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LAYMAN’S SUMMARY

T HIS thesis explores the connection between symmetries and a special kind of num-
ber system called the quaternions. Quaternions are like regular numbers but they

are especially good at describing 3-dimensional rotations, that we come by everyday.
Furthermore, quaternions are even able to describe rotations in four dimensions. This
sounds more complicated than it is in reality, but it still requires some technical work.

The quaternions will be used as useful tool to analyze how objects like cubes can be
rotated. In particular, the symmetries of such objects are studied, in what ways can we
turn the cube such that it looks exactly the same as in the starting position? Visually this
can be thought of as rotating a dice for example, what are the different ways for the side
with 6 eyes to point upwards?

Expanding on this, the symmetries of some fascinating 4-dimensional objects will
be studied. These are shapes like the hypercube and hyperdiamond, of which mind-
boggling animation can be made that can be seen in [20]. Quaternions are the perfect
tool to explore these.

Why does this matter? Well, symmetries are everywhere. from physics and chem-
istry to computer graphics and robotics. Using traditional methods (like matrices) to do
rotational calculations is often not efficient. Quaternions make rotational calculations
much easier and more elegant, they require less storage, result in shorter computations
and have many more technical advantages.

So, while the mathematics are complex, the key idea is simple: quaternions give us
a cleaner and more powerful way to describe how things rotate, not just in our familiar
3-dimensional world, but even in four dimensions.

v





SUMMARY

Q UATERNIONS prove to be a useful tool when determining rotation groups of regular
polytopes and other objects in three and four dimensions. In this thesis it will be

studied how the unit quaternions relate to the special orthogonal groups in three and
four dimension. Thereafter, this theory is applied to the normal subgroups of the bi-
nary octahedral groups as well as the cube and its dual the octahedron. The normal
subgroups of the binary octahedral group form 4-dimensional objects, for example the
4-orthoplex or 16-cell and the hyperdiamond or 24-cell.

Symmetries that keep the origin in place, consist of orientation preserving and ori-
entation flipping isometries, called rotations and reflections respectively. The special
orthogonal group in n dimensions, containing all real n ×n orthogonal matrices with
positive determinant, is precisely the group containing all rotations in n dimensions.
The map Φ :H1 → SO(3) defined by q →Φq , where Φq (p) = qpq−1 for p ∈H is a rotation
of ImH ∼= R3, is a two-to-one surjective homomorphism. The map Ψ :H1 ×H1 → SO(4)
defined by q →Ψq1,q2 , where Ψq1,q2 (p) = q1pq−1

2 is a rotation of H∼=R4, is a two-to-one
surjective homomorphism.

The n-cube is the generalization of square and cube in general dimensions. Using
Φ the binary octahedral group 2O can be established, which describes all quaternions
that describe rotational symmetries of the cube and its dual the octahedron. 2O con-
tains 48 unit quaternions, which is twice as many elements as the number of rotational
symmetries of the cube and octahedron, due to the two-to-one relation of Φ.

The binary octahedral group 2O describes an object in four dimensions. Its normal
subgroups do as well, the most interesting are Q8, which describes a 4-orthoplex or 16-
cell and has the hypercube or 8-cell as dual, and 2T , which describes a hyperdiamond
or 24-cell. The binary rotation groups of these regular polytopes and the object that
2O itself describes, are studied in particular. These binary rotation groups can all be
constructed in the same manner. Write N ∈ {Q8,2T,2O}, then 2ON := {(q1, q2) ∈ 2O×2O :
q1N = q2N } ⊂H1 ×H1 is equal to the entire binary rotation group of N . This means that
for the rotation group of N , denote this as ON ⊂ SO(4), it holds that ON

∼= 2ON /{±(1,1)},
where the isomorphism is given by the restriction ofΨ :H1×H1 → SO(4) to 2ON . For the
remaining normal subgroups {1} and {±1}, this construction only gives a subgroup of the
entire binary rotation group.

vii





PREFACE & ACKNOWLEDGEMENTS

I Thoroughly enjoyed writing my own definitions and theorems to try and rigorously
develop the theory from the ground up. I am looking forward to doing more research

projects in the future, especially those which allow me really delve into a theoretical sub-
ject. The algebraic component of this thesis was particularly enjoyable and it has defi-
nitely motivated me to want to study more of this field. It was a hectic, but rewarding
and insightful process until the end and it has left with a sense of contentedness.

I would really like to sincerely thank Dr. P.M Visser and Dr. J. Spandaw for inspiring
me to engage with every aspect of this subject. They made sure the work I was doing
was fully rigorous, like for the definitions of isometries and the orthogonal groups for
example. While sometimes I could get stuck on a specific proof or definition (which in
hindsight I might have worried about for too long), the feedback was always insightful. I
have fond memories of our nearly weekly Wednesday meetings and discussions, where
we were trying to figure out a specific problem or a new concept.

Floris van der Valk
Delft, June 2025

ix





LIST OF SYMBOLS

Symbol Description
H The quaternion space
H1 The unit quaternion group

ImH The imaginary hyperplane inH
1, i, j, k The imaginary basis vectors ofH

q∗ The conjugate of q
2O The binary octahedral group
2T The binary tetrahedral group
Q8 The quaternion group containing the elements {±1,±i,±j,±k}

OH , 2OH The rotation group and the binary rotation group of the hypercube and 16-cell
OD , 2OD The rotation group and the binary rotation group of the hyperdiamond
OO , 2OO The rotation group and the binary rotation group of 2O

O The rotation group of the octahedron and cube
Sn , S(X ) The permutation group on n elements and on X

V4 The Klein four-group
Cn The cyclic group of order n
D4 The dihedral group of order 8

O(n) The orthogonal group in n dimensions
SO(n) The special orthogonal group in n dimensions
Lq ,Rq The left and right multiplication maps by q ∈H
Ψ The two-to-one map fromH1 ×H1 → SO(4)

Ψq1,q2 The operator onH define by Ψq1,q2 (p) = q1pq−1
2

Φ The two-to-one map fromH1 → SO(3)
Φq The operator on ImH define by Φq (p) = qpq−1

D1, D2 The hyperdiamonds with vertices determined by 2T and 2O \ 2T
Aut(G) The automorphism group of G

Gx ,Stab(G) The stabilizer of x
Gx The orbit of x
[a] The conjugacy class of a
gi The coset number i
eG The identity element in G
idG The identity map on G
⊴ Normal subgroup
⋊τ Semidirect product with τ

,→ Injective homomorphism
↠ Surjective homomorphism

xi





1
INTRODUCTION

S YMMETRIES form the backbone of many modern scientific frameworks. For example,
they pop up in the physical conservation laws through time and spacial symmetries,

as well as the orientation sensitive molecules in chemistry. Rotations play an important
role in the theory of symmetry, but are relevant in fields that are not directly concerned
with symmetries as well, such as robotics.

It is important for rotating robotic arms and other parts to receive information as
efficiently as possible. It turns out that quaternions do a much better job at handling ro-
tational calculations than the more standard matrix approach. They require less storage,
result in shorter computations for combining rotations, allow for the angle and axis of
rotation to be extracted easier and are simpler to normalize. These quaternions are the
4-dimensional extension of the complex numbers C, denoted as H. Besides the imag-
inary i-axis, the quaternions have two extra imaginary axes, namely the j-axis and the
k-axis. That the quaternions are able to represent rotations in three dimension is quite
symbolic of their connection to the complex numbers, since unit complex numbers can
represent rotations in two dimensional complex plane.

In this thesis it will studied exactly how quaternions relate to rotations in three di-
mensions, as well as in four dimensions. Furthermore, quaternions are used to explore
symmetries of the binary octahedral group and its normal subgroups. Some of these
form beautiful symmetrical objects, like the 4-orthoplex and the hyperdiamond, also
known as the 16-cell and 24-cell. The hypercube, as the dual to the 4-orthoplex, will be a
prominent object as well. For the hypercube there is a specific construction of its binary
rotation group, that can be extended to general normal subgroups of the binary octa-
hedral group. Our main goal is to find out for what normal subgroups this construction
describes their entire binary rotations groups.

This thesis is structured as follows. In chapter 2 the main goal is to establish the re-
lations between unit quaternions and the special orthogonal groups in three and four
dimensions. This will be done by studying isometries in general dimensions and how
they lead to the special orthogonal groups in general dimensions. Thereafter, the fasci-
nating structure of the quaternions and in particular the unit quaternions are explored

1
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and connected to rotations in three and four dimensions.
In chapter 3, all of the binary rotation groups of the normal subgroups of the binary

octahedral group are constructed. Leading up to this, the theory of symmetries for these
objects are introduced side by side with the n-cube. Thereafter, the binary octahedral
group is established, which consist of 48 unit quaternions. These quaternions describe
the rotations of the cube, but at the same time they represent vectors in four dimensions.
Using the fact that the normal subgroups of the binary octahedral group form the ver-
tices of polytopes and other symmetrical objects, the binary rotation groups for these
normal subgroups can be constructed. This is done first for the hypercube and there-
after the method for how this is done is extended to the other normal subgroups of the
binary octahedral group, of which one describes the vertices of the hyperdiamond.

All figure are created with the LATEXpackage Tikz with the help of ChatGPT by OpenAI.
Some figures are inspired by already existing figures, which will be referenced in this
case. In this thesis basics of linear algebra and group theory are assumed to be well
understood, such that a bachelor applied mathematics student should be able to un-
derstand everything. For this purpose, some simpler and some more technical algebraic
definition and theorems are treated throughout the text, of which several come from [12]
or are rewritten or combined to fit the context. These definitions and theorems will be
cited as such, as well when they come from a different source of course.



2
ISOMETRIES USING QUATERNIONS

T HIS chapter provides a basis for the study of symmetries of several objects that will
be done in chapter 3. In this chapter isometries are studied thoroughly and in par-

ticular how they relate with quaternions. In section 2.1, isometries are defined, as well
as what it means for an isometry to be orientation preserving. This is the property that
distinguishes rotations from reflections. In section 2.2, it is shown that the orthogonal
group exactly represents all isometries. The subgroup the special orthogonal group en-
compasses all rotations, while its complement contains the reflection. General rotations
and reflections are explored more visually in section 2.3, with an emphasis on two, three
and four dimensional rotations, which will reveal important properties needed in later
proofs. In section 2.4, quaternion are formally introduced as well as the important unit
quaternions. These unit quaternions can be used to represent rotations in three and four
dimensions and open up a whole new way of looking at rotations, which is explored in
section 2.5. Lastly, a brief exploration of how unit quaternions can be used to represent
reflections in four dimensions is done in section 2.6.

3
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4 2. ISOMETRIES USING QUATERNIONS

2.1. ISOMETRIES OF n-DIMENSIONAL SPACE

I N this section we want to describe symmetries of n-dimensional space, which keep
the origin in place. These are called isometries, which excludes translational and glide

reflectional symmetries. We are less interested in these, since we will be looking at sym-
metries of finite objects in chapter 3 and for these translations and glide reflections are
not symmetries.

Definition 2.1. An isometry of n-dimensional space is a linear map f : Rn → Rn , which
preserves the distance between points in Rn , that is d(x, y) = d( f (x), f (y)) for all x, y ∈Rn .

Note that since f has to be linear, automatically the origin is mapped to itself, that is
f (O) = O. So the condition that the origin is kept in place is already hidden in this def-
inition and does not have to be stated specifically, but it is nonetheless important to be
aware of.1

Since for x, y ∈Rn such that f (x) = f (y), definition 2.1 implies that

d(x, y) = d( f (x), f (y)) = 0,

it holds that every isometry is injective. Injectivity also means that the dimension of the
image of f should match the pre-image, meaning every isometry is surjective and thus
bijective as well.

Between finite dimensional vector spaces all linear transformations can be repre-
sented by a matrix and vice versa. Since we are working with transformations from n-
dimensional space to itself, this means that all isometries of n-dimensional space will
form a subset of the n×n matrices. Exactly what subset this is, is determined by the con-
dition that the map should be distance preserving. As distance, we will use the standard
Euclidean norm induced distance, which is just the well known square root norm. This
way, if a map according to the definition is distance preserving, it implies the it is norm
preserving as well. If we take the matrix R that represents a linear transformation f from
the definition, this can be seen by the fact that for all x, y ∈Rn

d(x, y) = d( f (x), f (y)) ⇐⇒ ∥∥x − y
∥∥= ∥∥Rx −R y

∥∥= ∥∥R(x − y)
∥∥ , (2.1)

which is the same as saying that for z ∈Rn

∥z∥ = ∥Rz∥ .

This clearly holds the other way around as well, as indicated by the two-way implication
sign in equation 2.1. So it turns out norm and distance preserving are actually equivalent
and thus norm preservation could have been used just as well in definition 2.1.

Define the inner product in the usual way such that for x ∈ Rn , we have that x · x =
∥x∥2. Since the norm is preserved by an isometry, the inner product between a vector
and itself is thus preserved as well. To prove isometries preserve the inner product be-
tween any two vectors, note that for x, y ∈Rn it holds that

(x+y)·(x+y) = x·x+2(x·y)+y ·y ⇐⇒ 2(x·y) = (x+y)·(x+y)−x·x−y ·y = ∥∥x + y
∥∥−∥x∥−∥∥y

∥∥
1Actually, if f only has the properties that it preserves distance and maps the origin to itself, then f is linear as

well. We will not prove this and just define isometries as linear in the first place.
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Now the entire right side in the last equation is preserved, so the left side must be pre-
served as well.

Furthermore, norm preservation implies that for all z ∈Rn

(Rz) · (Rz) = z · z ⇐⇒ zT RT Rz = zT z ⇐⇒ RT R = I ,

where in the last equivalence we use that it has to be true for all z ∈ Rn and that RT R is
symmetric by (RT R)T = RT (RT )T = RT R. This is exactly the restriction that will give us
the subset of matrices representing the isometries, which we will study in more detail in
section 2.2.

Another distinction that can be made in the isometries is whether a isometry is orien-
tation preserving or not. Intuitively thinking about orientation in our 3-dimensional
world, we think of rotations. Two similar object have the same orientation if one is able
to be rotated to the other. But our own two hands for example, are very similar yet one
can not be rotated to the other. They do not have the same orientation and we need
some kind of mirror to get one hand from the other. This is why orientation preserving
isometries will be called rotations and the non-orientation preserving isometries will be
named reflections from now on. In section 2.3 our experience of rotations compared to
the mathematical definitions is discussed further. The rest of this section will be dedi-
cated to defining orientation mathematically, such that it is inline with our experience
of it.

Definition 2.2. Let B1 = {b1, . . . ,bn} and B2 = {b′
1, . . . ,b′

n} be two bases of the n-dimensional
vector space V . Then these bases have the same orientation if the change of basis matrix B
mapping the first basis to the second basis has a positive determinant, that is det(B) > 0.

The relation between bases B1 and B2 defined by

B1 ∼B2 ⇐⇒ B1 and B2 have the same orientation (2.2)

is an equivalence relation. It is reflexive, as B1 ∼ B1 implies that the change of basis
matrix B equals I and det(I ) = 1 > 0. If B1 ∼ B2 and B2 ∼ B3 with change of basis
matrix B1 and B2 respectively, then the change of basis matrix which maps B1 to B3 is
equal to B2B1. We see det(B2B1) = det(B2)det(B1) > 0, implying the relation is transitive
as well. Lastly, the inverse of a change of basis matrix B is just B−1, which is well-defined
since det(B) ̸= 0. Furthermore, det(B−1) = 1

det(B) > 0, showing the relation is symmetric
and it can be concluded that 2.2 is thus an equivalence relation. This means definition
2.2 is well defined and inline with what orientation intuitively encompasses.

The matrix R associated with any isometry could be interpreted as a change of basis
matrix, indeed, if we choose a basis B1 for Rn , then the isometry maps B1 to another
basis B2. This way we call an isometry orientation preserving, if B1 and B2 have the
same orientation. From the definition this is equivalent to wether det(R) > 0 or not.

This definition gives a way to distinguish rotations from reflections, which is further
discussed in section 2.2.
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2.2. THE ORTHOGONAL GROUP AND THE SPECIAL ORTHOGO-
NAL GROUP

I N the previous section it was shown that isometries of n-dimensional space can be
represented by a subset of the n×n matrices, namely the matrices R with the property

RT R = I . However, this is precisely how orthogonal matrices are defined. Let us state
this in a definition and also give a name to the set of all orthogonal matrices.

Definition 2.3. A matrix R ∈Rn×n is orthogonal if RT R = I .

Definition 2.4. O(n) is the set of all real orthogonal n ×n matrices, that is

O(n) = {R ∈Rn×n : RT R = I }.

So O(n) is precisely isomorphic to the group of the isometries of the n-dimensional
space. That O(n) is really a group is proved in theorem 2.8, but first a few properties
of orthogonal matrices are shown that will be useful later on.

Lemma 2.5. If R ∈Rn×n is an orthogonal matrix, then det(R) =±1.

Proof. From the definition we have 1 = det(I ) = det(RT R) = det(RT )det(R) = det2(R). So
indeed det(R) =±1.

Lemma 2.6. If R ∈Rn×n is orthogonal, then R has orthonormal columns.

Proof. Write the columns as R = [r1,r2, . . . ,rn]. If we look at the entries of the product
RT R, we can write

(RT R)i j = r T
i r j = ri · r j . (2.3)

Now, since RT R = I , it should hold that equation 2.3 is equal to 1 if i = j and 0 if i ̸= j for
all i , j ∈ {1, . . . ,n}. This means that the columns have to be mutually orthogonal, but also
∥ri∥ = 1 for all i ∈ {1, . . . ,n}. So indeed the columns are orthonormal.

Lemma 2.7. If R ∈Rn×n is orthogonal, then R is invertible and R−1 = RT .

Proof. The inverse is well-defined, since det(R) ̸= 0. Next, multiply RT R = I by R−1 on
the right on both sides, we get (RT R)R−1 = I R−1. Substitute I = RT R and use associativ-
ity to get (RT R)R−1 = RT (RR−1), which implies R−1 = RT .

Lemma 2.7 shows the important result that isometries are invertible. Intuitively this is
clear by the fact that a isometry can map any two points with the same distance to the
origin to each other, so going one way implies that going back is also possible. This
property also enables us to show that O(n) is a group.

Theorem 2.8. O(n) is a group under matrix multiplication.

Proof. Let A,B ∈ O(n), then AB(AB)T = ABB T AT = I , so AB ∈ O(n) again, meaning
O(n) is closed. We also know that matrix multiplication is associative and I ∈O(n) is the
identity element. Furthermore, from lemma 2.7 we know A−1 = AT and

A−1(A−1)T = AT (AT )T = AT A = I

implies that A−1 ∈O(n). So we conclude that O(n) is indeed a group.



2.3. ROTATIONS AND REFLECTIONS IN GENERAL DIMENSIONS

2

7

In section 2.1, orientation was defined, which implied that exactly those isometries with
positive determinant are orientation preserving. We will now introduce this subgroup of
O(n), which exactly contains the orientation preserving isometries of the n-dimensional
space that we call rotation. Moreover, its complement contains all non-orientation pre-
serving isometries, which we call reflections.

Definition 2.9. SO(n) is the set of all real orthogonal n ×n matrices with determinant
equal to 1, that is

SO(n) = {R ∈Rn×n : RT R = I and det(R) = 1}.

Indeed all matrices in SO(n) have positive determinant, while its complement in O(n)
does not and thus SO(n) contains all rotations. We should formally prove that SO(n) is a
subgroup though.

Lemma 2.10. SO(n) is a subgroup of O(n).

Proof. Let A,B ∈ SO(n), then det(AB) = det(A)det(B) = 1, so AB ∈ SO(n). Also det(A−1) =
det(AT ) = det(A) = 1, so A−1 ∈ SO(n).

O(n) and SO(n) are called the orthogonal group and special orthogonal group of n di-
mensions respectively. From now on the group of all isometries of the n-dimensional
space, will be denoted as O(n). Moreover, the group of all rotations of n-dimensional
space will be denoted as SO(n).

2.3. ROTATIONS AND REFLECTIONS IN GENERAL DIMENSIONS

B EFORE the definition in sections 2.1 and 2.2 was widely known, Euler looked at ro-
tations in a more intuitive way, resulting in his famous rotation theorem. In this

section we will connect Euler’s theorem with SO(3), which will be very useful in proofs
later on. Before that, we will look at how 2-dimensional rotations operate. After this we
will even try to make sense of what 4-dimensional and general dimensional rotations
look like. And lastly, we will quickly look at reflections in general dimensions.

2.3.1. ROTATIONS IN TWO DIMENSIONS
Rotations in two dimensions are relatively simple. Every rotation in SO(2) is of the form[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
for some θ ∈ [0,2π).
Any point v in R2 is just mapped to the point v ′ which lies an angle of θ further along the
circle around the origin with radius equal to the length of v , as illustrated in figure 2.1.

2.3.2. ROTATIONS IN THREE DIMENSIONS
Three dimensional rotations have a very specific property, which was noticed by Euler.
We will use his theorem without proving it.

Theorem 2.11. (Euler’s theorem) A rotation in three dimensional space has a line which
remains stationary, called the axis of rotation. [10]
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v

v ′

θ

Figure 2.1: A plane rotation of the vector v over an angle of θ.

Denote the rotations of the form according to Euler’s theorem as Euler rotations, which
will be proved to be equivalent to SO(3). But first, we have to understand Euler rotations.

x

y

z
u

θ

Figure 2.2: An Euler rotation with unit vector u on the axis of rotation and a rotation angle θ of the perpendic-
ular plane

To represent an Euler rotation, one can take a unit vector u ∈ R3 on the axis of rotation.
Euler’s theorem implies that a three dimensional rotation can be seen as the two dimen-
sional rotation of the perpendicular plane of u over an angle of θ ∈ [0,π]. The notation
used for an Euler rotation will be R(θ,u) :R3 →R3.

Intuitively one might think that the rotation angle should vary from 0 to 2π just like
in two dimensions. However, a rotation R(θ1,u) with θ1 ∈ [π,2π] is the same rotation as
R(2π−θ1,−u). In other words, we can flip the sign of the unit vector u, making it point
in the opposite direction and this way θ represents a whole new set of rotations. The
case θ = 0 is an exception as it gives the same rotation for every unit vector u, namely the
stationary or identity rotation.

Now we will get started on proving formally that all Euler rotations R(θ,u) are ele-
ments of SO(3) and vice versa. The eigenvalues of a matrix in SO(3) will play an impor-
tant role, as it allows us to find the axis of rotation for this matrix, connecting it to an
Euler rotation.
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Lemma 2.12. If R ∈ SO(3), then R has eigenvalues 1,e iθ and e−iθ for some θ ∈ [0,2π).2

Proof. Let R ∈ SO(3), we need to find 0 ̸=λ ∈C such that for some v⃗ ̸= 0

Rv⃗ =λv⃗ (2.4)

or equivalently solve the characteristic equation

det(R −λI ) = 0. (2.5)

Taking the complex conjugate of equation 2.4 gives Rv⃗∗ = λ∗v⃗∗, since R is real. Now
taking the transpose gives (Rv⃗∗)T = (λ∗v⃗∗)T ⇐⇒ v⃗∗T RT =λ∗v⃗∗T . We can then cleverly
multiply this with first equation.

(λ∗v⃗∗T )(λv⃗) = (v⃗∗T RT )(Rv⃗)

λ∗λv⃗∗T v⃗ = v⃗∗T v⃗

λ∗λ= 1

|λ| = 1

Here it is used that the eigenvector v⃗ ̸= 0 and thus v⃗∗T v⃗ ̸= 0. From the last line we see
that every eigenvalue must be of the form λ= e iα for some α ∈ [0,2π).
Now consider the following equality:

RT (I −R) = RT − I =−(I −R)T .

We use that I only has non-zero terms on the diagonal, so taking the transpose of R
before or after subtracting I gives the same result. Next, if the determinant is taken on
both sides, we get the following result.

det(RT (I −R)) = det(−(I −R)T )

det(R)det(I −R) = det(−I )det(I −R)

det(I −R) =−det(I −R).

Here it is used that the determinant of a transposed matrix equals the determinant of the
matrix itself and det(R) = 1. We see that

det(I −R) = 0.

Comparing with equation 2.5 we see that indeedλ= 1 must be an eigenvalue, callλ1 := 1.
Now for the last part of the proof we use the fact that for a matrix the product of its
eigenvalues must be equal to its determinant.

λ1λ2λ3 = det(R) = 1

λ2λ3 = 1.

So we can conclude that if λ2 = e iθ for some θ ∈ [0,2π), then it must hold that λ3 = e−iθ .
In other words λ2 and λ3 are complex conjugates and this completes the proof. [1]
2It is interesting to note that θ is actually the angle over which the perpendicular plane to the eigenvector

corresponding to eigenvalue 1 rotates. This will not be used in this thesis though.
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Theorem 2.13. Every Euler rotation R(θ,u), with θ ∈ [0,π] and u ∈R3, can be represented
as a matrix R ∈ SO(3).

Proof. Let R(θ,u) be an Euler rotation. By Euler’s theorem in 2.11, the unit vector u is
kept stationary by R(θ,u) and its perpendicular plane is rotated with an angle θ. An
Euler rotation is a linear transformation thus we can at least write R(θ,u) as a matrix, call
this matrix R. Set u3 = u, then with the Gram-Schmidt method we can find unit vectors
u1,u2, such that {u1,u2,u3} form a orthonormal basis for R3. Define A = [u1,u2,u3] and
note that we can always get det(A) = 1 by possibly switching u1 and u2 from positions,
which means A ∈ SO(3). Next, we can write

R(u1) = cos(θ)u1 + sin(θ)u2

R(u2) =−sin(θ)u1 +cos(θ)u2

R(u3) = u3.

We can write this as

R A = AM with M =
cos(θ) −sin(θ) 0

sin(θ cos(θ) 0
0 0 1

 .

Note that M ∈ SO(3), so R = AM A−1 ∈ SO(3). [1]

Theorem 2.14. Every matrix R ∈ SO(3) is a rotation R(θ,u) for some θ ∈ [0,π] and u ∈R3.

Proof. By 2.12, we know R has eigenvalue 1. Thus we can find a unit vector u3 that is an
eigenvector of R corresponding to the eigenvalue 1. With the Gram-Schmidt method we
can find the orthonormal basis {u1,u2,u3} for R3, where u1 and u2 form a basis for the
orthogonal plane to u3, denoted by u⊥

3 . Define the matrix A = [u1,u2,u3], which lies in
SO(3) after possibly switching u1 and u2 from position. Then

R A = [Ru1,Ru2,Ru3] = [Ru1,Ru2,u3]

remains orthogonal. Using lemma 2.6 implies that Ru1,Ru2 ∈ u⊥
3 . So we can write the

equations

Ru1 = au1 +bu2

Ru2 = cu1 +du2

Ru3 = u3,

as

R A = AM with M =
a b 0

c d 0
0 0 1

 .

Now M = A−1R A ∈ SO(3), so det

[
a b
c d

]
= 1, thus

[
a b
c d

]
∈ SO(2). This means R is a

plane rotation around u3, in other words an Euler rotation.

Combining theorem 2.13 and 2.14, we can conclude that SO(3) is isomorphic to all Euler
rotations.
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2.3.3. ROTATIONS IN FOUR AND HIGHER DIMENSIONS

Some examples and terminology in this section are from [18].

Compared to the previous two sections, in four dimensions our intuition does not get
us very far, being 3-dimensional creatures ourselves. Yet, 4-dimensional rotations are
well explored and understood, because they are not as different from the rotations we
experience ourselves than one might expect.

The most peculiar thing about 3-dimensional rotations, is that in some sense it is
still just a 2-dimensional rotation. However, instead of just one plane rotating around a
single point, there are infinitely many planes rotating around the infinitely many points
that lie on the axis of rotation. Sadly this does not directly extend to four dimension. In-
stead a stationary rotational axis is switched for a stationary plane. Actually, in general
dimensions rotations do not have an stationary axis at all. Furthermore, suppose some
four dimensional creature is looking at a 3-dimensional rotation. They observe the sta-
tionary rotational axis as well, but for them their extra fourth axis is stationary as well
and these together indeed span a stationary plane. So we have found that at least some
rotation in four dimensions are of the form where one plane rotates around a station-
ary perpendicular plane. Indeed, four dimensions is the first dimension in which two
planes can be completely perpendicular. These kind of four dimensional rotations are
called simple rotations, hinting at other types.

But first, to illustrate the previous example, compare it to the scenario where we are
looking at a 2-dimensional rotation on some surface. Then we see the perpendicular
line to this surface as the axis of rotation. However, a 2-dimensional creature does not
see this axis at all and for them there is just a single stationary point. So axes of rotation
are not that intertwined with rotations as us three dimensional creatures might think
and planes seem to hold more importance.

Still, that in four dimension a plane rotates around another plane is a difficult con-
cept to grasp. Therefore, instead of thinking of rotations as rotating around something,
rotations should be thought of as happening in a plane itself. This way rotations can be
generalized easier for general dimensions.

Actually, if we think of rotations as just a planar phenomenon, then it is possible to
rotate the stationary plane of a simple rotation at the same time as the already rotating
perpendicular plane. These are appropriately called double rotations. Note that indeed
neither of the plane rotations have an axis of rotation, as the entire perpendicular space
is rotating as well and in general the intersection of two planes in four dimensions is just
one point.

What is not discussed about three dimensional rotations so far are the principal rota-
tions. In three dimensions there are three principal rotations, which are the plane rota-
tions around the three basis axes. However, in line with our discussion about rotations
as a planar phenomenon, call these rotations by their rotating plane, denote the planes
as X Y , X Z and Y Z . Combining these three principal rotations with all possible rota-
tion angles for each, every 3-dimensional rotation can be constructed. Note that it is a
convention to take the three standard axes of the 3-dimensional space and that actu-
ally any three perpendicular directions could function as normal vectors to three planes,
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inducing three principal rotations.
In four dimensions the number of principal rotations is not four, what might be ex-

pected, but six. The reason for this is that a rotation needs two dimensions, so finding all
principal rotation planes means finding all distinct pairs of dimension. In four dimen-
sions, calling the axes X ,Y , Z ,W , these pairs are X Y , X Z , X W , Y Z , Y W and Z W . In
two dimension just one rotation plane takes up the only two available dimension and
thus in two dimensions there is only one principal rotation, namely just the X Y plane.
For a general dimension the number of principal rotations is equal to(

n

2

)
= n(n −1)

2
. (2.6)

This way we have actually very informally shown the dimension of SO(n), which is thus
also equal to equation 2.6.

x

y

z

x

y

z

Figure 2.3: A square in the X Y plane, being continuously rotated with the Y Z plane, so around the x-axis. The
square is projected straight onto the X Y plane at every moment. The left figure is at 0 degrees rotation, while
the right is at 45 degrees rotation.

Consider how a 2-dimensional creature would experience it, when one of the 3-dimensional
principal rotations is continuously rotating and being projected onto its 2-dimensional
world. Suppose the 2-dimensional creature is living in the X Y plane and a square in
its plane is rotated with the Y Z plane (so around the x-axis), as illustrated in figure 2.3.
Furthermore, the square is projected on to the X Y plane straight down. Remember that
the 2-dimensional creature can only observe the 1-dimensional projection of this image,
just like we only observe 2-dimensional projection of our environment. Then, for the 2-
dimensional creature, the projection of the rotation of the square with the Y Z plane
looks like an impossible twist of an object turning itself inside-out. However, for us the
square remains totally rigid and intact.

Rotating the square with the X Z plane gives a similar result as with the Y Z plane,
but what about the X Y plane? Well this rotation perfectly fits in the universe of the 2-
dimensional creature and thus appears as a totally normal rotation, or at least exactly
like 2-dimensional creatures are used to. So to summarize, two out of three principal
rotations would seem impossible to the 2-dimensional creature, while the last one seems
totally normal.
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This brings us to how 4-dimensional rotations project to three dimensions. We are
now dealing with six principal rotations now of which three are in planes that only use
‘our’ three dimensions, namely the X Y , X Z , Y Z planes. The projections of these ro-
tations would appear normal, just like rotations in the X Y plane for two dimensions.
However, the other three principal rotations using the extra fourth W axis would in turn
seems impossible to us. Projections of object rotating according to these rotations would
make it seems like edges are changing length and shapes in general will get distorted and
turned inside-out. This kind of projection can not be done justice with stationary figures,
but online there are a lot of examples of these mind-bending projections, for example of
the hypercube in [20].

In higher dimensions than four, one could see that rotations become more complex
as the number of possible mutually orthogonal planes increases. In six dimensions al-
ready three perpendicular planes can be rotating at the same time and so on. What
has not been highlighted yet, is that the planes do not even have to rotate around the
same angle. Although, in four dimension for example, taking the same angles for the two
planes of a double rotation create a specific type of rotation called isoclinic rotation.[9]
However, this will not be explored in this thesis.

2.3.4. REFLECTIONS IN GENERAL DIMENSIONS

The fact that SO(n) contains all rotations, but no reflections, automatically means that
that the complements of SO(3) in O(3) contains all reflections, since these are the only
two types of symmetries keeping the origin in place. In this section we will cover a sub-
set of the reflections in n dimensions that can be seen as mirroring through an (n −1)-
dimensional hyperplane, call these mirrors. Every mirror hyperplane can be specified by
a normal unit vector, which is orthogonal to every vector in the mirror hyperplane. This
creates a nice visualization and notation of a mirror. In 2 and 3 dimensions a reflection
is visualized in figure 2.4.

uu
v

v ′

x

y

z uu

x

y

z v

v ′

Figure 2.4: The vector v is mirrored through the perpendicular plane of the unit vector u. The image is of v is
v ′ and the dashed line connecting these two vector intersects the plane exactly halfway.

In figure 2.4 it can be seen that the mirror of a vector v ∈R3 can be obtained by subtract-
ing the projection of v onto the unit normal vector of the mirror plane (line) u twice. The
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length of the projection of v onto u is equal to ∥v∥cos(θ), where θ is the angle between
u and v . This is equal to the dot product v ·u = ∥v∥∥u∥cos(θ), only if ∥u∥ = 1. Taking
the normal vector to a hyperplane as an unit vector is therefore a nice convention. The
mirror can then be written mathematically as

v 7→ v −2(v ·u)u. (2.7)

Reflections do no commute in general, but combining reflections are still isometries.
Interestingly, a double reflection results in a net rotation, while combining a rotation
with a reflection gives another reflections. This can be seen most directly by looking at
the matrix representation of isometries. For reflections S1,S2 ∈O(n)\SO(n) and rotation
R ∈ SO(n), it holds that

det(S1S2) = det(S1)det(S2) =−1 ·−1 = 1,

det(S1R) = det(S1)det(R) =−1 ·1 =−1 = det(RS1).

So indeed S1S2 ∈ SO(n) and S1R,RS1 ∈O(n) \ SO(n). Similarly, this way we can see com-
bined rotations are rotations, but this is already implied by the fact to SO(n) is a group.

The behavior of combined reflections and rotations also follows from the their re-
spective orientation flipping and orientation preserving properties.

2.4. QUATERNIONS

B ETWEEN the unit quaternions and SO(3), as well as between the direct product of the
unit quaternions and SO(4), there is a two-to-one relation, which results in very in-

teresting representations of 3 and 4-dimensional rotations. How these are exactly linked
will be explored in section 2.5. Here, the quaternions and some important and useful
properties are introduced.

A quaternion q is a element of the real four dimensional vector space H, which has a
basis {1, i, j,k}. We represent q as follows.

q = r 1+ai+bj+ ck with r, a,b,c ∈R. (2.8)

For convenience we will leave the 1 out from now on. SinceH is a vector space, addition
and scalar multiplication with real numbers is defined elementwise. For q1, q2 ∈ R with
q1 = r1 +a1i+b1j+ c1k and q2 = r2 +a2i+b2j+ c2k we have that

(r1 +a1i+b1j+ c1k)+ (r2 +a2i+b2j+ c2k) = (r1 + r2)+ (a1 +a2)i+ (b1 +b2)j+ (c1 + c2)k

s(r1 +a1i+b1j+ c1k) = sr1 + sa1i+ sb1j+ sc1k, s ∈R.

On top of this, forH, multiplication rules follow from the rules defined for the basis vec-
tors.

i2 = j2 = k2 =−1

ij =−ji = k ik =−ki =−j jk =−kj = i/
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Note that in general quaternions do not commute. The linear extension of the multi-
plication rules for the basis vectors gives us a multiplication formula for general vectors
or quaternions. In equation 2.9 the famous Hamilton quaternion multiplication rule is
written out.

(r1 +a1i+b1j+ c1k)(r2 +a2i+b2j+ c2k) = (r1r2 −a1a2 −b1b2 − c1c2)

+ (r1a2 +a1r2 +b1c2 − c1b2)i

+ (r1b2 +b1r2 + c1a2 −a1c2)j

+ (r1c2 + c1r2 +a1b2 −b1a2)k

As a convention, for a quaternion q = r+ai+bj+ck, r is called the real part and ai+bj+ck
the imaginary part. This way we define the subspace ImH := {ai+bj+ck : a,b,c ∈R} ∼=R3.
Note that nowH=R⊕ ImH, because we haveH∼=R4 of course.

We define the conjugate and norm similarly to the complex numbers.

q∗ := r −ai−bj− ck (2.9)∥∥q
∥∥2 := qq∗ = q∗q = r 2 +a2 +b2 + c2 (2.10)

Here equation 2.9 is used to work out the product and to verify that qq∗ = q∗q .
The most important properties of the quaternions are now defined, next some useful
and insightful characteristics are shown.
With the defined norm, it can be shown that the inverse of a quaternion exists and how
it can be constructed.

Lemma 2.15. For every quaternion q ̸= 0 there exists a inverse q−1 ∈H, which is given by

q−1 = q∗∥∥q
∥∥2 . (2.11)

Proof. Let q = r +ai+bj+ ck ∈H, then q∗

∥q∥2 = r
∥q∥2 − r

∥q∥2 i− a
∥b∥2 j− c

∥q∥2 k ∈H. Further-
more,

q
q∗∥∥q

∥∥2 = qq∗

qq∗ = r 2 +a2 +b2 + c2

r 2 +a2 +b2 + c2 = 1

for q ̸= 0. In a similar way q∗

∥q∥2 q = 1, so we can take indeed take the inverse of q as

q−1 = q∗

∥q∥2 .

In the next lemma and corollary, we highlight some properties of the norm defined onH
in equation 2.10.

Lemma 2.16. For two quaternions q1, q2 ∈H, it holds that

(q1q2)∗ = q∗
2 q∗

1 . (2.12)
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Proof. Equation 2.9 can be used to write out both sides.

Corollary 2.17. Let q, q1, q2 ∈H, it then holds that∥∥q1q2
∥∥= ∥∥q1

∥∥ ∥∥q2
∥∥ (2.13)∥∥q

∥∥= ∥∥q∗∥∥ (2.14)∥∥q−1∥∥= ∥∥q
∥∥−1 , q ̸= 0. (2.15)

Proof. First of all note that∥∥q1q2
∥∥2 = q1q2(q1q2)∗ = q1q2q∗

2 q∗
1 = ∥∥q1

∥∥2 ∥∥q2
∥∥2 ,

since the norm is a real number and in R multiplication is commutative. The norm is
also non-negative, so we can take the square root on both sides resulting in equation
2.13.
For equation 2.14, note that (q∗)∗ = q such that∥∥q

∥∥2 = qq∗ = q∗q = q∗(q∗)∗ = ∥∥q∗∥∥2 .

Again, taking the square root gives the desired outcome.
Now for equation 2.15, we use equation 2.14.

∥∥q−1∥∥=
∥∥∥∥∥ q∗∥∥q

∥∥2

∥∥∥∥∥=
∥∥q∗∥∥∥∥q

∥∥2 =
∥∥q

∥∥∥∥q
∥∥2 = ∥∥q

∥∥−1 .

Lastly for this section, we define the already mentioned unit quaternions, which will play
a very important role in connecting quaternions to rotations.

Definition 2.18. The set of all quaternions with length one is denoted asH1, that is

H1 := {q ∈H :
∥∥q

∥∥= 1}. (2.16)

Lemma 2.19. Let q ∈H1, then q−1 = q∗.

Proof. Using lemma 2.15 and
∥∥q

∥∥= 1 we immediately get the desired result.

Lemma 2.20. H1 is compact and connected.

Proof. SinceH is a four dimensional real vector space,H1 is isomorph with the 3-sphere
S3. The 3-sphere is clearly connected and even path connected. H1 is compact since it
is closed and bounded inH andH is a Hausdorff space.

Lemma 2.21. H\{0} is group under quaternion multiplication and hasH1 as a subgroup.

Proof. Both H \ {0} and H1 are closed under multiplication. For H \ {0} this is clear and
for H1, take q1, q2 ∈ H1, then

∥∥q1q2
∥∥ = ∥∥q1

∥∥∥∥q2
∥∥ = 1, so q1q2 ∈ H1. Furthermore, they

both contain the identity element 1 and a inverse element for every element. For H1

specifically this is because
∥∥q∗∥∥= 1, so q∗ ∈H1.
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2.5. ROTATIONS USING QUATERNIONS

W E are ready to show how unit quaternion can represent rotations in three and four
dimensions, although this section will therefore be a little technical.

Definition 2.22. For q ∈ H1 the linear operators Lq and Rq , H→ H, when working on a
p ∈H, are given by

Lq p = qp and Rq p = pq. (2.17)

It can be easily checked that Lq and Rq are indeed linear. For p, p1, p2 ∈H and r ∈ R
it holds that

Lq (p1 +p2) = q(p1 +p2) = qp1 +qp2 = Lq (p1)+Lq (p2),

r Lq (p) = r qp = qr p = Lq (r p).

That Rq is linear is analogue to this. Linearity will be used in the proof of theorem 2.23.

Theorem 2.23. The mappings f , g : H1 → SO(4), given by q 7→ Lq and q 7→ Rq−1 respec-
tively, are homomorphisms.

Proof. First we have to prove that Lq and Rq are in fact elements of SO(4). For this, note
that Lq and Rq are linear and norm preserving by equation 2.13 and the fact that

∥∥q
∥∥= 1.

So at least Lq ,Rq ∈O(4). Next note that for q = 1 ∈H1, Lq = Rq = I and det(I ) = 1. The fact
that the mappings q 7→ Lq and q 7→ Rq are continuous and H1 is connected thus implies
that Lq ,Rq ∈ SO(4) for every q ∈H1.
Next we see that for q1, q2 ∈H1, we have that

f (q1q2) = Lq1q2 = Lq1 Lq2 = f (q1) f (q2),

g (q1q2) = R(q1q2)−1 = Rq−1
2 q−1

1
= Rq−1

1
Rq−1

2
= g (q1)g (q2),

concluding the proof.

Definition 2.24. Define the homomorphism Ψ :H1 ×H1 → SO(4) by

(q1, q2) 7→Ψq1,q2 := Lq1 Rq−1
2

. (2.18)

So Ψq1,q2 (p) = q1pq−1
2 for p ∈H.

Specifically for the case q1 = q2, also define the homomorphism Φ :H1 → SO(4) by

q 7→Φq :=Ψq,q = Lq Rq−1 . (2.19)

So Φq (p) = qpq−1 for p ∈H. [15]

Note that Ψ is indeed a homomorphism since it is a composition of two homomor-
phisms and thus Φ is as well.

The operator Φq acting on a p ∈H preserves the real part of p. We can see this since
Φq (r ) = qr q−1 = r implies that every r ∈ R ⊂ H is not changed by applying Φq . Fur-
thermore, that Φq ∈ SO(4) means that R⊥ = ImH is mapped to itself. This is true since
we have seen that any element in SO(4) is inner product preserving, so R⊥ is still per-
pendicular to R after a 4-dimensional rotation. Thus we can view Φq as an operator on
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R3 ∼= ImH by letting Φq only act on v ∈H with zero real part. This already gives a hint at
the connection between unit quaternion conjugation and SO(3), but before we continue
shaping this idea, the discovery that Φq preserves the real part is stated in lemma 2.25.

Lemma 2.25. 3 Let q =H1 and p ∈H, then Φq (p) preserves the real part of p, that is

Re(p) = Re(qpq−1)

A quaternion v ∈H with zero real part is of the form v = xi+ yj+ zk. Define v⃗ to be the
three-element vector notation of this,

v⃗ =
x

y
z

 . (2.20)

This way we can see a general quaternion q = r +ai+bj+ ck as q = r + v , where we thus
have a real part r ∈ R and imaginary part v = ai+bj+ ck, but now we see v as a vector
v⃗ ∈ ImH ∼= R3. This is a very important observation, as now a 3-dimensional vector can
be represented by a purely imaginary quaternion and this way the quaternions can be
linked to SO(3). In the next two theorems, this map is explicitly shown and it is proven
that the unit quaternions have a two-to-one relation with SO(3). However, first two use-
ful lemmas will be proved.

Lemma 2.26. For q1, q2 ∈H, written as q1 = r1 + v1 and q2 = r2 + v2, with r1,r2 ∈ R and
v1, v2 ∈ ImH it holds that

q1q2 = (r1r2 − v1 · v2)+ (r1v2 + r2v1 + v1 × v2). (2.21)

Proof. Write out

q1q2 = (r1 + v1)(r2 + v2) = r1r2 + r1v2 + r2v2 + v1v2. (2.22)

Then write v1 = a1i+b1j+ c1k and v2 = a2i+b2j+ c2k such that

v1v2 = (a1i+b1j+ c1k)(a2i+b2j+ c2k)

=−a1a2 +a1b2k−a1c2j−b1a2k−b1b2 +b1c2i+ c1a2j− c1b2i− c1c2.

=−(a1a2 +b1b2 + c1c2)+ (b1c2 − c1b2)i+ (c1a2 −a1c2)j+ (a1b2 −b1a2)k.

We recognize this exactly as v1v2 =−v1 ·v2+v1×v2 if we interpret them as vectors. Sub-
stituting this back in equation 2.22, already gives the required result.

Lemma 2.27. Define the map F :H→H with F (q) = r +Rv, where q = r + v ∈H and for
some R ∈ SO(3), a rotation of ImH. Then F is an automorphism of the real algebraH.

Proof. First note that R is inner product preserving and linear. Furthermore, it can be
shown that Rv1×Rv4 = R(v1×v4). Putting this al together and using lemma 2.26, we get

F (q1)F (q2) = (r1 +Rv1)(r2 +Rv2)

= (r1r2 −Rv1 ·Rv2)+ (r1Rv2 + r2Rv1 +Rv1 ×Rv2)

= (r1r2 − v1 · v2)+R(r1v2 + r2v1 + v1 × v2) = F (q1q2).

3For a directer proof see appendix A.1.
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Next, take q3 = r3 + v3 ∈H, then F (r3 +RT v) = r3 +RRT v3 = r3 + v3 = q3, since RT is the
well defined inverse of R, so F is surjective. The injectivity is clear by the uniqueness of
the rotation R, concluding the proof.

Theorem 2.28. If the operator Φq , for some q ∈ H1, works on some v ∈ H with zero real
part, then Φq (v) = qvq−1 can be written as Rq v⃗ , with Rq ∈ SO(3). Furthermore, if we
write q = r +ai+bj+ ck, then Rq is given byr 2 +a2 −b2 − c2 2(ab − cr ) 2(ac +br )

2(ab + cr ) r 2 −a2 +b2 − c2 2(bc −ar )
2(ac −br ) 2(bc +ar ) r 2 −a2 −b2 + c2

 . (2.23)

Proof. We want to write out qvq−1. First multiply q and v .

qv = (r +ai+bj+ ck)(xi+ yj+ zk)

= (r xi+ r yj+ r zk)+ (−ax +ayk−azj)+ (−bxk−by +bzi)+ (cxj− c yi− cz)

= (−ax −by − cz)+ (r x +bz − c y)i+ (r y −az + cx)j+ (r z +ay −bx)k

Now we have multiply this by q−1, to do this, divide the multiplication up into parts.

qvr = (−ar x −br y − cr z)+ (r 2x +br z − cr y)i+ (r 2 y −ar z + cr x)j+ (r 2z +ar y −br x)k,

qv(−ai) = (a2x +aby +acz)i+ (ar x +abz −ac y)+ (ar y −a2z +acx)k+ (−ar z −a2 y +abx)j,

qv(−bj) = (abx +b2 y +bcz)j+ (−br x −b2z +br y)k+ (br y −abz +bcx)+ (br z −aby −b2x)i,

qv(−ck) = (acx +bc y + c2z)k+ (cr x +bcz − c2 y)j+ (−cr y +acz − c2x)i+ (cr z +ac y −bcx).

Adding all of this up, makes the real parts cancel and some other terms combine. Next,
we first write the expression in terms of i, j and k, then we order it for x, y and z.

(r 2x +br z − cr y +a2x +aby +acz +br z −aby −b2x − cr y +acz − c2x)i

+(r 2 y −ar z + cr x −ar z −a2 y +abx +abx +b2 y +bcz + cr x +bcz − c2 y)j

+(r 2z +ar y −br x +ar y −a2z +acx −br x −b2z +br y +acx +bc y + c2z)k

= [
(r 2 +a2 −b2 − c2)x +2(ab − cr )y +2(ac +br )z)

]
i

+[
(r 2 −a2 +b2 − c2)y +2(ab + cr )x +2(bc −ar )z)

]
j

+[
(r 2 −a2 −b2 + c2)z +2(ac −br )x +2(ar +bc)y)

]
k.

We can write this as

[
i j k

]r 2 +a2 −b2 − c2 2(ab − cr ) 2(ac +br )
2(ab + cr ) r 2 −a2 +b2 − c2 2(bc −ar )
2(ac −br ) 2(ar +bc) r 2 −a2 −b2 + c2

x
y
z

 .

Call this 3×3 matrix Rq , writing out or letting a computer calculate the determinant we
get detRq = 1 and RT

q Rq = I , so Rq ∈ SO(3).4 If we now see i, j,k as basis vectors of a three
dimensional space, we indeed see that applying the operatorΦq to v can be represented
as Rq v⃗ .
4This will also follow from theorem 2.29.
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Theorem 2.29. The homomorphism Φ :H1 → SO(3) is surjective and two-to-one.

Proof. Let R ∈ SO(3), with its rotational axis determined by the unit vector u ∈ R3 and
over rotation angle θ ∈ [0,π]. We want to find some q = r +ai+bj+ ck ∈H1 such that Rq

in theorem 2.28 is the same rotation as R. Note that from this theorem we also know that
at least any Φq is a rotation or Rq ∈ SO(3).
To prove surjectivity, we will show that the unit quaternion q1 := cos( 1

2θ)+ sin( 1
2θ)u is a

rotation with rotational axis u and rotation angle θ. Now in general note that if we use
the vector notation q = r + v , so with v = ai+bj+ ck, then

Φq (v) = qvq−1 = q(q − r )q−1 = qqq−1 −qr q−1 = q − r = v.

For q1 = r1+v1, with r1 = cos( 1
2θ) and v1 = sin( 1

2θ)u, we can see that similarlyΦq1 (u) = u.
This means that u is fixed by Φq1 and thus by the rotation Rq1 , meaning u is the axis of
rotation.
Now consider the case where u = i, define q2 := cos( 1

2θ)+ sin( 1
2θ)i. Then

Φq2 (i) = i,

Φq2 (j) = (cos( 1
2θ)+ sin( 1

2θ)i) j (cos( 1
2θ)− sin( 1

2θ)i)

= (cos2( 1
2θ)− sin2( 1

2θ))j+2cos( 1
2θ)sin( 1

2θ)k

= cos(θ)j+ sin(θ)k,

Φq2 (k) =−sin(θ)j+cos(θ)k.

If we see ImH as the three dimensional space again, we can write this as Rq2 given by1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 .

This is a rotation by θ around i, so our propositions holds at least for q2. To prove this
holds for the arbitrary q1, we make use of the automorphism from lemma 2.27F :H→H

with F (q) = r +RF v , where q = r + v ∈H and RF ∈ SO(3) such that it is a rotation of ImH

withRF i = u. Then, the fact that RF maps i to u implies that F (Φq2 (F−1(q))) is a rotation
of θ around u, since Φq2 is a rotation of θ around i and u is fixed and thus the axis of
rotation. But then

F (Φq2 (F−1(q))) = F (q2F−1(q)q−1
2 ) = F (q2)F (F−1(q))F (q−1

2 )

= (cos( 1
2θ)+RF sin( 1

2θ)i)q(cos( 1
2θ)−RF sin( 1

2θ)i) = q1qq−1
1 =Φq1 (q).

So we found a unit quaternion representing R, which was arbitrary. This proves that
Φ is surjective. That Φ is two-to-one follows from the fact that the kernel is equal to
ker(Φ) = {±1}. We prove this as follows.
We can calculate tr(Rq ) = 3r 2 − a2 −b2 − c2 = 4r 2 −1 for general q ∈ H. However, if q ∈
ker(Φ), then Φq must be the identity matrix and thus tr(Rq ) = tr(I ) = 3. Equating these
two gives

4r 2 −1 = 3 ⇐⇒ r 2 = 1 ⇐⇒ r =±1.
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The fact that we must have q ∈ H1, implies that the imaginary part should be zero, so
q ∈ ker(Φ) ⇐⇒ q =±1, concluding the proof.

Another result from the proof of theorem 2.29, is that q describes the rotation in SO(3)
with axis of rotation u and rotation angle 2θ, since any unit quaternion q ∈ H1 can be
written as q = cos(θ) + sin(θ)u, for some u ∈ ImH∩H1 and θ ∈ [0, 1

2π]. The two-to-
one relation between H1 and SO(3) can be seen very directly this way. From qvq−1 =
(−q)v(−q)−1 for v ∈ ImH, it follows that −q has to be the other unit quaternions describ-
ing the same rotation as q . Indeed −q =−cos(θ)− sin(θ)u = cos(π−θ)+ sin(π−θ)(−u),
meaning −q is a rotation in SO(3) with rotation axis −u and rotation angle 2(π− θ) =
2π−2θ. From section 2.3 we know this is the same rotation as the rotation of q .

This way θ is the angle between 1 ∈H and q and if θ > 1
2π, then it is the angle between

−1 ∈H and q .
To show what relation the unit quaternions and SO(4) possess, the just proven theo-

rem 2.29 is used.

Theorem 2.30. The homomorphism Ψ :H1 ×H1 → SO(4) is surjective and two-to-one.

Proof. Let R ∈ SO(4) and let q1 := R1. Since R is norm preserving
∥∥q1

∥∥ = ∥1∥ = 1, thus
q1 ∈H1. Note that Lq−1

1
(R1) = q−1

1 q1 = 1. Define R1 := Lq−1
1

◦R and note that R1 ∈ SO(4).

R1 preserves 1 and thus also all of R, but then R⊥ = ImH is preserved as well, by inner
product preservation. Call R̂1 the restriction of R1 to ImH, then R̂1 ∈ SO(3), since the
norm is still preserved on just the ImH part. Then however, by theorem 2.29, there must
exist a q2 ∈ H1 such that for all p ∈ ImH, it holds that R̂1p = q2pq−1

2 = Φq2 (p). We can
write

Rp = Lq1 R̂1p = q1q2pq−1
2 for p ∈ ImH (2.24)

Furthermore,

Rr = q1r = q1q2r q−1
2 for r ∈R (2.25)

So equation 2.24 holds for p ∈H as well. Finally call q3 := q1q2 ∈H1, then we have indeed
found two unit quaternion such that R =Ψq3,q2 , proving that Ψ is surjective.
The fact that Ψ is two-to-one, follows from the fact that ker(Ψ) = {±(1,1}. We prove this
as follows.
(q1, q2) ∈ ker(Ψ) is equivalent to Ψq1,q2 (p) = p for all p ∈H. Taking specifically p = 1, we
get q11q−1

2 = 1 ⇐⇒ q1 = q2. But this means our problem reduces to finding q1 such that
Ψq1,q1 (p) =Φq1 (p) = p for p ∈H. From theorem 2.29 we see this only holds for q1 =±1,
which corresponds to the pairs (1,1) and (−1,−1). [15]

Similarly to the remark after theorem 2.29, we have q1pq−1
2 = (−q1)p(−q2)−1. From the-

orem 2.30 it follows that these are the only two pairs describing the corresponding rota-
tion in SO(4). Theorems 2.29 and 2.30 allow 3 and 4-dimensional rotations to be repre-
sented as quaternions, giving new insights in rotations. From the proofs the result can
be summarized with

H1/{±1} ∼= SO(3), (H1 ×H1)/{±(1,1)} ∼= SO(4). (2.26)
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The three and six dimensional nature of SO(3) and SO(4) respectively, that was found in
section 2.3.4, can also be seen in this construction from the 3-dimensional unit quater-
nions. Informally, SO(3) × SO(3) is linked this way with SO(4) which is quite unique
compared to rotation in other dimensions.

As a last remark for this section, note that the quaternions are often seen as an extension
of the complex numbers, which actually directly inspired them. That quaternions are
able to represent rotations this way really emphasizes this, since unit complex numbers
can represent 2-dimensional rotations, drawing a direct parallel.

2.6. REFLECTIONS USING QUATERNIONS

I N section 2.3.4 we have seen that in an n-dimensional space a specific subset of the
reflections, which we call mirrors, can be characterized by a (n−1)-hyperplane, which

in turn is fully described by the perpendicular unit vector to this plane. Applying this
mirror on a vector means that the vector is mirrored through the mirror hyperplane or
equivalently we can subtract its projection on to the normal vector of the mirror hyper-
plane twice. This holds for four dimensions as well, so for x ∈H∼=R4 the mirror through
the 3-dimensional hyperplane with perpendicular unit vector q ∈H1, is given by

x 7→ x −2(x ·q)q

We can rewrite this in a simpler way, but for this we need the following two equalities.
Write x = x0 +x1i+x2j+x3k and q = q0 +q1i+q2j+q3k, then

Re(x∗q) = Re((x0 −x1i−x2j−x3k)(q0 +q1i+q2j+q3k)) = x0q0 +x1q1 +x2q2 +x3q3 = x ·q,

Re(x∗q) = x∗q + (x∗q)∗

2
= x∗q +xq∗

2
.

Combining all of this gives

x −2(x ·q)q = x −2qRe(x∗q) = x −q(x∗q +q∗x) =−qx∗q.

We see that similarly to quaternion rotations, ±q both represents the same mirror. How-
ever, in this case this is not really a property of quaternion mirror, since there are always
two choices for a perpendicular unit vector to a (n−1)-hyperplane. In fact, the unit vec-
tor in just a representation of the line through the origin that they lie on in the first place.
The map

x 7→ −qx∗q

is nonetheless an interesting description of mirrors, as the unit quaternions thus also
describe all four dimensional mirrors twice. Furthermore, we can prove in a different
way than in section 2.3.4, that two mirrors combined result in a rotation. Defineσq (x) :=
−qx∗q , then for q1, q2 ∈H1 and x ∈H, reflecting according to q2 after q1 results in

σq2 (σq1 (x)) =σq2 (−q1x∗q1) = q2(q1x∗q1)∗q2 = q2q∗
1 xq∗

1 q2 = q3xq−1
4 =Ψq3,q4 (x),

where q3 := q2q∗
1 and q4 := q∗

2 q1, since q1 and q2 are unit quaternions. Indeed, this is a
rotation.
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It is interesting to note that according to the Cartan–Dieudonné theorem, every isometry
in O(n) is a composition of at most n mirrors through hyperplanes, although we will not
go into detail about this. [7]





3
SYMMETRIES USING QUATERNIONS

W E have seen in chapter 2 that for every dimension O(n) is the group of all symme-
tries keeping the origin in place, called isometries, and O(n) is equivalent to the

group of all n ×n orthogonal matrices, which all have determinant ±1. The subgroup
SO(n) of O(n) containing all isometries which are also orientation preserving, turns out
to be exactly the orthogonal n×n matrices with determent +1. To reiterate, the elements
of SO(n) are called rotations and the elements of O(n) \ SO(n) are called reflections.

These isometries are the symmetries of the entire space, but what are symmetries of
objects in this space? First of all, symmetries of an object should be a subgroup of O(n),
since, as briefly discussed, finite object do not have translational or glide reflectional
symmetries. What subgroup is of course determined by exactly what object we are look-
ing at, some objects may not even have symmetries, besides the identity, which of course
should be a symmetry of all objects. In this chapter, we will look at the symmetries of the
regular polytopes the cube, hypercube and hyperdiamond, as well as the symmetries of
the binary octahedral group interpreted as vertex set.

In section 3.1 the n-cube is introduced and its geometric structure and symmetries
are studied. Then the quaternions will be applied as a tool to define the binary rota-
tion groups of the cube and hypercube in section 3.2. The structure of these rotation
groups is studied further in section 3.3. Finally, the binary rotation groups of the normal
subgroups of the binary octahedral group are analyzed in section 3.4 and 3.5.
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3.1. THE n-CUBE

T HE n-cube is the analogue of the square and the cube in n-dimensional space. The
square and cube are therefore just the 2-cube and the 3-cube. We want to formally

define the n-cube in a n-dimensional vector space. There are many ways to do this, but
for us the most convenient way is to keep the center of the n-cube at the origin. This will
be very similar to how the square and cube are placed in the following figures.

Figure 3.1: The square with its center at the origin of a 2-dimensional space on the left and a cube with its
center at the origin of a 3-dimensional space on the right.

This way the theory about origin preserving isometries that we have build up so far, can
be immediately implemented.

0 1 2 3 4

Figure 3.2: The construction of the 4-cube from lower-dimensional cubes. The number corresponds to the
dimension and the colour represents the extension to dimension 1 for orange, dimension 2 for magenta, di-
mension 3 for blue and dimension 4 for beige. [14]

To accomplish this, we will define the n-cube by the placement of its vertices, namely
place the vertices at all n-dimensional vectors of the form

(±1, . . . ,±1)

in n-dimensional vector space. From this, it is clear that every n-cube thus has 2n ver-
tices. We can also see this if we look at how an n-cube is build from a (n −1)-cube. This
is illustrated in figure 3.2. We start with n = 0, then the 0-cube is defined to be just a ver-
tex. For n = 1, connect this 0-cube with an edge to another 0-cube, creating the 1-cube.
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Similarly, for n = 2, add an additional edge to every vertex of the 1-cube, connecting it
to another 1-cube, creating the well known square. Next, to form a cube, again, take two
2-cubes and add an edge to each vertex to connect the 2-cube. Lastly, we will look at
the 4-dimensional cube, because for higher dimensions the figures get very messy. On
top of this, humans as 3-dimensional creatures can not imagine extra dimensions, so
figure 3.2 just gives a nice visualization of the structure of the 4-cube, but does not dis-
play what the 4-cube really entails. Nevertheless, connecting two 3-cubes to each other
forms the 4-cube. While not totally in line with other definitions, we will call the 4-cube
the hypercube in this thesis and it will be studied thoroughly.

By this construction of the n-cube, it can also be seen that every vertex of an n-cube
has n edges connected to itself. Looking at the vector positions we chose for the vertices,
these are exactly the edges connecting a vertex straight to each axis, which lies halfway
towards the vertices on the opposite side of these axes.

From figure 3.2, we also see that at least for these cases an n-cube indeed has 2n

vertices. What is also interesting to note is that every n-cube seems to contain 2n (n−1)-
cubes. Indeed, the 1-cube contains two 0-cubes, the square contains four 1-cubes and
the cube contains six squares. That the hypercube contains 8 cubes, is a bit harder to
see. However, if we draw the hypercube as in figure 3.3, one can count six enclosed areas
on the sides, a smaller cube in the middle and the outer vertices form a bigger cube
as well, indeed adding up to eight cubes. Theorem 3.1 encompasses all these intuitive
propositions and more.

Figure 3.3: The hypercube projected specifically so it is easier to count the eight contained cube.

Theorem 3.1. For k ≥ n, the number of k-cubes contained in an n-cube is given by

2n−k n!

k ! (n −k)!
. (3.1)

Proof. Any vertex of the n-cube is connected to n edges. Choosing any combination of k
of these edges induces the formation of a k-cube contained in the n-cube. So each vertex
is exactly part of

(n
k

)
k-cubes. This would make for a total of 2n

(n
k

)
k-cubes, however, in

this count every k-cube is counted 2k times, since it has this many vertices. So we can
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conclude that the total number of k-cubes is equal to

2n
(n

k

)
2k

= 2n−k n!

k !(n −k)!

[8]

We can create the following table for what kind of k-cubes certain n-cubes contain.

n\k 0 1 2 3 4 5 6 7 8 9 10 Total
0 1 - - - - - - - - - - 1
1 2 1 - - - - - - - - - 3
2 4 4 1 - - - - - - - - 9
3 8 12 6 1 - - - - - - - 27
4 16 32 24 8 1 - - - - - - 81
5 32 80 80 40 10 1 - - - - - 243
6 64 192 240 160 60 12 1 - - - - 729
7 128 448 672 560 280 84 14 1 - - - 2187
8 256 1024 1792 1792 1120 448 112 16 1 - - 6561
9 512 2304 4608 5376 4032 2016 672 144 18 1 - 19683

10 1024 5120 11520 15360 13440 8064 3360 960 180 20 1 59049

Table 3.1: The number of k-cubes (horizontally) in an n-cube (vertically). The final column shows the total
number of all k-cubes, which is 3n .1

3.1.1. THE n-ORTHOPLEX
The dual of a regular regular polytope in n dimensions is created by taking the centers
of the (n − 1)-dimensional faces of the regular polytope as vertices of the dual, which
are connected to each other if their corresponding faces connect in the regular poly-
tope. This way the cube has a dual as well, called the octahedron. The octahedron is
constructed by taking the center of the six square faces of the cube, creating a double
pyramid type shape, as illustrated in figure 3.4. There it can also be seen that the dual to
the octahedron is a cube again.

Note that the vertices of the octahedron lie exactly on the axes if the center of the
cube lies at the origin. Particularly, with the way we placed the vertices of the n-cube
in the previous section, the coordinates of the vertices of the octahedron are exactly
(±1,0,0), (0,±1,0), (0,0,±1). This can be directly extended to general dimensions where
the dual of the n-cube is called the n-orthoplex and its vertices lie exactly on the axes,
with specific coordinates (±1,0, . . . ,0), . . . , (0, . . . ,0,±1). It is important to note that the n-
orthoplex has the exact same symmetry group as the n-cube, as is true for general regular
polytopes and their duals. Note that the 4-orthoplex is also called the 16-cell.

The vertices of the hypercube can be split in those with an even number of minus signs

1This can be seen as an application of the Al-Khwarizmi’s binomial theorem that states
∑n

k=0

(n
k

)
xn−k yk =

(x + y)n . Taking x = 2 and y = 1 yields our result.
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Figure 3.4: On the left is the dual octahedron to the cube, constructed with vertices at the centers of the square
faces of the cube. On the right is the dual of the octahedron, which is again a cube, constructed with vertices
at the centers of the triangular faces of the octahedron.

and those with an odd number of minus signs. These two sets of 8 vertices exactly de-
scribe two 4-orthoplexes and is the only way to split the vertices of the hypercube such
that it results in two 4-orthoplexes. This can be proved with the fact that there lie two
vertices of the 4-orthoplex on every axis in the standard configuration as a dual to the
standard hypercube. This means that all vectors to these vertices are orthogonal, ex-
cept for the pairs on the same axes, which are each others opposites. Take the vertex
(1,1,1,1) of the hypercube, which is orthogonal to the six vertices of the hypercube with
two minus signs and its opposite is (−1,−1,−1,−1). By just taking one point the selec-
tion of candidates for a 4-orthoplex is already fixed and we obtained the two sets with
an even and odd number of minus signs. Now all that is left to prove is that these two
sets really form two 4-orthoplexes. Looking at the set with an even number of minus
signs, we indeed see that every vertex in this set has its unique opposite vertex and is
orthogonal to the remaining vertices. The distance ratio is consistent with the standard
configuration, which is 2 :

p
2, between opposite vertices and orthogonal vertices. In-

deed d((1,1,1,1), (−1,−1,−1,−1)) =
p

22 +22 +22 +22 = 4 and d((1,1,1,1), (−1,−1,1,1)) =p
22 +22 +0+0 = p

8 = 2
p

2. This clearly holds for the other combination too and the
other distances can be checked as well. We also find the interesting fact that this 4-
orthoplex has edges twice as long as the standard configuration. With similar arguments
the set of eight hypercube vertices with an odd number of minus signs describes a 4-
orthoplex as well.

3.1.2. SYMMETRIES OF THE SQUARE AND THE CUBE

Before we try to figure out the symmetries of the square and the cube, we have to discuss
what a symmetry of an object really means mathematically. In the introduction of this
chapter it was mentioned that all symmetries of an object should be a subgroup of O(n),
but do all symmetries of an object really form a group? Let us check this briefly. First,
applying a symmetry yields the same object, meaning that applying multiple symmetries
combine to another symmetry of the object, so they are closed. That symmetries of an
object are associative and have an inverse are properties they inherit from O(n). Lastly,
the identity, which just keeps everything in place, is a symmetry of any object. So the
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symmetries indeed form a group, call it the symmetry group of an object.
Furthermore, just like SO(n) is a subgroup of O(n), just the rotational symmetries of

an object form a subgroup of the entire symmetry group. This is called the rotational
group of an object, which is just as and if not, maybe even more interesting then the
total symmetry group. The rotational group is indeed a group, since we have seen that
combining rotations always results in a new rotation and the inverse rotations are sym-
metries as well.

In this thesis an object will be defined by the positions of its vertices, which we al-
ready did for the n-cube at the start of section 3.1. It of course depends on the way these
vertices are connected what kind of symmetries the object has, however, in this thesis we
will treat only very symmetrical object for which any rotation or reflection mapping ver-
tices to each other will be a symmetry. So, when trying to find symmetries of an object,
we will be looking for rotations and reflections, which map the set of vertices defining a
very symmetrical object to itself.

We would like to determine a formula for the number of symmetries of an n-cube, which
will be discussed further in section 3.1.4. Before we can find this, we need to look at the
cases n = 2,3 intuitively first, which the rest of this section will be dedicated to.

A square can be rotated 90, 180, 270 and 360 degrees, where a rotation by 360 de-
grees corresponds to the identity. Besides these four rotations, four reflection axis can
be determined as well, as illustrated in figure 3.5. This gives rise to the well known dihe-
dral group D4 := {e,r,r 2,r 3,σ,rσ,r 2σ,r 3σ}. The construction of this group makes use of
the fact that all four reflections can be written as a rotation plus one specifically chosen
reflection, usually the horizontal reflection axis. We will not go into more detail about
the dihedral group, for us the main take away from this example is that there are eight
symmetries of which half rotations.

Figure 3.5: The square with its center at the origin of a 2-dimensional plane and its axis of reflection.

From Euler’s theorem 2.11, we know that to find the rotational symmetries of the cube,
we should be looking for rotational axis. It turns out there are four types of rotations of
the cube. See figure 3.6 as a reference.

• The identity, which keeps everything in place.

• Rotations around the three axes through the centers of opposite sides, these are
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the dashed lines. Rotations can go over 90, 180 or 270 degrees for a total of 3 ·3 = 9
rotations of this type.

• Rotations around the four axes corresponding to the diagonals, which go through
opposite vertices, these are the full lines. Rotation can go over 120 or 240 degrees
for a total of 4 ·2 = 8 rotations of this type.

• Rotations around the six axes through the centers of opposite edges, these are the
dotted lines. Rotations can go over 180 degrees for a total of 6 ·1 = 6 rotations of
this type.

Figure 3.6: The cube with its center at the origin of a 3-dimensional space with axes of the space on the left and
with its axes of rotation on the right.

Figure 3.7: The cube with its center at the origin of a 3-dimensional space with its nine planes of reflection.

Reflections of the cube are characterized by nine different reflection planes of which
there are two types, see figure 3.7 for a reference.

• Reflections through the plane containing the centers of four faces, these are top
three planes. Before reflecting the cube can be separately rotated according to the
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second rotation type over 0, 90, 180 or 270 degrees, for a total of 3·4 = 12 reflections
of this type.

• Reflections through the plane containing two opposite edges, these are the bottom
six planes. Before reflecting the cube can be separately rotated according to the
fourth rotation type over 0 or 180 degrees, for a total of 6 ·2 = 12 reflections of this
type.

The structure of the rotational group of the cube, denote this group as O, can be de-
termined very visually. Namely, every rotation permutes the diagonals of the cube in a
unique way. If we name the diagonals as in figure 3.8, then O is isomorphic to the per-
mutation group S({1,2,3,4}), that is O ∼= S4. Indeed, for each rotation it can be visually
checked in what way the diagonals are permuted. To prove this formally, it is very useful
to use the fact that O is acting the four diagonals. Let us quickly define this and introduce
a necessary theorem.

Definition 3.2. Let G be a group and X be a set. We say G acts on X if for every g ∈G and
x ∈ X , an element g ◦x ∈ X is given such that e ◦x = x for all x ∈ X and (g h)◦x = g ◦(h ◦x)
for g ,h ∈G and x ∈ X .

Theorem 3.3. Let G act on X . Then for all g ∈G the map ϵg : X → X , defined by ϵg (x) :=
g ◦x is bijective and the map f : G → S(X ), defined by f (g ) := ϵg is a homomorphism.

Proof. Since G acts on X , we have that for all x ∈ X

ϵe (x) = e ◦x = x.

This means ϵe = idX ∈ S(X ). We also have that for all g1, g2 ∈G and all x ∈ X

ϵg1g2 (x) = (g1g2)◦x = g1 ◦ (g2 ◦x) = ϵg1 (ϵg2 (x)).

This shows that
ϵg1g2 = ϵg1 ◦ϵg2 (3.2)

and in particular that for all g ∈G

ϵg ◦ϵg−1 = ϵg−1 ◦ϵg = ϵe = idX ,

which implies that ϵg is bijective and thus ϵg ∈ S(X ). Furthermore, this means that f is
well-defined and equation 3.2 shows that f (g1g2) = f (g1) ◦ f (g2), so f is a homomor-
phism. [12]

Lemma 3.4. The rotational group of the cube O is isomorphic to S4.

Proof. The rotational group of the cube O acts on the set of the diagonals of the cube. Let
f : O → S4 be the group homomorphism induced by this action, according to theorem
3.3. Take any rotation of the fourth type (through the centers of two opposite edges),
by inspection it can be seen that this rotation fixes two diagonals, while switching the
diagonals that the two opposite edges are attached to from position. Note that this type
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of rotation indeed has order 2. We have seen there are six rotations of the fourth type
and thus all six uniquely map to the six transpositions in S4. The set of all transpositions
generate S4 and therefore f must be surjective. Then it follows from the fact the #O = #S4

that f is bijective and thus an isomorphism.

2

2

4

4

1

1

3

3

Figure 3.8: The cube with its diagonals numbered 1 to 4.

Furthermore, it turns out that the entire symmetry group of the cube is isomorphic to
the direct product S4 ×C2. Intuitively this can be seen as two times the permutation of
the diagonals, where one set corresponds to just the rotations and the other set with the
case where orientation of the diagonals is flipped as well. This will not be proved this
formally.

3.1.3. ORBIT STABILIZER THEOREM
The orbit stabilizer theorem is very useful when it comes to counting symmetries, which
will be done a lot in section 3.1.4 and in other parts of this chapter. That is why this
short section is dedicated to formally introducing this theorem. We will make use of the
already defined action of a group on a set in definition 3.2.

Definition 3.5. Let G act on X , then the orbit of an element x, denoted as Gx is defined as

Gx := {g ◦x : g ∈G} (3.3)

So the orbit of an element x ∈ X are the elements that x can reach with one operation.
It turns out that the orbit of x actually induces a equivalence relation. Call two elements
x, y ∈ X equivalent if y ∈ Gx, so if there exist a g ∈ G such that y = g ◦ x. Let us check if
this is indeed an equivalence relation. It is reflexive, since x = e◦x. Next, y = g ◦x implies
g−1 y = x, so it is symmetric as well. That the relation is transitive follows from the fact
that if for x, y, z ∈ X and x, y and y, z are equivalent, it holds that for some g1, g2 ∈G

y = g1 ◦x, z = g2 ◦ y =⇒ z = g2 ◦ (g1 ◦x) = (g2g1)◦x.

So x, z are equivalent as well, proving transitivity and thus we can conclude the relation
is indeed an equivalence relation.

This means that the orbits are precisely the equivalence classes of this relation, which
have the very helpful property that every equivalence class is disjoint and every element
is in exactly one equivalence class. These properties thus also hold for orbits. This will be
used in the proof of the orbit stabilizer theorem, but first the thus far missing stabilizer
is introduced.
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Definition 3.6. Let G act on X . Then the stabilizer of x ∈ X is defined as

Gx := {g ∈G : g ◦x = x}.

Sometimes the stabilizer x ∈ X is written as Stab(x).

Theorem 3.7. (Orbit-stabilizer theorem) Let G act on X , then for all x ∈ X

#Gx = [G : Gx ]. (3.4)

Proof. Let x ∈ X . First we prove that Gx is a subgroup of G . We have e ∈ Gx , so Gx ̸=∅.
Let g1, g2 ∈Gx , then

(g1g2)◦x = g1 ◦ (g2 ◦x) = g1 ◦x = x,

implying Gx is closed. Gx also contains all inverse, since for g ∈Gx

g−1 ◦x = g−1 ◦ (g ◦x) = x.

Next, define the map f : G/Gx →Gx by f (aGx ) = a ◦x. This is well defined, since

aGx = bGx ⇐⇒ b−1a ∈Gx ⇐⇒ (b−1a)◦x = 0 ⇐⇒ a ◦x = b ◦x. (3.5)

But we can conclude more from equation 3.5. It states that if a and b are in different left
cosets, then a ◦ x and b ◦ x can not give the same value, so f is injective. Furthermore,
if we choose a particular left coset of Gx , then for every element c in this left coset, c ◦ x
gives the same value. Since every element of G is in one left coset this means that the
image of f is equal to the entire orbit of x by definition, so f is surjective as well and thus
bijective. From this we can conclude that #Gx = #G/Gx = [G : Gx ]. [12]

In particular from theorem 3.7, we will mostly use that for any x ∈ X

#G = #Gx ·#Gx . (3.6)

Choosing a convenient element x can make calculating the size of a group relatively sim-
ple. For example in section 3.1.2, we assumed that the 24 rotations of the cube we found
were only ones, but now we can prove that these are the only ones with the orbit stabi-
lizer theorem. Let O work on the faces of the cube, then there is only one orbit containing
all six cube, since they can all be rotated to each other. Furthermore, each square is fixed
by four rotations around the axis through its center and the center of the opposite face
(of which one the identity). This gives us #O = 6 ·4 = 24, as expected.

3.1.4. NUMBER OF SYMMETRIES OF THE n-CUBE
Now it is time to look at the symmetries of a general n-cube. There are multiple counting
arguments for what number of symmetries an n-cube has [8]. A relatively simple argu-
ment is that every vertex has to be mapped to one of the 2n vertices. If we choose one of
these vertices, then the connected n edges can be permuted in any way, giving n! pos-
sibilities. This implies that the total number of symmetries is 2nn!. There is also a fun
recursive argument making use of the orbit-stabilizer theorem and is more rigorous. Let
the symmetry group of the n-cube act on the 2n (n −1) cubes. We know that it contains
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this number of (n−1)-cubes from theorem 3.1. Then the orbit of a particular (n−1)-cube
is equal to all of the (n −1)-cubes, as any hyperface can get mapped to every hyperface.
So the size of the orbit is 2n. Moreover, the size of the stabilizer is equal to the number
of symmetries that keep the (n−1)-cubes, for which we can use the orbit stabilizer again
on its 2(n −1) (n −2)-cubes. This recursion also gives that the number of symmetries of
an n-cube is equal to

2n ·2(n −1) · . . . ·2 ·1 = 2nn!, (3.7)

where it is used that the 0-cube has just one symmetry, namely the identity. The recur-
sion can also stopped at the square, which we know has 8 symmetries.

For the square and the cube, we have seen that half of the symmetries are rotations, while
the other half are reflections. This is actually the case for all finite objects with at least
one reflectional symmetry. This can be seen using the first isomorphism theorem. Call
the symmetry group of an object with at least one reflectional symmetry G and define the
homomorphism det : G → {±1}, which maps the isometries in G to the determinant of
their corresponding matrix. This is indeed a homomorphism by the properties of com-
bining rotations and reflections, as we have seen. Furthermore, it is surjective, since we
have at least one reflections getting mapped to -1 and the identity gets mapped to 1 of
course. But then the first isomorphism theorem tells us that G/ker(det) = G/G+ ∼= {±1},
where G+ denotes the rotation group of the object. In particular, the index of the rotation
group in the symmetry group is 2 and we can conclude that indeed half the symmetries
of an object are rotations. For completeness, this means the number of rotational sym-
metries of an n-cube is equal to

2n−1n!. (3.8)

3.2. ROTATIONAL SYMMETRIES OF THE CUBE AND HYPERCUBE

USING QUATERNIONS

R OTATIONS in three and four dimensions are nicely represented as quaternions, al-
though they are both double covers in different ways. In this section we will look

at which quaternions exactly make up the rotation groups of the standard cube and the
standard hypercube, making use of the map in theorem 2.29 and 2.30.

In section 3.1 the n-cube was already defined in n-dimensional space by the exact
placement of its vertices. For three and four dimensions this can be directly extended
to the 4-dimensional quaternion space. Just place the vertices of the cube in ImH at
{±i± j±k}, such that the map Φ can really rotate this cube. Thereafter, place the vertices
of the hypercube at {±1± i± j±k}, which Ψ can obviously rotate.

To actually figure out the rotation groups of the cube and the hypercube, we will
instead look at the duals of the cube and hypercube, the octahedron and the 4-orthoplex
respectively. From section 3.1.1, we know that the vertices of the octahedron are the
centers of the faces of the cube, so they are {±i,±j,±k}. Similarly, the vertices of the 4-
orthoplex are Q8 := {±1,±i,±j,±k}. The rotations of the regular polytopes defined by
these vertices are easier to analyze with quaternion, while the rotation groups of the n-
cube coincides with that of the n-orthoplex, which we saw in section 3.1.1 as well.
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3.2.1. ROTATION GROUP OF THE CUBE USING QUATERNIONS
Define 2O to be the group of all unit quaternions that map to a rotation of the cube
through the map Φ from theorem 2.29, that is

2O :=Φ−1(O). (3.9)

By definition this indeed is a group and a subgroup ofH1.
The naming of 2O very deliberately means two times the rotational group of the

cube O, as we have seen that for every rotation there are two unit quaternions repre-
senting this rotation. This is also why 2O is often called the binary octahedral group. We
actually defined 2O to be rotations of the cube, not the octahedron, but of course their
symmetry groups coincide, as discussed in section 3.1.1. The fact that 2O has twice as
many elements as O, is directly inherited from the relation between rotations and unit
quaternions, SO(3) ∼=H1/{±1}. This means we can write

O ∼= 2O/{±1}.

Let us state the most important property of 2O in a theorem.

Theorem 3.8. The mapΦq :H→H byΦq (p) = qpq−1 is a rotation of the octahedron with
vertices {±i,±j,±k}, as well as the cube with vertices {±i± j±k} for all q ∈ 2O.

When looking for the elements of 2O, we can use the remark after theorem 2.29 and the
rotations in O we already found in section 3.1.2. This tells us that for a certain rotation in
O with rotation angle θ ∈ [0,π] and rotation axis u, the according quaternion is given by
q =±(

cos
( 1

2θ
)+ sin

( 1
2θ

)
u

)
. This gives us that 2O contains the following 48 unit quater-

nions:

{±1,±i,±j,±k},
1p
2

{±1± i,±1± j,±1±k,±i± j,±i±k,±j±k},
1

2
{±1± i± j±k}.

(3.10)

The binary octahedral does not only contains quaternions representing rotations in SO(3)
that are symmetries of the cube and octahedron. Because at the same time, these quater-
nions are also vectors or vertices in 4-dimensional space. This way subsets of 2O de-
scribe geometric shapes in four dimensions. The standard hypercube and 4-orthoplex
can already be recognized in the right 16 quaternions and left 8 quaternions respectively.
These regular polytopes have rotational symmetries as well, however, since these are
4-dimensional objects, unit quaternion pairs are needed to describe their rotations in
SO(4). It is important to keep these different representations of unit quaternions sepa-
rate from each other.

For the construction of the rotation groups for some of these 4-dimensional objects,
we will need to fully understand the structure of 2O itself. The normal subgroups and
conjugacy classes of 2O with give us a big part in this understanding. Let us define these
concepts formally.

Definition 3.9. Let G be a group, then a subgroup N ⊂ G is called a normal subgroup if
for every n ∈ N it holds that for all g ∈G

g ng−1 ∈ N .

We denote this as N ⊴G.
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Theorem 3.10. Let G be a group with normal subgroup N ⊴G, then g N = N g for g ∈ G
or in other words the left and right cosets of N coincide.

Proof. Let n ∈ N and g ∈G , then

g n = (g ng−1)g ∈ N g ,

since g ng−1 ∈ N . So g N ⊆ N g , but similarly ng = g (g−1ng ) ∈ N g , which implies N g ⊆
g N . We can conclude g N = N g . [12]

This proof also tells us that when N ⊴G , we can talk about just the cosets, instead of the
left and right cosets.

Let a group G act on itself by conjugation, which is a special case of an action. The theory
from section 3.1.3 still applies but now we say conjugacy classes instead of orbits.

Definition 3.11. Let G be a group, then the conjugacy class of a ∈G is

[a] := {b ∈G : ∃g ∈G : a = g bg−1}.

Furthermore, a,b ∈G are called conjugate if they are in the same conjugacy class.

Elements of the same conjugacy class have the same order2, which can be seen by

(g ag−1)n = e ⇐⇒ g an g−1 = e ⇐⇒ an = e.

Conjugacy classes give a nice way to prove that certain subgroups are normal. This is
exactly what we will be doing, so before figuring out the conjugacy classes of 2O, the
next theorem shows us how to prove a subgroup is normal.

Theorem 3.12. Let G be a group, then a subgroup N ⊂ G is normal if and only if N is a
union of conjugacy classes

Proof. Let N be a normal subgroup of G and let n ∈ N . Then for every b ∈ [n], there
exists a g ∈ G such that b = g ng−1 by definition. But since N is normal, we have that
b = g ng−1 ∈ N . Because n ∈ [n] by ene−1 = n, this means N =⋃

n∈N [n].
Conversely, let N =⋃

a∈I [a] be a subgroup of G , where I is a subset of G . Then for every
n ∈ N and g ∈ G , g ng−1 ∈ [a] for some a ∈ I . But [a] is a subset of N , so g ng−1 ∈ N ,
proving N is normal.

Remark 3.13. Be aware that theorem 3.12 does not say any union of conjugacy classes is
normal. It implies that a subset N of G is normal if and only if it is a subgroup and it is a
union of conjugacy classes.

To find the conjugacy classes of 2O, one more trick will be used. Since all elements of
2O are unit quaternions, lemma 2.25 can be used. It states that the conjugation with a
unit quaternion preserves the real part. So within the group 2O, we know that elements
of the same conjugacy class must have the same real part. However, this does not always
work the other way around, as two elements with the same real part are not always part
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Conjugacy Class Number Elements Order Size Real Part
1 1 1 1 1
2 -1 2 1 -1
3 ±i,±j,±k 4 6 0
4 1

2 (1± i± j±k) 6 8 1
2

5 1
2 (−1± i± j±k) 3 8 − 1

2
6 1p

2
(1± i), 1p

2
(1± j), 1p

2
(1±k) 8 6 1p

2
7 1p

2
(−1± i), 1p

2
(−1± j), 1p

2
(−1±k) 8 6 − 1p

2
8 1p

2
(±i± j), 1p

2
(±i±k), 1p

2
(±j±k) 4 12 0

Table 3.2: Conjugacy classes of 2O with their order, number of elements and real part.

of the same conjugacy class. All conjugacy classes are written in table 3.2 and a python
code finding these classes can be found in appendix A.2.

To prove that the conjugacy classes do not fall apart further in a more mathematical
fashion, like they already do for elements with zero real part, which splits in the two con-
jugacy classes 3 and 8, we can look at the geometry of the conjugacy classes. Conjugacy
classes 1 and 2 contain only one element, so it is clear they do not split further. The con-
jugacy classes 4 and 5 are geometrically cubes in the imaginary hyperplane at ‘height’ 1

2
and − 1

2 respectively, determined by the real part. Of course from theorem 3.8 we know
conjugation with elements of 2O is a rotation of these cubes and thus the conjugacy
classes do not split further. Similarly, conjugacy class 3 is the standard octahedron in
ImH and theorem 3.8 tells us that conjugation with 2O is a rotation of the octahedron as
well. Conjugacy classes 6 and 7 are octahedrons as well, but at height 1 and −1 respec-
tively and are also kept in place by conjugation. Lastly, conjugacy class 8 is a bit unique,
as it contains no less than 12 elements. It corresponds to a cuboctahedron, which has
the same rotation group as the cube and octahedron. This shape looks like a cube with
its corner cut off and is illustrated in figure ??. This can be seen by the fact that the 12
vertices of the cuboctahedron lie at the center of each edge of the standard cube scaled
down by a factor of 1p

2
. The cuboctahedron also entirely lies in the imaginary hyper-

plane, with its center at the origin, so the cuboctahedron corresponding to conjugacy
class 8 is kept in place by conjugation with 2O as well.

Lemma 3.14. Q8 is a normal subgroup of 2O.

Proof. First check that Q8 is even a subgroup. We can see this by the fact that Q8 = 2O∩Z4

implies Q8 is closed. Also inverses of all elements of Q8 are in Q8 again, as these are just
conjugates, so Q8 is indeed a subgroup. That Q8 is normal follows from the fact that it is
the union of conjugacy classes 1,2 and 3 by theorem 3.12.

Lemma 3.15. The set 2T defined by 2T := Q8 ∪ 1
2 {±1± i± j±k} is a normal subgroup of

2O.

2This also follows from the fact that conjugation defines an automorphism on G .
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Figure 3.9: The cuboctahedron, which looks like a cube with its corners cut off, such that the remaining vertices
are all of the same length, this bigger cube is dotted in the figure. The cuboctahedron has six squares and eight
triangles as faces, where the last are highlighted with a slightly lower opacity. It has the same symmetry group
as the cube and octahedron, which we can see with the orbit stabilizer theorem applied to one of its squares
and the fact that every symmetry of the cube is one of the cuboctahedron as well.

Proof. Similarly to Q8, 2T = 2O ∩Q4 and therefore 2T is closed. It can also be seen that
all inverses, which are just the conjugates, are in 2T again, proving 2T is a subgroup. It
is normal since it is the union of conjugacy classes 1,2,3,4 and 5 by theorem 3.12.3

Trying the combinations of unions of the conjugacy classes in table 3.2, we find the the
only other none trivial normal subgroup is {±1}. The trivial normal subgroups are given
by {1} and 2O itself.

The cosets of Q8 in 2O have a very interesting structure and they are written out in table
3.3. Notably every coset is a rotated copy of Q8 or in other words a rotated 4-orthoplex
with its center at the origin. Furthermore, note that 2T is the union of cosets 1,5 and
6, and its other coset in 2O is the union of cosets 2,3 and 4, which is similarly a rotated
copy of 2T . The group 2T , called the binary tetrahedral group 2T , actually contains the
vertices of the very special regular polytope the hyperdiamond, which will be discussed
in more detail in section 3.4.

In table 3.3, call a representatives of a coset gi , according to the number of the coset
that they are in. Since Q8 is a normal subgroup of 2O by lemma 3.14, the quotient group
2O/Q8 of the cosets of Q8 can be constructed. 2O/Q8 has [2O : Q8] = 6 elements, namely
the six cosets, which we can represent with gi := gi Q8. It can be quickly checked what
the inverses of gi are, since for unit quaternion this is of course just conjugation. In the
last column of table 3.3 these inverses are given and it is interesting to note that all cosets
have themselves as inverse, except that g5

−1 = g6 and g6
−1 = g5. From this information

we suspect that 2O/Q8
∼= S3, since it seems to have the exact same structure. We know

this for sure by the fact that 2O/Q8 is not abelian and S3 is the only non-abelian group

3This can of course also be seen by the fact that the index of 2T in 2O is 2.
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Coset number Elements Inverse Coset
1 Q8 = {±1,±i,±j,±k} 1
2 1p

2
{±1± i}∪ 1p

2
{±j±k} 2

3 1p
2

{±1± j}∪ 1p
2

{±i±k} 3

4 1p
2

{±1±k}∪ 1p
2

{±i± j} 4

5 1
2 {±1± i± j±k} with even number of minus signs 6

6 1
2 {±1± i± j±k} with odd number of minus signs 5

Table 3.3: The six cosets of Q8 in 2O.

with six elements. An explicit isomorphism is given by

g1 7→ e, g2 7→ (12), g3 7→ (13), g4 7→ (23), g5 7→ (132), g6 7→ (123).

3.2.2. ROTATION GROUP OF THE HYPERCUBE USING QUATERNIONS
Similarly to the cube, we want to construct the binary rotation group of the hypercube,
denote this as 2OH ⊂H1 ×H1. However, this time we do not even know the non-binary
rotation group itself, denoted as OH ⊂ SO(4). What is also different is that we need 4-
dimensional rotations now, so we will need to use theorem 2.30. This also states that
4-dimensional rotation have a two-to-one relation with unit quaternion pairs, so we are
trying to find 192 · 2 = 384 unit quaternion pairs, since the total number of rotational
symmetries of the hypercube is 192, given by equation 3.8. In this section we will find
these 384 quaternion pairs such that OH =Ψ(2OH ).

Rotating just the imaginary hyperplane can produce rotational symmetries of the
hypercube, similar to how rotating just the X Y plane is a rotation of the cube for certain
angles. Actually, for the cube this results in exactly the 3-dimensional extension of the
four rotations of the square. Similarly for the hypercube, rotating just on of its cube
faces in ImH also gives rotations of the hypercube itself, so this way we already found
#2O = 48 rotations of the hypercube, namely the pairs (q, q) with q ∈ 2O. This feeds the
suspicion that the binary rotation group of the hypercube 2OH is very closely related
with the binary octahedral group 2O.

It turns out that 2OH is a subgroup of 2O×2O with index 6, since #(2O×2O) = 48·48 =
2304 = 384 ·6. The quaternion pairs of 2OH are given by the union of the direct products
of the cosets six cosets of Q8 in 2O. Indeed, this leaves us with 8 ·8 ·6 = 384 pairs. 2OH

can this way be defined as

2OH := {(q1, q2) ∈ 2O ×2O : q1Q8 = q2Q8}, (3.11)

Note that this highlights the fact that 2OH ⊂ 2O ×2O. This definition is equivalent to

2OH = {(gi q1, gi q2) : gi ∈ 2O/Q8, q1, q2 ∈Q8}, (3.12)

which is the characterization that will be used in some proofs.
Let us formally prove that indeed all elements of 2OH defined this way are rotations

of the hypercube.
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Theorem 3.16. The map Ψq1,q2 :H→H by Ψq1,q2 (p) = q1pq−1
2 is a rotation of Q8 for all

(q1, q2) ∈ 2OH .

Proof. Take an arbitrary element of 2OH , which can be written as (gi q1, gi q2), for some
q1, q2 ∈ Q8 and gi ∈ 2O/Q8. We want to prove that Ψgi q1,gi q2 maps Q8 to Q8. We only
have to prove this, because theorem 2.30 tells us that since gi q1, gi q2 ∈ H1, we at least
know that Ψgi q1,gi q2 is a rotation of H. Let p ∈ Q8, then proving that Q8 gets mapped to
Q8 is equivalent to just provingΨgi q1,gi q2 (p) ∈Q8, since a rotation maps points uniquely.
Write

Ψgi q1,gi q2 (p) = (gi q1)p(gi q2)−1 = gi q1pq−1
2 g−1

i .

Now since p, q1, q2 ∈ Q8, q1pq2 ∈ Q8 as well. But gi ∈ 2O, which means by theorem 3.8
that if q1pq2 ∈ {±i,±j,±k}, then gi q1pq−1

2 g−1
i is mapped to {±i,±j,±k} again. If q1pq−1

2 ∈
{±1}, then gi q1pq−1

2 g−1
i = gi (±1)g−1

i = ±1. So Ψgi q1,gi q2 (p) ∈ Q8, concluding the proof.

As discussed, the points of Q8 can be seen as the vertices of the 4-orthoplex in the four
dimensional space H. Since the rotation groups of the 4-orthoplex and its dual the hy-
percube coincide, this means that 2OH only contains quaternions that represent ro-
tations of the hypercube. Furthermore, from theorem 2.30, we know that q1pq−1

2 =
−q1p(−q2)−1, and thus (q1, q2) and (−q1,−q2) represent the same rotation. However,
up to this sign the map Ψ :H1 ×H1 → SO(4) maps unit quaternion pairs to unique rota-
tions. We have seen that #2OH = 384, which is exactly twice the number of rotations of
the hypercube, and together with theorem 3.16 every one of these rotations must thus be
represented twice in 2OH . So 2OH is indeed the binary rotation group of the hypercube.

Combining 4-dimensional rotations as quaternions is still a bit tricky, as we want a
second rotation to "sandwich" the entire previous rotation, like

Ψq1,q2 (Ψr1,r2 (p)) = q1Ψr1,r2 (p)q−1
2 .

However, the standard multiplication for an direct product already correctly combines
quaternion pairs. This can be seen by the fact that for (q1, q2), (r1,r2) ∈ 2OH we have that
(q1, q2)(r1,r2) = (q1r1, q2r2) and this way

Ψq1r1,q2r2 (p) = (q1r1)p(q2r2)−1 = q1r1pr−1
2 q−1

2 =Ψq1,q2 (Ψr1,r2 (p))

as required. Let us check if 2OH really forms a group this way.

Theorem 3.17. 2OH is a group and 2OH /{±(1,1)} ∼=OH .

Proof. First note that (1,1) is the identity element and the operation 2OH is clearly as-
sociative. Next we prove that every element has an inverse in 2OH . Let (q1, q2) ∈ 2OH ,
then (q−1

1 , q−1
2 ) ∈ 2O ×2O is clearly the only candidate for the inverse. All that is left to

show is that this inverse is an element of 2OH . Since q1 and q2 are in the same coset of
Q8 in 2O, their inverses are in the same possible different coset as well, because 2O/Q8

is well-defined, so (q−1
1 , q−1

2 ) ∈ 2OH .
Finally, we show that 2OH is closed under multiplication. Let (p1, p2), (r1,r2) ∈ 2OH , then
(p1, p2), (r1,r2) = (p1r1, p2r2). Again since 2O/Q8 is well-defined, p1r1 and p2r2 are in the
same coset, so (p1r1, p2r2) ∈ 2OH . So 2OH is a group and as discussed, its size being twice
that of OH and the two-to-one relation of Ψ proves that 2OH /{±(1,1)} ∼=OH .
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It is interesting to note that the way that 2OH is defined, means we can see 2OH as⋃
gi∈2O/Q8 gi × gi , which looks exactly like the six cosets of g1 × g1 = Q8 ×Q8. We will

make this proposition formal in the next theorem.

Theorem 3.18. Q8 ×Q8 is a normal subgroup of 2OH .

Proof. Let (q1, q2) ∈Q8 ×Q8 and (p1, p2) ∈ 2OH . We have to prove that

(p1, p2)(q1, q2)(p1, p2)−1 ∈Q8 ×Q8.

From the proof of lemma 3.17 we know (p1, p2)−1 = (p−1
1 , p−1

2 ), this gives

(p1, p2)(q1, q2)(p−1
1 , p−1

2 ) = (p1q1p−1
1 , p2q2p−1

2 ).

Since p1, p2 ∈ 2O and Q8 is a normal subgroup of 2O by lemma 3.14, p1q1p−1
1 , p2q2p−1

2 ∈
Q8, concluding the proof.

For an overview of the cosets of Q8 ×Q8 in 2OH , table 3.4 is made. Note that
2OH /(Q8×Q8) contains six elements as #Q8×Q8 = 8 ·8 = 64 = 384

6 , so [2OH : Q8×Q8] = 6.
The elements of the cosets follow directly from the construction of 2OH as

⋃
gi∈2O/Q8 gi ×

gi and the cosets of Q8 in 2O in table 3.3.

Coset Number Elements
1 Q8 ×Q8

2 ( 1p
2

{±1± i}∪ 1p
2

{±j±k}, 1p
2

{±1± i}∪ 1p
2

{±j±k})

3 ( 1p
2

{±1± j}∪ 1p
2

{±i±k}, 1p
2

{±1± j}∪ 1p
2

{±i±k})

4 ( 1p
2

{±1±k}∪ 1p
2

{±i± j}, 1p
2

{±1±k}∪ 1p
2

{±i± j})

5 (q1, q2) with q1, q2 ∈ 1
2 {±1±k± i± j} such that

q1 and q2 have an even number of minus signs
6 (q1, q2) with q1, q2 ∈ 1

2 {±1±k± i± j} such that
q1 and q2 have an odd number of minus signs

Table 3.4: Cosets of Q8 ×Q8 in 2OH .

The inverse cosets are very similar to table 3.3, since every coset has itself as inverse,
except for coset 5 and 6, which are each others inverse. This can be quickly verified by
taking conjugates of the elements of the cosets. Due to the non-abelian nature of the
cosets, 2OH /(Q8 ×Q8) ∼= S3, as it is the only non-abelian group of order six. Call the
cosets hi according to their numbering, then an explicit isomorphism is given by

h1 7→ e, h2 7→ (12), h3 7→ (13), h4 7→ (23), h5 7→ (132), h6 7→ (123).

Q8 ×Q8 is geometrically the direct product of the two 4-orthoplexes described by Q8 at
the same position. The other five cosets have the same geometric structure, but each
coset is the direct product of two 4-orthoplexes that are rotated copies of Q8. Note that
for each coset the two 4-orthoplexes are the same, just like Q8 ×Q8. This way the cosets
in 2OH /Q8 ×Q8 can be seen as ‘rotated’ copies of Q8 ×Q8.
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Class Number Elements Order Size
1 (1,1) 1 1
2 (−1,1) 2 1
3 (1,−1) 2 1
4 (−1,−1) 2 1
5 (1,{±i,±j,±k}) 4 6
6 ({±i,±j,±k},1) 4 6
7 (−1,{±i,±j,±k}) 4 6
8 ({±i,±j,±k},−1) 4 6
9 (1± i,1± i), (1± j,1± j), (1±k,1±k) 8 12

10 (1± i,−1± i), (1± j,−1± j), (1±k,−1±k) 8 12
11 (−1± i,1± i), (−1± j,1± j), (−1±k,1±k) 8 12
12 (−1± i,−1± i), (−1± j,−1± j), (−1±k,−1±k) 8 12
13 (±i,±i), (±j,±j), (±k,±k) 4 12
14 (±i, {±j,±k}), (±j, {±i,±k}), (±k, {±i,±j}) 4 24
15 (±i± j,±i± j), (±i±k,±i±k), (±j±k,±j±k) 4 48
16 (1± i,±j±k), (1± j,±i±k), (1±k,±i± j) 8 24
17 (−1± i,±j±k), (−1± j,±i±k), (−1±k,±i± j) 8 24
18 (±j±k,1± i), (±i±k,1± j), (±i± j,1±k) 8 24
19 (±j±k,−1± i), (±i±k,−1± j), (±i± j,−1±k) 8 24
20 (1± i± j±k,1± i± j±k) 6 32

such that both elements have
the same number of minus signs

21 (1± i± j±k,−1± i± j±k) 6 32
such that both elements have

the same number of minus signs
22 (−1± i± j±k,1± i± j±k) 6 32

such that both elements have
the same number of minus signs

23 (−1± i± j±k,−1± i± j±k) 3 32
such that both elements have

the same number of minus signs

Table 3.5: The conjugacy classes of 2OH . The quaternions are not all normalized for the sake of clarity, but in
reality they of course should be. See A.2.1 for code providing these.

To possibly discover more normal subgroup and for the general structure of 2OH , its
conjugacy classes are given in table 3.5.

It is interesting to note that 2O × 2O is exactly six times the size of 2OH and of course
2OH ⊂ 2O × 2O. This look similar to the normal subgroups Q8 and Q8 ×Q8 in 2O and
2OH respectively, so perhaps this case is similar. Wether 2OH is normal in 2O × 2O or
not, can be proved or disproved if we know the conjugacy classes of 2O ×2O. Because
then it can be seen if 2OH is a union of certain conjugacy classes, using theorem 3.12.
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The conjugacy classes can be constructed relatively simply from the conjugacy classes
of 2O in table 3.2. Lemma 3.19 shows us how.

Lemma 3.19. If [a] and [b] are two conjugacy classes of G, then [a]× [b] is a conjugacy
class of G ×G. Moreover, every conjugacy class of G ×G is of this form.

Proof. Let [a], [b] be two conjugacy classes of G . Let (h1,h2) ∈ [a]×[b] and (g1, g2) ∈G×G .
Then

(g1, g2)(h1,h2)(g−1
1 , g−1

2 ) = (g1h1g−1
2 , g2h2g−1

2 ) ∈ [a]× [b],

so [a]× [b] is a conjugacy class of G ×G .
Denote the number of conjugacy classes in G as m. Since this holds for every conjugacy
class, we can construct m ·m conjugacy classes of G ×G . But since every element of G is
in only one conjugacy class, every element of G×G is contained in of the m ·m combined
conjugacy classes and thus we have already constructed every conjugacy class of G .

Lemma 3.19 tells us that 2O ×2O has 8 ·8 = 64 conjugacy classes of the from [a]× [b] ⊂
2O×2O with every combination of conjugacy classes [a], [b] ⊂ 2O. Sadly, this way we can
see that 2OH is not a union of conjugacy classes and thus not a normal subgroup. The
counter example goes as follows.

Take the element ( 1
2 (1+ i+ j+k, 1

2 (1+ i+ j+k)) ∈ 2OH ⊂ 2O×2O, which indeed lies in
2OH as both elements of the pair obviously lie in the same coset in 2O/Q8. Now there can
only be one direct product of two conjugacy classes of 2O which contains this element
and indeed, this has to be the direct product of conjugacy class 4 with itself, see table 3.2.
However, this direct product also contains the element ( 1

2 (1+i+j+k), 1
2 (1+i+j−k) ∉ 2OH ,

since the two elements of the pair are not in the same coset of 2O as 1
2 (1+ i+ j+k) has an

even number of minus signs, while 1
2 (1+i+j−k) has an odd number of minus signs. It can

be concluded by theorem 3.12 that 2OH is not a union of conjugacy classes in 2O ×2O
and thus not normal.

3.3. EXACT SEQUENCE STRUCTURES OF THE CUBE AND THE

HYPERCUBE

W E would like to know wether the rotation group of the hypercube 2OH is direct
or semidirect product of other groups and what structure certain normal groups

of 2OH and their quotient group have. For this we need the theory of exact splitting
sequences.

3.3.1. EXACT SPLITTING SEQUENCES
Definition 3.20. Let G0,G1, . . . ,Gn be groups and let g1, g2, . . . , gn be homomorphisms
such that gi is a homomorphism between Gi−1 and Gi . Then the sequence

G0
g1−→G1

g2−→ . . .
gn−→Gn (3.13)

is called an exact sequence if the image of every homomorphism is the kernel of the next
homomorphism, that is gi (Gi−1) = ker(gi+1).
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Specifically we are interested in short exact sequences, which have the following form,

1 →G0
g−→G1

p−→G2 → 1, (3.14)

where 1 denotes the group with just the identity element. Therefore the first and last
homomorphisms in the sequence are just the trivial homomorphisms, which are the
only possible homomorphisms. For the sequence in equation 3.14 to be exact we need
that the kernel of g is equal to the image of the leftmost map, which is just the identity in
G0. This then implies that g is injective. Furthermore, the image of the homomorphism
p must be equal to the kernel of the rightmost homomorphism, but this just maps all of
G2 to the identity, implying that p must be surjective. This means that the definition for
short sequences to be exact, implies that g and p are injective and surjective respectively.
From now on short sequences will be denoted as

K
g
,−→G

p−−−↠Q, (3.15)

where the leftmost and rightmost homomorphisms and groups are left out and the hooked
arrow denotes injectivity, while the double headed arrow denotes surjectivity. If we see
the image of K as an embedding of the group K as a subgroup in G , then we can see K
itself as the kernel of p, this is why G0 is written as K .

This is an important observation, because this means G/K ∼= Q by the first isomor-
phism theorem and is why we write G2 as Q. Furthermore, this isomorphism is given by
the p induced natural homomorphism p : G/K →Q. All of this is illustrated in figure 3.10

K

G

K

Q

g p

Figure 3.10: A visualization of a short exact sequence, where the homomorphism g is seen as an embedding of
K in G , K and its coset are represented by the blue ovals contained in G . Furthermore, p maps the elements of
a coset K to the same element in Q, these elements are represented as the orange points.

Unfortunately, in general it is not true that G is isomorphic to the direct product of K
and Q. There is, however, a more powerful version of the short exact sequence, namely
the splitting short exact sequence. For these kind of sequences there exists a semidirect
product for which G is isomorphic to this semi direct product of K and Q. But before
giving the conditions for a sequence to split, first the semidirect product is introduced.
For this we need the automorphism group of a group. This is the group containing all
automorphism from a group G to itself and is a subgroup of S(G), denote it as Aut(G).

Definition 3.21. Let K and Q be groups and let τ : Q → Aut (K ) be a homomorphism. The
semidirect product of K and Q with respect to τ is the group K ×Q with the operation

(k1, q1)(k2, q2) = (k1τ(q1)(k2), q1q2). (3.16)
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The notation for this is K ⋊τQ. [12]

Definition 3.22. A short exact sequence

K
g
,−→G

p−−−↠Q,

is called split if there exists a homomorphism f : Q →G such that p ◦ f = idQ .

K

G

K

Q

g p

f

Figure 3.11: A visualization of a split short exact sequence. The homomorphism f exactly maps to the well-
chosen points of in G that form a isomorphic subgroup to Q This is represented by the orange line intersecting
every coset in a single point, represented by the orange points.

We can interpret the definition of split in the following way. The difficulty in finding f is
not so much the fact that p ◦ f = idQ , but that it must be a homomorphism. Because for
f to be homomorphism, we need to be able to find one element in each coset of K , such
that together they form a group isomorphic to Q. This is hard to find and definitely not
true for general short exact sequences, but in turn we get the powerful splitting lemma.
All of this is illustrated in figure 3.11, which is an extension of figure 3.10.

Lemma 3.23. (Splitting lemma) If a short sequence is split, then there exists a homomor-
phism τ : Q → Aut (K ) such that G ∼= K ⋊τQ.

Proof. First we will define a homomorphism τ : Q → Aut(K ). Since the short sequence is
split there exists a homomorphism f : Q →G with p ◦ f = idQ . Then for q ∈Q and k ∈ K
we know that

f (q)g (k) f (q−1) ∈ ker(p),

since indeed

p( f (q)g (k) f (q−1)) = p( f (q))p(g (k))p( f (q−1)) = qeQ q−1 = eQ ,

where it is used that g (k) ∈ ker(p) by definition. More generally g (K ) = ker(p), so for
some k ′ ∈ K

f (q)g (k) f (q−1) = g (k ′).

Note that k ′ is unique since g is injective and is determined by the choices of q and k.
Now define τq : K → K such that τq (k) = k ′ or in other words such that

f (q)g (k) f (q)−1 = g (τq (k)), (3.17)
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where it is used that f (q−1) = f (q)−1. Define τ : Q → Aut(K ) with τ(q) := τq , we claim this
is well-defined, that is τq ∈ Aut(K ). Furthermore, we claim that τ is a homomorphism.
First we check if τq is even a homomorphism for q ∈Q. Let k1,k2 ∈ K , then from equation
3.17 it follows that

f (q)g (k1k2) f (q)−1 = g (τq (k1k2)).

The left side is equal to

f (q)g (k1)g (k2) f (q)−1 = f (q)g (k1) f (q)−1 f (q)g (k2) f (q)−1

= g (τq (k1))g (tq (k2))

= g (τq (k1)τq (k2)).

It follows that τq (k1k2) = τq (k1)τq (k2) since g is injective and thus τq is a homomor-
phism. Next, look at the case q = eQ , then for k ∈ K equation 3.17 reads

f (eQ )g (k) f (eQ )−1 = g (k) = g (τeQ (k)).

So τeQ = idK ∈ Aut(K ). Next we prove that τ is a homomorphism. Let q1, q2 ∈ Q and
k ∈ K , then equation 3.17 gives us

f (q1q2)g (k) f (q1q2)−1 = g (τq1q2 (k)).

The left side is equal to

f (q1) f (q2)g (k) f (q2)−1 f (q1)−1 = f (q1)g (τq2 (k)) f (q1)−1 = g (τq1 (τq2 (k))).

Again by injectivity of g , we get that τq1 ◦τq2 = τq1q2 , so τ is indeed a homomorphism.
Furthermore, in particular we have that for q ∈Q, it holds that τq ◦τq−1 = τq−1 ◦τq = τeQ ,
which implies that τq is invertible and is thus bijective. Together with the fact that τq is
a homomorphism we can conclude τq ∈ Aut(K ). To summarize, we have found a well-
defined homomorphism τ : Q → Aut(K ).
What is left to show is that there actually exists a isomorphism between K ⋊τ Q and G .
Define j : K ⋊τ Q → G with j (k, q) = g (k) f (q). First we show this is a homomorphism.
Let k1,k2 ∈ K and q1, q2 ∈Q, then

j ((k1, q1)(k2, q2)) = j ((k1τ(q1)(k2), q1q2)) = g (k1τq1 (k2)) f (q1q2)

= g (k1)g (τq1 (k2)) f (q1) f (q2) = g (k1) f (q1)g (k2) f (q1)−1 f (q1) f (q2)

= g (k1) f (q1)g (k2) f (q2) = j ((k1, q1)) j ((k2, q2)).

That j is injective follow from

j (k, q) = eG =⇒ g (k) f (q) = eG =⇒ p(g (k) f (q)) = p(eG ) =⇒ eQ q = eQ =⇒ q = eQ ,

since g (k) ∈ ker(p). Now using q = eQ , we get that g (k) = eG , which can only hold if
k = eK , since g is injective. Lastly, we have to prove that j is surjective. Let h ∈ G , then
we have to find k ∈ K and q ∈Q such that

j (k, q) = h =⇒ g (k) f (q) = h =⇒ p(g (k) f (q) = p(h)

=⇒ p(g (k))p( f (q)) = p(h) =⇒ q = p(h).
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Set q := p(h), we now need to find k ∈ K such that g (k) f (p(h)) = h or equivalently
g (k) = h f (p(h))−1. Using that g (K ) = ker(p), we can argue that for such a k to exist
we must have that h f (p(h))−1 ∈ ker(p) as well. Conversely, if h f (p(h))−1 ∈ ker(p), then
there must be some k ∈ K such that g (k) = h f (p(h))−1. So all that we have to check is
wether h f (p(h))−1 ∈ ker(p) or not.

p(h f (p(h))−1) = p(h f (p(h)−1)) = p(h)p( f (p(h)−1)) = p(h)p(h)−1 = eQ .

So h = g (k) f (p(h)) with p(h) ∈ Q and for some k ∈ K , proving j is surjective and thus j
is an isomorphism K ⋊τQ →G , concluding the proof. [5]

3.3.2. SEQUENCE STRUCTURE OF THE BINARY OCTAHEDRAL GROUP
In this section we look at the split short exact sequence

V4
g
,−→ S4

p−−−↠ S3, (3.18)

which corresponds to the cube and its normal subgroup the Klein four-group V4. This
is a very visual example, but most importantly it might gives us a way to expand this
relatively simple case to the short exact sequences

Q8 ,→ 2O ↠ S3,

Q8 ×Q8 ,→ 2OH ↠ S3,

since 2O is the double cover of O ∼= S4 and 2O/Q8
∼= S3, just like 2OH /(Q8 ×Q8) ∼= S3, as

we have seen in section 3.2.1 and 3.2.2.
First check if the short sequence in equation 3.18 is exact in the first place, let alone

split. For this purpose, g and p should be defined. The most obvious choice for g , is to
map V4 to {e, (12)(34), (13)(24), (14)(23)} ⊂ S4, which is clearly injective, call this subgroup
of S4 also V4 for simplicity. Then it must hold that ker(p) = V4. Intuitively, from figure
3.11, we have seen that for the sequence to split, the cosets of V4 should be mapped
to S4/V4 such that we can define a map backwards to well chosen representatives. The
cosets of V4 in S4 are written down in table 3.6.

Representative Coset
e e, (12)(34), (13)(24), (14)(23)

(12) (12), (34), (1423), (1324)
(13) (13), (1432), (24), (1234)
(23) (23), (1243), (1324), (14)

(123) (123), (243), (142), (134)
(132) (132), (143), (234), (124)

Table 3.6: Cosets of V4 in S4.

Notice how the representative are chosen as exactly the six elements of S3 (ignoring the
(4) that is not written down). This means that writing S4/V4 as S3 is justified. This could
have also been seen by the fact that the cosets in S4/V4 do note commute and [S4 : V4] = 6
and S3 is the only non-abelian group of six elements.
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Define p : S4 → S3 such that every element in S4 is mapped to the element in S3

associated with the coset representative of its coset. Then clearly p is a surjective ho-
momorphism. This can be done visually as S4 is the rotation group of the cube and S4

acting on the cube can be interpreted as a permutation of its four diagonals, explored in
section 3.1.2, also see figure 3.12.

2

2

4

4

1

1

3

3

2

2

4

4

1

1

3

3

Figure 3.12: On the left, the cube with its four numbered diagonal. In the middle, the colouring of the cubes
faces with the colours blue, orange and green, denoted b, o and g . The three unseen faces have the same colour
as their opposite face. On the right the other two figures are combined

Similarly, S3 acting on the cube can be seen in the following way. Colour the opposite
faces of the cube the same colour, say blue, red and yellow as in figure 3.12 and let S3

permutes these colours.
Now it can be checked which rotation of the cube corresponds to which permuta-

tion of the diagonals and to which permutation of the colours. How the diagonals are
permuted is clear for each element in S4. So let us look at the colour permutation in
detail.

It can be shown that the four rotations corresponding to the elements of one coset
of V4 in S4, permute the colours of the faces in the same way. For example, take the
rotations corresponding to (13) and (1234) in S4. To switch diagonals 1 and 3, we have to
rotate around the axis through the middles of the two edges connecting the diagonals 1
and 3, see figure 3.13.

For the second permutation (1234), it can be seen that a rotation around the axis
through the middles of the blue faces by 90 degrees suffices. For this rotation it can be
easily seen that the blue sides are kept in places, while the green and orange sides switch
places. For the first rotation (13), this might be a bit harder to imagine. Here the two blue
sides change places, but this still means the same opposite sides stay blue. Meanwhile
green and orange are switched. So indeed (13), (1234) ∈ S4 permute the colours in the
same way. This can be written as (g o)(b) ∈ S({b, g ,o}), where S({b, g ,o}) is of course iso-
morphic to S3.

So far the example, let us look at if the sequence is split. Define f : S3 → S4 by map-
ping each element to the same permutation keeping 4 in place, so (12)(3) is mapped to
(12)(3)(4). Then indeed p ◦ f (σ) = idS3 and f is a homomorphism, thus the sequence
in equation 3.14 is indeed split. As discussed, we see that a sequence being split comes
down to wether or not we have the ability to choose ’nice’ representatives which form
the quotient group together and in this case S4 has a subgroup isomorphic to S3 with
one element in each coset of V4.
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Figure 3.13: To permute the diagonals 1 and 3 of the cube numbered as in figure 3.12, the cube has to be rotated
180 degrees around the axis through the middles of the edges connect diagonals 1 and 3. This axis is shown on
the left. To permute the diagonals according to (1234), the cube has to be rotated 90 degrees around the axis
through the centers of the blue faces in figure 3.12. This axis is shown on the right

We can now actually explicitly work out what colour in S({b,o, g }) the numbers 1,2
and 3 in S3 are linked to. To do this, first take (12)(3) ∈ S3, so f ((12)(3)) = (12)(3)(4). This
is, similarly to (13), the rotation around the axis through the midpoints of the edges con-
necting diagonals 1 and 2 over 180 degrees. In this rotation blue and green switch places,
but orange stays in place, so we can conclude that 3 must represent red. Furthermore,
taking (13)(2) ∈ S3, of which we have already seen the corresponding rotation and we
know it switches green and orange, but keeps blue in place. So 2 must represent green,
leaving blue to be represented by 1.

Now the structure of the group S4 can be described as S4
∼= V4 ⋊τ S3 for some ho-

momorphism τ : S3 → Aut(V4), by lemma 3.23. From the proof the proof of the splitting
lemma, it can be seen that τ is the homomorphism that for q ∈ S3 maps τ(q) 7→ τq , where
τq (k) satisfies

f (q)g (k) f (q)−1 = g (τq (k)). (3.19)

For every q ∈ S3 a table can be made to see what automorphism τq describes, this is
done in table 3.7. It is interesting to note that τ is an isomorphism, since coincidentally
Aut(V4) ∼= S3 and from the table it follows that τ is bijective, although this is definitely
not true in general split exact short sequences.

τeS3
τ(12) τ(13) τ(23) τ(123) τ(132)

eV4 eV4 eV4 eV4 eV4 eV4 eV4

(12)(34) (12)(34) (12)(34) (14)(23) (13)(24) (14)(23) (13)(24)
(13)(24) (13)(24) (14)(23) (13)(24) (12)(34) (12)(34) (14)(23)
(14)(23) (14)(23) (13)(24) (12)(34) (14)(23) (13)(24) (12)(34)

Table 3.7: Mappings of the automorphism τq : V4 →V4 for q ∈ S3 horizontally, permuting k ∈V4 vertically.

3.3.3. SEQUENCE STRUCTURE OF THE BINARY ROTATION GROUP OF THE

HYPERCUBE

In the previous section we have seen that

V4
g
,−→O

p−−−↠ S3, (3.20)
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is a split exact short sequence, since O ∼= S4. It was also shown that this implies that
O ∼=V4⋊τS3, for the homomorphism τ : S3 → Aut(V4), which is given explicitly at the end
of the previous section. We are hoping that this gives us a way to extend this to describe
the structures of 2O and 2OH . We have already seen that the two short sequences

Q8 ,→ 2O ↠ S3, (3.21)

Q8 ×Q8 ,→ 2OH ↠ S3, (3.22)

are exact, by normality of Q8 and Q8×Q8 and the structure of the cosets of both. However,
disappointingly there is an argument that these sequences are not split. For this, we
use the almost trivial fact that −1 is the only element of H1 that has order 2. All other
elements, besides the identity, have at least order 3. With this information, try to find an
homomorphism f : S3 → 2O. Now for any homomorphism f̂ : G1 →G2, it holds that for
g ∈G1, f̂ (g ) has an order that divides the order of g . This follows from the equality

g m = eG1 ⇐⇒ f̂ (g m) = eG2 ⇐⇒ f̂ (g )m = eG2 .

In our situation this means that the three elements of order 2, (12), (13), (23) ∈ S3, have to
be mapped to some element in 2O, which has an order dividing 2. But this can only be
±1 and thus f can not be injective, meaning we can not satisfy p ◦ f = idS3 .

The only elements in 2OH that have order 2 or lower are the four elements (±1,±1),
but these are all in the same coset of Q8×Q8, namely in Q8×Q8 itself. Since p : 2OH ↠ S3

maps every coset to one element as discussed, we can not find a homomorphism f :
S3 → 2OH satisfying p ◦ f = idS3 for this sequence either.

It seems like we can not find a ‘nice’ element for every coset, as in figure 3.11, creating
an isomorphic subgroup to S3 of neither 2O nor 2OH . Actually, 2O and 2OH both do not
have any subgroup isomorphic to S3.

3.4. ROTATION GROUP OF THE HYPERDIAMOND

T HE hyperdiamond or 24-cell, is one of the six regular polytopes in four dimensions
and is probably the most unique regular polytope, as its type only exist in four di-

mensions and it is thus the only one of its type. The hyperdiamond has 24 octahedrons
as hyperfaces, 96 triangle as faces, 96 edges and 24 vertices [19]. Its vertices inH are given
by the set

2T := 1

2
{±1± i± j±k}∪Q8, (3.23)

which we have already shortly seen in lemma 3.15, where it was proved that 2T is a nor-
mal subgroup of 2O with index 2. So while 2T represents some rotations of the cube, it
also contains all vertices of the hyperdiamond at the same time. For the rotation group of
the hyperdiamond, the notation OD ⊂ SO(4) will be used, but since we are working with
quaternions, we will mostly be look at the binary rotation group of the hyperdiamond,
2OD ⊂H1 ×H1. So we want to find unit quaternion pairs such that OD =Ψ(2OD ).
2T is actually often called the binary tetrahedral group, as it is a double cover of the
rotation group of the tetrahedron. This is where it gets its ‘T ’ from, but we will not go
into more detail about this in this thesis.
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Figure 3.14: The hyperdiamond as a graph.[19]

2T can be split in a standard hypercube and 4-orthoplex. This directly follows from the
cosets of Q8 in 2T , see table 3.8. Furthermore, we know that the vertices of the hypercube
also describe two 4-orthoplexes, as discussed in section 3.1.1. So 2T also describes three
4-orthoplexes. That Q8 ⊴ 2T follows straight from its normality in 2O.

Coset Number Elements
1 Q8

2 1
2 {±1± i± j±k} with even number of + signs

3 1
2 {±1± i± j±k} with odd number of + signs

Table 3.8: Cosets of Q8 in 2T .

It is interesting to note that the short sequence

Q8
g
,−→ 2T

p−−−↠C3 (3.24)

is exact and it splits. For g : Q8 → 2T , just choose the obvious embedding. If we write
C3 = {1,c,c2} choose p : 2T →C3 such that

p(g 1) = 1, p(g 2) = c, p(g 3) = c2.

Then indeed ker(p) = g (Q8) and p is surjective. To prove that the short sequence splits,
define f : C3 → 2T by

f (1) = 1, f (c) = 1

2
(−1+ i+ j+k), f (c2) = 1

2
(−1− i− j−k). (3.25)
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Then this is indeed a homomorphism, since(
1

2
(−1+ i+ j+k)

)2

= 1

2
(−1− i− j−k)(

1

2
(−1+ i+ j+k)

)3

= 1.

Furthermore, p( f (c)) = c, which is enough to prove p ◦ f = idC3 . So the sequence is split
and 2T ∼=Q8 ⋊τC3 for some τ : C3 → Aut(Q8). Note that the choice for f is not unique.

Denote a general element of C3 as cm , then from the proof of lemma 3.23 we know
that τ : C3 → Aut(Q8) is given by τ(cm) = τcm , where for q ∈Q8 we have that τcm (q) satis-
fies

f (cm)g (q) f (cm)−1 = g (τ(q)).

We can make a table to see exactly which automorphisms on Q8 τ1,τc ,τc2 describe, see
table 3.9.

τ1 τc τc2

1 1 1 1
−1 −1 −1 −1

i i k j
−i −i −k −j
j j i k
−j −j −i −k
k k j i
−k −k −j −i

Table 3.9: Mappings of the automorphism τcm : C3 → Aut(Q8) for cm ∈ C3 horizontally, permuting q ∈ Q8
vertically.

The two cosets of 2T in 2O are written out in table 3.10. The first coset is just 2T itself, so
a hyperdiamond by definition, but the second coset is actually a rotated copy of 2T and
thus also a hyperdiamond. It is clear that 2O/2T ∼=C2, since it has only two elements.

Coset Number Elements
1 1

2 (±1± i± j±k)∪ {±1,±i,±j,±k}
2 1p

2
{±1± i}∪ 1p

2
{±1± j}∪ 1p

2
{±1±k}

∪ 1p
2

{±i± j}∪ 1p
2

{±i±k}∪ 1p
2

{±j±k}

Table 3.10: The coset of 2T in 2O

The short exact sequence
2T ,→ 2O ↠C2 (3.26)

is not split for a similar reason as why the short sequences in equations 3.21 and 3.22 are
not split. Namely, −1 ∈ 2O is the only element with order 2, which is even true for all of
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H1, and −1 ∈ 2T itself already.

Let us look at the rotational symmetries of 2T . Again, we are looking for pairs keep-
ing the vertex set of 2T in place through the map Ψ. Since 2T is a group, all pairs in
(q1, q2) ∈ 2T ×2T exactly keep 2T in place as rotations, we have explicitly q12T q−1

2 ∈ 2T .
This gives us already 24 · 24 = 576 pairs and 576/2 = 288 rotations. The size of OD can
be calculated with the orbit stabilizer theorem. Take one of the octahedron hyperfaces
of the hyperdiamond, then equation 3.8 tells us that the rotation group of the octahe-
dron has 24 elements, giving the size of its stabilizer. Now an octahedron hyperface can
be rotated to any other octahedron hyperface, meaning that the orbit is just all 24 oc-
tahedrons [19]. Then the orbit stabilizer theorem gives us 24 · 24 = 576 rotations. This
is exactly the number of unit quaternion pairs we already found with 2T × 2T , but of
course there are 2 unit quaternion pairs describing each rotation. So we need exactly
twice as many unit quaternion pairs to construct all of 2OD . An obvious candidate for
the remaining quaternions, is the direct product of the other coset of 2T , which also has
576 elements. Note that this is very similar to how we constructed 2OH from the cosets
of Q8 in 2O. Let g1 and g2 denote the cosets of 2T in 2O, then we can define

2OD := {(q1, q2) ∈ 2O ×2O : q12T = q22T }. (3.27)

Since we only have two cosets we can write 2OD = (2T ×2T )∪ ((2O \ 2T )× (2O \ 2T )).

Theorem 3.24. The map Ψq1,q2 :H→H by Ψq1,q2 (p) = q1pq−1
2 is a rotation of 2T for all

(q1, q2) ∈ 2OD .

Proof. We already showed this for 2T ×2T , so all that is left is to show (2O\2T )×(2O\2T )
are rotations of 2T as well. Let (q1, q2) ∈ (2O \ 2T )× (2O \ 2T ) and p ∈ 2T , then Ψq1,q2 =
q1pq−1

2 . Now q1p ∈ 2O \2T and q−1 ∈ 2O \2T , as 2O/2T ∼=C2, meaning the second coset
is its own inverse. For the same reason this means (q1p)q−1

2 ∈ 2T and since rotations are
bijections, this means all of 2T is mapped to itself.

For similar arguments as for 2OH in theorem 3.17, 2OD really is a group with the opera-
tion defined by the direct product. Furthermore, since it contains twice the number of
elements as OD and Ψ :H1 → SO(4) is unique up to a sign, we can conclude

OD
∼= 2OD /{±(1,1)}. (3.28)

This raises the question if this kind of structure works for the other normal subgroups of
2O as well, since it already works for Q8 and 2T . This is explored in the next section 3.5.

2OD has 48 conjugacy classes given by the code in appendix A.2.1.

Lastly for this section it will be shown that 2OH is not normal in 2OD , which would be a
reasonable hypothesis since 2OH is a subgroup with index [2OD : 2OH ] = 3. Take(

1p
2

(1− j), 1p
2

(−1− j)
)
∈ 2OH and

( 1
2 (1+ i+ j+k),−j

) ∈ 2OD , then(
1

2
(1+ i+ j+k),−j

)−1

=
(

1

2
(1− i− j−k), j

)
.
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Next calculate the conjugation

( 1
2 (1+ i+ j+k),−j

)( 1p
2

(1− j), 1p
2

(−1− j)
)( 1

2 (1− i− j−k), j
)= (

1p
2

(1−k), 1p
2

(−1− j)
)

,

which is not an element of 2OH , since the two elements are not in the same coset of
2O/Q8.

3.5. ROTATION GROUP OF THE BINARY OCTAHEDRAL GROUP

L ET us try to extend the method with which we found the binary rotation groups of
the normal subgroups Q8 and 2T of 2O, to the the biggest normal subgroup of 2O,

which is 2O itself. Now 2O is not a regular polytope itself, but it is highly symmetric. We
have seen from the coset of Q8 and 2T , that 2O can geometrically be interpreted as six
4-simplexes or two hyperdiamonds. Furthermore, the cosets of Q8 in 2T can split up one
or both of these hyperdiamonds in a hypercube and 4-orthoplex.

So, since 2O is such an symmetric object and contains all kinds of other symmet-
ric objects, it is still very interesting to investigate the rotation group of 2O, denote this
as OO ⊂ SO(4). Our suspicion is that the binary rotation group of 2O, denote this as
2OO ⊂H1 ×H1, is equal to just 2O ×2O, since unlike before we only have one coset. In-
deed for q1, q2 ∈ 2O ×2O it holds that q12Oq−1

2 ∈ 2O, since 2O is a group. This gives us
already 48 ·48 = 2304 rotations. Now all that is left to prove is that these are all rotations
of 2O such that OO =Ψ(2OO).

Counting the size of the rotation group of 2O4 is a bit harder than for Q8 and 2T as
we can not immediately apply the orbit stabilizer theorem. For example, we are not sure
if the six 4-orthoplexes form one orbit, maybe some rotation of 2O even maps them to
other 4-orthoplexes that are not even part of these six from the start. In this section we
will show that we can apply the orbit stabilizer theorem to the hyperdiamond described
by 2T and how to do this.

Denote the hyperdiamond in 2O described by 2T as D1 and denote its complementary
hyperdiamond described by 2O \ 2T as D2. Since 2OD ⊂ 2O ×2O ⊆ 2OO , all unit quater-
nions pairs in 2OD are rotations of 2O as well and these rotations map D1 to itself. This
implies that D2 is also mapped to itself by these rotations and thus they are rotational
symmetries of D2 as well. Since D2 is of course a hyperdiamond, these are all rotational
symmetries of D2. We have seen that #2OD = 1152 which is half the size of 2O ×2O. Our
hypothesis is that 2O × 2O is the entire binary rotation group of 2O. If this is the case,
then 2OD must be normal in 2OO since it then must have index 2, so if we can prove this
we are done.

Since 2OD ⊂ 2OO , the stabilizer of D1 and D2 in 2OO is equal to their coinciding
binary rotation group, because if it was bigger, then there exists a rotation of the hyper-
diamond not in 2OD . Call the index of the stabilizer of D1 and D2 in 2OO k, then k is thus
equal to the size of the orbit containing D1 and also equal to the size of the orbit con-
taining D2, which we have not shown are the same orbit yet. Furthermore k also gives us

4This is also related to the root system F4 and its Weyl group, since 2O can be seen as a normalized version of
F4. This will not be covered in this thesis.
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the size of 2OO by
#2OO = #Stab(D1) ·k = #2OD ·k, (3.29)

using the orbit stabilizer theorem. We already know that #2OO = #(2O ×2O) · l for some
l ∈ Z>0, since 2O ×2O is at least a subgroup of 2OO . This tells us k = 2l and thus k ≥ 2.
We want to prove that k = 2l = 2.

Proving that D1 and D2 are the only possible hyperdiamonds that are contained in
2O is sufficient. Rotations from 2OO \ 2OD can not map D1 to itself and thus D1 has to
be mapped to some other hyperdiamond. Indeed, if we prove that D2 is the only other
possible possible inscription of a hyperdiamond in 2O, then the size of the orbit of D1

can not be greater than 2, so we must have k = 2. We will do show this in a similar way to
the simpler example of the two 4-orthoplexes in a cube in section 3.1.1. Here the orthog-
onality between certain edges as a characteristic of the 4-orthoplex was used to prove
there is only one way to describe two 4-orthoplexes in the hypercube. However, instead
of using orthogonality, here the distance between vertices is used as the characteristic of
the hyperdiamond. Take the vertex 1 ∈ 2O, then the distance from 1 to all other vertices
in 2O can be calculated, see table 3.11. Note that since all elements of 2O lie in H1, the
distance is fully determined by the real part.

Elements Real Part Distance Number
1 1 0 1
-1 -1 2 1

1
2 {1± i± j±k} 1

2 1 8
1
2 {−1± i± j±k} − 1

2

p
3 8

{±i,±j,±k} 0
p

2 6
1p
2

{±i± j,±i±k,±j±k} 0
p

2 12
1p
2

{1± i,1± j,1±k} 1p
2

0.765. . . 6
1p
2

{−1± i,−1± j,−1±k} − 1p
2

1.848. . . 6

Table 3.11: Distance of the elements of 2O to 1 ∈ 2O.

Note that the elements with zero real part have been split on purpose such that the union
of the first five rows equals 2T , while the last three rows equal 2O \ 2T . Now looking at
just D1, we can read the characteristic distances between the vertex equivalent to 1 in a
general hyperdiamond on the 3-sphere and the other vertices of this general hyperdia-
mond. Comparing the distances to the vertices of D2, we see that the choice is fully fixed
for 1, except for the six elements at distance

p
2. At first sight it seems like we might be

able to choose some of the twelve additional elements in row six in table 3.11, to create
a different hyperdiamond than D1, which still contains 1. However, in D1 the distance
between any of the six vertices with zero real part is

p
2. Then it can be checked that this

is the only choice of six vertices from the eighteen vertices at distance
p

2 to the element
1 that satisfy this property. This means there only exists one hyperdiamond containing
1 in 2O, namely D1, and consequently this fixes D2 as the only other hyperdiamond in
2O. Since we know that the size of the orbit of D1 is at least 2 from equation 3.29 and D1

and D2 are the only possible hyperdiamond in 2O, they must be in the same orbit, which
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is immediately the only orbit of hyperdiamonds in 2O. We are finally able to apply the
orbit stabilizer theorem, giving that #2OO = #2OD ·k = 1152 ·2 = 2304. This means the
rotations of 2O that we found are all of the rotations of 2O, so we can conclude

2OO
∼= 2O ×2O (3.30)

and thus
OO

∼= (2O ×2O)/{±(1,1)}. (3.31)

It is interesting to note that from the fact that the stabilizer of D1 and D2 have index
2 in OO , it follows that half of the rotations fix D1 and D2, while the other half maps D1

to D2 and vice versa. This is also checked in appendix A.2.2.

Unfortunately, the method we used to construct the binary rotation groups of the hy-
percube, hyperdiamond and the binary octahedral group, does not work for the remain-
ing normal subgroups of 2O, namely {±1} and {1}. This does not come as surprise, as
the rotation group of {1} is just SO(4), so its binary rotation group is all of H1 ×H1. For
{±1}, every rotation of the imaginary hyperplane ImH is a rotational symmetry, these
are the pairs (q, q) with q ∈ H1. Furthermore, rotations of the form (q,−q) with q ∈ H1

keep {±1} fixed as well, by q{±1}(−q)−1 = {∓1}. These rotations can be seen as all rota-
tion flipping the real axis in H. The total binary rotation group of {±1} is thus equal to
{(q1, q2) ∈H1 ×H1 : q1 =±q2}.

As a last remark we highlight that the short exact sequences

2OD ,→ 2OO ↠C2,

does not split, again for the simple reason that 2OO \ 2OD contains no elements with an
order that divides 2. For 2OH we do not even have an exact short sequence as it is not
normal in 2OO .

The findings in this chapter can be summarized in one theorem.

Theorem 3.25. Let N be a normal subgroup of the binary octahedral group 2O, then

2ON := {(q1, q2) ∈ 2O ×2O : q1N = q2N } (3.32)

is a subgroup of the binary rotation group of N . Furthermore, for N = Q8,2T,2O it holds
that 2ON is equal to the entire binary rotation group of N and for the rotation group of
N , denote this as ON ⊂ SO(4), it holds that ON

∼= 2ON /{±(1,1)}, where the isomorphism is
given by the restriction of Ψ :H1 ×H1 → SO(4) to 2ON .
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CONCLUSION

W ITH the fact that SO(3) ∼= H1/{±1} and SO(4) ∼= H1 ×H1/{±(1,1)} the binary octa-
hedral group 2O was able to be constructed with 48 unit quaternions such that

O ∼= 2O/{±1}, where the isomorphism is given by the restriction of Φ : H1 → SO(3) on
2O. The five normal subgroups of 2O are {1}, {±1},Q8,2T and 2O itself. Q8 consists of
the vertices of a 4-orthoplex or 16-cell, which is dual to the hypercube or 8-cell, and 2T
consists of the vertices of a hyperdiamond or 24-cell. This way 2O is equal to the union
of six rotated copies of Q8 or the standard 16-cell, but 2O is also equal to the union of
two rotated copies of 2T or the standard 24-cell.

For the normal subgroups Q8,2T,2O ⊴ 2O it was proved that the subgroup ofH1×H1

defined by
2ON := {(q1, q2) ∈ 2O ×2O : q1N = q2N }

with N ∈ {Q8,2T,2O} is the entire binary rotation group of N . Let ON ⊂ SO(4) denote the
rotation group of N , then ON

∼= 2ON /{±(1,1)}, where the isomorphism is given by the re-
striction ofΨ :H1×H1 → SO(4) to 2ON . Q8×Q8 is normal in the binary rotation group of
the hypercube and 2T ×2T is normal in the binary rotation group of the hyperdiamond.
This way the binary rotation group of the hypercube is equal to the union of the direct
products of six rotated copies of the standard 16-cell with themselves. Furthermore, the
binary rotation group of the hyperdiamond is equal to the union of the direct products
of two rotated copies of the standard 24-cells with themselves.

For the remaining two normal subgroups of 2O, namely {±1} and {1}, this construc-
tion gives a subgroup of the entire binary rotation group, but not entire binary rotation
group, which are {(q1, q2) ∈H1 ×H1 : q1 =±q2} andH1 ×H1 respectively.

It was found that the short exact sequences

V4 ,→O ↠ S3

Q8 ,→ 2T ↠C3

59
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split, while the short exact sequences

Q8 ,→ 2O ↠ S3

2T ,→ 2O ↠C2

Q8 ×Q8 ,→ 2OH ↠ S3

2T ×2T ,→ 2OD ↠C2

do not split.

This thesis has shown that quaternions offer a powerful tool to analyze rotation groups in
three and four dimensions. There are a lot more symmetric objects in these dimensions
that were not touched in this thesis. Some notable shapes are the remaining polytopes in
three and four dimensions. These are the tetrahedron, dodecahedron and icosahedron
and their 4-dimensional analogues the 5-cell, 120-cell and the 600-cell respectively. Fur-
thermore, the surface was only scratched with study of the hypercube, hyperdiamond
and binary octahedral group. There are more inscriptions, geometric descriptions of
symmetries and besides, in this thesis it was not looked so much at the non-binary rota-
tion groups, let alone the entire symmetry groups.
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A.1. EXTRA PROOFS
Here are two proofs, which in the text follow from more technical argumuntents, but are
proved more directly here.

Lemma A.1. Let q =H1 and p ∈H, then Φq (p) preserves the real part of p, that is

Re(p) = Re(qpq−1)

Proof. Write q = r +ai+bj+ ck and p = r ′+a′i+b′j+ c ′k. Then

Re(qpq−1) = Re(qr q−1)+Re(q(a′i+b′j+ c ′k)q−1).

Since the real part commutes inH, we have that Re(qr q−1) = r . So what is left is to show
that Re(q(a′i+b′j+ c ′k)q−1) = 0. This can be proved by writing everything out, which is
exactly shown in the proof of theorem 2.28.

Theorem A.2. 2O is a subgroup ofH1.

Proof. First, it is clear that all conjugates and thus inverses of the the elements of 2O are
also in 2O. That 2O is closed can be seen from the fact that for q1, q2 ∈ 2O, we have that

q1{±i,±j,±k}q−1
1 = {±i,±j,±k} = q2{±i,±j,±k}q−1

2 .

So q1q2 is a rotation as well, by

q1q2{±i,±j,±k}(q1q2)−1 = q1q2{±i,±j,±k}q−1
2 q−1

1 = {±i,±j,±k}.
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A.2. CODE
All calculations can be checked with the following code defining classes for quaternions
and quaternion pairs. At the bottom some objects are defined that can be used in the
function rot_check_object, which checks if two quaternions are a rotation of the object
according to the map Ψq1,q2 :H1 ×H1 → SO(4) from theorem 2.30.

import math

class Quaternion:
def __init__(self, w, x, y, z):

self.w = w
self.x = x
self.y = y
self.z = z

def __add__(self, other):
return Quaternion(

self.w + other.w,
self.x + other.x,
self.y + other.y,
self.z + other.z)

def __sub__(self, other):
return Quaternion(

self.w - other.w,
self.x - other.x,
self.y - other.y,
self.z - other.z)

def __neg__(self):
return Quaternion(-self.w, -self.x, -self.y, -self.z)

def __mul__(self, other):
w1, x1, y1, z1 = self.w, self.x, self.y, self.z
w2, x2, y2, z2 = other.w, other.x, other.y, other.z

w = w1*w2 - x1*x2 - y1*y2 - z1*z2
x = w1*x2 + x1*w2 + y1*z2 - z1*y2
y = w1*y2 - x1*z2 + y1*w2 + z1*x2
z = w1*z2 + x1*y2 - y1*x2 + z1*w2

return Quaternion(w, x, y, z)

def norm(self):
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return math.sqrt(self.w**2 + self.x**2 + self.y**2 + self.z**2)

def conjugate(self):
return Quaternion(self.w, -self.x, -self.y, -self.z)

def inverse(self):
n = self.norm()**2
return Quaternion(self.w/n, -self.x/n, -self.y/n, -self.z/n)

def normalize(self):
n = self.norm()
return Quaternion(self.w/n, self.x/n, self.y/n, self.z/n)

def __repr__(self):
return f"{self.w}+{self.x}i+{self.y}j+{self.z}k"

def __eq__(self, other):
return (math.isclose(self.w, other.w) and

math.isclose(self.x, other.x) and
math.isclose(self.y, other.y) and
math.isclose(self.z, other.z))

def __round__(self,d):
return Quaternion(round(self.w,d),round(self.x,d),

round(self.y,d),round(self.z,d))

def __hash__(self):
return hash((

round(self.w, 10),
round(self.x, 10),
round(self.y, 10),
round(self.z, 10)

))

def __pow__(self, n):
if not isinstance(n, int):

raise TypeError("Exponent must be an integer")
if n < 0:

raise ValueError("Negative exponents not supported
(use inverse if needed)")

result = Quaternion(1, 0, 0, 0)
for _ in range(n):

result = result * self
return result
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def order(self): # only works if order <100
for i in range(1,100):

if self**i == one:
return i
break

class Quaternion_pair:
def __init__(self, q1, q2):

self.q1 = q1
self.q2 = q2

def __repr__(self):
return f"({self.q1}, {self.q2})"

def __add__(self,other):
return Quaternion_pair(self.q1+other.q1,self.q2+other.q2)

def __sub__(self,other):
return Quaternion_pair(self.q1-other.q1,self.q2-other.q2)

def __neg__(self):
return Quaternion_pair(-self.q1,-self.q2)

def __mul__(self, other):
return Quaternion_pair(self.q1*other.q1, self.q2*other.q2)

def __eq__(self, other):
return self.q1 == other.q1 and self.q2 == other.q2

def __hash__(self):
return hash((self.q1, self.q2))

def order(self): # gives order of both quaternions in the pair,
# order of the pair is the smallest common multiple

return (self.q1.order(), self.q2.order())

def normalize(self):
return Quaternion_pair(self.q1.normalize(), self.q2.normalize())

def conjugate(self):
return Quaternion_pair(self.q1.conjugate(), self.q2.conjugate())

def inverse(self):
return Quaternion_pair(self.q1.inverse(), self.q2.inverse())
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def __round__(self,d):
return Quaternion_pair(round(self.q1,d), round(self.q2,d))

def __getitem__(self, index):
if index == 0:

return self.q1
elif index == 1:

return self.q2

one = Quaternion(1,0,0,0)
i = Quaternion(0,1,0,0)
j = Quaternion(0,0,1,0)
k = Quaternion(0,0,0,1)

octahedron = {one,-one,i,-i,j,-j,k,-k}

hypercube_not_normalized = {one+i+j+k, one+i+j-k, one+i-j+k, one-i+j+k,
one+i-j-k, one-i+j-k, one-i-j+k, one-i-j-k,
-one+i+j+k, -one+i+j-k, -one+i-j+k, -one-i+j+k,
-one+i-j-k, -one-i+j-k, -one-i-j+k, -one-i-j-k}

hypercube = set()
for q in hypercube_not_normalized:

hypercube.add(q.normalize())

hyperdiamond = octahedron.union(hypercube)

D2 = {one+i,one-i,-one+i,-one-i,one+j,one-j,
-one+j,-one-j,one+k,one-k,-one+k,-one-k,
i+j,i-j,-i+j,-i-j,i+k,i-k,-i+k,-i-k,j+k,j-k,-j+k,-j-k}
# rotated hyperdiamond to create binary ocatahedral group 2O

D2_normalized = set()
for q in D2:

D2_normalized.add(q.normalize())

twoO = D2_normalized.union(hyperdiamond) # binary octahedral group 2O

def rot_check_object(q1,q2,objec):
# checks if quaternion pair (q1,q2) is a rotation of
# the 4D object (define as a set of quaternions)
# for 3D rotations, use function with q1=q2
if round(q1.norm(),1)!=1 or round(q2.norm(),1) != 1:

print("The quaternion pair should consist of unit quaternions")
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else:
l = set()
for elt in objec:

l.add(q1*elt*q2.conjugate())

if l == objec:
print((round(q1,1),round(q2,1), " is a rotation of your object")

else:
print((round(q1,1),round(q2,1), " is NOT a rotation of
your object, the rotated object is: ", l)

A.2.1. CONJUGACY CLASSES OF 2OH AND 2OD
For example, the following code calculates all the conjugacy classes of the binary rota-
tion group of the hypercube 2OH or the hyperdiamond 2OD , using the cosets of 2O to
define 2OH and 2OD . Change ’rot_hypercube’ into ’rot_hyperdiamond’ for the lower to
get the conjugacy classes of 2OD . For the check if the defined set really are rotations, the
previous code is needed to define ’octahedron’ and ’hyperdiamond’.

## Cosets of 2O (not normalized)
c1 = [one,-one,i,-i,j,-j,k,-k]
c2 = [one+i,one+-i,-one+i,-one+-i,j+k,j+-k,-j+k,-j+-k]
c3 = [one+j,one+-j,-one+j,-one+-j,i+k,i+-k,-i+k,-i+-k]
c4 = [one+k,one+-k,-one+k,-one+-k,i+j,i+-j,-i+j,-i+-j]
c5 = [Quaternion(1, 1, 1, 1),

Quaternion(1, 1, -1, -1),
Quaternion(1, -1, 1, -1),
Quaternion(1, -1, -1, 1),

Quaternion(-1, 1, 1, -1),
Quaternion(-1, 1, -1, 1),
Quaternion(-1, -1, 1, 1),
Quaternion(-1, -1, -1, -1)]

c6 = [Quaternion(1, 1, 1, -1),
Quaternion(1, 1, -1, 1),
Quaternion(1, -1, 1, 1),
Quaternion(1, -1, -1, -1),

Quaternion(-1, 1, 1, 1),
Quaternion(-1, 1, -1, -1),
Quaternion(-1, -1, 1, -1),
Quaternion(-1, -1, -1, 1)]

## Construction of binary rotation group of the hypercube 2O_H
hypercube_rot = set()
for q1 in c1:

for q2 in c1:
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hypercube_rot.add(Quaternion_pair(q1, q2).normalize())
for q1 in c2:

for q2 in c2:
hypercube_rot.add(Quaternion_pair(q1, q2).normalize())

for q1 in c3:
for q2 in c3:

hypercube_rot.add(Quaternion_pair(q1, q2).normalize())
for q1 in c4:

for q2 in c4:
hypercube_rot.add(Quaternion_pair(q1, q2).normalize())

for q1 in c5:
for q2 in c5:

hypercube_rot.add(Quaternion_pair(q1, q2).normalize())
for q1 in c6:

for q2 in c6:
hypercube_rot.add(Quaternion_pair(q1, q2).normalize())

## Construction of binary rotation group of the hyperdiamond 2O_D
twoT = [one,-one,i,-i,j,-j,k,-k,

Quaternion(1, 1, 1, 1),
Quaternion(1, 1, -1, -1),
Quaternion(1, -1, 1, -1),
Quaternion(1, -1, -1, 1),

Quaternion(-1, 1, 1, -1),
Quaternion(-1, 1, -1, 1),
Quaternion(-1, -1, 1, 1),
Quaternion(-1, -1, -1, -1),

Quaternion(1, 1, 1, -1),
Quaternion(1, 1, -1, 1),
Quaternion(1, -1, 1, 1),
Quaternion(1, -1, -1, -1),

Quaternion(-1, 1, 1, 1),
Quaternion(-1, 1, -1, -1),
Quaternion(-1, -1, 1, -1),
Quaternion(-1, -1, -1, 1)]

twoTc = [one+i,one+-i,-one+i,-one+-i,j+k,j+-k,-j+k,-j+-k,
one+j,one+-j,-one+j,-one+-j,i+k,i+-k,-i+k,-i+-k,
one+k,one+-k,-one+k,-one+-k,i+j,i+-j,-i+j,-i+-j]

hyperdiamond_rot = set()
for q1 in twoT:

D1.add(q1.normalize())
for q2 in twoT:

hyperdiamond_rot.add(Quaternion_pair(q1, q2).normalize())
for q1 in twoTc:
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D2.add(round(q1.normalize(),1))
for q2 in twoTc:

hyperdiamond_rot.add(Quaternion_pair(q1, q2).normalize())

## Check rotation if these really are rotations of the hypercube
# for rot in hypercube_rot:
# rot_check_object(rot[0], rot[1], octahedron)
# for rot in hyperdiamond_rot:
# rot_check_object(rot[0], rot[1], hyperdiamond)

## Find all conjugacy classes in the list d
d = []
count = 0
for h in hypercube_rot:

l=set()
for g in hypercube_rot:

l.add(round(g*h*g.conjugate(),1))
if l not in d:

count+=1
d.append(l)
print("Nr.", count, ":", len(l), "pairs in this conjugacy class")
for quat in l:

print(quat)
print("\n")

A.2.2. THE TWO TYPES OF ROTATIONS OF 2OO
This code shows that half of the elements of 2O×2O map D1 and D2 to themselves, while
the other half maps them to each other.

tlist = []
flist = []
D1 = hyperdiamond
D2 = D2_normalized
for q1 in twoO:

for q2 in twoO:
st = set()
rho = Quaternion_pair(q1, q2).normalize()
# rot_check_object(rho[0], rho[1], hyperdiamond)

for vert in D1:
st.add(round(rho[0]*vert*rho[1].conjugate(),1))

if st==D2:
tlist.append(1)
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elif st == D1:
flist.append(2)

else:
print("Does not map D1 to itself or D1 to D2")

print(len(flist), "rotations map D1 to D1", len(tlist), "rotations map D1 to D2")
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