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Introduction

The globalisation has a lot of positive effects on our daily life. The ease of accessibility to the Internet al-
lows us to buy products from all over the world. The shipping times are often fairly limited if one considers
the distance that has to be covered by a product. The existence and expansion of a global airline network
significantly contributes to this fast delivery process. Although the (passenger) airline industry was severely
impacted by the COVID-19 pandemic, it not not unreasonable to assume that the industry will restore to pre-
pandemic volumes in a few years. For most industries, expansion to a certain extent is possible without loss
of efficiency. Industries could simply scale up their buildings, assets and personnel. This could even lead to
an increase in efficiency due to larger scale production. This principle also applies to the aviation industry
to a certain extend. For example: the capacity of trucks and airplanes is increased and the efficiency is in-
creased because a plane carries more cargo and/or passengers. Simply keep scaling up does however also
lead to challenges that require another approach. This research will describe one of these challenges and
provide a method to increase the efficiency.

In the current air cargo supply chain process, trucks pick up shipments from freight forwarders and these
are shipped to ground handlers. The freight forwarding companies tend to pickup the shipments during
a workday and delivery the shipments to the ground handlers at the end of a working day. The arrival of
trucks at the ground handlers is uncoordinated which leads to peak hours. During these peak hours, the
number of trucks arriving at the ground handlers is larger than the number of available docks. This leads
to congestion and delay outside the ground handlers. For all involved parties, this leads to financial losses
which is undesirable.

In the work that lies in front of you, this challenge is adressed and an optimization model is developed.
The aim of this optimization method is to model the air cargo export supply chain. The objective function
of this optimization function is to minimize the total cost of a solution. In addition to routing and dock-
ing, the model also introduces a novel Last-In First-Out model variant. In this variant, a multi-stack truck is
introduced where shipments can also be Side-Accessible in the unloading route.

The thesis work is done to complete the Air Transport and Operations master track at the Faculty of
Aerospace Engineering at the TU Delft. The work is performed under supervision of Dr. A. Bombelli. The
thesis subject is in line with his work and expertise on air cargo operations, vehicle routing problems and
methods to solve these. In his research, he has been working on this topic and asked me to think of an ap-
proach to model the cargo export supply chain. In addition to that, Dr. Bombelli was interested to see how a
new loading formulation can be developed that allows for the Side-Accessible feature of this model.

The unique aspect of this thesis is that the provided Side-Accessible model variant can be introduced to a
broad spectrum of applications. In this thesis it is applied to the context of the aviation export supply chain.
However, the provided formulation can be implemented to many more practical application. One could think
for example to the supply of stock to supermarkets and all other applications of truck companies that make
use of some sort of Unit Load Device.

The structure of this thesis report is as follows. First of all, Part I presents the scientific paper. In Part II
the literature study is presented that was conducted at the start of the thesis period. In Part I1I the supporting
work of this thesis is presented. This consist of the following parts. First of all, in In Appendix 1 a simple
verification case for the heuristic model is presented and worked out. Appendix 2 presents an overview of the
data instance generation process.






Scientific Paper






The Clustered Pickup and Delivery Problem with Time Windows and
Multi Stack Side-Accessible Last-in First-out Loading

Niels Maseland*
Delft University of Technology, Delft, The Netherlands

Abstract

This paper studies a variation of the pickup and delivery formulation with time windows which is applied
to air cargo export operations. The formulation is extended using three factors. 1) Pickup nodes are
positioned at freight forwarders. Delivery nodes are located at ground handlers. Trucks can only visit one
freight forwarder. 2) Dock capacity of the ground handlers is implemented in the model. Each dock can only
be occupied by one truck at a time. 3) A multi stack loading approach is introduced for the trucks. To be
consistent with practice, a Last-in First-out (LIFO) approach is considered when delivering shipments. Three
model variants are introduced in this paper with respect to the LIFO strategy with different nuances. i) All
LIFO constraints are relaxed. This is also referred to as the no-LIFO (NL) model variant. ii) Only direct
accessibility in the stacks is allowed. This is also referred to as the strict-LIFO (SL) model variant. iii) Side-
accessible unloading from an adjacent stack is also allowed. This is also referred to as the side-accessible (SA)
model variant. For each model variant, an exact model is presented and solved with the branch-and-bound
approach. In addition to that, a meta-heuristic is developed that is based on a large neighborhood search
to solve large data instances. Two objective functions are used. First of all, a cost-based objective function
where a fixed penalty per truck is introduced. The second objective function is time-based, where only the
total time duration of the routes of all trucks is minimized. It is concluded that the meta-heuristic model
gives good results in terms of solution quality, computational time and stableness. It is also concluded that
the SA model variant benefits over the SL model variant. The relative benefit depends on the data instance,
capacity of a stack and the used objective function. For small data instances, a maximum benefit of 15.0%
was observed for the SA model variant using the exact and meta-heuristic model. For larger data instances, a
maximum benefit of 14.1% was observed using the meta-heuristic model. Given the current trends towards
more shipment standardization in logistics and more collaboration among stakeholders, we believe many
supply chains can potentially benefit from this scheduling model that incorporates both paradigms.

1 Introduction

The availability of a large (cargo) aviation network is an attractive opportunity to increase the amount of
cargo that is shipped by aircraft as aviation provides a fast method for shipping freight over long distances.
Flight schedules are often known in advance, which increases the predictability of arrival and departure times of
flights. The predictability is highly desired for companies responsible for further transporting and processing of
shipments. Boeing estimated in their World Air Cargo Forecast 2018-2037 that the transported cargo volume by
air will increase by 4.2% each year [Boeing, 2018]. Although this estimation was made before the coronavirus
affected the aviation industry, it is not unlikely that this trend will keep on going after the pandemic. The
increase in transported volume has its consequences throughout the entire supply chain and bottlenecks should
be identified in order to allow for this increase in transported volume. One of the bottlenecks in the air cargo
supply chain is identified in this study and an optimization model is proposed.

In the current air cargo supply chain, freight forwarders and ground handlers play an important role. Freight
forwarders receive packages from various companies and are responsible to transport them by truck to the ground
handlers at the airport. The ground handlers are on their turn responsible for processing the incoming shipments
from the freight forwarders and ensure that the shipments are transported to their scheduled flight. The arrival of
trucks at the ground handlers is currently an uncoordinated process because freight forwarders tend to optimize
their own truck schedules. The ground handlers have a limited dock capacity and the uncoordinated arrival of
trucks leads to the situation where the number of incoming trucks is larger than the number of available docks
as concluded in [Verduijn et al., 2019]. This leads to delay and congestion outside the ground handlers that
lead to financial losses for all involved parties.

Apart from the challenges in the aviation industry, the general logistic sector also faces inefficiencies. The
environmental, economical and societal unsustainability of the current logistic sector have been thoroughly

*Msc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology
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review by [Montreuil, 2011]. For example: trucks are only partially loaded, trucks drive back empty, and
shipments are potentially transported all over the world before reaching their destination. The Physical Internet
(PI) is an innovative concept where shipments are not bounded to a specific shipper, but can make use of a
worldwide network. One of the important success-factors in this concept is the design of standardized modular
boxes [Montreuil, 2011]. The call for generalized box modularization is researched by [Landschiitzer et al., 2015].
In this work the requirements and design of containers for the physical internet concept are presented. The
outcome is an Unit Load Device (ULD) where multiple smaller individual packages are combined. All ULDs
should have the same outer dimensions which allows for efficient handling and design of other systems in the
sector. In this work, the shipments are represented by ULDs to prepare the implementation of this work in the
concept of the physical internet.

The purpose of this paper is to present an optimization method for the air cargo supply chain that includes
the limited dock capacity for ground handlers and different LIFO loading variants. This paper presents an
exact and meta-heuristic method to model the problem at hand. This work also aims at showing the benefit
of the side-accessible feature in the provided context of the air cargo supply chain. The model includes three
important aspects. 1) The model performs routing from the freight forwarders to the ground handlers. This
can be incorporated in the model as a variant of the Pickup and Delivery Formulation with Time Windows.
The formulation should be changed so that pickup nodes represent the freight forwarders. The delivery nodes
represent the ground handlers. Due to practical objections that were found against horizontal collaboration by
[Basso et al., 2019], it was decided that horizontal collaboration is not allowed. This means that each truck
can only visit a single freight forwarder. This work is limited to export operations, meaning that import is not
considered. 2) All trucks arriving at a ground handler are assigned to a dock. It is never allowed to have more
than one truck occupy a dock at the same time. Similar problems in literature are the parking spot assignment
or gate allocation problem. 3) The pickup and delivery route should be visited in such order that no unloading of
other items is required if visiting a delivery node. This is referred to as the Last-In-First-Out (LIFO) constraint.
In this study, a multi stack system is introduced in trucks as is done before by [Coté
et al., 2012] and [lori and Riera-Ledesma, 2015]. The innovative feature of this model
is that side-accessibility between adjacent stacks is allowed. This new feature increases
the number of feasible pickup and delivery route combinations. In this work, three
model variants are considered. 1) no-LIFO model variant. This model variant does not
have LIFO loading constraints. Only the capacity of a truck is taken as a constraint. 2)
strict-LIFO model variant. In this model variant, only the ULD positioned closest to
the (un)loading door in each stack can be accessed. This prevents certain ULDs to be
temporarily unloaded, so that another ULD can be accessed. 3) side-accessible model
variant. In this model variant, an ULD can also be accessed if an adjacent stack has a

free spot. (& g
In Figure 1 an example is presented of a possible truck loading pattern. This truck : -

has a layout of two stacks, where each stack has a capacity of three. Each location in T 2! 1)

the stack is referred to as (c,r) where ¢ indicates the stack number and r represents B e

the location in the stack. In the current situation, the truck is loaded with four ULDs, { Node 1: Node 4 :

represented as Pickup Node 1, 2, 3 and 4. The locations that are not occupied by any
ULD are represented as Free. In this example, these are locations (2,2) and (2,3). If the
no-LIFO model variant is used, the unloading sequence is not relevant, so all nodes can

be unloaded in this layout. For the strict-LIFO model, only the last ULD in a stack can (1.2) (2.2)
be accessed. This means that only Node 3 and 4 can be delivered if the truck is loaded e
as represented in the figure. If the side-accessible model variant is used, a location can Nodez Free

also be accessed via an adjacent stack with a free spot. This implies that Node 2 can
also be accessed in this situation. This implies that Node 2, 3 and 4 can be accessed if
the side-accessible model variant is used. In terms of solution quality representation, it
can thus be concluded that the no-LIFO model always find the best solution, followed

by the side-accessible model variant. The strict-LIFO model variant should perform (1.3) 2.3)

the worst. It is also possible that one (or more) solution find the same solution quality. S

Visiting multiple freight forwarders is not allowed, leading to a clustering of pickup S'Cgugg Free
ode

nodes at the freight forwarders. The model is referred to as The Clustered PDPTW
Formulation with Multi Stack Side-Accessible LIFO Loading (CPDPTW-SAL).

The build up of this paper will be as follows. In section 2 relevant literature is
presented. In section 3 the MILP formulation is described. In section 4 the meta-
heuristic method is explained which is based on an a large neighborhood search. In
section 5 the results of the CPDPTW-SAL are presented.

Figure 1: Example
truck loading repre-
sentation



2 Literature Review

Increasing the efficiency of individual parts of the air cargo supply chain process can be implemented at many
different levels and locations in the process. Collaboration between the involved parties in the air cargo supply
chain can significantly increase the efficiency of the process. For this work, the two most relevant parties involved
are the freight forwarders and ground handlers. Collaboration between these parties can be horizontal or vertical.
Horizontal collaboration is explained in [Prakash and Deshmukh, 2010] and implies that companies collaborate
that are operating at the same level in the supply chain. In contrast to that, vertical collaboration is between
parties that operate at different levels in the supply chain. Horizontal collaboration in the air cargo supply
chain could decrease the transportation cost up to 40%, as concluded by [Ankersmit et al., 2014]. Horizontal
collaboration in this specific context would imply that a neutral fleet of trucks can pickup shipments from
different freight forwarders and transport these to the ground handlers. This method thus seems very promising
but is however not yet widely implemented. As found by [Basso et al., 2019], there are several practical issues
that prevent the implementation of horizontal collaboration. The four categories which are identified are: 1)
Design, 2) Planning and Operations, 3) Business/market, 4) Behaviors. Each of these four categories is split
up in more detail and it is concluded that there is a total of 16 important practical issues against horizontal
collaboration. Information sharing between companies is also something that competitors are not very open to.
This is however required to efficiently implement horizontal collaboration. Although there is a potential benefit
when including full horizontal collaboration, it is decided that this is not done in this work due to the practical
difficulties.

Another efficiency improving concept is the method of cross-docking which is discussed in [Boysen et al.,
2013]. In cross-docking methods, all trucks travel to a central cross-docking station. At this station, trucks are
unloaded and the shipments from different trucks are combined in outgoing trucks. This procedure is done to
increase the load factor of the departing trucks and thus reducing the number of outgoing trucks, compared to
the number of incoming trucks.

The milk run principle as described in [Brar and Saini, 2011] can reduce the number of trucks used and
decrease the total distance which is travelled by all trucks. In the milk run principle, a fleet of neutral trucks
visits the pickup locations where the pickup quantity is known in advance which allows to optimally load the
trucks. The milk run principle has been introduced to Schiphol Airport with various ground handlers and
trucking companies since the 1st of May 2015. One year after the introduction of the project, a reduction of
40% of the truck movements was observed. In addition to that, the emission of carbon dioxide was decreased
up to 30% [Air Cargo Netherlands, 2016].

The research projects that are mentioned above aim at a specific part in the entire supply chain and their main
goal is to reduce the total number of trucks and to increase the efficiency of the trucks which are used. Another
method to increase the efficiency of the air cargo supply chain is the implementation of a full mathematical
optimization model. The most intuitive method would be the implementation of a vehicle routing problem and
add any required extensions to this type of problem. The first Vehicle Routing Problem (VRP) was introduced
in 1959 as the Truck Dispatching Problem [Dantzig and Ramser, 1959]. A fleet of trucks needs to meet the
demand of a set of customers. The aim of the optimization model is to minimize the total distance travelled by
all trucks. The Capacitated Vehicle Routing Problem is an extension of this model where a truck has a physical
capacity which cannot be exceeded. The model of [Laporte, 1992] incorporates this feature by constraining
the load at each node to be smaller or equal than the maximum load of the vehicle. Time Windows can be
added to nodes as is done in the research of [El-Sherbeny, 2010]. The VRP can be extended to a situation in
which there are multiple depots, as is done in [Wang et al., 2015]. The disadvantage of this method is that
each depot is assumed to have the same commodity type. The Pickup-and-Delivery (PDP) formulation is a
more specific extension which assigns a pickup and delivery node for each shipment as presented in [Ropke and
Pisinger, 2006] and [Rais et al., 2014]. The Pickup-and-Delivery formulation can also be implemented with time
windows, leading to the PDPTW. The implementation of the export air cargo supply chain seems to have a lot
in common with the PDPTW.

If a (meta)-heuristic method is used, the accepting criteria of a solution is relevant for the final outcome of
the total algorithm. If one would only accept a new solution if it is better than the best known solution up
to that point, one might end up with a local optimum instead of the global optimum. In the work of [Ropke
and Pisinger, 2006] and [Laporte et al., 2014] the introduction of the Simulated-Annealing accepting criteria is
introduced for heuristic method. With this method, also solution that are worse than the best known solution
can be accepted to explore the full solution space.

Apart from routing the trucks, literature for the docking feature of the model is also researched. Assignment
of trucks or airplanes to docks and gates respectively has been the topic of studies for a long time. In the
research of [Roca-Riu et al., 2015] the topic has been adressed for parking spot assignment for truck (un)loading
operations in a city center. The research is based on a VRPTW where each route represents one parking spot.
The number of routes in this VRPTW cannot exceed the number of available parking spots. This approach
has also been taken by [Boysen et al., 2013] where a cross-docking station is modelled with limited number of
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docks available for incoming trucks. The work of [Rieck and Zimmermann, 2010] presents a similar method
that is applied to a vehicle routing problem where the depots have a limited dock capacity. Another dock
scheduling approach is introduced by [Miao et al., 2009] which is not based on a VRPTW model. In their
formulation a new set of decision variables, n;;, is introduced which is binary and equal to 1 if the departure
time of truck i is smaller or equal than the arrival time of truck j and zero otherwise. Other sets of constraints
are introduced which state that if truck i and j are allocated to the same dock, then this implies that n;; 4+ n;;
needs to be larger or equal to one. If this constraint is satisfied, this means that the trucks do not overlap and
thus can be assigned to the same dock. The research of [Mangoubi and Mathaisel, 1985] already adressed the
gate assignment problem where only one plane can be assigned to a dock at a time. In the work of [Xu and
Bailey, 2001] a binary decision variable is introduced, z;;5, which is equal to one if and only if flight i and j are
assigned to gate k and flight i should immediately precede flight j.

Incorporating loading of trucks in the vehicle routing problem implies that the physical dimensions of the
shipment fit within the truck and that shipment dimensions do not overlap with each other. In [Tori and Martello,
2010] an overview of vehicle routing problems with loading constraints is presented. For two dimensional loading,
a distinction is made between the Two-Dimensional Bin Packing Problem (2BPP) and Two-Dimensional Strip
Packing Problem (25PP). In the 2BPP all shipments are placed in different bins and the number of bins is
minimized. In contrast, in the 2SPP all items are placed in the same bin. In that case, the total length of the
bin is minimized. For this research a 2BPP or a variant seems to be most promising. The literature on exact
methods which implement two dimensional loading constraints in the vehicle routing problem is fairly limited
as is concluded by [Pollaris et al., 2014]. Only the work of [Iori et al., 2007] and [Martinez and Amaya, 2013]
are mentioned. The first work describes the exact location of items by x and y coordinates in the truck and
these are implemented as decision variables. The second work does the same, but considers circular items which
complicates the work. The literature overview of [Pollaris et al., 2014] only refers to the work of [Junqueira et al.,
2013] where three dimensional loading constraints are included. This research differs from the two dimensional
models in terms of modelling technique as binary decision variables are used to determine the location of a
shipment. This implies that for all possible x, y, z combinations, a decision variable should be created. Instead
of assigning each item to x, y (and z for three-dimensional loading) coordinates, the introducing of a (multi)
stack system can simplify the constraints. Reality also requires that the loading and unloading sequence of the
trucks is taken into account. When unloading, it is desired to have the shipment which should be unloaded
immediately accessible without temporarily unloading other shipments. This constraint is referred to as the
Last-In-First-Out (LIFO) constraint. In the work of [Cordeau et al., 2010] a PDP problem is adressed with
LIFO-loading constraints. This work can also be seen as a single-stack system where the LIFO constraint is
satisfied. The working principle behind the LIFO constraint is that the load of a vehicle when visiting the
delivery node should be exactly equal to the load at the pickup node after picking up the shipment. If a system
is introduced with multiple stacks, the number of possible pickup and delivery routes is significantly increased.
When the LIFO constraint is introduced to a multi-stack system, the number of feasible routes is thus also
significantly higher compared to a single-stack system. In the work of [Cété et al., 2012] a multi-stack system
is introduced where the LIFO constraint is implemented. The working principle in this work is the same as
described in the work of [Cordeau et al., 2010].

The research of [Ou et al., 2010] is specific for the aviation industry and schedules the arrival of trucks at
an air cargo terminal. This goal of this work is to minimize the total cost of the overall solution. The model
also incorporates a limited number of docks for (un)loading activities. This model does however not include
routing from freight forwarders to ground handlers and only one ground handler is modelled. In literature
there is a general lack of models that include the routing between freight forwarders and ground handlers.
Also the combination between routing, docking and loading was not found. Especially with the addition of the
side-accessible loading feature, it is believed that this research can contribute to the available literature in this
field.



3 Exact Methodology Approach

This section will present the exact model methodology of the proposed model. First of all, in section 3.1 the
general model formulation will be discussed. The process of generating arcs is described in section 3.2. In
section 3.3 the decision variables of the model are presented and explained. The full MILP model is presented
in section 3.4. Finally, section 3.5 presents some additional information about the stack-routing method that is
used in the MILP formulation.

3.1 General Model Explanation

The linear model is closely related to the Pickup and Delivery Formulation with Time Windows. The set of
pickup nodes, P, represents the shipments to be transported. Each shipment is represented as an unit load
device (ULD). Each pickup node is located at a specific freight forwarder. The set of freight forwarders is
represented by the set FF. The total number of pickup nodes is represented as n. This implies that j =i+ n
where i is the pickup node and j the delivery node. The delivery nodes are located at the ground handlers and
represented in the set D. The set of ground handlers is represented by GH. The set N contains the pickup
and delivery nodes. The set V contains the pickup, delivery, start depot and end depot nodes. Each truck
from the set K has to depart from the start depot node (s) and arrive at end depot node (e). If a route is not
used, this simply implies that the route is from the start depot node to the end depot node. The set of arcs,
A, is selected with underlying principles which are explained in section 3.2. All nodes have a time window
which is represented by [4;, B;] where A; is the earliest start service time and B; the latest start service time
of a node. The parameter C; represent the processing time of node i. The load of a node is introduced by the
parameter D;. All nodes are represented by an ULD. The load of a pickup node is thus equal to 1 and the
load of a delivery node is equal to —1. The set of docks is represented by M. The multi-stack loading feature
of the model introduces for each truck the set of stacks, C. Each stack has a capacity @ and each stack has a
set of locations where a pickup node can be positioned and is represented by the set R. For cases where more
than two stacks are used, some stacks are not adjacent. The binary variable Z, . is set equal to zero if ¢ and ¢/
are not adjacent stacks. Finally, the fixed buffer time T} is introduced if a truck leaves a ground handler. It is
assumed that the truck fleet is homogeneous, so the truck specific parameters are the same for all trucks. An
overview of the parameters and sets is presented in Table 1 and Table 2 respectively.

Table 1: Parameters used in the linear model

Parameters

Start depot node

End depot node

Total number of pickup nodes

Travel time from node i to node j

Start of time window of node i

End of time window of node i

Processing time of node i

Load of a node: 1 if i is pickup node, -1 if i is delivery node
Binary variable, equals 1 if ¢ and ¢’ are adjacent stacks, zero otherwise
Capacity of a stack

Fixed buffer time at a dock
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Table 2: Sets used in the linear model

Sets

P Set of pickup nodes

D Set of delivery nodes

N PUD

A% NuUsUe

K Set of vehicles

A Set of arcs

GH Set of ground handlers
FF Set of freight forwarders
M Set of docks

C Set of stacks in a truck
R Set of locations in a stack

3.2 Arc Generation Process

As mentioned before, the pickup nodes are located at freight forwarders and delivery nodes at the ground
handlers. The formulated model does not allow for horizontal collaboration between freight forwarders. There
are two methods to prevent a truck from visiting multiple freight forwarders. First of all, the set of arcs could
be generated between all nodes in the set V and additional constraints are introduced which do not allow a
truck to visit multiple freight forwarders. This method has the disadvantage that the number of arcs is high
and additional constraints should be introduced to prevent trucks from visiting multiple freight forwarders.

Another approach is to create the set of arcs accordingly to the nature of the problem. Arcs between freight
forwarders are not included in the set of arcs and thus no additional constraints are needed. In total, seven
type of arcs should be generated. 1) Arcs from pickup nodes to other pickup nodes within the same freight
forwarder. 2) Arcs from delivery nodes to other delivery nodes within the same ground handler. 3) Arcs from
delivery nodes to other delivery nodes within another ground handler. 4) Arcs between pickup nodes in the
freight forwarder to delivery nodes in the ground handlers. 5) Arcs from the start depot node to the pickup
nodes. 6) Arcs from the delivery nodes to the end depot node. 7) Arcs from the start depot node to the end
depot node. This approach is used in the MILP formulation presented later. Therefore no additional constraints
are introduced that prevent a truck from visiting multiple freight forwarders.

In addition to that, non feasible arcs with respect to time windows are excluded from the set of arcs. If
A; + C; + T;; > By, the combination between node i and j is not feasible and the arc is not included in the set
A.

3.3 Decision Variable Overview

In Table 3 the decision variables of the proposed model are presented. The binary decision variable is xfj

represents if vehicle k travels from node i to j. At time t;, the service of node i will start. The time at which
servicing node i is finished, if thus equal to: t; + C;. If a truck arrives at the ground handler before a dock is
available or before the start of a time window, the truck has to wait at the ground handler before service can
start. This waiting time of truck k at ground handler gh is represented by w’g“h. The arrival time and departure

time of truck k at ground handler gh is represented as a’;h and d’;h respectively. The start of docking at a ground

handler is thus equal to a’;h + w’;h. If the docking time of truck k’ is larger or equal than the departure time plus
the fixed buffer time of truck k from the same ground handler gh, this implies that these trucks can be served at

the same dock consecutively. This is represented by the binary variable h’;;lk/. If a truck has to wait at a freight
forwarder or ground handler between servicing two nodes, inter-node time is introduced and represented as v;.
Truck assignment to docks is done using the variable gy ,, which implies that truck k is assigned to dock m.

The variable 2%, is equal to 1 if truck k is assigned to dock m and truck k’ to dock m’. The decision variable

m,m

yf’c is equal to 1 if pickup node i is assigned to stack c in truck k. The parameter ¥ and I* represent, the

i,c i,c
load of stack ¢ in truck k before and after servicing node i respectively. The binary variable pf) jc equals 1if 1
k

and j are both assigned to stack c in vehicle k and i directly precedes j in the route. The binary « variable

i,c,T,
defines if pickup node i is assigned to location (c,r) in truck k. The variable Bfmn describes if location (c,r) in
truck k is directly accessible from the (un)loading door at delivery node n. The binary variable 'yfﬂ,’n represents
if location (c,r) in truck k is free (not used) when visiting delivery node n. Finally, 6%

% orn Dresents if location
(c,r) is side-accessible via stack ¢’ in truck k.



Table 3: Decision variables used in the linear model

Variables Type Explanation
zy Binary Equals 1 if vehicle k travels from node i to node j
t; Integer Start time of servicing node i
wkh Integer Waiting time of truck k at ground handler gh
a’gh Integer Arrival time of truck k at ground handler gh
d%h Integer Departure time of truck k from ground handler gh
h’;;lk/ Binary Equals 1 if arrival time + waiting time of truck k’ is larger or equal than the
departure time + fixed buffer time of truck k from ground handler gh
v; Integer Inter-node time of node i. Time before servicing another node
Qk,m Binary Equals 1 if truck k is assigned to dock m
z’;kr;, Binary Equals 1 if truck k is assigned to dock m and truck k’ to dock m’
yl’fc Binary Equals 1 if p-node i is assigned to stack c in truck k
lf . Integer Load of stack c in truck k after servicing node i
lZ“ . Integer Load of stack c in truck k before servicing node i
pﬁ e Binary Equals 1 if p-node i and j are assigned to stack c in truck k and i precedes j
af . Binary Equals 1 if p-node i is assigned to truck k at location (c,r)
L Binary Equals 1 if location (c¢,r) in truck k is accessible directly from the loading door
- at d-node n
Ve m Binary Equals 1 if location (c,r) in truck k is free (not used) at d-node n
55,,0,“” Binary Equals 1 if location (c,r) in truck k can be side-accessed from stack ¢’

3.4 CPDPTW-SAL MILP Formulation

min 7y Z ZTijxfj—FZCi—l—Z Z wlgch—ka,- + 7 Zfo] (1a)
keKijeA 1€EN keK ghe GH i€V keK jeP

S.t.

S ak=1 VieP, (1b)
kEK jEN

Sal =Y ak VieP VkeK, (1c)
jeV JEV

> oak = ak, VieN VkekK, (1d)
i€V i€V

> oaki=1 vk € K, (le)
JjePUe

> oaf =1 Vk € K, (1f)
i€DUs
tip>ti+Ci+ Ty — M (1—af) Vk €K Vij € Agn Vgh € GH, (1g)
tp >t +Ci+ Ty — M (1—al) VkeK Vije Ag VYffeFF, (1h)
ti>ti+Ci+ Ty — M (1—af) +wh,Vj€Dgn Vie N\Dgn VkeK Vghe GH, (1i)
tj <ti+Ci+ Ty +M(1—a};) +wk,Vj€Dgn Vic N\Dg, VkeK Vghe GH, (1j)
t; < A; Vi € N, (1k)
t; > B Vi e N, (11)
ag, > ti+Ci +Tij — M (1 — f)) Vj € Dgn Vi€ N\Dg, Vke€K Vghe GH, (1m)
akp <ti+Ci+Tij + M (1—af)) Vj€Dgn Vic N\Dg, VkcK Vghec GH, (1n)
by, >t +Cy — M (1 — afy) Vi €Dgn Vj€V\Dgn VkcK Vghe GH, (10)
by, <ti+Ci+ M (1—afy) Vi € Dgn Vj€V\Dgn Vke€K Vghe GH, (1p)
aky +why > db + T, — M (1 - h’;;f") ViK' €K |k#K Vghe GH, (1q)
ab, +wh < dby + Ty + M (h‘;;f') Vk, K €K |k#K Vghe GH, (1r)
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It should be noted that although not specified in the formulation, the set of arcs has been generated as
k

advised in section 3.2. Therefore, if an x;; variable is introduced in a constrain, one should always check if
the arc (i,j) exists in the set of arcs. When implementing the formulation in a programming environment, this
should always be done but has been left out in the formulation above for clarity.

Equation 1a is the cost function consisting of 5 terms. The four terms which are multiplied by 7 are time
related. The first term is the sum of all travel times. The second term is the process time of all nodes. The
third term is the sum of all waiting times at the ground handlers. The fourth term is the sum of all inter-node
times. These four terms are the total time duration of the solution. The term multiplied by 75 represents the
active arcs from the start depot to a pickup node, which is equivalent to the total number of trucks used.

Equation 1b assigns each pickup node to a truck. Equation lc ensures that if a pickup node is visited by
vehicle k, the same vehicle visits the delivery node. In Equation 1d the flow conservation over a node is ensured.
Equation le and Equation 1f ensure that each vehicle starts and ends at the depot respectively. Equation 1g
defines the time variable within ground handler arcs. Equation 1h defines the time variable within freight
forwarder arcs. Equation 1i and Equation 1j define the time variable into a ground handler from a freight
forwarder or another ground handler and introduce the waiting time variable. The time window constraints
are introduced by Equation 1k and Equation 11. In Equation 1m and Equation 1n the arrival time of a truck
at a ground handler is introduced. The departure time of a truck from a ground handler is introduced by
Equation lo and Equation 1p. In Equation 1q and Equation 1r the binary overlap variable is turned on or off.
If the arrival time plus the waiting time of truck k’ is larger or equal than the departure time plus the fixed
buffer time of truck k, this variable is turned on. The inter-node time at ground handlers and freight forwarders
is introduces in Equation 1s and Equation 1t respectively. In Equation 1u the dock assignment parameter is
assigned if the truck travels to a ground handler. Equation 1v, Equation 1w and Equation 1x enforce the z
variable to have the right value. Equation 1y ensures that trucks assigned to the same dock do not overlap.

In Equation 1z the pickup node is assigned to one stack if the node is picked up by a vehicle. The symmetry
is broken by introducing Equation laa which ensures that the first node that is visited is always assigned to the
first stack. Equation lab and Equation lac ensure that the load parameter is updated for the pickup nodes.
Equation lad and Equation lae do the same for the delivery nodes. This extra set of constraints is needed as
yl’fc is only defined for the pickup nodes. Equation laf ensures the capacity of the stacks is never exceeded.
Equation lag and Equation lah assign the variable which represent the load of a node before servicing the node.

The following constraints are relevant for the LIFO loading constraints in the pickup route. Equation lai
and Equation laj ensure that each stack-route starts and ends at the depot. In Equation lak all nodes are
placed in the right stack-route, based upon the assigned stack. Equation lal ensures the flow conservation in
the stack-route parameter. The order of the nodes in the stack-route parameter is ensured by introducing the
time parameter as is done in Equation lam. The first node which is visited by a stack in the pickup route has
to be assigned closest to the driver cabin, which is ensured in Equation lan. In Equation lao it is ensured that
each location in the stack can be occupied by at most one node. In Equation lap it is ensured that a pickup
node is assigned to the right stack as previously introduced. Finally, the right order within the stacks is ensured
by Equation laq. If the right hand side of this equation is equal to zero, this implies that ¢ and j are assigned
to stack ¢ and that i is the predecessor of node j. This also implies the left hand side of the equation needs to
be zero. Therefore, the first and second term should both be zero or both be one. If i is assigned to location
(c,r-1), this thus means that j has to be allocated to location (c,r). If 7 is not allocated to (c,r-1), j cannot be
assigned to location (c,r).

The following constraints are relevant for the LIFO loading constraints in the delivery route. If the load
of a stack before servicing is less or equal than r, this means that the location is directly accessible. This is
ensured in Equation lar and Equation las. The + 0.1 value in Equation lar is introduced to break ties where
[ = r. If the load of a stack before servicing is less or equal than r-1, this means that the location is free. This
is ensured in Equation lat and Equation lau. Again, the + 0.1 value in Equation lat is introduced to break
ties where [ = r — 1. The side-accessible parameter is turned on if an adjacent stack has a free spot at the same
r-location. This is ensured in Equation lav. Side access is only allowed for adjacent stacks and is ensured in
Equation law. Finally, in Equation lax the side-accessible LIFO constraint is satisfied. This implies that each
delivery node should be accessible directly from the unloading door and/or it should be side-accessible. Finally,
Equation lay, Equation laz and Equation 1ba define the nature of the decision variables.

When using the no-LIFO model variant, Equation lax is simply relaxed. If the strict-LIFO model variant
is considered, this means that Equation lax is changed to Equation 2. In this equation, the side-accessible
component is not included.

af < Bk VieP VYceC VreR VkeK (2)

c,ri+n
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3.5 Stack-Routing Formulation

In the previous formulation, the p¥ . j. variable indicates if pickup node i and j are assigned to stack c in truck
k and i directly precedes j. This formulation is introduced to allow for the right allocation of the af ., variable
as is done in Equation laq. What is done in the pi’j’c variable, is represented in the Figure 2

— Pickup Route Truck K
| - Pickup Route Stack C

--——- Pickup Route Stack C'

P e

- = o

Ao
- - Node 5 -=Lo - Froe - Node 2

1 1
1 1
1 1
1 1
1 h 4

Node 4 H Node 3
A T

Figure 2: Stack-route representation for a two stack system

First of all, Truck K travelled the pickup route: [1, 2, 3, 4, 5, 6] and the truck is based on a two stack
system. For each stack, an individual route is created. The truck route and the stack-routes starts and ends
at a depot node (represented in the figure as ’StartNode’). In this case, this means that two stack-routes are
created. The route of Stack C, is represented as: [3, 4, 6]. For Stack C’, this route is: [1, 2, 5]. Due to this
additional variable, it is known over what order the nodes are visited in the pickup route for each individual
stack. With the introduction of Equation laq, the af . is correctly assigned. If this constraint would not have
been implemented, the ordering of shipments for each 1nd1v1dua1 stack cannot be done in the right way.
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4 A Large Neighborhood Search Approach

A meta-heuristic method is set up that is based on of a large neighborhood search. First of all, in section 4.1
the general outline of the heuristic is presented. After that, in section 4.2 an overview of all heuristic moves
is presented. Finally, in section 4.3 the side-accessible feature in the heuristic model is presented. It should
be noted that when generally stated that ’a node is inserted or removed’, this implies that the pickup and
associated delivery node are both inserted or removed. If specifically the pickup or delivery node is meant, this
is explicitly stated.

4.1 General LNSA Approach

The heuristic algorithm consist of three phases. 1) Start Phase, 2) Repair Phase, 3) Improvement Phase. The
purpose of the Start Phase is to create routes where only the time window constraint of the pickup and delivery
nodes is considered. If a node cannot be inserted into an existing route, a new truck is initialized for the node.
At the end of the start phase, the dock capacity constraint and loading constraints are checked. If a route is not
feasible with respect to dock capacity, the entire route is removed and the nodes from the route are inserted in
the requestbank. If a violation is found for a route in the loading constraint, one random node from the route
is removed. The loading feasibility is rechecked and nodes are removed until a load-feasible route was found.
The removed nodes are inserted in the requestbank.

The requestbank and solution from the start phase are forwarder to the Repair Phase. The goal of this phase
is to create a feasible solution where all nodes are implemented and no dock or loading constraint violations are
present. This outcome is the initial solution and used for improving the solution in the next phase. If the start
phase algorithm was already dock-, and load-feasible for all routes, the repair phase is thus not needed. For
all requests in the requestbank it is tried to implement it in the current solution. This time, the dock capacity
and loading constraint are considered immediately. If a feasible implementation position is found, the request is
implemented in the solution and removed from the requestbank. If implementing a node from the requestbank
in the current truck routes is not possible, it is tried to create a new truck for this node. At the end of the
repair phase, a feasible solution is created that satisfies all constraints and has implemented all requests. The
solution produced in the repair phase is thus the initial solution.

The Improvement Phase aims at improving the solution from the Repair Phase. This is done by a series
of heuristic moves which are described in more detail in the next section. First of all, S; is the best known
solution at that moment in the algorithm, with associated best known cost, C. Before an iteration, the start
solution is referred to as S,, with cost C,. The solution after one heuristic move (one iteration) is referred to
as Sy, with cost C,,. After an iteration is performed, the start solution for the next iteration is updated using
the simulated annealing accepting criteria. If C,, < Cp, Sy is set to S,,. If C), < C,, S, is used as the start
solution in the next iteration. If C,, > C}, the simulated accepting criteria determines the start solution for
the next iteration. To prevent the solution from iterating for large number of iterations on a solution which is
not optimal, it is enforced that the algorithm takes the best known solution as the start solution for the next
iteration if an improvement was not found in the last ten iterations.

4.2 Heuristic Moves

This section will present the heuristic moves that are used in the large neighborhood search algorithm.
¢ Remove and Implement Move

— Removal Moves

x Worse Remouval
In the worse removal heuristic move, the node with the highest cost in the solution is selected
and removed from the route. The node is implemented in another position in a route at the
position where the cost is the lowest. The worse node is selected as follows. First of all, the cost
of the current route containing the node, f,., is computed. The node is then removed from the
solution and the cost of the new route is equal to f,,. The difference between f,. and f, is the
benefit of removing node n from the solution, and thus the cost of the node and is represented
by ¢,. This is done for all nodes and the node where ¢,, is the largest, is labelled as the worse
node in the solution and is removed. The removed node is inserted in the requestbank.

* Random Remowal
In the random removal heuristic move, a random node is selected and removed from the solution.
The node is inserted in the requestbank.

— Implementation Move
No horizontal collaboration is allowed between freight forwarders, so the node can only be imple-
mented in trucks that are already departing from the same freight forwarder where the node is
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located. For each node in the requestbank a set of vehicles is constructed that depart from the
corresponding freight forwarder. For these vehicles, it is tried to implement the pickup and delivery
node at all feasible positions. For each combination, the loading constraints are checked immediately.
If the loading constraint is satisfied, the dock capacity constraint is checked. If a feasible implemen-
tation location is found, the implementation option is stored with the associated solution cost. After
setting up all feasible implementation options, the option is selected where the total solution cost is
the lowest. If no feasible position was found in the current vehicles, a new truck is initialized and it
is tried to implement the node in this new truck. If the node was implemented in the existing set of
vehicles, or in a new truck, the node is removed from the requestbank. If no feasible implementation
position was found, the node is kept in the requestbank for a later iteration. The new found solution
will then probably not be accepted since a missed delivery introduces a significant penalty.

e Merge Trucks

Two trucks are selected that pickup nodes from the same freight forwarder. It is tried to merge these routes
into a single truck. For data instances where strict time windows are included, all feasible combinations
with respect to the time windows are tried. If a feasible combination is found, the algorithm is stopped
and the combination is accepted. If the data instance does not have strict time windows, not all feasible
combinations are tried, because there would be too many to compute in a reasonable time span. For
that reason, the pickup nodes are sorted according to their time windows. The delivery nodes are also
ordered according to their time windows within a ground handler. The possible combinations to visited
the ground handlers are then determined and it is tried to find a feasible combination.

Destroy route and rebuild
A random vehicle is selected and the entire route is removed. This implies that all nodes visited by
the vehicle are inserted in the requestbank. To implement the requestbank, the previously explained
Implementation Move is used.

Change two nodes in one freight forwarder

A freight forwarder is selected where at least two vehicles are departing from. From each vehicle, a node
is randomly selected. The selected nodes are changed between the two trucks. In Figure 3(a) an example
is presented of two trucks departing from the same freight forwarder. It should be noted that S represents
the start depot node and E the end depot node. The 1T node represents the pickup node of ULD item
1 and 1~ represents the delivery node. In Figure 3(b) the move is visualized where node 1 and 3 are
changed between the two trucks.

Change two nodes in one route

A random vehicle is selected that has at least two pickup nodes in the route. Two pickup nodes are
randomly selected from the route. The location of the two pickup nodes is then switched. A visual
representation of this heuristic move is presented in Figure 3(c). In this specific case truck I is selected
to undergo the ’change two nodes in one route’ move.

Truck 1 Truck 1
S » 1t » ot » 2 > » E S > 3* » ot » 2 > 3 > E
Truck 2 Truck 2
S » 3t » 3 » E ) » 17t » 1 » E
(a) Original truck route for two trucks (b) Change two nodes in one freight forwarder
Truck 1
3 » ot » 1t » 2 » 1" » E

(c) Change two nodes in one route

Figure 3: Change two nodes in one route and in one freight forwarder heuristic visualization

¢ Change ground handler dock

To prevent situations where the assignment of docks to trucks is not optimal, this heuristic move is
introduced. In this move, it is checked if another dock at the same ground handler is available for a truck.
If this is the case, the assigned dock is changed. This heuristic move allows another truck to be assigned
to the dock which got available. In Figure 4(a) a situation is presented where truck 4 has to be assigned
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to one of the docks but a feasible position cannot be found. If the ’change ground handler dock’ heuristic
is applied, truck 2 is moved to dock 2. Truck 4 can then be implemented in dock 1 as is visualized in
Figure 4(b).

Truck 4
Dock 1 Truck 2 Dock 1 Truck 4
Dock 2 Truck 1 Truck 3 Dock 2 Truck 1 Truck 2 Truck 3
Time Time
(a) Before change ground handler dock heuristic (b) After change ground handler dock heuristic

Figure 4: Change ground handler dock heuristic visualization

e Split Truck
This heuristic is used to diversify the search and create better solutions for specific data instances. This
heuristic move is especially relevant for models where the objective function is solely time based, and no
additional fixed cost per truck is charged. A random truck is selected and in its route a random node is
selected. This node is removed from the current route and a new vehicle is initialized for the node.

4.3 Side-Accessible LIFO constraint

The side-accessible LIFO constraint is introduced in the model by checking the pickup and delivery route of a
vehicle. In Figure 9 (presented in Appendix A), a structured method to generate all feasible loading patterns is
presented. This tree is based on a truck with two stacks where each stack has a capacity of three. The pickup
route of the truck is simply: [1, 2, 3, 4, 5, 6]. If a location is represented by N, this means that the location is
not used. It can be observed that a total of ten unique loading patterns are feasible for this pickup route.

The next step is the delivery route of the vehicle. For the delivery route, each unique loading pattern is
checked. If a feasible loading pattern for the delivery route is found, the iteration is stopped and the route is
thus load-feasible. For example, the delivery route is: [6, 5, 2, 1, 4, 3]. If the model variant is the strict-LIFO,
this implies that only pattern 7 and 8 are load feasible. If Side-Accessibility is also allowed, this implies that
pattern 4 is also load feasible. If the delivery route [2, 1, 6, 5, 4, 3] is considered, no feasible loading pattern can
be matched to this route (for the strict-LIFO and side-accessible LIFO model variant). This implies that the
combination between this pickup and delivery route is not feasible and the route is not accepted. The no-LIFO
model does not consider any LIFO loading constraints, meaning that all pickup and delivery route combinations
- that do not exceed the truck capacity - will be accepted.
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5 Results

This section presents the results of the CPDPTW-SAL formulation. First of all in section 5.1 the study area,
Schiphol Airport, is presented. In parameters for the objective function are determined in section 5.2. The
comparison between the MILP formulation and meta-heuristic is presented in section 5.3. In section 5.4 the
benefit of the side-accessible model variant is presented. Finally, section 5.5 presents the sensitivity analysis of
the results.

5.1 Study Area

The study area that is used for this work is the Schiphol Airport area. In this area, five freight forwarders and
five ground handlers are considered, presented in Table 4. The locations of these freight forwarders and ground
handlers are presented in Figure 5. In this figure, freight forwarders and ground handlers are represented in
blue and red respectively. In the remainder of this work, data instances will be referred to as n-ff-gh. In this
formulation, n represents the number of shipments in that data instance. In addition, ff and gh refer to the
number of freight forwarders and ground handlers respectively. It is assumed that each ground handler has two
docks available. The locations of the freight forwarders and ground handlers are based on their longitudinal and
latitudinal coordinates. The travel time between two locations is computed using the OpenStraatMap database.

Table 4: Freight Forwarder and Ground Handler location

Freight Forwarder Ground Handler

DHL Global Forwarding (DHL) KLM Ground Handling (KLM)
Expeditors International Forwarding (EX) Dnata (DNT)

Kuehne Nagel (KN) Menzies (MNZ)

DB Schenker (SCH) Worldwide Freight Services (WFS)
UPS (UPS) Swissport (SCS)
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Figure 5: Location of freight forwarders (blue) and ground handlers (red)
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5.2 Objective Function Parameter Determination

Two type of objective functions are introduced. First of all a time-based objective function. This is the
summation of the duration of all individual routes. In the cost-based objective function a fixed cost is introduced
for each additional truck that is used.

In the research of [Engholm et al., 2020] an in depth economic analysis is made for driverless operations of
trucks. It starts by stating the cost of current trucks which are driven by humans and the information below
is deducted from that. The following cost are incorporated in this work. For this model, only the driver wage
is included as a time dependent cost and is equal to $27.04/hour, which is $0.45/min. The cost of dispatching
an additional truck is based on the acquisition cost of the truck ($170,000) with a ownership period of 8 years.
The residual value of the truck can be derived from the values in [Engholm et al., 2020] and was estimated to
be approximately $12,500. It is assumed that a year has on average 260 working days. From Equation 3 is can
be concluded that the cost per working day is thus equal to $75.72/day.

170000 — 12500
8- 260
In addition to that, [Engholm et al., 2020] mention other fixed cost such as insurance and taxes. These costs
are equal to approximately $9500/year, which is $36.54/day. In total, the cost of dispatching truck is thus equal
to $112.26/day. It is realistic to assume that each dispatched truck services one route per day, and thus each
truck has a fixed cost of $112.26. When referring back to the objective function, Equation la, 71 is thus equal
to $0.45 and 7 is equal to $112.26.
The cost of dispatching an additional truck is not included in the time-based objective function. This means
that only the time duration of a route is included. The cost of the solution can then also simply be stated as
minutes.

= $75.72/day (3)

5.3 Comparison MILP formulation with Meta-Heuristic Model

This section will present the comparison of the MILP formulation with the meta-heuristic model. This will be
done for both the cost- and time-based objective function. The MILP formulation of the cost-based objective
function has acceptable optimality gaps for small datasets and the optimality gap increases rapidly with increas-
ing dataset size. The MILP formulation of the time-based objective function produces acceptable optimality
gaps for medium size instances. For that reason, different datasets are presented for the different objective
functions. In the columns of the tables of this section for the MILP formulation, Cost represents the cost of
the solution. This is represented in dollars, or minutes, depending on the objective function. Gap represents
the optimality gap as a percentage. Time is the computational time of the model in seconds that were needed
to achieve the optimal solution. If the optimal solution is not found, this parameter represents the time when
the optimization was cutoff. The results for the meta-heuristic model are based on a total of five runs and
200 iterations. The Cost represents the mean cost of the solution for the five runs, in dollar or minutes. Time
represents the mean computational time that the algorithm needed to complete one run. In section 5.3.1 the
comparison between the MILP formulation and the meta-heuristic model for the cost-based objective function
is presented. The comparison for the time-based objective function is presented in section 5.3.2. The evalua-
tion of the meta-heuristic model is based on three evaluation criteria. First of all, the solution quality of the
meta-heuristic model with respect to the MILP formulation. The solution quality of the meta-heuristic method
should be in an acceptable range of the MILP formulation, or even better. The second aspect is the computa-
tional time of the meta-heuristic model. Finally, the stability of the meta-heuristic model can be expressed as
the difference between the best and worse run. The stability should also be in an acceptable range to have a
reliable outcome of the meta-heuristic model.

5.3.1 Cost Based Objective Function

This section presents the results for the cost-based objective function of small data instances. A comparison
is made between the MILP formulation and the meta-heuristic method to validate the meta-heuristic model
performance. The results are presented in Table 5.
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Table 5: Results for small size datasets on a cost-based objective function. Trucks have a two stack system with
3 locations in each stack.

No-LIFO Side-accessible LIFO Strict-LIFO

MILP Meta-heuristic MILP Meta-heuristic MILP Meta-heuristic
Dataset | Cost Gap Time | Cost Time | Cost Gap Time | Cost Time | Cost Gap Time | Cost  Time
10-3-3 497.2 0 115 4974 23 4972 0 109 497.2 24 4972 0 146 497.4 22
11-3-3 518.0 0 235 518.9 38 5180 0 298 518.2 42 5180 0 233 519.8 36
12-3-3 500.4 3.1 3600 500.7 91 500.4 0 308 500.4 85 520.2 0 963 520.2 103
13-3-3 663.1 0 758 663.1 55 663.6 0 532 663.6 54 780.8 9.2 3600 | 784.7 58
14-3-3 531.0 0.6 7200 532.6 73 531.0 1.8 7200 | 532.9 67 531.0 0 6641 533.7 76
15-3-3 645.5 21.9 10800 | 657.0 124 645.5 29.9 10800 | 654.6 146 655.9 32.7 10800 | 661.1 134
16-3-3 686.5 23.0 10800 | 691.0 133 685.6 22.5 10800 | 687.7 131 685.6 22.5 10800 | 687.5 146

It can be observed from Table 5 that the solution quality of the meta-heuristic is in range of the MILP
formulation. If the meta-heuristic model solution is not equal to the solution of the MILP formulation, the
maximum difference between the two models is approximately 1.8%, which is assumed to be very good. In
terms of computational time, it can be observed that for all datasets and model variants the meta-heuristic
model outperforms the MILP formulation. The stability of the five individual runs is not presented in this table
due to limited table size, but the difference between the runs for this small data instance is on average 0.74%,
which is assumed to be acceptable.

In data instance 12-3-3 is becomes clear that the benefit of the side-accessible model variant is about 3.8%
with respect to the strict-LIFO model variant. No extra truck is required in this strict-LIFO model variant,
but the solution still benefits from allowing Side-Accessibility. Especially interesting is to observe data instance
13-3-3 where the benefit is the side-accessible LIFO loading is about 15%. The strict-LIFO model requires an
additional truck in the solution, which comes at the cost of approximately $110, as calculated in section 5.2.
For the other data instances, no significant benefit of the Side-Accessibility was observed.

It can also be observed that the optimality gap of the model increases rapidly with data instance size. Although
it is expected that the best solution found in the exact model is close to the optimal solution, this cannot be
proofed because the optimality gap is unacceptable large. In Figure 6(a) the development of the upper and lower
bound of the exact model are plotted. In addition to that, one of the meta-heuristic model runs is presented.
In Figure 6(b) the development of the five individual runs is presented with respect to the number of iterations.
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Figure 6: Results for the side-accessible model variant for the 15-3-3 data instance with a cost based objective
function

From Figure 6(a) it can be observed that the MILP lower bound is increasing very slowly over time. It is
expected that this slow increase is mostly due to the the fact that a fixed cost is introduced for each additional
truck that is used. Increasing the size of future data instances will thus not give reliable results. It is concluded
that the meta-heuristic model performs well for cost based objective function in terms of solution quality,
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computational time and stability. For larger data instances, the meta-heuristic model can thus be used. The
next section will show that the meta-heuristic model also provides reliable results for the time-based objective
function. In Figure 6(b) it can be seen that after 200 iterations the improvement of the solution has stabilized
and thus no more iterations are needed.

5.3.2 Time Based Objective Function

From the previous section is was concluded that the meta-heuristic model performs well for the cost-based
objective function on small data instances. To validate the meta-heuristic model for larger data instances,
the time-based objective function is introduced. In Table 6 the performance of the exact and meta-heuristic
model is compared for medium sized data instances. Again, the results are based on the average results of five
runs. For data instances with 25 ULDs or more, it was decided to increase the number of iterations to 300.
In addition to that, from now on, end time windows at the freight forwarders and start time windows at the
ground handlers are relaxed. This simulates the most realistic scenario where a pickup node only has a start
time window, describing the time at which it is ready for picking up. The delivery nodes only have an end time
window, describing the time at which it should be at the ground handler to be on time for its scheduled flight.
For the medium-to-large data instances with these specific time windows, new data instances were generated.
The 15-3-3 data in this section is therefore slightly different than the one presented in the previous section.

Table 6: Results for medium size datasets on a time-based objective function. Trucks have a two stack system
with 5 locations in each stack.

No-LIFO Side-Accessible LIFO Strict-LIFO
MILP Meta-heuristic MILP Meta-heuristic MILP Meta-heuristic

Dataset | Cost Gap Time | Cost Time | Cost Gap Time | Cost Time | Cost Gap Time | Cost  Time
15-3-3 429 12.3 7200 | 431 126 429  12.1 7200 | 430 178 429 12.4 7200 | 431 440
17-3-3 492 10.2 7200 | 493 188 496 109 7200 | 498 433 502  11.8 7200 | 506 436
20-3-3 585 9.1 18000 | 575 498 592 10.1 18000 | 575 521 596  10.7 18000 | 587 1198
25-3-3 693 12.0 43200 | 678 2373 698  12.6 43200 | 686 2779 2779 154 43200 | 694 3605
30-3-3 - - 43200 | 813 2128 - - 43200 | 813 1825 - - 43200 | 820 2267
30-4-4 - - 43200 | 867 1934 - - 43200 | 871 2267 - - 43200 | 870 3371

From Table 6 it can be concluded that the solution quality of the meta-heuristic model is very close to the
MILP formulation for all data instances. If the MILP formulation performs better, the difference is very small
and acceptable. For some other data instance, the meta-heuristic even outperforms the MILP formulation. For
data instances with 30 ULDs or more, the MILP formulation could not find a feasible solution in the allowed
iteration time of 12 hours. The meta-heuristic method was however capable of finding a solution in an acceptable
computational time duration. The computational time of the meta-heuristic is always a fraction of the MILP
formulation. Again, the stability of the model is not presented in the table due to table size. In section 5.5.1
the full table for these results are presented and it is shown that the difference between the Min and Max of
the 5 individual runs is limited to 2.0%, which is assumed to be acceptable. The benefit of the side-accessible
model variant is present in most data instances, but not as significant as in the cost-based objective function.
This will be elaborated in the sensitivity analysis of this section, presented in section 5.5.

From this section it is concluded that the meta-heuristic model performs well on the three identified criteria
with respect to the MILP formulation. The solution quality is close to the MILP formulation and for larger
data instances better than the MILP formulation. In terms of computational time, the meta-heuristic model
also outperforms the MILP formulation. The stableness of the model is also within an acceptable range. The
meta-heuristic model is thus assumed to be working reliable for both the cost- and time-based objective function.

5.4 Side-Accessible LIFO Model benefit

This section will present a more detailed analysis of the benefit of the side-accessible model with respect to the
strict-LIFO model variant. In Table 7 an overview of medium to large size data instances is presented on a
cost-based objective function. The results from now on are based on the meta-heuristic model because larger
data instances cannot be solved by the MILP. In this table, the full range of results are presented which is based
on 5 individual runs. In this table, Min represents the solution with the minimum costs which was found by
the meta-heuristic. Mean represents the mean solution cost of all 5 runs and Max presents the solution cost
of the worse solution. Finally, Time represents the mean computational time for the 5 runs in seconds. The
most right column, Benefit SA, represents the benefit of the side-accessible model variant with respect to the
strict-LIFO variant. The benefit is calculated based on the best solution which was found by the meta-heuristic
for each of the model variants. This is done to prevent assigning a too large benefit to the side-accessible model
variant, which could be the case if the mean value is taken. It is believed that this approach represents the
benefit of the side-accessible model variant as fair and realistic as possible.
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Table 7: Results for medium to large size datasets on a cost-based objective function for the meta-heuristic
model. Trucks have a two stack system with 5 locations in each stack.

No-LIFO Side-Accessible LIFO Strict-LIFO Benefit SA
Dataset Min  Mean Max Time Min  Mean Max Time Min  Mean Max Time %
15-3-3 642.8 643.1 643.3 71 642.8 643.6 645.5 100 643.7 756.3 870.5 343 0.1
17-3-3 559.4 582.6 674.8 144 674.4  675.1 675.7 301 675.7 743.7  790.7 469 0.2
20-3-3 708.6 710.0 714.9 405 708.6 708.6 708.6 375 824.5 872.6 941.7 572 14.1
25-3-3 981.8 1007.6 1098.6 2165 875.4  984.2 1096.3 2026 985.9 1098.2 1215.3 2676 11.2
30-3-3 | 1148.6 1152.8 1155.8 1595 | 1150.9 1154.3 1159.4 1755 | 1266.3 1318.7 1499.4 2432 9.1
30-4-4 | 1176.5 1207.5 1309.1 1616 | 1173.8 1180.6 1188.7 1704 | 1287.0 1369.2 1435.3 2357 8.8
35-3-3 | 1208.1 1351.1 1450.2 2083 | 1326.2 1397.7 1446.1 2378 | 1330.3 1396.6 1440.7 2739 0.3
35-4-4 | 1456.5 1502.8 1572.8 2233 | 1459.2 1482.3 1567.0 2211 | 1459.7 1639.7 1801.4 2983 0.0
40-4-4 | 1614.7 1686.3 1739.2 2452 | 1614.3 1687.0 1736.5 2569 | 1842.9 1849.0 1856.8 3171 12.4
50-5-5 | 2102.5 2236.4 2330.2 6034 | 2098.9 2234.8 2335.1 4791 | 2433.9 2532.1 2680.5 6315 13.8

First of all, the stableness of the model is looked into. The average difference between the minimum and
maximum run is 10.6% which is assumed to be acceptable. It should be noted that the stableness of the model
might seem to be performing worse than presented in section 5.3. It is expected that this is due to two reasons.
First, the size of the data instances is increased. Intuitively, it is expected that the variance of the solution
quality increases if the size of the instance is increased. The second reason is the fixed cost per truck which is
introduced in the cost-based objective function. Only if all runs per data instance and model variant come to
the exact same number of trucks, the difference in solution quality could seem to be acceptable. Especially for
larger data instances, this behaviour is difficult to implement in the meta-heuristic. It is however concluded that
the average difference between the minimum and maximum of the runs is in an acceptable range for reliable
results. Especially since the benefit of the side-accessible model variant is based on the best run.

If the Benefit SA column it studied, it should be noted that for all data instances the benefits of the side-
accessible model variant is larger or equal than zero. This is in line with the expectations as the side-accessible
model variant should always perform the same or better than the strict-LIFO model variant. It is also visible
that the SA-benefit fluctuates per data instance and no average percentage can be determined. The benefit
of the side-accessible model variant for most data instances is mostly due to an extra truck which is required
in the strict-LIFO model variant. This fixed cost per truck introduces significant benefit of the side-accessible
model variant in some data instances. If the SA-benefit is close to zero, this indicates that no additional truck
is required between the two models variants. If an additional truck is used in the strict-LIFO model variant,
the benefit of the side-accessible model variant is usually in the order of 10%.

It is however difficult to predict what data instances will benefit from the side-accessible model variant. The
combination of time windows, freight forwarder location, ground handler location and number of ULDs per
freight forwarder or ground handler seem to have an impact on the benefits of the side-accessible model variant.

In Appendix B the development of the solution cost is plotted for the 20-3-3 data instance. In Figure 10
this is done for the cost-based objective function. It can be seen that there are clear jumps down when the
iterations are increased. If a jump down decreases the solution cost about $120, this means that a new solution
was found where the number of trucks is reduced by one. In Figure 11 the development of the solution cost
is plotted for a time based objective function. It should be noted that the scale on the y-axis of this plot is
zoomed in a lot further than the cost-based objective function. Also in this data instance, a step down approach
can be observed. But for this objective function there are no clear jumps of removed trucks visible. For both
situations it can be seen that the five individual runs have found a stable plateau after the 200 iterations. It is
thus assumed that for data instances with this size, 200 iterations is enough. For data instances with 25 ULDs
or more, it was decided to increase the number of iterations from 200 to 300. This was done after analyzing
the results and it was concluded that in some cases 200 iterations is not enough. In Figure 12 the development
of the 40-4-4 data instance is presented that is on a cost-based objective function. Again, each run shows clear
plateau’s and jumps down if a truck is removed from the solution. In Figure 13 the plot is presented for the
time-based objective function. Due to the nature of this objective function, no clear plateau’s and jumps are
present. This is in line with the expectations. After 300 iterations the runs have stabilized and if a better
solution was found recently, the increase is only very limited. It is concluded that 300 iterations in a good
trade-off between computational time and solution quality.

In Figure 14 (presented in Appendix C) the solution for the 35-3-3 data instance is presented. This figure is
presented to give an idea on the final routing of a medium sized data instance. In this figure freight forwarders
are represented by the grey horizontal bars and each ground handler is given an individual colored bar where
the different docks are separated by the dotted line in the middle of the bar. Each line represents an individual
truck route. The numbers above the line represent the ULD node ID. The small vertical lines represent the
start and end time at which the node is serviced. At the side of the ground handlers, it should be noted that
no trucks overlap at a dock. In addition to that, after each trucks leaves the ground handler, a fixed buffer
time (15 minutes) is introduced before another truck can arrive. At the side of the freight forwarders, it can
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be seen that there is some overlap between different trucks. This is however acceptable as freight forwarders
are responsible for their own truck schedule and no docking constraints are introduced to these locations. The
solution from Figure 14 is also (partly) presented in Figure 15 as a plot in the Schiphol Airport area. It should
be noted that not all routes are plotted, due to visual purposes. Only the routes that can be combined best for
visual purposes are presented in this graph.

5.5 Sensitivity Analysis

This section presents the sensitivity analysis of the results and the impact on the benefit of the side-accessible
model with respect to the strict-LIFO model variant. First of all, in section 5.5.1 the sensitivity analysis with
respect to the chosen objective function is presented. After that, in section 5.5.2 the sensitivity analysis with
respect to truck capacity is presented.

5.5.1 Objective Function

This section presents the results for the same data instances as in Table 7, but this time the objective function
is time-based and not cost-based. The results are presented in Table 8. It should be noted that the Mean results
presented in Table 8 correspond to the values for the meta-heuristic presented in Table 6. An overview of the
Benefit SA column for the two objective functions is plotted in Figure 7.

Table 8: Results for medium to large size datasets on a time-based objective function for the meta-heuristic
model. Trucks have a two stack system with 5 locations in each stack.

No-LIFO Side-Accessible LIFO Strict-LIFO Benefit SA
Dataset Min  Mean Max Time Min  Mean Max Time Min  Mean Max Time %
15-3-3 430.0 430.6  432.0 126 429.0 430.4  431.0 178 430.0 431.2  432.0 440 0.2
17-3-3 492.0 493.2 494.0 188 492.0 498.4 504.0 433 501.0 506.0 510.0 436 1.8
20-3-3 575.0 575.0 575.0 498 575.0 575.2 576.0 521 584.0 586.6 589.0 1198 1.5
25-3-3 672.0 677.8 688.0 2373 678.0 685.8 698.0 2779 680.0 694.0 704.0 3605 0.3
30-3-3 805.0 813.4 822.0 2128 805.0 812.8 821.0 1825 813.0 819.8 826.0 2267 1.0
30-4-4 857.0 866.8 890.0 1934 859.0 871.0 887.0 2267 862.0 870.4 883.0 3371 0.3
35-3-3 944.0 951.6 959.0 2922 937.0 949.6 966.0 2895 945.0 960.0 978.0 4918 0.8
35-4-4 980.0 991.0 999.0 3588 984.0 990.2 995.0 2806 991.0 1004.6 1013.0 6367 0.7
40-4-4 | 1075.0 1092.0 1109.0 2956 | 1077.0 1086.8 1101.0 3140 | 1089.0 1100.8 1117.0 3637 1.1
50-5-5 | 1401.0 1412.2 1423.0 4448 | 1404.0 1426.4 1449.0 5004 | 1414.0 1432.4 1442.0 4404 0.7
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Figure 7: Sensitivity analysis of objective function on the benefit of the side-accessible model variant

The average difference between the Min and Maz is equal to 2.0% for this objective function. This is
significantly smaller than the value presented in section 5.4. Because the time-based objective function does not
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introduce an additional fixed cost per truck, the model can have similar solution qualities although the number
of trucks is not the same. Using the time-based objective function thus seems to benefit the stableness of the
solution.

When the results of the two objective functions are compared in Figure 7, it is observed that the time-based
objective function is generally below the cost-based objective function. All data instances have a benefit, but it
is only limited up to 2%. The most intuitive reason for the reduced benefit of the side-accessible model variant
for the time-based objective function is that cost of additional trucks are not incorporated. A new truck can
be initialized without any additional cost. In the cost-based objective function, the solution cost significantly
increases if a new truck is initialized. The cost-based objective function thus tries to create trucks that have
a very high load factor. The time-based objective function does not necessarily do this. Instinctively, the
side-accessible model variant has most benefit if trucks are filled up close to capacity. For trucks that are only
partially filled, the side-accessible model variant is in most cases not beneficial. This behaviour is reflected in
the results of Table 8 and Figure 7 and explains why the benefit of the side-accessible model variant is generally
higher for the cost-based objective function compared to the time-based objective function.

5.5.2 Truck Capacity

This section presents determines the performance of the three model variants with respect to the truck capacity.
Instead of a separate full table with the results for each truck capacity, this time the solution cost is plotted for
the different model variants as this is the most insightful. The results are on a cost-based objective function.
If the runs are considered for all different truck capacities, the average difference between the Min and Maz
is limited to 9.1%. It is concluded that the model output is reliable to perform this sensitivity analysis. In
Figure 8 the solution cost for six different data instances is presented for the different model variants, based on
the truck capacity. The results are based on the best run of the 5 runs for each model variant. The decision to
plot the best run is made based on the same argumentation as presented in section 5.4. The trucks are based
on a two-stack system, implying that the capacity of a stack is 2, 3, 4 and 5 respectively.
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It is expected that the solution cost decreases (or stays the same) if the truck capacity is increased. A
descending trend in all lines is thus expected. In addition to that, it is expected that the no-LIFO line will be
the line with the lowest cost and the strict-LIFO line has the highest cost. The SA-LIFO model variant line
should be in between them. It is also possible that one or more lines coincide with each other. In general, it
can be observed that increasing the capacity from 4 to 6 or from 6 to 8 results in the best improvement. In
some cases, increasing the capacity up to 10 or 12 gives an additional improvement. For all data instances, it
can be observed that the no-LIFO model variant performs best, followed by the side-accessible model variant.
The strict-LIFO model variant always has the highest cost, or coincides with the side-accessible and strict-LIFO
model variant. This behaviour is in line with the expectations. For data instance 25-1-3 and 35-1-3, no clear
benefit of the side-accessible model can be observed. The lines of the strict-LIFO and side-accessible model
variant are very close to each other. For the other data instance, a clear benefit of the side-accessible model
variant can be observed for one (or more) of the truck capacities. For the 25-2-3 and 30-1-3 data instances, the
benefit of the side-accessible model is clear for a truck capacity of 12. The benefit of the side-accessible model
for the 30-2-3 data instance is at a truck capacity of 10 and 12. The 35-2-3 data instance has a clear SA-benefit
for a truck capacity of 8, 10 and 12.

From this section it is concluded that the truck capacity significantly influences the side-accessible model
variant benefit. If the truck capacity is 4 or 6, the benefit is relatively small. If the capacity is increased,
the benefit of the side-accessible model variant is more apparent. This is in line with the expectation of the
model. One can imagine that if the truck capacity is increased, the possibilities to introduce side-accessible
access to shipments in increased significantly. It is however very difficult to predict what the benefit of the
side-accessible model will be for a specific data instance and truck capacity. The pickup and delivery location
and time windows of the data instance nodes determine the possible benefit of the model.

6 Conclusion

The last few decades witnessed a rise in the volumes of air-transported cargo. This rise was not always matched
by an increase in side of the supply chain, which has fostered the creation of several bottlenecks and ineffi-
ciencies along the air cargo supply chain. In this paper, we have presented different mathematical models that
incorporate different strategies to mitigate some of those issues that affect cargo export ground operations. In
particular, we developed a model, called The Clustered Pickup and Delivery Problem with Time Windows and
Multi Stack Side-Accessible Last-in First-out Loading, that considers a set of freight forwarders and optimizes
the scheduling of their deliveries to ground handlers. Although they do not collaborate explicitly, their schedules
are optimized by a central planner in such a way that delays due to dock unavailability on the ground handler
side are minimized. In addition to that, a novel formulation is presented for the Last-in First-out constraint
that includes a side-accessible feature in the delivery route.

In our study, we considered three different variations of the Last-in First-out delivery strategy. First, no
constraints are imposed on the unloading sequence in the delivery route. Second, only the last item in a stack
is accessible. Third, side-access between stacks is allowed. Two different cost functions were considered, one
is solely based on the time duration of the total solution. The second objective function is cost-based and
introduces a fixed penalty for each truck that is used. We solved instances of different sizes with a branch-and-
bound method, and with a meta-heuristic. Data instances up to 14 ULDs could be solved to optimality by the
MILP formulation in two hours. Increasing the size of the data instance for the cost-based objective function
results in a drastic increase in the optimality gap percentage. The time-based objective function is used for data
instances up to 25 ULDs and a feasible solution was found within 12 hours. The meta-heuristic is based on a
large neighborhood search and proved to be performing well for both objective functions in terms of solution
quality, computational time, and solution stableness for multiple runs.

From a practical perspective, it was proven how side-accessibility can provide a significant reduction in cost,
especially when the cost-based objective function is considered. In fact, providing extra-flexibility in the way
deliveries are carried out might increase the load factor per truck and the routing options, hence reducing the
fleet size. A cost reduction up to 15.0% with respect to the current standard in multi-stack formulations in
literature is found. When the time-based objective function is used, the benefit is limited to 1.8%. This is easily
explained by the fact that no additional cost per truck is charged, leading to low load factors of the trucks. The
benefit of the side-accessible feature however becomes more significant if the load factor of a truck is high.

Note that, in this work, the way positions inside a trailer are defined implies some form of container stan-
dardization. This is of course true if unit load devices are considered, but it is also in line with current trends
in logistics, such as the Physical Internet, that advocate for a higher standardization of boxes and containers
when transporting freight of any kind. Hence, we believe our model to be useful in real operations and to
be applicable to paradigms such as the Physical Internet, once fully implemented. We also want to point out
that, when side-accessibility is considered, we assumed that a shipment that is side-accessible can be correctly
offloaded. This assumption should be verified in real-world operations and might pose some challenges if large
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containers are considered.

Many interesting research directions naturally stem from this research. First, from an algorithmic perspec-
tive, different solution methods could be tested to improve the solution quality of large-sized instances. One
should focus especially on designing an algorithm that is stable with respect to the number of trucks that is
used in a solution for different runs. Second, it could be interesting to add horizontal collaboration to the
model. Although it was argued this is not easily implementable in current supply chains, due to the selfishness
of stakeholders, the additional benefit of such an approach could be investigated. Third, the unique feature of
this model is that the side-accessible model variant can be introduced to a broad spectrum of applications. One
could think of the supply of stock to supermarkets for example. Researching the other practical applications
of the side-accessible feature is therefore something that could be done. Finally, while here all parameters
were considered deterministic, in real-world operations traveling times, processing times, etc., are stochastic in
nature. Although a fixed buffer time was introduced for trucks leaving the ground handlers to account for this
deterministic behaviour, it would be advisable to define a framework that can account for such variability.
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Figure 9: Truck loading pattern generation process based on pickup route: [1, 2, 3, 4, 5, 6]
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Figure 11: Development of different heuristic runs for 20-3-3 data instance for the side-accessible model variant
on a time based objective function.
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Figure 14: Time-space network for the 35-3-3 data instance for the side-accessible LIFO model variant



Figure 15: Routing of 35-3-3 data instance plotted in Schiphol Airport area. The red line represents truck 1,
blue represents truck 2, black represents truck 4, yellow represents truck 8.
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Introduction

With the availability of a large network covered by aviation, the possibility of transporting cargo by air is also
very interesting. Transporting cargo by air is a fast method for shipping long distances. In addition to that,
the time at which a shipment is departing or arriving is often known in advance because of preexisting flight
schedules. Boeing estimated that the transported cargo volume by air will increase by 4.2% each year (before
the coronavirus affected the aviation industry) [2]. Cargo can be transported either via dedicated full-cargo
freighters or in the belly of passenger aircraft. Because of international travel bans and dropped demand
due to the coronavirus, passenger aircraft movements have dropped significantly. The drop in cargo demand
has however not seen such an extreme drop as is observed for passenger transport. In the early stages of
the pandemic, medical equipment was flown all over the world. When the ’Air Transport Movements Full
Freighter Services’ of May 2020 are compared to May 2019, the movements have more than doubled [3]. The
air cargo supply chain thus needs to scale up as the pressure on it is also increasing.

In the current air cargo supply chain at Schiphol Airport, freight forwarders and ground handlers play an
importantrole. The freight forwarders receive packages from various companies and are responsible to trans-
port them to the airport. The ground handlers receive and process the shipments from the freight forwarders
which arrive by truck. From the ground handlers, the shipments are transported to the airside of the airport
onto their flight. The arrival and departure of cargo trucks at the ground handlers is thus a daily business and
a smooth operation is crucial for an efficient supply chain. The arrival of cargo trucks is however uncoordi-
nated and happens with peaks. Peaks happen at the end of a workday, just before the weekend of after the
weekend. During these peaks, the number of trucks arriving at the ground handlers exceeds the number of
available docks [4]. The problem is defined by Verduijn as follows.

“Each day, trucks are picking up and delivering cargo shipments at ground handling sta-
tions, and during certain periods it is very busy, leading to high congestion and trucking
companies having to wait in line.” [5]

Congestion or delay is undesirable and increases the cost for all parties and inconvenience for customers.
The process for delivering shipments to the ground handlers should thus be more coordinated. This can
be done by the development of a routing tool which incorporated dock scheduling to prevent the situation
described above. In this thesis, such a model is researched, developed, and evaluated. The research question
is therefore defined as follows.

What is the efficiency improvement of introducing an optimization model which
incorporates dock scheduling within the pickup-and-delivery model for the
landside air cargo supply chain?

Initially, the model will be set up as a linear model which is solved to optimality. The disadvantage of this
approach is that the problem is NP-hard and that the computational time increases drastically with dataset
size. For larger datasets, a heuristic model should be developed which produces a solution within reasonable
computational time with good solution quality. The solution quality of the heuristic can be compared for
smaller datasets with the linear model.
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The purpose of this report is to present a literature review on the proposed thesis subject. The most relevant
and recent literature on this topic is found. This is done based on the research sub-question which have been
established. This literature review is a follow up on the project plan for this thesis. In this project plan, the re-
search sub-questions have been defined, the research methods have been explained and the project planning
has been extensively discussed. At the end of this literature review, the sub-questions should be answered and
the reader is aware of the state-of-the-art literature. The knowledge gathered in this literature review can be
used for the development of the model which is done after the literature review has been completed.

The build-up of this literature review will be as follows. First of all, in chapter 2 the research problem, research
objective, and research sub-questions are presented. In addition to that, a problem example is presented
and the project planning is briefly described. In chapter 3 the current procedures in the air cargo supply
chain are presented together with efficiency improving concepts. In chapter 4 the Key Performance Indicators
are presented which can be used to evaluate a solution from the model. After that, chapter 5 presents the
linear model of the vehicle routing problem and the dock allocation model. The heuristic approach of the
model is presented in chapter 6. In chapter 7 truck dock priority factors are discussed which can be used in
the objective function of the model. Finally, in chapter 8 the model extensions are discussed which can be
implemented to make the model more realistic and reliable.



Research Outline

This chapter presents the research outline of this thesis. In section 2.1 the research problem is introduced
for this thesis. In section 2.2 the research objective is presented. After that, in section 2.3 the research ques-
tion with the corresponding sub-questions are presented. In section 2.4 an example of the problem is given.
Finally, a brief overview of the project planning is described in section 2.5.

2.1. Research Problem

The increase in cargo being transported by the cargo department of Schiphol Airport introduces challenges
in the operational process of processing incoming trucks efficiently. The arrival of cargo trucks to unload
trucks at the ground handlers is currently one of the bottlenecks in this process. Verduijn et al. [4] describe
the process of the air cargo supply chain. Verduijn defines the problem as follows.

“Each day, trucks are picking up and delivering cargo shipments at ground handling sta-
tions, and during certain periods it is very busy, leading to high congestion and trucking
companies having to wait in line” [5]

The situation above causes delay because the number of trucks which arrive at the ground handler is larger
than the available number of docks. Because coordination between the freight forwarding companies is not
done, ground handlers are not able to schedule docks to specific freight forwarders. In addition to that, most
freight forwarders have the tendency to pickup items throughout the day and deliver a full truckload at the
end of the day. A peak of arriving trucks is also observed on Friday afternoons. The scarcity of docks has
the consequence that trucks have to wait outside the ground handlers, which leads to congestion and delays.
This situation is undesirable as it will lead to financial losses for the freight forwarding companies. First of all,
the trucks have to wait for a dock, meaning that the trucks cannot be used for other operations. Second, it
might lead to a situation in which an item is delivered too late at the ground handlers and misses its intended
flight.

Currently, there are models available that are inspired by the Vehicle Routing Problem which model depot
and shop nodes to be visited. An extension of this is the Pickup-and-Delivery model which specifies pickup
and delivery nodes. There is plenty of research available on this model. The integration of dock capacity is
however not commonly practiced. In addition to that, this problem is specifically for freight forwarders and
ground handlers which needs specific modifications to the model. To the best of our knowledge, a model
that combines the pickup-and-delivery formulation for the integration between ground handlers and freight
forwarders with limited dock capacity is not developed yet.

2.2. Research Objective

In the paragraph above the research gap has been introduced. Formally, the research objective of this thesis
is defined as follows.

To find out if the delivery process of cargo trucks at ground handlers can be improved by
developing a truck routing and dock scheduling tool.
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It should be noted that we specifically consider the delivery process. In other words, the trucks arriving at the
ground handler for export. Importing goods is considered out of scope for this thesis. The problem definition
is based on the situation of Amsterdam Schiphol Airport. The data for the model is therefore based on data
from this airport. The model should however be set up that it also allows being implemented at other airports.

2.3. Research Question(s)

The research question for this thesis is defined as follows.

What is the efficiency improvement of introducing an optimization model which incor-
porates dock scheduling within the pickup-and-delivery model for the landside air cargo
supply chain?

To answer this research question, a set of sub-questions is developed. In the overview below, the sub-
questions are presented with a short explanation. These sub-questions serve as a basis for the following
chapters in this literature review. Each chapter aims at answering one of these sub-questions. With these
sub-questions, the theoretical basis for an optimization model is presented and the model can be developed
in the next stage of the thesis. If the model has been developed, the main research question can be answered.

1. What is the current procedure in the air cargo delivery process?
The current procedure in the delivery process should be studied to be familiar with this process. If this
is known, the bottlenecks can be identified. Knowing these bottlenecks can help in the formulation of
the algorithm and identify possible weak spots.

2. What indicators are relevant to determine the efficiency of the ground handling process?
To evaluate the efficiency and quality of a schedule, the key performance indicators need to be known.
If these are known and it is clear how they can be formulated, different schedules can be compared to
each other in terms of efficiency.

3. What linear programming methods are suitable for the truck routing combined with the scheduling
problem?
The trucks should be routed from the freight forwarders to the ground handlers. Different linear models
should be compared to each other to determine which method is most suitable and efficient to solve
this problem. Also, the methods that perform dock scheduling should be studied. Ideally, a model
should be found which has the potential of combining the two already. If this is not possible, the inter-
action between the two models should be studied.

4. What heuristic methods are suitable for the truck routing combined with the scheduling problem?
For larger data sets, the computational time to find the solution from a linear programming problem
might take very long. To reduce the computational time, the possibilities of using a heuristic should
be studied. This sub-question is set up to find out which heuristics can be used to solve the truck
routing problem. In addition to that, the dock allocation heuristics should be studied. Ideally, a model
that combines the truck routing and dock scheduling should be found. Alternatively, the interaction
between the two models should be found.

5. Which factors influence the priorities to allocate trucks to a dock?
To allocate trucks to docks, there are several factors that are of influence to determine the priority of
the trucks allocated to a dock. This could be for example the type of cargo that the trucks contain, how
much cargo is in the truck, and the time that the cargo needs to be delivered at the ground handling
station at latest to ensure it is on time for the intended flight. These factors are relevant to set up the
objective function of the problem.

6. What are possible extensions of the model to be implemented later to make the model more complete?
The incorporation of truck routing and dock scheduling is the basis of the model. The model can how-
ever be extended even more to make it more realistic. This sub-question aims at finding possible im-
provements for the model to incorporate at a later stage if time allows for this.
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2.4, Problem Example

In Figure 2.1 a schematic overview of the problem is presented. The three square boxes represent the freight
forwarders. Each of the freight forwarders has several shipments to be sent to a specific ground handler. Each
shipment has specific properties which are presented below the freight forwarder boxes. The color of the
layer of the freight forwarder represents to which ground handler the shipment should be transported (e.g.
shipment 1, 2 and 3 need to be transported to ground handler 1). In this specific case, shipments 1, 2 and 4 can
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Figure 2.1: Example of problem definition

be picked up and delivered in a single truck (given the capacity of the truck is enough). The time available at
the freight forwarder of shipment 3 is at 16:00. It can thus not be picked up by this truck as shipment 1 needs
to be at the ground handler by 16:00 already. Finally, the model should also produce a schedule of the docks
at the ground handlers. An example is presented at the bottom of Figure 2.1.

2.5. Project Planning

The project planning for this thesis is described in this section. The thesis is split up in different phases. Each
phase is separated from another phase by a review point. In total, five phases are identified. An overview of
the phases and their respective review points is presented in Figure 2.2.

From this figure it can be seen that the project plan and literature study phase run in parallel. These two
phases are also highly interacting with each other. For each of the phases a workflow diagram has been set
up. In addition to that, a work breakdown structure was generated. If the literature study phase is finished,
the initial phase is started. In this phase, the basic model is developed and tested. In the final phase of the
project, the model is extended, if possible, with extensions mentioned in this literature review.
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Air Cargo Supply Chain

This chapter presents the current situation of the air cargo supply chain. In addition to that, this chapter will
present the research which has been executed to increase the efficiency of the current situation. The build-up
of this chapter will be as follows. First, in section 3.1 the current procedures in the air cargo supply chain are
presented. After that, section 3.2 presents the most recent research efficiency improving concepts.

3.1. Current Procedures in the Air Cargo Supply Chain at Schiphol Airport
The urge to find innovation in the supply chain of air cargo is natural and has always been a topic of research.
In December 2017 the 'Smartest Connected Cargo Airport Schiphol’ project started [5]. The project aims at
optimizing the delivery processes and integrating collaboration between the involved parties in the research.
The project is a collaboration between KLM, Schiphol Airport, TU Delft, Cargonaut, Amsterdam University of
Applied Sciences and other companies involved in the supply chain. The project was also subsidized by the
Dutch Government and had a total budget of 6.2 million euros [6]. The project is concluded by the publication
of areport by Verduijn et al. [4] in which the findings are reported. The report provides a detailed explanation
of the current procedures related to the ground handling procedure at Schiphol Airport. This is in the range
from required documentation for freight handling to the optimal routing of trucks at the airport. For this
thesis, the focus will be on the procedures related to the landside pickup and delivery. The documentation
process is not considered as this is considered out of scope.

At first, the relevant parties are discussed which will be used in the rest of this literature review. The air
cargo supply chain starts with many individual customers. For this example, the customers are based in
countries outside The Netherlands and place orders from companies in The Netherlands. The orders have
to be shipped via Amsterdam Schiphol Airport as transporting via plane is assumed to be the most efficient
method. The companies themselves are often not involved in the sending procedure of their orders to the
airport. They outsource this to the freight forwarders of Schiphol Airport. Each freight forwarder is responsi-
ble to ship the orders to the airport. On the side of the airport, ground handlers are positioned. These ground
handlers receive the shipments from the freight forwarders and prepare them for air travel. After the required
paperwork has been completed, the freight forwarders send the shipments to the flight it is intended for. This
can be as belly freight for a passenger airline or a dedicated freight aircraft. Each ground handler is dedi-
cated to a specific airline or has special agreements with a specific freight forwarder. The freight forwarders
receive orders from multiple companies with multiple destinations. Each freight forwarder thus has to travel
to different ground handlers in most cases.

The collaboration between freight forwarders could increase the efficiency of this pickup and delivery
process. In Verduijn et al. [4] the current pickup and delivery process is described and three consolidation
methods have been identified which are currently implemented at Schiphol Airport. At first, in dedicated
trucking, one of the freight forwarders is responsible to pickup all shipments and to transport them to the
ground handler. The truck can visit multiple freight forwarders to have the highest possible load factor. In
some situations, the immediate delivery of the shipments is more efficient and the truck drives with a subop-
timal filled truck.

However, in situations in which multiple freight forwarders are not able to fill a full truck on their own to
the ground handler, the freight forwarders can cooperate to fill the trucks. This is referred to as consolida-

43



44 3. Air Cargo Supply Chain

tion between freight forwarders by Verduijn et al. [4]. In this principle, freight forwarders forward their goods
to a cross-dock station. At the cross-docking station, the items from different freight forwarders are com-
bined. More information about cross-docking and related literature is presented in the following section.
Finally, Verduijn et al. [4] define the third type of collaboration as consolidation between freight forwarders
and ground handlers. The freight forwarders cooperate with other freight forwarders and ground handlers.
One of the freight forwarders determines if it can pickup a load from another freight forwarder that has to
travel to the same ground handler. If that is the case, the truck picks up another load from the ground han-
dler.

From the three methods mentioned above, it can be concluded that the freight forwarders have realized
that to increase the efficiency of the supply chain process, interaction between the links is needed. The next
section will present other possibilities to improve the efficiency of the air cargo supply chain which are stud-
ied in literature.

3.2. Relevant Efficiency Improvement Concepts

This section will present methods to increase the efficiency of the air cargo supply chain. This section will
present methods which are not only applicable to Amsterdam Schiphol, but airports in general. As mentioned
in the section above, some aspects are already implemented at Amsterdam.

In the research published by Verduijn et al. [4], another possibility is proposed to improve the pickup
and delivery process at Amsterdam Schiphol Airport. It is described as the time slot booking system. Each
freight forwarder can book a time slot. During this time slot, the truck of the freight forwarder can unload
the shipments at the reserved dock. With this method, it is clear for the freight forwarders at what time they
can unload at the ground handler. For that reason, it is expected that the delay will be decreased. There is
however a problem if the truck needs to visit more than one ground handler in a single route. The reserved
time slots might not be optimal related to each other. The time slot booking system has been introduced at
Brussels Airport and showed a potential efficiency increase of 5-10% [7].

Ideally, full collaboration between the freight forwarders and ground handlers should be implemented.
This also implies that all parties have to share information and resources. It would imply that there is a central
and neutral control tower which performs scheduling [4]. This type of collaboration implies horizontal col-
laboration as described by Prakash and Deshmukh [8]. Horizontal collaboration is the collaboration between
companies that are operating at the same level in the supply chain. This is in contrast to vertical collabora-
tion where the collaboration is only between companies that are operating at different levels in the supply
chain. Prakash and Deshmukh [8] concluded that horizontal collaboration can increase the overall efficiency
of the supply chain, but individual members can face increased costs. If all members have to benefit from the
collaboration, it might thus imply that the profit should be shared.

The implementation of full collaboration to the air cargo supply chain has been studied by Ankersmit,
Rezaei and Tavasszy [9]. It is concluded that full horizontal collaboration in the air cargo supply chain could
result in reduced transport costs up to 40%. The report from Verduijn et al. [4] includes A Pickup and Delivery
Formulation for Lanside Air Cargo Supply Chain which is developed by Bombelli and Tavasszy [10]. In this
model, full horizontal collaboration is assumed where a central planner is responsible for optimizing the
problem. A fleet of neutral trucks can pickup shipments from all freight forwarders and transport these to
the ground handlers. The theoretical basis for this model will be explained later as it has similarities to this
thesis subject. Bombelli and Tavasszy [10] have concluded that the transportation costs can be reduced by
10% and fleet size by 25% is horizontal collaboration is allowed compared to individual optimization. The
method thus seems very promising but is however not widely implemented. Basso et al. [11] found out
that there are several practical issues that prevent the full implementation of horizontal collaboration. In
total, four categories are identified that contribute to this: Design, Planning and operations, Business/market
and Behaviors. Each of these categories can be split up and Basso et al. [11] conclude that there are 16
important practical issues. In section 3.1 the topic of cross-docking has already been touched upon briefly.
Cross-docking has been the topic of numerous papers. In cross-docking multiple trucks arrive at an inbound
station. The trucks are unloaded into the docking station where the load is distributed to other departing
trucks. The purpose of cross-docking is to increase the efficiency by rearranging the shipments from the
inbound to the outbound trucks. Boysen, Briskorn and Tschoke [12] consider a model in which a limited
number of inbound docks is available. The outbound docks and trucks are not modeled in this research.
Each shipment is given a departure time at which it should be at the outbound truck. If this is not possible, it
is seen as a missed delivery.
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Another innovation in the air cargo supply chain is the milk run principle. In the milk run process, a truck
visits multiple suppliers in a route. Each of the trucks loads the goods in the truck and this was the truck is
efficiently loaded to a facility. Brar and Saini [13] concluded that the milk run process can reduce the number
of trucks and travel distance of trucks. The routes for the milk run process can be set up on forehand if the
shipments to be picked up are known for all companies. It is thus important that information is shared with
all parties involved. The milk run principle has been introduced at Schiphol Airport with various ground
handlers and trucking companies since the 1st of May 2015. One year after the introduction of the project, it
was shown that up to 40% of truck movements at the ground handlers can be reduced. In addition to that,
the emission of carbon dioxide has decreased up to 30% [14].

Concluding Remarks

From this section it can be concluded that there are already several efficiency improving methods imple-
mented at Amsterdam Schiphol Airport. Full horizontal collaboration would be the optimal situation, given
that the profit is shared as some individual companies might not benefit from it. However as discussed by
Basso et al. [11], there are several practical problems to this method. Most methods which are now imple-
mented aim to reduce the number of trucks which arrive at the ground handlers. This is done by optimizing
the loading of the trucks which arrive at the ground handler. The scheduling of trucks to docks and con-
sidering that only a limited number of docks are available, is something which is not implemented yet. The
time slot booking seems promising to help solve this situation but unfortunately this can lead to situations in
which the booked time slots at different ground handlers is not optimal or feasible with respect to the route
the truck needs to follow.






Key Performance Indicators

To evaluate the quality of a solution, it is important to consider the key performance indicators (KPI's) on
forehand. By doing this, it allows to compare different solutions to each other. Moreover, it is of importance
to compare the new model to the old, uncoordinated situation. Research on vehicle routing problems or
scheduling problems always includes some KPI's to compare their outcome to other models. This section
presents an overview of literature on what KPI's have been used. Soysal, Bloemhof-Ruwaard and Bektas [15]
have developed a model for the time dependent vehicle routing problem with special focus on the environ-
mental impacts by using a two-row echelon approach. In this study, four KPI’s are identified. These are (i)
total distance, (ii) total time, (iii) total fuel consumption and (iv) total cost [15]. The research of Soysal et al.
[15] is especially relevant and interesting as an overview is presented of relevant other studies on each of the
four determined KPI’'s. The four mentioned KPI's sound natural and will be elaborated on in the following
sections how these can be applied to this specific thesis subject. In addition to these four indicators, other
relevant indicators are discussed. In section 4.1 the total distance KPI will be discussed. After that, the to-
tal time is discussed in section 4.2. The fuel consumption is discussed in section 4.3 which is followed by a
discussion on the cost parameter in section 4.4. In section 4.5 the time windows preferences are discussed.
Finally, in section 4.6 the benchmark datasets are presented to evaluate the solution.

4.1. Travel Distance

In most vehicle routing problems the travel distance is to be minimized and is a vital part of the problem
definition. To simplify a vehicle routing problem, one could argue to combine other performance indicators
into the travel distance parameter. This is also suggested by Laporte [16]. Laporte defines a cost matrix (c; ;)
which represents the cost from node i to j. For simplicity, Laporte states that distances and travel times are
equivalent. Incorporating travel distance in the vehicle routing problem sounds natural as it ensures that
trucks minimize the total distance which is travelled. The travel distance indicator is not the only relevant
parameter for this thesis subject as the observed problem is the waiting time of trucks. It might even be that to
solve this, trucks will have to increase their distance travelled to have an optimal solution. The travel distance
should however be incorporated in the model and can be used to compare different solution outcomes to see
if the dock optimized solution does not increase the travel distance significantly.

4.2, Travel Time

As mentioned in the previous section, the optimization problem can be simplified by incorporating the travel
time into the travel distance. This can be done by assuming that the travel distance is directly scaled to the
distance travelled, so including the travel time is not needed. If there are certain arcs which however have a
very high travel time, but low distance (routes city centers), this does not seem a realistic modelling technique.
The objective function can then be changed by including the travel times and allocating a weighting factor
of the travel times relative to the distance travelled. Incorporating travel time can go even further as done
by Franceschetti, Honhon, Van Woensel, Bektas and Laporte [17]. In the time-dependent vehicle routing
problem, the travel time is dependent on the time the route is travelled. Three time windows are identified
and the speed of the vehicle is dependent on the time window in which it is assigned. The three phases differ
from congestion, the transient and free-flow with increasing truck speed respectively.
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Especially interesting would be the feature of including the waiting time of trucks. Since the observed
problem at Schiphol Airport is the waiting time for trucks outside the ground handlers at this moment in
situations at which the dock capacity is exceeded. If the waiting time could be compared to the situation
as it was before incorporating the dock scheduling tool, it is expected that the waiting time of trucks will be
decreased.

4.3. Fuel Consumption

The research of Soyal et al. [15] incorporates an extensive environmental impact study. This model incorpo-
rates the fuel used per distance unit with a specific speed and load in the truck. The equations which are used
in this study are based on the emissions model of Barth, Younglove and Scora [18]. This emissions model
is very elaborate and complicated and has many dependencies. The implementation of this feature to the
model seems to be interesting to reduce the emission of greenhouse gasses. The aim of this thesis is however
not to optimize for fuel-efficiency. For this thesis subject, it could be argued that the fuel consumption is
scaled with the distance travelled by the trucks. Combined with the fact that the model of Barth et al. [18] is
very complex, this will not be discussed in more detail.

4.4, Financial Cost

Apart from time and distance travelled which have been discussed before, the financial aspect is also of im-
portance for this problem. The shipments should be delivered at the ground handler before a specific time
to be on time for that flight. If this time is violated, the shipment is not able to catch the intended flight.
Bombelli and Tavasszy [10] have modelled the pickup and delivery problem of the air cargo supply chain and
approached this as follows. If a shipment is picked up, a dedicated variable is set to 0. If a shipment is not
picked up, this binary variable is equal to 1. In the objective function, among others, this variable is mini-
mized. In addition this approach, it is natural to imagine that each additional truck that is used increases the
cost of the solution as well. The cost of each additional truck can also included in the minimization function.

4.5. Time Window Preference

When working with a vehicle routing problem with time windows model, most models take the time window
as a hard constraint (the vehicle routing problem with time windows will be explained in more detail in chap-
ter 5). The constraint cannot be exceeded and the vehicle must visit the node in the time window. Instead of
setting this time constraint as a hard constraint, it can also be implemented as a soft constrain. This is done in
the model of Ioannou, Kritikos and Prastacos [19]. In this model, each node is given a preferred time window.
As there is no hard constraint for this time window, the violation of the time window is incorporated in the
objective function of the model. In case a node is visited before or after the time window, a penalty function
is created. The absolute difference in earliness or lateness is multiplied by a scaling factor. Increasing this
scaling factors increases the penalty of early or late arrival. If the scaling factors are set to infinity, the soft
time window is removed and it becomes a hard constraint. This method can be implemented to this thesis
if each of the shipments is given a preferred time window. It can however also be argued that this problem
should have hard constraint on the time windows. A shipment cannot be pickup before it is available at the
freight forwarder and late arrival to the ground handler will simply result in missing the flight. For that pur-
pose it does not matter is a shipment is late by 5 minutes or 5 hours, it has missed the flight in both cases. The
soft time window can however be implemented on the side of the ground handler. The ground handlers only
have a limited storage capacity and thus the ground handler could give time at which the truck can arrive
at the ground handler, related to its plane departure time. If the truck arrives before this time, the ground
handler has to arrange additional storage space and this storage cost are reflected in this soft time window
violation penalty. The research of Roca-Riu, Ferndndez and Estrada [20], which is specifically towards park-
ing slot assignment and will be discussed later, also incorporates the possibilities of soft time windows with
penalty functions for violations.

4.6. Benchmark Datasets

For the evaluation of the model, a dataset is needed as input. The dataset can be created in two ways. First of
all, a data set can be generated manually. This is especially interesting as it allows to alter the dataset slightly.
These modifications can be done smartly to test specific features of the model. Apart from controlling this
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dataset manually, the dataset can also be created randomly. This allows to evaluate the performance of the
model to different datasets. In addition to that, the size of the dataset can be increased gradually. This allows
to check the runtime of the model with respect to the size of the dataset. This method implies that the user of
the model creates a dataset by himself to evaluate the model. The advantage of this is that the implementation
of the model can be easily checked. The disadvantage of this approach that verifying and validating the result
is nearly impossible as there is no comparison to other existing models.

For that reason, the model can also be evaluated using a benchmark dataset from literature. For these
datasets, models have found the best or optimal solution. These best-known solutions are stored and can be
used for evaluation of the model. In the research of Kachitvichyanukul, Sombuntham and Kunnapapdeelert
[21] the benchmark datasets for the general vehicle routing problem are presented. For this thesis subject,
the datasets on the Pickup and Delivery Problem with Time Windows (PDPTW) are especially relevant. This
dataset partially resembles the actual problem, but does not include the ground handlers, freight forwarders
and dock capacity constraint. If these three aspects are relaxed from the model, the dataset can be used
to evaluate the solution quality. Kachitvichyanukul et al. [21] only mention the dataset of Li and Lim [22]
for the PDPTW. This dataset is also found online with the corresponding best-known solutions via https:
//www.sintef .no/projectweb/top/pdptw/li-1lim-benchmark/. Another dataset that often comes back
in literature is the dataset of Solomon [23] from 1987. This dataset is however specific for the Vehicle Routing
Problem with Time Windows (VRPTW) instead of the PDPTW. Li and Lim [22] present in their research a way
to work around this. For example: two customers are connected to each other where one is the pickup and
the other the delivery node. This can be done randomly or based on position or clusters. However, if this
would be done randomly, the comparison of model outcomes is not valid anymore as the random behaviour
can influence the results significantly. For that reason, the dataset provided by Li and Lim [22] is currently the
best benchmark dataset to compare the model to.

Concluding Remarks

From this chapter it can be concluded that there are multiple key performance indicators available for de-
termining the efficiency of a schedule. All vehicle models include the minimization of the distance to be
travelled, as this is the theoretical ground of the problem. In some cases the travel time can be scaled to the
distance travelled. In that case, separate inclusion of this parameter is not needed. In case this does not re-
flect reality, the travel time can be added as additional minimization parameter. It is concluded that the fuel
consumption is out of scope for this problem and is reflected in the distance travelled. The financial cost is
relevant for shipments missing their flights and for financial costs of additional trucks to be used. The time
window preference can be implemented in the model as a soft constraint to incorporate the limited storage
capacity of the ground handlers. Finally, a benchmark dataset has been introduced by Li and Lim suitable
for the pickup and delivery problem with time windows. This dataset can be used to evaluate the simplified
linear model and heuristic.


https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
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Routing and Dock Allocation Model: an
Exact Formulation

This chapter will present the linear vehicle routing problems which are currently available in literature. Apart
from the linear routing model, the dock scheduling method should also be incorporated in the model. This
chapter will also present the linear models for this problem. These two models should then be integrated into
each other to have the overall problem optimized. As there is currently no model available that incorporates
the two, this chapter will also present methods to do this. The build-up of this chapter is as follows. First of
all, in section 5.1 the variants of the vehicle routing problem will be discussed. After that, in section 5.2 the
linear vehicle routing formulations are discussed. Finally, in section 5.3 the linear scheduling models for dock
allocation will be discussed and how this can be integrated into the vehicle routing problem.

5.1. Vehicle Routing Problem Variants

This section will present the linear models of the truck routing problem. This problem can be seen as a type
of the vehicle routing problem (VRP). The vehicle routing problem is introduced first by Dantzig and Ramser
in 1959 [24]. In the vehicle routing problem, a set of nodes need to be visited. The objective of the vehicle
routing problem is to minimize the total distance which is travelled. Each truck departs from a depot-node
and travels to the shop-nodes and returns to the depot-node afterwards. For this specific thesis subject, the
freight forwarders can be seen as the depots and the ground handlers are the nodes to be visited. The vehicle
routing problem has been the topic for many research papers. The solution methods are linear models as well
as heuristics. An overview of research solutions is given by Laporte [16]. This section will present the relevant
extensions of the vehicle routing problem.

The basic extension of the vehicle routing problem is the Capacitated Vehicle Routing Problem. This
model is widely implemented as it includes the capacity of a vehicle on its route. It is thus not possible to
load trucks as full as possible, but their capacity is limited. Each node that is visited has specific demand. It
is generally assumed that the demand of a node cannot be higher than the capacity of the truck. Therefore,
each node is only visited by a truck once. Laporte presents a method on how to incorporate the capacity
constraint to the model in [25].

The reality of the model can be increased by adding the feature of shops to present a time window in
which the truck can arrive at the node to unload. This is incorporated in the Vehicle Routing Problem with
Time Windows. The time windows can be applied as hard constraint or soft-constraint. If it is implemented as
a hard constraint, the truck has to arrive in the provided time window. If it is implemented as a soft constraint,
violation of the time window is allowed. Applying a penalty to time violations can then be implemented. El-
Sherbeny [26] presents an exact formulation of the VRPTW.

In the model of El-Sherbeny [26], only a single depot (often referred to as node 0) is available. To extend
the model further, the Multi Depot Vehicle Routing Problem can be applied. The extension of the model is
explained by Wang, Zeyuan, Wei, Ji and Yang [27]. It is important to note that the Multi Depot Vehicle Routing
Routing Problem only considers the same type of good from all depot nodes. It optimizes the demand of each
shop node based upon travel distance. It does not allow for orders from a ground handler to a specific ground
handler.
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This specific feature is however essential for the modelling for this specific subject. Each depot (freight
handler) has specific orders for the nodes (ground handlers). The shipments for a specific ground handler
cannot be supplied by an arbitrary depot. To incorporate this feature, the Pickup-and-Delivery Problem is
developed. This extension of the general Vehicle Routing Problem model is explained by Rais et al. [28]. In
this approach, another set of decision variables is added to the model that consider the specific shipments
orders and deliveries.. The yfj’ variable is introduced which is one if vehicle k carries the request r on the
arc (i,j) and is zero otherwise. The model allows that more than one vehicle visits a specific node. With this
assumption, the model also introduces the possibility of transferring freight from one vehicle to another at
a node (taking into consideration the capacity constraint of the vehicle). This means that the model basic
which is presented above is slightly changed in the pickup-and-delivery problem. Each node may be visited
more than once, only by different vehicles. The new introduced variable, yfj " brings additional constraints as
explained by Rais, Alvelos and Carvalho [28]. As explained before, this model allows to change load from a
truck to another at a node. In this specific thesis subject, this is however not desired. This procedure will take
time and requires additional equipment and dock capacity. In addition to this, the proposed model by Rais
et al. [28] does include time windows which are critical for the to be developed model.

The model developed by Bombelli and Tavasszy [10] resembles the desired situation in more reality. The
model represents in detail the Pickup-and-Delivery for freight forwarders to ground handlers. The model
incorporates import and export deliveries with a time window. In contrast to the model of Rais et al. [28],
import and export blocks are created for each freight forwarder. These important and export blocks are in-
corporated to visit import an export nodes where deliveries are placed. The model also incorporates time
windows which are modelled as a hard constraint. In case a delivery is not picked up, a binary variable is
set equal to the one, else it is zero. The binary variable is also incorporated in the objective function of the
model to minimize the number of shipments which are not delivered. The model does imply full horizontal
collaboration and a neutral fleet which is assigned by a planner. To the best of our knowledge, the capacity of
docks is not included in this model.

5.2. Linear Vehicle Routing Problem Formulations

This section presents the different formulations which can be used to express the vehicle routing problem. In
the previous section, this is already briefly addressed.

5.2.1. Two-index

The two-index formulation is the most classical representation. In the two-index formulation, x;; is defined
which is a binary variable. It is equal to 1 if the route from i to j is travelled and zero otherwise. The model as-
sumes a homogeneous fleet as there are no vehicle specific decision variable. The fleet capacity is introduced
by limiting the number of allowable departures from the depot. The number of routes which are allowed to
depart from the deport should be less or equal than the number of vehicles. Each node can only be visited
once and flow conservation between the nodes has to be ensured.

5.2.2. Three-index

In contrast to the two-index formulation, the three-index formulation allows for a heterogeneous fleet. The
decision variable is defined as: xlkj. This decision variable is binary and has unitary value if node i to j is
travelled with k and zero otherwise. The advantage of this is that the vehicle parameters can be adjusted. For
example, the vehicle capacity (Q) or vehicle speed (V) can be implemented as variable (Q¥, V¥) depending
on the vehicle. Rieck and Zimmermann [29] present a discussion on the implementation of the two- or three-
index vehicle routing problem. As mentioned, the three-index is more flexible when a non-homogenius fleet
is implemented. It is however shown in the paper that the three-index approach is more time consuming
when using larger data instances and thus their model make use of a two-index formulation. An example of
the three-index formulation is presented below where the Pickup-and-Delivery Problem with Time Windows
formulation (most suitable for the model) is presented. The model below is based on the formulation as
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presented by Ropke and Pisinger [30].

minimize Z Z dl-le.kj (5.1a)
keKijeA

subject to

Y Y xfi=1 VieP, (5.1b)
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a; <S;r < b; VieV Vkek (5.1h)
Lik+li—M(1—X{“j)sij VijeA VkeK, (5.1i)
Lip<CF VieV VkeK, (5.1j)
xfefo,13 VijeA VkeK, (5.1k)
Sik=0 VieV VkeK, (5.11)
Lix=0 VieV VkeK (5.1m)

In the provided model, there are n shipments to be delivered. The set P is the set of pickup nodes which
is equal to (1,2, ..., n). The delivery node set, D is equal to (1+n, 2+n, ..., 2n). A depot origin and destination
depot are also introduced as node 0 and node 2n+1 respectively. The set N is defined as DU P. The set V is
defined as NuOu2n+1. The graph G = (V,A) consist of all possible arcs between the nodes, V x V. Finally, the
set of vehicles is denoted by set K. The arrival time of truck k at node i is presented with decision variable S;.
Each node presents a time window as [a;, b;] with the earliest and latest start of service respectively. The c;
variable depicts the service time of a truck at node i. Finally, for all pickup nodes (i € P), aload is assumed, /;.
For the delivery nodes (i € D) the load is assumed to be equal in magnitude but opposite sign, /; = —1;_,. The
origin and destination node have a zero demand load and all other pickup nodes have a load larger than zero.
The capacity of a truck is denoted as CF for k € K. The decision variable L;. is introduced which resembles
the load of truck k after leaving node i.

The objective function is presented in Equation 5.1a which minimized the total distance travelled. Equa-
tion 5.1b ensures that each pickup node is assigned to one truck exactly. In Equation 5.1c the delivery node
is also visited if a pickup node is visited by a vehicle. The departure from the depot and arrival at the depot
at the end of the route is ensures by Equation 5.1d and Equation 5.1e respectively. In Equation 5.1f the flow
conservation over nodes is ensured. Equation 5.1g ensures that S; is correctly adjusted. In Equation 5.1h the
time windows for all nodes are respected. The relation between Equation 5.1g and Equation 5.1h eliminates
the possibility of forming subtours. In Equation 5.1i the load of a truck is updated if the node is visited. Fi-
nally, Equation 5.1j ensures that the loading of a truck can never exceeds its capacity. It should be noted that
all trucks should be used in this formulation. If a truck is not used, it travels from the departure depot (node
0) to the arrival depot (node 2n+1) immediately.

5.2.3. Set Partitioning

The previous models tried to optimize the arcs to be travelled to come to a optimal route. In contrast to this
method, the set partitioning formulation considers all feasible routes and selects the route with minimal cost.
Baldacci, Christofides and Mingozzi [31] present an overview of the formulation as below for the simple VRP.
In this formulation, R represents the index set of all feasible routes. The coefficient a;, has the unitary value
if vertex i belongs to route r and zero otherwise. The cost of each route is represents with ¢,. The decision
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variable y; is 1 if route r belongs to the optimal solution and zero otherwise.

minimize Z Cryr (5.2a)
TER

subject to

Y airyr=1 VieV, (5.2b)
reER

Y =K (5.20)
reER

yr€10,1} VreR (5.2d)

In Equation 5.2a the objective function aims at minimizing the total cost of the routes. Equation 5.2b ensures
that each node is covered by one route. Finally, the number of routes is limited to the number of vehicles by
Equation 5.2c.

5.2.4. Commodity Flow

In contrast to the three methods which are mentioned above, the model can also be programmed in terms of
flow over nodes. This method is called the commodity flow formulation. A formulation of this is presented
by Baldacci, Hadjiconstantinou and Mingozzi [32]. Below, an overview of the algorithm is presented. In this
two-commodity flow formulation, the decision variable x;; represents the commodity flow from node i to
node j. The decision variable x; is introduced which represents the empty space on a vehicle for that edge.
The variable ¢;; is introduced which has the unitary value if edge (i,j) belongs to the optimal solution.

minimize ) d;;&;; (5.3a)
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In this formulation, Equation 5.3a is the objective function which minimized the total cost of a route. In
Equation 5.3b ensures that the inflow minus outflow has to be equal to twice the demand at that node. The
total load which is carried at the start of a route is equal to the sum of demand that route, represented by g (V)
and ensured by Equation 5.3c. The capacity left over in the vehicle from the departure node is represented
with Equation 5.3d and is the capacity minus the total demand of a route. The capacity which is left at the
arrival node of the vehicle is equal to the capacity of the vehicle and is ensured by Equation 5.3e. The sum of
the load on an edge and the empty space should be equal to the capacity of the vehicle and is represented by
Equation 5.3f. Finally, Equation 5.3g ensures the route flow conservation.

Before starting with the development of the model, the formulation which seems most promising should be
chosen and used for the model. Most research paper use the two- or three-index formulation, based on het-
erogeneous or homogeneous fleet respectively. One of the extensions will be to introduce a heterogeneous
fleet, as will be explained in chapter 8. The three-index method also seems to be the method which is intu-
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itively best understandable. The implementation of the dock capacity also seems to favour the three-index
notation.

The challenge in the to be developed model is to include the dock capacity at the ground handler and
produce a schedule from this. The problem is that the proposed models all separate the routing from the
time variables. This is most likely done since the time variables are programmed as continuous variables. It is
thus not simply possible to take the sum over all vehicles for all time points and set this sum equal to be less
or equal than the capacity of a ground handler. One could argue that the time can be discretized. This would
however introduce many more decision variables when working with a data set that spends a large period of
time. This would result in a very high computational time for relatively small data instances. The next section
presents possibilities to perform the dock scheduling in an efficient way.

5.3. Linear Dock Allocation Model

This section presents the linear dock allocation and assignment models. In particularly, it is important to in-
tegrate this model into the linear vehicle routing problem model. It is possible to produce the dock schedules
based upon request from the freight forwarders and afterwards perform the vehicle routing procedure. This
method however introduces inefficiencies if a truck travels to more than one ground handler. In addition to
that, two individual optimization methods are performed instead of combining the two into a comprehensive
model. This section will thus also present how the dock allocation models can be incorporated in the routing
problem.

The problem of assigning trucks to a parking spot has been the topic of research for quite some time.
Not only in the aviation industry this problem is well known, also in urban regions the population density
is increasing and leads to situation in which regulation of parking spots is needed. The research of Roca-
Riu et al. [20] focuses on parking spot assignment in city centers at warehouses. This model is based on
the principle of the vehicle routing problem with time windows. All loading/unloading operations can give
a preference time window and the model initially considers these time windows as a hard constraint. The
nodes of the model are the (un)loading request and the there is a dummy node which represents the depot
but does not have a physical meaning. Each route starts at the depot and the model determines the optimal
route and ends at the depot. The sequence of the routes is the order over which the (un)loading operations
are performed. Each route represents one parking spot. The number of routes which are created can thus not
be higher than the total number of parking spots. The time constraint is taken as a hard constraint, meaning
that if the number of trucks arriving is larger than the number of available parking spots, there is no feasible
solution. The paper proposes a method to check for a dataset if it is feasible or not, without trying to solve the
problem itself. In addition to that, Roca-Riu et al. [20] propose that the time window constraint can also be
implemented as a soft constraint. To ensure that the solution converts to the implemented time window, the
absolute difference between the actual time the truck is assigned to the parking spot and the desired time,
can be minimized in the objective function. In the model of Boysen et al. [12] the vehicle routing method is
also used to assign docks to trucks in a cross-dock station.

As mentioned in chapter 3, cross-docking has been introduced to increase the efficiency of the loading of
trucks. In the research of Miao, Lim and Ma [33], a limited number of docks is available at the cross-docking
station. Miao et al. [33] specifically state that the data-set should be over-constraint (more trucks arrive
than the total number of docks). Instead of modelling it as a vehicle routing problem with time-windows,
an alternative method is proposed. First of all, the binary variable x;; is introduced. If the departure time of
truck i is smaller than the arrival time of truck j, the variable is equal to one, else it is zero. The arrival and
departure time of the trucks is not implemented as a decision variable, but is assumed to be known. With this
knowledge, the x;; matrix can be set up. In addition to this, two decision variables are defined. First of all, y;
is defined to be one if truck i is assigned to dock k and zero otherwise. Secondary, z; ji; is introduced which
is equal to one if truck i is assigned to dock k and truck j is assigned to truck 1, and zero otherwise. The model
identifies several relations between y;; and z;jx; to ensure these are working according to their definition.
The model then incorporates the constraint, presented in Equation 5.4, which ensures that never two trucks
are assigned to the same dock.

Xi,j+Xji = Zjjkk (5.4)

If truck i and j are both assigned to dock k, z;jkx is equal to one. This means that x;; and/or x;; needs
to be one as well to satisfy the constraint. If x;; is equal to one, this implies that the departure time of truck
i is before the arrival time of truck j. This will intuitively not violate the constraint. Otherwise, xji needs
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to be equal to one, meaning that the arrival time of truck i is after the departure of truck j (so truck j is the
predecessor of truck i). The disadvantage of this approach is that the arrival and departure time need to
be known in order to set up x;; and apply this technique. In addition to that, there will be many decision
variables as z; ji; has four terms in its subscript.

The method which has been found to be most similar to the assignment of this thesis subject is the paper
of Rieck and Zimmermann [29]. In this research, the vehicle routing problem is combined with a limited
number of docks and a schedule for docking is produced. The method splits the problem in two. This consist
of on one hand the vehicle routing problem which schedules the vehicles to the required nodes. On the other
hand, the model performs the docking schedule. This is also done as a vehicle routing problem. The first
step is do define the graph G. This consist of nodes C (customers), nodes L (loading bays), nodes S (start) and
nodes E (end). Nodes S en E represent the start and end depot nodes where loading and unloading happens.
The allocation of docks is done in a similar method as in the parking spot assignment by Roca-Riu et al.
[20] as it is a vehicle routing problem, but the underlying method is slightly different. First of all, the model
introduces the decision variable y; ;. The conditions for this variable are presented in Figure 5.1.

case 1: (un-)loading activities at node i € S U E are performed
before (un-)loading activities at node j € SU E at the
same loading bay or
case 2:  (un-)loading activities at note j € S U E are carried out at
Vij =1 loading bay i € L or
case 3:  after node i € SU E all (un-)loading activities are
performed at loading bay j € L or
case 4:  there are no activities at loading bay i € L and we
continue with j € L
0, otherwise.

Figure 5.1: Explanation of the decision variable y; j [29]

Each node i from of S and E needs to be visited exactly once by a route. If arc (i,j) € Lis included in a route,
this means thati € Lis not used in that day (see case 4). The model is set up such that each route again presets
a sequence of nodes to visit. The main difference in this approach compared to the provided problem for this
thesis is the location where the dock capacity needs to be limited. In this paper, the docking capacity is limited
at the loading and unloading depots (freight forwarders). However, this research aims at limiting the number
of docks at the nodes to be visited (ground handlers). This approach is however interesting and seems to have
potential when incorporating the capacity constraint in the model. In addition to that, this model assumes
that the start and end depot node are at the same location where the number of docks is constant. Each route
is thus visiting these start and end nodes. However, in the problem which is discussed in this thesis, different
ground handlers, with different dock capacities are considered. This means that for each ground handler, this
vehicle routing approach should be done with the nodes which are present at that ground handler. A subset
of nodes for each ground handler is thus required to perform this type of implementation.

In the aviation industry, a common assignment problem is the gate assignment problem. This is already
adressed in the research of Mangoubi and Mathaisel [34] in 1985. In this research, aircraft are assigned to
gates where the passengers walking distance is minimized. The constraints enforce each flight to be assigned
to one and only one gate. To prevent two flights from being assigned to the same flight, a subset is developed
with flights which may be violating with their arrival and departure times. The gate assignment problem has
also been researched by Xu and Bailey [35]. In contrast to the research of Manguobi and Mathaisel [34], an ex-
tra set of decision variables is introduced. In this model, z; j is introduced which is equal to one if flight i and
j are assigned to gate k and flight i immediately precedes flight j and zero otherwise. Each flight is assigned a
to a gate and then two additional constraints are introduced which ensure that each flight can be followed by
at most one flight and at most one flight can be the predecessor of it. With these combination of constraints,
the gate capacity can never be exceeded. The main problem with this approach is that the arrival times of the
aircraft are known and only the assignment to gates has to be done. The model of Xu and Bailey [35] should
however be studied as it seems promising to implement this approach to this suggested thesis problem.
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The linear programming language which is set up above needs to be solved with a linear programming solver
package. Each solver has specific features and performances on data sets. In the research of Anand, Aggarwal
and Kumar [36] the most used solvers are studied and their performance. The paper discusses the well known
(commercial) solvers Xpress, CPLEX and GuRoBi. Anand et al. [36] conclude that CPLEX and GuRoBi perform
better in real life applications and Xpress outperforms the other two in complex problems. It is therefore dif-
ficult to determine right now what solver would be the most efficient as the exact problem formulation is not
determined. This evaluation should be done again when implementing the model.

Concluding Remarks

From this section it can be concluded that the research in the vehicle routing problem and dock assignment
has been the topic of numerous research projects. The combination between these two is to the best of
our knowledge however not implemented in the context of the interaction between the freight forwarders
and the ground handlers. In this chapter, initially, the extensions of the vehicle routing problem has been
discussed. Itis concluded that the pickup-and-delivery problem with time windows is the best suitable model
to implement the vehicle routing problem. After this, the vehicle routing formulations are identified. The
distinction is made between the two-index, three-index, set partitioning and commodity flow formulation.
It is concluded that the three-index formulation is probably most suitable for this thesis subject. In the third
part of this research, multiple ways of incorporating the linear dock allocation model have been discussed.
Two of these methods implement this as a vehicle routing problem where the sequence of visiting the nodes
can be seen as the order over which the trucks can dock at the ground handler. Alternative methods are also
presented such as the cross-docking capacity and gate assignment problem so ensure that two trucks cannot
occupy the same dock at a time.






Routing and Dock Allocation Model: an
Heuristic Formulation

The models which are discussed in the chapter 5 can be solved with a (commercial) solver. The problem is
NP-hard and the time it takes to find the optimal solution increases drastically with dataset size. For example,
the comprehensive model of Bombelli and Tavasszy [10] has two stopping criteria to the model. First of all,
the gap optimality is less or equal to 5% and second a maximal computational time of 12 hours. The twelve
hours is not a realistic time span if the model would be implemented in reality. The model should be able
to run in a limited time span, especially for slight changes in the dataset. This chapter will therefore present
an overview of heuristic methods on the vehicle routing problem. In section 6.1 the heuristics of the vehicle
routing problem will be presented. After that, the heuristics of the dock scheduling model will be presented
in section 6.2. This section will also present possible integration of the model to the vehicle routing problem.

6.1. Heuristics of the Vehicle Routing Problem

The development of heuristics for vehicle routing problems has been the topic of research for many years and
in a dedicated chapter, written by Laporte, Ropke and Vidal [37], an overview is given of the developments in
this field is presented. The heuristics are divided into the Construction Heuristics, the Classical Improvement
Heuristics and Metaheuristics. In Construction Heuristics, the goal is to develop a solution which can be im-
proved in later phases. The improvement of solutions is done in the classical improvement heuristics. These
heuristics are in most cases specific and can solve a specific problem. The development of metaheuristics
helped in this and these metaheuristics provide a structure for solving different problems. With this in mind,
this chapter will specifically focus on the metaheuristics which are found in literature on the vehicle routing
problem.

6.1.1. Initial Solution

Finding the initial solution is in most cases done with a simple heuristic. Ropke and Pisinger [30] simply
assume that the initial solution is found before the LNS heuristic is applied and is found by a simple con-
struction heuristic. Pisinger and Ropke [38] use a regret-2 heuristic to get a solution. Laporte et al. [37]
mention that the Clarke and Wright is a simple heuristic which is often used to generate an initial solution.
Altnel and Oncan [39] explained this method in more detail. Initially, each request is given an own vehicle.
One can imagine that this is a highly undesired solution because the number of trucks will be equal to the
number of requests. Routes are represented as (0, ..., i,0) and (0, j, ..., 0). It is then tried to insert the request
in other routes. The representation of the route changes into (0, ..., i, j, ..., 0). The saving from this route is
significant and can be expressed as: s;j = cjo+coj—c;;. For each iteration, the highest possible saving in route
cost is accepted and this solution is accepted. If it is not possible to perform a feasible merge, the algorithm
is stopped.

6.1.2. (Adaptive) Large Neighborhood Search
The research of Ropke and Pisinger [30] introduces the Adaptive Large Neighborhood Search to the Pickup-
and-Delivery Problem with Time Windows. The Adaptive Large Neighborhood Search is a variant on the Large
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Neighborhood Search (LNS) which has been introduced by Shaw [40]. In Figure 6.1 an overview is given of
the LNS.

ArcoriTHM 1: LNS HEeurisTIC.

1 Function LNS(s € {solutions}, g € N)
2 solution s, =s;

3  repeat

4 s'=s;

5 remove g requests from s’
6 reinsert removed requests into s’;
7 Af (f(5) < f(Su) then

8 Spest =

9 if accept(s’, s) then

10 s=¢g";

11 until stop-criterion met

12 return s, ;

Figure 6.1: Large Neighborhood Heuristic Pseudo Code [30]

The heuristic starts with an initial solution, as explained in the previous section. The initial solution for
the pickup-and-delivery problem consists of a set of routes and each route has a set of requests allocated.
In case a request is not allocated to a route, it is put into the request bank. The requests in the request bank
are not served by any route, so a high penalty is given to these routes. In line 5 of Figure 6.1, q request are
removed from the current solution s and placed in the request bank. In line 6, the requests from the request
bank are placed bank into one of the routes. If the cost of the new solution is better than the best solution, the
new solution is accepted. The removal and insertion of the request as described in line 5 and 6 is done with
special heuristics. These will be considered later in this section. The most basic accepting procedure is to
accept any solution which is better than the current solution. This might however lead to situations in which
the searched neighborhood is locally optimized, but not globally. The possibility to prevent this situation is
explained later in subsection 6.1.3. The number of request which is removed, q, is of impact on the solution
outcome. If q is very small, the computational time will be very fast but the solution neighborhood is not
explored very well. If q would be equal to the total number of requests, the solution is totally destroyed and
build up from scratch. Choosing q wisely is thus of importance for the performance of the heuristic.

Removal Heuristics

The removal heuristics apply to line 5 in Figure 6.1. The research of Ropke and Pisinger [30] provides three
methods to remove q request from the existing routes. First of all, the Shaw Removal Heuristic which is based
on the research of Shaw [40]. The aim of this removal heuristic is to remove requests which are similar to each
other. If requests are removed which are very different from each other, it can be imagined that reinserting
these requests in the next phase of the algorithm will most likely place them back in their original position.
If this happens, the solution space of the problem is not explored optimally. The similarity of two request
therefore needs to be defined in quantitative measures. The similarity between requests i and j is called
the Relatedness Measure, R(i,j). The variables influencing the R(i,j) are the geographical location of the two
requests, time windows and number of commodities etc.

The Random Removal Heuristic does not consider the relatedness of two requests to each in the removal
procedure. This heuristic randomly picks q requests which are removed from the routes. In the shaw re-
moval heuristic, a deterministic parameter is introduced to insert randomness to the selection process. This
is not done in the random removal heuristic. The random removal heuristic can be seen as a simplified Shaw
removal heuristic where the random parameter is equal to 1.
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In addition to the Shaw and Random Removal heuristic, the Worse Removal Heuristic computes the cost
of a specific request. The cost of a route s is computed with and without request i. Note that if i is removed,
the costs of putting it into the request bank are not considered, as this will in most cases always outweigh the
benefit from removing i from s. The cost(i,s) is computed as in Equation 6.1.

cost(i,s)=f(s)— f-i(s) (6.1)

Where f_;(s) is the cost of solution s without request i. It is desired to have the routes with highest cost(i,s) to
be removed from that route, and potentially improving the solution if this q is implemented in another route
s. Again, a randomization parameter is added to determine which request is removed. If this is not done
properly, it might be that the same (expensive) request gets removed from routes all the time.

Insertion Heuristics

From the previous section, a number of q requests are now placed in the request bank which need to be
reinserted in the routes. This section will present the insertion heuristics as explained by Ropke and Pisinger
[30]. First of all, the Basic Greedy Heuristic is proposed. In this heuristic, the (minimal) cost of placing request
iin route s is computed. For each i, the best position in a route s is thus computed. This cost is referred to as
Af; s. Ifrequesticannot be placed in route s, A f; s is equal to co. From these value, it is possible to determine,
¢; which is defined to be the mingcg (Af,-,s). In other works, the best position to place i in a route s. We have
to define c; for all request in the request bank. The request with the lowest cost are then placed in route s
and the procedure starts over again until all requests are implemented. The disadvantage of this approach
is that each request only takes into consideration its own best preference and that future requests are not
considered.

To prevent this situation, the Regret Heuristic tries to incorporate a look ahead feature. This procedure is
also explained by another research of Pisinger and Ropke [38]. In that research, A fl.k represents the change
in objective function if request i is inserted to the best position of the k'th cheapest route. If we perform a
regret-2 heuristic, the difference between A fi2 -A fi1 is maximized. In other words, if the difference in costs
of inserting the second choice compared to the first choice is really high, we have to insert this request i at its
first priority. This ensures that the insertion is also looking forward when inserting the requests. The regret
heuristic can be extended to a regret-q heuristic.

In the Large Neighborhood Search, a decision is made which removal and insertion heuristic is used through-
out the algorithm. To extend this, one could use combinations of the proposed removal and insertion heuris-
tics. This is referred to as the Adaptive Large Neighborhood Search. In each iteration, the decision is made
which removal and insertion heuristic will be used. This decision is based upon successes from the individual
heuristics themselves. Ropke and Pisinger [30], [38] developed a method to define the probability of selecting
a heuristic method which is called the Roulette Wheel Selection. If there are k heuristic types, with corre-
sponding weight, w;, i € {1,2,3, ..., k}, the probability of selecting heuristic j is calculated with Equation 6.2.

wj
==
i wi
In their research, Rokpe and Pisinger present a method to update w; during the iteration. If a heuristic
(combination of removal and insertion) performs well, a score is given to this combination. After 100 iter-

ations (referred to as a segment), the scores of all heuristics are compared. After that, w;; is updated as in
Equation 6.3 which represents the weight of heuristic i in segment j.

o; (6.2)

Py

Wi,j+1=Wij(1_r)+r# (6.3)
4

In this equation, r represents the reaction factor. This factor reflects how fast the heuristic changes if a partic-

ular heuristic has success. The 7; is the score of heuristic i in the last segment and 6; is the number of times

that heuristic i has been performed in the last segment.

6.1.3. Simulated Annealing

In Line 7 of Figure 6.1 the acceptance criterium of the LNS is very straight forward. If the solution after in-
serting the requests is better than the best solution known up to that moment, the new solution is accepted.
Ropke and Pisinger [30], [38] and Laporte [37] established that this might lead to a local optimum instead
of the desired global optimum. To explore a larger solution space, the simulated annealing method can be
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implemented to accept a new solution. To accept the solution which is worse than the current solution,

Equation 6.4 is used.

_ D=1
T

ps=e (6.4)

In this equation, f(s') is the new solution to be accepted or not, f(s) is the current solution and p; is the
probability that the new solution is accepted. The T parameter is the temperature parameter. This parameter
has to be larger than one and is decreasing over time. As the parameter decreases over time, the probability
of accepting solutions which are worse decreases over time.

In the book of Hillier and Lieberman [41] it is proposed to use the following temperature schedule. T) =
0.2Z;, where Z; is the objective function value for the initial solution. 7> = 0.5T;, T3 = 0.5T%, Ty = 0.5T3 and
T5=0.5T;.

6.1.4. Tabu Search

With the method mentioned above, the requests which are removed from a route are either random or se-
lected based upon their cost. In order to explore the solution space wider, the method of Tabu Search can
be applied. In the research of Cordeau et al. [42], the tabu search is applied to the vehicle routing problem
with time windows. The research incorporated also vehicle load and duration constraints, as well as time
windows. The principle of the tabu search is to implement a feature which remembers the last steps taken by
the algorithm. These steps are referred to as an operator by Cordeau et al. [42]. For example, if (i,k) represents
that request i is served by vehicle k. From previous sections we concluded that we could select a heuristic to
remove (i, k) and implemented it, so that we have (i,k’), where k'’ != k. In the tabu search, it is now forbidden to
reinsert i to k for a number of iterations. The operator (i,k) is placed in a tabu-list.

Instead of the vehicle routing problem, the pickup-and-delivery problem is more suitable for this specific
thesis research. The implementation of the tabu search algorithm to the pickup-and-delivery problem is
done by Nanry and Wesley Barnes [43]. It is also suggested to incorporate the possibility of including non-
feasible solutions. The violation of constraints has to be taken into the objective function in order to steer the
final outcome into the direction of a feasible solution. This is also suggested by Laporte [37] and Cordeau et
al. [42]. A penalty function can be set up as Equation 6.5.

0 =fx)+) apVi(x) (6.5)
k

Where Vi (x) is the violation of type k in solution x and «a is the weighting parameter to this constraint which
is initially set equal to 1. For each iteration it is checked if x is feasible for k. If this is the case, ay is divided by
1+ 6 and otherwise the weighting parameter is multiplied by this factor. The value of 6 should be larger than
0 to force the solution to find a feasible solution.

6.1.5. Genetic Algorithm
In this section the genetic algorithm will be discussed. This method is based on the principle of evolution
and the survival of the fittest individuals. Widely implementation of this method to the Pickup and Delivery
problem with Time Windows is not done as the solution representation can be very difficult as explained by
Pankratz [44]. In that research, the PDPTW is solved for the first time using the GA method. The solution
representation for this method is often done using a binary string. The method starts with an initial set of
parent solutions. From these solutions, combinations are made which form child solutions which is called
the crossover process. The crossover process can be done with different operators to have a variety in chil-
dren solutions. In addition to crossover processes, mutations can be applied to a solution. Just as in DNA,
a mutation is the sudden change of a genetic property, or in the case of the VRP, a change in schedule. This
unexpected change in schedule can improve the solution or explore the solution space more widely. Pankratz
[44] concludes that the GA can produce solution outcomes which have a good solution quality compared to
benchmark datasets. In another research, Baker and Ayechew [45] apply the GA principle to the vehicle rout-
ing problem. In their research, it is concluded that applying GA performs less compared to tabu search when
the solution quality is considered. It is concluded that GA is more applicable to explore the solution space of
the problem.

For this specific thesis subject, the application of GA seems to be quite complex. The Pickup and Delivery
Problem with Time Windows on itself would already be difficult to represents in a binary string. The addition
of the dock scheduling model and possible extensions seem to complicate the problem even further.
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6.1.6. Dynamic Programming

The application of dynamic programming to the vehicle routing problem is only limited. Psaraftis [46] applied
this method do the dial-a-ride vehicle routing problem but only solved it efficiently for a limited number of
nodes. In the research of Mahmoudi and Zhou [47] the dynamic programming method is applied to the
pickup-and-delivery problem with time windows. The method used is based on a state-space-time method
and the method is based on time stages. To reduce the complexity of the problem, a Lagrangian operator is
introduced. It is shown that the algorithm works with a high number of nodes, but the number of constomers
is only limited.

6.2. Heuristics of the Dock Allocation Model

In the previous section, the heuristics which respect to the vehicle routing problem are presented. In this
section the dock allocation heuristics will be presented. Applying a heuristic is often desired as the computa-
tional time needed to optimally solve a linear programming can be very high.

The parking spot assignment of Roca-Riu et al. [20] developed a simple heuristic for their problem. The
heuristic first orders the parking spot requests in increasing order. Ties are broken by also considering the
latest arrival time and duration. The model then tries to construct schedules by inserting the request over the
sorted orders. If a request cannot be inserted due to time violations, this request remains in the 'unassigned’
list and it is tried to insert this request in the next parking space. Finally, after the schedules for all parking
spaces have been developed, there still may be some 'unassigned’ request. These are then implemented in
the model at the start or end of the sequence where the violation of the preference time window is the least.
The heuristic is compared to the linear model and in most cases the linear model performs better than the
heuristic. It is shown that in a specific data set the heuristic outperforms the linear model in the number of
feasible solutions.

The research of Miao et al. [33] incorporate the linear model to the truck scheduling of the dock alloca-
tion. Especially for larger data sets, the development of a heuristic is desired. In this research, a Tabu Search
method and Genetic Algorithm are implemented separately. In the Tabu Search model, the solution is rep-
resented as a list where each truck is assigned to a dock. As expressed here: (s, 52, 3, ..., Sp) where truck 1 is
assigned to dock s; and truck n to dock s,. The order of assigned docks is changed by The Insert Move where
a single truck is assigned to another dock than it is currently assigned to. Alternatively, The Interval Exchange
Move exchanges two truck intervals in the new assignment. A truck interval is defined as a group of consecu-
tive trucks which are assigned to the same dock. In the Genetic Algorithm two parents are compared to each
other and two cross over operations are included. From this research it is concluded that the heuristic out-
perform the linear model for medium and large data sets. It is also concluded that the Tabu Search method
outperforms the Genetic Algorithm in terms of computational time and solution quality.

The gate allocation problem developed by Xu and Bailey [35] proposes a Tabu Search heuristic to solve
larger data sets. The operations to search the neighborhood space are very similar to the Tabu Search method
of Miao et al. [33]. First of all, a Insert Move is proposed in which the gate to which an aircraft is scheduled
is changed. The second operation is the Exchange I. where the gate assignment of two aircraft is simply
swapped around. In the Exchange II, not two single flights are swapped, but flight pair assigned to a dock is
swapped with another dock. The paper presents a detailed method to compute the cost of each operations,
instead of computing the solution of the entire new solution. This method seems to be potential as it will
decrease the computational time. The number of iterations at which a specific move is set tabu is determined
uniformly within a specified interval. The tabu iterations for each of the iterations can be different. In this
paper, a very clear explanation of the Tabu Search algorithm with pseudo-code is presented. In this paper it
is shown that the Tabu Search finds the same results for all implemented data sets as the linear model, while
the computational time is significantly reduced.

The literature on the dock assignment on its own it not very useful since it needs to be combined with the
vehicle routing problem. The research above however gives an impression on what methods can be used if
the problem would be split up in two and the dock assignment is done separately from the routing process. In
the research of Wang et al. [48] the cross-docking process is studied in which the number of docks is limited.
In this research, a method is presented in which simulated annealing or tabu search has been introduced.
In the construction phase of this model, first the orders are allocated to a cross dock. After that, vehicles are
allocated to the cross docks. The third step is to determine the route of the trucks and after that the arrival
times are determined. The scheduling of the initial phase is thus done starting from the orders by scheduling
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them to a dock. To improve the solution of the construction heuristic, a two stage Tabu Search or two stage
simulated annealing method is applied. It is concluded that the simulated annealing method performs better
on medium sized instances. For larger data sets, the tabu search obtains better solutions.

Concluding Remarks

From this section is it concluded that applying heuristics to the pickup-and-delivery problem can have a sig-
nificant impact on the computational time of the problem. The (adaptive) large neighbourhood search, tabu
search, genetic algorithm and dynamic programming methods have been adressed. An accepting criteria for
the solution such as done in simulated annealing is also discussed. The most frequently used heuristics in
this field are the adaptive large neighborhood and tabu search which are often combined with simulated an-
nealing. The simulated annealing procedure prevents solution from converging to a local minimum but tries
to find the global optimum.



Truck Docking Priority Factors

This chapter is directly related to the fifth sub question and aims at providing an overview of the truck docking
priority factors. These factors can be part of the constraints of the problem. Alternatively, these factors can
also be related to the objective function of the problem. These truck docking factors are mostly relevant for a
data set for which finding a feasible solution is difficult or not possible. A feasible solution is seen as a solution
which respects the time window and dock capacity constraint and delivers all shipments. So if there are not
enough docks available to serve all shipments, the priority to specific goods should be given. The build up
of this chapter will be as follows. First of all, in section 7.1 the minimization of the waiting time is presented.
After that, in section 7.2 the different type of commodities to be transported are discussed. In section 7.3 the
truck load factor influence is discussed. At last, multi-objective optimization is discussed in section 7.4.

7.1. Waiting Time

In the research of Zare-Reisabadi and Hamid-Mirmohammadi [49] the site dependent model is presented,
which is explained in the next chapter. Apart from this implementation, the model proposes another inter-
esting feature in the linear model which is interesting for the proposed thesis subject. First of all, the main
problem of this thesis is that truck congestion appears before the ground handlers. In most models which
are presented in literature, the time window is considered as follows. The time window is defined as [a;, b;]
which means that the trucks prefers to arrive after a; and before b;. Most models incorporate the feature that
a truck is allowed to arrive before a;, but service cannot start before a;. In this case however, it is not desired
for the trucks to arrive early, because this might result into the fact that trucks still have to wait outside the
ground handler. This problem can be solved in different methods. First of all, each delivery node can be
allocated to a dock. If the model also ensures that a dock can never be occupied by more than one node, the
problem is solved. This implies that there should be a link between the delivery nodes and trucks as well.
Each truck needs to be assigned to a dock, and all the delivery nodes for this truck should be assigned to the
same dock. This method would also help in determining the unloading sequencing in the development of the
dock schedule. If this method turns out not to be desired or optimal, the method of Zare-Reisabadi et al. can
be implemented. They introduce the earliness and tardiness decision variables. The earliness and tardiness
of each node is computed which is the absolute difference between the desired arrival/departure time and
the actual scheduled time. The earliness and tardiness are then incorporated int he minimization objective
function.

7.2. Commodity Types

This section will present an overview of different type of commodities and how the priority of these goods
can be implemented in the model. Shepherd, Shingal and Raj [50] researched the air cargo supply chain
values. An overview is presented on the most imported goods by value percentage by air. From this it is
concluded that live animals, plants (including cut flowers), and precious stones and metals are the dominant
import products in the EU. The airport of Schiphol is known for its location near to Aalsmeer where the flower
auction takes place. For the transport of flowers, it is essential to keep these cooled as good as possible. This
also implies to pharmacy. It could thus be argued that these types of goods have a priority compared to other
products.
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The implementation of priority to certain shipments can be done as follows. First of all, in chapter 4 it was
discussed that the time window on the side of the ground handler can be seen as a soft constraint regarding
the start time. This soft time constraint has to do with the limited storing capacity of the ground handler and
to prevent overfilling the building. For the priority on goods as flowers and pharmacy a penalty function can
be added. This function could be in the form of Equation 7.1.

if si>a;: P@i) =c(i)(s; —a;) (7.1)

This equation is only applicable is s; (arrival time at node i) is larger than the earliest possible arrival time.
This equation is not applicable if otherwise, as there is already a penalty introduced for shipments arriving
early and this does not introduce additional costs for these priority goods. The absolute difference between
the actual arrival time and earliest available time is then multiplied with c(i). This parameter is the good
type specific cost. For shipments which include pharmacy or flowers, this parameter can be set nonzero. For
nodes which have no docking priority, ¢(i) can be set to zero.

7.3. Truck Load Factor

The load factor of the truck can also be a parameter which is on influence on the priority to dock a truck or not.
However, the load factor itself does not immediately introduce a very efficient operations. If this optimization
method would be implemented, it might occur that only smaller trucks will be used so that the load factor
is very high. In addition to that, the idea behind this method is that trucks which are filled optimally have a
priority as the unloading of such a truck is more efficient compared to non fully filled trucks. In the proposed
model, this increase in efficiency is however not realistic as docking the truck at the ground handler does not
introduce docking time. For each delivery node, a the service time is introduced but for a truck no additional
time is scheduled in case it docks. In order to introduce this feature, it is thus more realistic to introduce in
parallel the truck docking time. So for each truck it is assumed that it takes x; minutes before unloading can
start. After that, the implementation of the load factor can increase the efficiency of the model. The aspect
mentioned before about the load factor of small trucks can be worked around as follows. Apart from the load
factor of the truck, also the capacity of the truck should be taken into consideration. The combination can be
made between of the load factor and the total load (mass or volume) which is transported.

7.4. Multi-Objective Optimization

The implementation of different type of shipments to the model into the objective function can be difficult
as the problem becomes a multi-objective optimization. Let us consider the example of a truck with a load
factor of 10% which carries pharmacy which needs to be remained cooled. On the other hand, there is a truck
with a load factor of 90% which carries post letters only. There is only one dock available. For efficiency, it is
assumed that a truck has to finish unloading once is started. A single optimization would allow the first truck
to dock if the optimization function is set to priority to the type of good. Alternatively, if the optimization is to
set priority to load factor, the second truck would be scheduled to dock. In reality, it is however a combination
of the two and the problem is a multi-objective optimization. Deb [51] states that there are two methods to
solve multi-objective optimization. First of all, the different optimization functions can be separated from
each other and multiple single-objective functions are solved. Deb refers to this as the ideal multi-objective
optimization procedure. If the single-objective functions have been evaluated, the user can select the desired
solution using higher-level information. If this high-level information is known on forehand, this can be in-
corporated into the objective function. This method is called the preference-based optimization procedure.
A weight vector is introduced with weight for each of the objective functions. In the papers research for this
literature review, most papers introduce this second method if multiple objectives are introduced. This pro-
cedure thus seems most promising and allows to compare different weight vectors to each other.

Concluding Remarks

The purpose of this chapter is to develop a brief overview of parameters which can be introduced to solve
situations where the dock capacity is not sufficient enough to accommodate all vehicles. This means that
priority has to be given to a specific truck or item. First of all, this research aims at reducing the waiting
time outside the ground handlers. The proposed literature models all assume that a vehicle can arrive at a
customer node before the time windows, but service cannot be started. This situation is undesired in this
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model and the proposed solution is to assign each delivery node to a dock, as well as a truck. This chapter
presents a cost function for specific commodity types which are identified to be very costly. In addition to
that, a review of the truck load factor is presented. It is concluded that incorporating the load factor on its
own does add a lot of value. This method can however be implemented if extra time is allocated to trucks
which dock at the ground handler. Finally, the multi-objective optimization function can be incorporated in
two different methods. It is concluded that introducing a weight factor for these objective functions is mostly
implemented and seems to be the best for this thesis subject.






Model Extensions

The basic model which routes the vehicles from the freight forwarders to the ground handlers and assigns
dock forms the basis of this research. It is however interesting to extend the model with specific features to
make the model more realistic and complete. This is adressed by the sixth sub question as proposed at the
beginning of this literature review. In this chapter, different extensions will be described in detail and the
available literature on these extensions will be presented. The extensions which are considered as the follow-
ing. First of all, in section 8.1 the two-dimensional bin packing model is presented. After that, in section 8.2
stochastic modelling is presented to make the model more robust. In section 8.3 the site specific feature of
the model is described. Finally, in section 8.4 the time dependent feature is elaborated.

8.1. Two-Dimensional Bin Packing Problem

In chapter 5 the capacitated vehicle routing problem is presented. In that problem, the capacity is simply lim-
ited by giving a weight to each shipment. The weight of all shipments in the truck cannot exceed the capacity
of the truck. The dimensions of the shipment are however not taken into consideration in that model. To in-
crease the reality of the model, the dimensions of each shipment should be added. This ensures that relatively
lightweight shipments, but with very large dimensions occupy the space they do in reality. To implement this
modelling technique, the two-dimensional bin packing problem can be implemented. In the research of Iori
and Martello [52] an overview is given of the vehicle routing problems with loading constraints. The dis-
tinction can be made between the Two-Dimensional Bin Packing Problem 2BPP and the Two-Dimensional
Strip Packing Problem (2SPP). In the 2BPP, the items are placed in a minimum number of bins to allocate the
items. In contrast, the 2SPP tries to stack all items into a single strip. The objective is then to minimize the to-
tal length of this strip. For the application of this thesis subject, the 2BPP seems more applicable. The trucks
represent the bins and the number of trucks which transport the items should be minimized. The 2BPP can
thus be seen as additional constraints, rather than an entire new optimization technique and new objective
function. The vehicle routing problem which incorporates the 2D-loading is referred to as the Capacitated
Vehicle Routing Problem with Two-Dimensional Loading Constraints (2L-CVRP). For reality purposes, it can
be imagined that if multiple pickup and delivery nodes are visited, the order over which this is done is im-
portant. The items which are pickup up first are loaded in the front of the truck (closest to the driver). When
unloading, this delivery node should thus be visited last. This principle is the Last-In First-Out (LIFO).

Iori, Salazar Gonzalez and Vigo [53] present an implementation of the linear programming of the 2D-
loading model. The disadvantage of the approach in this research is that a set of feasible routes is assumed
to be known and this is used to see the feasibility of filling the trucks. In this model, the left bottom corner
of each item expresses the placing of the item. The research incorporates the following constraints. (i) The
weight capacity of a vehicle cannot be exceeded. This is already implemented in the capacitated vehicle
routing problem. (ii) For all items, the dimensions cannot exceed the dimensions of the vehicle. This is done
using Equation 8.1 and Equation 8.2 which limit the width and height of an item to be placed respectively.

0<x;;<W-wj (8.1)
0<yu<H-hy (8.2)

69



70 8. Model Extensions

In these equations, x;; and y;; represents the x and y coordinates of item 1 at node i respectively. W and H
present the width and height of the truck. (iii) A sequence of constraints is added to ensure that two items do
not overlap each other. (iv) Ensure the LIFO constraint. This feature is programmed as follows. If node i is
visited before node j, one of the three equations below ensures that the LIFO constraint is satisfied.

yilzyjl'+hjl’ (8.3)
Xi|+ Wi = Xjp (8.4)
Xjp+Wwjp < X (8.5)

However again, it should be noted that for this approach, it is not entirely clear how the vehicle routing
is implemented in this model. It would be desired to have the 2D bin packing model included in the vehicle
routing and the model above requires the order over which the nodes are visited to be known in advance.

In the literature review of Pollaris, Braekers, Caris, Janssens and Limbourg [54] an overview of the current
literature on vehicle routing problems with loading constraints is presented. Pollaris et al. conclude that
only two papers implement the two dimensional bin packing problem as an exact approach. The first is
the research of Iori et al. [53] which is mentioned above. The other paper is the research of Martinez and
Amaya [55] where circular items are considered. In this research, the LIFO constraint is not implemented
and it is modelled as a vehicle routing problem where split deliveries are not allowed. In this model, two
decision variables are added which determine the position of the an item. Martinez and Amaya defined these
as follows. x;gr is the x-location of the center of the circle for item i, for product reference g, if this order is
located in route r with vehicle k. The same variable is defined for the y-location. The model then presents
three constraints which ensures that the circular shapes of different items do not overlap. The disadvantage
of using circular items is that a specific set of constraints is not linear anymore. The model thus becomes non-
linear which increases the computational time significantly. The advantage of this research compared to the
research of Iori et al [53]. is that in this research the full model is presented. However, as mentioned before,
the LIFO constraint is not considered in this research. For this thesis subject ideally the two models would
be combined. First of all, the model of Pollaris et al [54]. is changed to rectangular items and afterwards, the
LIFO constraints from the model of Iori et al [53]. should be implemented.

To increase the complexity of the problem even further, the Capacitated Vehicle Routing Problem with
Three-Dimensional Loading Constraints (3L-CVRP) can be introduced. According to Pollaris et al. [54] solv-
ing this problem exact is only done by Junqueira, Oliveira, Carravilla and Morabito [56]. In this model, the
decision variables are modelled time dependent to allow for loading and unloading conditions to be known
at all times. The number of decision variables is therefore really large. For example: a;’;”;’ which is equal to 1
if box type i for customer k is visited at time t by vehicle v and the package is placed at the (x,y,z) position and
0 otherwise. The model then proposes a set of complicated constraints to ensure that items are not overlap-
ping. However, this paper presents a different method as compared to the model of Pollaris et al [54]. and Iori
et al [53]. since it presents a binary representation instead of a continuous variable approach.

In the research of Khebbache-Hadji, Prins, Yalaoui and Reghioui [57] the linear programming model is
presented first which is followed by a heuristic. This model implements the vehicle routing problem with time
windows with the two-dimensional loading constraint. In this model, y; this binary representation equals 1
ifitem tis transported by vehicle k. In addition to that, two decision variables are introduced, (i, V¢x), which
represent the x and y coordinate of an item respectively. This methods seems more promising compared to
the method from Junqueira et al [56]. since the number of decision variables seems to be significantly lower.
The linear model however does not implement the LIFO constraint. This model also presents a heuristic
method which is based on a sequential insertion heuristic. An overview is presented in Figure 8.1.

The research presents three different packing heuristics. The most promising methods are the Maximum
Touching Perimeter Method (MTP) and the Shelf heuristic filling (SHF). For the first, the touching perimeter
is computed which is defined to be the total length of an item touching another item or the loading walls of
the truck. The starting point is set to be the left bottom corner. The truck starts filling from this side. The
SHF in contrast, tries to place items based on horizontal shelves. As in this specific thesis case, there is no
horizontal collaboration between freight forwarders, the LIFO constraint is simplified slightly. Namely, the
ordering sequence on how the freight forwarders are visited is not relevant. It is only required to be able to
implement the packages as the final order of the schedule.

Another method to approach this problem is to introduce the system of loading stacks. One can make the
distinction of a truck with a single stack or multiple stacks. In a single stack system, a truck has to visit the
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Algorithm 1 - General structure of 2L-CVEPTW heunstics derived from SIH

I: repeat

2:  initialize & new route T as a loop on the depot and an empty vehicle
I L0

4: loop

5: Cmin +— +2¢

i for cach unrouted customer § with L +g; =< (0 do

7T: call a packing heuristic {CAV, MTP or 5HF) to see if the items of § can be loaded
8- if ves then

9: compute the cheapest insertion cost C of § in T and the associated position &
10 if C = Cpriy then

11: Crin — C

12: imin — 0

13: Emig — K

14: end if

15: end if

16 end for

17: exit when Oy j, = +0o0

18: insert CUStOmEer fgy;, &t POSithon Ky, in oate T

19: update the loading of the vehicle

200 L+—L+4+g;

21:  end loop o

22: until all customers are inserted

Figure 8.1: Heuristic Structure of the 2L-CVRPTW [57]

delivery nodes in exactly the opposite order of the pickup nodes. This is also the strict LIFO method men-
tioned before. However, if the two-stack system is implemented, this is not strictly needed as two unloading
locations are present. The implementation of the single stack method is presented by Cordeau, Iori, Laporte
and Salazar [58]. In this research, three set of constraints are introduced which ensure the LIFO constraint in
a smart way. The equations are presented below.

Qj = (Q;i +qj)xij V(i,j)e A (8.6)
Qu+i=Qi—qi VieP (8.7)
maxi{0,q;} < Q; < min{Q,Q+qg;} Vie N (8.8)

Where Q; is the load of the truck at node i and g; is the demand at node i. In this set, A is the set of arcs, P the
set of pickup nodes and N the total node set (including origin and destination node). In Equation 8.6 the load
of a node is computed if the route is travelled. This equation is however non-linear as both Q; and x;; are
decision variables. To linearize this equation, Equation 8.9 can be implemented where W; = min{Q, Q + q;}.

QjzQi+qj—W;(1—-x;j) (8.9)

In Equation 8.7 the demand at the delivery node (n+i) is expressed with respect to the pickup situation.
Finally, in Equation 8.8 the values for Q; are expressed within the physical boundaries. With these three
equations, the LIFO constraint is implemented based on a single loading stack in the truck.

Alternatively, one could introduce the multi stack system. C6té, Gendreau and Potvin [59] introduce for
each vehicle a set of M loading stacks. The same principle to introduce the LIFO constraint is done for each
loading stack as expressed by Cordeau et al. [58]. Each loading stack is limited in size and this is incorporated
in the proposed constraints. This method seems to be very promising for introducing the LIFO constraint
combined with the loading constraint. Coté et al. [59] introduce a new decision variable which is s;;. This
variable should not be confused with the arrival time at a node as introduced previously. It represents the load
of stack k after leaving node i. Where k is selected from the set of stacks. In addition to that, the variable y;x
represents if the demand at pickup location i is loaded in stack k. Constraints enforce that for example: each
pickup location is assigned to one stack exactly. Then the LIFO constraint is included and capacity limits for
each of the stacks. To enforce that the loading starts at a specific location in the truck and to avoid multiple
possible solutions, the model tries to break symmetry with two rules. First of all, the first pickup location is
loaded in stack 1. After that, it is ensured that demand can only be loaded in a new stack if the previous stack
is already used.

The disadvantage of this model is that it is only applied to a simplistic pickup and delivery problem and is
for a single vehicle only. The model should thus be extended from the two- to three-index formulation. The
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introduction of the stack model simplifies the model in terms that each item does not have to be precisely
scheduled in a 2D-plane. This simplification also introduces inaccuracies and infeasibilities. The most likely
assumption for a truck would be to introduce a two-stack system. It is then assumed that each shipment can
be fitted in this stack. If the dimensions exceed the width of the stacks, the shipment could in reality not be
transported.

8.2. Stochastic Modelling

One can imagine that the input variables of a model are very important for the outcome. For example, the
time it takes to travel from node i to node j. In most models, this time is assumed to be static which results
in the optimal solution. In reality, the travel time between two nodes is not static. It is depending on traffic
and human resources for example. To incorporate this feature, stochastic modelling can be applied. By doing
so, the reliability and robustness of the model is increased. In the research of Ritzinger, Puchinger and Hartl
[60] a distinction is made between the dynamic and stochastic vehicle routing problem. The dynamic vehicle
routing problem refers to input data which gets available during the execution of the model. The stochastic
variant includes uncertainty of the input variables to the model. In their research, Ritzinger et al. [60] consider
the following aspects to incorporate in the uncertainty model: stochastic travel times, stochastic demand,
stochastic customers and multiple stochastic aspects. Especially the first aspect is relevant for this specific
thesis. If a truck is delayed from the freight forwarder to the ground handler, situations might appear in which
the number of docks is violated whereas it would not have been if the truck was not delayed.

The second aspect, the stochastic demand is for example applied in the field of garbage collection. A
garbage truck is send out on a specific route based on historical data on that route. In combination with
the capacity of the trucks, the optimal route is determined. The demand is however fluctuating and cannot
be seen as static. Implementing stochastic demand can thus be helpful for this problem. For this proposed
thesis subject, the application of applying stochastic to the demand does not seem very needed and helpful.
The demand for this problem (which are the orders to be shipped from freight forwarder to ground handler)
is not stochastic. The orders are known in advance and this forms the basis of the optimization problem.
Further research in this direction is therefore not done.

The third aspect which is discussed in the research of Ritzinger et al. [60] is about the stochastic cus-
tomers. This implies that there are customers which only present their demand during the operation of a day.
This application is also not considered to be very realistic in the application to this specific thesis subject. As
the shipments needs to be flown by aircraft, these shipments are normally reserved a spot in the aircraft not
last minute. Changing the number of customers (extra freight forwarders) during the day is therefore also not
considered to be realistic and this feature is therefore not studied in more depth.

To summarize, the only promising implementation of stochastic features into the model is time related.
This could be the travel time between nodes, but also the processing time could in reality be susceptible to
uncertainty. Ritzinger et al. [60] found that there is only a single paper which tries to implement time uncer-
tainty in a linear model. This is done by Toriello, Haskell and Poremba [61] where the arc cost is determined
with a stochastic approach. The proposed model is however very complicated and including this type of
model does not seem realistic as the basic model can already be very complex. Berhan, Beshah, Kitaw and
Abraham [62] also present a literature review on the stochastic vehicle routing problem and conclude that
most papers focus on stochastic customer demand. Berhan et al. [62] found that Campbell, Gendreau and
Thomas [63] also present an exact method to incorporate this feature. This research presents a very probabil-
ity based outline. First the model defined D as the time limit at which the node should be visited. The time
at which a node is visited is referred to as A;. If A; < D, the reward r; is given. If the vehicle arrives too late,
the penalty e; is awarded. The model then expressed the expected profit to be as in Equation 8.10 where v(1)
represents the expected profit of tour 7.

v(r) =) [P(A;<D)ri—(1-P(A; < D))ej] (8.10)
1ET

The model presents three different methods to incorporate this feature, based on different scenario’s. After
that, the research proposed a heuristic based on the variable neighborhood search. The implementation of
this feature in the model seems interesting to make the model more robust. However, all papers which are
found in literature apply the problem to a relatively less complex vehicle routing problem compared to the
proposed problem for this thesis. As the model should already incorporate vehicle routing, time windows,
dock capacity and possibly the two-dimensional load constraint, this feature seems to be very complicated
at this stage.
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In the research of Weskamp, Koberstein, Schwartz, Suhl and VoSS [64], a two stage programming method
is introduced. This research does not specifically focus on the vehicle routing problem but considers the
air cargo supply chain more generally. In the first stage of this approach, decision variables are defined for
which full information is available. In the second stage, uncertainty is introduced into the data. In the second
stage, postponed decisions are made with respect to the introduces randomness. The model presents a exact
method in the form of a linear program which is solved using CPLEX. Weskamp et al. [64] also present two
other methods to solve the problem. Applying this specific research to the subject of this thesis does not
seem very intuitive especially since the research is not applied to the vehicle routing problem and the detailed
working principle in terms of programming and steps which are taken in the algorithm do not become very
clear from this research.

8.3. Site Dependent Model

The assignment of aircraft to gates can be very specific which can be easily visualized. Larger aircraft as the
A380 or B747 cannot occupy a gate intended for small aircraft due to physical dimensions. The same principle
can be applied in the truck scheduling problem. The distinction can be made regarding size of the truck but
also other properties such as the presence of a cooling compartment in a truck. Only specific docks can
handle these cooling compartments or are designed for larger trucks. This section will present the literature
on this implementation of the model.

First of all, in section 5.2 the distinction has been made between the two and three-index decision vari-
able for the vehicle routing problem which are represented as x;; and x{.cj respectively. The disadvantage of
the two-index model is that one has to assume a homogeneous fleet. The three-index model allows a hetero-
geneous fleet, but the computational time is generally larger as the number of decision variables is increased.
The three-index model makes it possible to assign certain shipments to specific trucks only. For example: if
flowers or pharmacy needs to be delivered, these items can only be shipped by trucks which have a cooling
department. These trucks should then be scheduled to a dock which can also serve this cooling compart-
ment. To implement this site specific features, the three-index model seems to be the best model. In addition
to that, this model is also more intuitive in modelling and simplifies the understanding of the model. The
increased computational time should be accepted in that case.

The vehicle routing problem which incorporates this feature is the Site Dependent Vehicle Routing Prob-
lemwhich is adressed by Zare-Reisabadi and Hamid-Mirmohammadi [49]. The model proposes a heuristic to
include this in the model based on an ant colony optimization. The first stage is to produce a feasible solution
and after that a local search is performed in which the solution is improved.

The model of Alonso, Alvarez and Beasley [65] provide a linear method to include site specific features.
For their research, this was the accessibility restriction. Only a subset of vehicles can service specific nodes.
To incorporate this feature, the set of vehicles has been broken down. The P; set is introduces which is the
set of feasible vehicle types for customer i. For each node, these subsets are then used in the constraints. This
model especially incorporates the possibility of multiple routes per vehicle and the time span of the data set
can be multiple days. For this specific thesis subject, the implementation of multi routes does not immedi-
ately seems to have any added value. The subset of constraints is however usable in the model.

8.4. Time Dependent Model

As mentioned earlier in this report, Soysal et al. [15] and Franceschetti et al. [17] developed a time-dependent
model. The addition of this to the model which will be developed does not immediately seem to be quality
improving. However, there are some time dependent features which could be interesting. The most inter-
esting seems to be that the number of docks which is available at the ground handler is time dependents. At
peak hours, the number of docks is larger and at non-peak hours the capacity is decreased. Having less docks
available also means that less workers are required to handle the docks, meaning a cost reduction.

The literature on dock capacity combined with the pickup and delivery problem is very limited. The pa-
pers on cross-docking where the dock capacity is taken into consideration also does not provide this feature.
All assume that the number of doors is constant throughout the model. The implementation of time depen-
dent dock availability would be less complex if the decision variables include a time aspect, which they do
not. In order to work around this, the following method could be used. For example: during peak hours 5
docks are available, and otherwise only 4. For the one docks which is only partially available, a dummy node
and truck can be generated. The arrival time of this dummy truck to the dummy node is set equal to the
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time the dock closes and the departure time to the opening of the dock. This dummy truck should then be
assigned to this one dock. This ensures that no other truck can unload at that dock when it is closed.

Concluding Remarks

The purpose of this chapter was to study possible extensions of the vehicle routing problem. First of all, a
basic program should be developed as presented in chapter 5 and chapter 6 which performs the truck routing
and dock scheduling. After that, the model can be extended so that it represents reality better. This chapter
provided three methods to do this. First of all, the two dimensional bin packing problem has been presented.
Two different methods are presented here. The research of Khebbache-Hadji et al. [57] model the x and y
coordinate of an item with a continuous variable. This is also done by Iori et al. [53] and here a method to
incorporate the LIFO constraint is presented. Alternatively, if the modelling is done using binary variables,
the method of Junqueira et al. [56] can be applied. In this model, the decision variable is in the form of x .
which has the unitary value if the package is placed at (x,y,z) and 0 otherwise.

The second extension is the stochastic behaviour of the input data to make the model more robust. Lit-
erature defines three aspects where a stochastic approach can be implemented: travel times, demand and
customers. In this chapter it is concluded that the uncertainty of demand and customers does not seem re-
alistic for this thesis subject as the reservation of freight forwarders to air cargo companies cannot be done
last minute. The uncertainty related to travel time and service time is however realistic and would be an
enrichment of the model. From the available literature on this topic it is however concluded that the im-
plementation of this will not be trivial. The models found in literature are often build specifically around
the stochastic behaviour and the considered model is often less complex than is considered in this thesis.
Implementation of this feature to the existing model therefore seems to be very challenging.

The site dependent vehicle routing model has been studied which implies that the three-index notation
should be used, x; . The constraints should then be made specific by creating subsets of the vehicle types
for the nodes. The implementation of this model could be for example related to trucks which have cooling
compartments. This thus implies that only specific nodes can be served by a type of vehicle which has theses
features. In addition to that, the model can be elaborated to give each dock properties. This implies that
the scheduling of the trucks at the ground handlers’ dock also incorporated. These two extensions of the
model seem to be realistic and can be implemented if the basic model has been developed. At last, the time
dependent model has also been studied. This model is especially interesting in case certain docks are only
open for peak hours.



Conclusion

The aviation cargo industry is continuously growing and this introduces the need to improve the efficiency
of the air cargo supply chain. The currently observed problem is that the number of trucks which arrive at
ground handlers is larger than the available number of docks. This leads to congestion and delays for the
trucks. The purpose of this research is to develop a model which performs truck routing from the freight
forwarders to the ground handlers. In addition to that the model should take into consideration the available
docks at the ground handler and create a schedule for all individual docks. The research question is defined
as follows.

What is the efficiency improvement of introducing an optimization model which incor-
porates dock scheduling within the pickup-and-delivery model for the landside air cargo
supply chain

In addition to this research question, six sub-question have been developed. The purpose of this report is
to answer these six sub-questions. After these are answered, the model can be developed and evaluated. This
conclusion will go through each of the sub-questions and present the result of the chapter.

What is the current procedure in the air cargo delivery process?

In the current air cargo supply chain, the freight forwarders and ground handlers play a major role. The freight
forwarders receive items from different companies and act as a shipping company to the ground handlers.
The freight forwarders send shipments to different ground handlers, depending on the airline which is used
for transporting the shipment. The ground handlers process the incoming shipments and consolidate them
for airlines. Ground handlers have a limited number of docks available for trucks to dock. To increase the
efficiency of the process from freight forwarder to ground handler, multiple efficiency improving concept
have been discussed in literature. These are primarily aimed to reduce the number of trucks arriving at the
ground handlers by increasing the efficiency and load factor of the trucks.

First of all, the introduction of a time slot booking system could prevent uncoordinated congestion. The
disadvantage of this approach is that the interaction between different ground handlers to be visited along
the route of a truck can introduce major inefficiencies if the allocated time slots are not well attuned to each
other.

Collaboration between ground handlers and freight forwarders can be done by vertical and horizontal
collaboration. In vertical collaboration, collaboration is implemented between companies who operate at
different levels in the supply chain. Alternatively, horizontal collaboration is the cooperation for companies
within the same level in the supply chain. Introducing this full collaboration can reduce the transportation
cost in the air cargo supply chain up to 40% theoretically. In practise, full collaboration is however rarely
implemented due to practical problems.

If collaboration between freight forwarding companies is difficult to implement, cross-docking can help
to increase the load factor of departing trucks. At the cross-dock stations, trucks from all freight forwarder
arrive and unload their shipments. The shipments from different freight forwarders are then combined in a
truck which travels to the ground handler.

The last efficiency improving concept is the milk run principle. A truck travels a route and picks up ship-
ments at each stop. On forehand, the amount of shipments to be picked up at each freight forwarder should
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be known to load the truck as efficiency as possible. This principle prevents that each freight forwarder drives
half-full trucks to the ground handler. This concept has been introduces at Schiphol Airport since May 2015
and showed a decrease of 40% truck movements at the ground handlers and 30% decrease in carbon dioxide
emissions one year after the introduction.

What indicators are relevant to determine the efficiency of the ground handling process?
The key performance indicators (KPI) can be used to evaluate the quality of a proposed solutions to each
other. The objective function in the optimization model can be altered and the resulting outcome can be
compared with the proposed KPI’s. For most vehicle routing problems, the travel distance is to be minimized.
The cost of a solution is simply represented by the total distance which is travelled by all vehicles. In this
specific thesis subject, the travel distance is however not the only parameter which should be considered in
the evaluation of the solution. The aspect of time is very relevant as well. The time component can be broken
down into travel time and waiting time. The waiting time especially should be minimized to avoid trucks
waiting at ground handlers for a dock. The fuel costs are also incorporated in some vehicle routing problems
but seem to be too detailed for this thesis subject. The financial costs of a solution are however interesting
to incorporate in the model. If an extra truck is scheduled, this introduces additional fixed cost per truck.
Also missed deliveries significantly contribute to the cost function. The time window preferences should be
evaluated in the model as well. Time windows can be implemented as soft and hard constraint. In case a soft
time window is introduced, penalties should be introduced if violation occurs. Finally, a benchmark dataset
has been introduced which can be used to evaluate the model and perform validation compared to other
models.

What linear programming methods are suitable for the truck routing combined with the
scheduling problem?

The linear model should combine the routing of trucks and allocation of docks at the ground handlers. The
routing model can be seen as a variation of the vehicle routing problem. In the vehicle routing problem, a
set of nodes should be visited by a set of vehicles which minimized the total distances travelled. Numerous
extensions of the model are presented in literature such as capacity, time windows and a multi depot vari-
ant. The variant which is most suitable for this thesis subject is the Pickup-and-Delivery Problem with Time
Windows. In this model, shipments consist of a pickup and delivery node. The number of nodes is thus twice
the number of shipments. In addition to that, a departure and arrival depot are included in the set of nodes.
The pickup nodes represent the freight forwarders where a shipment is loaded in a truck. The delivery nodes
represent the ground handlers where a shipment is unloaded from a truck. Time windows are incorporated
for both the pickup and delivery nodes. For the pickup nodes, this can be a hard constraint from what time a
shipment can be picked up. For the delivery nodes a hard time constraint can be incorporated which ensures
that a shipment is delivered before the departure time of the intended flight. An earliest time arrival for the
delivery nodes can be incorporated as a soft time window which is related to the maximum storage capacity
of the ground handlers.

The implementation of the pickup-and-delivery problem in a linear model can be done with different
formulations. First of all, a two index formulation, x;;, is one if the route from node i to j is travelled and zero
otherwise. To extend this model, the three-index formulation can be used for a heterogeneous fleet, xlk This
indicates if vehicle k travelled from node i to node j. In the set partitioning formulation, all feasible routes are
considered and the route with minimal costs is selected. Finally, the commodity flow formulation models the
flow over each arc. It is concluded that the three-index formulation seems to be most suitable for this thesis
subject.

The disadvantage of the formulations presented above is that these are not time related. It is thus not
possible to simply set for each time point: the number of trucks which is assigned to a dock has to be equal or
less than one. The scheduling should thus be done separately. In literature, different models tackle this type of
problem. First of all, the trucks can be assigned to a dock using another vehicle routing problem. Each route
represents a dock and the nodes in a route represent the trucks that have to be assigned to a dock. The order
in which the nodes are visited in a route is equal to the sequence over which the trucks can visit the dock.
Another method is to have a decision variable which indicates if node i is visited after node j. All nodes are
assigned to a specific dock and with special interaction between constraints it is ensures that for each dock,
never more than one truck is assigned. This principle is applied in the dock assignment of cross-docking
in literature. Also the assignment of flights to gates can be seen as a variation of the truck dock assignment
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problem. In literature a slightly different method is introduced. Each flight is assigned a to a gate and then
two additional constraints are introduced which ensure that each flight can be followed by at most one flight
and at most one flight can be the predecessor of it. This ensures that at each gate never more than one aircraft
is assigned.

What heuristic methods are suitable for the truck routing combined with the scheduling

problem?

The linear model can solve a small dataset to optimality in a reasonable time limit. The problem is however
NP-hard which means that for larger datasets, a linear solver might take very long and not able to present a
feasible solution. For that reason a heuristic should be developed which performs good in terms of solution
quality and computational time. In this literature review, an overview is presented of the relevant meta-
heuristics for the vehicle routing problem and the dock assignment problem.

For a heuristic of the pickup-and-delivery problem, the procedure starts with an initial solution. This can
be done by the Clarke and Wright simple heuristic. First of all, each request is given to a separate truck. It is
then tried to combine and merge different routes into each other. The operation which has the best saving is
accepted. The initial solution is then forwarded to the improvement heuristic phase which aims at improving
the initial solution.

In the (Adaptive) Large Neighborhood Search (ALNS) a number of request is removed from the current
solution and placed in the request bank. The request are then reinserted in the solution. If the cost of the
new solution is better than the ’old’ solution, the new solution is accepted. The removal and insertion of the
requests is done using dedicated heuristics. The specific feature of the Adaptive Large Neighborhood Search
is that the success of each heuristic is recorded. Over time, the heuristics which perform best have a higher
probability of being selected.

The accepting criteria of the ALNS as mentioned before is that if the new solution is better than the old,
it is accepted. This might however lead to a local optimum instead of the global optimum. This is where
Simulated Annealing can be of added value. A solution which is better than the best known solution is always
accepted. A solution which is worse than the best known solution is accepted with a probability related to the
difference in solution quality. Over time the probability of accepting a worse solution is decreased.

Tabu Search (TS) is another type of heuristic in which an operation is set tabu for a number of iterations.
This ensures the diversification of the solution space en preventing a solution to go back to its original solu-
tion. Also a method is presented in which non-feasible solutions can be accepted and a penalty function is
introduced.

The Genetic Algorithm (GA) is based on the principle of evolution, survival of the fittest and mutations.
Solutions should ideally be represented as a binary string. Parent strings form children and over time the
solution quality is improved by selecting the best parents for each iteration. Mutations can also be introduced
to explore a broader solution space. The application of GA for the PDPTW is complex as the representation of
the solution is not trivial. Finally, Dynamic Programming (DP) has also been found in literature. It is however
shown that only a limited number of customers can be visited.

Applying a heuristics for the dock allocation problem itself is not directly useful as this implies limited
interaction with the truck routing model. Most heuristic models make use of a combination of the above
mentioned types. Most models use ALNS or TS with Simulated Annealing.

Which factors influence the priorities to allocate trucks to a dock?

If two trucks would arrive at exactly the same time at a ground handler, one should be given priority. This
can be incorporated in the objective function of the model. First of all, the waiting time can be minimized.
This can be done by incorporating a penalty function for the earliness and tardiness variables. These are the
absolute difference between the desired arrival/departure time and the actual scheduled time.

Alternatively, the commodity type which is carried by the truck can be of influence for the priority. For
each commodity type, a cost function can be discussed. For example, pharmacy has a higher cost for arriving
later compared to post letters. The cost parameter can be scaled directly to the time difference between the
actual scheduled time and the earliest arrival time.

The truck load factor can also be used to give priority to certain trucks. This method is however not en-
tirely applicable, as this could lead to situations in which smaller trucks are used to ensure a high load factor.
A combination should thus be made between load factor and truck capacity to introduce this effectively.

Finally, the objective introductions above lead to a multi-objective optimization. It is concluded that
most effective procedure is the preference-based optimization procedure in which weight factors are given
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to different optimization functions.

What are possible extensions of the model to be implemented later to make the model

more complete?

The last sub-question is related to the extensions of the model to represents reality better. First of all, the
two-dimensional bin packing problem is considered. The most complex method is to pack all items in the
two-dimensional plane. This implies that each shipment is given an x and y coordinate and constraints are
added to ensure that no shipments overlap with each other. The second method is based on a (multiple) stack
truck. The width of the truck is divided into multiple stacks. Stacks are loaded until the capacity of a stack is
reached. The method of implementing stacks seems to be most promising for this thesis model.

In addition to the packing problem, the Last-In First-Out (LIFO) principle can be implemented. This
implies that the shipment which is picked last, needs to be delivered first. With this procedure, no unloading
of other items has to be done in order to access the shipment which has entered in the truck last. This can
be done in two ways. First of all, the order over which the delivery nodes can be based upon the x and y
coordinates of the items. Secondary, the order over which the pickup nodes are visited can be inverted and
this is the order over which the delivery nodes have to be transported.

Stochastic modelling has also been considered which makes the model more robust. Stochastic behaviour
can be implemented in travel time, demand, customers and a combination of the three. The stochastic mod-
els which have been studied in this literature review are all entirely build around the stochastic behaviour
of the model. The implemented vehicle routing problems are also less complex compared to the proposed
model for this thesis. The implementation of stochastic modelling for this thesis subject is therefore con-
cluded to be probably too complex.

The site-dependent model allows to have feature which are only applicable to a specific site. In this thesis
subject, this can be implemented by incorporating the three-index formulation, which is vehicle dependent.
The vehicle dependent formulation allows to dock specific trucks to specific docks.

A time dependent model can be implemented to have a limited number of docks available at specific
times. This can be done by incorporating a dummy truck and allocate it to the docks which are not available
at that time. A more advanced time dependent model allows to have travel times which are dependent on the
time of the day. This feature however does not seem be very relevant for this thesis subject.

In conclusion, the Pickup-and-Delivery Problem with Time Windows seems to be the best method to model
the proposed thesis problem. In addition to this, a dock assignment feature should be added which can be
based on the vehicle routing problem or time dependent variables. A heuristic should be developed and
the most promising method is the (Adaptive) Large Neighborhood Search or Tabu Search with Simulated
Annealing as solution accepting criteria.
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Appendix 1

Verification Case Heuristic Model

This section presents an example case for the heuristic model based on an instances that is easily solvable by
hand. First of all, the data instance is presented in Table 1.1. Pickup nodes are represented by P in the Node
Type column and delivery nodes with D. It can be seen that all pickup nodes are located at UPS and have to
be delivered at MNZ. Also the time windows for all nodes are presented. It should be noted that pickup node
1 belongs to delivery node 6, pickup node 2 to delivery node 7 etc. All nodes have a processing time of 10. All
time variables are represented as minutes.

Table 1.1: Verification data instance

Node ID Node Type Location  FF GH Start End Time Processing Time
Time
1 p UPS UPS MNZ 20 20 10
2 p UPS UPS MNZ 30 30 10
3 p UPS UPS MNZ 40 40 10
4 P UPS UPS MNZ 60 65 10
5 P UPS UPS MNZ 59 75 10
6 D MNZ UPS MNZ 1 130 10
7 D MNZ UPS MNZ 1 120 10
8 D MNZ UPS MNZ 1 90 10
9 D MNZ UPS MNZ 1 110 10
10 D MNZ UPS MNZ 1 100 10

The start phase orders the delivery nodes according to the start time window. It thus creates the pickup
route: [1,2,3,5]. The associated service time of the nodes is: [20,30,40,58]. Servicing pickup node 5 is finished
at t = 68. It then wants to implement pickup node 6, but this is not feasible with respect to the provided time
window. It thus creates a new route for pickup node 4. However, we know that we could get a feasible solution
if we have the pickup route [1,2,3,4,5] with associated service time of the nodes at: [20,30,40,60,70]. The order
over which the delivery nodes should be visited is restrained by the end time window of the delivery nodes. It
should thus be in the order: [8,10,9,7,6]. This change is achieved in the improvement phase of the heuristic.
The outcome after the heuristic phase is presented in Figure 1.1. The x-axis represent the time in minutes
when a node is serviced. The node is indicated by the number above the line. The vertical black lines indicate
the start and end time of servicing the node. The start depot and end depot node are included as well.
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End Depot Node -

Dock: 2
MNZ 4
Dock: 1

Start Depot Node -

—8— Truck: 1
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Figure 1.1: Simple verification case route outcome

It should be noted that the travel time from UPS to MNZ is set equal to 5 minutes. The earliest time at
which a delivery node can be serviced is equal to: 70 + 10 + 5 = 85. The total time that the solution takes is
equal to: 10 nodes with each a service time of 10 minutes. In addition to that the travel time of 5 minutes.
Finally, we have 10 minutes inter-node time due to the time windows. In total, the minimum duration is thus
a total of 115 minutes. In addition to that, one truck is used. The total solution cost should thus be equal
to: 115 - 0.45 + 112.26 = $164.01. This cost is exactly the cost that is outputted by the heuristic model after
the improvement phase has been completed. It is thus assumed that the working principle of the heuristic is
as it is expected to work. The loading constraint is also satisfied and output is presented in Figure 1.2. The
position where Truck 1 is plotted should represent the driver cabin and the unloading door is presented at
the bottom of the figure. This loading pattern is feasible for the Strict-LIFO and Side-Accessible LIFO model
variant.

Truck 1

1 71
1 4
12 22
2 5
13 73
3
Unloading door

Figure 1.2: Truck loading verification case



Appendix 2

Data Instance Generation Process

In this appendix, a brief explanation to the data generation process is presented. In Table 2.1 an overview of
all possible ground handlers and freight forwarders is presented. The datasets are generated using a random
generator. The user selects the number of shipments for the dataset. Also the number of freight forwarders
and ground handlers is selected. From Table 2.1 the number of freight forwarders and ground handlers are
randomly selected. The generator ensures that each freight forwarder has assigned at least one shipment. The
number of shipments should therefore always be larger or equal than the number of freight forwarders. The
ground handler for each shipment is randomly selected. If all nodes have been assigned to a freight forwarder
and ground handler, time windows are introduced to the nodes. In Table 2.2 an overview is presented for the
determination of the time windows.

Table 2.1: Freight Forwarder and Ground Handler location

Freight Forwarder Ground Handler

DHL Global Forwarding (DHL) KLM Ground Handling (KLM)
Expeditors International Forwarding (EX) Dnata (DNT)

Kuehne Nagel (KN) Menzies (MNZ)

DB Schenker (SCH) Worldwide Freight Services (WFS)
UPS (UPS) Swissport (SCS)

Table 2.2: Time Window Data Generation

Variable Distribution Type Parameter Value
Start Time Freight Forwarder Discrete Uniform Distribution U(Zstart tend)
Travel Time Normal Distribution N (,u tt 0'% t)

FF Time Window Normal Distribution Niurr, cr?c 7

GH Time Window Normal Distribution N\ pgn, Ui, h
Parameter Value

End Time Freight Forwarder Start Time Freight Forwarder + FF Time Window
Start Time Ground Handler Start Time Freight Forwarder + Travel Time

End Time Ground Handler Start Time Ground Handler + GH Time Window

When generating the data instance, the user selects a start and end time window where the shipments
can be generated. The start time window at the freight forwarders is created from an uniform distribution
between these two times. An uniform distribution is chosen to prevent peaks during the entered data instance
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time duration. For the ground handler and freight forwarder, a random time window is introduced that is
based on a normal distribution. In addition to that, a normal distribution is introduced for the travel time
from freight forwarder to ground handler. The end time window of the freight forwarder is then simply the
start time of the freight forwarder plus the random time window of the freight forwarder. The start time
window of the ground handler is defined as the start time window of the freight forwarder plus the random
travel time. Finally, the end time window of the ground handler is defined as the start time window of the
ground handler plus the random time window of the ground handler.

It should be noted that not for all data instances, a start and end time window for ground handlers and
freight forwarders is used. Most times, only a start time window is used for freight forwarders. This indicates
the earliest time at which a shipment can be picked up at the freight forwarder. For delivery nodes at the
ground handler it was decided to include in most cases only a end time window. This indicates the time at
which the node should be at the ground handler in order to be on time for the scheduled flight. The way that
the time windows are computed is not changed, but the time windows which are not used are simply set to
values that
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