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ABSTRACT

A novel scheme for sampling graph signals is proposed. Space-
shift sampling can be understood as a hybrid scheme that combines
selection sampling – observing the signal values on a subset of nodes
– and aggregation sampling – observing the signal values at a single
node after successive aggregation of local data. Under the assump-
tion of bandlimitedness, we state conditions and propose strategies
for signal recovery in different settings. Being a more general pro-
cedure, space-shift sampling achieves smaller reconstruction errors
than current schemes, as we illustrate through the reconstruction of
the industrial activity in a graph of the U.S. economy.

Index Terms— Graph signal processing, Space-shift sampling,
Bandlimited signal, Reconstruction.

1. INTRODUCTION

Sampling is one of the most studied problems in classical signal pro-
cessing [1]. The rise of new areas of knowledge such as network
science and big data calls for the extension of the results existing
for classical time-varying signals to signals defined on graphs [2–4].
This not only entails modifying the algorithms currently available for
time-varying signals, but also gaining intuition on what concepts are
preserved and lost when a signal is defined in a more general graph
domain. For the case of sampling, the fact of the nodes of a general
graph not having an inherent order – as opposed to what happens
in discrete time – raises questions about the advantages of uniform
sampling and, consequently, opens the door to the development of
new sampling schemes.

This paper investigates a novel scheme for the sampling and pos-
terior recovery of signals defined in the nodes of a graph. The under-
lying assumption is that such signals admit a sparse representation
in a frequency domain related to the structure of this graph. Most
existing works have focused on observing the value of the signal at
a subset of nodes to recover the signal in the entire graph [5–8]. By
contrast, a scheme where the samples are taken at a single node that
aggregates local information sequentially was recently proposed in
[9–11]. Here, we present a more general sampling scheme that con-
tains both mentioned paradigms as particular cases. More specifi-
cally, we consider samples taken at several nodes in the graph which,
in turn, aggregate signals in their neighborhood.

Section 2 introduces notation and basic concepts from graph sig-
nal processing that will be used throughout the paper. Section 3
describes the problem of sampling graph signals, along with the
two existing sampling schemes: selection and aggregation sampling.

Work in this paper is supported by USA NSF CCF-1217963 and Spanish
MINECO TEC2013-41604-R.

Section 4 presents the space-shift sampling scheme, which is the
main contribution of this paper, and discusses conditions for recov-
ery. A simple algorithm to recover the signal in the presence of
noise and when the (sparse) frequency support is unknown is also
proposed. Section 5 describes numerical experiments assessing the
recovery success of space-shift sampling in a graph of the U.S. econ-
omy and confirming that the proposed scheme achieves smaller re-
construction errors than aggregation and selection sampling.

2. PRELIMINARIES

Let G = (N , E) denote a directed graph. The set of nodes or vertices
N has cardinality N , and the set of links E is such that (i, j) ∈ E if
and only if node i is connected to node j. The set Ni : { j |(j, i) ∈
E} contains all nodes with an incoming connection to i and is termed
the incoming neighborhood of i. For any given graph, we define
the adjacency matrix A as a sparse N × N matrix with non-zero
elements Aij if and only if (j, i) ∈ E . The value of Aij captures the
strength of the connection between i and j. The focus of this paper is
not on analyzing G, but a graph signal defined on the set of nodesN .
Such a signal can be represented as a vector x = [x1, . . . , xN ]T ∈
RN where the i-th component represents the value of the signal at
node i.

The graph G is endowed with a graph-shift operator S defined as
anN×N matrix whose entry (i, j), denoted as Sij , can be non-zero
only if i = j or (j, i) ∈ E . The sparsity pattern of the matrix S cap-
tures the local structure of G, but we make no specific assumptions
on the values of the non-zero entries of S. Common choices for S are
the adjacency [3,12] and the Laplacian [2] matrices. An intuitive in-
terpretation of S is that it represents a linear transformation that can
be computed locally at the nodes of the graph. If y = [y1, . . . , yN ]T

is defined as y = Sx, then node i can compute yi provided that it
has access to the values of xj at its incoming neighbors j ∈ Ni.
We assume henceforth that S is diagonalizable, so that there exists a
N ×N matrix V and a N ×N diagonal matrix Λ that can be used
to decompose the shift as S = VΛV−1.

3. SAMPLING OF BANDLIMITED GRAPH SIGNALS

Recovery of the graph signal x from a sampled version is possible
under the assumption that x admits a sparse representation. The
common practice when addressing the problem of sampling signals
in graphs is to suppose that the graph-shift operator S plays a key
role in explaining the signals of interest x. More specifically, that x
can be expressed as a linear combination of a subset of the columns
of V = [v1, ...,vN ], or, equivalently, that the vector x̂ = V−1x
is sparse. In this context, vectors vk are interpreted as the graph
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frequency basis and x̂k as the corresponding signal frequency coef-
ficients. To facilitate exposition, it will be assumed throughout that
the active frequencies are the first K ones, i.e., x is K-bandlimited,
which are associated with the largest eigenvalues [5, 13], so that
x̂ = [x̂1, ..., x̂K , 0, ..., 0]T . However, our results can be applied
to any set of active frequencies K of size K provided that K is
known. For convenience, denote by ei the i-th N × 1 canonical
basis vector (all entries of ei are zero except the i-th one, which
is one). Further, define EK := [e1, ..., eK ], VK := VEK and
x̂K := [x̂1, ..., x̂K ]T .

3.1. Selection sampling of bandlimited graph signals

Let C denote a fat K ×N selection matrix whose elements satisfy:
Cij ∈ {0, 1},

∑
j Cij = 1 for all i, and

∑
i Cij ≤ 1 for all j. Un-

der the selection sampling approach [5–8], sampling a graph signal
amounts to setting x̄ = Cx. Since the K × N binary matrix C
selects the observed nodes, the issue then is how to design C, i.e.,
which nodes to select, and how to recover the original signal x from
its samples x̄.

To answer this, it is assumed that x is bandlimited, so that it can
be expressed as a linear combination of theK principal eigenvectors
in V. The sampled signal x̄ is then x̄ = Cx = CVK x̂K . Hence,
if matrix CVK is invertible, x̂K can be recovered from x̄ and, thus,
the original signal x is obtained as

x = VK(CVK)−1x̄. (1)

Perfect signal reconstruction can be guaranteed by selecting a subset
of K nodes such that the corresponding rows in VK are linearly
independent. In the classical domain of time-varying signals, VK

has a row-wise Vandermonde structure since it is a submatrix of a
Fourier matrix, which implies that any subset ofK rows is invertible.
However, for an arbitrary graph this is not guaranteed and algorithms
to select a specific subset that guarantees recovery are required [6].

3.2. Aggregation sampling of bandlimited graph signals

An alternative procedure is to pick a node, say i, and sample the
values observed by this node as the shift operator S is applied se-
quentially. Formally, define the l-th shifted signal y(l) := Slx and
the N ×N matrix

Y := [y(0), . . . ,y(N−1)] = [x,Sx, . . . ,SN−1x]. (2)

Associating the i-th row of Y with node i, we define the successively
aggregated signal at i as yi := (eT

i Y)T = YT ei. Sampling is
now reduced to the selection of K out of the N elements (rows)
of yi, which we accomplish with a selection matrix C, to obtain
ȳi := Cyi = C

(
YT ei

)
. We say that the signal ȳi samples x

with successive local aggregations. This nomenclature follows from
the fact that y(l) can be computed recursively as y(l) := Sy(l−1)

and that the i-th element of this vector can be computed using signals
associated with itself and its incoming neighbors.

Define the N × N Vandermonde matrix Ψ with entries Ψij =
λi−1
j , the vector υi := VT ei, and the N × K matrix Ψi =

Ψdiag(υi)EK . If matrix CΨi is invertible, then x can be recov-
ered from ȳi as [10]

x = VK(CΨi)
−1ȳi. (3)

While for the selection sampling described in Section 3.1 there is
no straightforward way to check the invertibility of CVK (existing
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Fig. 1: Conventional sampling in the time domain as aggregation
sampling in Gdc. We apply the shift operator S successively and
sample the resulting signal observed at a given node (here, node 1).

algorithms typically do that by inspection [6]), for the aggregation
sampling described in (3) the invertibility of CΨi is guaranteed by
the fulfillment of two simple conditions on the eigendecomposition
of S [10].

3.3. Aggregation and selection sampling of time signals

To illustrate the difference between selection and aggregation sam-
pling, let us consider their application to a signal defined in the
time domain. Classical time domain signals can be represented as
graph signals defined on a directed cycle [2, 7]; see Fig. 1. With
Adc denoting the adjacency matrix of the directed cycle graph, de-
fine the shift operator S = Adc and the uniform selection matrix
C = [e1, eN/K+1, . . . , eN−N/K+1]T where, we recall, ei the i-th
canonical basis vector. In selection sampling, the sampled signal is
obtained as x̄ = Cx. By contrast, aggregation sampling applies
S = Adc to x sequentially. Each of these applications amounts to
rotating the signal clockwise. It follows that the aggregated signal y1

in (2) is given by y1 = [x1, xN , xN−1, . . . , x2], which upon multi-
plication by C results in a vector ȳ1 = Cy1 that contains the same
elements that x̄ contains. Hence, when S = Adc both methods can
be viewed as generalizations of conventional sampling. However,
for more general topologies, the outputs generated are different. In
selection sampling one moves through nodes to collect samples at
points uniquely identified by C, whereas in aggregation sampling
the signal is moved through the graph while samples are collected at
a fixed node.

4. SPACE-SHIFT SAMPLING

In selection sampling, a subset of the values in the graph or space
domain are chosen, corresponding to the first column of Y [cf. (2)].
By contrast, in aggregation sampling, values obtained at a fixed node
i are sampled when applying successive shifts, corresponding to the
i-th row of Y. In the more general case of space-shift sampling, we
vary the sampling node and the number of shifts applied to the sig-
nal. Equivalently, we sample matrix Y without restricting ourselves
to a particular row or column. To do so, we first define the vectorized
version of Y as γ := vec(YT ). Furthermore, define ῡi := ET

Kυi

for all i and theNK×K matrix Ῡ =: [diag(ῡ1), . . . , diag(ῡN )]T .

Lemma 1 The relation between the active frequency coefficients
x̂K and γ is given by

γ =
(
I⊗ (ΨEK)

)
Ῡx̂K , (4)
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where ⊗ is the matrix Kronecker product.

Proof: From (3), we have yi = Ψix̂K = ΨEKdiag(ῡi)x̂K , for all
i. The result follows from the definition of the Kronecker product ⊗
once we note that γ = [yT

1 ,y
T
2 , . . . ,y

T
N ]T . �

To solve for x̂K – and, hence, x – we must select at leastK < N
linearly independent equations out of the N2 stated in (4). Suppose
that for a given node i we consider the problem of selectingK equa-
tions out of the N equations in positions {(i−1)N + n}Nn=1, then
space-shift sampling reduces to local aggregation sampling at node
i. Similarly, if we restrict ourselves to select K equations out of the
N equations in positions {1 + (n− 1)N}Nn=1, the problem reduces
to selection sampling. In this sense, space-shift sampling is more
general. To implement the selection of the K equations, we use a
binary selection matrix C as done in previous sections but, in this
case, the size of C is K × N2. If C(I ⊗ (ΨEK))Ῡ is invertible,
then x can be recovered from γ̄ := Cγ as [cf. (4)]

x = VK

(
C
(
I⊗ (ΨEK)

)
Ῡ
)−1

γ̄. (5)

When C(I⊗ (ΨEK))Ῡ is not invertible, additional samples (rows
of C) are required. The aim is to have at least K linearly indepen-
dent equations, so that the matrix C(I⊗ (ΨEK))Ῡ has full column
rank and the original signal x can be recovered using the pseudoin-
verse. Beyond invertibility, taking additional samples improves the
recovery performance in the presence of noise [9]. Although space
limitations prevent us to present the details here, the structure in (5)
can be used to design optimal sampling and recovery schemes that
minimize the effects of the noise. Such optimal designs depend on
the error metric to be optimized, with some of them leading to NP-
hard formulations, hence calling for tractable approximations [14]
that leverage the particularities of our graph setup. See, e.g., [11] for
a simpler but related problem.

A sampling setup of particular interest is when the sampling
schemes are implemented in a distributed manner using message
passing. Suppose that the sampling is performed at node i = 1 with
neighbors of i=1 being i = 2, . . . , N1 + 1. To compute y(l)i , node
i needs to have access to y(l

′)
j for all j ∈ Ni and l′ < l. Suppose

also that node i=1 computes L1 shifts, from y
(0)
1 up to y(L1)

1 . This
implies that node i = 1 has access to L1 + 1 of its own samples
and to L1 samples of each of its N1 neighbors, thus, node i can ap-
ply the space-shift reconstruction in (5). Note however that matrix
C (I⊗ (ΨEK)) Ῡ is not full (row) rank. The reason is that all the
samples obtained at node i = 1, except for the first one, are linear
combinations of the samples at its neighbors. This implies that the
number of frequencies that can be recovered is, at most, 1 + L1N1.

Alternative structured observation models can also be of inter-
est. For example, one can consider setups where nodes from differ-
ent parts of the graph take a few samples each and forward those
samples to a central fusion center. In such a case, since the nodes
gathering data need not be neighbors, the problem of some of the
samples being a linear combination of the others will not necessarily
be present.

Remark 1 Although the space (graph) and shift dimensions coin-
cide for time-varying signals – Section 3.3 –, the fact of these two di-
mensions not being the same can be leveraged when designing algo-
rithms for graph signals. For the particular case of sampling, taking
samples in both dimensions simultaneously yields a more general

scheme with additional degrees of freedom that can used to achieve
better reconstruction performance; as demonstrated in Section 5.

4.1. Joint recovery and support identification

Thus far, it has been assumed that the frequency support of x corre-
sponded to the K principal eigenvectors. A related but more chal-
lenging problem is to design the sampling and interpolation proce-
dures when the frequency support K is not known, qualifying as
sparse signal reconstruction [15–17]. Based on (4) and defining
Υ =: [diag(υ1), . . . , diag(υN )]T , we may reformulate the recov-
ery problem as

x̂∗ := arg min
x̂

||x̂||0 (6)

s.t. Cγ = C
(
I⊗Ψ

)
Υx̂,

where the sparse support of x̂ is unknown. For this case, there is
no guarantee that the solution x̂∗ coincides with the K-sparse rep-
resentation of the observed signal. Nevertheless, identifiability is
guaranteed whenever C(I⊗Ψ)Υ is full spark and contains at least
2K rows [15]. For specific forms of C, the full-spark condition can
be assessed by a quick inspection of {λi}Ni=1 and V; see [9, 10] for
the case of aggregation sampling.

From a computational perspective, the presence of the 0-norm in
(6) renders the optimization non-convex, thus challenging to solve.
A straightforward way to convexify the 0-norm is to replace it with
the 1-norm. Conditions under which this process is guaranteed to re-
cover the frequency support can be found by analyzing the coherence
and the restricted isometry property (RIP) of matrix C(I ⊗ Ψ)Υ
[15, 18]. Unfortunately, determining the conditioning of all subma-
trices of a deterministic matrix (and, hence, the RIP) is challeng-
ing [19]. Finally, if the observations are noisy, the constraint in prob-
lem (6) can be replaced by ‖Cγ −C

(
I⊗Ψ

)
Υx̂‖22 < ε, where ε is

a maximum level of expected (or tolerable) noise.

5. NUMERICAL EXPERIMENTS

The U.S. Department of Commerce publishes a yearly table of inputs
and outputs organized by economic sectors [20]. More precisely, we
have a set N of 62 industrial sectors and a function U : N ×N →
R+ where U(i, i′) represents how much of the production of sector
i, expressed in trillions of dollars per year, was used as an input of
sector i′ on average during years 2008, 2009, and 2010. Moreover,
for each sector we are given two economic markers: the added value
(AV) generated and the level of production destined to the market of
final users (FU). Thus, we define a graph on the set ofN = 64 nodes
comprising the original 62 sectors plus the two synthetic ones (AV
and FU) and an associated symmetric graph-shift operator S̄ defined
as S̄ij = (U(i, j) + U(j, i))/2. We obtain S from S̄ by setting to 0
all the values lower than 0.01; see Fig. 2(a).

Recovery and support identification. In order to assess recover-
ability when the frequency support of the signal is unknown (cf. Sec-
tion 4.1) we generate synthetic signals of varying bandwidth K ∈
{1, 2, . . . , 5} on the economic network. Further, we consider dif-
ferent number of observations M , i.e. rows of C, where M ∈
{5, 10, . . . , 40}. The M observations are randomly chosen from a
pool of 62×2 possibilities given by the original signal values and the
values after one shift in the 62 real sectors (excluding AV and FU).
We assume that K is known, but not the location of the K active
frequencies. Thus, the recovery algorithm is the following. We first
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Fig. 2: (a) Heat map of the graph-shift operator S of the economic network. The shift S is sparse across the real economic sectors (nodes
from n = 1 to n = 62 are weakly connected), while the synthetic sectors AV and FU (nodes n = 63 and n = 64) are highly connected.
(b) Successful rate of recovery as a function of the bandwidth K and the number of observations M of a bandlimited signal of unknown
frequency support defined on the economic network. (c) Minimum and median reconstruction error for different sampling strategies. The
first sampling strategy corresponds to selection sampling (cf. Section 3.1), the second one to aggregation sampling (cf. Section 3.2), and the
remaining strategies correspond to more general space-shift sampling schemes (cf. Section 4).

solve a convex version of (6) where the 0-norm is replaced by the 1-
norm. If the solution is K-sparse, we stop. Otherwise, we solve (6)
again with the additional constraint that a randomly chosen non-zero
element of the previous solution is set it to zero. We repeat this pro-
cedure, adding an additional constraint at each step, until we obtain
a K-sparse solution or the problem becomes unfeasible. In Fig. 2(b)
we present the success of the described procedure averaged over 10
realizations for every combination of K and M . The behavior is as
expected. In the top-left corner of the figure, the recovery is null
since the number of observations is low and the degrees of freedom
(bandwidth) of the signal are relatively high. The opposite is true in
the bottom-right corner while, for intermediate configurations, the
success rate varies gradually.

Comparing sampling schemes. Associated with the economic
graph, we consider the signal x ∈ R64 that collects the total produc-
tion – in trillion of dollars – of each sector during year 2011. Signal
x is approximately bandlimited in S since the reconstructed signal
x4 = V4x̂4 obtained by just keeping the firstK=4 frequency coef-
ficients attains a reconstruction error of ‖x− x4‖22/‖x‖22 = .0035.

The table in Fig. 2(c) lists the reconstruction errors attained by
different sampling schemes when taking four samples. The first row
shows the performance achieved by selection sampling (SS) strate-
gies (cf. Section 3.1), i.e., by observing the value of x at 4 different
nodes i, j, k, l. The second row shows the performance achieved by
aggregation sampling (AS) strategies (cf. Section 3.2), i.e., we pick
one node, say i, and take samples after successive applications of
0, 1, 2, and 3 graph-shifts S. The remaining rows show the perfor-
mance achieved by different configurations of our space-shift sam-
pling (SSS) schemes. For every row, the table lists the minimum and
median errors achieved by the particular strategy, which are com-
puted across all possible n choose m configurations of sampling
nodes, where n = 62 (we exclude the two synthetic sectors) and
m depends on the sampling scheme. For instance, for AS we have
that m = 1, since there is a single sampling node. Hence, the ta-
ble shows that among the

(
n
m

)
= 62 single-node configurations, the

smallest error is .0035 while the median error is .019.
First notice that the minimum error achieved by all the strategies

that shift the original signal (AS and all SSS configurations) is the
minimum one. This means that all those schemes are able to recover
x4. This is not true for SS (first row), although the difference is

not large. However, the median error achieved by SS is two orders
of magnitude larger than that achieved by any of the other strate-
gies. This problem disappears when more general SSS strategies are
considered. For example, one can sample the value of the signal at 4
nodes after the application of 1, 2 or 3 graph shifts. The results (rows
3, 4 and 5) reveal that reduction in the median error after each graph
shift application is conspicuous, especially when going from none to
one application – the median error goes from 4.2 to 0.03. Another
alternative is to sample both x and Sx in two different sectors (bot-
tom row in the table). Note that with this sampling configuration,
the two sectors are only required to obtain the aggregated activity of
their one-hop neighbors.

The performance attained by a specific sampling scheme de-
pends on factors like the operating conditions of the network, the
structure of the graph, and the properties of the signal. As a general
rule, when sampling an approximately bandlimited signal whose ac-
tive frequencies are associated with large eigenvalues of S – which
is a standard assumption in the literature [5–8] –, AS is expected to
give rise to a better recovery. Successive applications of S amplify
the active frequencies, entailing a better estimation of these frequen-
cies and reducing the reconstruction error. By contrast, when the
active frequencies are associated with small eigenvalues of S, SS is
preferred. SSS strategies are useful whenever some active frequen-
cies are related to large eigenvalues and others are related to small
eigenvalues. Moreover, SSS is also a suitable alternative when the
magnitudes of the eigenvalues associated with the active frequencies
are unknown.

6. CONCLUSIONS

A novel scheme for sampling graph signals that admit a sparse
frequency representation was proposed. The scheme was based on
the local aggregation of data at several nodes across the graph.
We stated conditions for perfect reconstruction when the signal fre-
quency support is known and proposed a recovery algorithm for the
cases when it is unknown. Since existing sampling methods can
be recovered as particular cases of the proposed space-shift sam-
pling scheme, the latter exhibits a better recovery performance, as
confirmed by numerical experiments.
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