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Abstract

Worldwide, welding is a multi billion-dollar fabrication technology used extensively in
construction and industry. The �nal quality of a weld is known to be dependent on
the hydrodynamics in the liquid region and the energy transfer in the surrounding heat
a�ected zone. Understanding of these processes is therefore vital in improving weld
quality.
Within the department carrying out this project (Transport Phenomena), an Open-

FOAM Solver has been developed for the simulation of welding with a stagant heat
source. A large part of welds in industrial application is performed with a moving heat
source, integrating this motion into the existing solver is the goal of this thesis. In order
to minimize the necessary grid size for simulation, and thereby reduce the computational
load, the governing equations are formulated in a reference frame attached to the moving
heat source.
First a detailed theoretical analysis is presented of heat transfer, phase change and

�uid �ow in welding of non pure material. Special attention is given to the modeling
of the �ow in the solid-liquid region and the modeling of thermocapillary surface forces
which occur from spatial temperature di�erences. We assume no deformation of the weld
pool surface and incorporate the thermocapillary surface forces and the heat �ux through
the top surface as boundary conditions.
The derived governing equations have been implemented in the existing OpenFOAM

solver. A special feature of this solver is the linearization of the energy source term
associated with the latent heat absorption and release due to the phase change.
Results generated by the modi�ed solver are compared with analytical solutions of heat

transfer. Finally temperature and velocity �eld data are presented for three di�erent
welding velocities and three di�erent surface tension coe�cients.
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List of Symbols

α Thermal di�usion coe�cient [m2s−1]
β Thermal expansion coe�cient [K−1]
ε Emissivity [−]
λ Thermal conductivity [Wm−1K−1]
µ Dynamic viscosity [kgm−1s−1]
ν Kinematic viscosity [m2s−1]
ρ Density [kgm−3]
σ Surface tension coe�cient, Stefan-Boltzmann constant [Nm−1] , [Wm−2K−4]
cp Heat capacity [Jkg−1K−1]
g Liquid fraction, gravitational acceleration [−] , [ms−2]
H Enthalpy [J ]
hgf Heat of evaporation [Jkg−1]
kq Laser beam distribution coe�cient [−]
L Length, Latent heat [m] , [Jkg−1K−1]
p Pressure [kgm−1s−2]
P Laser power [W ]
r Radius [m]
rq Laser beam waist radius [m]
T Temperature [K]
~U Convective velocity [ms−1]
~Ut Welding velocity of the laser [ms−1]
~V Net velocity [ms−1]
W Evaporation mass �ux [kgm−2s−1]

Subscripts s and l correspond to solid and liquid phase.
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1 Introduction

1.1 Weld pool simulation

�In the last 20 years, the growth of modern welding science and technology has been
phenomenal. Worldwide, welding is a multi billion-dollar fabrication technology used
extensively in the construction of buildings and bridges and in the automotive, aircraft,
aerospace, energy, ship build and electronic industries. Perhaps because welding is a
construction technique, it is viewed by many as a primitive science. Nothing could be
further from the truth�[4].
The �nal quality of a weld is known to be dependent on the hydrodynamics in the liquid

region and the energy transfer in the surrounding heat a�ected zone. The hydrodynamics
in the liquid region, i.e. the weld pool, are dominantly driven by Marangoni convection
due to surface tension gradients which are caused by gradients in surface temperature and
surface active elements. These dynamics play an important role in the energy transfer
to the surrounding metal. The �nal weld shape, post solidi�cation micro-structures and
residual stresses are all determined by these. Therefore, understanding of the �uid and
heat �ow within the weld pool plus the heat transfer within the heat a�ected zone is
essential in improving weld quality.
Both experimental and numerical studies on weld pool �ows and solidi�cation have

been carried out over the last decades (e.g. [3, 10, 11, 12, 21]). Experimental measure-
ments on weld pool �ows and solidi�cation can be found widely in literature. In general,
these researches face three major obstacles: the high temperatures, the small dimensions
and the lack of transparency of the weld pool.
In contrast to experiments, numerical studies by the means of Computational Fluid

Dynamics (CFD) can easily overcome these obstacles. CFD methods allow for analyzing
detailed (time-dependent) solutions for the heat and �uid �ow within the weld pool and
the energy transfer to the heat a�ected zone.
Weld pool simulation is not unfamiliar at the department carrying out this project

(Transport Phenomena, TU Delft), and over the years several papers have been pub-
lished on numerical simulation of welding[14, 16, 17, 22]. However, these studies have
been limited to spot-welding, whereas a large part of welds in industrial application is
performed with a translating heat source.

1.2 Research goal

The main goal in this research is to extend the existing knowledge on spot-welding
simulation within the department by adding translation of the heat source. The research
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question to be answered to reach that goal is
What are the governing equations for heat transfer, phase change and �uid �ow in

welding with a heat source moving at constant velocity; and how can these be implemented

in an existing OpenFOAM solver?

The duality of this main question is re�ected in the report as can be seen in the next
section.

1.3 Outline

In Chapter 2, the physical model describing the �uid �ow, phase change and heat transfer
in a weld pool is presented. This is done both for an inertial frame as for a moving frame
of reference. Chapter 3 contains a short introduction to Finite Volume Methods and the
numerical implementation of the physical model. In Chapter 4 the results of the multiple
validation cases for the modi�ed solver are discussed. The conclusions for this project
and the recommendations for further research are presented in Chapter 5.
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2 Physical model

2.1 Physical phenomena in a weld pool

The physics of welding is one which includes many coupled phenomena. Figure 2.1 gives
an overview of the problem modeled in this research.

Heat input

Heat affected zone

Weld pool

Base material

Figure 2.1: Sketch of the weld cross section, showing the weld pool and the heat a�ected
zone. In this sketch the heat source is moving to the left.

An initially solid material is heated by the laser source. When the melting temperature
of the material is reached a solid to liquid phase change occurs and the weld pool is
formed.
Spatial temperature variations due to the nonuniform heating by the Gaussian laser

beam result in signi�cant surface tension gradients. The liquid responds by �owing from
regions of low surface tension to regions of high surface tension. This thermo chemical
mechanism is called the Marangoni e�ect and its signi�cance is given by the thermal
Marangoni number:

Mg =
(dσ/dT )L∆T

µα
(2.1)

The typical Marangoni numbers in laser weld pools are of the order Mg ∼ 101 − 102.
Thermal gradients inside the weld pool lead to density gradients which give rise to

buoyancy e�ects. This buoyancy driven �ow can be described by the Rayleigh number
which itself is the product of the Grashof number with the Prandtl number:

Ra = Gr · Pr =
gβ∆TL³

ν²

ν

α
=
ρgβ∆TL3

µα
(2.2)
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The ratio of the Rayleigh number over the Marangoni number is known as the dynamic
Bond number.

Bo =
Ra

Mg
=

ρgβ∆TL3/(µα)

(dσ/dT )L∆T/(µα)
=

ρgβL2

(dσ/dT )
(2.3)

This ratio is typically 10−4 − 10−3 from which it can be concluded that the �uid �ow in
the weld pool is primary driven by the Marangoni e�ect. We therefore neglect buoyancy
driven �ow in this work.
Heat in weld pools is transported by convection and conduction, the ratio of these two

mechanisms is given by the Peclet number:

Pe =
UL

α
=

(dσ/dT )∆TL

αµ
(2.4)

which is in the order of 101−102 indicating that convective heat transport is dominant
in the weld pool.
The physical model of this research is restricted by the �at surface assumption not

allowing any deformations of the weld pool surface. Also mass transfer by evaporation
and interfacial reactions are not taken into account.

2.2 Heat transfer

2.2.1 Energy equation

Following the derivations done by Bird, Stewart and Ligthfood[2], taking into account
that the weld pool surface is at atmospheric pressure, we write the energy equation:

∂

∂t
(H) +∇ · (H~U) = −

(
(
∂

∂t
p+ p(∇ · ~U)

)
− (∇ · ~q)− p(∇ · ~U)− (τ : ∇~U) (2.5)

Assuming the �uid to be incompressible and of constant density, the pressure term
and the divergence of the velocity are zero. For our application the viscous dissipation
term is negligible. Including a source term for the latent heat absorption and release due
to the phase change and with ~q = −λ∇T results in:

∂

∂t
(H) +∇ · (H~U) = (∇ · λ∇T ) + Slatent (2.6)

and with H = ρcpT and constant ρcp,

ρcp
∂T

∂t
+ ρcp∇ · (T ~U) = (∇ · λ∇T ) + Slatent (2.7)

The heat in�ux from the laser and the heat out�ux at the surface are not incorporated
in the energy equation, they are imposed as boundary conditions.
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2.2.2 Modeling of the phase change

The absorption of latent heat due to solid to liquid phase change can be implemented in
the heat balance in many ways. Because of its rapid convergence and numerical stability
the source term method has been chosen for this solver[19].
We start with a simpli�ed energy equation:

∂H

∂t
= ∇ · (λ∇T ) (2.8)

For phase change modeling the enthalpy term is split in three parts.

H = ρ(1− g)

ˆ T

Tref
cp,sdξ + ρg

ˆ T

Tref
cp,ldξ + ρgL (2.9)

Choosing Tref = 0 and assuming temperature constant cp,s and cp,l leaves us with:

H = ρ(1− g)cp,sT + ρgcp,lT + ρgL (2.10)

We plug this relation in to the simpli�ed energy equation.

∂(ρ(1− g)cp,sT + ρgcp,lT + ρgL)

∂t
= ∇ · (λ∇T ) (2.11)

For constant ρ and cp,s = cp,l = cp the equation reduces to

ρcp
∂T

∂t
+ ρL

∂g

∂t
= ∇ · (λ∇T ) (2.12)

the liquid fraction g is a linear function of temperature given by a linear relationship.

g(T ) =
T − Ts
Tl − Ts

, Ts ≤ T ≤ Tl (2.13)

It is evident that the absorption of latent heat introduces a non-linearity into the
temperature equation. Special treatment of this non-linearity is described in subsection
3.4.1.

2.2.3 Heat in�ux on the surface

The heat �ux into the material is completely determined by the laser. The laser heat
�ux is assumed to have an ideal radial Gaussian distribution.

Φlaser = a · exp(−kq
r2

r2
q

) (2.14)

where kq is the laser beam distribution coe�cient and rq is the laser beam waist radius.
To determine the peak intensity a we look at the power output P of the laser source

which is equal to the entire integral over the laser heat �ux .

Plaser =

ˆ ∞

0
Φ(r)2πrdr =

aπr2
q

kq
(2.15)
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We can see that the peak intensity is a constant depending on the laser power, the
beam waist radius and the distribution coe�cient. Combining both equations results in
the �nal laser heat �ux hence the total heat in�ux.

Φheat,in =
kqPlaser
πr2

q

exp(−kq
r2

r2
q

) (2.16)

2.2.4 Heat out�ux on the surface

The total heat �ux out of the material is composed of three di�erent mechanisms: free
convection, energy radiation and energy loss due to the evaporation of material.
The convective heat loss can be calculated using

Φconvection = hc(Tsurface − T∞) (2.17)

where hc is the convection heat transfer coe�cient expressing the the heat exchange
between the material surface and and the environment.
The energy radiation is given by the Stefan-Boltzmann law.

Φradiation = εσ(T 4
surface − T 4

∞) (2.18)

In this formula σ is the Stefan-Boltzmann constant and ε is the emissivity and the
absorption of the material. We assume these to be independent of temperature.
To calculate the heat out �ux associated with the evaporation of material we take the

relation used by Winkler et al.[20]:

Φevaporation = W · hgf (2.19)

where W denotes the evaporation mass �ux and hgf is the heat of evaporation. W is
approximated using

W = A1 + log(patm)− 0.5log(T ) (2.20)

The constant A1 varies slightly for di�erent materials. In this thesis the values for
iron were used in the calculation. A1 and hgf become then 2.52 and 6259.5kJkg−1. The
�ux W is given in the unit kgm−2s−1. The vapor pressure was obtained in a study by
Kim[9].

log(patm) = 6.1210− 18836

T
(2.21)

Combining the separate equations for the three di�erent mechanisms results in the
total heat out�ux.

Φheat,out = hc(Tsurface − T∞) + εσ(T 4
surface − T 4

∞) +W · hgf (2.22)
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2.3 Fluid �ow

2.3.1 Continuity- and momentum equation

Again following the derivations done by Bird, Stewart and Ligthfood[2], we write the
continuity- and the momentum equation.

∂

∂t
ρ+∇ · (ρ~U) = 0 (2.23)

∂

∂t
ρ~U +∇ · (ρ~U ~U) +∇ · (µ∇~U) = ~Fdamp − ρ~g −∇p (2.24)

Where ~Fdamp is the mushy zone dampening term which is described in the next section.

The force ~Fst from spatial variations in the surface tension is not incorporated in the
momentum equation but imposed as a boundary condition.

2.3.2 Modeling of �ow in the mushy zone

Solidi�cation of non-pure materials happens over a range of temperatures, material within
this range is mushy - neither solid nor liquid. In this thesis we assume purely columnar
growth. In columnar growth solidi�cation happens non-uniformly at the solid boundaries
of the domain, leading to columns of solid pointing into the liquid. As solidi�cation only
occurs at the solid boundaries, the velocity of the solid part is equal to the velocity of
the workpiece. The �uid part is to be modeled analogous to a porous medium. Following
the derivations from Darcy's law done by Kidess[8] who includes the dampening force as
a source term we end up with.

~Fdamp → ~Sdamp = −C (1− g)2

g3 + ε
~U (2.25)

This source term dominates at low liquid fractions over all other terms and forces the
�uid velocity to zero near the solid boundary and in the solid.

2.3.3 Modeling of the surface forces

The temperature di�erences due to the non-uniform heating by the laser source result in
a gradient of the surface tension. This gradient gives rise to the Marangoni force which is
balanced by the viscous force of the �uid. From this we can compute the liquid velocity
gradient at the weld pool surface.

µ
∂U

∂n
=
∂σ

∂τ
=
dσ

dT

∂T

∂τ
(2.26)

∂U

∂n
=

1

µ

dσ

dT

∂T

∂τ
(2.27)
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Here n and τ denote the normal and tangential vectors of the surface. The surface
tension coe�cient dσ

dT is a function of both temperature and surface active species con-
centration and is determined following a model by Sahoo [13]:

dσ

dT
= − dσ

dT pure
−RΓsln(1 +K · ai)−

K · ai
1 +K · ai

Γs∆H
0

T
(2.28)

Where dσ
dT pure

is the surface tension coe�cient of the pure material, R is the ideal gas
constant, Γs is the surface saturated excess concentration of surfactant,K the equilibrium
constant for the absorption reaction, ai the activity of the surfactant species and ∆H0

the heat adsorption.
This model given by Sahoo can give rise to three possible surface tension coe�cients

which all three lead to di�erent �ow con�gurations as can be seen in �gure 2.2. The �uid
�ow is always in the direction from low to high surface tension.

Figure 2.2: Illustration of the relation between the temperature gradient of surface ten-
sion between the melting temperature Tm and the the maximum weld pool
temperature Tmax, and the Marangoni driven �ow directions.[15]

2.4 Moving frame of reference

In order to minimize the necessary grid size for simulation and achieve a su�cient weld
pool resolution without the need of excess computer power the solver is formulated in
a moving frame of reference. The common choice is to attach the coordinate system to
the moving laser source [3, 10]. To keep the convective velocity as the primary unknown
in the governing equation we de�ne a net velocity which is the sum of the convective
velocity and the constant welding velocity of the laser:
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~V = ~U + ~Ut (2.29)

All the previous governing equations are transformed to the moving frame reference
using this relation. The derivations are given in the appendix, the �nal forms of the new
equations are given below.

∂

∂t
ρ+∇ · (ρ~U) = 0 (2.30)

ρcp
∂T

∂t
+ ρL

∂g

∂t
+∇ · (ρcpT ~U) +∇ · (ρcpT ~Ut) +∇ · (ρgL~U) = (∇ · λ∇T ) (2.31)

∂

∂t
ρ~U +∇ · (ρ~U ~U) +∇ · (ρ~Ut~U) + µ∇2~U = −C (1− g)2

g3 + ε
~U − ρ~g −∇p (2.32)

13



3 Numerical implementation

3.1 Finite Volume Method

The governing equations derived in chapter 2 are solved numerically by means of the
Finite Volume Method (FVM) implemented in the CFD framework OpenFOAM. The
principle behind the FVM is to integrate the equations over a �nite number of control
volumes and solve the equations in the integral form.
The continuity, momentum and heat equation are conservation equations and can all

be rewritten in the generic conservation equation

∂(ρCφφ)

∂t
+∇ · (ρCφφ~U) = (∇ · Γφ∇φ) + Sφ (3.1)

where φ is the generic variable, Γφ the di�usion coe�cient associated with the generic
variable, and Sφ the source term.
The generic conservation equation can, with use of the divergence theorem, be rewritten

in the integral form as follows:

∂

∂t

ˆ

V

ρCφφdV

︸ ︷︷ ︸
Unsteady

+

ˆ

S

ρCφφ~U · d~S︸ ︷︷ ︸
Convection

=

ˆ

S

Γφ∇φ · d~S︸ ︷︷ ︸
Diffusion

+

ˆ

V

SφdV

︸ ︷︷ ︸
Source

(3.2)

3.1.1 Spatial discretization

The unsteady and source terms in the integral form of the generic equation are evaluated
at the control volume center, the convection and di�usion terms are evaluated at the
control volume surface. In the CFD framework used in this thesis all dependent variables
are stored at the cell centers. Therefore some interpolation is needed to express the cell
surface values in terms of the cell center values. Di�erent interpolation schemes are
available in the OpenFOAM framework:

Central Di�erencing In the the Central Di�erencing (CD) scheme linear interpolation
between the two adjacent cell center values determines the cell surface value. The CD
scheme is second order-accurate but unbounded[1].

φe = feφP + (1− fe)φE (3.3)

with fe = fE/PE where fE is the distance between face f and cell center E and PE
is the distance between cell centers P and E.
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Upwind Di�erencing In the the Upwind Di�erencing (UD) scheme the cell surface
value is determined by the �ow direction. The UD scheme is bounded at the expense of
accuracy[1].

φe =

{
φE , ve < 0

φp, ve ≥ 0
(3.4)

Minmod The Minmod scheme is combines the Central Di�erencing scheme and Upwind
Di�erence scheme. The Minmod scheme is an attempt to preserve boundedness with
reasonable accuracy[1].

φe = (1− γ)(φe)UD + γ(φe)CD (3.5)

with

γ = max

[
0,min

[
1,
φP − φE
φE − φW

]]
(3.6)

In this thesis the interpolation is performed using the Central Di�erencing scheme and
the Minmod scheme. The CD scheme is used for gradients and the Minmod scheme is
used for the divergence.

3.1.2 Time integration

The unsteady term in the integral form of the generic conservation equation can be
discretized in an implicit or an explicit manner. In this thesis we implemented the
implicit 2nd-order backward di�erencing scheme:[7]

∂

∂t

ˆ

V

ρφdV =
3(ρPφPV )n − 4(ρPφPV )0 + (ρPφPV )00

2∆t
(3.7)

where n, 0, 00 represent the new, the last and the before last time step.

3.2 Mesh

For the simulations in this thesis 3D rectilinear meshes are used. Figure 3.1 shows a
coarse version for clarity of the top and side view of a typically used mesh.
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Figure 3.1: Coarse version of a typical 3D symmetric mesh (nx×ny×nz = 40× 20× 20)
used for validation.

The heat �ow through the material determines the minimum range of the mesh. To
prevent the in�uence of boundary e�ects on the solution we choose the minimum distance
from the laser spot center to the boundary of the mesh to be twice the penetration depth:

δ =
√
παt (3.8)

In our simulations, where the steady state is reached after t = 1.5s, the distance from
the laser spot center to the boundary should be at least 2δ ∼ 10mm.
As can be seen in �gure 3.1, cell sizes are not uniform throughout the computational

domain. The optimal cell size is a trade o� between several properties and varies by
location

� Computational cell size is inversely proportional to the resolution of the simula-
tion. Especially in the weld pool area, where the gradients are relatively large, the
resolution is of great importance.

� Smaller cells evidently result in a higher total amount of cells which again result
in a higher demand of computational power.

� The Courant-Friedrichs-Lewy (CFL) condition for stability states Co = U∆t
∆x ≤

Comax ≤ 1. Increasing the number of computational cells results in a smaller
characteristic length and a smaller time step leading to a higher computer load.
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The characteristic re�nement of the mesh towards the center of the top surface is a
result of attaching the mesh to the moving heat source. With this decision the weld
pool is always located on the same spot and therefore limiting the total area where high
resolution is needed.

3.3 Boundary conditions

We incorporate two di�erent thermal boundary conditions which both depend on on the
�rst derivative of temperature. In sections 2.2.3 and 2.2.4 we determined the heat in�ux
and out�ux through the material surface. Combining these two results in the total heat
�ux through the top boundary.

Φtotal = Φin−Φout =
kqP

πr2
q

exp(−kq
r2

r2
q

)−hc(Tsurface−T∞)−εσ(T 4
surface−T 4

∞)−W ·hgf = λ
dT

dn

∣∣∣∣
surface

(3.9)
which is rewritten in the Neumann boundary condition.

dT

dn
=

1

λ
Φtotal (3.10)

We assume that the side and bottom boundaries are too far away from the weld pool
to be a�ected by the weld pool heat, therefore we impose adiabatic boundary condition:

∇T = 0 (3.11)

Boundary conditions for the convective velocity U are de�ned in a similar way. In
section 2.3.3 we de�ned the derivative of the convective velocity at the weld pool surface:

∂U

∂n
=

1

µ

dσ

dT

∂T

∂τ
(3.12)

The side and bottom boundary are not a�ected by the weld pool heat and will always
remain solid. The velocity on the side and bottom boundary will not change over time
or location. We therefore impose a zero gradient condition.

∂U

∂τ
= 0 (3.13)

3.4 Solver details

The previous three sections described how to transform the problem from the physical
domain to the computational the domain. This section deals with speci�c characteristics
of the solver used in this thesis.
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3.4.1 Splitting the energy source term

The source term Slatent in the energy equation accounts for the evolution of the latent
heat during solid-to-liquid phase change. To reduce the computational cost of solving
this non-linear source term we implement the source term linearization technique [18].
In this technique non-linearities are accounted for through iterations of the following
linearization:

Slatent = SPT + SC (3.14)

The coe�cients SP and SC are de�ned as:

Sp = −ρL
∆t

∂F

∂T
(3.15)

Sc = −SpF−1 +
ρL

∆t
(gold − g) (3.16)

with liquid fraction pro�le F and the inverse function F−1 are de�ned as:

∂F (T )

∂T
=

1

(Tl − Ts)
(3.17)

and

F−1 = F−1(g) = gold(Tl − Ts) + Ts (3.18)

Together these equations form the iteration scheme for the temperature T and the
liquid fraction g.

3.4.2 Computation sequence

The computation sequence is summarized in the �ow chart in �gure 3.2.
The computation is always preceded by the pre-processing phase. In this phase the

computational mesh is generated, quality control is of great importance since the relia-
bility of the result tremendously relies on the su�cient quality of the mesh.
The main computation phase starts o� with the �eld initialization, during this step

the initial and boundary conditions are applied to the mesh.
Solving the momentum equation requires the pressure �eld to be known beforehand,

however the pressure �eld is derived again from the continuity and momentum equation.
This introduces the pressure velocity coupling which we solve with the PISO algorithm
(pressure implicit with splitting of operator) proposed by Issa in 1985 [6].
As mentioned already in section 3.4.1, the energy equation and the liquid fraction are

also dependent on one another and are solved by the iteration scheme proposed in the
same section.
After �nishing the main computation, the time-dependent results are processed by

means of �eld visualization and plots of variable distribution or time dependency.
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PRE-PROCESSING

Mesh generation & quality 
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MAIN-COMPUTATION

Endtime?

Solving temperature & liquid 
fraction
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pressure

Advance to next time step

Field initialization

Start

Stop

POST-PROCESSING

Visualization & data analysis

Figure 3.2: Flow chart describing the stages and steps in the simulation process

19



4 Validation

This chapter reports the validation cases for the implementation of a moving reference
frame. For the convenience of the reader, each case is described in a similar way. First
the physical and numerical frame work is outlined and the expected results are expressed.
After that the numerical results are compared with the theoretical expectation.
The validation consists of three types of test cases; First we compare simulations with

analytical solutions of thermal conduction problems. After that we test the change in
frame of reference by running equivalent cases with the original and the modi�ed solver.
In the end we test nine relevant case set ups and compare the behavior of the �uid �ow
with our expectations.

4.1 Validation of thermal conduction

4.1.1 Stationary heat source

For the �rst case we consider spherical thermal conduction due to the continuous release
of heat by a stationary point source.

Physical framework

The analytical solution to this problem is given by Hoogendoorn [5]:

T (r, t) =
Psource
4πλr

erfc(
r√
4at

) (4.1)

We rewrite this formula to:

T (r, t) =
Plaser
2πλr

erfc(
r√
4at

) + T∞ (4.2)

Where T∞ is the initial temperature of the material and Psource = 2 · Plaser since we
simulate only half of the material. With these adjustments we can compare the analytical
solution with the following simulations:

1. Continuous heating of the material by a stationary point laser source without melt-
ing.

2. Continuous heating of the material by a stationary point laser source with melting
but without latent heat absorption or �uid �ow.

We expect the numerical results and analytical solution to yield the same result and
thereby validate the solvers ability to cope correctly with thermal conduction.
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Numerical framework

In both simulations we use the same mesh which is similar to the example in �gure 4.1
but also symmetric in the x-direction. The computational domain of (40x40x20) mm is
divided in (110x60x22) cells which result in a minimum cell volume of 0.00121 mm³.
The thermal and velocity boundary conditions are speci�ed as in section 3.3 except

for the heat �ux through the top surface, only the laser heat in�ux is taken into account.
The convection, radiation and evaporisation are set to zero since they not appear in the
analytical solution. The point source characteristic of this heat in�ux is achieved by
setting r2

q = 0.25 mm².

Result and discussion

Since only thermal conduction is considered in this case the temperature pro�les are
used to compare both simulations with the analytical solution, these pro�les are shown
in �gure 4.1.
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Figure 4.1: Plot of the temperature pro�le in the radial direction for the analytical solu-
tion and both simulations at t = 5.0s.

As expected the results for both numerical cases almost perfectly agree with the an-
alytical solution. They only di�er near the origin where the analytical solution diverges
due to the point source characteristic. Ignoring this unphysical behavior of the analytical
solution we can safely state that the solver correctly copes with thermal conduction for
a stationary heat source.
Since we are simulating a radially symmetric solution on a square mesh it is very im-

portant for the computational domain to be chosen large enough such that the boundary
conditions do not interfere with solution.
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4.1.2 Moving heat source

In the second case we again consider spherical thermal conduction due to the continuous
release of heat by a point source. But now the material is translating with constant
velocity Ut in the positive x-direction.

Physical framework

The analytical steady state solution to this problem is also given in by Hoogendoorn [5]:

T (r) =
Psource

4πλ
√
x² +y² +z²

exp(−Ut(
√
x² +y² +z²− x)

2a
) (4.3)

Which is rewritten as in the previous section

T (r) =
Plaser

2πλ
√
x² +y² +z²

exp(−Ut(
√
x² +y² +z²− x)

2a
) + T∞ (4.4)

The two analogous cases to this analytical solution are:

1. Continuous heating of the material by a moving point laser source without melting.

2. Continuous heating of the material by a moving point laser source with melting
but without latent heat absorption or �uid �ow.

Like in the previous case we expect the numerical results to be in agreement with the
theoretical solution. However in this case we compare the simulation results with a long
time steady state solution.

Numerical framework

In both cases the computational domain is (50x40x20) mm which is split in (60x44x22)
cells resulting in a minimum cell volume of 0.00192 mm³. The thermal and velocity
boundary conditions are speci�ed as in the previous validations case.

Result and discussion

For comparing the results we look at the temperature pro�les, longitudinal and transverse
to the translation direction of the material, which are shown in �gure 4.2.
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Figure 4.2: Temperature pro�le for the analytical solution and for both simulations at t =
5.0s. On the left is the transverse pro�le and the right is in the longitudinal
direction

In the left plot of �gure 4.2 we see that the temperature pro�le in the transverse
direction is full developed for both cases. In the right plot we see that the temperature
pro�le in the longitudinal directions matches the steady state solution near the heat
source but diverges in the long tail. This can be explained by the simulation time of 5.0
seconds, which is not enough for the temperature pro�le to fully converge to the steady
state solution
Again ignoring the unphysical behavior of the analytical solution near the origin we

can also state that the solver correctly copes with thermal conduction for a moving heat
source.

4.2 Validation of convective heat �ow

In the previous section we successfully validated the solver for thermal conduction with a
stationary and a moving heat source. From experience we know that heat transfer within
the weld pool is mainly driven by convective �ow. The solvers ability to cope with this
convective �ow is tested in this chapter by comparing simulation results of the original
benchmarked solver and modi�ed solver.

4.2.1 Stationary heat source

In this case we compare the results of both solvers for welding in the situation where the
laser is stationary.
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Physical framework

The di�erence between both solvers is the frame of reference they operate in. The original
solver is attached to the material, the modi�ed solver to the heat source. For a stationary
heat source, i.e. setting the translation velocity ~Ut to zero, both frames of reference are
identical. Therefore the results of simulations run on the same mesh with the same
thermal and velocity boundary conditions should be identical too.

Numerical framework

The mesh we use is similar to the example in �gure 4.1. The computational domain of
(20x20x10) mm is divided in (108x80x40) cells which result in a minimum cell volume of
6.38x10-5 mm³. The thermal and velocity boundary conditions are speci�ed as described
in section 3.3.

Result and discussion

The three most interesting properties generated by our solver are; the temperature dis-
tribution in the material, the �uid �ow in the weld pool and the shape of the weld pool.
Since the latter is fully dependent on the �rst two we take the weld pool shape as the
benchmark for comparing simulation results.
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Figure 4.3: 2D plot of the weld pool shapes for t = 1.0s and t = 1.5s.

Figure 4.3 presents the results generated by the original and modi�ed solver. For both
t = 1.0s and t = 1.5s the weld pool shapes are virtually identical, the small di�erences
between both shapes don't increase in time. The maximum cell length in the weld pool
area is almost 0.1 mm, which is in the order of the di�erences in both simulations.
Therefore we conclude that the modi�ed solver correctly copes with Marangoni driven
�uid �ow in welding with a stationary heat source.
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4.2.2 Moving heat source

The motivation to modify the original solver is to reduce the amount of computational
cells needed and thereby reduce the required computer power. Therefore in section 2.4
we rewrote the governing equations to the reference frame of the moving heat source.
The goal of this case is to justify this choice.

Physical framework

For the validation of the convective heat �ow with a moving heat source we compare two
cases:

1. In the frame of reference of the material we let the heat source translate with Ut
in the negative x-direction., i.e. using the original solver.

2. In the frame of reference of the heat source we let the material translate with Ut
in the positive x-direction, i.e. using the modi�ed solver.

Physically these two situations are equivalent and therefore they should yield the same
weld pool shape. The welding speed in both cases is set to 1 mms-1 which is common in
ordinary welding.

Numerical framework

For the �rst case the computational domain of (17.5x20x10) mm consists of (130x80x40)
cells, for the second case the domain of (20x20x10) mm is divided in (116x80x40) cells.
The resulting minimum cell volumes are 6.32x10-5 mm³ and 5.76x10-5 mm³.
The thermal and velocity boundary conditions for both cases are speci�ed as in section

3.3 except for the heat in�ux through the top surface for the case in the reference frame
of the material. This heat in�ux is the heat source and should be moving in the negative
x-direction. To achieve this we apply the coordinate transform r → r + ~Utt resulting in
the new, time dependent, heat in�ux.

Φheat,in(t) =
kqP

πr2
q

exp(−kq
(r + ~Utt)

2

r2
q

) (4.5)

Result and discussion

As in the previous validation regarding the ability to cope with �uid �ow we again take
the weld pool shape as the benchmark for comparing both simulations
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Figure 4.4: Plot of the weld pool shapes for t = 1.0s and t = 1.5s.

In �gure 4.4 we see a comparison of the weld pool shapes generated. Both at t = 1.0s
and at t = 1.5s the result are close to identical and the small error isn't increasing in
time. Therefore we conclude that the modi�ed solver correctly copes with Marangoni
driven �uid �ow in welding with a moving heat source too.
Since we now have two similar case set ups simulated on a di�erent mesh due to the

di�erent frame of reference in which the solver operates, we are able to verify if the
modi�ed solver has a computational advantage over the original solver.

� Both simulations where run on the same computer cluster using the same amount
of CPU's.

� The original OpenFOAM solver required 416000 computational cells leading to a
execution-time of 167463 seconds.

� The modi�ed OpenFOAM solver required 371200 computational cells leading to a
execution-time of 146531 seconds.

The modi�ed solver required 10.8% less computational cells for the same simulation as
the original solver and took 12.5% less time to arrive at this result. For higher welding
velocities and longer simulations these numbers will only increase in favor of the modi�ed
solver.

4.3 Welding simulations with a moving heat source and

�uid �ow

In this section we discuss simulation results generated by the modi�ed solver. We have
opted for three di�erent heat source velocities and three di�erent surface tension coe�-
cients resulting in a total of nine cases to be discussed.
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Physical framework

First we discuss the in�uence of the heat source velocity on the simulation result. In all
cases we use the same laser source, i.e. the same heat in�ux. Increasing the heat source
velocity leads to the laser power being distributed over a larger area which results in a
lower average energy input per volume.
We therefore expect the weld pool size and maximum temperature to decrease for

higher heat source velocities.
The in�uence of the three possible surface tension coe�cients on the �uid �ow pattern

in the weld pool is neatly depicted in �gure 2.2 in subsection 2.3.3. Since heat transfer
in the weld pool is dominated by convection we expect the surface tension coe�cient to
have a major e�ect on the weld pool size.
A negative surface tension coe�cient leads to surface �uid �ow transporting the in-

serted heat away from the laser source, we therefore expect a wide shallow weld pool.
With a positive surface tension coe�cient the surface �uid �ows are directed toward the
laser source and forced down in the weld pool, here we expect a narrower and deeper
weld pool.
We expect the temperature near the weld pool to follow the shape of the weld pool,

further away we expect it to converge to the analytical solutions given in section 4.1.

Numerical framework

The computational domain and the number of cells used in each simulation can be found
above the plots of the corresponding results. Side views of the meshes used in the
simulations are shown in �gure 4.5.

Figure 4.5: Side views of the mesh used in the simulation with: Ut = 0 mms-1, Ut = 1
mms-1 and Ut = 5 mms-1.

The thermal and velocity boundary conditions are speci�ed as described in section 3.3.

Result and discussion

The results of the nine simulations are presented in the �gures 4.6 to 4.14, a combined
overview of these results can be found in �gures 6.1, 6.2 and 6.3 in the appendix.
Looking at the results from all nine simulations we can directly see that the size of the

weld pool is highly in�uenced by the speed of the moving heat source. As expected, the
depth and width of the weld pool decrease for higher welding speeds. Our expectations
regarding the positive and negative surface tension coe�cients are con�rmed. Also the
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deformation of the temperature pro�le due to the welding velocity and the weld pool
shape is clearly visible.
Interesting to see is the symmetry breaking in the welding simulations with a station-

ary heat source, especially for the positive surface tension coe�cient. This symmetry
breaking was also detected by Saldi[15]. The symmetry breaking may be of physical or
numerical origin. The high �delity simulations necessary to rule out numerical instabili-
ties are out of the scope of this thesis.
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Case Ut,x dσ/dT Computational Domain # Cells

1.1 0 mms-1 + 20 x 20 x 10 mm 104 x 80 x 40
1.2 1 mms-1 + 20 x 20 x 10 mm 116 x 80 x 40
1.3 5 mms-1 + 22 x 20 x 10 mm 128 x 80 x 40

Figure 4.6: The side views of the temperature pro�le of three cases with a positive dσ/dT
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Case Ut,x dσ/dT Computational Domain # Cells

1.1 0 mms-1 + 20 x 20 x 10 mm 104 x 80 x 40
1.2 1 mms-1 + 20 x 20 x 10 mm 116 x 80 x 40
1.3 5 mms-1 + 22 x 20 x 10 mm 128 x 80 x 40

Figure 4.7: The side views of the weld pools of three cases with a positive dσ/dT
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Case Ut,x dσ/dT Computational Domain # Cells

1.1 0 mms-1 + 20 x 20 x 10 mm 104 x 80 x 40
1.2 1 mms-1 + 20 x 20 x 10 mm 116 x 80 x 40
1.3 5 mms-1 + 22 x 20 x 10 mm 128 x 80 x 40

Figure 4.8: The top views of the weld pools of three cases with a positive dσ/dT
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Case Ut,x dσ/dT Computational Domain # Cells

2.1 0 mms-1 - 20 x 20 x 10 mm 104 x 80 x 60
2.2 1 mms-1 - 20 x 20 x 10 mm 116 x 80 x 60
2.3 5 mms-1 - 22 x 20 x 10 mm 128 x 80 x 60

Figure 4.9: The side views of the temperature pro�le of three cases with a negative dσ/dT
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Case Ut,x dσ/dT Computational Domain # Cells

2.1 0 mms-1 - 20 x 20 x 10 mm 104 x 80 x 60
2.2 1 mms-1 - 20 x 20 x 10 mm 116 x 80 x 60
2.3 5 mms-1 - 22 x 20 x 10 mm 128 x 80 x 60

Figure 4.10: The side views of the weld pools of three cases with a negative dσ/dT
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Case Ut,x dσ/dT Computational Domain # Cells

2.1 0 mms-1 - 20 x 20 x 10 mm 104 x 80 x 60
2.2 1 mms-1 - 20 x 20 x 10 mm 116 x 80 x 60
2.3 5 mms-1 - 22 x 20 x 10 mm 128 x 80 x 60

Figure 4.11: The top views of the weld pools of three cases with a negative dσ/dT

34



Case Ut,x dσ/dT Computational Domain # Cells

3.1 0 mms-1 +/- 20 x 20 x 10 mm 104 x 80 x 40
3.2 1 mms-1 +/- 20 x 20 x 10 mm 116 x 80 x 40
3.3 5 mms-1 +/- 22 x 20 x 10 mm 128 x 80 x 40

Figure 4.12: The side views of the temperature pro�le of three cases with a sign changing
dσ/dT 35



Case Ut,x dσ/dT Computational Domain # Cells

3.1 0 mms-1 +/- 20 x 20 x 10 mm 104 x 80 x 40
3.2 1 mms-1 +/- 20 x 20 x 10 mm 116 x 80 x 40
3.3 5 mms-1 +/- 22 x 20 x 10 mm 128 x 80 x 40

Figure 4.13: The side views of the weld pools of three cases with a sign changing dσ/dT
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Case Ut,x dσ/dT Computational Domain # Cells

3.1 0 mms-1 +/- 20 x 20 x 10 mm 104 x 80 x 40
3.2 1 mms-1 +/- 20 x 20 x 10 mm 116 x 80 x 40
3.3 5 mms-1 +/- 22 x 20 x 10 mm 128 x 80 x 40

Figure 4.14: The top views of the weld pools of three cases with a sign changing dσ/dT
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5 Closure

5.1 General conclusions

The two major goals of this work included the theoretical derivation of the governing
equations for heat transfer, phase change and �uid �ow in welding with a heat source
moving with constant velocity and the implementations of these equations in an existing
OpenFOAM solver.
To achieve the �rst goal, theoretical derivations of the continuity, heat and momentum

equations in spot welding for the stationary frame of reference have been done in chapter
2. Special attention was given to the modeling of the phase change, the �uid �ow in
the mushy zone and the modeling of the surfaces forces due to the Marangoni e�ect.
In section 2.4 these �ndings are transformed to a reference frame attached to moving
heat source using ~V = ~U + ~Ut resulting in equations 2.30, 2.31 and 2.32 which are the
governing equations for mass, heat and momentum transfer in welding with a moving
heat source.
The achieve the second goal, the new governing equations where implemented in an

existing OpenFOAM solver and benchmarked in three steps. In section 4.1 analytical
solutions for thermal conduction where successfully compared with simulations results.
In section 4.2 both the modi�ed and the original solver were used for the simulation
of a stationary and a moving heat source case, they achieved identical results with the
modi�ed solver having a 12.5% lower execution-time. For simulation with higher welding
velocities or longer simulations times the decrease in clock-time will be larger. Finally
in section 4.3 nine welding cases with di�erent heat source velocities and / or surface
tension coe�cients were discussed.
To summarize the conclusions:

� The governing equation for welding with a moving heat source where derived and
can be found in section 2.4.

� These equations have been implemented in an existing OpenFOAM solver which is
benchmarked successfully in chapter 4.

5.2 Recommendations for future work

5.2.1 Free surface deformation

All results generated in this work incorporate the assumption of no surface deformations
during the welding process. From experiments we know the weld pool surface can expe-

38



rience deformations when the surface tension forces can not balance the viscous forces.
The extent to which this can happens is characterized by the Capillary number:

Ca =
µU

σ0

In our simulations the Capillary number is in the order of 10-1, which is su�ciently
large for surface deformations to occur and to in�uence the �uid �ow within the weld
pool[15]. Allowing weld pool surface deformation is therefore more realistic and desirable.
When implementing free surface deformation special attention has to be given to the

heat transfer through the weld pool surface and the modeling of the Marangoni forces. In
this work these two are applied as boundary conditions but for free surface deformation
they have to be implemented as source terms in the heat and momentum equation.

5.2.2 Mesh re�nement

The number of computational cells used during �uid �ow simulations in this thesis is in
the order of 105 − 106, decreasing the amount of cells leads to a large decrease in the
computational load. There are multiple options to achieve this decrease; 2D-modeling,
optimizing the mesh using the knowledge gained in this work, and adaptive mesh re�ne-
ment.
The �rst option is 2D-modeling instead of 3D modeling which can be used in bench-

marking new features implemented in the solver. For most situations this leads to su�-
cient results for initial testing.
The second option is improving the mesh used in this work taking into account the

results simulated in section 4.3, since only mesh re�nement is required where the gradients
are large, i.e. in the weld pool area. Comparing these results with the mesh shown in
�gure 3.1 we can conclude that progress can be made in coarsening the mesh towards
the boundaries and along the symmetry axis.
The third option is adaptive mesh re�nement where you start the simulation on a coarse

mesh and adapt the re�nement of the mesh when gradients exceed a certain threshold.
In this method the computational mesh is always optimized but the adaptive re�nement
procedure introduces a large computational overhead which also has to be taken into
account.

5.2.3 Investigation of the symmetry breaking cases

In section 4.3 we found that for the welding cases with a stationary heat source the
expected symmetry of the weld pool was broken. The symmetry breaking may be of
physical or numerical origin and therefore has to be investigated. This can be done
experimentally by looking at the symmetry of solidi�ed weld pool samples or numerically
by high �delity simulations to rule out numerical instabilities.
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6 Appendix

6.1 Derivations for the change of reference frame

6.1.1 Continuity equation

In the moving reference frame we decompose the net velocity into a convective part and
a part due to the heat source velocity.

~V = ~U + ~Ut (6.1)

We insert this net velocity into the continuity equation 2.23

∂

∂t
ρ+∇ · (ρ~V ) = 0 (6.2)

∂

∂t
ρ+∇ · (ρ(~U + ~Ut)) = 0 (6.3)

∂

∂t
ρ+∇ · (ρ~U) +∇ · (ρ ~Ut) = 0 (6.4)

Using the fact that the heat source velocity is constant, we end up with:

∂

∂t
ρ+∇ · (ρ~U) = 0 (6.5)

6.1.2 Heat equation

We �rst combine equation 2.7 from section 2.2.1 with equation 2.12 from section 2.2.2
to obtain the full heat equation.

∂H

∂t
+∇ · (H~U) = (∇ · λ∇T ) (6.6)

ρcp
∂T

∂t
+ ρL

∂g

∂t
+∇ · (ρ(cpT + gL)~U) = (∇ · λ∇T ) (6.7)

Similar to the previous section , we insert the velocity ~V .

ρcp
∂T

∂t
+ ρL

∂g

∂t
+∇ · (ρ(cpT + gL)~V ) = (∇ · λ∇T ) (6.8)

ρcp
∂T

∂t
+ ρL

∂g

∂t
+∇ · (ρ(cpT + gL)(~U + ~Ut)) = (∇ · λ∇T ) (6.9)
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ρcp
∂T

∂t
+ ρL

∂g

∂t
+∇ · (ρ(cpT + gL)~U) +∇ · (ρ(cpT + gL) ~Ut) = (∇ · λ∇T ) (6.10)

ρcp
∂T

∂t
+ρL

∂g

∂t
+∇·(ρcpT ~U)+∇·(ρgL~U)+∇·(ρcpT ~Ut)+∇·(ρgL ~Ut) = (∇·λ∇T ) (6.11)

Because the relative velocity between the solid and liquid phase is zero, the term
∇ · (ρgL ~Ut), is set to zero. leading to the governing equation for the heat transport in
the workpiece.

ρcp
∂T

∂t
+ ρL

∂g

∂t
+∇ · (ρcpT ~U) +∇ · (ρcpT ~Ut) +∇ · (ρgL~U) = (∇ · λ∇T ) (6.12)

6.1.3 Momentum equation

In section 2.3.1 we found the momentum equation in the stationary frame of reference
to be

∂

∂t
ρ~U +∇ · (ρ~U ~U) +∇ · (µ∇~U) = −C (1− g)2

g3 + ε
~U − ρ~g −∇p (6.13)

Substituting the velocity~V in this formula results in:

∂

∂t
ρ~V +∇ · (ρ~V ~V ) +∇ · (µ∇~V ) = −C (1− g)2

g3 + ε
~V − ρ~g −∇p (6.14)

the time derivative term on the left hand side is simpli�ed as follows:

∂

∂t
ρ~V =

∂

∂t
ρ(~U + ~Ut) =

∂

∂t
ρ~U +

∂

∂t
ρ ~Ut =

∂

∂t
ρ~U (6.15)

For the convective term we have

∇ · (ρ~V ~V ) = ∇ · (ρ~U ~U) +∇ · (ρ~Ut~U) +∇ · (ρ~U ~Ut) +∇ · (ρ~U ~Ut) (6.16)

Since the welding velocity is constant, the last two terms are zero.
The di�usive term is can be simpli�ed as:

∇ · (µ∇~V ) == ∇ · (µ∇(~U + ~Ut)) = ∇ · (µ∇~U) +∇ · (µ∇ ~Ut) (6.17)

Assuming constant viscosity and taking into account that derivatives of the welding
velocity are zero leaves us with.

∇ · (µ∇~U) = µ∇2~U (6.18)

Since the mushy zone dampening source term incorporates the velocity too, we are
tempted to substitute the velocity~V in this term which would result in.
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~Fdamp = −C (1− g)2

g3 + ε
~V = −C (1− g)2

g3 + ε
(~U+ ~Ut) = −C (1− g)2

g3 + ε
~U+−C (1− g)2

g3 + ε
~Ut (6.19)

Because the relative velocity between the solid and liquid phase is zero, the term

−C (1−g)2
g3+ε

~Ut, is set to zero.
Combining the separated terms again results in the modi�ed momentum equation:

∂

∂t
ρ~U +∇ · (ρ~U ~U) +∇ · (ρ~Ut~U) + µ∇2~U = −C (1− g)2

g3 + ε
~U − ρ~g −∇p (6.20)

6.1.4 Overview of the validation cases of subsection 4.3
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