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ABSTRACT

The paper considers direction of arrival (DOA) estimation
from long-term observations in a noisy environment. In
such an environment the noise source might evolve, causing
the stationary models to fail. Therefore a heteroscedastic
Gaussian noise model is introduced where the variance can
vary across observations and sensors. The source ampli-
tudes are assumed independent zero-mean complex Gaussian
distributed with unknown variances (i.e. the source pow-
ers), leading to stochastic maximum likelihood (ML) DOA
estimation. The DOAs of plane waves are estimated from
multi-snapshot sensor array data using sparse Bayesian learn-
ing (SBL) where the noise is estimated across both sensors
and snapshots. Simulations demonstrate that taking the het-
eroscedastic noise into account improves DOA estimation.

Index Terms— DOA estimation, sparsity, sparse Bayesian
learning, heteroscedastic noise

1. INTRODUCTION

With long observation times weak signals can be extracted in
a noisy environment. Most analytic treatments analyze these
cases assuming Gaussian noise with constant variance. For
long observation times the noise process though is likely to
change with time causing the noise variance to evolve. This
is called a heteroscedastic Gaussian process, meaning that the
noise variance is evolving. While the noise variance is a nui-
sance parameter that we are not interested in, it still needs to
be estimated or included in the processing in order to obtain
an accurate estimate of the weaker signals.

Accounting for the noise variation is certainly important
for machine learning [1] and related to robust statistics [2].
In statistical signal processing, the noise has been assumed
to vary spatially [3, 4, 5], but spatiotemporally varying noise
considered here has not been studied. The proposed process-
ing could be applied to spatial coherence loss [6, 7, 8] or to
wavefront decorrelation, where turbulence causes the wave
front to be incoherent for certain observations (thus more
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noisy). This has lead to so-called lucky imaging in astronomy
or lucky ranging in ocean acoustics [9], where only the mea-
surements giving good results are used. When the sources
are closely spaced, more advanced parametric methods are
needed for DOA estimation when the noise power is varying
in space and time and the sources are weak.

In this paper we resolve closely spaced weak sources
when the noise power is varying in space and time. Specifi-
cally, we derive noise variance estimates and demonstrate this
for compressive beamforming [10, 11, 12, 13] using multiple
measurement vectors (MMV or multiple snapshot). We solve
the MMV problem using the sparse Bayesian learning (SBL)
framework [ [12, 14, 15].

We base our development on our fast SBL method [14, 15]
which simultaneously estimates noise variances as well as
source powers. For the heteroscedastic noise considered here,
there could potentially be as many unknown variances as
the number observations. Existing techniques are based on
minimization-majorization [16] and expectation maximiza-
tion (EM) [12, 17, 18, 19, 20, 21, 22], though not all estimates
work well. Instead, we estimate the unknown variances using
approximate stochastic ML [23, 24, 25] modified to obtain
noise estimates even for a single observation. Further details
can be found in the full paper [26]

1.1. Heteroscedastic observation model

For the lth observation snapshot, we assume the linear model

yl = Axl + nl, (1)

where the dictionary A 2 CN⇥M is constant and known and
the source vector xl 2 CM contains the physical information
of interest. Further, nl 2 CN is additive zero-mean circularly
symmetric complex Gaussian noise, which is generated from
a heteroscedastic Gaussian process nl ⇠ CN (nl;0,⌃nl

).
We assume that the covariance matrix is diagonal and param-
eterized as

⌃nl
=

NX

n=1

�2
n,l

Jn = diag(�2
1,l, . . . ,�

2
N,l

), (2)

where Jn = diag(en) = eneTn with en the nth standard ba-
sis vector. Note that the covariance matrices ⌃nl

are varying
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over the snapshot index l = 1, . . . , L. We consider three cases
for the a priori knowledge on the noise covariance model (2):
I: We assume wide-sense stationarity of the noise in space
and time: �2

n,l
= �2 = const. The model is homoscedastic.

II: We assume wide-sense stationarity of the noise in space
only, i.e., the noise variance for all sensor elements is equal
across the array, �2

n,l
= �2

0,l and it varies over snapshots. The
noise variance is heteroscedastic in time (across snapshots).
III: No additional constraints other than (2). The noise vari-
ance is heteroscedastic across both time and space (sensors
and snapshots.)

1.2. Array model

Let X=[x1, . . . ,xL]2CM⇥L be the complex source ampli-
tudes, xml = [X]m,l = [xl]m with m 2 {1, · · · ,M} and
l 2 {1, · · · , L}, at M DOAs (e.g., ✓m = �90� + m�1

M
180�)

and L snapshots for a frequency !. We observe narrowband
waves on N sensors for L snapshots Y = [y1, . . . ,yL] 2
CN⇥L. A linear regression model relates the array data Y to
the source amplitudes X as

Y = AX+N. (3)

The dictionary A=[a1,...,aM ]2CN⇥M contains the array
steering vectors for all hypothetical DOAs as columns, with
the (n,m)th element given by e�j!dn

c
sin ✓m (dn is the dis-

tance to the reference element and c the sound speed). The
array configuration dn is arbitrary, and for simplicity a linear
array is assumed.

We assume M>N and thus (3) is underdetermined. In
the presence of only few stationary sources, the source vector
xl is K-sparse with K⌧M . We define the lth active set

Ml = {m 2 N|xml 6= 0}, (4)

and assume Ml=M={m1,...,mK} is constant across all
snapshots l. Also, we define AM2CN⇥K which contains
only the K “active” columns of A.

We assume that the complex source amplitudes xml are
independent both across snapshots and across DOAs and fol-
low a zero-mean circularly symmetric complex Gaussian dis-
tribution with DOA-dependent variance �m, m = 1, . . . ,M ,

p(xml; �m) =

(
�(xml), for �m = 0

1
⇡�m

e�|xml|2/�m , for �m > 0
, (5)

p(X; �����) =
LY

l=1

MY

m=1

p(xml; �m) =
LY

l=1

CN (xl;0,�), (6)

i.e., the source vector xl at each snapshot l2{1,···,L} is multi-
variate Gaussian with potentially singular covariance matrix,

� = diag(�����) = E[xlx
H

l
; �����], (7)

as rank(�)=card(M)=KM (typically K ⌧ M ). Note
that the diagonal elements of �, i.e., ������0, represent source

powers. When the variance �m=0, then xml=0 with proba-
bility 1.

1.3. Stochastic likelihood

We here derive the well-known stochastic likelihood function
[27, 28, 29]. Given the linear model (3) with Gaussian source
(6) and noise (2) the array data Y is Gaussian with for each
snapshot l the covariance ⌃yl

given by

⌃yl
= E[yly

H

l
] = ⌃nl

+A�AH (8)

p(Y) =
LY

l=1

CN (yl;0,⌃yl
) =

LY

l=1

e�yH

l
⌃�1

y
l

yl

⇡N det⌃yl

, (9)

The L-snapshot log-likelihood for estimating ����� and ⌃N =
{⌃n1 , . . . ,⌃nL

} is

log p(Y|�����,⌃N) / �
LX

l=1

�
yH

l
⌃�1

yl
yl + log det⌃yl

�
. (10)

This likelihood function is identical to the Type II likelihood
function (evidence) in standard SBL [18, 17, 14] which is ob-
tained by treating ����� as a hyperparameter. The parameter esti-
mates �̂���� and b⌃N are obtained by maximizing the likelihood,

(�̂����, ⌃̂N) = argmax
��0, ⌃N

log p(Y; �����,⌃N). (11)

The likelihood function (10) is similar to the ones derived for
SBL and LIKES [16]. The goal is thus to solve (11) and the
active DOAs M is where �̂���� > 0.

1.4. Source power estimation

Let us now focus on the SBL algorithm solving (11). The al-
gorithm iterates between the source power estimates �̂���� derived
in this section and the noise variance estimates ⌃̂N computed
in Sec. 2. We impose the diagonal structure �=diag(�����), in
agreement with (6), and form derivatives of (10) with respect
to the diagonal elements �m, cf. [27]. The derivative of (10)
is

@ logp(Y;�����,⌃N)

@�m
=

LX

l=1

�
aH
m
⌃�1

yl
y
l
yH

l
⌃�1

yl
am� aH

m
⌃�1

yl
am

�

=
LX

l=1

aH
m

�
⌃�1

yl
y
l
yH

l
⌃�1

yl
�⌃�1

yl

�
am (12)

=
LX

l=1

|yH

l
⌃�1

yl
a
m
|2 �

LX

l=1

aH
m
⌃�1

yl
am. (13)

We impose the necessary condition @ log p(Y;�,⌃N)
@�m

= 0 for
solving (11). Assuming �old

m
and ⌃yl

given (from previous

3460

Authorized licensed use limited to: TU Delft Library. Downloaded on September 02,2021 at 13:54:11 UTC from IEEE Xplore.  Restrictions apply. 



iterations) and forcing (13) to zero, we obtain the following
fixed point iteration [30] for the �m [14]:

�new
m

= �old
m

 P
L

l=1 |yH

l
⌃�1

yl
a
m
|2

P
L

l=1 a
H
m
⌃�1

yl
am

!b

. (14)

It is not clear what value of b to use. Higher b-values give
faster convergence to an estimate, but we have not tested for
optimal values and this value also depends on other factors
such as which noise estimate is used. A value of b = 1 gives
the update equation used in [31, 12] and b = 0.5 gives the
update equation used in [14].

2. NOISE VARIANCE ESTIMATION

While there has been more focus on estimating the DOAs or
�����, noise is an important part of the physical system and a cor-
rect estimate is needed for good convergence properties. In
SBL, the noise variance controls the sharpness of the peaks in
the ����� spectrum, with higher noise levels giving broader peaks.

We estimate the noise variance for the three noise cases in
Sec. 1.1. In Secs. 2.1–2.3, we will assume the support of ����� is
known. In simulations we estimate support from peaks of �����.

2.1. Noise estimate, Case I

Under Noise Case I, where ⌃nl
= �2IN with IN the iden-

tity matrix of size N , stochastic ML [20, 23, 25] provides
an asymptotically efficient estimate of �2 if the set of active
DOAs M is known.

Let �M=diag(�����new
M ) be the covariance matrix of the

K active sources obtained above with corresponding active
steering matrix AM which maximizes (10). The correspond-
ing data covariance matrix is

⌃yl
= �2IN +AM�MAH

M. (15)

Note that for Noise Case I, the data covariance matrices (8)
and (15) are identical. Let us then define the projection matrix
onto the subspace spanned by the active steering vectors

P= AMA+
M= AM(AH

MAM)�1AH

M = PH =P2 (16)

and the sample covariance matrix

Sy =
1

L
YYH . (17)

We use the approximate ML noise variance estimate �̂2 ob-
tained by [23, 25]

�2 =
tr[⌃yl

�PSy]

N �K
=

tr[(Sy �PSy] + ✏

N �K
(18)

⇡ tr[(IN �P)Sy]

N �K
= �̂2 . (19)

Here, we defined the power estimate error ✏=tr[⌃yl
�Sy].

The above approximation motivates the noise power es-
timate for Noise Case I (19), which is error-free if tr[⌃y]=
tr[Sy], unbiased because E[✏] = 0, consistent since also its
variance tends to zero for L!1, and asymptotically efficient

as it approaches the CRLB for L!1, The Noise Case I esti-
mate (19) is valid even for one snapshot.

2.2. Noise estimate, Case II

For Noise Case II, where ⌃l = �2
l
IN , we apply (19) for each

snapshot l individually, leading to

�̂2
l
=

tr[(IN �P)ylyH

l
]

N �K
=

k(IN �P)ylk22
N �K

. (20)

2.3. Noise estimate, Case III

Let us start from the definition of the noise covariance

⌃nl
= diag[�2

1,l, . . . ,�
2
n,l

, . . . ,�2
N,l

] (21)

= E
⇥
(yl �Axl)(yl �Axl)

H
⇤

= E
⇥
(yl �AMxM,l)(yl �AMxM,l)

H
⇤

(22)

This motivates plugging-in the single-observation signal esti-
mate bxM,l = A+

Myl 2 CK for the active (non-zero) entries
in xl. This estimate is based on the single observation yl and
the projection matrix (16), giving the rank-1 estimate

⌃̂nl
= (I�P)yly

H

l
(I�P). (23)

Since the signal estimate bxl maximizes the estimated signal
power, this noise covariance estimate is biased and the noise
level is likely underestimated.

Since we assume the noise independent across sensors, all
off-diagonal elements of ⌃nl

are known to be zero. With this
constraint in mind, we modify (23) as

⌃̂nl
= diag[(I�P)yly

H

l
(I�P)] . (24)

The estimate (24) is demanding as for all the N⇥L complex-
valued observations in Y, we obtain N ⇥ L estimates of the
noise variance. Note that the estimate ⌃̂nl

in (23) is not in-
vertible whereas the diagonal constraint in (24) leads to a non-
singular estimate of ⌃nl

with high probability (it is singular
only if an element of yl is 0). As a result, the expression for
⌃yl

that is used for estimating ����� in (14) is likely invertible.
On the other hand, an overestimate of the noise is easily

obtained by assuming xl = 0 which is equivalent to setting
P = 0 in (24), resulting in

⌃̂nl
= diag[yly

H

l
], �̂n,l = |ynl|. (25)

This can be shown be the stochastic ML estimate for no
sources (M = 0) or very low power sources.
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Fig. 1. Single source at �3�, array SNR = 0 dB, SBL3 noise
standard deviation estimate statistics: (a) true, (b) average es-
timated (100 simulations), (c) a typical estimate, and (d) av-
erage across simulations and snapshots.

3. EXAMPLES

An example statistic of the heteroscedastic noise standard
deviation is shown in Fig. 1 for a 20 element array with
a single source. The standard deviation for each sensor is
either 0 or

p
2 (Fig. 1a). The estimates of the standard

deviation are obtained from (24) (Fig. 1b, 1c). Average of es-
timated noise (Fig. 1b) resembles well the true noise (Fig. 1a)
whereas the sample standard deviation estimate (Fig. 1c) has
high variability—each estimate is based on just observation.
Given many simulations and snapshots, however, the mean
of the estimated standard deviation is close to the true noise
(Fig. 1d).

In the analysis of seismic data the noise for each snap-
shot was observed to be log-normal distributed [32]. In the
simulations, the noise follows a normal-uniform hierarchical
model. The noise is complex zero-mean Gaussian with the
standard deviation uniformly distributed over two decades,
i.e., log10�n,l⇠U(�1,1), where U is the uniform distribution.
Three noise cases are simulated:
(a) Noise Case I: constant noise standard deviation over snap-
shots and sensors,
(b) Noise Case II: standard deviation changes across snap-
shots with log10�l⇠U(�1,1), and
(c) Noise Case III: standard deviation changes across both
snapshots and sensors with log10�n,l⇠U(�1,1).

0 
 
10

20

(a) Noise Case I

SBL SBL2 SBL3

0 

10

20

R
M

SE
 (°

)

(b) Noise Case II

-30 -20 0  10    -10 
SNR (dB)

0 

10

20

(c) Noise Case III

Fig. 2. RMSE vs. SNR with the three sources at
{�3�, 2�, 50�} and power {10, 22, 20} dB.

In example 2 (Fig. 2), e consider three sources located
at [�3, 2, 50]� with power [10, 22, 20] dB. The complex
source amplitude is stochastic and there is additive het-
eroscedastic Gaussian noise with SNR variation from �35
to 10 dB. The N=20 elements sensor array with half-
wavelength spacing observe L=50 snapshots. The angle
space [�90, 90]� is divided into a 0.5� grid (M=360).
The single-snapshot array signal-to-noise ratio (SNR) is
SNR=10log10[E

�
kAxlk22

 
/E
�
knlk22

 
]. The root mean

squared error (RMSE) of the DOA estimates over 100 noise
realizations is used for evaluating the algorithms. We use
three SBL methods with ����� update (14), namely;
SBL: Noise Case I, standard SBL, with � from (19);
SBL2: Noise Case II, with �l from (20);
SBL3: Noise Case III, with �n,l from (24).

For Noise Case I (Fig. 2a), standard SBL is optimal, but
SBL2 and SBL3 perform similar. For Noise Case II (Fig.
2b), SBL2 is optimal and fails 15 dB later than SBL3 and
20 dB later than SBL. For Noise Case III (Fig. 2c), SBL3 is
optimal and fails 3 dB later than SBL2 and 8 dB later than
SBL. Thus, the simulation demonstrates that estimating the
noise carefully gives improved DOA estimation at low SNR.

4. CONCLUSION

Stochastic likelihood based methods for DOA estimation
from observations corrupted by nonstationary additive noise
is discussed. In such setting estimators based on a station-
ary noise model perform poorly. A heteroscedastic Gaussian
noise model is introduced with noise variance varying across
sensors and snapshots. We develop SBL approaches to es-
timate heteroscedastic Gaussian noise parameters. Using
a problem specific SBL approach gives much lower DOA
RMSE.
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