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ELECTROMAGNETIC FIELDS
IN MRI

Analytical Methods and Applications

Patrick Stefan Fuchs

Magnetic resonance imaging (MRI) is a very versatile and powerful
medical imaging and diagnostics tool. As the limits of the hardware are
stretched with new developments the underlying models and imag­
ing modalities are challenged. In this work quantitative imaging ap­
proaches using electrical properties are described, which use the
unique knowledge we have on the electromagnetic fields in MRI to
simplify the reconstruction and imaging algorithms.
Also, as field strengths increase there are more and more reasons to
challenge the quasi­static field assumption used in the conventional
signal model. Here we start from first principles and work our way up
to a comprehensive signal model which gives great insights especially
into the influence of electrical properties on a measurement as well
as the deep connection between measurement (or antenna) type and
coupling of the fields.
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Summary
Electrical properties, the conductivity and permittivity of tissue, are quantities that
describe the interaction of an object and electromagnetic fields. These properties
influence electromagnetic fields and are influenced themselves by physiological phe-
nomena such as lesions or a stroke. Therefore, they are important in identifying or
diagnosing the severity of pathologies, and they are essential in magnetic resonance
imaging (MRI) safety and efficiency by determining tissue heating or sensitivity to
excitation pulses and antenna designs.

In two-dimensional electromagnetic fields, which occur in specific measurement
geometries, it is possible to simplify the relationship between electromagnetic fields
and electrical properties, and reconstruct these properties using essentially a forward
operation, foregoing a full inversion scheme. These insights also help to find, and ex-
plain, the cause of specific artefacts, such as those caused by mismatches in incident
field used in the computation of the full electromagnetic fields.

The two-dimensional field assumption necessary for the simplified relationship
described above is subsequently tested, and it is shown that this assumption does
not hold when the object is sufficiently translation variant in the longitudinal direction.
That is, even if the fields for a translation invariant object would be two-dimensional,
they become three-dimensional through the interaction of the tissue parameters with
the fields, which cause out of plane current and field contributions.

Another interesting application of closed form expressions between currents and
fields is the target field method, which solves the inverse source problem between
electric currents and static magnetic fields in a regularised manner by constraining
their relationship to a cylindrical geometry. This method is adapted for transverse
oriented magnetic fields to be used with Halbach type magnet arrays, and an open
source tool is developed to make the method easy to apply for various design con-
siderations.

Moving away from constraints on the field or current structure, we show the intri-
cate relationship between electrical properties and the measured signal in an MRI
scanner. This is done by deriving the electro- (and magneto-) motive force for a typ-
ical MRI scenario without any assumptions on the object or electro-magnetic fields.
This model can then even be used to reconstruct electrical properties from the sim-
plest MRI signal, namely the free induced decay (FID) signal.

To round off our investigation of tissue properties we take a small detour to the
magnetic tissue property, the permeability or magnetic susceptibility. For reconstruct-
ing this tissue property a dipole deconvolution is required, where the dipole convolu-
tion loses information of the original object through the zeros of the dipole kernel. A
new machine learning based approach to reconstruct the lost information is investi-
gated in the final chapter of this thesis.
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Samenvatting
De elektrische eigenschappen, de geleidbaarheid en permittiviteit zijn grootheden
die de interactie tussen een object en elektromagnetische velden beschrijven. Ze
beïnvloeden elektromagnetische velden, maar worden zelf beïnvloed door fysiologi-
sche verschijnselen zoals laesies of een beroerte. Daarom zijn ze belangrijk bij het
identificeren of diagnosticeren van de ernst van pathologieën en essentieel voor de
veiligheid en efficiëntie van een MRI scan, door het bepalen van weefselverwarming
of gevoeligheid voor excitatiepulsen en antenneontwerpen.

In tweedimensionale elektromagnetische velden welke voorkomen in specifieke
meetgeometrieën, is het mogelijk om de relatie tussen elektromagnetische velden
en elektrische eigenschappen te vereenvoudigen, en deze eigenschappen te recon-
strueren met behulp van in wezen een voorwaartse bewerking, waarbij een volledig
inversieschema kan worden vermeden. Deze inzichten hebben ook geholpen bij het
vinden en verklaren van de oorzaak van specifieke beeld-artefacten in reconstructies,
zoals die worden veroorzaakt door fouten in het invallende veld dat wordt gebruikt om
de volledige elektromagnetische velden te berekenen.

De tweedimensionale veldaanname die nodig is voor de hierboven beschreven
vereenvoudigde relatie wordt op de proef gesteld in het derde hoofdstuk, en er wordt
aangetoond dat deze aanname niet opgaat als het object in de lengterichting niet
voldoende invariant is. Dat wil zeggen, zelfs als de velden voor een invariant object
tweedimensionaal zouden zijn, worden ze drie dimensionaal door de interactie van
de weefselparameters met de velden welke stromen induceren die aan veldcompo-
nenten bijdragen buiten het tweedimensionale vlak.

Een andere interessante toepassing van gesloten uitdrukkingen tussen stromen
en velden is de doelveld methode, die het inverse bronprobleem tussen elektrische
stromen en statische magnetische velden regulariseerd door hun relatie tot een cilin-
drische geometrie te beperken. Deze methode is aangepast voor transversaal geo-
riënteerde magnetische velden die gebruikt worden met Halbachmagneet opstelling,
en er is een open source tool ontwikkeld om de methode eenvoudig toe te passen
voor verschillende ontwerpoverwegingen.

Door weg te gaan van de beperkingen van de veld- of stroomstructuur, tonen we
de ingewikkelde relatie tussen elektrische eigenschappen en het gemeten signaal in
een magnetic resonance imaging (MRI) scanner. Dit wordt gedaan door het aflei-
den van de electro- (en magneto-) motorische kracht voor een typisch MRI scenario
zonder enige aannames over het object of de electro-magnetische velden. Dit model
kan dan zelfs worden gebruikt om elektrische eigenschappen te reconstrueren uit het
meest eenvoudige MRI-signaal, de free induced decay (FID).

Om ons onderzoek naar elektrische eigenschappen af te ronden maken we een
kleine omweg naar de magnetische weefseleigenschap, de permeabiliteit of de mag-
netische gevoeligheid. Voor de reconstructie van deze weefseleigenschap is een
dipooldeconvolutie nodig, waarbij je door de dipoolconvolutie door de nullen van de
dipoolkern informatie van het oorspronkelijke object verliest. In het laatste hoofdstuk
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van dit proefschrift wordt een nieuwe, op machinaal leren gebaseerde aanpak onder-
zocht om de verloren informatie te reconstrueren.



Zusammenfassung
Elektrische Eigenschaften, die Leitfähigkeit und Permittivität von Gewebe sind Grö-
ßen, die die Wechselwirkung zwischen einem Objekt und elektromagnetischen Fel-
dern beschreiben. Sie beeinflussen elektrisch-magnetische Felder, werden aber
selbst durch physiologische Phänomene wie Läsionen oder einen Schlaganfall be-
einflusst. Daher sind sie wichtig für die Identifizierung oder Diagnose des Schwe-
regrads von Pathologien sowie wesentlich für die Sicherheit und Effizienz der MRT
durch die Bestimmung der Gewebeerwärmung oder der Empfindlichkeit gegenüber
Erregungsimpulsen.

Bei zweidimensionalen elektromagnetischen Feldern, die in spezifischen Mess-
geometrien auftreten, ist es möglich, die Beziehung zwischen elektromagnetischen
Feldern und elektrischen Eigenschaften zu vereinfachen und diese Eigenschaften
im Wesentlichen durch eine Vorwärtsoperation zu rekonstruieren, wobei auf ein voll-
ständiges Inversionsschema verzichtet wird. Diese Erkenntnisse haben auch dazu
beigetragen, die Ursache für bestimmte Artefakte zu finden und zu erklären, z.B. die
getroffenen Feld- oder Objektannahmen.

Mit zweidimensionalen Magnetfeldgleichungen ist es auch möglich, die Bezie-
hung zwischen elektrischen Strömen (durch die elektrische Stromdichte) und dem
Magnetfeld mit Hilfe eines Ausdrucks in geschlossener Form zu beschreiben, der,
wenn er auf eine zylindrische Geometrie beschränkt ist, auf einfache Weise invertiert
werden kann. Dies wird als Zielfeldmethode bezeichnet und wird seit den 1980er Jah-
ren für den Entwurf von Gradientenspulen verwendet. Wir haben die Gleichungen
für ein transversal orientiertes Magnetfeld, wie es von einem Halbach-Array erzeugt
wird, angepasst, um Gradienten für den Niederfeld-Scanner des Leiden university
medical center (LUMC) zu entwickeln.

Weg von den zweidimensionalen Annahmen über Geometrie und Feldkomponen-
ten zeigen wir die komplizierte Beziehung zwischen elektrischen Eigenschaften und
dem gemessenen Signal in einem MRT-Scanner. Dies geschieht durch Ableitung
der elektro- (und magneto-)motorischen Kraft für ein typisches MRT-Szenario ohne
Annahmen über das Objekt oder elektromagnetische Felder. Dieses Modell kann
dann sogar verwendet werden, um elektrische Eigenschaften aus dem einfachsten
MRT-Signal, dem free induced decay (FID), zu rekonstruieren.

Abgerundet wird die Untersuchung der elektrischen Eigenschaften durch einen
kurzen Abstecher zur magnetischen Gewebeeigenschaft, der Permeabilität oder ma-
gnetischen Suszeptibilität. Zur Rekonstruktion dieser Gewebeeigenschaft ist eine
Dipoldevolution erforderlich, bei der die Dipolfaltung durch die Nullstellen des Dipol-
kerns Informationen des ursprünglichen Objekts verliert. Ein neuer, auf maschinel-
lem Lernen basierender Ansatz zur Rekonstruktion der verlorenen Information wird
im letzten Kapitel dieser Arbeit untersucht.
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Preface
This thesis is part of a collaboration between the Indian institute of science (IISC)
and the Delft University of Technology. The collaboration aims to bring together re-
searchers to work on signal processing for magnetic resonance imaging (MRI) in a
low resource setting. Low resource setting relates here both to the cost of the MRI
scanner and the siting requirements and robustness of the apparatus.

This resulted in a dual PhD exchange between myself and Shubham Sharma at
the IISC. While my colleague from the IISC looked at possible measurement trajec-
tories to speed up measurements and most optimally collect data, my research and
this thesis looks at a more fundamental side of the signal acquisition in MRI. In doing
so we aimed to provide the groundwork for a shift in acquisition strategies.

I would like to invite you to take a read of these past four years of research and
hope you can enjoy it just as much as I have enjoyed writing and working on it. Many
hot days in India and cold summers in Delft have been spent figuring out the intrica-
cies of electrical properties and currents in an MRI setting, but not all secrets will be
lifted in this work, so stay tuned for more!

Patrick Stefan Fuchs
London, November 2020
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1
Introduction

Die Praxis sollte das Ergebnis des Nachdenkens sein,
nicht umgekehrt.

Herman Hesse

Where else can you go to Tim Hortons and get a latte, put it in an MRI machine
and say “You know what, I’m looking at a quantum mechanical system. I can

manipulate a quantum mechanical system.”

AndrewWebb

In the summer of 2019, during the annual meeting of the International Society for
Magnetic Resonance in Medicine (ISMRM), professor Webb spoke on “Disruptors in
the way we gather data”.1 In this presentation he spoke about how we used to gather
data, how we are, how we should, and how we could gather data. In this work I
will present my own take on how we should gather data, and an expectation of how
we will gather data. But first some background on how we are gathering data at the
moment.

The biggest driving force behind novel signal acquisition strategies in magnetic
resonance imaging (MRI) for the past decade is without a doubt the application of
compressive sensing techniques. Compressive sensing relies on the fact that the
amount of samples needed to reconstruct an image is not dependent on the band-
width of the signal, but rather on the information content. This is realised by exploiting
the sparsity of a signal to recover the underlying process. In MRI this means that,
given the right sampling strategy, the amount of measurements or samples that are
needed to reconstruct an anatomical image is much smaller than the entire measure-
ment space. This leads to faster scans for images with comparable quality. Ever
since the first demonstration of this concept by Lustig et al., it has become a tool we
cannot do without anymore.
1https://www.ismrm.org/19/program_files/Plenary01.htm with the presentation available to the pub-
lic at https://youtu.be/EsIwYUZ-99E?t=3510

https://www.ismrm.org/19/program_files/Plenary01.htm
https://youtu.be/EsIwYUZ-99E?t=3510
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2 1. Introduction

Another big development of the last decade in signal processing in general is
the use of machine learning tools and neural networks for image processing. These
tools as well as the necessary computational hardware have matured immensely,
and the MRI community has picked them up and applied them with great success.
Sometimes even leading to machine learning development from solutions developed
by the MRI community. Now, the hype of machine learning has started to wane and
it has acquired its own corner in MRI development as a respectable area of research
with known pitfalls, challenges, opportunities, and applications.

All of these developments lead to new acquisition strategies for existing MRI scan-
ners, and allow for the development of new MRI hardware. In acquisition, the new
capabilities brought forth from these advanced signal processing concepts lead to
new ways of diagnosing diseases and tissue in general. On the other hand, in MRI
hardware the developments allow for big opportunities in high field MRI, where the
increase in signal strength can lead to exponentially faster scanning when utilised
correctly, and at the low end of the spectrum stronger computational power allows
cheaper hardware to still perform critical imaging tasks with increasing applications.

For both of those disciplines a good understanding of the underlying processes
and reliable (and accurate) models of the physics and biological processes is para-
mount in evaluating new processes and methods and pinpointing where the most
room for improvement is as well as potential pitfalls and gaps in our understanding
and knowledge on these subjects.

1.1. MRI Diagnostics
In the history of MRI, clinical diagnosis of scan results have almost always been done
using qualitative images and by expert radiologists. These radiologists have been
trained for years to know which type of weighting (T1, T2 or tissue density) sequence
gives them which contrast between the different types of tissues or pathologies that
they are interested in. They then use this contrast, or difference in signal intensity, to
perform their diagnosis. However, since the image is always qualitative (or relative)
and does not contain absolute values the specific intensity of for example a tumor
does not necessarily correspond to its severity or aggressiveness. In addition, when
a patient comes back for a checkup at a later date, even if this is performed using the
same exact scanner, it is difficult to compare the images in terms of intensity.

Therefore, nowadays there is an increasing push to quantitative imaging, enabled
by more advanced signal processing as well as hardware improvements. That is, the
goal of imaging is not necessarily to get a good contrast between the different tissues
under consideration, but rather to accurately reconstruct the actual tissue parameters,
which can then be used to give various weights or contrast to an image. Some recent
approaches that do just this reconstruction, based on the magnetisation properties,
are the dictionary based magnetic resonance fingerprinting (MRF) and the model
based magnetic resonance spin tomography in time-domain (MR-STAT) approach.
In this work we mostly consider the electrical properties rather than the magnetisation
properties, as these directly influence the electromagnetic fields, and lead to induced
currents inside the object. Their influence on pathologies is less well understood,
but this is also due to the use of electrical properties in clinical diagnostics being in
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its infancy. Reliable reconstruction algorithms are essential to bring these properties
into clinical relevance and their development is one of the aims of this work.

1.2. MRI Hardware
As MRI scanners with increasing field strengths are being engineered and built it
sometimes seems that this is the biggest area of hardware development, as it re-
quires most funding and large groups of engineers and scientists. Besides these
high field developments there are also significant advances at low field strengths, in
the development of cheaper, smaller and more portable MRI scanners for point of
care or developing nations. In these scanners the emphasis is not so much on being
able to control the electromagnetic fields inside the scanner precisely, but rather on
being able to do this just well enough to be able to get an acceptable image using
sophisticated signal processing strategies. This is necessary to bring the advanced
medical diagnostics capabilities of MRI to the masses, as currently around 70% of
the world has no access to MRI scans, which is mostly because of the prohibitive
siting (power, shielding) requirements and cost of the scanners.

One of such devices is being developed by a team at the Leiden university med-
ical center (LUMC) and Delft university of technology (TU Delft). For this device the
target field method for gradient design has been extended, which provides a rigorous
physics based approach to relate generated magnetic fields to cylindrical current dis-
tributions. These low field scanners will bring about a shift in the way people think
about MRI, from expensive hospital visits to point of care diagnostics enabling health-
care wherever it is needed, and bringing the power of MRI developments to a much
broader population than previously thought possible.

1.3. Thesis Contributions and Outline
The main contributions of this thesis can be summarised as follows:

1. Providing a means to exploit field structure to perform electrical properties to-
mography in a two-dimensional field setting, essentially showing that the in-
verse problem reduces to a forward one when the fields can be decoupled. [A]

2. Investigation of the influence of a two-dimensional field assumption on the re-
construction of electrical properties as well as its validity using a contrast source
formulation. [B]

3. Development of a fast and efficient design methodology for transverse oriented
gradient fields using the target field method. [C]

4. Derivation of a new comprehensive signal model for MRI, which includes the
scattering contribution of tissue that can be used to investigate its influence on
MRI measurements. [D]

5. Application of a proximal gradient approach to simplify quantitative susceptibility
mapping. [Ch. 6]
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4 1. Introduction

After this introduction, electrical properties tomography is the first subject we delve
into. Starting off with the Maxwell equations in two dimensions which lead to the first
order induced current imaging method, after which this two-dimensionality assump-
tion is put to the test using the contrast source inversion framework in Chapter 3.
After this we take a closer look at magnetic fields, specifically magnetostatic gradient
design using the target field method for a transverse oriented magnetic background
field in Chapter 4. The third part of this thesis takes a closer look at the full Maxwell
equations, investigating the contribution of scattering on the measured signal and
showing ways to reconstruct electrical properties by incorporating these in the signal
model in Chapter 5. To round off our investigation of electromagnetic fields and tissue
properties Chapter 6 investigates reconstructing the permeability or magnetic tissue
property. This tissue property is related to iron deposits in the body and is especially
relevant for brain imaging applications. In this thesis it provides a great application to
investigate combining machine learning tools and physical model based knowledge
for reconstructions.

List of Peer Reviewed Publications
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[B] REIJER LEIJSEN†, PATRICK FUCHS†, WYGER BRINK, ANDREW WEBB, AND
ROB REMIS, “Developments in Electrical Properties Tomography Based
on the Contrast Source Inversion Method”, Journal of Imaging, 5(2),
(2019).
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Imaging and Electrical Properties
Tomography in MRI
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ABSTRACT– In this paper, we present an efficient dedicated electri­
cal properties tomography algorithm (called first-order current density
EPT) that exploits the particular radio frequency field structure, which
is present in themidplane of a birdcage coil, to reconstruct conductivity
and permittivity maps in this plane from �̃�+1 data. The algorithm con­
sists of a current density and an electrical properties step. In the cur­
rent density reconstruction step, the induced currents in the midplane
are determined by actingwith a specific first­order differentiation oper­
ator on the �̃�+1 data. In the electrical properties step, we first determine
the electric field strength by solving a particular integral equation, and
subsequently determine conductivity and permittivity maps from the
constitutive relations. The performance of the algorithm is illustrated
by presenting reconstructions of a human brain model based on simu­
lated (noise corrupted) data and of a known phantom model based on
experimental data. The method manages to reconstruct conductivity
profiles without model related boundary artefacts. Additionally, it is
more robust to noise because only first­order differencing of the data
is required as opposed to second­order data differencing in Helmholtz­
based approaches. Moreover, reconstructions can be performed in less
than a second, allowing for essentially real­time electrical properties
mapping.
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2.1. Introduction
The main objective of electrical properties tomography (EPT) is to retrieve the conduc-
tivity and permittivity of tissue from �̃�+

1 data as measured by an magnetic resonance
imaging (MRI) scanner. Knowledge about these parameters is extremely important
in a wide variety of clinical applications. Permittivity especially of interest at high field
MRI where it can have a significant influence on the (radio frequency (RF)) field distri-
butions. The conductivity is of potential importance as an endogenous biomarker in
oncology [1] and acute stroke imaging [2, 3], for example, and the conductivity along
with the electric field strength is also required to determine the specific absorption
rate (SAR) inside the human body [4] – [5].

Many different EPT methods have been developed over the years ranging from
local differential equation approaches (see [6] – [7], for example) to methods that
use global integral Green’s tensor field representations in an optimization setting to
find the dielectric tissue maps at the Larmor frequency of operation [8, 9]. The lo-
cal differential-based EPT methods are direct non-iterative reconstruction methods,
often based on the Helmholtz equation for the RF magnetic field. Standard Helmholtz-
based EPT (magnetic resonance (MR)-EPT) [10] requires a constant dielectric profile
and second-order spatial differentiation of the data. Care must be taken when imple-
menting this differentiation operation to mitigate noise amplification [3, 11, 12]. On the
other hand, in the global integral-based approach the dielectric tissue parameters are
determined in an iterative manner by minimizing an objective function. Here, integral
operators act on the data, which makes the method more robust to noise. A disad-
vantage of the global approach is that it is more complex to implement than a direct
method and its computational costs are generally much higher. However, strongly
inhomogeneous tissue profiles are easily incorporated in a global method and reg-
ularization can be added to the objective function to further suppress the effects of
noise.

A number of EPT methods have been developed using two-dimensional data-
sets [8, 12, 13], whereas there are also methods that work on fully three-dimensional
�̃�+

1 data sets [9, 14]. We shall focus on two-dimensional measurements, as it has
been shown [15] that the RF field is essentially E-polarized in the midplane of a bird-
cage coil, meaning that the electric field strength is mainly directed in the longitudinal
𝑧-direction, while the magnetic field strength has transverse 𝑥- and 𝑦-components
only. In this paper, we present a dedicated EPT method that exploits this particular
field structure.

In particular, in our first-order induced current EPT method (foIC-EPT) we exploit
the structure of the RF field and obtain the induced current density by acting with a
particular first-order differential operator on collected �̃�+

1 data. Since this operation
provides us with an image of the currents that are induced in tissue that is present in
the (mid) plane of interest, we call this step the induced current reconstruction step
of our method. We note that current density imaging in the context of the Helmholtz
equation has also been investigated in [16], for example.

In the second electrical properties step of our method, the conductivity and per-
mittivity maps are reconstructed by first computing the electric field strength and sub-
sequently employing the constitutive relations between the induced currents and the
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electric field strength. Our foIC-EPT can therefore be seen as a hybrid method, in
which a local differentiation operator is used to obtain the currents and a global inte-
gral operator is used to obtain the electric field.

Similar to most of the EPT approaches mentioned above, foIC-EPT relies on
the transceive phase approximation [17] to obtain conductivity and permittivity recon-
structions from �̃�+

1 data. The effects of this approximation on the reconstructions is
presently not fully understood and application of this approximation may result in re-
construction errors. A possible reconstruction strategy for iterative volume-integral
EPT methods that overcomes this drawback has been reported in [18], however.

Finally, we note that foIC-EPT is a dedicated EPT method, in the sense that it
exploits the particular field structure that is present in the midplane of a birdcage coil.
This makes the method very efficient and it produces images of the induced current
density and conductivity and permittivity maps with no boundary artefacts related to
any underlying assumptions on the electrical property distribution and essentially in
real time even on a standard PC or laptop (e.g. on an Intel i5 PC with 8 GB of RAM).

2.2. Induced Current Density Imaging
In this section, we describe the induced current step of our EPT algorithm. This step
is based on the observation presented in [15] that the RF field in the midplane of a
birdcage coil is essentially E-polarized. We therefore follow [8], [13], and [15] and
consider E-polarized RF fields governed by the Maxwell equations

−𝜕𝑥 �̃�𝑦 + 𝜕𝑦 �̃�𝑥 + 𝜇0𝐽 ind
𝑧 = 0, (2.1)

𝜕𝑦�̃�𝑧 + j𝜔�̃�𝑥 = 0, (2.2)

and

−𝜕𝑥�̃�𝑧 + j𝜔�̃�𝑦 = 0, (2.3)

where 𝐽 ind
𝑧 = (𝜎 + j𝜔𝜀)�̃�𝑧 is the induced current density, we use a exp (+j𝜔𝑡) time

convention, and the tilde is used to denote frequency domain quantities. This density
can be imaged in a straightforward manner from available �̃�+

1 data where �̃�+
1 is given

by

�̃�+
1 =

�̃�𝑥 + j�̃�𝑦
2 . (2.4)

Specifically, introducing the operator

𝜕− = 𝜕𝑥 − j𝜕𝑦 , (2.5)

we have

𝜕−�̃�+
1 =

1
2

[
𝜕𝑥 �̃�𝑥 + 𝜕𝑦 �̃�𝑦 − j

(
𝜕𝑦 �̃�𝑥 − 𝜕𝑥 �̃�𝑦

)]
(2.6)

and using Equation (2.1) and 𝜕𝑥 �̃�𝑥 + 𝜕𝑦 �̃�𝑦 = 0, we arrive at

𝐽 ind
𝑧 =

2
j𝜇0

𝜕−�̃�+
1 . (2.7)
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This is our basic imaging formula. Since it is based on the first-order Maxwell sys-
tem, only first-order differentiation operators act on �̃�+

1 data and since there are no
additional (higher-order) differentiation operations in the following second step of
our method (see Section 2.3), the entire method only contains first-order differen-
tiation operators, as opposed to EPT techniques which are based on second-order
(Helmholtz) equations, where a second-order differentiation operator (Laplacian) is
applied to the data. The above imaging formula is therefore less sensitive to pertur-
bations or noise and, since for the same accuracy finite difference approximation a
smaller kernel can be used, boundary artefacts related to the discrete nature of the fi-
nite differencing kernel are also less severe compared with second-order approaches.
Lastly, no assumptions on the electrical properties have been made in the definition
of the induced currents, whereas Helmholtz based methods have to assume constant
dielectric parameters.

2.3. Electrical Properties Reconstruction
Up to this point, we have addressed imaging of the induced current density inside
the human body. This density depends on the external sources through the fields
that are excited by these sources. The conductivity and permittivity parameters are
intrinsic properties of tissue that do not depend on the external sources. To retrieve
the tissue parameters, we therefore have to take the presence of the external sources
into account. To this end, we set up a volume-integral scattering formalism (see, for
example, [19] – [20]) and define the incident RF field

{
�̃�inc
𝑥 , �̃�inc

𝑦 , �̃�inc
𝑧

}
as the field

that is present in an empty (air-filled) birdcage coil. The scattered magnetic field{
�̃�sc
𝑥 , �̃�

sc
𝑦 , �̃�

sc
𝑧

}
is introduced as the difference between the total field and the incident

field. Specifically, {
�̃�sc
𝑥 , �̃�

sc
𝑦 , �̃�

sc
𝑧

}
=
{
�̃�𝑥 , �̃�𝑦 , �̃�𝑧

} − {
�̃�inc
𝑥 , �̃�inc

𝑦 , �̃�inc
𝑧

}
(2.8)

and the scattered electric field due to the presence of the body is given by (see [19]
– [20], for example)

�̃�sc
𝑧 (𝝆) = j𝜔𝜇0

∫
𝝆′∈𝔻

�̃�(𝝆 − 𝝆′) 𝐽sc
𝑧 (𝝆′)d𝑉, (2.9)

where 𝔻 is the body domain. This integral representation holds for all observation
points in the midplane of the body coil. Furthermore,

�̃�(𝝆) = − j
4𝐻

(2)
0 (𝑘0 |𝝆|) (2.10)

is the Green’s function of the homogeneous background medium (air) with 𝑘0 = 𝜔/𝑐0
its corresponding wave number and 𝐻(2)

0 the Hankel function of the second kind and
order zero. Finally, 𝐽sc

𝑧 is the scattering source given by

𝐽sc
𝑧 = 𝐽 ind

𝑧 − j𝜔𝜀0�̃�𝑧 for 𝝆 ∈ 𝔻. (2.11)
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Substituting this scattering source (Equation (2.11)) in the integral representation of
Equation (2.9), using the imaging equation (2.7), and the definition of the scattered
electric field strength (�̃�sc

𝑧 = �̃�𝑧 − �̃�inc
𝑧 ), we find that the electric field satisfies

�̃�𝑧(𝝆) + 𝑘2
0

∫
𝝆′∈𝔻

�̃�(𝝆 − 𝝆′) �̃�𝑧(𝝆′)d𝑉 = �̃�inc
𝑧 (𝝆) − 2𝜔

∫
𝝆′∈𝔻

�̃�(𝝆 − 𝝆′) 𝜕−�̃�+
1 (𝝆′)d𝑉 (2.12)

and 𝝆 ∈ 𝔻. Observe that the right-hand side of Equation (2.12) is known and with
𝝆 ∈ 𝔻, Equation (2.12) is an integral equation for the electric field strength in 𝔻 which
can be solved iteratively using the generalized minimal residual solver (GMRES), for
example [21]. Also note that local noise effects in 𝜕−�̃�+

1 are smoothed or smeared
out through integration over the body domain. Smoothing is predominantly local,
however, because of the singularity of the Green’s function at 𝝆′ = 𝝆.

After solving integral equation (2.12), we have the electric field strength at our
disposal and the conductivity and permittivity maps at frequency 𝜔 can be determined
by using the constitutive relation

𝐽 ind
𝑧 (𝝆) = [

𝜎(𝝆) + j𝜔𝜀(𝝆)] �̃�𝑧(𝝆), (2.13)

for 𝝆 ∈ 𝔻, since both 𝐽 ind
𝑧 (𝝆) and �̃�𝑧(𝝆) are now known. Explicitly, by equating the real

and imaginary parts of the above equation, we obtain the conductivity profile

𝜎(𝝆) = 2

𝜇0
���̃�𝑧(𝝆)��2 Im

[
�̃�∗
𝑧(𝝆)𝜕−�̃�+

1 (𝝆)
]
, (2.14)

while the permittivity profile is given by

𝜀(𝝆) = −2

𝜔𝜇0
���̃�𝑧(𝝆)��2 Re

[
�̃�∗
𝑧(𝝆) 𝜕−�̃�+

1 (𝝆)
]
, (2.15)

where ∗ denotes complex conjugation. Note that the conductivity and permittivity can
only be retrieved at points 𝝆 ∈ 𝔻 where the electric field strength does not vanish.
Our overall electrical properties tomography approach can now be summarized in
Algorithm 1. Note that the 𝑧-component of the incident electric field strength is not
required to carry out induced current step 1, but is required to carry out electrical
properties step 2.

2.4. Simulation and Experiment
In this section, we illustrate the performance of foIC-EPT using simulated and mea-
sured �̃�+

1 data. Specifically, we apply foIC-EPT to simulated �̃�+
1 data collected inside

the head of the female body model Ella of the foundation for research on informa-
tion technologies in society (IT’IS) foundation [22] and corrupt this data with noise.
Subsequently, we apply the foIC-EPT algorithm to measured �̃�+

1 data obtained for a
cylindrical inhomogeneous phantom.
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Algorithm 1 First-Order Induced Current EPT (foIC-EPT).

• Given the measured �̃�+
1 -field in the midplane of the birdcage coil, and the cor-

responding incident electric field �̃�inc
𝑧 :

1 Determine the induced current density using Equation (2.7).
2.a Determine the corresponding electric field strength by solving a specific

integral equation (2.12).
2.b Knowing the induced current density and the electric field strength, de-

termine the conductivity and permittivity profiles using Equations (2.14)
and (2.15).
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Figure 2.1: Conductivity map in S m−1 (left) and relative permittivity map (right) of the center slice head
model.

2.4.1. Imaging based on simulated data
The head model of the IT’IS foundation has a voxel size of 2.5 mm3 isotropic and
the conductivity and permittivity maps of the slice that coincides with the midplane of
the birdcage coil are shown in Figure 2.1. The coil and corresponding incident field
are simulated by positioning 16 line sources uniformly on a circle that is concentric
to the head model. The radius of this circle is 34 cm and the line sources operate
in quadrature mode at a frequency of 128 MHz, which corresponds to the operating
frequency of a 3 T MRI scanner. The simulation was performed at the same reso-
lution as the phantom (2.5 mm3 isotropic), and the simulation was programmed in
MATLAB 2015b (The MathWorks, Inc., Natick, Massachusetts, United States) using
an in-house simulation code. Furthermore, we corrupt the �̃�+

1 data by complex white
Gaussian noise such that we have an signal to noise ratio (SNR) of 20 dB (100 on a
linear scale).

Since the conductivity and permittivity maps of the body model are known in this
example, we can numerically compute the exact induced current density within our
slice of interest. The magnitude of this current density is shown in Figure 2.2 (left),
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Figure 2.2: Normalised magnitude of the exact induced current density 𝐽ind
𝑧 in the center slice of the Ella

head model (left), magnitude of the reconstructed current density using imaging formula (2.7) on noisy �̃�+1
data (middle), and the pointwise relative error of the reconstructed induced current density (right). The left
and middle density plots have been normalized with respect to max

��𝐽ind
𝑧

��. The colorbar refers only to the
error plot.
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Figure 2.3: Normalised magnitude of the exact induced current density 𝐽ind
𝑧 in the center slice of the Ella

head model (left), magnitude of the reconstructed current density using imaging formula (2.7) on filtered
noisy �̃�+1 data (middle), and the pointwise relative error of the reconstructed induced current density (right).
The left and middle density plots have been normalized with respect to max

��𝐽ind
𝑧

��. The colorbar refers only
to the error plot.

while the reconstruction based on imaging formula (2.7) is shown in Figure 2.2 (mid-
dle). The pointwise relative error between the numerically computed induced current
density and the reconstructed density is shown in Figure 2.2 (right). We observe that
the largest errors occur near the interfaces between different tissue types, especially
at the outer regions of the head. Furthermore, there is a large error in the center of
the reconstruction, which is due to a low E-field at this location, that exacerbates the
presence of noise in the data.

Sensitivity to noise is not as severe as in Helmholtz-based approaches, however,
since in the latter approaches a second-order differentiation operator (Laplacian) acts
on the data, while in our induced current step only the first-order derivative of collected
�̃�+

1 data is computed. For differencing a first order forward kernel was used, which
would lead to single voxel boundary artefacts if the measured data would be perfectly
masked to the size of the head. However, in this simulation this mask was chosen
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one voxel larger to remove this purely numerical error.
To suppress the effects of noise that is present in the input data, we now first filter

this data using a five-point (5×5) Gaussian image filter with mean zero and variance 2.
This will lead to some loss of spatial resolution, but will reduce the noise amplification
effect due to differentiation of the data. A median filter has also been applied and
works well in preserving edge information in high SNR regions, but creates artefacts
in low SNR regions due to the nonlinear nature of the filter and the smooth nature of
the 𝐵+

1 map.
Subsequently, we apply Equation (2.7) on the filtered data to obtain the recon-

structed induced current density as shown in Figure 2.3 (middle) along with the ex-
act current density and pointwise relative error shown in Figure 2.3 (left) and Fig-
ure 2.3 (right), respectively. The pointwise relative error is given by��(𝒖true − 𝒖reconstructed) ⊙ 𝒖−1

true
�� ,

where ⊗ signifies the elementwise or Hadamard product. The quality of our one-
step imaging result has clearly improved, and we therefore use the filtered �̃�+

1 data
to carry out the electrical properties step of foIC-EPT (step 2 of the foIC-EPT al-
gorithm). Specifically, we use the filtered �̃�+

1 data to compute the right-hand side
of equation (2.12). Having this right-hand side available, we solve the integral equa-
tion (2.12) using the GMRES algorithm, whith the spatial convolution integral equation
implemented using FFTs as described in [23]. It takes about ten iterations to arrive
at a normalized residual of 1 × 10−6 (matrix size 256×256) and the resulting electric
field strength is shown in Figure 2.4 (middle). The corresponding exact electric field
strength is shown in Figure 2.4 (left) and the pointwise relative error between the ex-
act and reconstructed electric fields is shown in Figure 2.4 (right). Overall, the electric
field strength is fairly well reconstructed, except at the center of the slice, where the
magnitude of the exact electric field strength essentially vanishes. For antennas in a
birdcage setting and operating in quadrature mode, it is well-known that the magni-
tude of the electric field strength is small in a neighborhood of the center of the slice
(see [8], for example) and it is difficult to accurately reconstruct this field based on
noisy �̃�+

1 input data [24].
Having reconstructed the electric field strength from �̃�+

1 data, we can determine
the conductivity and permittivity maps using Equations (2.14) and (2.15), respectively.
The reconstructed conductivity map is shown in Figure 2.5 (right), while the recon-
structed permittivity map is shown in Figure 2.6 (right). Reconstructions of the con-
ductivity and permittivity maps based on noiseless �̃�+

1 data are shown in Figure 2.5
(middle) and Figure 2.6 (middle), respectively, thereby highlighting the effects of
noise on the conductivity and permittivity reconstructions. In particular, for noisy data
smooth reconstructions are obtained due to filtering and for both noiseless and noisy
data the error is maximum around the center of the slice, since the error in the re-
construction of the electric field is maximum in this neighborhood and the magnitude
of the electric field strength is small at this location as well. A low E-field leads to
induced electric currents 𝐽 ind

𝑧 that give a small to negligible contribution to the �̃�+
1 field

and reconstructing the conductivity and permittivity at such locations is therefore very
challenging. Finally, we mention that it takes our implementation of the overall foIC-
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Figure 2.4: Normalised magnitude of the exact electric field strength �̃�𝑧 in the center slice of the Ella head
model (left), magnitude of the reconstructed electric field strength based on filtered �̃�+1 data (middle), and
the pointwise relative error of the reconstructed electric field strength (right). The left and middle field
strength plots have been normalized with respect to max

���̃�𝑧 ��. The colorbar refers only to the error plot.
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Figure 2.5: Original (left) and reconstructed conductivity maps in S/m based on noiseless (middle) and
noisy (right) �̃�+1 data.

EPT algorithm less than a second to retrieve the conductivity and permittivity maps
from the collected �̃�+

1 data on an Intel i5 PC with 8 GB of RAM.

2.4.2. Imaging based on measured data
In this experiment, we use a 1.5% agar based cylindrical phantom filled with saline
water to validate our foIC-EPT method. The phantom consists of an inner and an
outer cylinder with conductivities given by 0.95 S m−1 and 0.45 S m−1, respectively,
and a photograph of the phantom is shown in Figure 2.7 (top). The conductivities
were independently obtained using the Stogryn equation [25]. A 3 T MRI System
(Ingenia, Philips) and a 16 channel head coil (Philips Medical Systems, Best, The
Netherlands) were used to obtain the �̃�+

1 data shown in Figure 2.7 (bottom). The
amplitude of the �̃�+

1 field was measured using the actual flip-angle imaging (AFI)
method [26], while the transceive phase was measured using two single spin echo
(SE) sequences with opposing readout polarities [3, 6, 17, 27]. Both sequences
were carried out with 10 signal averages, and the field of view is centered at the
middle of the coil. Parameter settings of the measurement sequences can be found
in Table 1. Furthermore, the phantom was placed at the center, and the system’s body



2

16 2. First-Order Induced Current EPT

0

20

40

60

80

0

20

40

60

80

Figure 2.6: Original (left) and reconstructed relative permittivity maps based on noiseless (middle) and
noisy (right) �̃�+1 data.

Table 2.1: Sequence parameters used for the phantom experiment.

Parameters SE sequence AFI sequence Unit

field of view (FoV) 200 × 200 × 2.5 200 × 200 × 9 mm3

Resolution 2.5 × 2.5 × 2.5 2.5 × 2.5 × 3 mm3

Rep. time TR 1000 TR1: 50 msTR2: 250
echo time (TE) 5 2.7 ms
Water-fat shift / 0.3

1400
0.9
480 pixel Hz−1

Bandwidth
Flip angle 90 65 °
Signal averages 10 10 #

coil was used for transmitting, while a head coil was used for reception. To remove
the impact of the complex sensitivity of the head coil, the receive array data was
phase-referenced to the body coil using a built-in routine. In this way, the transmit
and receive phase of the birdcage coil determines the observed transceive phase [3,
6, 17, 27]. Subsequently, the transceive phase approximation was applied to obtain
an approximate �̃�+

1 phase from the measured transceive phase. Finally, the SNR of
the measured data is 17.75 dB (approx. 60 on a linear scale) and 18.75 dB (approx.
75 on a linear scale) for the amplitude and phase scans, respectively.

Having the complex �̃�+
1 data map available, we use the foIC-EPT algorithm to

reconstruct the conductivity and permittivity maps of the phantom by essentially fol-
lowing the same steps as in the previous subsection. In particular, first the data is
filtered using a Gaussian filter and subsequently the induced current density 𝐽 ind

𝑧 is
determined using the imaging formula of Equation (2.7). The magnitude of the re-
constructed current within the reconstruction area is shown in Figure 2.8 (left). In ad-
dition, we simulated the �̃�+

1 field using the Sim4Life software package (ZMT, Zurich,
Switzerland) and reconstructed the in silico induced currents using Equation (2.7).
The magnitude of the in silico induced current is shown in Figure 2.8 (right). Clearly,
there is a mismatch at the center of the inner compartment and at its boundary. This
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Figure 2.7: Photograph of the phantom (top), the masked amplitude of the measured �̃�+1 field (left, in
V s m−2) using the AFI sequence as denoted in Table 2.1, and the masked measured transceive phase
(right, in rad) using the SE sequences as given in Table 2.1.

mismatch will be discussed further below in combination with the conductivity recon-
struction and is also investigated in [18].

To carry out the second step of our reconstruction method, the incident electric
field in the imaging plane of interest is required to determine the right-hand side of
Equation (2.12). This field was computed using the Sim4Life software package (ZMT,
Zurich, Switzerland) obviously using the same configuration as for the in-silico in-
duced current simulations. Having determined the right-hand side of (2.12), we solve
the integral equation for the total electric field using the GMRES iterative solver. For
this particular configuration, it takes the solver a fraction of a second on an Intel i5 PC
with 8 GB of RAM to solve the integral equation in six iterations reaching a normalized
residual of 1 × 10−6.

With the electric field strength now at our disposal, we can determine the conduc-
tivity and permittivity profiles of the phantom using Equations (2.14) and (2.15). The
reconstructions are shown in the top row of Figure 2.9 along with Helmholtz recon-
structions shown in the bottom row of Figure 2.9. The Helmholtz reconstructions were
obtained using a smoothed phase-only implementation from [12, 17] that employs a
7 × 3 finite differencing kernel. We have also attempted a reconstruction using the
same (3-point central) differencing kernel but this does not result in meaningful con-
ductivity values at the noise level of the measurement.

We observe that foIC-EPT provides a good overall reconstruction and jumps in
the conductivity profile are well resolved. Only small local dips are present in the
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Figure 2.8: Magnitude of the induced current based on measured data (left) and magnitude of the in silico
induced-current based on simulated data (right). Both normalised to max

��𝐽ind
𝑧

�� from the simulated data.

conductivity profile near the center of the inner cylinder and to the lower right of the
center of the imaging area. These local dips correspond to locations where the re-
constructed induced current density is small as well (see Figure 2.8 (left)). Prelim-
inary studies indicate that these dips are due to the application of the transceive
phase approximation, but further testing is necessary to confirm these findings. Nev-
ertheless, a good overall agreement with the exact conductivity profile is obtained
when using foIC-EPT even in case the transceive approximation is applied. The
Helmholtz-based approach, on the other hand, suffers from ripple or edge effects as
is evident from the ring-shaped anomaly around the inner cylinder. Such effects are
typically observed in standard Helmholtz-based reconstruction approaches as dis-
cussed in [10, 12], and [17], for example. The foIC-EPT method does not suffer from
such boundary artefacts and is able to reconstruct the piecewise-constant conductiv-
ity profile.

The permittivity reconstructions obtained with foIC-EPT and MR-EPT is shown
in Figures 2.9b and 2.9d, respectively. In both cases, the reconstructions are poor
compared with the quality of the conductivity reconstructions. This should not come
as a surprise, however, since permittivity reconstructions are generally very sensitive
to perturbations and noise in the data especially at 3 T. More reliable permittivity
reconstructions are probably obtained at 7 T or even higher field strengths. Finally,
we mention that for this phantom experiment the computation times of foIC-EPT and
the Helmholtz approach are 0.041 seconds and 0.027 seconds, respectively, on a
standard PC with an Intel i5 (3.1 GHz) and 8 GB of RAM.

2.5. Discussion and Conclusions
In this paper, we have presented a two-step electrical properties tomography tech-
nique (foIC-EPT) to reconstruct the conductivity and permittivity maps of tissue based
on �̃�+

1 data collected within the midplane of a birdcage coil. The first step consists
of reconstructing the induced currents in the midplane of the coil using measured �̃�+

1
data. From the first-order Maxwell equations it follows that these currents can be ob-
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(b) foIC-EPT relative permittivity reconstruction.
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(d) MR-EPT relative permittivity reconstruction.

Figure 2.9: Reconstructed conductivity maps in S m−1 and reconstructed relative permittivity maps. The
true conductivity of the inner cylinder is 0.95 S m−1, while the outer cylinder has a conductivity of 0.45 S m−1.
The true relative permittivity of the inner and outer cylinder is estimated to be around 80.

tained by acting with a particular first-order differential operator on the collected data.
Since only first-order differentiation operators are involved, foIC-EPT is less sensi-
tive to noise compared with (Helmholtz) approaches, where second-order differential
operators act on the data.

Having obtained the induced currents from step 1, step 2 consists of computing the
electric field inside the plane of interest, by solving a particular integral equation. Iter-
ative solvers are particularly well suited for this task, since the integral that appears in
this equation is a spatial convolution integral and fast Fourier transformations (FFTs)
can be used to compute matrix-vector products at “FFT-speed.” Computationally, this
is the most expensive part of the foIC-EPT method, but the examples presented in
this paper and additional numerical testing indicates that when the GMRES iterative
solver is used, typically less than ten iterations are required to reach an error level of
1 × 10−6.
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After solving the integral equation, the conductivity and permittivity maps can be
determined using the induced current density from step 1 and the constitutive relations.
For realistic reconstruction problems using simulated or measured data, the complete
reconstruction procedure (step 1 and 2) requires a fraction of a second to complete
on a standard PC with an Intel i5 processor running at 3.2 GHz and having 8 GB of
RAM. This is a significant speed up compared with other optimization-based volume
integral equation approaches such as contrast source inversion (CSI)-EPT [8] or the
method presented in [9], which typically require tens of seconds or even minutes
to arrive at two-dimensional reconstructed conductivity and permittivity maps. We
conclude that exploiting field structure in foIC-EPT results in a significant speed up,
but also makes the method more restrictive than general volume integral approaches,
which do not rely on any particular field structure.

Furthermore, in contrast with the CSI-EPT formulation, we only formulate a vol-
ume integral equation for the electric field and take the induced currents as given by
Equation (2.7) into account. This is different from CSI-EPT, where the contrast and
contrast source (product of the contrast and the electric field) are both unknown and
iteratively updated. Here, we already know the induced currents by exploiting the
E-polarized field structure.

As opposed to Helmholtz-based approaches, our proposed method, as well as
other volume-integral reconstruction methods, can handle jumps in the conductivity
and permittivity profiles. No assumptions on the homogeneity of the object have to
be imposed and no ripple or edge effects as in Helmholtz-based approaches are
observed. However, what foIC-EPT has in common with some other non-Helmholtz-
based EPT reconstruction methods is that reconstructions may be poor in regions
where the amplitude of the electric field is low. To remedy this situation, active or
passive shimming techniques can be applied as discussed in [8] and [13], for exam-
ple. What the present foIC-EPT method also has in common with many other EPT
reconstruction methods is that it relies on the transceive phase approximation, which
introduces errors in the reconstructions as well. Numerical simulations and actual
experiments indicate that this approximation is responsible for local dips in the re-
constructed tissue profiles, but further testing is required. Present and future work
focuses on developing an iterative volume-integral EPT reconstruction method that
does not rely on the transceive approximation. Preliminary results are promising and
have been presented in [18]. Moreover, local dips and variations in reconstructed
tissue profiles may also be reduced or even eliminated by incorporating additional
regularization strategies such as Total Variation (see [8], for example) into an EPT
reconstruction method. Future work will focus on the implementation of such regular-
ization techniques as well.
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(EPT) is to retrieve the dielectric tissue parameters from �̃�+1 data as
measuredbyamagnetic resonance (MR) scanner. This is a so­called hy­
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3.1. Introduction
The conductivity and permittivity values of different tissue types are of great impor-
tance in a variety of medical applications. In magnetic resonance (MR) safety [1] and
hyperthermia treatment planning [2], for example, the conductivity tissue profiles are
required to determine the specific absorption rate (SAR). The conductivity may also
serve as a bio-marker in oncology or in acute stroke imaging [3]. The permittivity is
important since it affects the spatial distribution of the transmitted electromagnetic
field responsible for spin excitation.

Typically, the conductivity and permittivity values of tissue are measured ex vivo
for a particular range of frequencies [4]. Other methods require elaborate hardware
such as electrical impedance tomography (EIT) [5] or microwave imaging methods [6].
The objective of electrical properties tomography (EPT) is to retrieve these dielectric
tissue values in vivo using an MR scanner and standard measurement protocols [3, 7].
Specifically, with an MR scanner, the so-called �̃�+

1 -field, defined as �̃�+
1 = (�̃�𝑥 + j�̃�𝑦)/2,

can be measured at a particular frequency of operation called the Larmor frequency.
This frequency is proportional to the magnitude of the static background field 𝐵0 via
the relation 𝑓 = 𝛾 𝐵0, where 𝛾 = 42.577 MHz T−1 is the proton gyromagnetic ratio
divided by 2𝜋, leading to MR operating frequencies of 128 MHz and 298 MHz for a
3 T and 7 T scanner, respectively.

Reconstruction of the dielectric tissue parameters is based on the measured �̃�+
1 -

field and what sets EPT apart from other more common inversion and imaging prob-
lems is that the measured �̃�+

1 -field has its support inside the reconstruction domain.
The EPT reconstruction problem therefore belongs to the class of so-called hybrid
inverse problems [8] and several EPT techniques have been proposed to recon-
struct the conductivity and permittivity profiles based on this internal �̃�+

1 data. Loosely
speaking, these techniques can be divided into local differential-based approaches
(see e.g. [9–12]) and global integral-based approaches (see e.g. [13–19]). Combina-
tions of local and global methods have been developed as well [20, 21].

In this paper, we focus on a global integral-based EPT reconstruction method,
called CSI-EPT, where a contrast source inversion approach [22–24] is taken to solve
the EPT reconstruction problem. In particular, in CSI-EPT the reconstruction problem
is formulated as an optimization problem in which an objective function is iteratively
minimized. This objective function consists of a term that measures the mismatch
between modeled and measured data (data mismatch) and a term that measures
the discrepancy in satisfying Maxwell’s equations within the reconstruction domain
using a global integral field representation (consistency mismatch). Including the
second consistency term in the objective function is crucial to the performance of
CSI as shown in [25].

Minimization of the objective function is carried out by iteratively updating a con-
trast function, which describes the dielectric constitution of the body part of interest,
and a so-called contrast source, which is the product of the contrast function and the
electric field strength. Updating takes place by fixing one variable and updating the
other. More precisely, first the contrast function is fixed and the contrast source is
updated and subsequently this is reversed.

The CSI-EPT method was originally introduced in [14], where it was shown that
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CSI-EPT is able to reconstruct strongly inhomogeneous conductivity and permittivity
profiles within the center slice of an object placed in the center of a body coil in a 3 T
MR scanner. The method was initially implemented for E-polarized electromagnetic
fields in two-dimensional (2-D) configurations in which the electric field is parallel
to the bore axis (𝑧-axis) and the magnetic field is purely transverse, because it is
significantly less complex than a full three-dimensional implementation. The use of
a 2-D approach was justified, since it was shown that the electromagnetic field in
the midplane of a birdcage coil essentially has an E-polarized field structure [26].
An efficient alternative to CSI-EPT, called first-order Induced-Current EPT or foIC-
EPT, has been presented as well in [21]. This method exploits the structure of the
two-dimensional E-polarized field to efficiently reconstruct the tissue profiles in the
midplane of the transmit coil. The foIC-EPT method is significantly faster than CSI-
EPT and produces reconstructions in real time with essentially the same quality as
2-D CSI-EPT.

The CSI-EPT method has recently been extended to three-dimensional (3-D) con-
figurations in [27]. With this 3-D implementation of CSI-EPT, volumetric conductivity
and permittivity profiles are obtained, and it is no longer necessary to restrict the re-
construction domain to the midplane of a transmit coil. Moreover, 3-D CSI-EPT is
based on the vectorial 3-D Maxwell equations and no (E-polarized) field structure is
assumed to be present as is the case in a 2-D approach. Unfortunately, computation
times dramatically increase compared with 2-D CSI-EPT and foIC-EPT and, depend-
ing on the configuration, it may take 3-D CSI-EPT hours or even days to converge
even on dedicated high-performance computers or servers. Apart from possible pre-
conditioning techniques that may be applied to accelerate the convergence of 3-D
CSI-EPT, 2-D CSI-EPT or foIC-EPT may be preferable in practice, since reconstruc-
tion times are significantly shorter compared with 3-D approaches.

In this paper, we thoroughly investigate this issue and compare reconstructions
obtained with 2-D CSI-EPT, foIC-EPT, and 3-D CSI-EPT. Reconstruction artifacts in
the conductivity and permittivity profiles, the modeled �̃�+

1 -field, and the internal elec-
tric field are carefully studied. Our analysis shows that only under very special condi-
tions a 2-D approach is justified. Even if the electromagnetic field has an E-polarized
field structure in the midplane of the transmit coil, imposing a two-dimensional field
structure is generally too limiting an approximation unless the body part of interest
and transmit coil strictly satisfy the longitudinal invariance condition.

This paper is organized as follows. In Section 3.2, the 2-D and 3-D CSI-EPT
method is briefly reviewed and the governing integral representations are presented
as well. A variant of 2-D CSI-EPT, called foIC-EPT, is also presented and a detailed
analysis of the performance of all three reconstruction methods is presented in Sec-
tion 3.3 using a realistic head model from the Virtual Family [28]. A discussion with
conclusions can be found in Section 3.4. Finally, we note that the position vectors
in 2-D and 3-D are denoted by 𝝆 and 𝒙, respectively, and we use an exp(+j𝜔𝑡) time
convention.
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3.2. Theory
As mentioned above, the CSI-EPT algorithm operates on two unknowns and is based
on two fundamental equations. Specifically, the unknowns in CSI-EPT are the con-
trast function �̃� and the contrast source �̃� and the fundamental equations are the
data equation and object or state equation.

The contrast function describes the dielectric contrast of the body with respect
to free space and is given by �̃�(𝒙) = 𝜀r(𝒙) − 1 − j𝜎(𝒙)/𝜔𝜀0, where 𝜀r(𝒙) and 𝜎(𝒙)
are, respectively, the unknown relative permittivity and conductivity profiles of the
body, 𝜀0 is the permittivity of free space, and 𝜔 is the Larmor frequency of operation.
The contrast function has the bounded domain 𝔻body that is occupied by the body
as its support, that is the contrast function vanishes for 𝒙 ∉ 𝔻body. Finally, we note
that the contrast function is dimensionless and that its real part is determined by the
permittivity profile, while its imaginary part is determined by the body’s conductivity
profile.

The contrast source in CSI-EPT is defined as �̃� = �̃��̃�, where �̃�(𝒙) is the electric
field strength. Note that it is common to refer to �̃� as a contrast source even though
it is expressed in volt per meter and is actually a scaled electric field strength. The
electric field strength is obviously also unknown, since the dielectric constitution of
the body is unknown. Though this field is not of primary interest in EPT, CSI-EPT
does provide electric field reconstructions that may be used to reconstruct the local
time-averaged power density that is dissipated into heat [1].

To arrive at the two fundamental equations of CSI-EPT, we set up a scattering for-
malism in which we make use of the linearity of Maxwell’s equations and exploit the
fact that the body occupies a bounded domain 𝔻body. In particular, we first determine
the electromagnetic field that is present inside an empty birdcage coil. In practice,
this so-called background field is computed using electromagnetic simulation soft-
ware and we denote it by {�̃�b

, �̃�
b}. We note that here the assumption is made that

the external currents are impressed and field independent. Consequently, antenna
loading is not directly taken into account. The total electromagnetic field in presence
of the body is denoted by {�̃�, �̃�} and using the linearity of Maxwell’s equations this
field can be written as

{�̃�, �̃�} = {�̃�b
, �̃�

b} + {�̃�sc
, �̃�

sc}, (3.1)
where {�̃�sc

, �̃�
sc} is the scattered electromagnetic field due to the presence of the body.

For this field we have the integral representations

�̃�
sc(𝒙) =

∫
𝒙′∈𝔻body

�̃�
BJ(𝒙 , 𝒙′) · �̃�(𝒙′)d𝑉 (3.2)

and

�̃�
sc(𝒙) =

∫
𝒙′∈𝔻body

�̃�
EJ(𝒙 , 𝒙′) · �̃�(𝒙′)d𝑉, (3.3)
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where �̃�
EJ and �̃�

BJ are essentially the electric-current to electric field and electric-
current to magnetic field Green’s tensors of the background medium. Note that these
are the Green’s tensors of a homogeneous background medium and the presence
of the coil is not taken into account. Explicit expressions for these tensors are given
below.

Having these integral representations at our disposal, we can now present the
basic CSI-EPT equations. We start with the equation that relates the measured �̃�+

1 -
field to the contrast source. In particular, using the integral representation for the
scattered magnetic field of Equation (3.2), we have

�̃�+;sc
1 (𝒙) = �̃�sc

𝑥 + j�̃�sc
𝑦

2 =
1
2

∫
𝒙′∈𝔻body

∑
𝑘=𝑥,𝑦,𝑧

[
�̃�BJ
𝑥𝑘(𝒙 , 𝒙′) + j�̃�BJ

𝑦𝑘(𝒙 , 𝒙′)
]
�̃�𝑘(𝒙′)d𝑉, (3.4)

which can be written more compactly as

�̃�+;sc
1 (𝒙) = 𝒢data{�̃�}(𝒙) for 𝒙 ∈ 𝔻body , (3.5)

where the linear data operator 𝒢data is implicitly defined in Equation (3.4). Equa-
tion (3.5) is known as the data equation and relates the unknown contrast source �̃�
to the scattered �̃�+

1 -field. Note that this scattered field is known, since it is the dif-
ference between the total and background fields �̃�+;sc

1 (𝒙) = �̃�+
1 (𝒙) − �̃�+;b

1 (𝒙) and the
total �̃�+

1 -field is known through measurements, while the background field �̃�+;b
1 (𝒙) is

known through simulations. The real phase is generally not known in practice, and
the transceive phase approximation is often used, which can lead to reconstruction
artefacts at higher frequencies [29].

The second basic CSI-EPT equation, called the object or state equation, is ob-
tained from the integral representation for the scattered electric field as given by the
second equation of Equation (3.2). Using the definition of the scattered electric field
�̃�

sc
= �̃� − �̃�

b, this integral representation can be written as

�̃�(𝒙) −
∫

𝒙′∈𝔻body

�̃�
EJ(𝒙 , 𝒙′) · �̃�(𝒙′)d𝑉 = �̃�

b(𝒙) (3.6)

and multiplying the above equation by the contrast function �̃� we arrive at

�̃�(𝒙) − �̃�(𝒙)
∫

𝒙′∈𝔻body

�̃�
EJ(𝒙 , 𝒙′) · �̃�(𝒙′)d𝑉 = �̃�(𝒙)�̃�b(𝒙) for 𝒙 ∈ 𝔻body , (3.7)

which can be written more compactly as

�̃�(𝒙) − �̃�(𝒙)𝒢body{�̃�} = �̃�(𝒙)�̃�b(𝒙) for 𝒙 ∈ 𝔻body , (3.8)
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where the linear operator 𝒢body is implicitly defined in Equation (3.7). To summarize,
the two fundamental unknowns in CSI-EPT are the contrast function �̃� and the con-
trast source �̃� and the basic CSI-EPT equations are the data equation (3.5) and the
object equation (3.8).

Now suppose we have an approximation for the contrast function and contrast
source available. We denote these approximants by �̂� and �̂�, respectively, and in or-
der to measure how well these approximations satisfy the data and object equations,
we introduce the data and object residuals as

𝑟d(𝒙) = �̃�+;sc
1 (𝒙) − 𝒢data{�̂�}(𝒙) for 𝒙 ∈ 𝔻body , (3.9)

and

𝒓o(𝒙) = �̂�(𝒙)�̃�b(𝒙) − �̂�(𝒙) + �̂�(𝒙)𝒢body{�̂�}(𝒙) for 𝒙 ∈ 𝔻body , (3.10)

respectively, and measure their magnitudes using the 𝐿2-norms

∥𝑟d∥2
body =

∫
𝒙∈𝔻body

|𝑟d(𝒙)|2 d𝑉 and ∥𝒓o∥2
body =

∫
𝒙∈𝔻body

|𝒓o(𝒙)|2 d𝑉. (3.11)

In CSI-EPT, these norms are used to define the objective function

𝐹(�̂�, �̂�) = ∥𝑟d∥2
body


�̃�+;sc

1




2

body

+ ∥𝒓o∥2
body


�̂��̃�b



2

body

(3.12)

and the goal is to find a contrast function and contrast source that minimizes this
objective function. We note that including the 2-norm of the object residual in the
objective function (second term on the right-hand side of Equation (3.12)) is crucial to
the success of CSI, since it has been shown that a contrast source inversion approach
without this term produces unsatisfactory results in general [25].

In CSI-EPT, finding the desired contrast function is now realized by minimizing the
objective function in a “fix-one-minimize-for-the-other” (alternating direction method)
approach. The iterative process is continued until a predefined maximum number
of iterations or specified tolerance level of the objective function has been reached.
Specifically, the basic CSI-EPT algorithm is as shown in Algorithm 2. Polak-Ribière
update directions are usually taken for the update direction 𝒗[𝑘] in Step 1 of the al-
gorithm, but Fletcher-Reeves or Hesteness-Stiefel update directions may be used
as well. To determine these update directions, the gradient of the cost function
𝐹(�̂�[𝑘−1] , �̂�) with respect to �̂� at �̂� = �̂�[𝑘−1] is required. Explicit expressions for this
gradient and the corresponding step length 𝛼[𝑘] can be found in [24], for example.

Also, note that with Equation (3.6), the object residual can be written as 𝒓o =
�̂��̂� − �̂� and in Steps 2 and 3 we find the minimum-norm contrast function �̂� for
which ∥𝒓o∥2

body is minimized. This contrast function is generally sensitive to small
perturbations in �̂� at locations where the magnitude of the electric field strength is
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Algorithm 2 contrast source inversion — EPT (CSI-EPT).

• Given initial guesses �̂�[0] and �̂�[0] for the contrast function and contrast source,
respectively

• For 𝑘 = 1, 2, . . .

1. Fix the contrast to �̂�[𝑘−1] and update the contrast source according to the
update formula

�̂�[𝑘] = �̂�[𝑘−1] + 𝛼[𝑘]𝒗[𝑘].

2. Compute the corresponding electric field strength �̂�
[𝑘] according to (cf.

Equation (3.6))
�̂�
[𝑘](𝒙) = �̃�

b(𝒙) + 𝒢body{�̂�[𝑘]}(𝒙).
3. Knowing the contrast source �̂�[𝑘] and the corresponding electric field

strength �̂�
[𝑘], determine the contrast function �̂�[𝑘] from the constitutive rela-

tion �̂�[𝑘] = �̂�[𝑘]�̂�[𝑘] by solving the least-squares problem



�̂��̂�[𝑘] − �̂�[𝑘]




2

body
for the minimum norm contrast function �̂�.

4. Stop if objective function is smaller than user specified tolerance level, or
if maximum number of iterations has been reached.

• End

“small.” To suppress this effect, we can update the contrast function at every iteration
according to the update formula

�̂�[𝑘] = �̂�[𝑘−1] + 𝛽[𝑘]𝑢[𝑘] , (3.13)

with 𝑢[𝑘] the Polak-Ribière update direction for the contrast function and 𝛽[𝑘] its corre-
sponding update coefficient. Such an approach usually has a regularizing effect and
typically leads to smoother reconstructions.

3.2.1. The Object and Data Operators for Three-Dimensional CSI-
EPT

In three dimensions and with air as a background medium, the integral representa-
tions for the scattered fields as given by Equation (3.2) take on the form

�̃�
sc(𝒙) = j 𝜔

𝑐2
0
∇ × �̃�

sc(𝒙) and �̃�
sc(𝒙) = (𝑘2

0 + ∇∇·)�̃�sc(𝒙), (3.14)
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where 𝑐0 is the electromagnetic wave speed in vacuum, 𝑘0 = 𝜔/𝑐0 the wave number
in vacuum, and �̃�

sc is the vector potential given by

�̃�
sc(𝒙) =

∫
𝒙′∈𝔻body

�̃�(𝒙 − 𝒙′)�̃�(𝒙′)d𝑉, (3.15)

with �̃� the three-dimensional Green’s function of the vacuum background domain
given by

�̃�(𝒙) = exp(−j𝑘0 |𝒙 |)
4𝜋 |𝒙 | . (3.16)

Note that the nabla-operators act on the position vector 𝒙 and not on the integration
variable 𝒙′. The 3-D object operator 𝒢body can be easily identified from the second
equation in (3.14). For the data operator 𝒢data, however, we have to substitute the 𝑥-
and 𝑦-components of the scattered magnetic flux density in Equation (3.4) to obtain

�̃�+;sc
1 =

𝜔

𝑐2
0

(
𝜕+�̃�sc

𝑧 − 𝜕𝑧�̃�+;sc
)
, (3.17)

where 𝜕+ = 1
2 (𝜕𝑥 + j𝜕𝑦) and �̃�+;sc = 1

2 (�̃�sc
𝑥 + j�̃�+;sc

𝑦 ). From the above expression
for the scattered �̃�+

1 -field, the 3-D data operator 𝒢data can be identified. Note the
particular structure of this operator: the scattered �̃�+

1 -field originates from a difference
between the transverse variations of the longitudinal vector potential (𝜕+�̃�sc

𝑧 ) and the
longitudinal variations of the transverse vector potential (𝜕𝑧�̃�+;sc).

3.2.2. The Object and Data Operators for Two-Dimensional CSI-
EPT

In various papers (see [26], for example) it has been reported that the radio frequency
(RF) field in the midplane of a birdcage coil is essentially E-polarized, meaning that
the electric field strength has a longitudinal component only (�̃� = �̃�𝑧𝚤 𝑧), while the
magnetic flux density has only 𝑥- and 𝑦-components (�̃� = �̃�𝑥𝚤 𝑥 + �̃�𝑦𝚤 𝑦). Additionally,
in a two-dimensional configuration that is invariant in the 𝑧-direction, external elec-
tric current densities with longitudinal components only generate E-polarized fields.
Identifying the currents in the rungs of the birdcage coil with these 𝑧-directed exter-
nal current sources and denoting the slice through the object that coincides with the
midplane of the birdcage coil by 𝕊body, it makes sense to assume that within this
midplane the RF field is essentially two-dimensional and E-polarized with integral
representations for the scattered fields given by

�̃�
sc(𝝆) = j 𝜔

𝑐2
0
∇T × �̃�

sc(𝝆), and �̃�
sc(𝝆) = 𝑘2

0�̃�
sc(𝝆), (3.18)

where 𝝆 is the position vector in the midplane of the birdcage coil, ∇T = 𝚤 𝑥𝜕𝑥 + 𝚤 𝑦𝜕𝑦
is the transverse nabla-operator, and

�̃�
sc(𝝆) =

∫
𝝆′∈𝕊body

�̃�(𝝆 − 𝝆′)�̃�(𝝆′)d𝑆 (3.19)
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is the vector potential in two dimensions (and is therefore expressed as a two-dimen-
sional integral as opposed to the three-dimensional integral in the 3-D case) with

�̃�(𝝆) = − j
4𝐻

(2)
0 (𝑘0

��𝝆��) (3.20)

the Green’s function of the two-dimensional homogeneous background medium (air)
and 𝐻(2)

0 is the Hankel function of the second kind and order zero. In this two-
dimensional case, the object operator 𝒢body can be easily identified from the sec-
ond equation of (3.18) and does not contain a gradient-divergence operator as in the
three-dimensional case. For the 2-D data operator 𝒢data, we have to substitute the
𝑥- and 𝑦-components of the magnetic flux density as given by the first equation of
(3.18) in the definition of the �̃�+

1 -field to obtain

�̃�+;sc
1 =

𝜔

𝑐2
0
𝜕+�̃�sc

𝑧 . (3.21)

From this expression, the 2-D data operator 𝒢data can now easily be identified. Com-
paring the two-dimensional field representation of Equation (3.21) with their three-
dimensional counterpart of Equation (3.17), we observe that longitudinal spatial vari-
ations are absent in the two-dimensional case. Moreover, the vector potentials in
both expressions are different as well, since this quantity is computed using Equa-
tion (3.19) in the two-dimensional case, while the three-dimensional vector potential
is given by Equation (3.15). The differences between two- and three-dimensional
CSI-EPT reconstructions will be discussed in more depth in Section 3.3.

3.2.3. Two-Dimensional CSI-EPT Simplified–First-Order Induced
Current EPT (foIC-EPT)

In two dimensions, the CSI-EPT algorithm can be simplified by exploiting the partic-
ular structure of E-polarized RF fields. To make this simplification explicit, we first
introduce the differentiation operator 𝜕− = 1

2 (𝜕𝑥 − j𝜕𝑦) and note that the operators 𝜕−
and 𝜕+ essentially factor the two-dimensional Laplacian Δ = 𝜕2

𝑥 + 𝜕2
𝑦 as

Δ = 4𝜕−𝜕+ = 4𝜕+𝜕−. (3.22)

Now as a first step, we substitute the second equation of ((3.18)) in Equation (3.21)
to obtain

�̃�+;sc
1 (𝝆) = 1

𝜔
𝜕+�̃�sc

𝑧 (𝝆). (3.23)

Subsequently, we use the definition of the scattered fields to write the above expres-
sion as

�̃�+
1 (𝝆) = �̃�+;b

1 (𝝆) + 1
𝜔
𝜕+�̃�𝑧(𝝆) − 1

𝜔
𝜕+�̃�b

𝑧 (𝝆) (3.24)

and since �̃�+;b
1 (𝝆) = 1

𝜔 𝜕
+�̃�b

𝑧 (𝝆), this simplifies to

�̃�+
1 (𝝆) =

1
𝜔
𝜕+�̃�𝑧(𝝆). (3.25)
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Algorithm 3 First-Order Induced Current EPT Algorithm (foIC-EPT).

• Given the measured �̃�+
1 -field in the midplane of the birdcage coil:

1. Determine the induced current density using Equation (3.28).
2. Determine the corresponding electric field strength by solving a specific

integral equation (Equation (2.12)).
3. Knowing the induced current density and the electric field strength, deter-

mine the conductivity and permittivity profiles using Equation (3.27).

If we now act with the 𝜕− operator on this equation, we obtain

𝜕−�̃�+
1 =

1
4𝜔Δ�̃�𝑧 (3.26)

and since �̃�𝑧 satisfies Δ�̃�𝑧 − j𝜔𝜇0𝐽 ind
𝑧 = 0 with

𝐽 ind
𝑧 = (𝜎 + j𝜔𝜀)�̃�𝑧 , (3.27)

we arrive at
𝐽 ind
𝑧 =

4
j𝜇0

𝜕−�̃�+
1 . (3.28)

This last equation shows that in two dimensions, the induced current density is ob-
tained (accounting for multiplication by 4/j𝜇0) by acting with the 𝜕− operator on the
total 𝐵+

1 -field. The simplified CSI-EPT method is therefore called a first-order induced
current EPT method, since a first-order differentiation of the 𝐵+

1 -field essentially im-
mediately results in an image of the induced current density.

As shown in [21], after the induced current density has been obtained, the corre-
sponding electric field strength can be computed by solving a specific integral equa-
tion defined on 𝕊body. With the electric field strength now known, the conductivity
and permittivity profiles within the slice can be obtained from Equation (3.27). The
overall first-order induced current density EPT algorithm can be summarized as pre-
sented in Algorithm 3. More details on this algorithm can be found in [21]. Finally, we
note that the above algorithm is a direct non-iterative EPT method and, as opposed to
CSI-EPT, requires the solution of a system of equations (Step 2) to arrive at the recon-
structed conductivity and permittivity profiles. Fortunately, as demonstrated in [21],
this system of equations can be solved efficiently using iterative solvers such as the
generalized minimal residual solver (GMRES) [30] and typically only a few iterations
are required to reach a prescribed error.

3.3. Methods and Results
To illustrate the performance of foIC-EPT and two- and three-dimensional CSI-EPT,
we reconstruct the conductivity and permittivity profiles of the head of the anatomical
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(a) (b) (c)

Figure 3.1: Birdcage coil and head models. The high-pass birdcage coil with the head model placed inside
(a), the Duke head model from the Virtual Family [28] (b), and a longitudinally uniform head model obtained
by repeating the center slice in the longitudinal direction (c).

human body model Duke from the Virtual Family [28] (see the Figures 3.1a and 3.1b),
from noise-free �̃�+

1 -data. The head model consists of 124× 100× 109 isotropic voxels
with side lengths of 2 mm. The model is placed inside an ideal high-pass birdcage
coil (see Figure 3.1a) consisting of 16 rungs each having a width of 25 mm. The
coil has a radius of 150 mm, is 195 mm long, and is driven in quadrature at 128 MHz,
which corresponds to the operating frequency of a 3 T magnetic resonance imaging
(MRI) system. The shield surrounding the coil has a radius of 180 mm and a length
of 200 mm. Commercial EM simulation software (XFdtd, v.7.5, Remcom State Col-
lege, PA, USA) is used to obtain the background field

{
�̃�

b
, �̃�

b
}

as generated by the
high-pass birdcage coil. Finally, to investigate the difference between two- and three-
dimensional conductivity and permittivity reconstructions, we also consider a longi-
tudinally uniform “head model” in which the center slice is simply repeated in the
longitudinal direction thereby creating a model with no variations in the longitudinal
𝑧-direction within the head (see Figure 3.1c).

3.3.1. Two-Dimensional CSI-EPT and foIC-EPT
The CSI-EPT method was originally implemented for two-dimensional configurations
in [14] to study its potential as an EPT reconstruction method and to test if the method
can handle strongly inhomogeneous tissue profiles. Let us therefore start with a
purely two-dimensional, noise free, reconstruction problem in which we attempt to re-
construct the conductivity and permittivity profiles within the center slice of the head
model shown in Figure 3.2a. In this two-dimensional setting, we take the background
field in the midplane of the realistic birdcage coil shown in Figure 3.1a as the 2-D back-
ground field. The reconstructed conductivity and permittivity profiles obtained after
5000 iterations of the two-dimensional CSI-EPT method are shown in Figure 3.2b.
It takes the algorithm approximately 86 seconds on an Intel i7–6700 CPU operat-
ing on Windows 7 with Matlab 2016a to arrive at these reconstructions, and we ter-
minate the algorithm after 5000 iterations, since the objective function has already
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Figure 3.2: Reconstruction results from 2-D reconstruction methods on noise free data. The true model
(a), the reconstruction obtained after 5000 iterations of 2-D CSI-EPT (b) and the reconstruction from foIC-
EPT (c). The respective errors are shown in (d, e). Top row shows the conductivity and the bottom row
the relative permittivity.

dropped below a 1.53 × 10−5 tolerance level at this point and essentially no signifi-
cant improvements are obtained. In addition, the foIC-EPT reconstruction profiles of
the conductivity and permittivity are shown in Figure 3.2c and the errors of CSI-EPT
and foIC-EPT conductivity and permittivity reconstructions are shown in Figures 3.2d
and 3.2e, respectively. We observe that the quality of the foIC-EPT reconstructions
is similar to CSI-EPT even though it takes foIC-EPT only a fraction of a second to
produce these reconstructions (see Table 3.1 for details).

3.3.2. Three-Dimensional CSI-EPT
In a two-dimensional approach, the RF field is an E-polarized field with an electric
field strength that is longitudinal (�̃� = �̃�𝑧𝚤 𝑧) and a magnetic flux density that is trans-
verse (�̃� = �̃�𝑥𝚤 𝑥 + �̃�𝑦𝚤 𝑦). Such an approach has been shown to be reasonable for
a homogeneous cylindrical phantom in a central region of a body coil consisting of
elementary center-fed dipole antennas in [26], and indeed, when the longitudinal uni-
form head model of Figure 3.1c is placed within our birdcage coil we also observe that
the 𝑥- and 𝑦- components of the electric field strength in the central transverse slice
are small compared to its 𝑧-component as illustrated in the top rows of Figures 3.3a-c
and Figures 3.4a-b.

However, as we move away from the center slice in the longitudinally uniform head
model of Figure 3.1c, the magnitude of the 𝑥- and 𝑦-components of the electric field
strength starts to increase as illustrated in the top rows of Figures 3.3d-f and Fig-
ures 3.4c-d, where the magnitude of the electric field strength components is shown
in a slice located 5 cm above the central slice. We observe that even though the
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Table 3.1: The mean and standard deviation of the reconstructed electrical properties in the different
tissues that are apparent in the center slice of the head models using 2-D CSI-EPT and foIC-EPT in a two-
dimensional setting. Units of 𝜎 and 𝜀r are in siemens per meter and permittivity of free space, respectively.

Conductivity (𝜎)

True 2-D CSI-EPT foIC-EPT

Fat 0.07 0.13±0.10 0.18±0.10
Red marrow 0.16 0.11±0.06 0.15±0.03
Bone 0.07 0.14±0.15 0.21±0.14
Eye lens 0.31 0.54±0.11 0.78±0.09
Nerve 0.35 0.74±0.30 0.77±0.26
Connective tissue 0.50 0.47±0.12 0.44±0.13
White matter 0.34 0.36±0.04 0.38±0.04
Muscle 0.72 0.63±0.11 0.55±0.13
Eye sclera 0.92 0.89±0.15 0.87±0.13
Skin 0.52 0.48±0.08 0.36±0.09
Hypothalamus 0.80 0.88±0.11 0.91±0.11
Eye vitreous humor 1.51 1.46±0.13 1.40±0.15
Cornea 1.06 0.92±0.13 0.83±0.11
Gray matter 0.59 0.61±0.15 0.63±0.15
Midbrain 0.83 0.84±0.17 0.88±0.18
Cerebrospinal fluid 2.14 1.90±0.29 1.75±0.29
Mucosa 2.28 1.50±0.03 1.01±0.02

Relative permittivity (𝜀r)

Fat 12.37 17.23±7.89 19.27±7.15
Red marrow 13.54 11.08±2.52 13.68±1.47
Bone 14.72 19.09±8.05 21.73±6.90
Eye lens 42.79 48.86±5.26 51.52±1.44
Nerve 44.07 51.49±8.74 47.33±7.42
Connective tissue 51.86 46.48±7.56 40.54±7.06
White matter 52.53 54.33±3.12 55.37±3.54
Muscle 63.49 56.76±7.28 48.30±8.72
Eye sclera 65.00 56.78±6.67 50.26±5.95
Skin 65.44 59.00±8.95 42.29±8.55
Hypothalamus 66.78 59.48±4.91 54.12±4.20
Eye vitreous humor 69.06 66.19±4.86 61.03±4.95
Cornea 71.46 61.52±9.32 52.81±5.84
Gray matter 73.52 72.68±4.18 70.54±4.92
Midbrain 79.74 78.58±10.24 81.93±12.33
Cerebrospinal fluid 84.04 80.66±8.57 76.46±11.31
Mucosa 116.00 78.07±5.17 53.83±2.77
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Figure 3.3: The magnitude of the electric field strength components. The 𝑥-, 𝑦- and 𝑧-component at the
transversal midplane (a-c) and at the slice 5 cm higher (d-f), respectively. The top and bottom row show
the fields in the case of a longitudinal homogeneous and heterogeneous object, respectively.

transverse components of the electric field strength are negligible within the center
slice, they can no longer be neglected 5 cm away from it.

Furthermore, for the realistic heterogeneous head model of Figure 3.1b a two-
dimensional E-polarized field assumption completely fails as shown in the bottom
rows of Figures 3.3a-f and 3.4a-d. In the slice 5 cm above the central slice and even
within the central slice itself the 𝑥- and 𝑦-components of the electric field strength
can no longer be neglected and have to be taken into account in the full Maxwell
equations to properly describe RF field behavior within the head model.

To study the effects of longitudinal spatial variations of the tissue parameters on
the �̃�+

1 -field, we consider Equation (3.17) again and write it in the form

�̃�+;sc
1 = ℬtra + ℬlon , (3.29)

where ℬtra = (𝜔/𝑐2
0)𝜕+�̃�sc

𝑧 and ℬlon = −(𝜔/𝑐2
0)𝜕𝑧�̃�+;sc. The longitudinal variation

term ℬ lon is absent in a 2-D approach (see Equation (3.21)), since in a 2-D setting
the configuration is assumed to be invariant in the longitudinal 𝑧-direction (𝜕𝑧 = 0).
Figure 3.5, however, shows that for both the longitudinally homogeneous and realistic
heterogeneous head model the longitudinal variation term is significant and cannot be
ignored. Especially near the periphery of both head models, ℬlon contributes to the
scattered �̃�+

1 -field. More specifically, within a 1 cm outer boundary layer located in the
center slice, the mean of the fraction

��ℬlon/�̃�+;sc
1

�� is 1.18 and 1.25 for the homogeneous
and inhomogeneous head model, respectively, while in the inner region these means
are 0.51 and 0.60 and similar averages are obtained for the slice located 5 cm above
the center slice. From these observations, it is clear that longitudinal variations of the
transverse vector potential �̃�+;sc contribute to the scattered �̃�+

1 -field and cannot be
ignored.
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H
et

er
og

en
eo

us

(a) (b) (c) (d)

0

0.5

1

1.5

Figure 3.4: Ratios of the 𝑥- and 𝑦-components of the electric field strength relative to its 𝑧-component.
The relative field components at the center slice (a,b) and at the slice 5 cm higher (c,d). The top row is for
the longitudinally uniform object, the bottom row for the object with longitudinal variations.

H
om

og
en

eo
us

Center︷ ︸︸ ︷
|Btra| |Blon| |Blon/B̂+;sc

1 |

+5 cm︷ ︸︸ ︷
|Btra| |Blon| |Blon/B̂+;sc

1 |

H
et

er
og

en
eo

us

0 0.5 1
·10−5 [T]

(a)

0 0.5 1
·10−5 [T]

(b)

0 0.5 1 1.5

(c)

0 0.5 1
·10−5 [T]

(d)

0 0.5 1
·10−5 [T]

(e)

0 0.5 1 1.5

(f)
+;sc
1

Figure 3.5: Magnitude of the scattered �̃�+1 terms. The transverse variation (a) and longitudinal variation
term of the scattered �̃�+1 (b) and the contributions of ℬlon w.r.t. �̃�+;sc

1 (c) at the center slice. (d-f) show
respectively the same at a slice 5 cm higher in the head domain. Top row shows in the case of a longi-
tudinally uniform object, the bottom row for the head model with longitudinal variations. (b) and (e) are
neglected in the 2-D approach.
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Up to this point, we have compared 3-D RF field structures with their 2-D coun-
terparts for a longitudinally uniform and a realistic heterogeneous head model. In
a two-dimensional configuration, however, the sources are invariant in the longitudi-
nal direction as well, and we expect that due to the finite extent of the birdcage coil
additional deviations in the �̃�+

1 fields will be observed.
To investigate this issue further, we first determine the two-dimensional �̃�+

1 -field
in the central slice as described in Section 3.3.1. The magnitude and phase of this
field are shown in the top and bottom row of Figure 3.6a, respectively. Subsequently,
we consider RF excitation by the 3-D birdcage coil, but assume that the birdcage coil,
including its currents, does not vary in the longitudinal direction. For the longitudi-
nally uniform head model, a �̃�+

1 -field as shown in Figure 3.6b is then obtained, and
we observe that this field strongly resembles the 2-D �̃�+

1 -field pattern of Figure 3.6a.
Replacing the longitudinal invariant currents in the rungs by the exact current, but
keeping the homogeneous head model, we obtain the �̃�+

1 -field pattern shown in Fig-
ure 3.6c. The agreement with the 2-D field �̃�+

1 -field pattern clearly deteriorates and
this correspondence becomes even worse for the realistic longitudinal heterogeneous
head model as shown in Figure 3.6d. Since the �̃�+

1 -field is used as an input for the
CSI-EPT method, an accurate correspondence is obviously necessary for a proper
reconstruction. The 2-D CSI-EPT algorithm expects a 2-D �̃�+

1 -field as shown in Fig-
ure 3.6a for the center head slice, but in 3-D the �̃�+

1 -field from Figure 3.6d is present
and providing this 3-D field as an input to a 2-D CSI-EPT algorithm will lead to inac-
curate reconstructions in general.
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Figure 3.6: �̃�+1 field comparison. The total �̃�+1 field assumed in the 2-D setting (a), the total �̃�+1 field obtained
in a 3-D setting with longitudinal homogeneity of the object and coil (b), of longitudinal homogeneity of only
the object (c) and with longitudinal variations of also the object (d). Top row shows the �̃�+1 magnitude, the
bottom row the �̃�+1 phase.
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Figure 3.7: Reconstruction results from 2-D reconstruction methods using parts of 3-D �̃�+1 data. True
model (a), reconstruction results assuming 2-D phase with 3-D magnitude (b,c), and reconstruction re-
sults assuming 2-D magnitude with 3-D phase (d,e) of the �̃�+1 -field in the central transverse slice from
simulations with the longitudinal invariant head model. Top row shows the conductivity and the bottom row
the relative permittivity.

To illustrate how these differences in actual fields (3-D) and expected fields (2-D)
translate to reconstruction errors, both two-dimensional algorithms have been applied
to quasi three-dimensional data using either 3-D amplitudes or phases. Note that, in
order to match 2-D and 3-D data, the maximum absolute value of the �̃�+

1 -field of
both datasets is taken to be equal. The results are depicted in Figure 3.7b-e from
which it can be observed that particularly the permittivity is sensitive to 2-D violations.
This reconstruction difference between conductivity and permittivity is due to the fact
that conduction currents (𝜎�̂�) influence the �̃�+

1 -field to a much larger extent than the
displacement currents (j𝜔𝜀�̂�) at 3 T.

The reconstructions of the conductivity and relative permittivity profiles for the full
3-D case without any further assumptions, using 3-D magnitude as well as 3-D phase
�̃�+

1 data are shown for the longitudinally uniform model in Figures 3.8a-f and for the
realistic heterogeneous head model in Figure 3.8g-l. Reconstructions are shown for
the central slice profiles as well as for the profiles located within the slice positioned
5 cm above the central slice. For comparison, 2-D CSI-EPT reconstructions based
on 3-D �̃�+

1 data are also presented. The relative residual error (norm of the difference
between the exact and reconstructed profile normalized by the norm of the exact pro-
file, where the norm is taken over the center slice) of Figure 3.8h is 0.7339 and
0.8263 for the conductivity and permittivity, respectively, while the relative residual
error of the conductivity and permittivity of Figure 3.8i is 0.3358 and 0.1587, respec-
tively. Clearly, 2-D CSI-EPT is unable to accurately reconstruct the conductivity and
permittivity profiles. The 2-D and 3-D permittivity reconstructions are also less ac-
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Figure 3.8: Reconstruction comparison of 2-D and 3-D CSI-EPT on 3-D �̃�+1 fields after 5000 and 50000
iterations, respectively. (a-c) show the true object, the reconstruction with 2-D CSI-EPT and the recon-
struction with 3-D CSI-EPT for a homogeneous object and for the center slice. (d-f) show respectively the
same, but for a slice five centimeter higher. (g-l) show respectively the same as (a-f), but in the case of a
longitudinal inhomogeneous object. The top row depicts the conductivity, the bottom row the permittivity.
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Figure 3.9: Three-dimensional visualization of a section of the 3-D CSI-EPT reconstruction of the hetero-
geneous Duke head model (Figure 3.1b) after 50000 iterations. The true and reconstructed conductivity
(a,b) and the true and reconstructed relative permittivity (c, d). The top slice that is visible is the slice 5 cm
above the transverse midplane.

curate than the conductivity reconstructions, indicating that �̃�+
1 -field data acquired at

3 T is less sensitive to permittivity variations.
Finally, to emphasize that 3-D CSI-EPT is a fully three-dimensional volumetric

reconstruction method, we present a full 3-D CSI-EPT reconstruction of the realistic
head model obtained after 50000 iterations based on 3-D �̃�+

1 data, in Figure 3.9. This
number of iterations was chosen due to time constraints, since it takes approximately
110 hours on an Intel i7–6700 CPU operating on Windows 7 with Matlab 2016a.

3.4. Discussion
We have investigated the performance of two- and three-dimensional CSI-EPT in
reconstructing dielectric tissue profiles based on �̃�+

1 data collected inside the recon-
struction slice or domain of interest. Since this data has its support inside the recon-
struction domain, EPT belongs to the class of so-called hybrid inverse problems [8].
In CSI-EPT, reconstructing the tissue parameters is posed as an optimization prob-
lem in which an internal objective function, that is an objective function that measures
both field and model discrepancies within the domain of interest, is minimized in an it-
erative manner. Field discrepancies are measured by considering the 𝐿2-norm of the
difference between modeled and measured data, while model discrepancies are mea-
sured by an 𝐿2-norm that tells us how well a conductivity and permittivity tissue profile
and corresponding contrast source satisfy Maxwell’s equations. Including model dis-
crepancies in the objective function is crucial to the performance of CSI-EPT, since it
has been shown that without this term unsatisfactory reconstruction results may be
obtained [25]. In addition to the tissue profiles, CSI-EPT reconstructs the electric field
strength as well, and may therefore also be used to predict the SAR that is induced
inside the body or a body part of interest [31], which is important for MR safety and
hyperthermia treatment planning, for example. Finally, we have also shown that in
two dimensions an alternative non-iterative and integral-based reconstruction algo-
rithm called foIC-EPT may be employed. This method is significantly faster than 2-D
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and 3-D CSI-EPT and reconstructs the tissue profiles and the corresponding electric
field strength essentially in real-time on a present day standard laptop or PC (Intel
i5-i7 or similar). However, foIC-EPT is restricted to two-dimensional configurations,
since it exploits two-dimensional E-polarized field structures. CSI-EPT, on the other
hand, does not exploit any particular field structure and can be extended to the vec-
torial three-dimensional case turning CSI-EPT into a volumetric EPT reconstruction
method.

We have carried out several comparisons between reconstructions obtained with
2-D CSI-EPT, foIC-EPT, and 3-D CSI-EPT. Our simulations show that care needs to
be exercised when a 2-D reconstruction approach is followed, otherwise reconstruc-
tion artifacts are obtained in the reconstructed dielectric tissue profiles. Specifically,
we have shown that using 2-D methods erroneous reconstructions may be obtained,
since the longitudinal variations of the transverse vector potential are completely ig-
nored in the data model for the �̃�+

1 field. Moreover, the vector potential itself is com-
puted differently in 2-D and 3-D, since longitudinal invariance is assumed in the 2-D
case. In fact, the transverse electric field and the longitudinal magnetic field van-
ish in 2-D as a consequence of the (assumed) invariance of the object and external
sources along the longitudinal direction. In 3-D, however, all components of the elec-
tromagnetic field are present and their contributions to the measured data and object
equations have to be taken into account. Of course, in some situations an E-polarized
field structure may be present in the midplane of a birdcage coil, but the scattered
�̃�+

1 -field is also influenced by longitudinal variations of the transverse vector potential
(𝜕𝑧�̃�𝑧). These equations can only be simplified to 2-D if we can guarantee that longi-
tudinal invariance or smoothness of certain field components can be imposed before
any reconstruction algorithm is applied to the measured data. Therefore, cylindrical
body parts such as the legs or arms might be reliably reconstructed via 2-D CSI-EPT,
but this at least requires further validation through simulations and measurements
using cylindrical phantom models with known dielectric characteristics.

No assumptions on the fields are imposed in 3-D CSI-EPT and reconstruction
errors due to such assumptions are therefore avoided. Moreover, 3-D CSI-EPT is
a volumetric reconstruction method and is not restricted to a specific plane within
the configuration. Reliable reconstructions can be obtained within any desired do-
main of interest provided that �̃�+

1 data is available within this domain. Unfortunately,
computation times significantly increase when applying 3-D CSI-EPT. Depending
on the number of unknowns in the EPT reconstruction problem, 3-D CSI-EPT may
take many iterations to converge to the desired error tolerance, with total computation
times of hours or days even on dedicated computers or servers. In future research,
we focus on accelerating the convergence rate of 3-D CSI-EPT by including precon-
ditioning techniques in CSI-EPT (as described in [24], for example) that exploit all
a priori knowledge we have about the object or body part that needs to be recon-
structed. This knowledge can also be used to construct an accurate initial guess
thereby possibly further accelerating CSI-EPT.

In our experiments, we have used simulated �̃�+
1 -field data to test the performance

of 2-D and 3-D CSI-EPT on strongly inhomogeneous structures and to study the
differences between two- and three-dimensional CSI-EPT approaches. In real-world
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measurements, the data obviously differs from simulated data and CSI-EPT should
be adapted so that it can handle measured �̃�+

1 data. In this respect, we have identified
three practical issues that need to be addressed, which are part of our current CSI-
EPT research.

First, in practice the �̃�+
1 -field is obtained in polar form through separate amplitude

and phase measurements. In both cases, the collected data is contaminated with
noise and therefore filtering or regularization techniques that suppress the effects
noise should be incorporated in CSI-EPT. Initial studies show that filtering of the data
allows us to handle measured data in foIC-EPT [21] and, as demonstrated in [14],
total variation (TV) regularization may suppress noise effects in CSI-EPT. However,
due to the many possible choices for the regularization parameter in this method, it is
presently not clear for which parameter or parameter range the TV-CSI-EPT scheme
is most effective.

Second, the phase that is measured in practice is not the phase of the �̃�+
1 -field,

but the so-called transceive phase from which the �̃�+
1 -phase can be extracted. To

this end, the transceive phase approximation is often applied, but the validity of this
approximation is not fully understood and may lead to reconstruction errors in the con-
ductivity and permittivity profiles [29]. Fortunately, it is shown in [32] that improved
�̃�+

1 -phase approximations can be obtained from the transceive phase by incorporat-
ing an iterative phase correction scheme in the CSI-EPT reconstruction algorithm.
This correction scheme seems to reliably retrieve �̃�+

1 -phase maps from the measured
transceive phase and leads to improved conductivity and permittivity reconstructions
compared with reconstructions that are obtained when the transceive phase approxi-
mation is applied. We will include this phase correction mechanism in future CSI-EPT
implementations as well. Another option is to opt for phaseless approaches as, for
example, proposed in [33, 34].

Finally, in practice the current densities in the transmit coil that generate the inci-
dent field depend on the object present, and we must account for this loading effect as
well. Specifically, the integral representations for the fields in CSI-EPT are obtained
using a scattered field formalism, in which it is assumed that the current density in
the transmitting antenna is impressed and independent of the scatterer that may be
present in the configuration. In practice, however, these currents do depend on the
object and consequently care must be taken when we compute the background field
in CSI-EPT. One approach is therefore to simulate this loading effect using a suitable
coil and appropriate simulated body model in a commercial field solver and to extract
the current densities in the coil from this solver. The background field in CSI-EPT
(the field without any load) can then computed using these extracted currents. In this
way, the loading effect encountered in practice can be incorporated in our CSI-EPT
reconstruction algorithm.

Our final aim is, of course, to turn CSI-EPT into a practical reconstruction method
to obtain accurate and reliable conductivity and permittivity tissue maps of an interior
part of the human body at MR frequencies of operation. Reconstruction results based
on simulated data are very promising, and we think that by addressing the practical
issues discussed above, we will indeed make significant progress towards a reliable
EPT reconstruction method that provides us with accurate dielectric tissue maps.
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4.1. Introduction
Gradient coils are an integral part of magnetic resonance imaging (MRI) systems.
Ideally, such coils produce linear magnetic fields that are used to spatially encode
an object or body part: linearity allows simple image reconstruction via an inverse 2-
or 3-dimensional Fourier transformation [1]. Numerous methods for the design and
optimisation of gradient coils have been proposed over the years (e.g. [2, 3]), but most
of these approaches are for conventional MRI scanners with the static magnetic field
(𝐵0) aligned axially along the bore of the system.

Interest in MRI for a low-resource setting is increasing [4]. Conventional MRI
hardware cannot be used under such circumstances, since it is expensive and gen-
erally difficult to maintain. Superconducting magnets, for example, are financially
out of reach, and high power and fast switching requirements for gradient and ra-
diofrequency hardware simply cannot be met. Moreover, conventional scanners are
typically immobile and therefore cannot be easily transported to different locations.

To address the difficulties that are encountered in a low-resource setting, new MR
systems are being proposed such as MR scanners based on resistive magnets [5, 6]
or systems that utilize a Halbach permanent magnet array [7, 8]. For a resistive
magnet, gradient coil design runs along similar lines as for conventional MRI systems,
albeit typically for smaller bore sizes and lower power requirements. In contrast, for a
Halbach array the background magnetic field is transverse to the bore as opposed to
along the bore, and this provides additional challenges for the design of the gradient
coils [9]. In a previous publication we described a 27 cm clear bore Halbach array
designed ultimately for pediatric neuroimaging, operating at 2.15 MHz [7]. For this
system simple non-optimized gradient coils were constructed, but the linear range
was quite limited.

In this paper, the target field method, as originally proposed by Turner [10], is ap-
plied to design transverse oriented gradient fields. Specifically, a transverse gradient
field is prescribed on an inner cylinder that is concentric to the Halbach array and the
target field method is applied to find surface current densities on an outer cylinder that
generate magnetic fields, which approximate this prescribed target field. Since this is
an inverse source problem, regularization is required to obtain physically acceptable
surface current densities. To this end, we follow the standard target field method and
include regularization through apodisation using a parametric spectral-domain Gaus-
sian filter. By following this approach, 𝑥-, 𝑦-, and 𝑧- gradient coils are designed and
realized. Furthermore, field simulations and measurements of these are presented,
to show that the produced gradients are in good agreement with simulation, thereby
verifying that the modified target field method can indeed be used to realize gradient
coils in case the background field is transverse to the axis of the bore of a Halbach
MR scanner. Finally, the gradient coils are incorporated in an experimental low-field
Halbach MR scanner [7] thereby enabling us to use Fourier imaging techniques to ac-
quire three-dimensional low-field MR images. Initial imaging results that are obtained
with this scanner are presented as well.
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Figure 4.1: Geometry and coordinate system for the target field method. The outer cylinder with radius 𝑎
supports a surface current 𝑱 and the 𝑥-component of the magnetic field is prescribed on the inner cylinder
with radius 𝑏 < 𝑎. Both cylinders are of infinite length in the 𝑧-direction.

4.2. Target Field Method
To design gradient coils for a Halbach scanner with a transverse 𝐵0 field, consider
the cylindrical configuration illustrated in Figure 4.1 consisting of two cylinders that
extend to infinity in the positive and negative 𝑧-direction. The outer cylinder has a
radius 𝑎 and the domains inside (𝑟 < 𝑎) and outside (𝑟 > 𝑎) the cylinder are filled with
air. This cylinder supports a surface current density denoted by 𝑱 and our objective
is to find a surface current that approximates a prescribed magnetic field 𝑩 on the
inner cylinder with radius 𝑏. Given the cylindrical structure of our configuration, we
will mainly work in cylindrical coordinates.

As a first step, we specify the target fields. Specifically, for a background field
aligned in the 𝑥-direction, one of the following three linear 𝑥-directed gradient fields
must be designed

𝐵𝑥(𝑏, 𝜙, 𝑧) =

Γtr(𝑧)𝑏 cos(𝜙)𝑔𝑥
Γtr(𝑧)𝑏 sin(𝜙)𝑔𝑦
Γln(𝑧)𝑔𝑧 .

(4.1)

These are prescribed on an inner cylinder with fixed radius 𝑏 < 𝑎 to derive surface
currents (and ultimately the position of surface copper wires) that generate fields
which approximate these given target fields. In the above expressions, 𝑔𝑥,𝑦,𝑧 > 0 are
constants and Γtr(𝑧) and Γln(𝑧) are the transverse (tr) and longitudinal (ln) gradient
shape functions given by

Γtr(𝑧) = 1
1 + ( 𝑧

𝑑

)𝑛 and Γln(𝑧) = 𝑧

1 + ( 𝑧
𝑑

)𝑛 , (4.2)

respectively, where 𝑑 and 𝑛 (𝑛 being an even integer) are tuning parameters that
determine the length and decay rate of the gradient field in the 𝑧-direction. Note that
Γtr(𝑧) is an even function of 𝑧, while Γln(𝑧) is an odd function of 𝑧. Figure 4.2 illustrates
the two gradient shape functions as a function of 𝑧/𝑑 for various choices of the order
𝑛. These functions are chosen since they are also used in the original target field
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Figure 4.2: The gradient shape functions Γtr (left) and Γln (right) as a function of 𝑧/𝑑 for different values
of the order 𝑛 of the gradient profile functions.

method, and have closed form expressions for their transforms, other shapes are of
course also possible.

To find a surface current density that approximately produces the prescribed target
fields, we apply a two-dimensional Fourier transformation with respect to the spatial
coordinate 𝑧 and the angle 𝜙. For a generic field quantity Ψ(𝑟, 𝜙, 𝑧) this Fourier
transformation is given by

Ψ̃[𝑚](𝑟, 𝑘) =
∞∫

𝑧=−∞

𝜋∫
𝜙=−𝜋

Ψ(𝑟, 𝜙, 𝑧)𝑒−j𝑚𝜙𝑒−j𝑘𝑧 d𝜙 d𝑧 (4.3)

and the corresponding inverse Fourier transformation is

Ψ(𝑟, 𝜙, 𝑧) = 1
4𝜋2

∞∫
𝑘=−∞

∞∑
𝑚=−∞

Ψ̃[𝑚](𝑟, 𝑘)𝑒 j𝑚𝜙𝑒 j𝑘𝑧 d𝑘. (4.4)

In Appendix A.1 it is shown that the Fourier transform of the target field 𝐵𝑥(𝑏, 𝜙, 𝑧) is
related to the Fourier transform of the 𝜙-component of the surface current by

�̃�[𝑚]
𝑥 (𝑏, 𝑘) = j

2
[
�̃�[𝑚−1](𝑏, 𝑘) − �̃�[𝑚−1](𝑏, 𝑘)] 𝐽[𝑚−1]

𝜙 (𝑘)

+ j
2
[
�̃�[𝑚+1](𝑏, 𝑘) + �̃�[𝑚+1](𝑏, 𝑘)] 𝐽[𝑚+1]

𝜙 (𝑘),
(4.5)

where �̃�[𝑚](𝑏, 𝑘) and �̃�[𝑚](𝑏, 𝑘) are given by

�̃�[𝑚](𝑏, 𝑘) = 𝑎𝜇0𝑘𝐼′𝑚(|𝑘 | 𝑏)𝐾′
𝑚(|𝑘 | 𝑎), (4.6)

and

�̃�[𝑚](𝑏, 𝑘) = 𝑚
𝑎𝜇0

𝑏
|𝑘 |
𝑘
𝐼𝑚(|𝑘 | 𝑏)𝐾′

𝑚(|𝑘 | 𝑎), (4.7)
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with 𝜇0 the permeability of vacuum, and 𝐼𝑚 and 𝐾𝑚 modified Bessel functions of
the first and second kind, respectively, and the prime indicates differentiation with
respect to the argument of the Bessel functions. Note that �̃�[−𝑚](𝑏, 𝑘) = �̃�[𝑚](𝑏, 𝑘)
and �̃�[−𝑚](𝑏, 𝑘) = −�̃�[𝑚](𝑏, 𝑘) for 𝑚 ∈ ℤ.

Since the target fields are known, Equation (4.5) can be formally solved for the
𝜙-component of a spectral surface current density. However, similar to the standard
target field method, such a current becomes unbounded as |𝑘 | → ∞, which is not
surprising, since we are attempting to directly solve an (ill-posed) inverse source
problem. Therefore, regularization is applied in the form of a so-called apodisation
function �̃�(𝑘), which serves as a low-pass filter that prevents exponential growth of
the spectral domain current densities. Usually, the Gaussian function �̃�(𝑘) = 𝑒−2(𝑘ℎ)2

is used for apodisation (with ℎ a regularization parameter) and we use this Gaussian
in our approach as well.

Having found a solution to Equation (4.5) and filtering out high spatial frequencies
through multiplication by �̃�(𝑘), the 𝜙-component of the surface current is obtained
by substituting the filtered spectral solution into the inverse Fourier transformation.
Denoting the resulting spatial currents by 𝐽𝑥𝜙, 𝐽𝑦𝜙, and 𝐽𝑧𝜙 for the 𝜙-component of the
surface current in the case of an 𝑥-, 𝑦-, or 𝑧-gradient target field, we obtain the surface
current densities

𝐽𝑥𝜙(𝜙, 𝑧) = −j𝑏
𝑔𝑥
𝜋

cos(2𝜙)
∞∫

𝑘=−∞

Γ̃tr(𝑘)�̃�(𝑘)
�̃�[2] + �̃�[2] 𝑒

j𝑘𝑧d𝑘, (4.8)

𝐽𝑦𝜙(𝜙, 𝑧) = −j𝑏
𝑔𝑦
𝜋

sin(2𝜙)
∞∫

𝑘=−∞

Γ̃tr(𝑘)�̃�(𝑘)
�̃�[2] + �̃�[2] 𝑒

j𝑘𝑧d𝑘, (4.9)

and

𝐽𝑧𝜙(𝜙, 𝑧) = −j
𝑔𝑧
𝜋

cos(𝜙)
∞∫

𝑘=−∞

Γ̃ln(𝑘)�̃�(𝑘)
�̃�[1] + �̃�[1] 𝑒

j𝑘𝑧d𝑘. (4.10)

The corresponding 𝑧-components of the surface current density follow directly from
the continuity equation. Further details can be found in Appendix A.1.1.

Finally, from the computed current densities it is straightforward to extract the
wire or current paths using stream functions as described in e.g. [10]. These stream
functions can then be used to realize the gradient coils.

To verify our design method, we first compute the surface current densities given
by Equations (4.8) to (4.10) and use stream functions to convert these current densi-
ties into wire patterns. These patterns are then used in a magneto-static field solver
to verify that currents flowing through the conductors of the gradient coils indeed
produce the prescribed target fields. Subsequently, the three gradient coils are con-
structed and a magnetic field map of the 𝑧-gradient coil measured. Finally, the three
gradient coils are incorporated into the low-field MRI Halbach-based scanner de-
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Figure 4.3: The 𝑥- (left) and 𝑧- (right) gradient shape functions along the bore of the coil (at radius 𝑏 and
𝜙 = 0) compared with the target field shapes used to generate the gradient coil.

scribed previously. Three-dimensional imaging results which are obtained with this
scanner are also presented.

4.3. Results
4.3.1. Simulation results
The surface current densities of Equations (4.8) to (4.10) were computed using MAT-
LAB1. The regularization parameter was chosen as ℎ = 0.05 which provides the least
amount of regularisation that still leads to smooth current paths, and the order 𝑛 of
the target fields was taken as 𝑛 = 16 for the 𝑧-gradient coil and 𝑛 = 30 for the 𝑥- and
𝑦-gradient coils. These values were chosen in order for the physical length of the
coils to correspond to the system requirements (the length of the magnet is 50 cm,
and the gradients are constrained to a length of 37 cm inside the magnet). The de-
sign of the 𝑦-gradient coil is equivalent to the design of the 𝑥-gradient coil, since
𝐽𝑦𝜙(𝜙, 𝑧) = 𝑔𝑦 𝑔−1

𝑥 𝐽𝑥𝜙(𝜙 − 𝜋/4, 𝑧), that is, 𝐽𝑦𝜙(𝜙, 𝑧) is a scaled and rotated version of 𝐽𝑥𝜙.
Subsequently, the computed surface current densities were turned into discrete

current paths using stream functions [10]. These current paths then served as input
for a magneto-static field simulation using CST2. The simulations provided a magnetic
field, which could then be compared with the prescribed target field (4.1).

This comparison can be found Figure 4.3, where the prescribed target field profile
functions are shown along with the simulated and normalized field along the bore of
the coil at 𝜙 = 0 and 𝑟 = 𝑏, since the target field is prescribed at this radius. As
can be seen from the figures, the simulated fields closely follow the prescribed target
profile functions. The difference is primarily caused by the apodisation function. This
function effectively smoothens the fields along the 𝑧-direction.
1MATLAB 2018b, The MathWorks, Inc., Massachussets, USA.
2Computer Simulation Technology, 2019, 3DS SIMULIA, Johnston, RI, USA.
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Figure 4.4: Linear uniformity error 𝜖{tr,ln} with respect to the field at the center of the bore. The error 𝜖tr

for the 𝑥-gradient coil is shown at the top, while the error 𝜖ln for the 𝑧-gradient coil is shown at the bottom.
The red line and cross indicate the reference field line.

To study the effects of the coil parameters on the performance of the gradient
coils, let us first consider the coil efficiency 𝜂, which is defined as the gradient strength
produced by a unit current (T m−1 A−1). We found that the order 𝑛 of the target field
profile function essentially does not influence the coil efficiencies of the 𝑥- and 𝑦-
gradient coils. As 𝑛 increases, the distance between adjacent turns decreases, which
will increase the inductance and shorten the physical coil length in the 𝑧-direction. The
coil efficiency, however, remains essentially the same. On the other hand, 𝑛 does
influence the efficiency of the 𝑧-gradient. For example, if we increase the order of
the profile function from 𝑛 = 6 to 𝑛 = 26, the efficiency drops by approximately 20%.
Larger orders may be necessary for 𝑧-gradient coils, however, since otherwise the
coil length in the 𝑧-direction may become longer than the length of the Halbach array.
We note that special care must be taken when increasing 𝑛 in gradient coil design,
since numerically the wires can be placed arbitrarily close together but in reality this
is limited by the construction method. Close inspection of the current paths with the
construction method in mind is needed to find the respective limits for this parameter.

The linear uniformity of the gradient influences the region which can be imaged
without distortions. This is quantified using the difference between the linear varying
(prescribed) field and the field actually generated. In this case the simulated fields
along the center line of the corresponding gradient are used as opposed to the pre-
scribed fields. For the 𝑥-gradient this center line is across the bore in the 𝑥-direction
(red line in Figure 4.4, top), for the 𝑧-gradient it is along the axis of the bore (cross in
Figure 4.4, bottom). For the simulated field values 𝐵𝑥 this error is computed as

𝜖{tr,ln}(𝑥, 𝑦) = |𝐵𝑥(𝑥, 𝑦) − 𝐵{tr,ln}
𝑥 |

|𝐵{tr,ln}
𝑥 |

(4.11)
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where the references 𝐵{tr,ln}
𝑥 are defined as 𝐵tr

𝑥 = 𝐵𝑥(𝑥, 0, 0), and 𝐵ln
𝑥 = 𝐵𝑥(0, 0, 𝑧).

These errors are displayed in Figure 4.4 from which it is immediately clear that the
𝑥-gradient field is linear over a much larger area in the 𝑥𝑦-plane than the 𝑧-gradient
field.

The uniformity of the gradient fields can also be described in terms of the linear
spherical volume. Within this volume the deviation of the simulated field from a target
field is less than 5%. For the transverse 𝑥- and 𝑦 gradients the linear spherical volume
is approximately 70% of the diameter of the outer cylinder. In other words, a sphere
centered at the origin and having a radius of 0.7𝑎 completely encloses a region where
the realized field deviates less than 5% from the prescribed field. For the longitudinal
𝑧-gradient field, however, the linear volume is only 20% of the diameter of the outer
cylinder. Clearly, the linear region of the 𝑧-gradient coil is smaller than the linear
region of the 𝑥- and 𝑦-gradient coils, which is due to the geometry of the 𝑧-gradient
coil. In commercial scanners similar non-uniformity issues arise for these type of
gradient fields and their effects in three-dimensional imaging are usually corrected in
post-processing.

To summarize, we have found that the coil efficiency 𝜂 of the 𝑥- and 𝑦-gradient
coils does not significantly vary for moderate changes in the order 𝑛 of the target field
function. The coil efficiency of the 𝑧-gradient coil, however, is strongly dependent on
𝑛. Larger values of this parameter lead to 𝑧-gradient coils with a smaller spatial
extent in the longitudinal 𝑧-direction, but decrease the coil efficiency. Moreover, for
all coils the winding separation decreases as 𝑛 increases, which puts a restriction on
the magnitude of the order 𝑛 of the profile function, since in practice wires cannot be
placed arbitrarily close to each other.

4.3.2. Gradient Construction
To fixate and accurately position the wires, a 3D printable mould was created where
the current paths were designed as slots. These slots facilitate easy and accurate
placement of the wires. A single layer of 1.5 mm diameter copper wire was used to
minimize the resistance and to reduce power dissipation. For the 𝑧-gradient coil, the
order of the target field profile function 𝑛 = 16 is chosen, which leads to a gradient
coil with a longitudinal length that is acceptable. For 𝑥- and 𝑦-gradient coils an order
of 𝑛 = 30 was chosen. This was the maximum 𝑛 for which the adjacent wires (diam-
eter 1.5 mm) do not overlap. It must be noted that all three gradients have a slightly
different radius as they are placed on top of each other. Denoting the radii of the 𝑥-,
𝑦-, and 𝑧-gradient coils by 𝑎𝑥 , 𝑎𝑦 , and 𝑎𝑧 , respectively, the coils were placed on top of
each other such that 𝑎𝑧 < 𝑎𝑦 < 𝑎𝑥 . In other words, the 𝑦-gradient coil is positioned on
top of the 𝑧-gradient coil, and the 𝑥-gradient coil on top of the 𝑦-gradient coil. This or-
der of stacking was chosen because the 𝑧-gradient has the lowest efficiency and the
𝑥-gradient naturally has the highest performance due to the background field being
𝑥-directed.

The resistance and inductance of the coils were measured using an RCL meter
(Keysight U1733C) and a table of the coil design parameters and electrical properties
can be found in Table 4.1. Renderings of the wire paths of the coils are shown in
Figure 4.5, where currents run in a clockwise manner through the red wires and in a
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𝑥

𝑦

𝑧
Figure 4.5: Three-dimensional rendering of the wire paths of the 𝑥- (left), 𝑦- (middle), and 𝑧- (right) gra-
dients. The color indicates the direction of the current: red for clockwise and black for counterclockwise
currents.

Figure 4.6: A prototype z-gradient coil (left), where the 3D printed mould is clearly visible, and the gradient
coil assembly after attaching the 𝑦-gradient (right).

counterclockwise manner through the black wires. Lastly, photographs of the finished
assembly and the 3D moulds can be found in Figure 4.6.

4.3.3. Measurement results
The field generated by the gradient coils is measured using a multipurpose 3-axis
measuring robot [11]. The robot holds an AlphaLab inc. Gauss meter model GM2
which measures the field at a resolution of 10 mm isotropic. In Figure 4.7, the 𝑥-
component of the measured gradient field is shown as measured along the linear
axis of the gradient at the center of the coil (𝐵𝑥(𝑥, 0, 0) for the 𝑥-gradient, 𝐵𝑥(0, 𝑦, 0)
for the 𝑦-gradient and 𝐵𝑥(0, 0, 𝑧) for the 𝑧-gradient). The measured and simulated
fields are in good agreement with each other. Finally, for completeness we mention
that the resistance and inductance of the coils were also measured using a Keysight
U1733C RCL meter. These can be found in Table 4.1 together with the efficiency of
the coils computed from the field measurements.

The constructed coils were incorporated in an experimental low-field Halbach MR
scanner that is currently under development at the Leiden university medical center
(LUMC) [7]. The gradient coils were tested and used to acquire three-dimensional
images of different types of objects. Figure 4.8 provides an example of such an
image, in which coronal, sagittal, and transverse slices through a melon are depicted.
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Table 4.1: Design parameters of the gradient coils. The power is computed for a gradient strength of
10 mT m−1.

Type 𝑛 𝑑
[mm] 𝑙 [m] # turns /

quad
𝑎

[mm]
𝜂sim

[mT m−1 A−1]
𝜂meas

[mT m−1 A−1] 𝑅 [Ω] 𝐿 [µH] 𝑃 [W]

𝑧 16 140 38 15 135 0.52 0.59 0.37 180 329
𝑥 30 155 42 12 139 0.81 0.95 0.41 227 165
𝑦 30 155 43 12 137 0.82 1.02 0.40 224 162
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Figure 4.7: The simulated and measured 𝑥-component of the gradient field in a longitudinal slice through
the center of a 𝑥- and 𝑦-gradient coil (left) and 𝑧-gradient coil (right). The fields have been normalised for
ease of comparison, the measured efficiency 𝜂 can be used to find the relation between current and field
strength.

Minimal distortion can be observed, which is most likely due to 𝐵0 inhomogeneities
and not due to any nonlinearities in the gradient fields.

4.4. Discussion and Conclusion
We have applied the target field method to design gradient coils for an MR scan-
ner with a transverse magnetic background field. It is then relatively straightfor-
ward to turn these current paths into a constructed gradient coil using simple three-
dimensional printing techniques and wire winding. Field measurements confirmed
that the proposed design procedure indeed leads to gradient coils that produce the
required gradient fields.

Transverse 𝑥- and 𝑦-gradient coils are generally more efficient, and therefore eas-
ier to design with respect to field requirements than the longitudinal 𝑧-gradient coils.
The coil efficiency of the transverse coils is typically less sensitive to the order of
the target field profile function and the magnitude of the order is basically limited by
the spacing allowed between the wires. The region of uniform linearity is also much
larger for transverse gradient coils than for 𝑧-gradient coils as indicated by the uni-
formity error that we introduced and the linear spherical volume. Coil efficiency of a
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Figure 4.8: Coronal (left), sagital (middle), and transverse (right) images of a melon obtained with the
low-field scanner of the LUMC that incorporates the gradient coils described in this paper. A 3D-turbo
spin echo (TSE) sequence was used with echo time (TE) over repetition time (TR) of 30 ms/2000 ms.
Echo train length was 32, with a field of view (FoV) of 192 × 192 × 192 mm. The data matrix consisted of
128 × 128 × 128 complex points. Total acquisition time was 17 minutes 4 seconds.

𝑧-gradient coil, in contrast, strongly depends on the order of the profile function and
decreases as the order increases. This indicates that a relatively small order should
be chosen to realize an effective 𝑧-gradient coil, but selecting a small order leads to
a very long gradient coil which may be longer than the magnet itself. Careful tuning
is therefore necessary to obtain a realizable 𝑧-gradient coil with a sufficiently large
linear region and coil efficiency. Given the cylindrical geometry of our Halbach con-
figuration, it can also be expected that the realization of a 𝑧-gradient coil in a scanner
with a transverse background field is more difficult than realizing transverse gradient
coils, since the magnitude of a linearly varying transverse field along the bore of the
magnet naturally increases as we move in a radial direction towards the coil.

Possible extensions of this work include incorporating gradient power minimiza-
tion as it relates to the Halbach configuration, since this would simplify power supply
requirements, which is of importance in a low-resource setting. In addition, using
conductive sheets for the construction of a gradient coil may be a feasible large-scale
production method.

To summarize, with the proposed design methodology it is possible to design
effective 𝑥-, 𝑦-, and 𝑧-gradient coils in case of transverse background fields as en-
countered in a Halbach permanent magnet scanner. The method is very efficient
and allows for parametric coil design, thereby providing insight into the trade offs of
gradient coil construction.

Acknowledgment
The authors would like to thank Wouter Teeuwisse for fruitful discussions and his help
in the construction and assembly of the gradient coils, Danny de Gans for his work
on the gradient amplifier, and Martin van Gijzen for his support in the low field MRI
scanner project. This research was made possible in part through the NWO-WOTRO
grant nr. W 07.303.101:‘A sustainable MRI system to diagnose hydrocephalus in
Uganda’, Horizon 2020 ERC Advanced NOMA-MRI 670629: and the Simon Stevin



4

60 References

Prijs from the Dutch research council (NWO).

References
[1] M. Bernstein, K. F. King, and X. J. Zhou. Handbook of MRI Pulse Sequences.

Academic Press, 2004.

[2] Robert Turner. Gradient coil design: A review of methods. Magnetic Resonance
Imaging, 11(7):903 – 920, 1993.

[3] S.S. Hidalgo-Tobon. Theory of gradient coil design methods for magnetic res-
onance imaging. Concepts in Magnetic Resonance Part A, 36A(4):223–242,
2010.

[4] Mathieu Sarracanie, Cristen D. LaPierre, Najat Salameh, David E. J. Wadding-
ton, Thomas Witzel, and Matthew S. Rosen. Low-cost high-performance MRI.
Scientific Reports, 5(1):15177, 2015.

[5] G. Morrow. Progress in MRI magnets. IEEE Transactions on Applied Supercon-
ductivity, 10(1):744–751, March 2000.

[6] Rui Zhang, Jing Xu, Youyi Fu, Yangjing Li, Kefu Huang, Jue Zhang, and Jing
Fang. An optimized target-field method for MRI transverse biplanar gradient coil
design. Measurement Science and Technology, 22(12):125505, nov 2011.

[7] T. O’Reilly, W.M. Teeuwisse, and A.G. Webb. Three-dimensional MRI in a ho-
mogenous 27cm diameter bore Halbach array magnet. Journal of Magnetic
Resonance, 307:106578, 2019.

[8] C. Z. Cooley, M. W. Haskell, S. F. Cauley, C. Sappo, C. D. Lapierre, C. G. Ha,
J. P. Stockmann, and L. L. Wald. Design of sparse Halbach magnet arrays
for portable MRI using a genetic algorithm. IEEE Transactions on Magnetics,
54(1):1–12, Jan 2018.

[9] Wentao Liu, Federico Casanova, Bernhard BlAŒmich, and Donglin Zu. An effi-
cacious target-field approach to design shim coils for Halbach magnet of mobile
NMR sensors. Applied Magnetic Resonance, 42(1):101–112, 2012.

[10] R Turner. A target field approach to optimal coil design. Journal of Physics D:
Applied Physics, 19(8):L147–L151, aug 1986.

[11] COSI Measure. Multi-purpose 3-axis robot with submillimeter resolution for
static / dynamic field mapping. http://www.opensourceimaging.org/project/cosi-
measure, 2020. Accessed: 2020-03-11.



5
Generalized Signal Models and

Direct FID-Based Dielectric Parameter
Retrieval in MRI
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ABSTRACT– This paper presents a full­wave signal models for mag­
netic and electric field measurements in a magnetic resonance imag­
ing (MRI) scanner. Our analysis is based on a scattering formalism
in which the presence of an object or body is taken into account via an
electric scattering source. We show that these signalmodels can be eval­
uated, provided the Green’s tensors of the background field are known
along with the dielectric parameters of the object and the magnetiza­
tion within the excited part of the object. Furthermore, explicit signal
expressions are derived in case of a small homogeneous ball that is em­
bedded in free space and forwhich the quasi­static Born approximation
can be applied. The conductivity and permittivity of the ball appear as
explicit parameters in the resulting signal models and allow us to study
the sensitivity of the measured signals with respect to these dielectric
parameters. Moreover, for free induced decay (FID) signals we show
that under certain conditions it is possible to retrieve the dielectric pa­
rameters of the ball from noise­contaminated induction decay signals
that are based on electric or magnetic field measurements.
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5.1. Introduction
The influence of biological tissue on a typical magnetic resonance imaging (MRI)
experiment (and previously in nuclear magnetic resonance (NMR) or zeugmatogra-
phy [1]) has been investigated almost as long as the imaging modality exists. Most
of this research has focused on the signal to noise ratio (SNR) of the received sig-
nals [2], and on the influence of tissue on the antenna sensitivity patterns [3]. Both
of these aspects play an important role in understanding the structure of the received
signal, of course, and are taken into account in signal optimization frameworks as
shown in the recent work [4], for example. The influence of scattering currents, in-
duced in biological tissue through the magnetization itself, however is neglected in
research on this matter up till now.

Due to the relationship between the SNR and the MRI background field there is a
continuing push to higher field strengths to achieve improved SNRs and faster scan
times. These improvements do come at a cost as with higher field strengths also
the frequency at which the MRI measurement is performed increases. This higher
frequency leads to new challenges in radio frequency (RF) coil design, for example,
and the received signals are generally more sensitive to changes in the dielectric
(tissue) parameters as well.

In RF coil design a major challenge at higher fields is to achieve a uniform excita-
tion of the region of interest (ROI). Since the size of the object is on the order of the
wavelength, non-uniform RF fields and interference patterns may appear within the
ROI. Possible solutions are increasing antenna array sizes and combining antenna
types, although it has been demonstrated that such an approach has diminishing
returns for larger array sizes [5]. Another approach is varying the array elements,
using dipoles [6], combining loops and dipoles [7, 8], or using “special” fractionated
dipoles [9]. In most of these approaches the goal is to optimize the so-called ultimate
intrinsic signal to noise ratio (UISNR) or, in other words, to approximate ideal current
patterns which would lead to the highest SNR [4]. Originally the term UISNR was in-
troduced in [10], but additions have been made ever since, covering parallel MRI [11],
current patterns required to attain this ratio [4], and addition of the specific absorption
rate (SAR) [12].

For the SAR all the above-mentioned challenges are combined, as the higher
heterogeneity of the RF fields leads to a local increase in tissue heating, which limits
the amount of current that can be used to power a measurement and thus limits the
SNR that can be obtained for a specific field strength and antenna array. Validated
simulation techniques may be used to obtain more accurate local SAR estimates and
may lead to antenna designs with reduced restrictions on the antenna currents that
can be employed, or dielectric pads (passive shimming) can be used to improve the
field homogeneity and reduce local heating effects [13].

In this paper, we focus on the signal modeling part and derive full-wave signal
models based on Maxwell’s equations. Electric and magnetic field measurements
are considered, and we show that the resulting signals are due to the time-varying
magnetization inside the object and the induced electric scattering currents, each
weighted by their own receive field as determined by the coil or antenna that is used
for reception. The signal models can be explicitly evaluated provided the Green’s ten-
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sors of the background medium and the medium parameters of the object are known.
Moreover, to gain further insight into how the electromagnetic medium parameters of
the object influence the measured signal, explicit time- and frequency-domain signal
models are derived for a special case, where the background medium consists of
air and the object is a homogeneous ball that is uniformly excited and for which the
Born approximation applies. Quasi-static signal representations are derived from the
full-wave signal models and through a series of numerical experiments we verify our
models for the received signals. Finally, we demonstrate that under certain condi-
tions it is possible to retrieve the dielectric parameters of the ball from measured free
induction decay signals that are based on electric or magnetic field measurements.

We present our analysis in the Laplace- or 𝑠-domain, since it allows us to easily
obtain frequency-domain solutions by letting 𝑠 → j𝜔 via the right-half of the complex
𝑠-plane, or time-domain field responses using standard Laplace transformation rules.

5.2. Theory
Let 𝔻obj be a bounded domain occupied by a penetrable object that is present in an
MR scanner. We assume that the complete object or part of this object has been
excited during the transmit state of the scanner. More precisely, we assume that
the temporal derivative of magnetization 𝜕𝑡𝑴(𝒙 , 𝑡) is nonzero within the subdomain
𝔻ex ⊆ 𝔻obj and vanishes outside this domain. In other words, 𝜕𝑡𝑴(𝒙 , 𝑡) has the
domain 𝔻ex as its spatial support and 𝔻ex = 𝔻obj if the complete object is excited.

Measurements are carried out outside the object and take place in free space. To
set up the data models that describe our measurements, we first consider a surface 𝑆
with unit normal 𝝂 and closed boundary curve 𝐶 with a unit normal 𝝉 along this curve
such that 𝝉 and 𝝂 are oriented according to the right-hand rule. The surface 𝑆 has
an area 𝐴 and the position vector of its barycenter is denoted by 𝒙R. The surface is
completely located in air and is used to measure the electromotive or magnetomotive
force given by

�̂�emf(𝑠) =
∫

𝒙∈𝐶
�̂� · 𝝉 dℓ and 𝐼mmf(𝑠) =

∫
𝒙∈𝐶

�̂� · 𝝉 dℓ , (5.1)

respectively. Using Maxwell’s equations and assuming that the area 𝐴 of the surface
is sufficiently small (diameter much smaller than the smallest wavelength of interest),
we have

�̂�emf(𝑠) = −𝑠
∫
𝒙∈𝑆

�̂� · 𝝂 d𝐴 ≈ −𝑠𝜇0𝐴 �̂�(𝒙R , 𝑠) · 𝝂, (5.2)

where we have used �̂� = 𝜇0�̂� , since the measurement surface 𝑆 is located in air.
Similarly, for the magnetomotive force we obtain

𝐼mmf(𝑠) = 𝑠
∫
𝒙∈𝑆

�̂� · 𝝂 d𝐴 ≈ 𝑠𝜀0𝐴 �̂�(𝒙R , 𝑠) · 𝝂, (5.3)
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where we have used �̂� = 𝜀0�̂�. Assuming that a measurement is linear and time-
invariant, we can generalise our field measurement description to

�̂�h(𝑠) =
∫

𝒙∈𝔻rec

�̂�h(𝒙 , 𝑠) · �̂�(𝒙 , 𝑠)d𝑉 (5.4)

and

�̂�e(𝑠) =
∫

𝒙∈𝔻rec

�̂�e(𝒙 , 𝑠) · �̂�(𝒙 , 𝑠)d𝑉, (5.5)

in which a volumetric receiver is used to obtain the measured signals. The receiver
is completely located outside the object, occupies the receiver domain 𝔻rec, and its
action on the electromagnetic field inside the receiver domain is described by the
vectorial receiver functions �̂�h and �̂�e for magnetic and electric field measurements,
respectively. Note that the electro- and magnetomotive forces are special cases of
(5.4) and (5.5). In particular, with

�̂�h(𝑠) = 𝑠𝜇0𝐴𝛿(𝒙 − 𝒙R)𝝂, and �̂�e(𝑠) = 𝑠𝜀0𝐴𝛿(𝒙 − 𝒙R)𝝂, (5.6)

we have �̂�h(𝑠) = −�̂�emf(𝑠) and �̂�e(𝑠) = 𝐼mmf(𝑠). Since an electromotive force measure-
ment is characterized by (5.4), we refer to such a measurement as a magnetic field
measurement, while a magnetomotive force measurement is refered to as an electric
field measurement, since it can be described by (5.5). Below, we take these general
signal models as a starting point and consider the electro- and magnetomotive forces
as special cases.

5.2.1. Scattering Formalism
To further develop the signal models (5.4) and (5.5), the magnetic and electric field
strengths inside the receiver domain are obviously required. To this end, we set up
a scattering formalism and write the electromagnetic field as a superposition of a
background and a scattered field. The background field is defined as the field that
is present when the constitutive parameters within the object domain are the same
as the parameters of the background medium, while the scattered field takes the
presence of the object into account. Assuming that the background can be accu-
rately described by a background conductivity 𝜎b(𝒙), a background permittivity 𝜀b(𝒙),
and a permeability 𝜇b(𝒙), the Laplace-domain background field satisfies the Maxwell
equations

−∇ × �̂�
b + 𝜎b�̂�

b + 𝑠𝜀b�̂�
b
= 0, (5.7)

and

∇ × �̂�
b + 𝑠𝜇b�̂�

b
= −�̂� , (5.8)
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where �̂� is the Laplace transform of 𝜇0𝜕𝑡𝑴 with 𝑴(𝒙 , 𝑡) the time-varying magneti-
zation with the domain 𝔻ex as its spatial support. Across interfaces where the back-
ground medium parameters exhibit a jump, the above Maxwell equations have to
be supplemented by the appropriate boundary conditions and if perfectly conducting
structures are present in the background configuration, then the boundary condition
for a perfectly conducting structure has to be included as well, of course. For gen-
eral inhomogeneous background configurations that can be described in terms of the
background medium parameters, the above Maxwell equations can only be solved
numerically. Formally, however, we can express the electromagnetic background
field in terms of the Green’s tensors of the background medium as

�̂�
b(𝒙 , 𝑠) =

∫
𝒙′∈𝔻ex

�̂�
HK(𝒙 , 𝒙′, 𝑠) · �̂�(𝒙′, 𝑠)d𝑉 (5.9)

and

�̂�
b(𝒙 , 𝑠) =

∫
𝒙′∈𝔻ex

�̂�
EK(𝒙 , 𝒙′, 𝑠) · �̂�(𝒙′, 𝑠)d𝑉, (5.10)

where �̂�
HK and �̂�

EK are the magnetic current to magnetic field and magnetic current
to electric field Green’s tensors of the background medium.

Furthermore, the scattered field {�̂�sc
, �̂�

sc} satisfies the Maxwell equations

−∇ × �̂�
sc + 𝜎b�̂�

sc + 𝑠𝜀b�̂�
sc
= −�̂�sc (5.11)

and

∇ × �̂�
sc + 𝑠𝜇b�̂�

sc
= 0, (5.12)

where �̂�
sc is the Laplace transformed dielectric scattering source given by

�̂�
sc(𝒙 , 𝑠) = {𝜎(𝒙) − 𝜎b(𝒙) + 𝑠[𝜀(𝒙) − 𝜀b(𝒙)]} �̂�(𝒙 , 𝑠) (5.13)

for 𝒙 ∈ 𝔻obj, where 𝜎(𝒙) is the conductivity of the object and 𝜀(𝒙) its permittivity.
The object is assumed to have no contrast in its permeability with respect to the
background medium.

For the scattered field we have the integral representations

�̂�
sc(𝒙 , 𝑠) =

∫
𝒙′∈𝔻obj

�̂�
HJ(𝒙 , 𝒙′, 𝑠) · �̂�sc(𝒙′, 𝑠)d𝑉 (5.14)

and

�̂�
sc(𝒙 , 𝑠) =

∫
𝒙′∈𝔻obj

�̂�
EJ(𝒙 , 𝒙′, 𝑠) · �̂�sc(𝒙′, 𝑠)d𝑉, (5.15)
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where �̂�
HJ and �̂�

EJ are the electric current to magnetic field and electric current to
electric field Green’s tensors of the background medium. Having the integral repre-
sentations for the background and scattered fields at our disposal, we can now further
develop the full-wave signal models (5.4) and (5.5).

5.2.2. Full-Wave Signal Model
Writing the total magnetic and electric fields in the receiver domain as a superposition
of the background and scattered fields and using the integral representations Equa-
tions (5.9), (5.10), (5.14) and (5.15), the signal models of Equations (5.4) and (5.5)
become

�̂�h(𝑠) =
∫

𝒙∈𝔻ant

�̂�h(𝒙 , 𝑠) ·
∫

𝒙′∈𝔻ex

�̂�
HK(𝒙 , 𝒙′, 𝑠) · �̂�(𝒙′, 𝑠)d𝑉 d𝑉

+
∫

𝒙∈𝔻ant

�̂�h(𝒙 , 𝑠) ·
∫

𝒙′∈𝔻obj

�̂�
HJ(𝒙 , 𝒙′, 𝑠) · �̂�sc(𝒙′, 𝑠)d𝑉 d𝑉

(5.16)

and

�̂�e(𝑠) =
∫

𝒙∈𝔻ant

�̂�e(𝒙 , 𝑠) ·
∫

𝒙′∈𝔻ex

�̂�
EK(𝒙 , 𝒙′, 𝑠) · �̂�(𝒙′, 𝑠)d𝑉 d𝑉

+
∫

𝒙∈𝔻ant

�̂�e(𝒙 , 𝑠) ·
∫

𝒙′∈𝔻obj

�̂�
EJ(𝒙 , 𝒙′, 𝑠) · �̂�sc(𝒙′, 𝑠)d𝑉 d𝑉.

(5.17)

Interchanging the order of integration and using the reciprocity properties of the cur-
rent to field Green’s tensors [14] allows us to write the signal representations as

�̂�h(𝑠) =
∫

𝒙′∈𝔻ex

�̂�(𝒙′, 𝑠) · �̂�mg
h (𝒙′, 𝑠)d𝑉 −

∫
𝒙′∈𝔻obj

�̂�
sc(𝒙′, 𝑠) · �̂�mg

e (𝒙′, 𝑠)d𝑉 (5.18)

and

�̂�e(𝑠) = −
∫

𝒙′∈𝔻ex

�̂�(𝒙′, 𝑠) · �̂� el
h (𝒙′, 𝑠)d𝑉 +

∫
𝒙′∈𝔻obj

�̂�
sc(𝒙′, 𝑠) · �̂� el

e (𝒙′, 𝑠)d𝑉 (5.19)

where we have introduced the receive fields for a magnetic field measurement as

�̂�
mg
h (𝒙′, 𝑠) =

∫
𝒙∈𝔻rec

�̂�
HK(𝒙′, 𝒙 , 𝑠) · �̂�h(𝒙 , 𝑠)d𝑉, (5.20)

and

�̂�
mg
e (𝒙′, 𝑠) =

∫
𝒙∈𝔻rec

�̂�
EK(𝒙′, 𝒙 , 𝑠) · �̂�h(𝒙 , 𝑠)d𝑉, (5.21)



5.2. Theory

5

67

while the receive fields for an electric field measurement are given by

�̂�
el
h (𝒙′, 𝑠) =

∫
𝒙∈𝔻rec

�̂�
HJ(𝒙′, 𝒙 , 𝑠) · �̂�e(𝒙 , 𝑠)d𝑉, (5.22)

and

�̂�
el
e (𝒙′, 𝑠) =

∫
𝒙∈𝔻rec

�̂�
EJ(𝒙′, 𝒙 , 𝑠) · �̂�e(𝒙 , 𝑠)d𝑉, (5.23)

Equations (5.18) and (5.19) are the full-wave signal models for a magnetic and elec-
tric field measurement, respectively, in which the magnetic-current source (magne-
tization) and the scattering source contribute to the measured signal both weighted
by their respective antenna receive fields. It can be confirmed that the magnetic field
measurement simplifies to the traditional quasi-static signal model by referring to the
receive field as 𝑩1 per MRI convention, and substituting the magnetisation into the
magnetic source formulation �̂�.

To evaluate these models, first the magnetization (and hence the magnetic-current
source �̂�) must be known within the excited part 𝔻ex of the object, since the time vari-
ations of this field quantity generate the radiated electromagnetic field. Second, the
conductivity and permittivity profiles of the object must be known. This allows us
to compute the electric field strength within the object by solving a forward problem
with the magnetic-current density �̂� in 𝔻ex as a source. Finally, the Green’s tensors
of the background medium must be known as well to determine the receive fields
in Equations (5.20) to (5.23). In general, these tensors can only be determined
through simulations, since the background is inhomogeneous. In conclusion, the full-
wave signals can be evaluated in principle, provided that (i) the magnetization in 𝔻ex
is known, (ii) the conductivity and permittivity profiles of the object are known, and
(iii) the Green’s tensors of the background medium are known. Note that frequency-
domain responses are obtained by letting 𝑠 → j𝜔 and time-domain signal responses
involve temporal convolutions of the magnetic-current source and the dielectric scat-
tering source with their respective receive fields, since their Laplace-domain counter-
parts all are 𝑠-dependent in general.

5.2.3. Simplified Full-Wave Signal Models for a Ball Located in
Free-Space

Given the above observations, we consider a specific configuration for which it is pos-
sible to develop signal models that explicitly show how the received signals depend on
the conductivity and permittivity of the object. In particular, we first consider a back-
ground medium consisting of free space. The Green’s tensors of the background
medium and the receive fields for electro- or magnetomotive force measurements
(dipole measurements) can then be determined explicitly. Second, we take a small
homogeneous ball with a constant conductivity 𝜎 and permittivity 𝜀 as our object of
interest. Explicit signal models can then be developed provided the radius of the ball
is sufficiently small.
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Let the background medium be free space and consider an electro- or magne-
tomotive force measurement. For an electromotive force measurement, the receive
function �̂�h is given by Equation (5.6) and since the background medium is free
space, the Green’s tensors are explicitly known [14] and the receive fields follow as

�̂�
mg
h (𝒙′, 𝑠) = 𝑠𝜇0𝐴�̂�

HK(𝒙′, 𝒙R , 𝑠) · 𝝂
=

𝐴
4𝜋ℛ3 exp(−𝑠𝜏)

[
(1 + 𝑠𝜏)𝒑1 + (𝑠𝜏)2𝒑2

] (5.24)

and

�̂�
mg
e (𝒙′, 𝑠) = 𝑠𝜇0𝐴�̂�

EK(𝒙′, 𝒙R , 𝑠) · 𝝂
=
𝑠𝜇0𝐴

4𝜋ℛ2 exp(−𝑠𝜏)(1 + 𝑠𝜏)𝒏 × 𝝂,
(5.25)

where 𝜏 = 𝑐−1
0 ℛ with 𝑐0 is the electromagnetic wave speed in vacuum. Clearly, 𝜏 is the

travel time from the point of integration 𝒙′ to the receiver location 𝒙R. Furthermore,
𝒑1 = 3𝒏(𝒏 · 𝝂) − 𝝂, and 𝒑2 = 𝒏(𝒏 · 𝝂) − 𝝂 with 𝒏 = (𝒙′ − 𝒙R)/ℛ the unit vector pointing
from the receiver location to the point of integration, and ℛ = |𝒙′ − 𝒙𝑅 | the distance of
receiver location to the point of integration.

Similarly, for a magnetomotive force measurement, the receive function �̂�e is
given by Equation (5.6) and the receive fields follow as

�̂�
el
h (𝒙 , 𝑠) = 𝑠𝜀0𝐴�̂�

HJ(𝒙 , 𝒙R , 𝑠) · 𝝂
= − 𝑠𝜀0𝐴

4𝜋ℛ2 exp(−𝑠𝜏)(1 + 𝑠𝜏)𝒏 × 𝝂,
(5.26)

and

�̂�
el
e (𝒙 , 𝑠) = 𝑠𝜀0𝐴�̂�

EJ(𝒙 , 𝒙R , 𝑠) · 𝝂
=

𝐴
4𝜋ℛ3 exp(−𝑠𝜏)

[
(1 + 𝑠𝜏)𝒑1 + (𝑠𝜏)2𝒑2

]
.

(5.27)

Note that �̂�mg
e and �̂�

el
h are proportional to each other and �̂�

mg
h = �̂�

el
e .

Second, we take a small ball as our object of interest. The ball is centered at
the origin of our reference frame and has a radius 𝑎 >0. It is characterized by a
constant conductivity 𝜎 and permittivity 𝜀, and its permeability is equal to that of free
space. We assume that the radius 𝑎 is so small that the ball is excited throughout
(𝔻ex = 𝔻obj) and time variations of the magnetization (and hence the magnetic-current
source �̂�) are uniform, that is, �̂� does not vary with position within the ball. For a
given magnetization, the magnetic-current source is now known and the total electric
field within the ball can be computed by solving the integral equation

�̂�(𝒙′, 𝑠) = �̂�
b(𝒙′, 𝑠) − �̂�(�̂�2

0 − ∇∇·)
∫

𝒙′∈𝔻obj

�̂�(𝒙 − 𝒙′, 𝑠)�̂�(𝒙′, 𝑠)d𝑉, (5.28)
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for the electric field �̂�(𝒙′, 𝑠) with 𝒙′ ∈ 𝔻obj. In the above equation, �̂�0 = 𝑠/𝑐0 is the
propagation coefficient of free space, �̂� = 𝜀r − 1 + 𝜎/(𝑠𝜀0) is the contrast of the
ball, �̂� is the scalar Green’s function of free space, and �̂�

b can be determined from
Equation (5.10), since �̂� is known. In the next section, we will essentially follow
such an approach, except that we will determine the electric field in the time-domain
using finite difference time domain (FDTD) for a given magnetization. Here, we use
the above integral equation to arrive at the desired signal models. Specifically, let
us consider frequencies of operation 𝑠 and a ball of radius 𝑎 with conductivity and
permittivity values 𝜎 and 𝜀, respectively, such that the condition

(2𝑎 |�̂�0 |)2 |�̂� | ≪ 1 (5.29)

is satisfied. For three-dimensional scalar wave field problems, this is a sufficient
condition for the Neumann series to converge [15, 16]. In addition, let us assume that
there is (essentially) no charge accumulation at the boundary of the ball. The gradient-
divergence term is then negligible and the above integral equation turns into a scalar
integral equation for the electric field. Moreover, since we consider frequencies and
dielectric parameters for which Equation (5.29) holds, we may approximate

�̂�(𝒙′, 𝑠) ≈ �̂�
b(𝒙′, 𝑠). (5.30)

Now provided the quasi-static condition |2𝑎�̂�0 | ≪ 1 is also satisfied, this background
field is essentially given by

�̂�
b(𝒙′, 𝑠) = −1

3 �̂� × 𝒙′ (5.31)

with 𝒙′ ∈ 𝔻obj. Notice that this background field does not have a radial component,
which is consistent with our assumption of no charge accumulation at the boundary.
Also, note that if the quasi-static condition |2𝑎�̂�0 | ≪ 1 holds, then Equation (5.29) can
be satisfied for |�̂� | ≫ 1 [16].

Provided the quasi-static and Born approximation hold, the dielectric scattering
source within the ball is given by

�̂�
sc(𝒙′, 𝑠) = [𝜎 + 𝑠(𝜀 − 𝜀0)]�̂�(𝒙′, 𝑠)

= −1
3 [𝜎 + 𝑠(𝜀 − 𝜀0)]�̂�(𝑠) × 𝒙′,

(5.32)

for 𝒙′ ∈ 𝔻obj. Substitution in Equations (5.18) and (5.19), we obtain the signal models

�̂�h(𝑠) = �̂�(𝑠) ·
∫

𝒙′∈𝔻obj

�̂�
mg(𝒙′, 𝑠)d𝑉 (5.33)

and

�̂�e(𝑠) = −�̂�(𝑠) ·
∫

𝒙′∈𝔻obj

�̂�
el(𝒙′, 𝑠)d𝑉, (5.34)
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where the vectorial sensitivity functions are given by

�̂�
mg(𝒙′, 𝑠) = �̂�

mg
h + �̂�e𝒙′ × �̂�

mg
e (5.35)

and
�̂�

el(𝒙′, 𝑠) = �̂�
el
h + �̂�e𝒙′ × �̂�

el
e (5.36)

with �̂�e = [𝜎 + 𝑠(𝜀 − 𝜀0)]/3 = 𝑠𝜀0�̂�/3. Substituting expressions Equations (5.24)
to (5.27) for the receive fields in the above equations and applying an inverse Laplace
transformation, we obtain the time-domain signals

𝑑h(𝑡) = 𝜇0𝜕𝑡𝑴(𝑡) 𝑡∗
∫

𝒙′∈𝔻obj

𝑺mg(𝒙′, 𝑡 − 𝜏)d𝑉, (5.37)

and
𝑑e(𝑡) = −𝜇0𝜕𝑡𝑴(𝑡) 𝑡∗

∫
𝒙′∈𝔻obj

𝑺el(𝒙′, 𝑡 − 𝜏)d𝑉, (5.38)

for 𝑡 > 0, where the asterisk denotes convolution in time and the time-domain sensi-
tivity functions are given by

𝑺mg(𝒙′, 𝑡) = 𝐴
4𝜋ℛ3

3∑
𝑘=0

𝜏𝑘𝛿(𝑘)(𝑡)𝒓mg
𝑘 (5.39)

and

𝑺el(𝒙′, 𝑡) = 𝐴
4𝜋ℛ3

3∑
𝑘=0

𝜏𝑘𝛿(𝑘)(𝑡)𝒓el
𝑘 , (5.40)

where 𝛿(𝑘) is the 𝑘th derivative of the Dirac distribution. Explicit expressions for the
expansion vectors 𝒓mg,el

𝑘 , 𝑘 = 0, 1, 2, 3, are given in the Appendix.
In the above signal models, propagation effects and travel times from the ball to

the receiver are fully taken into account. However, when the receivers are located not
too far from the ball (in a sense to be made precise) then the signals may be simplified
even further. To this end, we substitute the receive fields of Equations (5.24) to (5.27)
in Equations (5.35) and (5.36) and arrange the resulting expressions in such a way
that the sensitivities are expanded in terms of vectors that do not depend on the
distance ℛ. Carrying out these steps, we find for the magnetic field sensitivity function

�̂�
mg(𝒙′, 𝑠) = 𝐴𝑒−𝑠𝜏

4𝜋ℛ3 ·
[
𝒑1 + (𝑠𝜏)(𝒑1 + �̂�mg) + (𝑠𝜏)2(𝒑2 + �̂�mg)

]
, (5.41)

while for the sensitivity function for an electric field measurement, we have

�̂�
el(𝒙′, 𝑠) = 𝐴𝑒−𝑠𝜏

4𝜋ℛ3 ·
[
�̂�e𝒑′1 + (𝑠𝜏)(�̂�e𝒑′1 + 𝑌0𝒒el) + (𝑠𝜏)2(�̂�e𝒑′2 + 𝑌0𝒒el)

]
(5.42)
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with �̂�mg = 𝑍0�̂�e[(𝒙′ · 𝝂)𝒏 − (𝒙′ · 𝒏)𝝂], 𝒒el = 𝝂 × 𝒏, and 𝒑′1,2 = 𝒙′ × 𝒑1,2 respectively.
Note that the vectors

𝒑1,2 + �̂�mg and �̂�e𝒙′ × 𝒑1,2 + 𝑌0𝒒el (5.43)

are 𝑠-dependent, but do not depend on ℛ. We can now use the above expressions
to investigate which terms contribute to the received signals measured at different
receiver locations. Specifically, let us first consider the case where we place the
receiver near (almost at) the surface of the ball (|𝒙R | = 𝑎(1 + 𝜖), with 𝜖 > 0 small).
In this case, |𝑠 | 𝜏 ≤ |�̂�02𝑎 | ≪ 1 and the receive field can be considered quasi-static.
The signals models simplify to

�̂�h(𝑠) ≈ �̂�QS
h (𝑠)

�̂�QS
h (𝑠) = 𝐴

4𝜋

�̂� ·
∫

𝒙′∈𝔻obj

𝒑1
ℛ3 d𝑉 + 𝑠𝜇0�̂�e�̂� ·

∫
𝒙′∈𝔻obj

(𝒙′ · 𝝂)𝒏 − (𝒙′ · 𝒏)𝝂
ℛ2 d𝑉

 (5.44)

and

�̂�e(𝑠) ≈ �̂�QS
e (𝑠)

�̂�QS
e (𝑠) = − 𝐴

4𝜋

�̂�e�̂� ·
∫

𝒙′∈𝔻obj

𝒙′ × 𝒑1
ℛ3 d𝑉 + 𝑠𝜀0�̂� ·

∫
𝒙′∈𝔻obj

𝝂 × 𝒏
ℛ2 d𝑉

 (5.45)

and their time-domain counterparts are given by

𝑑QS
h (𝑡) = 𝜇0𝐴

4𝜋

[
𝜕𝑡𝑴 ·

∫
𝒙′∈𝔻obj

𝒑1
ℛ3 d𝑉

+𝜎𝜇0

3 𝜕2
𝑡𝑴 ·

∫
𝒙′∈𝔻obj

[(𝒙′ · 𝝂)𝒏 − (𝒙′ · 𝒏)𝝂]
ℛ2 d𝑉

+ 𝜀r − 1
3

1
𝑐2

0
𝜕3
𝑡𝑴 ·

∫
𝒙′∈𝔻obj

[(𝒙′ · 𝝂)𝒏 − (𝒙′ · 𝒏)𝝂]
ℛ2 d𝑉

] (5.46)
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and

𝑑QS
e (𝑡) = −𝜇0𝐴

4𝜋

[
𝜎
3 𝜕𝑡𝑴 ·

∫
𝒙′∈𝔻obj

𝒙′ × 𝒑1
ℛ3 d𝑉

+ 𝜀r − 1
3 𝜀0𝜕

2
𝑡𝑴 ·

∫
𝒙′∈𝔻obj

𝒙′ × 𝒑1
ℛ3 d𝑉

+𝜀0𝜕
2
𝑡𝑴 ·

∫
𝒙′∈𝔻obj

𝝂 × 𝒏
ℛ2 d𝑉

]
,

(5.47)

for 𝑡 > 0 explicitly showing that time variations of the magnetization are received
without any propagation delay in the quasi-static limit. We observe that for a mag-
netic field measurement, the conductivity and permittivity are still present in the inter-
mediate-field contribution to the signal (1/distance2 term), while for an electric field
measurement the dielectric properties of the ball show up even in the near field con-
tribution to the signal (1/distance3 term).

As we move away from the ball, the travel time 𝜏 will obviously increase. The
above quasi-static signal models remain valid, however, provided that |𝑠 | 𝜏 ≪ 1 for all
𝒙′ ∈ 𝔻obj. Obviously, the quasi-static signal models can no longer be used as soon
as this inequality is not satisfied.

Finally, for later convenience we write the quasi-static signals as

𝑑QS
h (𝑡) = 𝜕𝑡𝑴 · 𝒂h

1(𝒙R) + 𝜎𝜇0

3 𝜕2
𝑡𝑴 · 𝒂h

2(𝒙R) + 𝜀r − 1
3

1
𝑐2

0
𝜕3
𝑡𝑴 · 𝒂h

2(𝒙R) (5.48)

and

𝑑QS
e (𝑡) = 𝜎

3 𝜕𝑡𝑴 · 𝒂e
1(𝒙R) + 𝜀r − 1

3 𝜀0 𝜕
2
𝑡𝑴 · 𝒂e

1(𝒙R) + 𝜀0 𝜕
2
𝑡𝑴 · 𝒂e

2(𝒙R), (5.49)

where the expressions for the expansion vectors 𝒂e,h
𝑘 (𝒙R), 𝑘 = 1, 2, are easily obtained

from Equations (5.46) and (5.47).

5.3. Simulations
To test the validity of our signal models and to study the influence of the permittivity
and conductivity of the ball on these signals, we consider the configuration illustrated
in Figure 5.1. In this configuration, all geometrical parameters are fixed and wave-
length independent, since we want to investigate this setup in MR scanners with dif-
ferent background fields. In particular, the radius of the ball is set to 𝑎 = 2.5 cm, and
we use three receivers located on the 𝑥-axis to measure the various field responses.
With Receiver 1 we carry out surface measurements, and in our simulations this re-
ceiver is located at a distance 𝑑1 = 2.5 × 10−6 cm from the ball. Receiver 2 is located
at a distance 𝑑2 = 25 cm from the ball and, finally, Receiver 3 is located at a dis-
tance 𝑑3 = 50 cm from the ball. All three receivers are loops that have a circular
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Figure 5.1: Free induction decay signal measurement setup. A homogeneous ball with a radius 𝑎, centered
at the origin has a permittivity 𝜀, conductivity 𝜎, and permeability 𝜇. Relaxation times 𝑇1 and 𝑇2.
Table 5.1: Dielectric medium parameters of white matter for different background fields [18, 19].

𝐵0 [T] 1.5 3 7 11.2
𝜎 [S/m] 0.3 0.3 0.4 0.5
𝜀r 68 53 44 41

surface area with a radius of 2 cm. When we carry out a magnetic field measure-
ment (emf), the loop is oriented in the 𝑥-direction (𝝂 = 𝚤 𝑥), while for an electric field
measurement (mmf) we orient the loop in the 𝑧-direction (𝝂 = 𝚤 𝑧). The signal models
will be evaluated for background fields of 1.5 T, 3 T, 7 T and 11.2 T. The ball that we
consider consists of white matter and its conductivity and relative permittivity values
at the Larmor frequencies that correspond to these background fields are listed in
Table 5.1. In all cases, the relative permeability is taken to be equal to one. For the
relaxation times of white matter we take those of a 3 T background field, 𝑇1 = 900 ms
and 𝑇2 = 75 ms [17], and we use these values for all background fields under consid-
eration.

The signals that we receive are free induction decay (FID) signals as generated
by the time-varying magnetization

𝑀𝑥(𝑡) = 𝑀eq𝑒−𝑡/𝑇2 cos(𝜔0𝑡) (5.50)
𝑀𝑦(𝑡) = −𝑀eq𝑒−𝑡/𝑇2 sin(𝜔0𝑡) (5.51)

and

𝑀𝑧(𝑡) = 𝑀eq(1 − 𝑒−𝑡/𝑇1), (5.52)

where 𝜔0 = 𝛾𝐵0 is the Larmor frequency, 𝑇1 and 𝑇2 are the longitudinal and trans-
verse relaxation times, respectively, and 𝑀eq is the equilibrium magnetization. For a
proton spin density 𝜌 = 6.69 × 1028 m−3 (water) and at 𝑇 = 310.15 K, the equilibrium
magnetization evaluates to 𝑀eq ≈ 0.0031𝐵0. The above components of the magne-
tization form the solution of the Bloch equation with initial condition 𝑴(0) = 𝑀eq𝚤 𝑥 .
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For 𝑡 > 0, the above solution describes how the magnetization relaxes back to its
equilibrium 𝑴 = 𝑀eq𝚤 𝑧 as time increases.

5.3.1. Validating the Born approximation
Before we carry out our signal analysis, we first validate the Born approximation for
all background fields under consideration, since our signal models are based on this
approximation. Specifically, we compute the time-domain electromagnetic field due
to the magnetization given by Equations (5.50) to (5.52) using an in-house uniaxial
perfectly matched layer (UPML)-FDTD code. In our FDTD model, the conductivity
and permittivity values of the ball at the various Larmor frequencies are selected
according to Table 5.1. Subsequently, we use the computed FDTD field responses
to determine the electromotive force 𝑉emf as measured by a receiver located at 𝒙R =
[3.2 cm, 0, 0]. The dashed lines in Figure 5.2 show the resulting signals for various
background fields. The solid lines in this figure depict the signal model of (5.37) at
the same receiver location and for the same background fields. This latter model
is based on the quasi-static Born approximation (5.30) and (5.31), while obviously
no such approximation has been applied in our FDTD simulations. From Figure 5.2
we observe that the signals based on FDTD modeling and the signals based on the
quasi-static Born approximation overlap thereby validating that for this configuration
and for all background fields of interest, the Born approximation indeed provides us
with an accurate signal description.

5.3.2. Quasi-Static Signal Analysis
In the Laplace-domain, the quasi-static signal models hold provided that the condition
|𝑠 | 𝜏 ≪ 1 is satisfied for all 𝒙′ ∈ 𝔻obj and all frequencies 𝑠 of interest. For the FID
signals as generated by the magnetization of Equations (5.50) to (5.52), the Larmor
frequency is the only non-vanishing oscillation frequency, and we can set 𝑠 = j𝜔0 in
the above condition to obtain the quasi-static requirement that 2𝜋𝜆−1

0 ℛ ≪ 1 should
hold for all 𝒙′ ∈ 𝔻obj, where 𝜆0 is the wavelength in free space.

Introducing the maximum distance 𝑑max = max𝒙′∈𝔻obj ℛ, the quasi-static condition
is satisfied if 2𝜋𝑑max/𝜆0 ≪ 1. Table 5.2 lists 2𝜋𝑑max/𝜆0 for the three receivers men-
tioned above and for different background fields. From this table, we expect the quasi-
static approximation to hold for Receiver 1 and essentially all background fields under
consideration. For Receiver 2, the quasi-static signal models are expected to hold
for 1.5 T and possibly 3 T background fields, while for Receiver 3 the quasi-static field
approximation possibly holds at 1.5 T only. Figures 5.3 and 5.5 show the full wave sig-
nal model of (5.37) (solid line) and the quasi-static signal model of (5.46) (dashed
line) for the electromotive force 𝑉emf at the three receivers of Figure 5.1. Since a
quasi-static electromotive or magnetomotive force signal analysis leads to the same
conclusions, we present results for the electromotive force only.

From Figures 5.3 to 5.5 we observe that the quasi-static parameters of Table 5.2
quite accurately predict when a quasi-static signal model can be used. Specifically,
for Receiver 1 the value of 2𝜋𝑑max/𝜆0 is at or below 0.5 for all background fields
and Figure 5.3 shows that the full and quasi-static signals essentially overlap. For
Receiver 2, however, we observe that the quasi-static model overlaps with the full-
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Figure 5.2: Validation of the Born approximation for various background fields. Dashed (red) lines: 𝑉emf
as determined from the magnetic field of the FDTD simulation. Solid (blue) line: the signal model of
Equation (5.37). The receiver is located at 𝒙R = [3.2 cm, 0, 0] and the medium parameters of the ball are
listed in Table 5.1.
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Figure 5.3: Electromotive force at Receiver 1 for various background field strengths and a ball of white mat-
ter. The dielectric parameters are listed in Table 5.1. Solid line: full wave signal model of Equation (5.37);
dashed line: quasi-static signal model of Equation (5.46); dotted line: sum of the last two terms on the
right-hand side of Equation (5.46).
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Table 5.2: Background fields and normalized distances.

𝐵0 [T] 1.5 3 7 11.2
𝜆0 [m] 4.69 2.35 1.01 0.63
2𝑎/𝜆0 0.01 0.02 0.05 0.08
Rec. 1: 2𝜋𝑑max/𝜆0 0.07 0.13 0.31 0.5
Rec. 2: 2𝜋𝑑max/𝜆0 0.40 0.80 1.87 3.00
Rec. 3: 2𝜋𝑑max/𝜆0 0.74 1.47 3.44 5.50

wave model for a background field of 1.5 T, but starts to deviate from the full-wave
model for a background field of 3 T. For even higher background fields the quasi-
static model is no longer valid, which is consistent with Table 5.2, since 2𝜋𝑑max/𝜆0 is
larger than one in this case. These results indicate that the quasi-static signal model
coincides with the full-wave model as long as 2𝜋𝑑max/𝜆0 ≤ 0.5. This observation
is consistent with the full-wave and quasi-static signal models for Receiver 3 shown
in Figure 5.5. In this case, the quasi-static signal model already deviates from the
full-wave model for a background field of 1.5 T for which we have 2𝜋𝑑max/𝜆0 ≈ 0.74.
For higher background fields the quasi-static signal approximation definitely does not
hold at Receiver 3, and we have to resort to the full-wave model of Equation (5.46)
in this case.

Finally, the dotted lines in Figures 5.3 to 5.5 show the contribution of the conductiv-
ity and permittivity terms (the last two terms on the right-hand side of Equation (5.46))
to the total quasi-static signal Equation (5.46). We also observe that the contribution
of these terms is small for lower background fields, but increases as the background
field strength increases. Consequently, the conductivity and permittivity of the ball
can be retrieved from a quasi-static electromotive force measurement, provided the
SNR of the signals and the background field strengths are sufficiently large and the
quasi-static field approximation holds. Another option is, of course, to use an electric
field measurement (magnetomotive force measurement) as a basis for conductivity
and permittivity retrieval, since for such a measurement these quantities contribute
to the signal via the near-field as opposed to an electromotive force measurement,
where the medium parameters contribute to the signal via the intermediate field.

5.3.3. Conductivity and Permittivity Retrieval
Since the quasi-static signal models under the Born approximation are all valid for
measurements carried out with Receiver 1 (surface measurement) and all background
fields of interest, we now use these models at this receiver location to retrieve the
conductivity and permittivity of the ball (white matter).

Let us start with the signal model for a magnetic field measurement given by Equa-
tion (5.48). Introducing the functions 𝑑h

1 (𝑡) = 𝜕𝑡𝑴 · 𝒂h
1(𝒙R), 𝑑h

2 (𝑡) = 𝜇0𝜕2
𝑡𝑴 · 𝒂h

2(𝒙R),
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Figure 5.4: Electromotive force at Receiver 2 for various background field strengths and a ball of white
matter. The dielectric parameters are listed in Table 5.1. Solid line: full wave signal model of (5.37);
dashed line: quasi-static signal model of Equation (5.46); dotted line: sum of the last two terms on the
right-hand side of Equation (5.46).
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Figure 5.5: Electromotive force at Receiver 3 for various background field strengths. The dielectric param-
eters are listed in Table 5.1. Solid line: full wave signal model of Equation (5.37); dashed line: quasi-static
signal model of Equation (5.46); dotted line: sum of the last two terms on the right-hand side of Equa-
tion (5.46).
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Figure 5.6: Reconstructed permittivity (left) and conductivity (right) values using an EMF or MMF mea-
surement for various field strengths.

and 𝑑h
3 (𝑡) = 𝑐−2

0 𝜕3
𝑡𝑴 · 𝒂h

2(𝒙R), we have

𝑑Born
h;QS(𝑡) = 𝑑h

1 (𝑡) +
𝜎
3 𝑑

h
2 (𝑡) +

𝜀r − 1
3 𝑑h

3 (𝑡), (5.53)

for 𝑡 > 0. Similarly, for the electric field signal model we have

𝑑Born
e;QS(𝑡) =

𝜎
3 𝑑

e
1 (𝑡) +

𝜀r − 1
3 𝑑e

2 (𝑡) + 𝑑e
3 (𝑡), (5.54)

for 𝑡 > 0 with 𝑑e
1 (𝑡) = 𝜕𝑡𝑴 ·𝒂e

1(𝒙R), 𝑑e
2 (𝑡) = 𝜀0𝜕2

𝑡𝑴 ·𝒂e
1(𝒙R), and 𝑑e

3 (𝑡) = 𝜀0𝜕2
𝑡𝑴 ·𝒂e

2(𝒙R).
Subsequently, we introduce the time instances 𝑡𝑛 = (𝑛−1)Δ𝑡 for sample numbers

𝑛 = 1, 2, . . . , 𝑁 with (𝑁 − 1)Δ𝑡 = 𝑇obs, where 𝑇obs is the length of the observation
interval, and consider the above signals at these time instances to obtain

𝒅h = 𝒅h
1 + 𝜎

3 𝒅h
2 + 𝜀r − 1

3 𝒅h
3 and 𝒅e =

𝜎
3 𝒅e

1 + 𝜀r − 1
3 𝒅e

2 + 𝒅e
3 , (5.55)

where 𝒅h = [𝑑Born
h;QS(𝑡1), 𝑑Born

h;QS(𝑡2), . . . , 𝑑Born
h;QS(𝑡𝑁 )]

𝑇 is an 𝑁-by-1 column vector and all
other vectors in the above equation are defined similarly.

Since we consider FID signals as generated by the magnetisation as described
by the Bloch equation of Equations (5.50) and (5.52), it immediately follows that the
vectors 𝒅h

1 and 𝒅h
3 and the vectors 𝒅e

2 and 𝒅e
3 are linearly dependent. Therefore, we

consider the modified (scattered) data equations

�̃�
h
= 𝒂h𝒄 and �̃�

e
= 𝒂e𝒄 (5.56)

with 𝒄 = 1
3 [𝜎, 𝜀r − 1]𝑇 , �̃�h

= 𝒅h − 𝒅h
1 , �̃�e

= 𝒅e − 𝒅e
3 and the matrices 𝒂h and 𝒂e have

the column partitioning 𝒂h = (𝒅h
2 , 𝒅

h
3) and 𝒂e = (𝒅e

1 , 𝒅
e
2). Finally, noise is added to the

data, and we attempt to reconstruct the medium parameters as

𝒄∗ = argmin
𝒄




�̃�h,e
n − 𝒂h,e𝒄




2

2
(5.57)
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where �̃�
h,e
n = �̃�

h,e+𝒏 is the noisy data vector with 𝒏 the noise vector. With 𝑇0 = 2𝜋/𝜔0,
we first take 𝑇obs = 3𝑇0 ≈ [10−9 , 10−8] s in our minimization problem. Clearly, the ex-
ponential decay of the FID signal can be neglected in this case. With an SNR of
20 dB the conductivity and permittivity are determined by solving the corresponding
least-squares problem Equation (5.57) and the retrieved parameters are depicted in
Figure 5.6 along with the exact conductivity and permittivity values of white matter
and for various background fields as listed in Table 5.1. From this figure, we observe
that for a magnetic field (emf) measurement, the error in the retrieved medium pa-
rameters decreases as the background field strength increases. At 1.5 T and 3 T,
the medium parameters cannot be retrieved, but accurate medium parameters are
obtained only at 11.2 T. Since the dielectric medium parameters contribute via the
near field to a signal that is based on an electric field (mmf) measurement, we expect
that these parameters can be reliably recovered for low and high background fields.
From Figure 5.6 we observe that this is indeed the case and similar to a magnetic
field measurement, the reconstruction results improve as the strength of the back-
ground field increases. Finally, we mention that we have repeated this experiment
on an observation interval 𝑇obs = 3𝑇2 ≈ 10−2 s and found similar results, showing that
the electrical properties can also be recovered on a ∼ 10−2 time scale.

5.4. Discussion and Conclusions
In this paper, we have presented full wave-signal models for MRI field measurements.
The models show that the magnetization and the induced electric scattering currents
contribute to the measured signals, both weighted by their respective receive fields
that are determined by the antenna that is used for reception. We have shown that to
evaluate the models, the Green’s tensors of the background medium must be known,
along with the dielectric properties of the object and the magnetization within the ex-
cited part of the object must be known as well. For inhomogeneous background me-
dia, the Green’s tensors can only be evaluated numerically in general, which may be
a formidable task especially if electrically large objects are of interest. Moreover, for
given dielectric medium profiles and a given magnetization, the electric field strength
within the object must be computed, since it is required to determine the electric scat-
tering source. In other words, apart from numerically computing the Green’s tensors
of the background medium, a forward problem for the electric field strength must be
solved as well. Despite these computational bottlenecks, direct evaluation is possi-
ble in principle. Moreover, the models can be easily extended to include contrasts in
permeability, but at the expense of having to solve a coupled forward problem for the
electric and magnetic field within the object of interest.

We would like to emphasise that the model is the first (to our knowledge) to explic-
itly take the contribution of scattering from dielectric tissue into account for the signal
model in MRI. The fact that fields are not quasi-static anymore for high frequency
MR is well understood and has been used to develop new antenna design concepts
such as dipole and loop antenna combinations. However, these novel antenna de-
sign concepts only take the non-scattering signal contribution into account (described
here through the background electric field) as opposed to our comprehensive signal
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model. This model should therefore be more accurate when considering complex
effects such as local SAR, and can potentially be used to improve antenna design for
electrical properties imaging specifically.

To obtain explicit closed-form signal representations for electric and magnetic field
measurements, we have considered a homogeneous ball that is embedded in free-
space. Obviously, the Green’s tensors of the background medium are now known
and if the dielectric parameters and radius of the ball are “sufficiently small”, the quasi-
static Born approximation applies meaning that the electric field within the ball may
be approximated by the quasi-static background field, which is explicitly known. Ob-
viously, there is now no need to solve a forward problem and the medium parameters
show up explicitly in the resulting signal models. Travel time effects are still included
in these models, since the quasi-static Born approximation applies to the electric
field within the ball only. Quasi-static signal models may be obtained, however, for
receiver locations for which travel time effects can be neglected. These signal mod-
els directly generalise the standard quasi-static models as normally used in MRI and
clearly show how the dielectric parameters of the ball influence the measured signals.
In fact, for FID signals obtained from an electric or magnetic field measurement, we
demonstrated that the dependence of the signals on the medium parameters can
even be used to retrieve these parameters. Specifically, we showed that for high
background fields (7 T and 11.2 T), electric (mmf) and magnetic (emf) field measure-
ments allow for reliable parameter reconstructions, while at lower field strengths only
electric field measurements can be used essentially because the dielectric parame-
ters show up in the near-field of an electric field measurement and not in the near-field
of a magnetic field measurement.

Future work consists of experimental validation of the full-wave and simplified
quasi-static signal models, and its derived reconstruction method. The simplified
quasi-static models have their limitations, of course, and care should be taken when
applying these models, since they are valid for a ball and under very special circum-
stances only (quasi-static field and Born approximation applies). However, the sim-
plified models can be used to find the dielectric parameters of various tissue types
and other materials using easily obtained FID signals or using other MRI signal ac-
quisition schemes. Also, combining the above formulation with a robust framework
for SNR optimisation and the ultimate intrinsic snr definition are interesting avenues
for future research.

Obviously, the full-wave models do not suffer from these limitations and allow us
to determine how inhomogeneous dielectric tissue profiles influence the measured
signals. Large-scale computations are required to determine the effects of the con-
ductivity and permittivity profiles on the measured signals, but the models can po-
tentially be used in a wide variety of applications ranging from for RF coil/antenna
optimalisation to reduce local SAR and optimize the SNR in specific imaging appli-
cations to the design of antenna arrays that maximize the sensitivity of the signals to
the electrical properties as opposed to the magnetisation.
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6
Proximal Gradient Machine Learning

Approach to Quantitative Susceptibility
Mapping

Patrick Fuchs
Ruud van Sloun

ABSTRACT– Quantitative susceptibility mapping (QSM) is a specific
type of magnetic resonance imaging (MRI), used to image the mag­
netic susceptibility or magnetic permeability of tissue. This imaging
method requires the inversion of a dipole convolution. We describe a
newmethod to perform this inversion using a data­driven neural prox­
imal gradient algorithm. Themethod combines a known physics model
with machine learning tools for regularisation. This way of regularisa­
tionmay help in recovering information that is lost in a structuredway
through the forward model operation. Our results show good agree­
ment with model­based methods and provide a very robust, efficient
and flexible way to perform the dipole deconvolution.
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6.1. Introduction
In quantitative susceptibility mapping (QSM) the goal is to reconstruct the magnetic
susceptibility from magnetic resonance imaging (MRI) data. This is done using the
phase shift in the measured signal due to variations in the magnetic field. These
phase perturbations in turn can be related to changes in the susceptibility of the object
(with respect to a background (free-space) susceptibility) [1, 2].

Change in susceptibility is predominantly caused by metals in tissue, for example
iron and calcium, which can be manifestations of various pathological processes or
diseases. Important examples of these are neuro-degenerative diseases like early
onset dementia or Alzheimer’s, haemorrhages or pathological calcification. There-
fore QSM can play an important role in diagnosing and researching these diseases.
Since the pathologies of interest are often small with respect to the field of view and
their contribution to the measured signal is naturally smoothed over the image through
their point spread function, it is imperative to have reconstruction methods that can
counteract this and pinpoint the sources accurately.

Other challenges for QSM are the removal of a substantial unwanted background
signal, and, since the signal of interest is a phase quantity, robust phase unwrapping.
Phase unwrapping is a problem encountered in many disciplines with a number of
excellent algorithms developed for it, i.e. Laplacian based, region growing, best path
or graph-cut [3–5]. For the background removal also a number of great tools have
been developed [6–10]. In this research we consider the last step of each QSM
algorithm, the dipole inversion. This step can be easily isolated and is well described
using an anlytical forward model.

There are currently a number of dipole inversion algorithms, from the straightfor-
ward direct (thresholded) deconvolution [11], to least squares based methods [12, 13],
and even deep neural network based methods [14, 15]. Typically the least squares
based methods require tuning of a (regularisation) parameter and have a high compu-
tational cost. The neural network based methods on the other hand are more efficient
(after having been trained) but require large amount of training time and data. In terms
of training data it was shown that synthetic data can be leveraged for standard con-
volutional encoder-decoder networks [14]. Yet, robustness to distribution shift is hard
to warrant and these black-box networks can be hard to analyze.

In this chapter we describe an approach where we try to combine the flexibility of
a learned network with the robustness of our analytical model. We present a learned
unrolled iterative proximal gradient scheme, which allows us to learn the regularisa-
tion of our least squares problem through the use of a proximal mapping based on
the QSM data. We also attempt to gain insight into the “best” trained regularisation
method for this dipole inversion problem.

This approach is similar to [15, 16], which use a variational network relying on sub-
gradient methods, whereas in this work we use proximal gradient operators. Proximal
gradient operators theoretically have a better convergence, and have shown very
good results in other areas such as ultrasound imaging [17]. Additionally, Polak and
Hammernik use magnitude weighting in their work to further simplify the inversion
problem, which we do not consider in this study.
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6.2. Theory
6.2.1. Signal Model
We specifically consider single orientation reconstruction of the tissue susceptibility.
In this, we follow the framework of the 2016 reconstruction challenge [18], and use
susceptibility tensor imaging (STI) [19] as our reference model. According to the STI
signal formulation, the phase in the Fourier domain can be described as

�̃�(𝒌) = 1
3 �̃�

𝑇(𝒌) · �̃�(𝒌) · �̃�(𝒌) − �̃�(𝒌) · 𝒌
𝒌𝑇 · �̃�(𝒌) · �̃�(𝒌)

∥𝒌∥2 , (6.1)

where all quantities with a tilde are in the Fourier domain, �̃�(𝒌) is the susceptibility ten-
sor (3×3), �̃�(𝒌) = [�̃�𝑥(𝒌), �̃�𝑦(𝒌), �̃�𝑧(𝒌)]𝑇 is the magnetic field, and 𝒌 = [𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧]𝑇
collects the spatial Fourier coordinates. We will assume that the measurement is per-
formed in the transverse plane with respect to our data orientation, so �̃� = [0, 0, 1]𝑇 ,
and the signal equation simplifies to

�̃�(𝒌) =
(
1
3 − 𝑘2

𝑧

∥𝒌∥2

)
�̃�33 − 𝑘𝑧

∥𝒌∥2
(
𝑘𝑥 �̃�13 + 𝑘𝑦 �̃�23

)
. (6.2)

And, as often is assumed in single orientation QSM, the off diagonal tensor elements
�̃�13 and �̃�23 are assumed negligible, so we are left with

�̃�(𝒌) =
(
1
3 − 𝑘2

𝑧

∥𝒌∥2

)
�̃�33(𝒌) = �̃�(𝒌)�̃�(𝒌), (6.3)

with �̃�(𝒌) =
(

1
3 − 𝑘2

𝑧

∥𝒌∥2

)
as our dipole kernel, and we have used �̃� to denote the

�̃�33 element. This translates to a dipole convolution in the spatial domain, which is
commonly implemented using Fourier transformations as

𝜙(𝒙) = ℱ −1 {�̃�(𝒌)ℱ {𝜒(𝒙)}} , (6.4)

where ℱ {·} is the forward and ℱ −1{·} the inverse Fourier transform, and 𝜒(𝒙) the
susceptibility.

Discretised problem
We discretise Equation (6.4) to solve the inverse problem numerically. In short, the
discretised problem is given by

𝝓 = F𝐻DF𝝌. (6.5)

Here the susceptibilities and measured phase are given in 𝑥-lexicographic ordering
as

𝝓 = [𝜙(𝒙1), 𝜙(𝒙2), 𝜙(𝒙3), . . .]𝑇 , and
𝝌 = [𝜒(𝒙1), 𝜒(𝒙2), 𝜒(𝒙3), . . .]𝑇 ,
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with 𝒙 𝑖 the spatial coordinates. To approximate the dipole kernel in a discretized
space, the model of [20] will be used, which is given by

�̃�(𝒌) = 1
3 − 1 − 𝑐(𝑘𝑥)

3 − 𝑐(𝑘𝑥) − 𝑐(𝑘𝑦) − 𝑐(𝑘𝑧) , (6.6)

with
𝑐(𝑘𝑖) = cos

(
2𝜋𝑘𝑖
𝑁𝑖

)
for 𝑖 = 𝑥, 𝑦, 𝑧. (6.7)

Our dipole matrix then becomes a diagonal matrix

D = diag [
�̃�(𝒌1), �̃�(𝒌2), �̃�(𝒌3), . . .] , (6.8)

where 𝒌 𝑖 are the 𝑥-lexicographic ordened Fourier space coefficients (more specifi-
cally 𝒌 𝑖 = [𝑘 𝑖𝑥 , 𝑘 𝑖𝑦 , 𝑘 𝑖𝑧]). Lastly, the Fourier transformations are given here in the form
of discrete Fourier transformation (DFT) matrices (as F and F𝐻 for the forward and
inverse transformations respectively).

6.2.2. Learning Framework
To design our deep network, we build on the above QSM signal model given in Equa-
tion (6.5), and structure its architecture to solve the folowing regularised least squares
problem:

�̂� = min
𝝌

[

F𝐻DF𝝌 − 𝝓




2 + 𝜆𝑅(𝝌)] , (6.9)

in which 𝑅(𝝌) denotes a regularizer. Examples of such regularizers are the ℓ1 and ℓ2
norms of the solution, or total variation penalties, which are used throughout the QSM
literature. Appropriate selection of the regularizer dictates the fidelity of the recovered
estimate �̂�, and is a challenge on its own.

Drawing inspiration from iterative proximal-gradient schemes [21], which are dedi-
cated to solve (6.9), we unfold 𝐿 such iterations, learning an adequate image-domain
proximal mapping 𝒫(𝑙)

𝜃 and step size 𝛼(𝑙) at each fold:

�̂�(𝑙+1) = 𝒫(𝑙)
𝜃

[
�̂�(𝑙) − 𝛼(𝑙)F𝐻D (DF�̂�(𝑙) − F𝝓)]

. (6.10)

In the above formulation, at each fold a gradient step is taken towards the sampling-
consistent subspace that adequately represents the physical measurement of 𝝌. The
trained proximal operator 𝒫(𝑙)

𝜃 , a convolutional network on which we detail in Sec-
tion 6.3.1, then projects this onto the manifold of visually plausible images [22], re-
moving noise and blurring artifacts. One single fold of this iterative scheme can be
found in Figure 6.1, and an example unrolling can be found in Figure 6.2.

6.3. Methods
There are two ways to approach this problem, one is in the spatial domain (as de-
scribed in the theory above) and another would be in the frequency domain, solving
the following problem

�̃� = D�̃�. (6.11)
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ϕ FHDF + Pθ •

I − FHD2F

χ̂

ϕ̃ D + Pθ •

I − D2

χ̃

Figure 6.1: A schematic representation of the iterative scheme of (6.10) (top) and (6.12) (bottom). Each
unfolding adds an extra loop to the network in this sense.

ϕ AT

Pθ1 I − ATA + Pθ2 I − ATA + Pθ3 χ̂

Figure 6.2: An unrolled version representing three iterations of the update schemes.

This gives rise to the following update scheme (following the notation from Equa-
tion (6.10))

�̃�(𝑙+1) = 𝒫(𝑙)
𝜃

[
�̃�(𝑙) − 𝛼(𝑙)D (D�̃�(𝑙) − �̃�

)]
. (6.12)

A single fold of this update scheme can also be found in Figure 6.1.
In a fully sampled noiseless scenario these would essentially be solving the same

problem, however in the machine learning framework it can still lead to differences in
convergence and end result. We will therefore compare both approaches and their
differences.

6.3.1. Network Topology
The machine learning network is characterised by the number of unfoldings (com-
parable to the number of iterations of the iterative shrinkage- thresholding algorithm
(ISTA)) and the structure of the proximal mapping network (learned at each different
fold).

The proximal mapping is an elementwise soft thresholding in a learned (convolu-
tional) dictionary. In this learning framework the soft thresholding parameter is learn-
able. Also, a convolutional network is applied before and after the proximal mapping
to create a learnable “dictionary” mapping allowing the regularisation to be applied
across spatial (or frequency) dimensions. This network topology will be identical for
each unfolding, however the (learned) weights are separately determined, essentially
allowing each layer to learn its own dictionary of local relationships. The kernel for
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5×5
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T

λl

5×5

2

3×3

P(l)
θ

Figure 6.3: Block diagram of the proximal mapping operator, light blue are the convolutional layers and
orange denotes the soft thresholding operation (𝒯 ). The final convolutional mapping is used to map the
result to the image space (back to a single layer).

the convolutions is set to 5 × 5 pixels to allow the dictionaries to capture the local
relationships. And the filter depth of the dictionary prior to the proximal mapping is
12, with a filter depth of 2 after the proximal mapping. After these dictionaries a con-
volutional mapping with kernel size 3×3 (and filter depth 1) is used to map the result
back into measurement space. A graphical representation of this can be found in
Figure 6.3

These convolutional layers use a “relu” activation, and are followed by a mapping
back to the measurement space (for filter depths larger than the input dimension-
ality). Lastly, an “adam” optimiser is used to learn the network parameters with a
learning rate of 0.001, and the Fourier transformations are implemented through the
fast Fourier transformation (FFT) in the algorithm. For the frequency domain imple-
mentation the real and imaginary parts of input and output are stacked and the same
filter banks applied to both. In both cases this leads to a network with almost 19 000
weights.

6.3.2. Training and validation Data
For training the model synthetic datasets are used. The synthetic data is generated
similar to the data used in the the DeepQSM method [14]. However, in our simulations
we have used rectangels instead of squares, also allowing for rectangular boxes, and
we decreased the number of objects used to between 2 and 12 objects ([1, . . . , 6]
circles and [1, . . . , 6] rectangles both drawn from a uniform distribution). An example
of one of these can be found in Figure 6.4. In total we use 500 datasets for training.
These are split into 450 training and 50 test datasets at each training epoch during
the training process, so that all datasets are used in both training and testing during
this time.

To validate the method we use a brain image from the fast algorithm for nonlinear
susceptibility inversion (FANSI) toolbox1, as well as a synthetic phantom consisting
1https://gitlab.com/cmilovic/FANSI-toolbox

https://gitlab.com/cmilovic/FANSI-toolbox
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Figure 6.4: Randomly generated synthetic training dataset. Left is the susceptibility (unitless) and right
the computed phase image (measurement, in radians).

of eight spheres of varying susceptibility. Lastly, all data sets were re-sampled at a
resolution of 2.5×2.5 mm from 0.9375×0.9375 mm and a matrix size of 128× 128
pixels from 256 × 256 pixels (including zero padding the domain to get the required
field of view).

6.3.3. Experiment description
The network was trained on noisy phase measurements. For the noise complex
Gaussian distributed noise at a signal to noise ratio (SNR) of 30 dB was added to
the measurements. Important to note is that it was not added directly to the phase
information but rather to the actual measurement from which the phase is extracted
as,

𝜙 = 2 arctan
(
Im(meas + noise)
Re(meas + noise)

)
.

The noise level is chosen to still allow the use of truncated (or thresholded) k-space
division, in which the measured phase is directly (pointwise) divided by the dipole
kernel. This method directly increases the influence of noise for small values of the
dipole kernel, and would require low pass filtering of the measured phase in low SNR
situations.

Furthermore the experiment consisted of 100 epochs of training after which the
predictions were taken, with an early stopping criterion based on the validation loss
to stop after 4 epochs without decreasing loss. This stopping criterion stopped the
training after 78 epochs for the image domain based network and 93 epochs for
the frequency domain based one. The predictions are then compared to the ground
truth, a thresholded k-space division (TKD) reconstruction [11], and a reference least
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Figure 6.5: Training loss and validation loss of the image domain approach (left) and frequency domain
approach (right).

squares (LSQR) and ISTA reconstruction. The thresholding of the TKD method was
set at 0.1, which showed the best result from a range of thresholds at the given SNR.
The ISTA reconstruction consisted of 100 iterations with alpha of 0.5, again found
through trial and error.

6.4. Results
The resulting reconstructions can be found in Figures 6.6 and 6.7. For the first image,
the spherical phantom, at the given SNR, both regular ISTA and LSQR reconstruc-
tions perform relatively well. Most clearly the noise can be seen as abberations in
the reconstructed susceptibility. This can be improved slightly by smoothing the input
data using a Gaussian filter or regularising the LSQR reconstruction by decreasing
the nubmer of iterations. Both of these approaches will however also smooth the
edges of the reconstruction. One important thing to note is that the LSQR approach
seems to overestimate the susceptibility slightly (as can be seen specifically in the
three highest susceptibility spheres of the spherical phantom). Also, all three ref-
erence reconstructions struggle with reconstructing the lowest susceptibility value
(bottom right sphere).

Both learned proximal mapping approaches are better at filtering the background
noise and also reconstructing the homogenous spheres without aberrations. The
image domain reconstructions seems to be better at reducing background noise but
also struggles with the lowest susceptibility sphere, whereas the frequency domain
implementation is the only one to reconstruct this sphere in the most pronounced
manner.

In terms of learning rate and convergence the networks performed relatively sim-
ilar, with the image domain network having a slightly faster initial convergence and
also ending up with a lower validation loss than the frequency domain network. The
learning curves of both networks can be found in Figure 6.5.

In the anatomical reconstruction, which can be seen in Figure 6.7 the difference
between image and frequency domain implementations becomes more apparent
as a distinct smearing can be observed in the image domain implementation. The
frequency domain implementation also has slight blurring but better resolves small
anatomical details while also succesfully suppressing noise effects.

Both machine learned approaches are much faster than the LSQR implementation
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Method Recon. time Normalised MSE
TKD 3.24 ms 83.58
LSQR 61 s 48.74
ISTA 117 ms 43.18
Prox-Image space 45.2 ms 21.83
Prox-Freq space 49.1 ms 13.68

Table 6.1: Comparison of reconstruction times and normalised mean squared errors of all different methods
on the spheres contrast. The reconstruction times have been computed over 10 repetitions on a Google
Colab sheet with GPU support. Note that the LSQR and ISTA reconstruction times are dependent on
the convergence rate for the given dataset (noisy data often results in more iterations which leads to
longer reconstruction times) whereas for the other methods the number of iterations is fixed and thus the
reconstruction times as well.

and match the speed of the ISTA implementation. Simple TKD is still faster, but the
reconstruction speed is less than a second with all but the LSQR method (which takes
upwards of a minute to reconstruct a (noisy) 2 dimensional slice). A comparison of
normalised mean square errors and reconstruction times of all 5 algorithms can be
found in Table 6.1 for a more in depth look.

6.5. Conclusions
A novel learned proximal gradient method was applied to the QSM dipole inversion
problem. With this approach a network with a very small number of weights can be
used to solve an inverse problem very efficiently. Conventional convolutional neural
networks such as used in e.g. DeepQSM [14] require millions of weights to be trained
and often rely on large training datasets to find these weights. The proposed method
on the other hand relies on less than 19 000 weights.

The decrease in network complexity is made possible foremost because of the
forward model, which is incorporated directly within the machine learning network.
This means only the regularisation needs to be learned, which we do through a prox-
imal gradient method here. This proximal gradient operation is more efficient than a
sub-gradient approach as for example presented in [15] (variational networks dipole
inversion (VaNDI)).

The proximal mapping gives us less control over the regularisation, but compared
to conventional gradient based methods like the streaking artefact reduction (STAR)
method [13] we offload finding a good tuning value for the regularisation parameters
to the training phase which makes our method “parameter free” afterwards during
reconstruction or regular imaging use. Also, the dictionary based proximal mapping
allows us to learn how to deal with the zeroes in the dipole convolution, which lead to
the non-invertibility of the operation. The smoothing is most likely related to the cost
function, as an improvement of the image based model is observed when switching
to a Fourier domain cost function to compare to the Fourier model based method.
Additionally a generative adversarial network (GAN) cost could be used for example
to promote edges or sharpness of the reconstruction.
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(a) Original contrast (b) TKD reconstruction

(c) ISTA reconstruction (d) LSQR reconstruction

(e) ProxQSM reconstruction
(Image domain)

(f) ProxQSM reconstruction
(Frequency domain)

Figure 6.6: Normalised original susceptibility distributions and reconstructions of spherical phantom.
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(a) Original contrast (b) TKD reconstruction

(c) ISTA reconstruction (d) LSQR reconstruction

(e) ProxQSM reconstruction
(Image domain)

(f) ProxQSM reconstruction
(Frequency domain)

Figure 6.7: Normalised original susceptibility distributions and reconstructions of anatomical dataset.
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Future work includes investigating an inversion based on the actual measured
signal (amplitude and phase) to see if this can provide additional information (re-
garding the spatial position of the object) as well as noise robustness. The role of
the (colored) noise on the convergence of our training, as well as on the reference
reconstructions will also be compared to other more elaborate (accurate) forward sim-
ulation approaches for QSM to verify whether the forward model used is an accurate
representation of these signals. A more accurate forward model should lead to faster
learning of the network, and better reference datasets will be necessary to apply this
method to real measured data.

In future work we will look at whether the trained proximal mapping can generalise
across different spatial discretisations, i.e. whether training the proximal mapping on
a very fine grid will still allow us to use it on a more coarse measurement of the phase
(given the right dipole kernel for that gridding of course).

Finally, our method is faster from a computational point of view when compared
to conventional iterative methods (after being trained), as the reconstruction essen-
tially becomes a forward operation of the network. Future work will include expanding
the method to multiple angle measurements and comparing it to the gold standard
calculation of susceptibility through multiple orientation sampling (COSMOS) recon-
structions [23], as well as looking at amplitude weighting of the inverse problem, i.e.
changing from the phase formulation to the full measured signal.
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7
Conclusion

Binnen de perken zijn de mogelijkheden even onbeperkt als daarbuiten.

Jules Deelder

Electromagnetic fields are an integral part of nuclear magnetic resonance exper-
iments and magnetic resonance imaging in particular. Careful consideration of their
interaction with the magnetisation present in matter has led to the development of
fast Fourier imaging and more advanced concepts such as magnetic resonance fin-
gerprinting. In this work the focus was on the interaction with dielectric (and magnetic)
tissue properties. These interactions are governed by the Maxwell equations instead
of the Bloch equations (which describe the time evolution of the magnetisation).

Investigating these interactions, we have seen that carefully chosen approxima-
tions can lead to very efficient imaging methods, but also that all these approximations
come at a cost. More specifically, the key contributions of this thesis are

1. the introduction of a direct induced current imaging method for �̃�+
1 measure-

ments performed in the midplane of a birdcage coil as well as electrical proper-
ties imaging method based on these measurements,

2. a thorough investigation of the errors introduced in electrical properties methods
by assuming a two-dimensional field structure in the midplane of a birdcage coil,

3. the extension of the target field method to a transverse oriented background
field,

4. development of a new comprehensive signal model for MRI including scattering
contributions, and application of a closed-form approximation of this model to
electrical properties reconstruction,

5. the application of a proximal gradient descend approach to quantitative suscep-
tibility mapping.

The following conclusions can be drawn regarding these contributions:
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First-order current imaging By using the two-dimensional field structure present
in the midplane of a birdcage coil we could directly relate the induced currents to
the measured field without any assumptions on the homogeneity of the object (which
is necessary in Helmholtz equation based electrical properties methods for exam-
ple). This means only a first order differential operation is required, as opposed to a
second order differentiation, resulting in less noise sensitivity of the method. Addition-
ally, since the currents can be reconstructed directly, the electrical properties follow
from what is essentially a forward operation. Unfortunately, the method still requires
the incident or background fields to be known to perform this operation. This recon-
struction method provides a very straightforward way to investigate error sources in
electrical properties tomography methods by giving direct insight into the induced cur-
rents, and therefore the influence of the dielectric properties on the measured field,
reflecting local changes in signal intensity for example.

Two dimensionality assumption As the first-order current imaging method relies
on the fields inside a birdcage coil being two-dimensional, that is, they can be decou-
pled into TE and TM polarised waves, which allows for the direct relation between
currents and field, we decided to thoroughly investigate this assumption. This was
done in the context of contrast source inversion, since this inversion methodology
provides a straightforward extension from two- to three-dimensional fields, and can
be related to first-order current imaging when the two-dimensional assumption holds.
We observe that even in the midplane of a birdcage coil the two-dimensional as-
sumption does not hold when the object is not sufficiently translationally invariant in
the longitudinal (out of plane) direction. We did manage to show that the error on
the amplitude of the field is less of an issue than the error in the phase. Additionally,
at the field strenghts considered, the error of conductivity reconstruction was less
pronounced than the error of the permittivity reconstructions, where it seems that the
out of plane contributions of the fields (and currents), which are not considered in the
two-dimensional approximation, completely offsets the reconstruction.

Target field method for transverse background fields Applying the target field
method to a different orientation showcases the great power and flexibility of this
approach. Though the relation between the currents on a cylindrical sheet and the
transverse magnetic field inside this cylinder is less straightforward than with a lon-
gitudinally oriented field, the method still works very well. This difference can be
attributed mainly to the fact that the longitudinal direction is an invariant direction with
respect to the current-carrying geometry whereas the transverse direction will always
have to be represented by two of the axes of this given cylindrical geometry (the radius
and angle). Similar to the original target field formulation the longitudinally directed
gradient is the most difficult orientation to design due to the inherent relationship be-
tween the proximity to the current sheet and the field strength generated, leading to
a much smaller linear region for this orientation. It is encouraging to see how after
almost 40 years these analytic methods still provide a great tool for providing insight
into the physics and it potentially provides a means of quickly evaluating designs for
iterative optimisation methods.
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Generalised signal models To wrap up our investigation of the electric tissue prop-
erties, we present the derivation for a full-wave measurement model for an magnetic
resonance imaging (MRI) examination. Such a model be used to simulate the per-
turbations in a loop or dipole MRI measurement caused by dielectric tissue. The
models are computationally complex, therefore we also present closed-form simplifi-
cations for a spherical homogeneous object. These simplified models are then used
to present a reconstruction method based on a free induced decay (FID) signal. This
directly proves the application and necessity of more complex signal models, for ex-
ample for electrical properties tomography. Additionally, the model could also be
used for antenna optimisation or sequence design.

Proximal gradient approach to QSM Combining machine learning with model
based inversion methods can lead to the best of both worlds. Fast and reliable con-
vergence from the model and easy tuning of regularisation parameters using machine
learning tools. We have shown an application of these to the QSM dipole inversion
problem, where the model is known accurately but choosing a regularisation is not
straighforward. Generally QSM images combine sparse high intensity areas with a
low rank background image, but this is not sufficient to create a robust regulariser.
This approach allows for the correct regularisation to be learned for these types of
images.

7.1. Dielectric Properties
There are different ways to perform electrical properties imaging, direct and iterative
inversion methods in particular are presented. Under specific conditions the rela-
tionships between electric fields and properties can be significantly simplified which
is exploited by direct current imaging. In reality, however, the matter is much more
complex than that and accurately assessing the image quality and artefacts is not
an easy feat. Therefore, we point towards three-dimensional methods and fully un-
derstanding the measured signal as potential solutions. Though those problems are
much more complex than the simplified reconstruction methods, they are the only way
we can guarantee accurate reconstruction of the actual electrical properties. As we
have seen using the full wave signal model, the influence of the electrical properties
on a measurement is very difficult to distinguish from for example the proton density
or permeability, which can cause over and underestimates of either value giving the
same results, or in other words the inverse problem does not have a unique solution
without additional constraints.

This is of critical importance if we want electrical properties imaging to become
a clinically relevant tool for diagnostics. If there is no reliable measure of “healthy”
and “pathological” tissue properties for specific tissue types and organs at the mea-
sured frequencies, there is no way to reliably diagnose diseases based on electrical
properties alone. If we do manage to get these in-vivo measures, however, they
can provide an entirely new dimension to diagnostic tools and for example machine
learning approaches to medical diagnostics. In this way, the accuracy and possibly
generalisability of tools and pathologies is increased, as well as greatly increasing
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safety of MRI examinations through accurate specific absorption rate (SAR) predic-
tions.

7.2. Electromagnetic Fields in MRI
Through the generalised signal model that we have presented in this thesis, we have
shown that for sufficiently high magnetic background fields the interaction between
electrical properties and (electro-) magnetic fields in MRI is more complicated than
usually assumed. The complication comes from two different sources. First of all,
the antennas are usually operating in the near field, since the antenna is located as
closely as possible to the tissue. Second, and more importantly, scattering from di-
electric tissue is not considered. In other words, standard signal modeling is based on
a quasi-static field assumption in which dielectric scattering is not taken into account,
since in static electromagnetic fields we would not observe scattering. However, we
show that given an electric field measurement (that is, a dipole antenna) these ef-
fects are present even at relatively low, clinical, MRI field strengths. This can then be
exploited, for example, to measure the electrical properties of an object under con-
sideration even from a simple free induction decay signal. Additionally, it provides
insight into antenna geometry optimisation and could even lead to sequence design
improvements for conventional imaging applications.

All these observations point to opportunities for a more complex signal model,
unfortunately these are not without their challenges. Before investigating all the var-
ious ways in which the not-yet considered signal components can play a role, it is
imperative to validate this model. We believe this to be the most important step at
this point in the investigation, and there are a number of ways to go about it. For
example, constructing a spherical phantom such as the one considered in the simpli-
fied closed-form signal model allows us to compare measurements with simulation,
and attempting to reconstruct electrical properties from an FID measurement of the
sphere to validate this approach. Additionally, a finite difference time domain (FDTD)
method could be used to compare short time measurements (where the oscillations
of the magnetic precession can be observed) for various phantom types where the
phase change due to conductivity could be investigated.
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Well if you gotta read directions,
baby let me tell you, it’s bad engineering,
cause the UI should explain what it does,

and if you have experience with other devices
you should be able to figure it out.

Reggie Watts

To make the target field method accessible and share our findings with respect to
the design for a transverse magnetic field a Python based design tool was developed.
This chapter serves as a brief description of the tool, the details of the transverse
field derivation, as well as an investigation of the inductance computation which is
performed.

A.1. Details of the Modified Target Field Method
We denote the domain inside the cylinder Region I, while the domain outside the
cylinder is called Region II. Field quantities having their support in these domains
carry a corresponding superscript.

The magnetic field in both domains is governed by the field equations ∇ · 𝑩 = 0
and ∇ × 𝑩 = 0. The latter equation is satisfied if we write 𝑩 = −∇Φ, where Φ is the
scalar magnetic potential. Substitution in the first field equation gives ∇2Φ = 0. In
other words, the potential satisfies Laplace’s equation inside and outside the cylinder.
Writing this equation in cylindrical coordinates, we have

𝜕2ΦI,II

𝜕𝑟2 + 1
𝑟
𝜕ΦI,II

𝜕𝑟
+ 1
𝑟2

𝜕2ΦI,II

𝜕𝜙2 + 𝜕2ΦI,II

𝜕𝑧2 = 0. (A.1)

Furthermore, at the current-carrying surface 𝑟 = 𝑎 we have the boundary conditions

lim
𝑟↑𝑎

𝜕ΦI

𝜕𝑟
= lim

𝑟↓𝑎
𝜕ΦII

𝜕𝑟
, (A.2)
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lim
𝑟↑𝑎
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𝑟
𝜕ΦI

𝜕𝜙
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𝑟↓𝑎
1
𝑟
𝜕ΦII

𝜕𝜙
= 𝜇0𝐽𝑧 , (A.3)

and

lim
𝑟↓𝑎

𝜕ΦII

𝜕𝑧
− lim

𝑟↑𝑎
𝜕ΦI

𝜕𝑧
= 𝜇0𝐽𝜙 , (A.4)

and, finally, the surface current must satisfy the continuity equation:

𝜕𝐽𝑧
𝜕𝑧

+ 1
𝑎

𝜕𝐽𝜙
𝜕𝜙

= 0. (A.5)

Applying the Fourier transformation (4.3, which transforms with respect to 𝜙 and
𝑧) to Laplace’s equation, the boundary conditions, and the continuity equation, we
obtain the spectral domain equations

𝑟2 𝜕
2Φ̃[𝑚]

𝜕𝑟2 + 𝑟 𝜕Φ̃
[𝑚]

𝜕𝑟
− (𝑚2 + 𝑘2𝑟2)Φ̃[𝑚] = 0, (A.6)
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, (A.7)
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[𝑚]
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and

j𝑘
(
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𝑟↓𝑎
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𝑟↑𝑎

Φ̃I;[𝑚]
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[𝑚]
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and
𝑘𝑎𝐽[𝑚]

𝑧 + 𝑚𝐽[𝑚]
𝜙 = 0. (A.10)

Here 𝑚 and 𝑘 are the fourier transforms of 𝜕𝑝ℎ𝑖 and 𝜕𝑧 respectively. As is well-
known [1], the solution of (A.6) in Region I that is bounded at the origin is given by
Φ̃I;[𝑚](𝑟, 𝑘) = 𝛼𝑚(𝑘)𝐼𝑚(|𝑘 | 𝑟), where the coefficient 𝛼𝑚(𝑘) is independent of 𝑟, while
the solution in Region II that remains bounded as 𝑟 → ∞ is given by Φ̃II;[𝑚](𝑟, 𝑘) =
𝛽𝑚(𝑘)𝐾𝑚(|𝑘 | 𝑟) with 𝛽𝑚(𝑘) independent of 𝑟. Substituting these solutions in the bound-
ary conditions, the coefficients are found as

𝛼𝑚(𝑘) = −j𝑎𝜇0
|𝑘 |
𝑘
𝐾′
𝑚(|𝑘 | 𝑎)𝐽[𝑚]

𝜙 (A.11)

and

𝛽𝑚(𝑘) = −j𝑎𝜇0
|𝑘 |
𝑘
𝐼′𝑚(|𝑘 | 𝑎)𝐽[𝑚]

𝜙 . (A.12)
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Having the spectral domain potential at our disposal, the corresponding spectral do-
main magnetic field can be determined. Of particular interest is the magnetic field
inside the cylinder (Region I), since the target field is prescribed in this region. Ex-
plicitly, for the magnetic field in Region I, we have

�̃�I;[𝑚]
𝑟 = −𝜕Φ̃I;[𝑚]

𝜕𝑟

= j𝑎𝜇0𝑘𝐼′𝑚(|𝑘 | 𝑟)𝐾′
𝑚(|𝑘 | 𝑎)𝐽[𝑚]

𝜙 ,
(A.13)

�̃�I;[𝑚]
𝜙 = − j𝑚

𝑟
Φ̃I;[𝑚]

= − 𝑎𝜇0

𝑟
𝑚
|𝑘 |
𝑘
𝐼𝑚(|𝑘 | 𝑟)𝐾′

𝑚(|𝑘 | 𝑎)𝐽[𝑚]
𝜙 ,

(A.14)

and

�̃�I;[𝑚]
𝑧 = −j𝑘Φ̃I;[𝑚]

= −𝑎𝜇0 |𝑘 | 𝐼𝑚(|𝑘 | 𝑟)𝐾′
𝑚(|𝑘 | 𝑎)𝐽[𝑚]

𝜙 .
(A.15)

Now the target field is in the 𝑥-direction and is prescribed on the inner cylinder 𝑟 = 𝑏.
Writing this field in terms of its cylindrical components, we have

𝐵𝑥(𝑏, 𝜙, 𝑧) = 𝐵I
𝑟(𝑏, 𝜙, 𝑧) cos(𝜙) − 𝐵I

𝜙(𝑏, 𝜙, 𝑧) sin(𝜙) (A.16)

and applying the Fourier transformation to the above equation gives:

�̃�[𝑚]
𝑥 (𝑏, 𝑘) = 1

2

[
�̃�I;[𝑚−1]
𝑟 (𝑏, 𝑘) + �̃�I;[𝑚+1]

𝑟 (𝑏, 𝑘)
]

− 1
2j

[
�̃�I;[𝑚−1]
𝜙 (𝑏, 𝑘) − �̃�I;[𝑚+1]

𝜙 (𝑏, 𝑘)
]
.

(A.17)

Substituting (A.13) and (A.14) in the above expression we arrive at (4.5).

A.1.1. Surface current density for a 𝑧-gradient coil
We show how we obtain the surface current from the prescribed target field for the
design of a 𝑧-gradient coil. The analysis for an 𝑥- or 𝑦-gradient coil runs along sim-
ilar lines. For a 𝑧-gradient coil, the Fourier transform of the target field is given by
�̃�[𝑚]
𝑥 (𝑏, 𝑘) = 2𝜋𝑔𝑧 Γ̃ln(𝑘)𝛿𝑚,0, where the delta symbol denotes the Kronecker delta and

Γ̃ln(𝑘) =
∫ ∞

𝑧=−∞
Γln(𝑧)𝑒−j𝑘𝑧 d𝑧. (A.18)
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Note that Γ̃ln(𝑘) is imaginary and an odd function of 𝑘. Substitution of the Fourier
transform of the target field in (4.5) gives

2𝜋𝑔𝑧 Γ̃ln(𝑘)𝛿𝑚,0 =
j
2
[
�̃�[𝑚−1](𝑏, 𝑘) − �̃�[𝑚−1](𝑏, 𝑘)] 𝐽[𝑚−1]

𝜙 (𝑘)

+ j
2
[
�̃�[𝑚+1](𝑏, 𝑘) + �̃�[𝑚+1](𝑏, 𝑘)] 𝐽[𝑚+1]

𝜙 (𝑘).
(A.19)

Since the left-hand side of this equation vanishes for 𝑚 odd, we take a surface
current for which all even numbered angular modes of its 𝜙-component vanish, that
is, we take 𝐽[𝑚]

𝜙 (𝑘) = 0 for 𝑚 even and 𝑘 ∈ ℝ. Furthermore, for 𝑚 = 0 we obtain

2𝜋𝑔𝑧 Γ̃ln(𝑘) = j
2
[
�̃�[1](𝑏, 𝑘) + �̃�[1](𝑏, 𝑘)] [𝐽[−1]

𝜙 (𝑘) + 𝐽[1]𝜙 (𝑘)
]
,

where we have taken the symmetry of �̃�[𝑚] and �̃�[𝑚] with respect to 𝑚 into account.
For the surface current we now take 𝐽[−1]

𝜙 (𝑘) = 𝐽[1]𝜙 (𝑘) and we obtain

𝐽[1]𝜙 (𝑘) = −j
2𝜋𝑔𝑧 Γ̃ln(𝑘)

�̃�[1](𝑏, 𝑘) + �̃�[1](𝑏, 𝑘) = 𝐽[−1]
𝜙 (𝑘). (A.20)

Similarly, for 𝑚 even and not equal to zero (𝑚 = 2𝑛, 𝑛 = ±1,±2, . . .) the left-hand
side vanishes and if we take a surface current for which all odd numbered angular
modes are even with respect to 𝑚, that is,

𝐽[−2𝑛+1]
𝜙 (𝑘) = 𝐽[2𝑛−1]

𝜙 (𝑘), 𝑛 = 1, 2, . . . , (A.21)

then we satisfy (A.19) if

𝐽[2𝑛+1]
𝜙 (𝑘) = − �̃�

[2𝑛−1](𝑏, 𝑘) − �̃�[2𝑛−1](𝑏, 𝑘)
�̃�[2𝑛+1](𝑏, 𝑘) + �̃�[2𝑛+1](𝑏, 𝑘) 𝐽

[2𝑛−1]
𝜙 (𝑘), (A.22)

for 𝑛 = 1, 2, . . . . In other words, all odd-numbered higher-order modes can be deter-
mined recursively starting from 𝐽[1]𝜙 (𝑘) as given by (A.20).

To obtain the 𝜙-component of the surface current in the spatial domain, we sub-
stitute the modes in the Fourier inversion formula and include apodisation to obtain

𝐽𝑧𝜙(𝜙, 𝑧) =
1

4𝜋2

∫ ∞

𝑘=−∞

∞∑
𝑚=−∞

𝐽[𝑚]
𝜙 (𝑘)�̃�(𝑘)𝑒 j𝑚𝜙𝑒 j𝑘𝑧 d𝑘

=
1

2𝜋2

∞∑
𝑚=1
𝑚 odd

cos(𝑚𝜙)
∫ ∞

𝑘=−∞
𝐽[𝑚]
𝜙 (𝑘)�̃�(𝑘)𝑒 j𝑘𝑧 d𝑘.

(A.23)

The current consists of an infinite summation of odd-numbered angular modes. Each
term in this series represents the 𝜙-component of a surface current that produces its
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own magnetic field. The total magnetic field consists of a superposition of these
individual fields due to the linearity of the field equations. Since we want to realize a
𝑧-gradient coil in practice, we have to truncate the series and to keep the construction
of the coil as simple as possible, we keep the first current term in the series only. Our
final expression for the 𝜙-component of the surface current becomes

𝐽𝑧𝜙(𝜙, 𝑧) =
1

2𝜋2 cos(𝜙)
∫ ∞

𝑘=−∞
𝐽[1]𝜙 (𝑘)�̃�(𝑘)𝑒 j𝑘𝑧 d𝑘

= −j
𝑔𝑧
𝜋

cos(𝜙)
∫ ∞

𝑘=−∞
Γ̃ln(𝑘)�̃�(𝑘)

�̃�[1](𝑏, 𝑘) + �̃�[1](𝑏, 𝑘) 𝑒
j𝑘𝑧 d𝑘.

(A.24)

The 𝑧-component of the surface current that corresponds to (A.24) follows from the
continuity equation for the surface current.

A.2. Inductance Computation
The inductance of a thin cylinder with given current density is given by [2] and [3] as

𝐿 = −𝜇0𝑎2

𝐼2

∞∑
𝑚=−∞

∞∫
−∞

���𝐽𝑚𝜙 (𝑘)
���2 𝐼′𝑚𝐾′

𝑚 d𝑘. (A.25)

Here 𝑎 is the radius of the cylinder, 𝐼 the current applied, 𝜇0 the vacuum permeabil-
ity, 𝐽𝑚 the current density in the spatial frequency domain and 𝐼′𝑚 and 𝐾′

𝑚 are the
derivatives of the Bessel functions of order 𝑚. Unfortunately I couldn’t find a rigorous
derivation of this equation, but since it seemed to be common knowledge at the time
I present a proof (or derivation) of this equation here for good measure.

Most of these notes are based on work by Turner and the doctoral thesis of Qin
Liu. They describe in detail the derivation of the inductance based due to a current
density on a thin cylinder. The energy of steady state currents can be written in terms
of the vector potential 𝑨 as

𝑈 =
1
2

∫
𝑱 · 𝑨d𝑉, (A.26)

assuming steady currents in static magnetic fields1. Here 𝑨 is the vector potential,
and the integration is over ℝ3. For a cylindrical coil, where the currents are confined
to the surface of a cylinder of radius 𝑟 = 𝑎, this simplifies in cylindrical coordinates to

𝑈 =
𝑎
2

𝜋∫
−𝜋

∞∫
∞

(
𝐽𝜙𝐴𝜙 + 𝐽𝑧𝐴𝑧 ) d𝑧 d𝜙. (A.27)

Now, we also know that for a coil of inductance 𝐿, the magnetic energy due to a
current 𝐼 flowing into this coil is given by2.

𝑈 =
1
2𝐿𝐼

2. (A.28)
1This equation and a derivation for it can be found e.g. in Feynman’s Lectures on Physics [4] (15–6, eq.
15.20) http://www.feynmanlectures.caltech.edu/II_15.html#mjx-eqn-EqII1520

2https://www.feynmanlectures.caltech.edu/II_17.html#mjx-eqn-EqII1737

http://www.feynmanlectures.caltech.edu/II_15.html#mjx-eqn-EqII1520
https://www.feynmanlectures.caltech.edu/II_17.html#mjx-eqn-EqII1737
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Combining Equation (A.28) and Equation (A.27) gives us the following expression
for the inductance of a cylindrical coil in terms of its current distribution

𝐿 =
𝑎
𝐼2

𝜋∫
−𝜋

∞∫
∞

(
𝐽𝜙𝐴𝜙 + 𝐽𝑧𝐴𝑧 ) d𝑧 d𝜙. (A.29)

To compute this expression we describe the currents in terms of the inverse Fourier
transformed frequency domain currents

𝐽𝜙(𝜙, 𝑧) = 1
2𝜋

∞∑
𝑚=−∞

∞∫
−∞

𝐽𝜙(𝑚, 𝑘)𝑒 j𝑚𝜙𝑒 j𝑘𝑧 d𝑘, (A.30)

𝐽𝑧(𝜙, 𝑧) = 1
2𝜋

∞∑
𝑚=−∞

∞∫
−∞

𝐽𝑧(𝑚, 𝑘)𝑒 j𝑚𝜙𝑒 j𝑘𝑧 d𝑘, (A.31)

and the components of the vector potential are3

𝐴𝜙(𝜙, 𝑧) = 𝜇0𝑎
4𝜋

∞∑
𝑚=−∞

∞∫
−∞

𝐽𝜙(𝑚, 𝑘)𝑒 j𝑚𝜙𝑒 j𝑘𝑧�̃�𝜙 d𝑘, (A.32)

𝐴𝑧(𝜙, 𝑧) = 𝜇0𝑎
2𝜋

∞∑
𝑚=−∞

∞∫
−∞

𝐽𝑧(𝑚, 𝑘)𝑒 j𝑚𝜙𝑒 j𝑘𝑧�̃�𝑧 d𝑘, (A.33)

where we have used

�̃�𝜙 = 𝐼𝑚−1(|𝑘 | 𝑎)𝐾𝑚−1(|𝑘 | 𝑎) + 𝐼𝑚+1(|𝑘 | 𝑎)𝐾𝑚+1(|𝑘 | 𝑎). (A.34)

and

�̃�𝑧 = 𝐼𝑚(|𝑘 | 𝑎)𝐾𝑚(|𝑘 | 𝑎). (A.35)

to ease the notation. Substituting these into Equation (A.29) we get

𝐿 =
𝑠
2

𝜋∫
−𝜋

∞∫
∞

∞∑
𝑚=−∞

∞∫
−∞

𝐽𝑚𝜙 (𝑘)𝑒 j𝑚𝜙𝑒 j𝑘𝑧�̃�𝜙 d𝑘
∞∑

𝑚′=−∞

∞∫
−∞

𝐽𝑚
′

𝜙 (𝑘′)𝑒 j𝑚′𝜙𝑒 j𝑘′𝑧 d𝑘′ d𝑧 d𝜙

+ 𝑠
𝜋∫

−𝜋

∞∫
∞

∞∑
𝑚=−∞

∞∫
−∞

𝐽𝑚𝑧 (𝑘)𝑒 j𝑚𝜙𝑒 j𝑘𝑧�̃�𝑧 d𝑘
∞∑

𝑚′=−∞

∞∫
−∞

𝐽𝑚
′

𝑧 (𝑘′)𝑒 j𝑚′𝜙𝑒 j𝑘′𝑧 d𝑘′ d𝑧 d𝜙,

3From “Shielded transverse gradient coil for in vivo nmr” by Qin Liu, 1991 [3]. Can also be found in “Passive
screening of switched magnetic field gradients” by Turner and Bowley, 1986 [5].
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with 𝑠 =
(
𝜇0𝑎2)/(4𝜋2𝐼2

)
. The next step is to combine the inverse transforms of the

vector potential and the current density according to∫
𝑓 (𝑥)d𝑥

∫
𝑔(𝑥′)d𝑥′ =

∬
𝑔(𝑥′) 𝑓 (𝑥)d𝑥′d𝑥, (A.36)

which holds for any converging integral. We can have the product of the functions
inside the innermost integral because 𝑓 (𝑥) does not change on integration w.r.t. 𝑥′
and can therefore be considered a constant in regard to d𝑥′.

𝐿 =
𝑠
2

𝜋∫
−𝜋

∞∫
∞

∞∑
𝑚=−∞

∞∫
−∞

∞∑
𝑚′=−∞

∞∫
−∞

𝐽𝑚𝜙 (𝑘)𝐽𝑚′
𝜙 (𝑘′)𝑒 j(𝑚+𝑚′)𝜙𝑒 j(𝑘+𝑘′)𝑧�̃�𝜙 d𝑘′ d𝑘 d𝑧 d𝜙

+ 𝑠
𝜋∫

−𝜋

∞∫
∞

∞∑
𝑚=−∞

∞∫
−∞

∞∑
𝑚′=−∞

∞∫
−∞

𝐽𝑚𝑧 (𝑘)𝐽𝑚′
𝑧 (𝑘′)𝑒 j(𝑚+𝑚′)𝜙𝑒 j(𝑘+𝑘′)𝑧�̃�𝑧 d𝑘′ d𝑘 d𝑧 d𝜙.

Now we change the order of integration, and we integrate first over 𝜙 and 𝑧, on
which it turns out only the exponentials inside the Fourier transformation depend.
The following identities hold for these integral4

𝜋∫
−𝜋

𝑒 j(𝑚+𝑚′)𝜙 d𝜙 = 2𝜋𝛿𝑚′ ,−𝑚 and
∞∫

−∞
𝑒 j(𝑘+𝑘′)𝑧 d𝑧 = 2𝜋𝛿(𝑘′ + 𝑘), (A.37)

which simplifies the expression to

𝐿 =
𝜇0𝑎2

2𝐼2

∞∑
𝑚=−∞

∞∫
−∞

∞∑
𝑚′=−∞

∞∫
−∞

𝐽𝑚𝜙 (𝑘)𝐽𝑚′
𝜙 (𝑘′)𝛿𝑚′ ,−𝑚𝛿(𝑘′ + 𝑘)�̃�𝜙 d𝑘′ d𝑘

+ 𝜇0𝑎2

𝐼2

∞∑
𝑚=−∞

∞∫
−∞

∞∑
𝑚′=−∞

∞∫
−∞

𝐽𝑚𝑧 (𝑘)𝐽𝑚′
𝑧 (𝑘′)𝛿𝑚′ ,−𝑚𝛿(𝑘′ + 𝑘)�̃�𝑧 d𝑘′ d𝑘.

Since 𝛿𝑚′ ,−𝑚 = 1 for 𝑚′ = −𝑚 and 𝛿(𝑘′ + 𝑘) is the Dirac delta, we can further simplify
the integration and summation over 𝑘′ and 𝑚′ to

𝐿 =
𝜇0𝑎2

2𝐼2

∞∑
𝑚=−∞

∞∫
−∞

𝐽𝑚𝜙 (𝑘)𝐽−𝑚𝜙 (−𝑘)�̃�𝜙 d𝑘 + 𝜇0𝑎2

𝐼2

∞∑
𝑚=−∞

∞∫
−∞

𝐽𝑚𝑧 (𝑘)𝐽−𝑚𝑧 (−𝑘)�̃�𝑧 d𝑘.

By definition 𝐽−𝑚𝜙 (−𝑘) and 𝐽−𝑚𝑧 (−𝑘) are the complex conjugates of 𝐽𝑚𝜙 (𝑘) and 𝐽𝑚𝑧 (𝑘)
4http://mathworld.wolfram.com/DeltaFunction.html eq. (31), and http://functions.wolfram.
com/IntegerFunctions/DiscreteDelta/introductions/TensorFunctions/ShowAll.html under In-
tegral representations

http://mathworld.wolfram.com/DeltaFunction.html
http://functions.wolfram.com/IntegerFunctions/DiscreteDelta/introductions/TensorFunctions/ShowAll.html
http://functions.wolfram.com/IntegerFunctions/DiscreteDelta/introductions/TensorFunctions/ShowAll.html
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respectively, therefore 𝐽−𝑚𝜙 (−𝑘)𝐽𝑚𝜙 (𝑘) =
���𝐽𝑚𝜙 (𝑘)

���2. Furthermore, since5

𝐽𝑚𝜙 (𝑘) = − 𝑘𝑎
𝑚
𝐽𝑚𝑧 (𝑘), (A.38)

it follows that
��𝐽𝑚𝑧 (𝑘)��2 = 𝑚2

𝑘2𝑎2

���𝐽𝑚𝜙 (𝑘)
���2, and

𝐿 =
𝜇0𝑎2

𝐼2

∞∑
𝑚=−∞

∞∫
−∞

1
2

���𝐽𝑚𝜙 (𝑘)
���2 �̃�𝜙 + 𝑚2

𝑘2𝑎2

���𝐽𝑚𝜙 (𝑘)
���2 �̃�𝑧 d𝑘.

Finally we use the Bessel function identity

𝐼𝑚−1(|𝑘 | 𝑎)𝐾𝑚−1(|𝑘 | 𝑎) + 𝐼𝑚+1(|𝑘 | 𝑎)𝐾𝑚+1(|𝑘 | 𝑎) =
−2

(
𝐼′𝑚(|𝑘 | 𝑎)𝐾′

𝑚(|𝑘 | 𝑎) + 𝑚2

𝑘2𝑎2 𝐼𝑚(|𝑘 | 𝑎)𝐾𝑚(|𝑘 | 𝑎)
)
,

(A.39)

to rewrite �̃�𝜙 as

�̃�𝜙 = −2
(
𝐼′𝑚(|𝑘 | 𝑎)𝐾′

𝑚(|𝑘 | 𝑎) + 𝑚2

𝑘2𝑎2 �̃�𝑧
)
. (A.40)

And the inductance follows as

𝐿 = −𝜇0𝑎2

𝐼2

∞∑
𝑚=−∞

∞∫
−∞

���𝐽𝑚𝜙 (𝑘)
���2 (𝐼′𝑚𝐾′

𝑚 + 𝑚2

𝑘2𝑎2 𝐼𝑚𝐾𝑚 − 𝑚2

𝑘2𝑎2 𝐼𝑚𝐾𝑚
)

d𝑘

= −𝜇0𝑎2

𝐼2

∞∑
𝑚=−∞

∞∫
−∞

���𝐽𝑚𝜙 (𝑘)
���2 𝐼′𝑚𝐾′

𝑚 d𝑘. (A.41)

This is in good agreement with the results found in e.g. Turner 1993. □

A.3. Open Source Gradient Design Tool
To facility open access research and open source tools the equations and numerical
implementation of the gradient field method (for transverse electric fields) has been
made into an open source tool as well. Major credits for refactoring the code into
readable python go to Thomas O’Reilly, who has also made a user-friendly graphical
user interface (GUI) for others to use. This tool can be found at https://github.
com/LUMC-LowFieldMRI/GradientDesignTool including all the python code, and the
graphical user interface is shown in Figure A.1.

5see “Gradient Coil Design: A Review of Method” by Turner 1993 (eq. 26), or B. de Vos “Gradient Coil
Design and Construction for a Halbach Based MRI system” (eq. 2.39)

https://github.com/LUMC-LowFieldMRI/GradientDesignTool
https://github.com/LUMC-LowFieldMRI/GradientDesignTool
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Figure A.1: The graphical user interface of the gradient design tool, which allows easy simulation of the
target field method for transverse oriented magnetic field configurations. The full tool can be found at
https://github.com/LUMC-LowFieldMRI/GradientDesignTool.

https://github.com/LUMC-LowFieldMRI/GradientDesignTool
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B
Expansion vectors for time-domain signal

models
The expansion vectors for a magnetic field measurement are given by

𝒓mg
0 = 𝒑1 , (B.1)

𝒓mg
1 = 𝒑1 +

1
3𝑍0𝜎 [(𝒙′ · 𝝂)𝒏 − (𝒙′ · 𝒏)𝝂], (B.2)

𝒓mg
2 = 𝒑2 +

1
3𝑍0𝜎 [(𝒙′ · 𝝂)𝒏 − (𝒙′ · 𝒏)𝝂]

+ 1
3 (𝜀r − 1) (𝒙

′ · 𝝂)𝒏 − (𝒙′ · 𝒏)𝝂
|𝒙′ − 𝒙R | , (B.3)

𝒓mg
3 =

1
3 (𝜀r − 1) (𝒙

′ · 𝝂)𝒏 − (𝒙′ · 𝒏)𝝂
|𝒙′ − 𝒙R | , (B.4)

where 𝑍0 is the impedance of vacuum and 𝜀r the relative permittivity of the ball. The
expansion vectors for an electric field measurement are given by with

𝒓el
0 =

𝜎
3 𝒙′ × 𝒑1 , (B.5)

𝒓el
1 = 𝑌0𝒒 + 𝜎

3 𝒙′ × 𝒑1 , (B.6)

𝒓el
2 = 𝑌0𝒒 + 𝜎

3 𝒙′ × 𝒑2 , (B.7)

𝒓el
3 =

1
3𝑌0(𝜀r − 1) 𝒙′ × 𝒑2

|𝒙′ − 𝒙R | , (B.8)

where 𝑌0 = (𝜀0/𝜇0)1/2 is the admittance of vacuum, and

𝒒 = 𝝂 × 𝒏 + 1
3 (𝜀r − 1) 𝒙′ × 𝒑1

|𝒙′ − 𝒙R | . (B.9)

Note that these expansion vectors are independent of 𝑠, but do depend on the dis-
tance |𝒙′ − 𝒙R |.
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C
Finite Difference Time Domain

implementation with Uni-axial Perfectly
Matched Layer

The full equations used in the finite difference time domain (FDTD) simulation are
described and derived from the Maxwell equations here. First the normal update
equations are shown and then the uniaxial perfectly matched layer (UPML) formula-
tion used in the actual simulations is described.

C.1. The Maxwell equations
The FDTD method is used to solve Maxwell’s equations by time stepping the fields.
In all of our scenarios we are dealing with an object that is in free space, which
means that the fields propagate outwards without reflections from a boundary. To
perform this operation in our discretised space we require a perfectly matched layer
(PML) which will essentially absorb the waves travelling out of our discrete domain.
To describe the relationships between the field and incorporate our perfectly matched
layer we use the Maxwell equations

∇ × 𝑬(𝑡 , 𝒓 ) + 𝜕𝑡𝑩(𝑡 , 𝒓 ) = −𝑲(𝑡 , 𝒓 ), (C.1)
−∇ × 𝑯(𝑡 , 𝒓) + 𝜕𝑡𝑫(𝑡 , 𝒓 ) + 𝑱 𝑐(𝑡 , 𝒓 ) = −𝑱(𝑡 , 𝒓). (C.2)

Here 𝑲 and 𝑱 describe magnetic and electric source densities, the field quantities
𝑬,𝑫 , 𝑱 𝑐 describe electric fields and 𝑩 and 𝑯 describe the magnetic fields. The mag-
netic and dielectric properties 𝜇, 𝜎, 𝜀 are incorporated in the field quantities through
the constitutive equations

𝑫 = 𝜀𝑬, 𝑱 𝑐 = 𝜎𝑬 and 𝑩 = 𝜇𝑯 . (C.3)

Furthermore, 𝒓 is used to denote the position of the fields and 𝑡 is the time.
To get to the FDTD formulation we discretise these equations spatially as well as

temporally and perform several approximations to get a system of matrix equations
that can easily be solved by a computer.
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Figure C.1: A staggered Yee grid for three dimensional electromagnetic fields. The blue and red cubes
denote the grid cells for electric and magnetic field respectively. Both consist of isotropic voxels with
dimensions d𝑥 = d𝑦 = d𝑧.

C.2. Discretisation Procedure
Both for the temporal and the spatial discretisations staggered grids will be used. Why
we offset the electric and magnetic fields by half a grid distance will become clear
when we arrive at the final update equations. This approach was first introduced by
Yee [1], and is nowadays implemented in all conventional FDTD solvers. For the rest
of this section and the UPML implementation the notation and derivation of [2] will be
followed.

C.2.1. Yee (Staggered) Grid
The gridding is staggered such that each magnetic field component is half a grid cell
away from the respective electric field component. Furthermore, the field components
themselves (𝑥, 𝑦, 𝑧) are distributed on the Yee cell at the various cell faces. This
configuration can be found in Figure C.1. As can be seen from this illustration there
will be one grid which has cells half a voxel outside of the other grid. We denote this as
primary and secondary grid, where the primary grid will contain the outermost voxels
and the secondary grid will necessarily contain 2 voxels less in each dimension.

In our implementation the primary grid is the magnetic field gridding, and the sec-
ondary grid the electric field grid. This grid does not necessarily have to be isotropic
(that is 𝑥, 𝑦, 𝑧 discretisations are equal) but in all simulations performed in this thesis
an isotropic gridding is used, since spherical objects are considered which take up
the same amount of space in each dimension.

Lastly, for implementing the operators as matrix vector products the different field
components (𝐹𝑥 , 𝐹𝑦 and 𝐹𝑧) are concatenated, and the coordinates are ordered in a
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𝑥−lexicographic fashion. That is

f = [f𝑥 , f𝑦 , f𝑧 ]𝑇 , (C.4)

and

f𝑟 = [
𝐹𝑟(𝑥0 , 𝑦0 , 𝑧0), 𝐹𝑟(𝑥1 , 𝑦0 , 𝑧0), . . . , 𝐹𝑟(𝑥0 , 𝑦1 , 𝑧0), 𝐹𝑟(𝑥1 , 𝑦1 , 𝑧0), . . .

]𝑇
. (C.5)

Here f is used to denote a discretised field vector and 𝐹𝑟(𝑥, 𝑦, 𝑧) a continuous field
quantity 𝑟 component of the yee cell with center at position (𝑥, 𝑦, 𝑧).

The discrete curl of a field can then simply be described by a differencing matrix
operation on the field vector as

∇ × 𝑭 → D 𝑓 f , (C.6)

where the subscript denotes the specific grid on which the curl operation takes place
(the grid on which the specific discretised field lives).

C.2.2. Temporal Discretisation
For the temporal discretisation we again split up the fields and discretise them on
different time steps. Here we discretise (for notation’ sake) the electric field on the
“whole” time steps and the magnetic field on the “half” time steps, so exactly between
the electric field time instances.

For approximating fields at a different time point than which they are defined at,
so for example to approximate the electric field at time step 𝑖 + 1/2 we make use of
the semi implicit approximation

f 𝑖+1/2 =
f 𝑖 + f 𝑖+1

2 , (C.7)

where the superscript denotes the (discrete) time step at which the field value f is eval-
uated. Furthermore, to discretise the temporal derivative a centralised differencing
approach is taken, which leads to

𝜕𝑡 f 𝑖 = f 𝑖+1/2 − f 𝑖−1/2

Δt (C.8)

where Δt is the time step used.

C.2.3. Medium Discretisation
Since the field components and fields are offset from one another the medium pa-
rameters need to be computed at the correct positions, as well as averaged over the
different voxels depending on their application. For the permeability the harmonic
average is used and the permittivity and conductivity the mean is used for the cells
which contain medium boundaries.
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C.2.4. Discrete Maxwell Equations
Now we have all the tools necessary to discretise the Maxwell equations as they are
given in (C.1) and (C.2). The source densities are discretised in the same fashion
as the field quantities (𝐾 source on the magnetic field gridding and 𝐽 sources on the
electric field grid). Also, we will first consider the regular equations without constitutive
PML tensor 𝒔, this tensor will be considered in Section C.3. This leads to the following
discretised equations

D𝑒 e 𝑖 + 𝜇

Δt
(h 𝑖+1/2 − h 𝑖−1/2

)
= −k 𝑖 , (C.9)

−Dℎh 𝑖+1/2 + 𝜀
Δt

(e 𝑖+1 − e 𝑖 ) + 𝜎
2
(e 𝑖 + e 𝑖+1) = −j 𝑖+1/2 , (C.10)

where we have substituted the constitutive relationships. These equations can be
rewritten into update equations by collecting all the future terms on one side, and all
past or current terms on the other.

h 𝑖+1/2 = h 𝑖−1/2 − Δt
𝜇

(D𝑒 e 𝑖 + k 𝑖) , (C.11)

e 𝑖+1 =
(2𝜀 − 𝜎Δt)
(2𝜀 + 𝜎Δt) e 𝑖−1 + 2Δt

(2𝜀 + 𝜎Δt)
(Dℎh 𝑖+1/2 − j 𝑖+1/2

)
. (C.12)

C.3. Uni-axial Perfectly Matched Layer
To describe the perfectly matched layer which is required to prevent reflections from
the boundary of the simulation space a general constitutive tensor 𝒔 is introduced.
The Maxwell equations with this added tensor are

∇ × 𝑬(𝑡 , 𝒓 ) + 𝜕𝑡𝒔𝑩(𝑡 , 𝒓 ) = −𝑲(𝑡 , 𝒓 ), (C.13)
−∇ × 𝑯(𝑡 , 𝒓) + 𝜕𝑡𝒔𝑫(𝑡 , 𝒓 ) + 𝒔𝑱 𝑐(𝑡 , 𝒓 ) = −𝑱(𝑡 , 𝒓). (C.14)

With constitutive tensor

𝒔 =


𝑠𝑦 𝑠𝑧
𝑠𝑥

0 0
0 𝑠𝑧 𝑠𝑥

𝑠𝑦
0

0 0 𝑠𝑥 𝑠𝑦
𝑠𝑧

 = diag
(
𝑠𝑦𝑠𝑧𝑠−1

𝑥 , 𝑠𝑧𝑠𝑥𝑠
−1
𝑦 , 𝑠𝑥𝑠𝑦𝑠

−1
𝑧

)
, (C.15)

where 𝑠𝑖 = 𝜅𝑖 + 𝜎𝑖/(j𝜔𝜀0) in the frequency domain (note the integrating factor from
the 1/(j𝜔) term). For ease of reading the following shorthand notation will be used

𝑠𝑖, 𝑗 ,𝑘 ≡ diag
(
𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘

)
,

and likewise for 𝜅𝑖, 𝑗 ,𝑘 or 𝜎𝑖 , 𝑗 ,𝑘 . In this notation the original tensor can be written as 𝒔 =
𝑠𝑦,𝑧,𝑥 𝑠𝑧,𝑥,𝑦𝑠−1

𝑥,𝑦,𝑧,. Following the same procedure as before with the normal Maxwell
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equations we arrive at the update equations for the FDTD method with UPML

b 𝑖+1/2 =
2𝜀0𝜅𝑦,𝑧,𝑥 − Δt𝜎𝑦,𝑧,𝑥
2𝜀0𝜅𝑦,𝑧,𝑥 + Δt𝜎𝑦,𝑧,𝑥 b 𝑖−1/2 − 2𝜀0

2𝜀0𝜅𝑦,𝑧,𝑥 + Δt𝜎𝑦,𝑧,𝑥[
ΔtD𝑒 e 𝑖 + 𝜇0(m 𝑖+1/2 − m 𝑖−1/2)] (C.16)

h 𝑖+1/2 =
2𝜀0𝜅𝑧,𝑥,𝑦 − Δt𝜎𝑧,𝑥,𝑦
2𝜀0𝜅𝑧,𝑥,𝑦 + Δt𝜎𝑧,𝑥,𝑦 h 𝑖−1/2 + 1

𝜇(2𝜀0𝜅𝑧,𝑥,𝑦 + Δt𝜎𝑧,𝑥,𝑦)[
(2𝜀0𝜅𝑥,𝑦,𝑧 + Δt𝜎𝑥,𝑦,𝑧)b 𝑖+1/2 − (2𝜀0𝜅𝑥,𝑦,𝑧 − Δt𝜎𝑥,𝑦,𝑧)b 𝑖−1/2

]
(C.17)

p 𝑖+1 =
(2𝜀 − 𝜎Δt)
(2𝜀 + 𝜎Δt) p 𝑖−1 + 2Δt

(2𝜀 + 𝜎Δt)Dℎh 𝑖+1/2. (C.18)

d 𝑖+1 =
2𝜀0𝜅𝑦,𝑧,𝑥 − Δt𝜎𝑦,𝑧,𝑥
2𝜀0𝜅𝑦,𝑧,𝑥 + Δt𝜎𝑦,𝑧,𝑥 d 𝑖 −

2𝜀0
2𝜀0𝜅𝑦,𝑧,𝑥 + Δt𝜎𝑦,𝑧,𝑥 (p 𝑖+1 − p 𝑖) (C.19)

e 𝑖+1 =
2𝜀0𝜅𝑧,𝑥,𝑦 + Δt𝜎𝑧,𝑥,𝑦
2𝜀0𝜅𝑧,𝑥,𝑦 + Δt𝜎𝑧,𝑥,𝑦 e 𝑖 −

1
2𝜀0𝜅𝑧,𝑥,𝑦 + Δt𝜎𝑧,𝑥,𝑦[(2𝜀0𝜅𝑥,𝑦,𝑧 + Δt𝜎𝑥,𝑦,𝑧)d 𝑖+1 − (2𝜀0𝜅𝑥,𝑦,𝑧 − Δt𝜎𝑥,𝑦,𝑧)d 𝑖 ] . (C.20)

Note that in this case we cannot get around substituting the constitutive relationships
directly and simplifying the situation to just two fields (𝐸 and 𝐻) due to the added time
derivatives from the constitutive tensor, we are even forced to introduce a new field
𝑷 which is defined as

𝑷 = 𝑠𝑦,𝑧,𝑥𝑠𝑧,𝑥,𝑦 𝑠−1
𝑥,𝑦,𝑧𝑬. (C.21)

C.3.1. Tensor Coefficients
To make the PML we have implemented in our simulation space actually attenuate
the signal we add a loss (through the 𝜎 parameter). This loss has to be graded, and
slowly increased throughout the PML space since a jump in conductivity would lead
again to unwanted reflections. There are a number of different ways to do this grading
but in this implementation the choice was made to use a polynomial grading

𝜎(𝒓) =
( 𝒓
𝑑

)𝑛
𝜎max , (C.22)

where 𝑑 is the length of the PML in the direction 𝒓 starting from 𝒓 = 0 at the start of
the PML to 𝒓 = 𝑑 at the edge, 𝜎max is the maximum conductivity and 𝑛 the order of
the polynomial grading.

We do not use the permittive UPML coefficient since our PML always starts in
free space around our object so there is no need to match it to the permittivity of this
medium. For a polynomial grading the parameters can be estimated given an esti-
mate of the acceptable error. This is done through specifying a maximum reflection
coefficient of the layer specified as 𝑅(0) the reflection on normal incidence.

It has been demonstrated that for a broad range of applications with a 10 cell thick
polynomial graded PML the optimal reflection coefficient is 𝑅(0) ≈ exp(−16) [3]. We
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can use this value to determine our 𝜎max through

𝜎max = −(𝑛 + 1)𝑅(0)
2𝜂𝑑 , (C.23)

with 𝜂 the impedance of the PML (
√

𝜇
𝜀 ), which is free space impedance for our sce-

nario. Typically, values for the order 𝑛 are chosen between 3 and 4, and we have
found that 4 works very well for our simulations.

C.4. Computational Implementation
Here we describe the matrix structure of the update equations as they are imple-
mented and normalised within the MATLAB programming language in which the FDTD
code is written.

In our computation implementation the vectors are stacked field vectors in 𝑥-
lexicographic fashion, and the matrices describe the action of the voxelwise scaling.
The update equations then follow as

b 𝑖+1/2 = N𝑏 (O𝑏b 𝑖−1/2
)
−O𝑏

[
ΔtD𝑒 e 𝑖 + 𝜇0

(m 𝑖+1/2 − m 𝑖−1/2
)]
, (C.24)

h 𝑖+1/2 = Nℎ (Oℎh 𝑖−1/2
)
+Oℎ

[M−1
𝜇

(L𝑏b 𝑖+1/2 − R𝑏b 𝑖−1/2
)]
, (C.25)

p 𝑖+1 = M−1
𝜀

(M𝜀p 𝑖 ) − (
ΔtDℎh 𝑖+1/2 − j 𝑖+1/2

)
, (C.26)

d 𝑖+1 = N𝑑 (O𝑑d 𝑖) +O𝑑
(L𝑝p 𝑖 + 1 − R𝑝p 𝑖 ) , (C.27)

e 𝑖+1 = N𝑒 (O𝑒 e 𝑖 ) +O𝑒

(L𝑑d 𝑖 + 1 − R𝑑d 𝑖) , (C.28)

where the matrices N,O are numerator and denominator of the fractions given in
Equations (C.16) to (C.20), R and L also follow from these equations straightforward,
and M,D, the medium and differencing matrices, as well as the normalisation proce-
dure used can be found described in [4].
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D
Transceive Phase Correction

An assumption underlying the contrast source inversion (CSI) inversion methods [1]
as well as most other electrical properties tomography (EPT) methods (such as the
Helmholtz based magnetic resonance (MR)-EPT[2]) is the transceive phase assump-
tion (TPA) assumption [3].

This assumption states that the receive phase (𝜙−)—which cannot be measured
directly—is equal to the transmit phase (𝜙+). Then, the actually measured transceive
phase, which is

𝜙± = 𝜙+ + 𝜙− (D.1)

can be used to determine the transmit phase as

𝜙− =
𝜙±

2 . (D.2)

Unfortunately, it turns out that—especially at high frequencies—this assumption does
not hold [4]. Therefore, we propose an updated contrast source inversion scheme
with added transcieve phase correction (TPC) updates.

D.1. Theory
To perform a phase correction we consider the measured �̃�+

1 field in polar form and
rewrite it to include the measured transceive phase and a receive phase correction
term as

�̃�+
1 =

���̃�+
1
�� 𝑒 j𝜙+

=
���̃�+

1
�� 𝑒 j𝜙±

𝑒−j𝜙−
. (D.3)

Combining this with the original cost functional Equation (3.12) (more specifically the
data residual Equation (3.9)) results in a new data residual

𝑟TPC
𝑑 (𝒙) = ���̃�+;𝑠𝑐

1 (𝒙)�� 𝑒 j𝜙±(𝒙)𝑒−j�̂�−(𝒙) − 𝒢data{�̂�}(𝒙) for 𝒙 ∈ 𝔻body , (D.4)
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where we have added a new approximant �̂�− to represent the estimated recieve
phase. The rest of the notation is as presented in Chapter 3. To update this esti-
mate during the regular CSI iterations a phase update step is added to the algorithm.
In this step the receive phase is updated using the current estimates of the contrast
and electric field strength.

We use the estimated contrast and electric field to compute a scattered receive
field �̃�−;𝑠𝑐

1 by using the integral field equation Equation (3.2), and computing it in the
same way as the �̃�+;𝑠𝑐

1 field but with changed sign between 𝑥 and 𝑦 components, as

�̃�−;sc
1 (𝒙) = �̃�sc

𝑥 − j�̃�sc
𝑦

2 =
1
2

∫
𝒙′∈𝔻body

∑
𝑘=𝑥,𝑦,𝑧

[
�̃�BJ
𝑥𝑘(𝒙 , 𝒙′) − j�̃�BJ

𝑦𝑘(𝒙 , 𝒙′)
]
�̃�𝑘(𝒙′)d𝑉. (D.5)

Following the computation, the new estimate for the receive phase is the phase of
this receive field.

Computationally this means there is an added fourier-type integral to be computed
at each CSI iteration. This increases computation time and complexity, which is not
a big issue for two-dimensional CSI-EPT, but may be prohibitive when dealing with
fully three-dimensional fields. In those cases the phase update could be performed
only every 10 or 100 iterations, since not including it would just result in the original
scheme. However, no assumptions on the phase are necessary to reconstruct the
contrast from the 𝐵+

1 data. The new two-dimensional procedure is shown below in
Algorithm 4.

D.2. Results
To check the improved algorithm and confirm that it can indeed correct the transcieve
phase assumption two-dimensional validation simulations have been performed. Re-
sults from these experiments can be found on the next pages in Figures D.1 and D.2.
From these reconstructions it can be seen that the transceive phase introduces a big-
ger error at higher frequencies, as already mentioned in the introduction. Additionally,
our proposed algorithm seems to be able to correct for this assumption at both tested
field strengths to the same degree, where only a minute phase error is present. This
might be caused by phase wrapping errors where the phase is unwrapped along the
wrong “branch” and contains phase jumps of approximately 2𝜋 which should not be
present. There are different ways to approach phase unwrapping, which can be very
robust in two dimensions, but in that case generalising to three dimensions is a more
complicated.

In addition to these in-silico validations an in-vivo experiment was also performed
using a spherical phantom. The full results for this can be found in [5].
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Figure D.1: Reconstruction results using transceive phase correction compared to the original CSI method
in a 3 T background field scanner. Left the original method and right the transieve phase corrected results.
Top is conductivity and bottom permittivity reconstructions.
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Figure D.2: Reconstruction results using transceive phase correction compared to the original CSI method
in a 7 T background field scanner. Left the original method and right the transieve phase corrected results.
Top is conductivity and bottom permittivity reconstructions.
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Algorithm 4 Transceive phase corrected (2D) CSI-EPT.

• Compute �̂�[0], �̂�[0] and the incident RF-fields

• For 𝑘 = 1, 2, . . .

1. Update the contrast sources according to

�̂�[𝑘] = �̂�[𝑘−1] + 𝛼[𝑘]𝒗[𝑘].

2. Compute the corresponding electric field strength �̂�
[𝑘] according to (cf.

Equation (3.6)).
�̂�[𝑘] = �̃�𝑏 + 𝒢body{�̂�[𝑘]}.

3. Knowing the contrast source and the corresponding electric field strength,
determine the contrast using the constitutive relationship.

4. Update the receive phase by computing the receive field from Equa-
tion (D.5) and updating the phase estimate as

�̂�− = ∠�̂�−;𝑠𝑐
1 .

5. Stop if objective function is smaller than user specified tolerance level, or
if maximum number of iterations has been reached.

• Return �̂�[𝑘], �̂�[𝑘], �̂�−;𝑠𝑐
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Acronyms
ACES international applied computational electromagnetics society.

AFI actual flip-angle imaging.

COSMOS calculation of susceptibility through multiple orientation sampling.

CSI contrast source inversion.

CT computerised tomography.

DFT discrete Fourier transformation.

EIT electrical impedance tomography.

EM electro magnetic.

EPT electrical properties tomography.

FANSI fast algorithm for nonlinear susceptibility inversion.

FDTD finite difference time domain.

FFT fast Fourier transformation.

FID free induced decay.

FoV field of view.

GMRES generalized minimal residual solver.

IEEE intitute of electrical and electronics engineers.

IISC Indian institute of science.

ISMRM International Society for Magnetic Resonance in Medicine.

ISTA iterative shrinkage- thresholding algorithm.

IT’IS foundation for research on information technologies in society.

LUMC Leiden university medical center.

MEDI morphology enabled dipole inversion.

MR magnetic resonance.
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128 Acronyms

MRF magnetic resonance fingerprinting.

MRI magnetic resonance imaging.

MR-STAT magnetic resonance spin tomography in time-domain.

NMR nuclear magnetic resonance.

NWO Dutch research council.

PML perfectly matched layer.

QSM quantitative susceptibility mapping.

RF radio frequency.

ROI region of interest.

SAR specific absorption rate.

SE spin echo.

SNR signal to noise ratio.

STAR streaking artefact reduction.

STI susceptibility tensor imaging.

TE echo time.

TKD thresholded k-space division.

TPA transceive phase assumption.

TPC transcieve phase correction.

TR repetition time.

TSE turbo spin echo.

TU Delft Delft university of technology.

UHF ultra high field.

UISNR ultimate intrinsic signal to noise ratio.

UPML uniaxial perfectly matched layer.

VaNDI variational networks dipole inversion.



Notation

Symbol Description Unit

|·| absolute value

𝐵 the magnetic flux density V s
A m2 = T

𝐵0
background magnetic flux density (often re-
ferred to as field strength) of an MRI scanner T

𝐵+
1

right rotating transmit magnetic field strength
(defined as

(
𝐵𝑥 + j𝐵𝑦

)/2) T

𝐼𝜈
modified Bessel function of the first kind and or-
der 𝜈

𝐾𝜈
modified Bessel function of the second kind and
order 𝜈

𝐻(𝑘)
𝜈 Hankel function of the 𝑘-th kind and order 𝜈

𝑐0 lightspeed m
s

𝜒 contrast function
𝑠 complex frequency 1

s
·∗ complex conjugation

𝐷 the electric displacement field C
m2 = A s

m2

𝜕𝑖 partial derivative along the 𝑖 dimension 1
sU capital sans serif—discrete matrix

u sans serif—discretised quantity

𝐸 the electric field V
m

𝜀0 vacuum permittivity F
m

𝜀𝑟 relative permittivity rel.

𝑓 frequency 1
s

𝛾0 propagation coefficient of free space
𝛾 proton gyromagnetic ratio (2.675 19 × 108) 1

s T

𝐻 the magnetic field A
m
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130 Notation

Symbol Description Unit

j imaginary unit (
√−1)

Im imaginary part
Re real part

𝐽 current density A
m2

𝐾 magnetic current density V
m2

𝑘0 wavenumber of vacuum 1
m

𝑀 magnetisation A
m

𝜇0 vacuum permeability V s
m A

𝜇𝑟 relative permeability rel.

∥·∥ ℓ2 norm

𝜔 (angular) frequency rad
s

𝝆 position vector in two-dimensions m
𝒙 position vector in three-dimensions m

𝜎 conductivity V
m

𝑡 time s
𝒖 bold underline—tensor
·̃ Fourier domain quantity
·̂ Laplace domain quantity

𝚤 unit vector

𝒖 bold—vector quantity

·𝑥,𝑦,𝑧,𝜙 subscript—component of a vector in the
𝑥, 𝑦, 𝑧, 𝜙 dimension respectively

𝑨 vector potential A or A s
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ELECTROMAGNETIC FIELDS
IN MRI

Analytical Methods and Applications

Patrick Stefan Fuchs

Magnetic resonance imaging (MRI) is a very versatile and powerful
medical imaging and diagnostics tool. As the limits of the hardware are
stretched with new developments the underlying models and imag­
ing modalities are challenged. In this work quantitative imaging ap­
proaches using electrical properties are described, which use the
unique knowledge we have on the electromagnetic fields in MRI to
simplify the reconstruction and imaging algorithms.
Also, as field strengths increase there are more and more reasons to
challenge the quasi­static field assumption used in the conventional
signal model. Here we start from first principles and work our way up
to a comprehensive signal model which gives great insights especially
into the influence of electrical properties on a measurement as well
as the deep connection between measurement (or antenna) type and
coupling of the fields.
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