4, since the changes in the capacitance values are significantly 

higher than the relative standard deviation , plotted in Figure 8.2b. However, the nor­

malised capacitance values for positions 1, 2 and 3 are almost the same, indicating that no 

distinction can be made between the 3 positions. Note that, however, there is a significant 

decrease of the curve for the data numbers 1 to 12, i.e. the capacitance values Ci_2 to C i j 2 ) 

although the noise level is relatively high, as can be derived from Figure 8.2b. 

To create a better look at the changes in the capacitance data the capacitances of the 

electrode pair combinations 1 and 2 to 1 and 12 are plotted in Figure 8.3. From this fig­

ure can be concluded immediately, that significant changes in capacitance value are only 

observed for the positions close to the sensor wall. 

However, the 9 mm rod increased the opposite electrode capacitance 2 % wi th respect to 

the empty sensor, when it is placed at position 1, the centre of the 10 cm sensor. The 

standard deviation of the noise level is much lower, i.e. 0.006 from Figure 8.2b, hence the 

9 mm rod is therefore estimated as the smallest detectable object. 

8.3.2 T h e 30 c m Sensor 

In the 30 cm sensor the rods were placed at 7 radial positions, each of them 2 cm apart 

from each other. In Figure 8.1b these 7 positions are shown. At position 1 the rod is 

positioned exactly in the centre of the sensor and in the subsequent position the rod is 

moved towards the wall of the sensor, where electrode 1 is positioned, in steps of 2 cm. 

In the 30 cm sensor rod number 4 was found to be the smallest rod, which could be de­

tected. In Figure 8.4 the measured capacitances are displayed, after averaging over the 

1000 measured frames. Sub-figure (b) shows the standard deviation of the noise for the 7 

positions. From these Figures can be observed that the rod increases the opposite elec­

trode capacitance value 3% with respect to the empty sensor. Since the relative standard 

deviation of the noise, anoise equals about 1%, this rod can be referred to as the smallest 

object which can be detected in the 30 cm sensor. 

In Figure 8.5 the capacitance values for the electrode pair combinations 1 and 2 to 1 and 

12 are plotted. The same trend as in the 10 cm sensor can be observed: The capacitance 

values show almost no variation for the lower positions, i.e. when the rod is in the centre 

of the sensor and start changing only when the rod is near the sensor wall. This indicates 

that the rod is detected but the position is very dhficult to define, since the subsequent 

positions lead to almost identical capacitance values. Here the under-determinacy of the 

centre of the sensor is observed again. 
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Figure 8.2: Plots of the measured capacitances, average over 1000 frames, when a rod 
(diameter 9mm) is placed at different positions in the 10 cm sensor (a). The rod moves 
from the centre ofthe sensor (position 1) to the wall (position 5) with steps of 1 cm. The 
standard deviation of the capacitance data per position is plotted in subfigure (b). 



8.3. Measurements 83 

position of the rod 

(a) Ci-2 to Ci-7 

1 2 3 4 5 

position of the rod 

( b ) C l _ 8 t o C l _ 1 2 

Figure 8.3: The measured capacitances vs the position of the rod (diameter 9mm) in the 

10 cm sensor for the electrode combinations Ci_2 to Ci-io-
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Figure 8.4: Plots of the measured capacitances, average over 1000 frames, when a rod 
(diameter 25mm) is placed at differeni radial positions in the SO cm sensor (a). The rod 
moves from the centre of the sensor (position 1) to the wall (position 7) with steps of 2 
cm. The standard deviation of the capacitance data per position is plotted in subfigure (h). 
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Figure 8.5: The measured capacitances vs ihe position ofthe rod (diameter 25mm) in the 

SO cm sensor for the electrode combinations c i_2 to C i _ i 2 -
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Table 8.2: Diameters of the smallest rods detectable in the three capacitance sensors. 

r o d number diameter (m) 

10 cm sensor 

30 cm sensor 

40 cm sensor 

0.9 • 10-2 

2.5-10-2 

3.3 - 10-2 

8.4 The 40 cm sensor 

In the 40 cm sensor the rods were placed at 9 different radial positions, which are displayed 

in Figure 8.1c. The first position refers to the situation when the rod is exactly in the 

centre of the 40 cm sensor. In the last position the rod is close to the wall near electrode 

1. 

For the 40 cm rod number 5 was found to be the smaUest object which yielded significant 

changes in the capacitance data. In Figure 8.6 the capacitance data Eire plotted for the 9 

positions o f the rod. I n 8.6b the relative standard deviation is plotted for the 9 positions. 

Just like in the 10 cm and 30 cm sensor the noise level stays the same for all positions of 

the rod, which is in agreement wi th the results found in Chapter 5. 

From Figure 8.6a can be seen that the rod, when placed in the centre of the sensor (position 

1) yields an increment of the opposite capacitance of 3%, while the standard deviation of 

the noise equals about 1%. 

In Figure 8.7 the capacitance values for the electrode pair combination 1 and 2 to 1 and 

12 are plotted. Just like in the other sensors the rod is detected but the the positions of 

the rod at a smah distance from the wah are almost identical, making it hard, or even 

impossible, to determine the exact position of the rod. 

8.5 Conclusions 

The sections above show that a small rod, as small as about ^ of the sensor diameter can 

be detected. Reconstruction, however, is very difiicult or in most cases impossible, since 

the capacitance values are almost the same when the rod is placed in the centre of the 

sensor t i l l only a few centimetres from the sensor wall. This makes the inverse problem 

singular, since different positions of the rod yield 'same' capacitance data. This circular 

centre region has a radius of about 0.6 of the sensor radius, i.e. 0.36 of the cross-sectional 

area. 

The smallest rods to be detected by the UMIST system are given in Table 8.2. Note 

that a bubble is spherical and therefore has less influence on the capacitance values, 

due to the 3-D effect. I t must be noticed that the noise levels found are significantly 

lower than the noise levels found in Chapter 7. This may be due to the fact that the 

noise measurements, displayed in Figure 7.16, were done when the sensor was filled wi th 

the polystyrene particles, which may induce an extra noise term due to possible charged 

particles. 
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Figure 8.6: Plots of the measured capacitances, average over 1 0 0 0 frames, when a rod 
(diameter SSmm) is placed at different positions in the 4 0 cm sensor (a). The rod moves 
from the centre of the sensor (position 1 ) to the wall (position 9) with steps of 2 cm. The 
standard deviation of the capacitance data per position is plotted in subfigure (b). 
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Figure 8.7: The measured capacitances vs the position of the rod (diameter SSmm) in the 

40 cm sensor for the electrode combinations c i_2 to c i _ i 2 . 



Chapter 9 

Conclusions and recommendations 

This section summarises the conclusions from the previous chapters and gives recommen­

dations for further research 

9.1 Conclusions 

9.1.1 T h e s i m u l a t i o n s 

Compar ison of 12-electrode system w i t h 16-electrode system 

• The 16-electrode system provides 120 data-points and the 12-electrode system 66. 

However the number of principal components containing significant information is 

about 34 for the 16 electrode system, wi th respect to the 12 electrode system, which 

has about 28 principal components containing significant information. Thus, 54 

more data-points yield about 6 more principal components carrying significant in­

formation. 

• The 16 electrode system shghtly improves the resolution in the middle of the pipe 

cross-section. There is an increase in the sensitivity of opposite electrodes mea­

surements of about 9%. The 16 electrode system provides 8 opposite capacitance 

measurements instead of 6 ones by the 12 electrode system, which also could increase 

the sensitivity in the centre. However, only an improvement of the reconstruction is 

observed near the wall of the pipe, resulting in the possibility to define more near-

waU pixels. 

For the 12 electrode system can be noticed that the first 12 principal components 

have the highest explained variance, while for the 16 electrode system the first 16 

electrodes show the highest variance. When the area under these first PC's for both 

systems is taken into account, i t is clear that for the 16 electrode system almost the 

same amount of information is distributed among more PC's. 
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The 12 electrode system using coupled source electrodes 

• Using inter-connected source electrodes as additional source electrodes to obtain ad­

ditional information is not recommended since this sensor concept does not improve 

the amount of information available. The capacitance measurements provided by the 

inter-connected source electrodes are merely hnear combinations of the information 

provided by the single source electrodes. 

A 16-electrode system therefore contains also the information of a 8-electrode con­

figuration. 

9.1.2 No i se measu remen t s 

• The active diff'erentiator, developed at the Delft University of Technology, has been 

found superior to the charge-transfer electronics, since the new system enables very 

high data capture rates in comparison with the charge-transfer based electronics. 

The noise level is nearly the same for both systems when operating at maximum 

data acquisition speed. 

• The standard deviation of the noise has a constant offset of about 0.08 f F and is 

independent of the capacitance to be measured. 

• The accuracy of the active differentiator electronics can be reduced by averaging 

subsequent measurements, i.e. operating at a lower data acquisition speed. Oper­

ating at a data capture rate of 1000 frames per second, i.e. stil l ten times faster 

than the charge-transfer electronics, the relative standard deviation of the noise is 

reduced to 0.38 % of the minimum signal level. 

• The new system avoids CMOS switches, which have an inner capacitance which is 

large compared to the capacitance to be measured and the system does not use 

coaxial cables to connect the sensor to the electronic circuit, avoiding infiuences on 

the capacitance measurements due to displacements of these cables. 

9.1.3 A d d i t i o n o f s i m u l a t e d noise 

• Increasing the noise level wi l l increase the errors in the parameters estimated. How­

ever, the noise level has to reach a certain value above which the infiuence on the 

parameters estimated becomes significant. W i t h the linear least squares method 

this value is reached for a lower noise level than with the constrained least squares 

method. This indicates that the linear least squares solution is much more sensitive 

to small errors than the constrained least squares solution. 

• Since the constrained least squares method finds the parameters within the physical 

correct interval and gives in general the best results, this is a physically acceptable 

solution. 

• The more constraints are added, the more robust the algorithm becomes. This is 

due to a reduction of its degrees of freedom. Therefore, the simulations show that 

the constrained least squares method is the most robust one. 
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9.1.4 R e c o n s t r u c t i o n s 

• The inversion methods proposed in Chapter 4 have been tested. From reconstruc­

tions of simulated data can be concluded that the constrained least squares method 

yields, in general, the best results. Note that the constrained least squares method is 

an iterative method and therefore is significantly slower than the other least squares 

based methods proposed in Chapter 4. 

• The reconstructions have been proven best when the object is near the sensor wall. 

When the object is moved towards the centre of the sensor the reconstruction image 

becomes worse, since in the centre of the sensor the problem is under-determined 

and therefore the resolution in the centre of the sensor is very poor. 

• When using a rod, so the 3D-error is suppressed, the reconstructions near the wall are 

very accurate and even two rods near the sensor wall can be distinguished. However, 

when the rods are close to the centre or when the rods are close to one another they 

cannot be seen separately. 

• The results obtained using the 10 cm sensor and the 40 cm sensor, when the ratio 

between the rod and the sensor diameter was kept constant, have been found almost 

equivalent, although the relative noise level is higher for the 40 cm sensor due to 

an increasing 3-D effect for bigger sensor diameters. This is in agreement with the 

results found from the simulations, where i t was demonstrated that the experimen­

tally found noise level did not change the reconstruction when using the constrained 

least squares solution. 

• The cahbration of the sensor by the PC-ECT-software is not very accixrate, due 

to problems with the electronics. These electronics contain programmable CMOS-

switches to adapt the bandwidth of every channel. When the empty pipe data and 

fu l l pipe data deviate from the real zeros and ones, this wi l l result in mismatches 

between the model and the system. 

• Since the cahbration was not very accurate, also measurements were done of the 

empty pipe, i.e. when the pipe was fiUed with air only. Subtraction of the empty 

pipe data from the measured data improved the reconstructions. Note that in real 

application this is not possible and therefore the calibration of the system has to be 

improved. 

• The bubble measmements in the 30 cm sensor showed that a rising bubble of roughly 

1 of the sensor diameter can be only reconstructed when i t is near the sensor wall. 

When the bubble is at a distance of | of the sensor diameter, i.e. 10cm, from the 

sensor waU i t cannot be reconstructed anymore. However, looking at the raw data 

from the measurement system, the bubble can be counted due to correlation in the 

data. 
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9.1.5 S e n s i t i v i t y o f t h e capaci tance s y s t e m 

• A small rod, as small as about of the sensor diameter can be detected. 

• Reconstruction of a rod placed in the centre of the sensor, however, is very difficult or 

in most cases impossible, since the capacitance values are almost the same for differ­

ent positions in the centre of the sensor, up to only a few centimetres from the sensor 

wall, where the capacitances start to change rapidly. This makes the inverse problem 

singular, since different positions of the rod yield nearly the 'same' capacitance data. 

• Note that a bubble is spherical and therefore has, due to the 3-D effect, less influence 

on the capacitance values and thus is harder to reconstruct. 

9.2 Recommendations 

• The cahbration of the system, i.e. reference values of the empty and fu l l sensor, 

has to be made more accurate, since in the centre of the pipe the capacitance value 

changes due to bubbles or other objects are very small. Small deviations of the 

reference values wi l l therefore have large effects on the reconstructions. 

An other possibility is to omit the calibration and use a flxed dynamic range for the 

capacitance values. The electronics developed at the D U T use a flxed range also. A 

disadvantage of this flxed dynamic range is that one cannot use the measurements of 

neighbour electrodes, since these are a factor 100 larger than the opposite electrode 

measurements. However, the near wall area is over-determined already, so this does 

not result in much loss of information. 

• In this research project, the capacitance measurements were directly (hnear) coupled 

to the permittivity set. In Chapter 7 was shown that small bubbles are detected, but 

due to the very small changes in the capacitance values, very hard to reconstruct. 

Using the covariances between the different measurements, the reconstructions might 

be improved. 

• To improve the sensitivity in the cross-section of the pipe, floating idle electrodes can 

be used. The potential gradient between these idle floating electrodes wil l be lower 

then in the old situation, yielding a higher sensitivity between the source electrode 

and the detecting one. 

• The use of neural nets has been implemented for many problems with great success. 

For the ECT-inverse problem a nemal net would be a good alternative, since the 

calculation speed and power of computers increases very rapidly. Simulations can 

be performed to test such a neural network. However, for practical applications the 

measurements have to be more accurate than the existing electronics for ECT. The 

simulations can be used to determine how accurate these new electronics have to 

be for existing ECT-system, and i f this accuracy can be satisfled using the existing 

sensors. 

Also a neural net has advantages wi th respect to the linear least squares based 
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method, since i t can be trained easily using real measurements. The linear least 

squares methods used in this research, used a Jacobian matrix which was calculated 

with the FEM package SEPRAN, and therefore matches less accurate to the real 

measurements. 





Appendix A 

Appendix A 

In Figures A . l and A.2 the reconstructions for all noise levels added to test case 2. 

(d) o-„oi« 0.1 % of mill- (e) cr„o,-̂ e 0.2 % of min- (f) o-̂ oî e 0.5 % of min- (g) Grey 
imum signal imum signal imum signal scale 

Figure A.l: Plots of the reconstructed distributions using the constrained least squares 
method for the first 6 noise levels added to test case 2 
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Figure A.2: plots of the reconstructed distributions using the constrained least squares 

method for the last 9 noise levels added to test case 2 



Appendix B 

Matlab scripts, conversion 
program ptl.c and circ.pl 

B . l Matlab scripts 

Total.m calculates 8 different least squares based reconstruction methods: 

'/, Programma voor reconstrueren van gemeten d a t a f i l e s 

7. met de PCECT software 

7, Schoonmaken matlabomgeving 

c l e a r ; 

c l o s e 

close 

c l o s e 

7, Opening van het programma met invoeren filename 

dispC'Reconstruction of measured d a t a f i l e s with PCECT-software') 

d i s p C b y Joost Mulder. 25 Apr 1997'); 

fjname = input('input Jacobian matrix ( f i l e n a m e . d a t ) . . . ' , ' s ' ) 

fname = i n p u t C i n p u t f i l e to be reconstructed (filename .dat) ... ' 

7 i laden van d a t a f i l e s 

e v a l ( [ ' l o a d ',fname,'.dat']) 

e v a l ( [ ' l o a d ',fjname,'.dat']) 

load eps_max.dat; 

load eps_min.dat; 

load c_min.dat 

joost_c=eval([fname])'; 
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load f-ull_emp.dat; 

jo o s t _ c = j o o s t _ c . * f u l l _ e i n p ' ; '/. Aanpassen van d a t a f i l e voor de Jacobiaan 

J = e v a l ( [ f j n a m e ] ) ' ; 

x=eps_min + (eps_majc-eps_min)/2 ; 

7, Openen f i g u r e 1 

f i g u r e ( l ) 

7. K l e i n s t e kwadraten oplossing 

e p s l l s = e p s _ m i n + i n v ( J ' * J ) * J ' * ( j o o s t _ c ) ; 

s u b p l o t ( 2 , 2 , 1 ) , p l o t ( e p s l l s , ' 0 ' ) 

hold on, p l o t ( e p s l l s ) , hold off 

t i t l e ( ' l i n e a r l e a s t squares s o l u t i o n ' ) 

7. Laden dempingsmatrixen 

load j o o s t _ I l . d a t ; 

load j o o s t _ I 2 . d a t ; 

R = j o o s t _ I l ; 

lambda=2.2E-5; 

7, Gedempte k l e i n s t e kwadraten oplossing 

epsdlsa=eps_min+inv(J'*J+laiiibda*R'*R)*J'*(joost.c) ; 

s u b p l o t ( 2 , 2 , 2 ) , p l o t ( e p s d l s a ) , hold on, p l o t ( e p s d l s a , ' o ' ) , hold off 

title('Damped L e a s t Squares, only t a n g e n t i a l l i n k i n g ' ) 

R=joost_I2; 

lambda=5.0E-6; 

epsdlsb=eps_min+inv(J'*J+lambda*R'*R)*J'*(joost_c); 

s u b p l o t ( 2 , 2 , 3 ) , p l o t ( e p s d l s b ) , hold on, p l o t ( e p s d l s b , ' o ' ) , hold off 

title('Damped L e a s t Squares, r a d i a l fe t a n g e n t i a l l i n k i n g ' ) 

7. Laden van wegingsmatrixen 

load joost_W2.dat; 

load joost_Wl.dat; 

7. Gewogen k l e i n s t e kwadraten oplossing 

epswlsa=eps_min+inv(J'*joost_Wl*J)*J'*joost_Wl*(j o o s t _ c ) ; 

subplot(2,2,4); 

plot(epswlsa,'o') 

hold on 

plot(epswlsa) 

t i t l e ( ' W e i g h t e d Least squares 1, diag CV matrix') 

hold off 

f i g u r e ( 2 ) 

epswlsb=eps_min+inv(J'*joost_W2*J)*J'*joost_W2*(joost_c); 
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subplot(2,2,1); 

plot(epswlsb,'o') 

hold on 

p l o t ( e p s w l s b ) , hold off 

t i t l e ( ' W e i g h t e d Least squares 2, t o t a l CV matrix') 

*/, Gedempt, gwogen k l e i n s t e kwadraten oplossing 

lambda=2.2E-5; 

epsdwls=eps_rain+ 

inv(J'*joost_Wl*J+lambda*j o o s t _ I l ' * j o o s t _ I l ) * J ' * j o o s t _ W l * ( j o o s t _ c ) ; 

subplot(2,2,2), plot(epsdwls,'m'), hold on, plot(epsdwls,'mo'), hold off 

title('DWLS with diag CV matrix, r a d i a l & t a n g e n t i a l l i n k i n g ' ) 

lambda=5.0E-6; 

epsdwlsb=eps_min+ 

i n v ( J ' * j oost_W2*J+lambda*joost_I2'*j o o s t _ I 2 ) * J ' * j o o s t _ W 2 * ( j o o s t _ c ) ; 

subplot(2,2,4), plot(epsdwlsb), hold on, plot(epsdwlsb,'o') 

t i t l e C D W L S with t o t a l cv m a t r i x ' ) , hold off 

f i g u r e O ) 

7, Constrained en non-negative constrained methode 

epsnn=eps_min+niils(J, ( j o o s t _ c ) ) ; 

subplot(2,1,1), plot(epsnn,'o'), hold on, p l o t ( e p s n n ) , hold off 

title('Non-Negative l e a s t squares') 

epsc=constr('obj',x,foptions,'eps_min,eps_max,'gradobj',joost_c,c_min,J,eps_min) 

subplot(2,1,2), p l o t ( e p s c , ' o ' ) , hold on, p l o t ( e p s c ) , hold off 

t i t l e ( ' c o n s t r a i n e d l e a s t squares') 

7, opslaan van de berekende data 

i=input('Do you want to save the c a l c u l a t e d data? Y/N [ Y ] : ' , ' s ' ) ; 

i f i s e m p t y ( i ) 

i='Y'; 

end 

i f i=='Y' 

SSres=(j o o s t _ c - c _ m i n - ( J * ( e p s l l s - e p s _ m i n ) ) ) ' * ( j o o s t _ c - c _ m i n - ( J * ( e p s l l s - e p s _ m i n ) ) ) 

7. store c a l c u l a t e d eps-dataf i l e s i n PERL-program c i r c . p l format 

eps211s=reshape(epslls,12,3); 

e p s 2 1 1 s = f l i p l r ( e p s 2 1 1 s ) ; 

f i d = f o p e n ( ' e p s l l s . d t ' , ' W ' ) ; 

f p r i n t f (fid,' 7.g \ t 7,g \ t 7.g \n 7.g \n',1,0.888,0.724,30); 

f p r i n t f ( f i d , ' 7 . f \ t 7.f \ t 7.f \ t 7.f \ t 7.f \ t 7.f \ t 7.f \ t 7,f \ t 7.f \ t 7,f \ t 7.f \ t 

7.f \n ',eps211s); 
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f c l o s e ( f i d ) ; 

eps2dlsa=reshape(epsdlsa,12,3); 

eps2dlsa=fliplr(eps2dlsa); 

f i d =fopen('epsdlsa.dt','w'); 

f p r i n t f (fid,' ' / . g \ t V.g \ t y,g \n 7,g \n', 1,0.888,0.724,30); 

f p r i n t f (fid,'y.f \ t y.f \ t y.f \ t y,f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t 

y.f \n ',eps2dlsa); 

f c l o s e ( f i d ) ; 

eps2dlsb=reshape(epsdlsb,12,3); 

eps2dlsb=fliplr(eps2dlsb); 

f i d =fopen('epsdlsb.dt','w'); 

f p r i n t f (fid,'y . g \ t y.g \ t y.g \n y.g \n', 1,0.888,0.724,30); 

f p r i n t f (fid,'y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y,f \ t y.f \ t y.f \ t y.f \ t y.f \ t y,f \ t 

y.f \n ',eps2dlsb); 

f c l o s e ( f i d ) ; 

eps2wlsa=resliape(epswlsa,12,3) ; 

eps2wlsa=fliplr(eps2wlsa); -

f i d =fopen('epswlsa.dt','w'); 

f p r i n t f (fid,'y . g \ t y.g \ t y.g \n y.g \n'. 1,0.888,0.724, so ) ; 

f p r i n t f (fid,'y.f \ t y.f \ t y,f \ t y,f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t 

y.f \n ',eps2wlsa); 

f c l o s e ( f i d ) ; 

eps2wlsb=reshape(epswlsb,12,3); 

eps2wlsb=fliplr(eps2wlsb); 

f i d =fopen('epswlsb.dt','w'); 

f p r i n t f (fid,'y . g \ t y.g \ t y.g \n y,g \n',1,0.888,0.724,30); 

f p r i n t f (fid,'y.f \ t y.f \ t y.f \ t y,f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y,f \ t 

y.f \n ',eps2wlsb); 

f c l o s e ( f i d ) ; 

eps2dwls=reshape(epsdwls,12,3); 

eps2dwls=fliplr(eps2dwls); 

f i d =fopen('epsdwls.dt','w'); 

f p r i n t f (fid,'y . g \ t y.g \ t y.g \n y.g \n', 1,0.888,0.724,30); 

f p r i n t f (fid,'y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t 

y.f \n ',eps2dwls); 

f c l o s e ( f i d ) ; 

eps2dwlsb=reshape(epsdwlsb,12,3); 

eps2dwlsb=fliplr(eps2dwlsb); 

f i d =fopen('epsdwlsb.dt','w'); 
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f p r i n t f ( f i d , ' y . g \ t y.g \ t y.g \ n y.g \ n ' , 1,0.888,0.724, so ) ; 

f p r i n t f ( f i d , ' y . f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t 

y.f \ n ',eps2dwlsb); 

f c l o s e ( f i d ) ; 

eps2nn=reshape(epsnn,12,3); 

eps2nn= f l i p l r(eps2nn); 

f i d = f o p e n ( ' e p s n n . d t ' , ' w ' ) ; 

f p r i n t f ( f i d , ' y . g \ t y.g \ t y.g \ n y.g \ n ' , 1,0.888,0.724, so ) ; 

f p r i n t f ( f i d , ' y . f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t y.f \ t 7.f \ t 

y.f \ n ',eps2nn); 

f c l o s e ( f i d ) ; 

end 

The constraint least squares method uses two additional m-files: obj.m, the objective func­

tion, and gradobj.m, its derivative. 

obj.m: 

f x m c t i o n [ f ,g3 = obj (x , joos t_c ,c_min,J ,eps_min) 

f = ( joost_c-c_inin-J*(x-eps_inin)) '*(c-c_inin-J*(x-eps_min)) ; 

gradobj.m 

f u n c t i o n [ d f , d g ] = gradobj(x,c,cO ,J,eO) 

df = -2*J '* (c-cO - J* (x-eO)); 

dg=zeros(s ize (x) ) ; 

B.2 ptl.c 

ptl.c converts the binary data from the Process Tomography Ltd. sensor electronics into 

an ascii matrix: 

#include <stdio.h> 

main(argc,argv) 

i n t argc; 

char *argvC] ; 

{ 

i n t p , f , i , j ; / * var iab les ( p i x e l s , frames, e l e c t r ) * / 

f l o a t e m p t y[11][11] , f u l l [11] [ 1 1 ] ; / * c a l i b r a t i o n d a t a [ e l e c ] [ e l e c ] * / 

f l o a t c a p [ l l ] [ l l ] ; / * norm, capacitances [e lec] [e lec] * / 
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i n t s c h r o t t ; /* v a r i a b l e s */ 

short bin, dummy; /* i n t e g e r veiriables */ 

char aC30], b[20] , c [ 2 0 ] ; /* to create f i l e names */ 

F I L E * i n c a l ; /* f i l e with c a l i b r a t i o n data */ 

F I L E *indat; /* f i l e with capacitance data */ 

F I L E *out; /* f i l e with image grey l e v e l s */ 

s p r i n t f ( a , " r e s u l t / y . s . a s c " , a r g v [ l ] ) ; 

/ • s p r i n t f (b,"data/y,s.cal", a r g v [ l ] ) ; * / 

s p r i n t f ( c , "data/y.s .mes" , a r g v [ l ] ) ; 

i f (argvCl] 

p r i n t f 

p r i n t f 

p r i n t f 

p r i n t f 

p r i n t f 

p r i n t f 

p r i n t f 

p r i n t f 

p r i n t f 

e x i t ( l ) ; 

} 

==0) { 

p t l \ n \ n " ) ; 

Program f o r the separation of capacit a n c e s \ n " ) ; 

Upgrade by Da M u l l i e \ n " ) ; 

Usage: p t l * l \ n \ n " ) ; 

*1: <filenaine> of f i l e s i n /data without extension ' . * ' \ n " ) ; 

extension ' . c a l ' : A S C I I - f i l e with the c a l i b r a t i o n data\n") 

as produced by the ECT-system\n"); 

extension '.mes': binary measurement f i l e \ n \ n " ) ; 

The r e s u l t i s w r i t t e n to result/<filename>.asc\n\n"); 

/ * i n c a l = fopen (b, " r " ) ; * / 

/ * p r i n t f ("Reading c a l i b r a t i o n data . . . \ n " ) ; * / 

/ * f s c a n f ( i n c a l , "y,d", feschrott) ; 

/ * f o r (i=0; i < l l ; i++) { * / 

/* f o r (j=0; j < l l - i ; { * / 

/* f s c a n f ( i n c a l , "y,f", &empty [ i ] [ j + i ] ) ; * / 

/* } * / 
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/ * } * / 
/ * f o r (1=0; i<66; i++) { * / 

/*fs c a n f ( i n c a l , "7.d", feschrott);*/ 

/*}*/ 

/* Reading the f u l l pipe c a l i b r a t i o n data: */ 

/•fo r (i=0; i < l l ; i++) { * / 

/* f o r (j=0; j < l l - i ; j++) { * / 

/* f s c a n f ( i n c a l , '"/.f", &f u l l [ i ] [ j + i ] ) ; */ 

/* } * / 
/ * } * / 
/ * f c l o s e ( i n c a l ) ; * / 

out = fopen (a, "w"); 

indat = fopen ( c , " r b " ) ; 

/* Reading the t o t a l frame niimber: ' */ 

f read (&dummy, 2, 1, i n d a t ) ; 

f read (&dummy, 2, 1, i n d a t ) ; 

f read (&diinimy, 2, 1, i n d a t ) ; 

f read (&dummy, 2, 1, i n d a t ) ; 

f read (fedummy, 2, 1, i n d a t ) ; 

f read (&dummy, 2, 1, i n d a t ) ; 

f read (&dummy, 2, 1, i n d a t ) ; 

f read (fedummy, 2, 1, i n d a t ) ; 

f read (&dummy, 2, 1, i n d a t ) ; 

f read (&dummy, 2, 1, i n d a t ) ; 

f read (fedummy, 2, 1, i n d a t ) ; 

f read (&d\mimy, 2, 1, i n d a t ) ; 

f read (fedummy, 2, 1, i n d a t ) ; 

f read (&dummy, 2, 1, i n d a t ) ; 

f read (fedummy, 2, 1, i n d a t ) ; 

/* The f i r s t 100 frames of the measured capacitance data (66/frame) are */ 

/* thrown away ( b a s e l i n e c o r r e c t i o n ) : */ 

/* f o r (f=0; f<6600; f++) { * / 
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/* f r e a d (&dummy, 2, 1, i n d a t ) ; * / 

/ * } * / 

p r i n t f ("Reading the measured capacitancesXn"); 

f o r (f=0; f<500; f++) { 

/* fmax=59900 */ 

fo r (i=0; i < l l ; i++) { 

f o r ( j = i ; j < l l ; j++) { 

fr e a d (fedummy, 2, 1, i n d a t ) ; 

swab (fedummy, &bin, 2 ) ; 

c a p C i ] [ j ] = (bin)/4096.0; 

/* c a p C i ] C j ] = (bin-empty[i] [ j ] ) / ( f u l l [ i ] [jl-emptyCi] [ j ] ) ; */ 

f p r i n t f (out,"'/.f\t", c a p [ i ] [ j 3 ) ; 

. } 

} 

f r e a d (&dummy, 2, 1, i n d a t ) ; 

f r e a d (&dummy, 2, 1, i n d a t ) ; 

f p r i n t f (out,"\n"); 

> 

p r i n t f ("I am done!!!\n"); 

f c l o s e ( i n d a t ) ; 

f c l o s e (out); 

> 

B.3 circ.pl 

This Perl program converts the calculated permittivity values into a graphical representa­

tion in the reconstruction mesh: 

# ! / u s r / l o c a l / b i n / p e r l -w # - * - P e r l - * -

$maxradius=100; # ra d i u s i n mm 

p r i n t "*/.!PS-Adobe-2.0\n"; # standard p o s t s c r i p t header 

p r i n t "'///.Creator: Martin Weiss\n"; 

p r i n t "y.y.DocumentFonts : He l v e t i c a \ n " ; 

p r i n t "y.y.BoundingBox: 0 0 " ,2*$maxradius/25.4*72, " " ,2*$maxradius/25.4*72, "\n 

p r i n t "yyPages: l \ n " ; 

p r i n t "y.y.EndComments\n"; 

p r i n t 72/25.4," dup s c a l e \ n " ; # from inch/72 to mm sc a l e 

p r i n t "$maxradius $maxradius t r a n s l a t e \ n " ; # o r i g i n movement 

p r i n t "0 setlinewidthXn"; # strange but necessary 

@ r a d i i = s p l i t ( ' ',<>); # read r a d i a l boundaries 

$delta_angle=<>; # read d e l t a angle 
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f o r ($row=0;$row<scalar(@radii);$row++) { # f o r a l l rows ( = r a d i i ) 

@ c u r r e n t _ p i x e l s = s p l i t ( ' ',<>); # read one row of p i x e l s (R=const 

f o r ($i=0;$i<scalar(@current.pixels);$i++) { # f o r a l l columns 

p r i n t ( 2 - $ c u r r e n t . p i x e l s [ $ i ] s e t g r a y \ n " ) ; # set gray value 

p r i n t ( " 0 0 ",$radii[$row]*$maxradius," ",$i*$delta_angle," ", 

( $ i + l ) * $ d e l t a _ a n g l e , " a r c 0 0 l i n e t o closepath gsave f i l l 

g restore s t r o k e \ n " ) ; 

# p r i n t "0 setgray 0.5 setlinewidth\n"; # s e t gray value 

# p r i n t ( " 0 0 ",$radii[$row]*$maxradius," ",$i*$delta_angle," ", 

# ( $ i + l ) * $ d e l t a _ a n g l e , " arc 0 0 l i n e t o closepath stroke 0 

s e t l i n e w i d t h \ n " ) ; 

} 

> 

p r i n t "0 setgray 0.5 s e t l i n e w i d t h 0 0 $maxradius 0 360 arc stroke\n"; 

p r i n t "showpage\n"; 
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Appendix C 

Capacitance measurements from 
simulations in SEPRAN 

c . l Capacitance measurements 

This Appendix describes the behaviour of the capacitance measurements from simulations 

in SEPRAN. 

First a simulation was performed, to investigate the accuracy in the capacitance mea­

surements. A permittivity distribution was generated with one centre pixel containing a 

relative permittivity of two, all the other pixels contained a relative permittivity of one 

(see Figure C. l . 

For this permittivity distribution the Poisson equation was solved for all electrode com­

binations. So including for example Ci_9 as well as C2-1. From these solutions the total 

amount of charge, this is the same as the capacitance except for a constant, on either 

electrode was calculated in two different ways. 

107 
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Figure C.2: The sum of charge on the different electrodes for the two different methods 

explained above. The '*' refer to calculation method 1, the 'o' to calculation method 2. 

1, The sum of charges on all detecting electrodes when one electrode, the source elec­

trode, is at high potential. 

(C.l) E 
detector 

source 
HdetectOT 

2. The sum of charge on a detecting electrode when all the other electrodes have been 

at high potential. 

E source 
HdetectOT 

(C.2) 

In Figure C.2 the 'total amount' of charge on the electrodes is found for the two different 

calculation methods. Also must be noticed that the total amount of charge on the source 

electrode is in fact J^Qdetector + Qshield- From these calculations we can conclude that 

the calculated capacitances are very accurate, except for a small error. Recently at the 

Kramers Laboratorium voor Fysische Technologie new simulations were performed using 

an other FEM-software package, which showed no differences in the capacitance values Cij 

and Cji. From these new simulations can be concluded that the differences found in the 

SEPRAN simulation stem from numerical errors and limited accuracy of the SEPRAN 

simulations. 

We can look at the total amount of charge on one specific electrode. This is in fact the 

sum of charges found on all the detecting electrodes, when this specific electrode is set 

as source electrode high potential. I n Figure C.2 we see that the total amount of charge 

found on the electrodes, when they are source electrode, is not a constant. 

The electrodes near the pbcel containing a permitt ivity of two, contain a bigger amount 

of charge than the other electrodes. Of course, when the relative permittivity distribution 

is constant, meaning all pbcels have the same permittivity, the sum of charge on either 

source electrode is the same. 
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tobl capadry H^obym* tt^ivtxs**. pvrnirrfitf^ 

Figure C.3: The sum of charge on the different electrodes when the cross-
section is filled with air (permittivity 1), converted to capaci­
tances values. The '*' refer to calculation method 1, the 'o' io 
calculation method 2. 

This is evident, while the problem then contains fu l l symmetry, and only two electrodes, 

thus one capacitator, had to be used (see Figmre C.3). 

When the constant relative permittivity of all pixels is increased several times by the 

same amount 5e, all the capacitance measmements wi l l increase linear. 

In the simulation one centre pixel was increased from a permittivity one to a permittivity 

two wi th steps of 0.1. Looking at the total amount of charge found at the source electrode 

(see Figure C.2), this is the total charge on all the detecting electrodes and the charge 

found on the outer shield, we see that the total amount of charge on the source electrode 

is increased for every source electrode with respect to the total amoimt of charge found in 

the empty pipe situation, i.e. all pixels permittivity value of 1 {Figme C.3). 

But when we look at the capacitances between two specific electrodes, we see an other 

effect. Looking for example to the capacitance between electrode 1 and electrode 2, C i_2 , 

and the capacitance between electrode 1 and electrode 7, Ci_7 , we see that the capacitance 

Ci_2 decreases, while pixel one is increased. On the contrary, i fwe look at the capacitance 

Ci_7 , the capacitance increases i f we increase the permittivity of pixel one (See Figme 

C.4). 

The capacitances Ci_2 and Ci_7 decrease respectively increase almost hnear. As explained 

in Chapter 4 the Jacobian matrix is calculated by finite differences, Thus, since in 

Figures C.4a and b there is a small curve in both figures, the positions where the derivatives 

are calculated infiuence the Jacobian matrix. 

From the figures in fig. C.4 can be seen that the capacitance between electrode one and two 

becomes lower than in the empty pipe, where all the pixels have permittivity one. This 

effect is due to the fact that the electric field depends on the permittivity distribution 

inside the cross-section. At the surface between two media of different permittivity the 

electric field lines wi l l bend and therefore change the equipotential surfaces. This results 

in an electric field, which shows discontinuities at the intersection of the two media. In 

Figure C.5 the equipotential-lines are shown for the permittivity distribution, when one 
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(a) Cl (b) Cl 

Figure C.4: Plots of the Capacitance values C i _ 2 and C1-7, when one pixel is increased 

from a permittivity 1 to a permittivity 2 in steps of 0.1. 

centre pixel is set to permittivity two and all the other pixels have permittivity one. 

This simulation shows that the electric field depends on the permittivity distribution. 

Qualitative this can be understood in the following way. In Figure C.5 electric field fines 

can be drawn beginning on the source electrode. I n the pixel containing a permittivity of 

two the equipotential lines are much fiatter than in the neighbour pixels. The electric field 

fines, which are perpendicular to the equipotential fines, wi l l go more straight trough the 

medium with permitt ivity two than in the case when this pixel had contained a permittivity 

of one, resulting in a bigger electric fiux density in this pixel, as well. 

On the contrary, when the permittivity distribution is constant over the cross-section, the 

electric field is not changed by different values of the permittivity over cross-section. Of 

comse, in the latter case a hnear relationship between the permittivity and the charge on 

the detecting electrodes is found. 
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Figure C.5: Equipotential-lines for the permittivity distribution, when one centre pixel is 
set to a permittivity 2 in an empty pipe, i.e. all other pixel have permittivity 1. 
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Appendix D 

Mesh-input file for the 16 
electrode mesh 

mesh2d 

coarse (unit =0.6) 

points 

pdl = (0,0) 

pd2 = (14.2,0) 

pd3 = (15,0) 

pd4 = (17,0) 

pd5 = (15,2) 

pd6 (15,20.5) 

pdl 2 = (14.2,22.5) 

pdlS = (15,22.5) 

pdl4 = (17,22.5) 

pdl 5 = (15,24.5) 

pdl6 = (15,43) 

pd22 (14.2,45) 

pd23 = (15,45) 

pd24 = (17,45) 

pd25 = (15,47) 

pd26 = (15,65.5) 

pd32 = (14.2,67.5) 

pd33 = (15,67.5) 

pd34 = (17,67.5) 

pd35 = (15,69.5) 

pd36 = (15,88) 

pd42 = (14.2,90) 
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pd43 = (15,90) 

pd44 = (17,90) 

pd45 = (15,92) 

pd46 (15,110.5) 

pd52 = (14.2,112.5) 

pd53 = (15,112.5) 

pd54 = (17,112.5) 

pd55 = (15,114.5) 

pd56 = (15,133) 

pd62 = (14.2,135) 

pd63 = (15,135) 

pd64 = (17,135) 

pd65 = (15,137) 

pd66 = (15,155.5) 

pd72 = (14.2,157.5) 

pd73 = (15,157.5) 

pd74 = (17,157.5) 

pd75 = (15,159.5) 

pd76 = (15,178) 

pd82 = (14.2,180) 

pd83 = (15,180) 

pd84 = (17,180) 

pd85 = (13,182) 

pd86 (15,200.5) 

pd92 = (14.2,202.5) 

pd93 = (15,202.5) 

pd94 = (17,202.5) 

pd95 = (15,204.5) 

pd96 (15,223) 

pdl02 = (14.2,225) 

pdl03 = (15,225) 

pdl04 = (17,225) 

pdl05 = (15,227) 

pdlOe = (15,245.5) 

p d l l 2 = (14.2,247.5) 

p d l l 3 = (15,247.5) 

p d l l 4 = (17,247.5) 

p d l l 5 = (15,249.5) 



pdlie = (15,268) 

pdl22 = (14.2,270) 

pdl23 = (15,270) 

pdl24 = (17,270) 

pdl25 = (15,272) 

pdl26 = (15,290.5) 

pdl32 = (14.2,292.5) 

pdl33 = (15,292.5) 

pdl34 = (17,292.5) 

pdl35 = (15,294.5) 

pdl36 = (15,313) 

pdl42 = (14.2,315) 

pdl43 = (15,315) 

pdl44 = (17,315) 

pdl45 = (15,317) 

pdl46 = (15,335.5) 

pdl52 = (14.2,337.5) 

pdl53 = (15,337.5) 

pdl54 = (17,337.5) 

pdl55 = (15,339.5) 

pdl56 = (15,358) 

curves 

c l = c l i n e l 

c2 = c l i n e l 

c3 = c l i n e l 

c4 = c a r d 

c5 = c a r d 

c6 = c a r d 

c7 = c a r d 

c8 = c a r d 

c l l = rotate 

d 2 = rotate 

d 3 = rotate 

c l 4 = rotate 

c l 5 = rotate 

c l 6 = rotate 

c l 7 = rotate 

c l 8 = rotate 

(pl,p2) 

(p2,p3) 

(p3,p4) 

(p2,pl2,pl) 

(p3,p5,pl) 

(p5,p6,pl) 

(p6,pl3,pl) 

(p4,pl4,pl) 

( c l , p l , p l 2 ) 

(c2,pl2,pl3) 

(c3,pl3,pl4) 

(c4,pl2,p22) 

(c5,pl3,pl5) 

(c6,pl5,pl6) 

(c7,pl6,p23) 

(c8,pl4,p24) 
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c21 r o t a t e ( c l , p l , p 2 2 ) 

c22 = r o t a t e (c2,p22,p23) 

c23 = r o t a t e (c3,p23,p24) 

c24 = r o t a t e (c4,p22,p32) 

c25 r o t a t e (c5,p23,p25) 

c26 = r o t a t e (c6,p25,p26) 

c27 = r o t a t e (c7,p26jp33) 

c28 r o t a t e (c8,p24,p34) 

c31 r o t a t e ( c l , p l , p 3 2 ) 

c32 = r o t a t e (c2,p32,p33) 

c33 r o t a t e (c3,p33,p34) 

c34 r o t a t e (c4,p32,p42) 

c35 = r o t a t e (c5,p33,p35) 

c36 = r o t a t e (c6,p35,p36) 

c37 = r o t a t e (c7,p36,p43) 

c38 = r o t a t e (c8,p34,p44) 

c41 = r o t a t e ( c l , p l , p 4 2 ) 

c42 = r o t a t e (c2,p42,p43) 

c43 = r o t a t e (c3,p43,p44) 

c44 = r o t a t e (c4,p42,p52) 

c45 = r o t a t e (c5,p43,p45) 

c46 = r o t a t e (c6,p45,p46) 

c47 = r o t a t e (c7,p46,p53) 

c48 = r o t a t e (c8,p44,p54) 

c51 = r o t a t e ( c l , p l , p 5 2 ) 

c52 = r o t a t e (c2,p52,p53) 

c53 = r o t a t e (c3,p53,p54) 

c54. = r o t a t e (c4,p52,p62) 

c55 = r o t a t e (c5,p53,p55) 

c56 = r o t a t e (c6,p55,p56) 

c57 = r o t a t e (c7,p56,p63) 

c58 r o t a t e (c8,p54,p64) 

c61 = r o t a t e ( c l , p l , p 6 2 ) 

c62 = r o t a t e (c2,p62,p63) 

c63 = r o t a t e (c3,p63,p64) 

c64 = r o t a t e (c4,p62,p72) 

c65 = r o t a t e (c5,p63,p65) 

c66 =: r o t a t e (c6,p65,p66) 

c67 = r o t a t e (c7,p66,p73) 

c68 = r o t a t e (c8,p64,p74) 



c71 = rot a t e 

c72 = rot a t e 

c73 = rot a t e 

c74 = rot a t e 

c75 = rot a t e 

c76 = rot a t e 

c77 = r o t a t e 

c78 = rot a t e 

cBl = rot a t e 

c82 = rot a t e 

c83 = r o t a t e 

c84 = r o t a t e 

c85 = rotate 

c86 = rot a t e 

c87 = r o t a t e 

c88 = rot a t e 

c91 = r o t a t e 

c92 = r o t a t e 

c93 = rot a t e 

c94 = rot a t e 

c95 = rot a t e 

c96 = rot a t e 

c97 = r o t a t e 

c98 = rotate 

c l O l = rot a t e 

cl02 = r o t a t e 

cl03 = rotate 

cl04 = rot a t e 

cl05 = rot a t e 

cl06 = rot a t e 

cl07 = rot a t e 

cl08 = rot a t e 

c l l l = rotate 

c l l 2 = rotate 

c l l 3 = ro t a t e 

c l l 4 = rot a t e 

c l l 5 = ro t a t e 

c l l 6 = ro t a t e 

c l l 7 = rot a t e 

c l l 8 = ro t a t e 

( c l , p l , p 7 2 ) 

(c2,p72,p73) 

(c3,p73,p74) 

(c4,p72,p82) 

(c5,p73,p75) 

(c6,p75,p76) 

(c7,p76.p83) 

(c8,p74,p84) 

( c l , p l , p 8 2 ) 

(c2,p82,p83) 

(c3,p83,p84) 

(c4,p82,p92) 

(c5,p83,p85) 

(c6,p85,p86) 

(c7,p86,p93) 

(c8,p84,p94) 

(c l , p l , p 9 2 ) 

(c2,p92,p93) 

(c3,p93,p94) 

(c4,p92,pl02) 

(c5,p93,p95) 

(c6,p95,p96) 

(c7,p96,pl03) 

(c8,p94,pl04) 

( c l , p l , p l 0 2 ) 

(c2,pl02,pl03) 

(c3,pl03,pl04) 

( c 4 , p l 0 2 , p l l 2 ) 

(c5,pl03,pl05) 

(c6,pl05,pl06) 

( c 7 , p l 0 6 , p l l 3 ) 

( c 8 , p l 0 4 . p l l 4 ) 

( c l , p l , p l l 2 ) 

( c 2 , p l l 2 , p l l 3 ) 

( c 3 , p l l 3 , p l l 4 ) 

( c 4 , p l l 2 , p l 2 2 ) 

( c 5 , p l l 3 , p l l 5 ) 

( c 6 , p l l 5 , p l l 6 ) 

( c 7 , p l l 6 , p l 2 3 ) 

( c 8 , p l l 4 , p l 2 4 ) 
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cl21 = r o t a t e 

cl22 = r o t a t e 

c l 2 3 = r o t a t e 

cl24 = r o t a t e 

cl25 = r o t a t e 

cl26 = r o t a t e 

cl27 = r o t a t e 

cl28 = r o t a t e 

c i a i = r o t a t e 

cl32 = r o t a t e 

cl33 = r o t a t e 

cl34 = r o t a t e 

cl35 = r o t a t e 

cl36 = r o t a t e 

cl37 = r o t a t e 

cl38 = r o t a t e 

cl41 = r o t a t e 

c l 4 2 = r o t a t e 

cl43 = r o t a t e 

cl44 = r o t a t e 

cl45 = r o t a t e 

cl46 = r o t a t e 

cl47 = r o t a t e 

cl48 = r o t a t e 

cl51 = r o t a t e 

cl52 = r o t a t e 

c l 5 3 = r o t a t e 

cl54 = r o t a t e 

cl55 = r o t a t e 

cl56 = r o t a t e 

cl57 = r o t a t e 

cl58 = r o t a t e 

( c l , p l . p l 2 2 ) 

(c2,pl22,pl23) 

(c3,pl23,pl24) 

(c4,pl22,pl32) 

(c5,pl23.pl25) 

(c6,pl25,pl26) 

(c7,pl26,pl33) 

(c8,pl24,pl34) 

( c l . p l , p l 3 2 ) 

(c2,pl32,pl33) 

(c3,pl33,pl34) 

(c4,pl32,pl42) 

(c5,pl33,pl35) 

(c6,pl35,pl36) 

(c7,pl36,pl43) 

(c8,pl34,pl44) 

( c l , p l , p l 4 2 ) 

(c2,pl42,pl43) 

(c3,pl43,pl44) 

(c4,pl42,pl52) 

(c5,pl43,pl45) 

(c6,pl45,pl46) 

(c7,pl46,pl53) 

(c8,pl44,pl54) 

( c l , p l , p l 5 2 ) 

(c2,pl52,pl53) 

(c3,pl53,pl54) 

(c4,pl52,p2) 

(c5,pl53,pl55) 

(c6,pl55,pl56) 

(c7,pl56,p3) 

(c8,pl54,p4) 

surfaces 

s l = t r i a n g l e s ( c l , c 4 , - c l l ) 

s2 = r o t a t e s l ( c l l , c l 4 , - c 2 1 ) 

s3 = r o t a t e s l (c21,c24,-c31) 

s4 = r o t a t e sl(c31,c34,-c41) 

s5 = r o t a t e sl(c41,c44,-c51) 
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s6 = r o t a t e S l(c51,c54,-c61) 

s7 = r o t a t e S l(c61,c64,-c71) 

s8 = r o t a t e S l(c71,c74,-c81) 

s9 = r o t a t e sl(c81,c84,-c91) 

slO r o t a t e s l ( c 9 1 , c 9 4 , - c l 0 1 ) 

s l l r o t a t e s l ( c l 0 1 , c l 0 4 , - c l l l ) 

s l 2 = r o t a t e s l ( c l l l , c l l 4 , - c l 2 1 ) 

s l 3 r o t a t e s l ( c l 2 1 , c l 2 4 , - c l 3 1 ) 

s l 4 = r o t a t e S l ( c l 3 1 , c l 3 4 , - c l 4 1 ) 

s l 5 = r o t a t e S l ( c l 4 1 , c l 4 4 , - c l 5 1 ) 

s l 6 = r o t a t e s l ( c l 5 1 , c l 5 4 , - c l ) 

s21 t r i a n g l e s 

s22 r o t a t e s21 

s23 = r o t a t e s21 

s24 = r o t a t e s21 

s25 = r o t a t e s21 

s26 = r o t a t e s21 

s27 = r o t a t e s21 

s28 = r o t a t e s21 

s29 rota t e s21 

s30 = r o t a t e s21 

s31 = r o t a t e s21 

s32 = r o t a t e s21 

s33 = r o t a t e s21 

s34 = r o t a t e s21 

s35 = r o t a t e s21 

s36 = r o t a t e s21 

s41 = t r i a n g l e s 

s42 = r o t a t e s41 

s43 = r o t a t e s41 

s44 = r o t a t e s41 

s45 = r o t a t e s41 

s46 r o t a t e s41 

s47 = r o t a t e s41 

s48 = r o t a t e s41 

s49 = r o t a t e s41 

s50 = r o t a t e s41 

s51 = r o t a t e s41 

s52 = r o t a t e s41 

s53 = r o t a t e s41 

s54 = r o t a t e s41 

s55 = r o t a t e s41 

s56 = r o t a t e s41 

C2,c5,c6,c7,-cl2,-c4) 

C l 2 , c l 5 , c l 6 , c l 7 , - c 2 2 , - c l 4 ) 

c22,c25,c26,c27,-cS2,-c24) 

c32,cS5,c36,c37,-c42,-cS4) 

c42,c45,c46,c47,-c52,-c44) 

C52,c55,c56,c57,-c62,-c54) 

c62,c65,c66,c67,-c72,-c64) 

C72,c75,c76,c77,-c82,-c74) 

C82,c85,c86,c87,-c92,-c84) 

C92,c95,c96,c97,-cl02,-c94) 

C l 0 2 , c l 0 5 , c l 0 6 , c l 0 7 , - c l l 2 , - c l 0 4 ) 

C l l 2 , c l l 5 , c l l 6 , c l l 7 , - c l 2 2 , - c l l 4 ) 

C l 2 2 , c l 2 5 , c l 2 6 , c l 2 7 , - c l 3 2 , - c l 2 4 ) 

c l S 2 , c l 3 5 , c l 3 6 , c l 3 7 , - c l 4 2 , - c l 3 4 ) 

C l 4 2,cl45,cl46,cl47,-cl52,-cl44) 

C l 5 2,cl55,cl56,cl57,-c2,-cl54) 

c3,c8,-clS,-c7,-c6,-c5) 

C l 3 , c l 8 , - c 2 3 , - c l 7 , - c l 6 , - c l 5 ) 

C23,c28,-c33,-c27,-c26,-c25) 

c33,c38,-c4S,-c37,-c36,-c35) 

c43,c48,-c5S,-c47,-c46,-c45) 

c5S,c58,-c6S,-c57,-c56,-c55) 

c6S,c68,-c73,-c67,-c66,-c65) 

c7S,c78,-c83,-c77,-c76,-c75) 

C83,c88,-c93,-c87,-c86,-c85) 

c93,c98,-cl0S,-c97,-c96,-c95) 

c l O S , c l 0 8 , - c l l S , - c l 0 7 , - c l 0 6 , - c l 0 5 ) 

c l l S , c l l 8 , - c l 2 3 , - c l l 7 , - c l l 6 , - c l l 5 ) 

C l 2 3,cl28,-cl33,-cl27,-cl26,-cl25) 

C l 3 3,cl38,-cl43,-cl37,-cl36,-cl35) 

C l 4 3 , c l 4 8 , - c l 5 3 , - c l 4 7 , - c l 4 6 , - c l 4 5 ) 

c l 5 S , c l 5 8 , - c S , - c l 5 7 , - c l 5 6 , - c l 5 5 ) 



120 Appendix D. JVlesh-input £le for the 16 electrode mesh 

meshsurf 

selml = ( s l , s l 6 ) 

selm2 = (s21,s36) 

selmS = (s41,s56) 

p l o t 

end 
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